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Abstract

Computer systems are ubiquitous nowadays and it goes without saying that their correctness is of
capital importance in a lot of cases. However, identifying bugs and faults in computer systems is a
hard and complex task. On top of well-known methods such as unit testing, integration testing, and
so on, one can apply model checking techniques, which formally verify that a model (an abstract
representation of the system) behaves correctly with regards to a set of constraints. Constructing
a model from a system is itself complex and may introduce errors that do not occur in the actual
system. Fortunately, if the system can be modeled by an automaton (a state machine describing which
execution is valid or invalid), one can apply active automata learning algorithms to automatically
construct an automaton by interacting with the computer system in a black-box manner, i.e., by
only observing runs of the system without having access to its internal details. While the original
algorithm introduced in 1987 by Dana Angluin focused on simple automata than can only use their
states to determine whether an execution is valid or not, many efforts were made in recent years to
learn more complex (and, thus, more expressive) families of automata that can use resources, such as
a stack, registers, etc. In this thesis, we present two learning algorithms for two distinct extensions
of automata (with different available resources), as well as a model checking approach for JSON
documents, relying on automata learning. We divide our contributions into three axes.

Firstly, we provide a learning algorithm for a family of automata extended with a natural counter,
which can be incremented or decremented along the transitions. Furthermore, it can be tested
against zero, allowing different behaviors based on the current counter value. Since the counter does
not have an upper bound in general, the number of pairs of a state and a counter value is potentially
infinite, meaning that learning the behavior of a system requires special care. We provide a finite
characterization of this behavior that can be learned by querying the system, and from which a
one-counter automata can be extracted. We show that the algorithm builds a polynomial number of
hypotheses in the size of this characterization but requires exponentially many interactions to do
so.

Secondly, we focus on JSON documents, which can be used to store and transfer information in
a way that is easily readable by a human and by a computer. More precisely, we assume that we
are in a streaming context, i.e., the document is received piece by piece (which happens when a
document is sent via a network, for instance), and that we want to verify whether the document is
valid with regards to a set of constraints, given as a JSON schema. The classical algorithm exploring
the constraints and the document in parallel requires to keep the full document in memory in the
worst case and, thus, is not always appropriate in a streaming scenario. Our new approach first
learns an automaton augmented with a stack that is then abstracted and used to efficiently decide
whether a document is valid, without needing to store the whole document. That is, our validation
algorithm has a lower overall memory requirement, at the cost of needing more time to validate a
document, as observed on experimental results.

Finally, we study automata whose resources are timers that can be used to encode timing constraints.
A timer is started at some value and decreases over time. Then, when it reaches zero, a special event
occurs that must be handled, similarly to interruptions in a processor. It may happen that multiple
timers reach zero at the same time, or that the user provides an input exactly at the same time a timer
times out. In these cases, the model has a non-deterministic behavior as the automaton may decide
to process these events in any order. We study the timed behavior of such an automaton and provide
conditions ensuring that any untimed behavior can be observed without this non-determinism.
Finally, we give an active learning algorithm, requiring a factorial number of interactions in the



number of timers, and polynomial in the number of states. As, in practice, the number of timers
remains relatively small, we claim that our algorithm can be used for real-world applications.



Résumé en français

De nos jours, les systèmes informatiques sont omniprésents et il va sans dire que leur exactitude
est d’une importance capitale dans bien des cas. Cependant, identifier des bogues et des défauts
dans les systèmes informatiques est une tâche dure et complexe. En plus des méthodes bien connues
comme les tests unitaires, les tests d’intégration, etc., des méthodes de vérification de modèles (model
checking, en anglais) peuvent être appliquées. Ces méthodes vérifient formellement qu’un modèle
(une représentation abstraite du système) se comporte correctement par rapport à un ensemble de
contraintes. La construction d’un modèle à partir d’un système est en soi complexe et peut introduire
des erreurs qui n’existent pas dans le système concret. Heureusement, si le système peut être modélisé
par un automate (une machine à états décrivant les exécutions valides ou invalides du système), il est
possible d’utiliser des algorithmes d’apprentissage actif d’automates pour automatiquement construire
un automate en interagissant avec le système informatique comme une boite noire, c’est-à-dire, en ne
pouvant qu’observer les exécutions du système sans avoir accès à ses détails internes. L’algorithme
originel introduit en 1987 par Dana Angluin se concentrait sur des automates simples qui ne peut
utiliser que leurs états pour déterminer si une exécution est valide ou non. Ces dernières années,
plusieurs travaux ont été effectués afin d’apprendre des familles d’automates plus complexes (et,
donc, plus expressifs), capables d’utiliser des ressources, tels qu’une pile, des registres, etc. Dans cette
thèse, nous présentons deux algorithmes d’apprentissage for deux extensions distinctes d’automates
(avec des ressources disponibles différentes), ainsi qu’une approche de model checking pour des
documents JSON, qui se base sur l’apprentissage d’automates. Nous séparons nos contributions en
trois axes.

Premièrement, nous décrivons un algorithme d’apprentissage pour une famille d’automates étendus
avec un compteur naturel qui peut être incrémenté ou décrémenté le long des transitions de ces auto-
mates. De plus, il est possible de vérifier si le compteur vaut zéro, ce qui permet des comportements
différents selon la valeur du compteur. Comme le compteur n’a pas de borne supérieure en général,
le nombre de paires composées d’un état et d’une valeur de compteur est potentiellement infini, ce
qui veut dire qu’apprendre le comportement d’un tel système nécessite une attention particulière.
Nous décrivons une caractérisation finie de ce comportement qui peut être apprise en interagissant
avec le système et à partir de laquelle un automate à un compteur peut être extrait. Nous montrons
que l’algorithme construits un nombre polynomial d’hypothèses en la taille de cette caractérisation
mais nécessite un nombre exponentiel d’interactions pour y arriver.

Deuxièmement, nous nous concentrons sur les documents JSON qui peuvent être utilisés pour stocker
et transférer de l’information d’une manière facilement lisible pour un humain et un ordinateur. Plus
précisément, nous supposons que nous sommes dans un context de diffusion en continu (streaming,
en anglais), c’est-à-dire que le document est reçu pièce par pièce (ce qui arrive lorsque le document
est transféré via un réseau, par exemple). De plus, nous voulons vérifier si le document est valide
par rapport à un ensemble de contraintes, donné comme un schéma JSON. L’algorithme classique
qui explore les contraintes et le document en parallèle nécessite de garder le document complet en
mémoire dans le pire des cas et n’est donc pas toujours approprié dans un scénario de streaming.
Notre nouvelle approche apprend d’abord un automate augmenté d’une pile qui est ensuite abstrait
et utilisé pour décider efficacement si un document est valide, sans avoir besoin de stocker le
document complet. Autrement dit, notre algorithme de validation requiert globalement moins de
mémoire mais a besoin de plus de temps pour valider un document, comme le montrent nos résultats
expérimentaux.

Finalement, nous étudions des automates étendus avec des minuteurs qui peuvent être utilisés pour



encoder des contraintes de temps. Un minuteur est démarré à une certaine valeur et décroît avec le
temps. Lorsqu’il arrive à zéro, un événement spécial se déclenche qui doit alors être traité, comme les
interruptions dans un processeur, par exemple. Il peut arriver que plusieurs minuteurs arrivent à zéro
en même temps ou que l’utilisateur donne une entrée exactement au même moment où un minuteur
expire. Dans ces cas, le modèle a un comportement non-déterministe vu que l’automate peut décider
de traiter ces événements dans n’importe quel ordre. Nous étudions le comportement temporisé
d’un tel automate et donnons des conditions qui assurent que n’importe quel comportement non-
temporisé peut être observé sans ce non-déterminisme. Pour finir, nous décrivons un algorithm
d’apprentissage actif qui nécessite un nombre factoriel d’interactions en le nombre de minuteurs et
polynomial en le nombre d’états. Comme, en pratique, le nombre de minuteurs reste relativement
bas, nous prétendons que notre algorithme peut être utilisé pour des applications du monde réel.



Samenvatting in het Nederlands

Computersystemen zijn tegenwoordig alomtegenwoordig en het spreekt voor zich dat hun cor-
rectheid in veel gevallen van kapitaal belang is. Het identificeren van bugs en fouten in compu-
tersystemen is echter een moeilijke en complexe taak. Naast bekende methodes zoals unit testen,
integratietesten, etc., kunnen modelcontrole (model checking, in Engels) methodes worden toegepast.
Deze methodes controleren formeel of een model (een abstracte weergave van het systeem) zich
correct gedraagt in relatie tot een set beperkingen. De constructie van een model van een systeem is
op zichzelf complex en kan fouten introduceren die niet bestaan in het werkelijke systeem. Gelukkig
is het, als het systeem kan worden gemodelleerd door een automaat (een toestandsmachine die
de geldige of ongeldige uitvoeringen van het systeem beschrijft), mogelijk om algoritmen voor het
actieve leren van automaten te gebruiken om automatisch een automaat te construeren door interactie
met het computersysteem als een zwarte doos, dat wil zegen, door alleen de uitvoeringen van het
systeem te kunnen observeren zonder toegang te hebben tot de interne details. Het oorspronkelijke
algoritme dat in 1987 werd geïntroduceerd door Dana Angluin richtte zich op eenvoudige automaten
die alleen hun toestanden konden gebruiken om te bepalen of een uitvoering een uitvoering geldig
is of niet. In de afgelopen jaren is er veel werk verricht om complexere (en dus expressievere)
families van automaten te leren, die bronnen kunnen gebruiken zoals een stack, registers, etc. In
deze doctoraatsthesis presenteren we twee leeralgoritmen voor twee verschillende uitbreidingen
van automaten (met verschillende beschikbare bronnen), evenals een modelcontrolebenadering voor
JSON-documenten, gebaseerd op automaatleren We verdelen onze bijdragen in drie gebieden.

Eerst beschrijven we een leeralgoritme voor een familie van uitgebreide automaten met een na-
tuurlijke teller die kan worden verhoogd of verlaagd langs de overgangen van deze automaten.
Bovendien is het mogelijk om te controleren of de teller nul is, waardoor verschillende gedragingen
mogelijk zijn afhankelijk van de waarde van de teller. Aangezien de teller in het algemeen geen
bovengrens heeft, is het aantal paren bestaande uit een toestand en een tellerwaarde potentieel
oneindig, wat betekent dat het leren van het gedrag van een dergelijk systeem speciale aandacht
vereist. We beschrijven een eindige karakterisering van dit gedrag dat kan worden geleerd door
interactie met het systeem en waaruit een automaat met één teller geëxtraheerd kan worden. We
laten zien dat het algoritme een polynomiaal aantal aannames construeert construeert in de grootte
van deze karakterisering, maar een exponentieel aantal van interacties om dit te bereiken.

Ten tweede richten we ons op JSON documenten die gebruikt kunnen worden om informatie op te
slaan en over te dragen op een manier die gemakkelijk leesbaar is voor zowel mensen als computers.
Specifiek gaan we ervan uit dat we ons in een streaming context bevinden, dat wil zegen, dat het
document stukje bij beetje wordt ontvangen (wat bijvoorbeeld gebeurt als het document via een
netwerk wordt overgedragen). Daarnaast willen we controleren of het document geldig is met
betrekking tot een set van beperkingen, gegeven als een JSON schema. Het klassieke algoritme
dat de beperkingen en het document parallel onderzoekt vereist in het slechtste geval dat het hele
document in het geheugen wordt bewaard en is daarom niet altijd geschikt in een streaming scenario.
Onze nieuwe aanpak leert eerst een stack augmented automaton die vervolgens wordt geabstraheerd
en gebruikt om efficiënt te beslissen of een document geldig is, zonder dat het volledige document
hoeft te worden opgeslagen. Met andere woorden, ons validatiealgoritme heeft in totaal minder
geheugen nodig, maar heeft meer tijd nodig om een document te valideren, zoals onze experimentele
resultaten laten zien.

Tenslotte bestuderen we automaten waarvan de bronnen timers zijn die kunnen orden gebruikt
om tijdsbeperkingen te coderen. Een timer wordt gestart op een bepaalde waarde en neemt af in



de tijd. Wanneer deze nul bereikt, vindt er een speciale gebeurtenis plaats die afgehandeld moet
worden, vergelijkbaar met onderbrekingen in een processor. Het kan gebeuren dat meerdere timers
tegelijkertijd nul bereiken, of dat de gebruiker een invoer geeft precies op het moment dat een timer
afloopt. In deze gevallen heeft het model een niet-deterministisch gedrag omdat de automaat kan
besluiten om deze gebeurtenissen in elke willekeurige volgorde te verwerken. We bestuderen het
getimede gedrag van zo’n automaat en geven voorwaarden die ervoor zorgen dat elk ongetimed
gedrag kan worden waargenomen zonder dit niet-determinisme. Tenslotte geven we een algoritme
voor actief leren, dat een factoriaal aantal interacties in het aantal timers en een polynoom in het
aantal toestanden vereist. Aangezien het aantal timers in de praktijk relatief klein blijft, beweren we
dat ons algoritme kan worden gebruikt voor echte toepassingen.
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Introduction 1.
In this chapter, we introduce automata and motivate the problem of automat-
ically inferring an automaton from a concrete system, known as automata
learning. We then sketch the original contributions in this thesis and describe
an outline of the document structure.

Chapter contents

1.1. Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Learning an automaton from a system . . . . . . . . . . . . . 3
1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1. Context

Computer systems are ubiquitous nowadays and it goes without saying that
their correctness is of capital importance in a lot of cases. A rocket that
fails to compute a good trajectory, or an electronic banking system that erro-
neously adds or withdraws money from an account may have catastrophic
consequences, be financial or lethal. We refer to [BK08, Chapter 1] for more
examples and arguments on the necessity of verifying systems. However,
identifying bugs and faults in computer systems is in itself a hard and complex
task. On top of well-known methods such as unit testing, integration testing,
and so on, one can apply model checking techniques, which formally verify
that a model (an abstract representation of the system) behaves correctly with
regards to a set of requirements. If it is not the case, a clear counterexample
must be provided, allowing the developers to understand and fix the bugs. Fur-
thermore, the models we want to use ought to be understandable for humans,
while being analyzable fully automatically.

Let us illustrate this idea of abstracting a system by considering a program
verifying that an algebraic expression is well-formed, in the sense that the
numbers of opening and closing braces match. This can easily be abstracted
with a counter : each time we read an opening brace, we increment the counter;
each time we read a closing brace, we decrement the counter. Then, an
expression is valid only if the counter is zero after processing the whole
expression and it never went below zero (assuming the initial value of the
counter is zero). While this works when we only consider braces, adding
curly or square brackets makes the system harder to model. Instead of simply
counting the number of opened braces, we have to remember the exact order
of the various brackets, e.g., if we saw (, then {, we want to see a } before
a ). In that case, one could consider using a stack. We start with an empty
stack, then every time we see an opening symbol (i.e., a (, a {, or a [), we push
that symbol on the stack. When we see a closing symbol, we check that the
symbol at the top of the stack matches the current symbol (e.g., if we see a },
the symbol at the top of the stack must be a {). If the symbols do not match
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idle tea brew tea

coffee brew coffee

cup ready
select tea pay wait

payselect coffee wait

pick cup

pay

Figure 1.1: An automaton for a vending machine selling tea and coffee. The transition drawn with dashes is
incorrect and shows that the system has a wrong behavior.

[BK08]: Baier et al. (2008), Princi-
ples of model checking
[Cla+18]: Clarke et al. (2018),Hand-
book of Model Checking

or if the stack is not empty after processing the whole expression, then the
expression is not valid.

The considered models. For now, let us assume that the system can be
modeled by an automaton, which is a finite state machine describing which
execution is valid or invalid. It is noteworthy that many model checking
algorithms exist for automata [BK08; Cla+18].

Figure 1.1 gives an example of an automaton that models a vending machine
for tea and coffee. The automaton starts in the state idle, waiting for a user to
interact with it. Say that a user desires to drink tea. After pressing a button,
which triggers a change of state in the automaton (it is now in the state tea),
the price is shown on the display of the vending machine. Then, the user pays
the requested price (the automaton is now in brew tea) and has to wait for the
tea to be ready and poured into a cup (the state cup ready). Once the cup is
picked up, the automaton goes back into its idle state, waiting for the next
order to process.

Observe that the automaton has an execution that is incorrect: once the user
has selected a type of coffee, the machine may erroneously produce a cup of
tea. The problematic arrow is drawn with dashes, to highlight it. There are
thus two possibilities:

▶ either this wrong behavior exists in the concrete system, in which case
we have identified a bug;

▶ or the automaton is an incorrect abstraction of the system.

It is highly important that the considered model is a good representation of
the concrete system, in order to conclude that it is correct or erroneous.

Obtaining a good model. In practice, abstract models of computer systems
are typically not available for legacy and for AI systems constructed from
training data. Moreover, constructing a model from a system is itself complex
and may introduce errors that do not occur in the actual system.

Fortunately, if the system can be modeled by an automaton, one can apply
active automata learning algorithms to automatically construct automata by
interacting with the computer system in a black box manner, i.e., by only
observing runs of the system without having access to its internal details.
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Notably, active automata learning algorithms have been successfully used in
numerous applications, for instance, for spotting bugs in implementations of
major network protocols, e.g., in [RP15; FJV16; Fit+17; FH17; Fit+20; Fer+21].
While we give the main ideas here, we refer to [Vaa17; HS18; Aic+18] for more-
in-depth surveys and further references, and to [BBM21] for an introduction
to learning algorithms.

The original learning algorithm proposed in 1987 by Dana Angluin [Ang87]
focused on simple automata than can only use their states to determinewhether
a word is valid or not. Many efforts were made in recent years to learn more
complex (and, thus, more expressive) families of automata that can use external
resources, such as a stack, registers, etc. In this thesis, we present two learning
algorithms for two distinct extensions of automata (with different available
resources), as well as a model checking approach for JSON documents, relying
on automata learning.

We first give a more thorough account of the state of the art about active
automata learning, before introducing our main contributions. Finally, we
give an outline of the structure of this thesis.

1.2. Learning an automaton from a system

Let us assume we have a system under learning (SUL, for short) that can be
abstracted into an automaton (using maybe some resources, as said above).
There are two main ways to learn an automaton from the SUL.

Passive learning If one fixes a set 𝒫 of good, positive executions and a set𝒩
of bad, negative executions of the SUL, it is possible to use a passive
learning algorithm that constructs an automaton that is consistent with
𝒫 and𝒩, i.e., that recognizes every execution of 𝒫 as valid, and every
execution of𝒩 as invalid.
As, in general, there are infinitely many different executions of the
SUL (as, in all generality, we cannot set a bound over the length of an
execution), there must exist some executions that are neither in 𝒫 nor in
𝒩. Such runs can be either considered valid or invalid by the produced
automaton, i.e., they do not constrain the passive learning approach.
Many passive algorithms exist and can be grouped into different cate-
gories:

▶ Some algorithms describe the executions of 𝒫 ∪ 𝒩 in Boolean
logic and then call a SAT solver to produce an automaton. See, for
instance, [BF72; HV10].

▶ In a similar vein, some algorithms instead rely on SMT solving,
such as [NJ13].

▶ Finally, some other algorithms instead build a naive automaton
from 𝒫 and 𝒩 and then try to merge states sharing the same be-
havior and such that the resulting automaton remains consistent
with 𝒫 and𝒩, e.g., [OG92].

We refer to [Nei14; BBM21] for a description of some passive learning
algorithms.
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Active learning Instead of fixing the two sets 𝒫 and𝒩 of executions, one can
consider querying the SUL, i.e., providing it some input sequences in
order to observe the resulting output. Algorithms using this idea are
called active learning algorithms and are structured into two distinct
parts:

▶ a teacher that knows the SUL and how to interact with it, and
▶ a learner that initially knows nothing about the SUL but can query

the teacher to gather knowledge.

We call this structure, the Angluin’s framework [Ang87].

In this thesis, we solely focus on active learning algorithms. We briefly discuss
𝐿∗,1 the learning algorithm proposed by Angluin [Ang87] that can infer “sim-
ple” automata, in the sense that they can only use their states to distinguish
between valid and invalid executions. We assume that the teacher knows
exactly the set of all valid executions of the SUL and can answer two types of
queries:

▶ membership queries where the learner provides an execution and asks
whether it should be deemed valid, and

▶ equivalence queries where the learner provides a hypothesis (an automa-
ton that is conjectured to be correct with regards to the SUL) and asks
whether there exists a difference in behavior between the SUL and that
hypothesis.

Noteworthily, this assumes that the teacher is able to answer these queries
simply by interacting with the SUL. That is, we assume that the teacher (and,
hence, the learner) does not know the internal details of the SUL, i.e., the SUL
is seen as a black box.

We now give several research directions that were explored in the furrow
of [Ang87].

Learning with approximate queries. In many practical situations, the
teacher may not be able to perfectly answer every query. In particular, de-
ciding whether a learned automaton is equivalent to the SUL is, in general,
complex. Angluin already explained in [Ang87] that equivalence queries can
be approximated with finitely many membership queries but it still requires
the teacher to be able to decide whether an execution is valid. However, this
assumes that the executions of the SUL follow some probability distribution,
and that it is possible to obtain executions according to that distribution.

Since that approach is probabilistic, other methods exist that can decide the
equivalence exactly, such as the so-called W-method [Cho78], at the cost of
having to guess an upper bound over the number of states of the automaton
that can represent the SUL.

Learningwith an inexperienced teacher. Some authors proposed variants
of 𝐿∗ where the teacher is assumed to be inexperienced : it may sometimes
answer “I do not know” instead of a yes or no answer to membership queries.
This means that the learner now has to play with incomplete information.
See, for instance, [LN12] for a proper definition of inexperienced teacher
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and [Khm+22] for a study of the robustness of 𝐿∗ when there is (random) noise
in the communications between the learner and the teacher, i.e., when the
answers of the learner may be altered by some external factors.

Learning with information about the SUL. In order to learn complex
systems, it may be required to give the teacher some information about the
SUL, i.e., to see it as a “gray box” (we partially know the SUL) or as a “white
box” (we know exactly the SUL). This may also help improve the complexity
of a learning algorithm, usually given by the number of queries asked by the
learner. For instance, in [Ber+21], the authors assume they have information
about the SUL in the form of an over-approximation of it. Similarly, in [AR16],
the authors assume the SUL can be decomposed into two smaller systems,
one of which they know in advance. In [MO20], the teacher is assumed to
already have an executable automaton representation of SUL. This helps them
learn the automaton directly and to do so more efficiently than other active
learning algorithms for the same task. Finally, in [Gar+20] it is assumed that
constraints satisfied along the run of a system can be made visible. They
leverage this (tainting technique) to give a scalable learning algorithm for
register automata.

Learning automata with resources. As introduced above, it may be useful
or required to allow automata to use resources, which permits the learning of
more complex systems. There are many various possibilities and we list only
a few of them here.

Counter When an automaton has to count something that has no upper bound,
it cannot do so simply with its (finite) set of states. Hence, there ex-
ist families of automata with a single natural counter, which can be
incremented or decremented along the executions of the automaton.
Moreover, the behavior (i.e., which edge of the graph to follow when
reading a symbol) may depend on the counter value. See [NL10; FR95].
These automata will be the focus of Part II.

Stack As simply counting does not always suffice (see the above example on
algebraic expressions), we may extend an automaton with a stack. We
call such automata pushdown automata. Isberner provided a learning al-
gorithm for a subfamily of pushdown automata in his PhD thesis [Isb15].
Part III presents this subfamily with more details.

Registers While stacks can be used to model various systems, the allowed
operations on the stack are limited. For instance, only the top of the stack
can be observed. If one needs more expressivity than what is possible by
using counters or stacks, registers, which are a finite number of “memory
cells” that can hold any value, can be considered. See [Gar+20; IHS14a]
for learning algorithms, for instance.

Clocks Some systems must satisfy timing constraints. One possible way
to model them is to consider timed automata which use clocks (real
valued variables that measure the elapsed time). Learning algorithms
for various restrictions over the clocks exist [Tan+22; Wag23; An+20;
TZA24]. Part IV provides a new learning algorithm for a subfamily of
timed automata.
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Finally, there are also automata without resources but that encode different
types of executions and that can be actively learned. For instance, it is possible
to learn automata whose executions are of infinite length (i.e., we assume the
system runs forever) [AF16; MP95], or automata that have predicates over a
domain of concrete symbols instead of said symbols [FFZ23; DD17].

Model checking. Finally, once a model is obtained, it is possible to apply
model checking techniques to check whether the SUL behaves as expected,
e.g., [PVY02; GPY06]. For instance, once can check whether a given state,
representing a catastrophic situation is always avoided. Model checking of
course depends on the actual model that is learned and often requires to
abstract it in order to ease the reasoning. We refer to [Cla+18; BK08] for
introductions on model checking, in general.

It is noteworthy that some authors provided algorithms that perform model
checking while learning (see, e.g., [Aic+18; San23]), or to correct erroneous
models as in [GPY06], in the sense that the process starts with a model that
does not behave exactly as the concrete system and refines it through learning,
until either an error is identified in the system or the model correctly represents
it.

1.3. Contributions

The contributions presented in this thesis lie in the fourth and fifth categories
listed above. That is, we provide two learning algorithms for two families of
automata extended with resources, and one validation algorithm that relies on
learning an automaton which is then further abstracted. We here give a brief
overview.

▶ Firstly, we provide a learning algorithm for a family of automata extended
with a natural counter, called realtime2 one-counter automata [BPS22].
The counter can be incremented or decremented along the transitions.
Furthermore, it can be tested against zero, allowing different behaviors
based on the current counter value.
Since the counter does not have an upper bound in general, the number
of pairs of a state and a counter value is potentially infinite, meaning
that learning the behavior of a system requires special care. Inspired
by [NL10], we provide a finite characterization of this behavior that
can be learned by querying the system, and from which a one-counter
automata can be extracted. We show that the algorithm constructs a
number of hypotheses (before finding a “good” one) that is polynomial
in the size of this characterization but requires exponentially many
interactions to do so.

▶ Secondly, we focus on JSON documents, which can be used to store and
transfer information in a way that is easily readable by a human and
by a computer. We want to verify whether the document is valid with
regards to a set of constraints, given as a JSON schema. The classical
algorithm explores the constraints and the document in parallel. While
this works well when the document is already fully known, it is not
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optimal in a streaming context, i.e., when the document is received piece
by piece (which happens when a document is sent via a network, for
instance). That is, in the worst case, the classical approach requires to
retain the complete document in memory. This thus limits its usage in
environments where the memory has to be optimized (such as a web
server that must process many documents in parallel).
Our new approach [BPS23] first learns an automaton augmented with a
stack (via the learning algorithm of [Isb15]) accepting a (strict) subset of
the set of valid documents. This automaton is then used to efficiently
decide whether a document is valid (i.e., we are no longer restricted to
the learned subset), without needing to store the whole document. That
is, our validation algorithm has a lower overall memory requirement, at
the cost of needing more time to validate a document, as observed on
experimental results.

▶ Thirdly, we study automata whose resources are timers that can be used
to encode timing constraints [Bru+23; Bru+24]. A timer is started at
some value and decreases over time. Then, when it reaches zero, a
special event occurs that must be handled, similarly to interruptions in
a processor.
It may happen that multiple timers reach zero at the same time, or that
the user provides an input exactly at the same time a timer times out. In
these cases, themodel has a non-deterministic behavior as the automaton
may decide to process these events in any order. We study the timed
behavior of such an automaton and provide conditions ensuring that
any untimed behavior can be observed without this non-determinism.
Finally, we give an active learning algorithm, requiring a factorial num-
ber of interactions in the number of timers, and polynomial in the num-
ber of states. As, in practice, the number of timers remain relatively
small, we claim that our algorithm can be used for real-world applica-
tions [Bru+24].

1.4. Outline

High-level structure. Besides this introduction and the conclusion, the
present document is split into four parts. Part I introduces general notations
used throughout the whole document, and properly defines automata and
Mealy machines (which are automata that can output symbols during their
executions).

The remaining three parts each correspond to one of the items listed in the last
section and start with a chapter that introduces the specific tools and problems.
Then, our contributions are presented in one or two chapters. Technical details
and proofs are deferred to the appendix of each part.

Part content. Part I, Preliminaries, introduces the notations used throughout
the whole document, as well as automata and Mealy machines in Chapter 2.
Furthermore, two learning algorithms are explained in Chapter 3: 𝐿∗ for
deterministic finite automata, and 𝐿# for Mealy machines.
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3: Definitions that are required in
multiple parts are repeated.

Part II, Learning Realtime One-Counter Automata, which is based on [BPS22],
gives our active learning algorithm for realtime one-counter automata.

▶ Chapter 4 first gives an overview of one-counter automata in general,
draws a hierarchy of these families, and summarizes an active learning
algorithm for a subfamily, called visibly one-counter automata [NL10].

▶ Chapter 5 then properly introduces realtime one-counter automata and
explains, with examples, the key concepts of our learning algorithm,
based on 𝐿∗.

▶ Appendix A contains the technical details and proofs of this part.

Part III, Validating JSON Documents, based on [BPS23], gives our validation
algorithm for JSON documents in a streaming context.

▶ Chapter 6 first defines JSON documents and schemas (which are the way
we express the constraints), introduces the abstractions and restrictions
we consider to simplify the models and the classical validation algorithm
used in many applications.

▶ In Chapter 7, we define visibly pushdown automata ( the exact subfamily
of pushdown automata we learn via the TTT learning algorithm [Isb15]),
claim that any JSON schema (under our abstractions and restrictions) can
be represented as a visibly pushdown automaton, and then give a new
validation algorithm that does not require to hold the whole document
in memory.

▶ Appendix B contains the technical details and proofs of this part.

Part IV, Mealy Machines with Timers, based on [Bru+23; Bru+24], focuses
on automata with timers (rather, Mealy machines with timers), which form a
subfamily of timed automata.

▶ Chapter 8 first introduces timed Mealy machines (i.e., automata with
clocks that can produce outputs) and summarizes well-known key results
and tools.

▶ Chapter 9 then properly defines Mealy machines with timers, proves
that they form a subset of timed Mealy machines, before adapting some
tools and results to fit within the timer context. Precisely, we adapt
regions and zones, and show that deciding whether a state is reachable
remains PSPACE-complete. Finally, we focus on the problem to decide
whether every untimed run of a machine can be observed by some timed
run in which all delays are non-zero, i.e., such that we never have two
events occurring at the same time.

▶ Chapter 10 gives, with examples, the key concepts of our active learning
algorithm for Mealy machines with timers, based on 𝐿#. We also discuss
experimental results obtained from our implementation.

▶ Appendix C contains the technical details and proofs of this part.

Finally, Part V, Conclusion, naturally ends this thesis by summarizing our
contributions and emphasizing some prospects for the future.

Reading tips. The contribution parts are written to be readable as indepen-
dently as possible. That is, Parts II to IV can all be read without having to read
the preceding parts.3 The only requirement is to first read Part I.



1. Introduction 9

4: https://github.com/DocSk
ellington/ThesisLaTeXStyle

5: Of course, a complete bibliogra-
phy is available at the end of the
document.

At the end of the document, one can find an index, a list of notations, and a list
of abbreviations.

The LATEXclass used to typeset this document is available on GitHub4. This
layout allows to print citations5 and various other texts in the margins. We will
use it to recall definitions, propositions, theorems, and so on, when seeking
their first occurrence would necessitate going back multiple pages. Moreover,
footnotes are replaced by “sidenotes”.

Funding. This thesis’s author is a Research Fellow of the Fonds de la
Recherche Scientifique – FNRS in the ARTWORK project, supervised by
Véronique Bruyère (University of Mons) and Guillermo A. Pérez (University
of Antwerp – Flanders Make) who is supported by the Belgian FWO “SAILor”
project (G030020N). Our contributions presented in Part IV were partially
funded by the NWO TOP project “GIRLS” (612.001.852).

https://github.com/DocSkellington/ThesisLaTeXStyle
https://github.com/DocSkellington/ThesisLaTeXStyle


Part I.

Preliminaries



Preliminaries 2.
The objective of the first part Preliminaries is to introduce the notions and
notations that are used throughout this thesis. In particular, this chapter defines
automata and Mealy machines, while Chapter 3 summarizes two learning
algorithms that serve as the basis for the remaining parts.

Chapter contents

2.1. Mathematical Notations . . . . . . . . . . . . . . . . . . . . . 11
2.2. Automata and Mealy machines . . . . . . . . . . . . . . . . . 12

2.2.1. Automata . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2. Mealy machines . . . . . . . . . . . . . . . . . . . . . 15

2.1. Mathematical Notations

We respectively denote by ℕ, ℤ, and ℝ the sets of natural numbers, integers,
and real numbers. Furthermore, ℕ>0 denotes the set of positive naturals,
i.e., ℕ>0 = {𝑥 ∈ ℕ ∣ 𝑥 > 0}. Similarly, ℝ≥0 = {𝑥 ∈ ℝ ∣ 𝑥 ≥ 0} and
ℝ>0 = {𝑥 ∈ ℝ ∣ 𝑥 > 0}.

Let 𝐴 be a set. We write |𝐴| for the cardinality of 𝐴. We say that a relation
∼ ⊆ 𝐴 × 𝐴 is

▶ reflexive if, for all 𝑎 ∈ 𝐴, 𝑎 ∼ 𝑎,
▶ symmetric if, for all 𝑎, 𝑏 ∈ 𝐴, 𝑎 ∼ 𝑏 ⇒ 𝑏 ∼ 𝑎, and
▶ transitive if, for all 𝑎, 𝑏, 𝑐 ∈ 𝐴, 𝑎 ∼ 𝑏 ∧ 𝑏 ∼ 𝑐 ⇒ 𝑎 ∼ 𝑐.

If ∼ is reflexive, symmetric, and transitive, then it is called an equivalence rela-
tion. Whenever ∼ is an equivalence relation, we write J𝑎K∼ for the equivalence
class of 𝑎 ∈ 𝐴. The index of an equivalence relation is the cardinality of its set
of equivalence classes.

We write 𝑓 ∶ 𝐴 ⇀ 𝐵 for a function 𝑓 that maps some elements of 𝐴 to some
element of 𝐵. Then, the domain of 𝑓, denoted by dom(𝑓), is the set of all
elements 𝑎 of 𝐴 for which 𝑓(𝑎) is defined, while the range of 𝑓, denoted by
ran(𝑓), is the set of all elements 𝑏 of 𝐵 such that 𝑓(𝑎) = 𝑏 for some 𝑎 ∈ dom(𝑓).
When dom(𝑓) = 𝐴, we say that 𝑓 is total. Otherwise, we say that it is partial.
We write 𝑓 ∶ 𝐴 → 𝐵 to highlight that 𝑓 is total. Finally, given two functions
𝑓 ∶ 𝐴 → 𝐵 and 𝑔 ∶ 𝐵 → 𝐶, the composition of 𝑔 and 𝑓 is the function
𝑔 ∘ 𝑓 ∶ 𝐴 → 𝐶 such that for all 𝑥 ∈ dom(𝑓) such that 𝑓(𝑥) ∈ dom(𝑔), we have
(𝑔 ∘ 𝑓)(𝑥) = 𝑔(𝑓(𝑥)).

Finally, given a set 𝐴, we write 𝕀𝐴 for the identity relation on 𝐴, i.e., 𝕀𝐴 =
{(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}.
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2.2. Automata and Mealy machines

Let us introduce automata (that cannot use any resources). In short, an au-
tomaton is a state machine that processes sequences of input symbols, called
(input) words, and returns a boolean indicating whether the word is “valid”.

An alphabet Σ is a non-empty finite set of symbols. A word over Σ is a finite
sequence of symbols from Σ, and the empty word is denoted by 𝜀. The set of
all words over Σ is denoted by Σ∗.

The concatenation of two words 𝑢, 𝑣 ∈ Σ∗ is denoted by 𝑢 ⋅ 𝑣. We sometimes
forego the ⋅ to simply write 𝑢𝑣.

A relation ∼⊆ Σ∗ × Σ∗ is a right-congruence, or simply a congruence, if 𝑎 ⋅ 𝑐
and 𝑏 ⋅ 𝑐 are in relation whenever 𝑎 and 𝑏 are in relation, for every 𝑎, 𝑏, 𝑐 in Σ∗.
That is,

∀𝑎, 𝑏 ∈ Σ∗ ∶ 𝑎 ∼ 𝑏 ⇒ ∀𝑐 ∈ Σ∗ ∶ 𝑎 ⋅ 𝑐 ∼ 𝑏 ⋅ 𝑐.

A language 𝐿 is a subset of Σ∗. Given a word 𝑤 ∈ Σ∗ and a language 𝐿 ⊆ Σ∗,
the set of prefixes of 𝑤 is

Pref (𝑤) = {𝑢 ∈ Σ∗ ∣ ∃𝑣 ∈ Σ∗, 𝑤 = 𝑢𝑣}

and the set of prefixes of 𝐿 is

Pref (𝐿) = ⋃
𝑤∈𝐿

Pref (𝑤).

Similarly, we have the sets of suffixes

Suff (𝑤) = {𝑢 ∈ Σ∗ ∣ ∃𝑣 ∈ Σ∗, 𝑤 = 𝑣𝑢}

and
Suff (𝐿) = ⋃

𝑤∈𝐿
Suff (𝑤).

Moreover, 𝐿 is said to be prefix-closed (resp. suffix-closed) if 𝐿 = Pref (𝐿) (resp.
𝐿 = Suff (𝐿)).

2.2.1. Automata

An automaton is a (potentially infinite) state machine that reads a word over
some alphabet Σ and either accepts or rejects the word. We first define non-
deterministic automata where, for each state and symbol, there are multiple
possible target states. As we explain below when we define the semantics, the
actual successor state is arbitrarily selected among them.

Definition 2.2.1 (Automaton). An automaton is a tuple𝒜 = (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿)
where:

▶ Σ is an alphabet,
▶ 𝑄 is a non-empty set of states, with 𝑞0 ∈ 𝑄 the initial state,
▶ 𝐹 ⊆ 𝑄 is a set of final states, and
▶ 𝛿 ∶ (𝑄 × Σ) × 𝑄 is a transition relation. We write 𝛿(𝑞, 𝑎) to denote the
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set of states 𝑝 such that ((𝑞, 𝑎), 𝑝) ∈ 𝛿 , and 𝑞
𝑎
−→ 𝑝 when 𝑝 ∈ 𝛿(𝑞, 𝑎).

When 𝛿(𝑞, 𝑎) is defined for every state 𝑞 and symbol 𝑎, 𝒜 is complete.
An automaton 𝒜 is called deterministic whenever |𝛿(𝑞, 𝑎)| ≤ 1 for every 𝑞
and 𝑎. In this case, 𝛿 can be seen as a (partial) transition function, i.e.,

𝛿 ∶ 𝑄 × Σ ⇀ 𝑄.

When 𝑄 is finite, we say that 𝒜 is a nondeterministic finite automaton (NFA,
for short). Finally, if 𝑄 is finite and 𝒜 is deterministic, we say that 𝒜 is a
deterministic finite automaton (DFA, for short). An example of a DFA is given
below.

When needed, we add a superscript to indicate which automaton is considered,
e.g., 𝑄𝒜, 𝑞𝒜0 , etc. Missing symbols in 𝑞

𝑎
−→ 𝑝 are quantified existentially, e.g.,

𝑞
𝑎
−→ means that there exists 𝑝 such that 𝑞

𝑎
−→ 𝑝. We highlight that there exists

at most one such 𝑝 when 𝒜 is deterministic.

Semantics

Let us now define the semantics of an automaton, i.e., how to decide whether
a word belongs to the language the automaton is meant to encode. To do so,
we introduce runs, which are the successions of transitions that are triggered
while reading a word.

Definition 2.2.2 (Run). A run of an automaton 𝒜 either consists of a single
state 𝑝0 or a nonempty sequence of transitions

𝜋 = 𝑝0
𝑎1−→ 𝑝1

𝑎2−→ ⋯
𝑎𝑛−→ 𝑝𝑛.

We denote by runs(𝒜) the set of runs of 𝒜.
We lift to words 𝑎1 ⋯ 𝑎𝑛 as usual: 𝑝0

𝑎1⋯𝑎𝑛−−−−→ 𝑝𝑛 ∈ runs(𝒜) if there exists a
run 𝑝0

𝑎1−→ ⋯
𝑎𝑛−→ 𝑝𝑛 ∈ runs(𝒜).

To highlight that 𝛿(𝑞, 𝑖) is not empty, we often write 𝑞
𝑖

−→ ∈ runs(𝒜). Note
that when 𝒜 is nondeterministic, there may be multiple runs from a given
state 𝑝0 and word 𝑤. Contrarily, the run 𝜋 is uniquely determined if 𝒜 is
deterministic.

Defining when a word 𝑤 is accepted by 𝒜 is now easy: we simply check
whether there exists a run 𝑞0

𝑤
−→ 𝑝 with 𝑝 ∈ 𝐹 .

Definition 2.2.3 (Language of 𝒜). A run 𝜋 = 𝑞0
𝑤
−→ 𝑝 is said to be accepting

if 𝑝 ∈ 𝐹 . Then, 𝑤 is accepted by 𝒜 if and only if there exists an accepting
run reading 𝑤.
The language of 𝒜, denoted by ℒ(𝒜), is the set of words labeling accepting
runs, i.e.,

ℒ(𝒜) = {𝑤 ∈ Σ∗ ∣ ∃𝑝 ∈ 𝐹 ∶ 𝑞0
𝑤
−→ 𝑝 ∈ runs(𝒜)}.
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𝑞0 𝑞1 𝑞2 𝑞3

𝑞4 𝑞5 𝑞6 𝑞7

𝑎 𝑎 𝑎

𝑎 𝑎 𝑎

𝑎

𝑎

𝑏𝑏 𝑏𝑏 𝑏𝑏 𝑏𝑏

Figure 2.1: A sample DFA whose language is comprised of the words with an even number of 𝑎 and an odd
number of 𝑏.

[HU79]: Hopcroft et al. (1979), In-
troduction to Automata Theory, Lan-
guages and Computation

Example 2.2.4. A 8-state DFA 𝒜 over Σ = {𝑎, 𝑏} is given in Figure 2.1. The
initial state 𝑞0 is marked by a small arrow and the final states 𝑞4 and 𝑞6 are
double-circled. The transitions between the states give the input symbol.
A sample run of 𝒜 is

𝜋 = 𝑞0
𝑎
−→ 𝑞1

𝑏
−→ 𝑞5

𝑏
−→ 𝑞1

𝑎
−→ 𝑞2

𝑏
−→ 𝑞6.

As 𝜋 starts in the initial state and ends in a final state, it is accepting, i.e.,
𝑎𝑏𝑏𝑎𝑏 is accepted by 𝒜. However, 𝑎𝑏𝑏𝑎 is not accepted by 𝒜 as the unique
run of 𝒜 ends in the state 𝑞2 which is not final:

𝑞0
𝑎
−→ 𝑞1

𝑏
−→ 𝑞5

𝑏
−→ 𝑞1

𝑎
−→ 𝑞2.

One can show that the language of 𝒜 is comprised of all words with an even
number of 𝑎 and an odd number of 𝑏.

We highlight that any deterministic automaton is also a nondeterministic
automaton. For finite automata, it is noteworthy that anyNFA can be converted
into a DFA [HU79]. That is, any language that is accepted by a DFA can be
accepted by an NFA, and vice-versa. In other words, the set of all languages
accepted by DFAs is exactly the set of all languages accepted by NFAs.

Definition 2.2.5 (Regular language). A language 𝐿 is called regular if there
exists a DFA 𝒜 such that ℒ(𝒜) = 𝐿.

The set of all regular languages is closed under complementation, union, and
intersection.

We say that a finite automaton is minimal if for any DFA ℬ such that ℒ(𝒜) =
ℒ(ℬ), we have ∣𝑄𝒜∣ ≤ ∣𝑄ℬ∣. For regular languages, this minimal automaton
is unique and can be computed from a congruence over the words, called the
Myhill-Nerode congruence. We here define this equivalence relation for any
language. In short, it groups together words that have the same behaviors
when extended. We then state that a language is regular if and only if the
relation has finitely many classes.
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1: Recall that ∼𝐿 is a congruence.
Hence, this approach makes sense.

Definition 2.2.6 (Myhill-Nerode congruence). Let 𝐿 ⊆ Σ∗ be a language.
Two words 𝑢, 𝑣 ∈ Σ∗ are said to be 𝐿-equivalent, denoted by 𝑢 ∼𝐿 𝑣, if

∀𝑤 ∈ Σ∗ ∶ 𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∈ 𝐿.

Observe that ∼𝐿 is a congruence, by definition.

Theorem 2.2.7 ([HU79]). A language 𝐿 is regular if and only if the index of
∼𝐿 is finite.

Example 2.2.8. Let 𝐿 be the language comprised of words with an even
number of 𝑎 and an odd number of 𝑏. Then, 𝜀 ≁𝐿 𝑎 as 𝜀 ⋅ 𝑏 = 𝑏 ∈ 𝐿 but
𝑎 ⋅ 𝑏 ∉ 𝐿. Contrarily, 𝜀 ∼𝐿 𝑎𝑎.
There are four equivalence classes for ∼𝐿:

▶ all the words with an even number of 𝑎 and an even number of 𝑏,
▶ all the words with an even number of 𝑎 and an odd number of 𝑏,
▶ all the words with an odd number of 𝑎 and an even number of 𝑏, and
▶ all the words with an odd number of 𝑎 and an odd number of 𝑏.

Since there are finitely many classes, 𝐿 is regular. Recall that Figure 2.1
gives a DFA accepting 𝐿.

Let us now define a deterministic automaton 𝒜 from ∼𝐿 such that ℒ(𝒜) = 𝐿.
In short, the set of states of𝒜 is exactly the set of equivalence classes of ∼𝐿 and
the transitions follow naturally the classes: we go from J𝑤K∼𝐿

to J𝑤𝑎K∼𝐿
.1

Definition 2.2.9 (Automaton from ∼𝐿). Let 𝐿 ⊆ Σ∗ be a language. We
define the automaton 𝒜∼𝐿

= (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿) with

▶ 𝑄 = {J𝑤K∼𝐿
∣ 𝑤 ∈ Σ∗},

▶ 𝑞0 = J𝜀K∼𝐿
,

▶ 𝐹 = {J𝑤K∼𝐿
∣ 𝑤 ∈ 𝐿}, and

▶ 𝛿 ∶ 𝑄 × Σ → 𝑄 is the (total) function defined such that for all 𝑤 ∈ Σ∗

and 𝑎 ∈ Σ,
J𝑤K∼𝐿

𝑎
−→ J𝑤 ⋅ 𝑎K∼𝐿

∈ runs(𝒜∼𝐿
).

Thanks to Theorem 2.2.7, we know that ∼𝐿 has finitely many equivalence
classes when 𝐿 is regular, meaning that 𝒜∼𝐿

is a DFA. Furthermore, one can
show that 𝒜∼𝐿

is the minimal DFA accepting 𝐿 [HU79]. Chapter 3 introduces
a learning algorithm for DFAs, which, given a regular language 𝐿, identifies
every equivalence class of ∼𝐿 and constructs the minimal DFA accepting 𝐿.

For instance, Figure 2.2 gives the minimal 4-state DFA constructed from the
∼𝐿 relation of Example 2.2.8.

2.2.2. Mealy machines

Let us now move towards Mealy machines which are also state machines.
Unlike an automaton, a Mealy machine outputs a symbol at each transition,
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J𝜀K∼𝐿
J𝑎K∼𝐿

J𝑏K∼𝐿
J𝑎𝑏K∼𝐿

𝑎

𝑏
𝑎

𝑏
𝑎

𝑏

𝑎

𝑏

Figure 2.2: The minimal DFA accepting the same language as the DFA of Figure 2.1.

instead of a Boolean value at the end of a run. Hence, we require two alpha-
bets: an input alphabet (denoted hereafter 𝐼) and an output alphabet (𝑂). For
simplicity, we only define deterministic Mealy machines.

Definition 2.2.10 (Mealy machine). A Mealy machine (MM, for short) is a
tupleℳ = (𝐼, 𝑂, 𝑄, 𝑞0, 𝛿) where:

▶ 𝐼 and 𝑂 are the input and output alphabets,
▶ 𝑄 is a non-empty set of states, with 𝑞0 ∈ 𝑄 the initial state, and

▶ 𝛿 ∶ 𝑄 × 𝐼 ⇀ 𝑄 × 𝑂 is the transition function. We write 𝑞
𝑖/𝑜
−−→ 𝑝 when

𝛿(𝑞, 𝑖) = (𝑝, 𝑜).

We say that ℳ is complete if 𝛿(𝑞, 𝑖) is defined for every state 𝑞 and input
symbol 𝑖.

Again, we add a superscript to indicate which MM is considered, e.g., 𝑄ℳ, etc..

Missing symbols in 𝑞
𝑖/𝑜
−−→ 𝑝 are quantified existentially, e.g., 𝑞

𝑖
−→ means that

there exist 𝑝 ∈ 𝑄 and 𝑜 ∈ 𝑂 such that 𝑞
𝑖/𝑜
−−→ 𝑝.

Semantics

While an MM does not have a notion of accepted language, it produces an
output word (i.e., a word over 𝑂) for each input word (i.e., over 𝐼) that can be
read. That is, an MM can be seen as a function from 𝐼∗ to 𝑂∗. The adaptation
of runs to MMs is straightforward.

Definition 2.2.11 (Run). A run of an MMℳ either consists of a single state
𝑝0 or a nonempty sequence of transitions

𝜋 = 𝑝0
𝑖1/𝑜1−−−→ 𝑝1

𝑖2/𝑜2−−−→ ⋯
𝑖𝑛/𝑜𝑛−−−→ 𝑝𝑛.

We denote by runs(ℳ) the set of runs ofℳ.

We lift to words 𝑖1 ⋯ 𝑖𝑛 as usual: 𝑝0
𝑖1⋯𝑖𝑛−−−→ 𝑝𝑛 ∈ runs(ℳ) if there exists a

run 𝑝0
𝑖1−→ ⋯

𝑖𝑛−→ 𝑝𝑛 ∈ runs(ℳ).
For an input word 𝑤, we write outputℳ(𝑤) for the output word obtained by
concatenating the output symbols of the run 𝑞0

𝑤
−→.
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𝑞0 𝑞1

𝑞2

𝑖/𝑜

𝑖/𝑜
𝑗/𝑜

𝑖/𝑜′

𝑗/𝑜′ 𝑗/𝑜

Figure 2.3: A sample MM.

Again, to highlight that 𝛿(𝑞, 𝑖) is defined, we often write 𝑞
𝑖

−→ ∈ runs(ℳ).
Note that any run 𝜋 is uniquely determined by its first state and word, asℳ
is deterministic. Hence, for every word 𝑤, there exists a most one run 𝑞0

𝑤
−→,

meaning that there exists at most one output word, i.e., outputℳ(𝑤) returns a
word (if the run exists).

Example 2.2.12. A 4-state MMℳ is given in Figure 2.3, with 𝐼 = {𝑖, 𝑗} and
𝑂 = {𝑜, 𝑜′}. Transitions show the input and the output, separated by a
slash. A sample run is

𝜋 = 𝑞0
𝑗/𝑜′

−−→ 𝑞2
𝑖/𝑜′

−−→ 𝑞2
𝑗/𝑜
−−→ 𝑞1

𝑗/𝑜
−−→ 𝑞1.

Finally, we conclude by defining when two MMs are deemed equivalent: for
every input word 𝑤, both MMs output the same word.

Definition 2.2.13 (Equivalence of MMs). Two MMsℳ and𝒩 over 𝐼 and
𝑂 are equivalent , denoted by ℳ ≈ 𝒩, if for all 𝑤 ∈ 𝐼∗, outputℳ(𝑤) =
output𝒩(𝑤).
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Active Learning of DFAs and MMs 3.
In this chapter, we introduce automata learning algorithms which are tools to
automatically construct a DFA (or an MM). These algorithms can be split into
two families:1

Passive learning algorithms Given a finite set 𝒫 of words that are in the target
language and a finite set𝒩 of words that are not in the target language,
construct a DFA 𝒜 that accepts at least all words of 𝒫 and accepts none
of the words of 𝒩, i.e., such that 𝒫 ⊆ ℒ(𝒜) and ℒ(𝒜) ∩ 𝒩 = ∅. See,
e.g., [BF72; HV10; NJ13].

Active learning algorithms Given a target language 𝐿, build a DFA 𝒜 such
that ℒ(𝒜) = 𝐿, by querying 𝐿, as introduced by Dana Angluin [Ang87].

In this thesis, we focus on active learning and provide here the main ideas
behind two algorithms that serve as basis for the algorithms developed in
Parts II and IV. We refer the reader to [Nei14] for a more complete introduction
to learning automata (including passive algorithms).
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3.1. Angluin’s framework

Let us fix a regular language 𝐿 ⊆ Σ∗. Our goal is to automatically learn a
DFA accepting 𝐿. Active learning algorithms rely on the so-called Angluin’s
framework, which consists of two agents [Ang87]:

▶ The teacher who knows the target language 𝐿 and can decide wether a
given word belongs to 𝐿, and whether a DFA accepts 𝐿, and

▶ the learner who initially does not know anything about 𝐿 but can in-
teract with the teacher to gather knowledge and eventually construct a
hypothesis DFA.

The learner can interact with the teacher through queries. A key point of
Angluin’s framework is that the teacher and the queries must be minimally
adequate, in the sense that the teacher does not offer too much help. When
learning regular languages, we authorize two types of queries: one to know
whether a specific word belongs to 𝐿, and one to know whether a DFA accepts
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Learner Teacher
Knows 𝐿

MQ(𝑤) ∶ 𝑤 ∈ 𝐿?

yes or no

EQ(ℋ) ∶ ℒ(ℋ) = 𝐿?

yes or a counterexample

Figure 3.1: Illustration of the Angluin’s framework for DFAs.
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Definition 2.2.6. For a lan-
guage 𝐿 ⊆ Σ∗ and twowords
𝑢, 𝑣 ∈ Σ∗, we write 𝑢 ∼𝐿 𝑣
if for all 𝑤 ∈ Σ∗, we have
𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∈ 𝐿.

𝐿. Notice that, in a pure theoretical setting, the learner can eventually find a
DFA𝒜 such that ℒ(𝒜) = 𝐿 using only equivalence queries: simply enumerate
every possible DFA until finding the good one. This is, of course, impractical
and the reason why we need membership queries.

Definition 3.1.1 (Queries for DFAs). Let 𝐿 be the regular language of the
teacher. A learner for DFAs can use two types of queries:

▶ A membership query, denoted by MQ(𝑤), with 𝑤 a word over Σ∗,
returns whether 𝑤 ∈ 𝐿.

▶ An equivalence query , denoted by EQ(ℋ), withℋ a DFA, returns

• yes if ℒ(ℋ) = 𝐿, and
• a word 𝑤 such that 𝑤 ∈ ℒ(ℋ)∖𝐿 or 𝑤 ∈ 𝐿∖ℒ(ℋ). Such a word

𝑤 is called a counterexample.

Figure 3.1 gives a visual representation of the framework for DFAs. Every
learning algorithm we consider in this thesis relies on Angluin’s framework,
or an extension of it that adds further queries. For instance, Parts II and IV will
both add new queries, while the adaptation for MMs is given in Section 3.3.

In practice, it may be that equivalence cannot be directly implemented (if
the system we want to learn is an actual black-box). In that case, as Angluin
showed [Ang87], one can sample the system by performing many membership
queries over random words. While this is not discussed in this thesis, [LY96]
offers an overview of many sampling methods.

The following two sections give the main ideas for two different active learning
algorithms: 𝐿∗ for DFAs [Ang87], and 𝐿# for MMs [Vaa+22]. In particular,
while we give interesting theorems and claims, we do not provide their proofs
here. We refer the reader to the corresponding papers for more details.

3.2. 𝐿∗

Assume that the target language 𝐿 ⊆ Σ∗ is regular. In short, the 𝐿∗ algorithm
we introduce here identifies every equivalence class of the Myhill-Nerode
congruence ∼𝐿 (see Definition 2.2.6) by using MQ and EQ and storing the
gathered knowledge inside a table.

This idea relies on the fact that one can define an infinite table whose rows
and columns are words over Σ: for each row 𝑢 and column 𝑣, the cell 𝑢 ⋅ 𝑣
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stores whether 𝑢 ⋅ 𝑣 ∈ 𝐿. Then, one can group together the rows that have
exactly the same contents, i.e., two rows 𝑢 and 𝑣 are equivalent if and only if
𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∈ 𝐿 for every column 𝑤. Notice that this exactly the definition
of ∼𝐿. If 𝐿 is regular, we know that there are finitely many equivalence classes
for ∼𝐿, by Theorem 2.2.7, i.e., finitely many groups of rows. The 𝐿∗ algorithm
identifies a finite number of rows and columns that are sufficient to represent
and distinguish every class of ∼𝐿.

We first define the table that is used to store the observations, and how to
construct a DFA hypothesis from it. Then, we provide the main loop of 𝐿∗ and
how to process a counterexample in Section 3.2.2. Finally, Section 3.2.3 gives
an example of a complete execution of 𝐿∗. Before doing so, let us state that
the algorithm eventually terminates and its complexity.

Theorem 3.2.1 ([Ang87]). Let 𝑛 be the size of the minimal DFA accepting the
target language 𝐿, and 𝜁 be the length of the longest counterexample provided
by the teacher. Then,

▶ the 𝐿∗ algorithm eventually terminates and returns a DFA accepting 𝐿,
▶ and uses at most 𝑛 equivalence queries and 𝒪 (𝜁𝑛2|Σ|) membership

queries.

Before delving into the details, we highlight that there are many variations of
𝐿∗ that all focus on identifying the equivalence classes of ∼𝐿 but use different
data structures to do so. For instance, Kearns and Vazirani [KV94] use an
observation tree instead of a table, while Isberner et al. [IHS14b] rely on three
different trees to store the results obtained from the queries and refine the
hypothesis in an efficient way. While the validation algorithm that will be
introduced in Part III relies on the algorithm from [IHS14b], it will do so
by using it as a black-box. Hence, we only introduce 𝐿∗, which is the basis
of our learning algorithm in Part II. Section 3.3 introduces another learning
algorithm, called 𝐿#, which does not work by identifying the equivalence
classes of ∼𝐿.

3.2.1. Observation table

The main data structure of 𝐿∗ is called the observation table, denoted by 𝒪,
which is a finite sub-table of the infinite table. That is, we have a finite set of
words that label each row, and a finite number of words labelling each column.
We then define an equivalence relation ≡𝒪 that groups together words labeling
rows with exactly the same contents. We refine this table until some properties
are satisfied, allowing us to construct a DFA hypothesis from the equivalence
classes of ≡𝒪.

Definition 3.2.2 (Observation table [Ang87]). An observation table is a
tuple 𝒪 = (𝑅, 𝑆, 𝑇) where:

▶ 𝑅 ⊊ Σ∗ is a finite prefix-closed set of representatives,
▶ 𝑆 ⊊ Σ∗ is a finite suffix-closed set of separators,
▶ 𝑇 ∶ (𝑅 ∪ 𝑅Σ) ⋅ 𝑆 → {no,yes} is a (total) function that stores the



3. Active Learning of DFAs and MMs 21

𝜀 𝑏
𝜀 no yes
𝑎 no no
𝑏 yes no
𝑎𝑏 no no
𝑎𝑏𝑎 yes no
𝑎𝑎 no yes
𝑏𝑎 no no
𝑏𝑏 no yes
𝑎𝑏𝑏 no no
𝑎𝑏𝑎𝑎 no no
𝑎𝑏𝑎𝑏 no yes

Figure 3.2: A sample observation table.

gathered knowledge on 𝐿:

∀𝑤 ∈ (𝑅 ∪ 𝑅Σ) ⋅ 𝑆 ∶ 𝑇(𝑤) = {
yes if 𝑤 ∈ 𝐿
no otherwise.

Filling the table is easy: for every (extended) representative 𝑢 and separator 𝑣
such that 𝑇(𝑢⋅𝑣) is not yet known, askMQ(𝑢⋅𝑣) and set 𝑇(𝑢⋅𝑣) accordingly.

Notice that 𝑇 also holds information about 𝑅Σ (i.e., representatives extended
with a symbol). This will be useful when constructing the hypothesis to
know how to define the transitions that leave the state corresponding to a
representative. We first define the equivalence class the table encodes, followed
by the constraints 𝒪 must satisfy for a hypothesis to be constructed, and, finally,
the hypothesis construction itself.

Equivalence relation from 𝒪

As the Myhill-Nerode congruence groups together two words 𝑢 and 𝑣 such
that 𝑢 ⋅ 𝑤 ∈ 𝐿 ⇔ 𝑣 ⋅ 𝑤 ∈ 𝐿 for every possible 𝑤, we define an equivalence
relation from 𝒪 that follows the same idea, except that 𝑢 and 𝑣 must be rows
and 𝑤 a column of the table.

Definition 3.2.3 (Equivalence relation of an observation table). Let 𝒪 be
an observation table. For two words 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ, we write 𝑢 ≡𝒪 𝑣 if and
only if 𝑇(𝑢 ⋅ 𝑤) = 𝑇(𝑣 ⋅ 𝑤) for all 𝑤 ∈ 𝑆.

Example 3.2.4. Let 𝐿 be the language of all words with an even number of 𝑎
and an odd number of 𝑏. Figure 3.2 gives an example of an observation table
𝒪 with 𝑅 = {𝜀, 𝑎, 𝑏, 𝑎𝑏, 𝑎𝑏𝑎} and 𝑆 = {𝜀, 𝑏}. Then, the cell 𝑏 ⋅ 𝑏 contains no,
as 𝑏 ⋅ 𝑏 ∉ 𝐿, while 𝑇(𝑎𝑏𝑎 ⋅ 𝜀) = yes.
We have that 𝜀 ≡𝒪 𝑎𝑎 but 𝑎 ≢𝒪 𝑏 as 𝑇(𝑎 ⋅ 𝜀) = no ≠ 𝑇(𝑏 ⋅ 𝜀) = yes. It is
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not hard to see that we have three equivalence classes:

J𝜀K≡𝒪
= {𝜀, 𝑎𝑎, 𝑏𝑏, 𝑎𝑏𝑎𝑏}

J𝑎K≡𝒪
= {𝑎, 𝑎𝑏, 𝑏𝑎, 𝑎𝑏𝑏, 𝑎𝑏𝑎𝑎}

J𝑏K≡𝒪
= {𝑏, 𝑎𝑏𝑎}.

Notice that ≡𝒪 is coarser than ∼𝐿. The goal of the learner in the 𝐿∗ algorithm
is to ask membership and equivalence queries to refine ≡𝒪 until it coincides
with ∼𝐿.

Closed and Σ-consistent table

In order to be able to construct a DFA hypothesis, we have to ensure that every
row in 𝑅Σ has an equivalent row in 𝑅 (i.e., every extension of a representative
still has a known representative), and that ≡𝒪 is a valid congruence (i.e.,
whenever 𝑢 ≡𝒪 𝑣, it must hold that 𝑢𝑎 ≡𝒪 𝑣𝑎 for each 𝑎 ∈ Σ).

Definition 3.2.5 (Closed and Σ-consistent table). We say that an observa-
tion table 𝒪 is

▶ closed if for all 𝑢 ∈ 𝑅Σ, there exists 𝑣 ∈ 𝑅 such that 𝑢 ≡𝒪 𝑣, and open
otherwise, and

▶ Σ-consistent if for all 𝑢, 𝑣 ∈ 𝑅 and 𝑎 ∈ Σ such that 𝑢 ≡𝒪 𝑣, it holds
that 𝑢 ⋅ 𝑎 ≡𝒪 𝑣 ⋅ 𝑎, and Σ-inconsistent otherwise.

When an observation table 𝒪 is open, i.e., when

∃𝑢 ∈ 𝑅Σ, ∀𝑣 ∈ 𝑅 ∶ 𝑢 ≢𝒪 𝑣,

it means that 𝑢 must represent an equivalence class that is currently missing.
We add 𝑢 to 𝑅, which implies that new cells have to be filled, due to the new
extended representatives 𝑢𝑎, with 𝑎 ∈ Σ, i.e., we ask a membership query for
each new cell.

When an observation table 𝒪 is Σ-inconsistent, i.e., when

∃𝑢 ≠ 𝑣 ∈ 𝑅, 𝑎 ∈ Σ ∶ 𝑢 ≡𝒪 𝑣 ∧ 𝑢 ⋅ 𝑎 ≢𝒪 𝑣 ⋅ 𝑎,

i.e., 𝑇(𝑢 ⋅ 𝑎 ⋅ 𝑤) ≠ 𝑇(𝑣 ⋅ 𝑎 ⋅ 𝑤) for some 𝑤 ∈ 𝑆, it means that 𝑎 ⋅ 𝑤 allows us to
distinguish the equivalence classes J𝑢K∼𝐿

and J𝑣K∼𝐿
and, thus, 𝑢 and 𝑣 should

not belong in the same class of ≡𝒪. Hence, we add 𝑎 ⋅ 𝑤 as a new separator,
and fill the new cells by asking membership queries.

Example 3.2.6. Let 𝒪 be the observation table on the left of Figure 3.3. Notice
that 𝑏 ≢𝒪 𝜀, as 𝑇(𝑏) = yes ≠ 𝑇(𝜀) = no. Hence, 𝒪 is open and we add 𝑏 to
the representatives. Figure 3.3 gives the resulting observation table on the
right.

𝜀 𝑏
𝜀 no yes
𝑎 no no
𝑏 yes no
𝑎𝑏 no no
𝑎𝑏𝑎 yes no
𝑎𝑎 no yes
𝑏𝑎 no no
𝑏𝑏 no yes
𝑎𝑏𝑏 no no
𝑎𝑏𝑎𝑎 no no
𝑎𝑏𝑎𝑏 no yes

Now, let us consider the observation table 𝒪′ of Figure 3.2 (which we repeat
in the margin). We have 𝑎 ≡𝒪′ 𝑎𝑏 but 𝑎𝑎 ≢𝒪′ 𝑎𝑏𝑎, meaning that 𝒪′ is Σ-
inconsistent. More precisely, we have 𝑇(𝑎⋅𝑎⋅𝜀) = nowhile 𝑇(𝑎𝑏⋅𝑎⋅𝜀) = yes.
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𝜀
𝜀 no
𝑎 no
𝑏 yes

𝜀
𝜀 no
𝑏 yes
𝑎 no
𝑏𝑎 no
𝑏𝑏 no

Figure 3.3: On the left, an observation table that is open. On the right, the table obtained by resolving the
openness.

𝜀 𝑏 𝑎
𝜀 no yes no
𝑎 no no no
𝑏 yes no no
𝑎𝑏 no no yes
𝑎𝑏𝑎 yes no no
𝑎𝑎 no yes no
𝑏𝑎 no no yes
𝑏𝑏 no yes no
𝑎𝑏𝑏 no no no
𝑎𝑏𝑎𝑎 no no yes
𝑎𝑏𝑎𝑏 no yes no

Figure 3.4: The observation table obtained by resolving the Σ-inconsistency of the table from Figure 3.2.

Definition 2.2.9. Let 𝐿 ⊆
Σ∗ be a language. We de-
fine the automaton 𝒜∼𝐿

=
(Σ, 𝑄, 𝑞0, 𝐹 , 𝛿) with

▶ 𝑄 = {J𝑤K∼𝐿
∣ 𝑤 ∈ Σ∗},

▶ 𝑞0 = J𝜀K∼𝐿
,

▶ 𝐹 = {J𝑤K∼𝐿
∣ 𝑤 ∈ 𝐿},

and
▶ 𝛿 ∶ 𝑄 × Σ → 𝑄 is the (to-

tal) function defined such
that for all 𝑤 ∈ Σ∗ and
𝑎 ∈ Σ,

J𝑤K∼𝐿

𝑎
−→ J𝑤 ⋅ 𝑎K∼𝐿

∈ runs(𝒜∼𝐿
).

We thus add 𝑎 ⋅ 𝜀 = 𝑎 to the separators. Figure 3.4 gives the resulting table.

Hypothesis construction

Once 𝒪 is closed and Σ-consistent, one can show that ≡𝒪 is a right-congruence.
That means that a hypothesis (denoted byℋ𝒪) can be constructed using the
same ideas as the construction of an automaton from the Myhill-Nerode
congruence (see Definition 2.2.9), except that we consider the classes of ≡𝒪.
As the index of ≡𝒪 is finite, the resulting automaton is a DFA.

Definition 3.2.7 (Automaton from ≡𝒪). We construct the DFAℋ𝒪 with

▶ 𝑄ℋ𝒪 = {J𝑤K≡𝒪
∣ 𝑤 ∈ Σ∗}, with 𝑞ℋ𝒪

0 = J𝜀K≡𝒪
,

▶ 𝐹ℋ𝒪 = {J𝑤K≡𝒪
∣ 𝑤 ∈ 𝐿}, and

▶ 𝛿ℋ𝒪 ∶ 𝑄 × Σ → 𝑄 is the (total) function defined such that for all
J𝑤K≡𝒪

, J𝑤 ⋅ 𝑎K≡𝒪
∈ 𝑄 and 𝑎 ∈ Σ,

J𝑤K≡𝒪

𝑎
−→ J𝑤 ⋅ 𝑎K≡𝒪

∈ runs(ℋ𝒪).

Example 3.2.8. Let 𝒪 be the observation table of Figure 3.4. It is closed and
Σ-consistent, allowing us to construct a hypothesisℋ𝒪 from it. We have
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J𝜀K≡𝒪
J𝑎K≡𝒪

J𝑏K≡𝒪
J𝑎𝑏K≡𝒪

𝑎

𝑏
𝑎

𝑏
𝑎

𝑏

𝑎

𝑏

Figure 3.5: The hypothesis constructed from the closed and Σ-consistent table of Figure 3.4.

the following equivalence classes:

J𝜀K≡𝒪
= {𝜀, 𝑎𝑎, 𝑏𝑏, 𝑎𝑏𝑎𝑏},

J𝑎K≡𝒪
= {𝑎, 𝑎𝑏𝑏},

J𝑏K≡𝒪
= {𝑏, 𝑎𝑏𝑎},

and
J𝑎𝑏K≡𝒪

= {𝑎𝑏, 𝑏𝑎, 𝑎𝑏𝑎𝑎}.

One can verify that ≡𝒪 is a right-congruence. Figure 3.5 gives the resulting
DFA.

3.2.2. Main loop

Algorithm 3.1 gives a pseudo-code for 𝐿∗. Initially, the observation table has
𝜀 as the unique representative and separator (meaning that 𝑅Σ = Σ) and is
filled via MQ. Then, we make the table closed and Σ-consistent. We highlight
that this may require many membership queries and iterations, as adding
a new representative or separator may induce further refinements. While
we do not provide it here, [Ang87] gives a proof that this always eventually
terminates. Once 𝒪 is closed and Σ-consistent, we construct a hypothesisℋ𝒪
and ask an equivalence query. If the answer is yes, we returnℋ𝒪 (as we have
identified a DFA accepting 𝐿). Otherwise, we have to process the provided
counterexample.

Counterexample processing

Let 𝑤 be a counterexample returned by the teacher for some EQ(ℋ𝒪), i.e., 𝑤
is such that 𝑤 ∈ ℋ𝒪 ⇔ 𝑤 ∉ 𝐿. Angluin [Ang87] proposes to handle 𝑤 by
adding all elements in Pref (𝑤) to 𝑅. That way, 𝑅 remains prefix-closed and
we are sure to have a representative for the missing equivalence class. It may
be that the table is open or Σ-inconsistent after adding Pref (𝑤), requiring us
to refine the table before constructing the next hypothesis.

Notice that the number of representatives grows with the length of 𝑤. So, if
𝑤 is extremely long, we may add too many representatives, with regards to
the equivalence classes of ∼𝐿 (i.e., we may have many representatives for the
same class). Although we only rely on adding all prefixes of 𝑤 in this thesis,
some works propose more efficient ways of handling 𝑤. For instance, Rivest
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Algorithm 3.1: The 𝐿∗ algorithm for DFAs [Ang87].
Require: The target language 𝐿
Ensure: A DFA accepting 𝐿 is returned

1: Initialize 𝒪 with 𝑅 = 𝑆 = {𝜀}
2: Fill 𝒪 by asking MQ
3: while true do
4: Make 𝒪 closed and Σ-consistent
5: Construct the DFAℋ𝒪 from 𝒪
6: 𝑤 ← EQ(ℋ𝒪)
7: if 𝑤 = yes then
8: returnℋ𝒪
9: else

10: ProcessCounterExample(𝑤)

J𝜀K≡𝒪2
J𝑏K≡𝒪2

𝑎

𝑏

𝑎, 𝑏

Figure 3.6: The hypothesis constructed from 𝒪2.

[RS93]: Rivest et al. (1993), “In-
ference of Finite Automata Using
Homing Sequences”

2: In [RS93], 𝑆 is not necessarily
suffix-closed.
[SG09]: Shahbaz et al. (2009), “In-
ferring Mealy Machines”

[IS14]: Isberner et al. (2014), “An
Abstract Framework for Counterex-
ample Analysis in Active Automata
Learning”

𝜀 𝑎

𝑏 𝑎𝑏

𝑎

𝑏
𝑎

𝑏
𝑎

𝑏

𝑎

𝑏

𝜀
𝜀 no
𝑏 yes
𝑎 no
𝑏𝑎 no
𝑏𝑏 no

and Schapire [RS93] perform a binary search to identify the shortest prefix of
𝑤 that is still a counterexample. Furthermore, they show that adding a single
suffix (obtained from the binary search) is sufficient to learn a new equivalence
class.2 This idea is also applied in the adaptation of 𝐿∗ to MMs [SG09].

For more details on various counterexample processing algorithms, we refer
the reader to Isberner and Steffen’s work [IS14]. The authors also introduce
an exponential search (instead of binary) that is more efficient in practice, as it
lowers the total number of input symbols used in membership queries while
processing 𝑤.

3.2.3. Complete example

Finally, we give an example of a complete run of 𝐿∗ using the language 𝐿 of
all words with an even number of 𝑎 and an odd number of 𝑏. This language is
accepted by the DFAs of Figures 2.1 and 2.2 (which is repeated in the margin,
for convenience).

Throughout the example, we number each table, starting with 𝒪1 whose only
representative and separator is 𝜀, i.e., 𝑅1 = 𝑆1 = {𝜀} and is given on the left of
Figure 3.3. As explained in Example 3.2.6, this table is open due to 𝑏. Hence, we
move 𝑏 to 𝑅 and obtain the table 𝒪2 such that 𝑅2 = {𝜀, 𝑏} and 𝑆2 = 𝑆1 = {𝜀},
which is given on the right of Figure 3.3 and repeated in the margin. This table
is closed and Σ-consistent. We can thus construct the hypothesisℋ𝒪1

, shown
in Figure 3.6.
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𝜀
𝜀 no
𝑎 no
𝑏 yes
𝑎𝑏 no
𝑎𝑏𝑎 yes
𝑎𝑎 no
𝑏𝑎 no
𝑏𝑏 no
𝑎𝑏𝑏 no
𝑎𝑏𝑎𝑎 no
𝑎𝑏𝑎𝑏 no

Figure 3.7: The observation table 𝒪3 obtained by adding the prefixes of the counterexample 𝑎𝑏𝑎.

[Vaa+22]: Vaandrager et al. (2022),
“A New Approach for Active Au-
tomata Learning Based on Apart-
ness”

[SG09]: Shahbaz et al. (2009), “In-
ferring Mealy Machines”
[SHM11]: Steffen et al. (2011),
“Introduction to Active Automata
Learning from a Practical Perspec-
tive”

Definition 2.2.13. Two
MMs ℳ and 𝒩 over 𝐼 and
𝑂 are equivalent , denoted
by ℳ ≈ 𝒩, if for all 𝑤 ∈ 𝐼∗,
outputℳ(𝑤) = output𝒩(𝑤).

We ask EQ(ℋ𝒪2
) and receive the counterexample 𝑎𝑏𝑎. We add all words in

Pref (𝑎𝑏𝑎) = {𝜀, 𝑎, 𝑎𝑏, 𝑎𝑏𝑎} as new representatives, i.e., 𝑅3 = {𝜀, 𝑏, 𝑎, 𝑎𝑏, 𝑎𝑏𝑎}.
Figure 3.7 gives the resulting table 𝒪3. Observe that it is not Σ-consistent, as
𝜀 ≡𝒪3

𝑎 but 𝜀 ⋅ 𝑏 ≢𝒪3
𝑎 ⋅ 𝑏, meaning that we add 𝑏 as a new separator, i.e.,

𝑆4 = {𝜀, 𝑏}. The table 𝒪4 is given in Figure 3.2. As studied in Example 3.2.6,
𝒪4 is still Σ-inconsistent and we add 𝑎 to 𝑆4.

𝜀 𝑏 𝑎
𝜀 no yes no
𝑎 no no no
𝑏 yes no no
𝑎𝑏 no no yes
𝑎𝑏𝑎 yes no no
𝑎𝑎 no yes no
𝑏𝑎 no no yes
𝑏𝑏 no yes no
𝑎𝑏𝑏 no no no
𝑎𝑏𝑎𝑎 no no yes
𝑎𝑏𝑎𝑏 no yes no

Finally, the resulting observation table 𝒪5, with 𝑆5 = {𝜀, 𝑎, 𝑏}, is shown in
Figure 3.4 (repeated in themargin) and is closed andΣ-consistent, asmentioned
in Example 3.2.8. Moreover, the hypothesisℋ𝒪5

is given in Figure 3.5. This
time, EQ(ℋ𝒪5

) returns yes, i.e., we have correctly learned an automaton that
accepts 𝐿. Notice thatℋ𝒪5

is isomorphic to the minimal DFA accepting 𝐿.

3.3. 𝐿#

In this section, we introduce 𝐿# [Vaa+22], which is an active learning algo-
rithm for MMs. Contrarily to 𝐿∗, 𝐿# does not try to identify the equivalence
classes of the Myhill-Nerode congruence (adapted to MMs). Instead, it relies on
a notion of apartness that proves that two states must have different behaviors.
Another main difference is that 𝐿# does not maintain auxiliary data structures
to construct a hypothesis, but operates directly on the tree built from the
observations made via queries. See [SG09; SHM11] for learning algorithms
for MMs based on adapting of 𝐿∗.

We first adapt Angluin’s framework to MMs . This time, we assume the teacher
knows a complete MMℳ and the goal of the learner is to construct an MM
ℋ such thatℳ ≈ ℋ (see Definition 2.2.13).

Definition 3.3.1 (Queries for MMs). Let ℳ be the MM of the teacher. A
learner for MMs can use two types of queries:

▶ An output query, denoted by OQ(𝑤), with 𝑤 a word over 𝐼, returns
outputℳ(𝑤).

▶ An equivalence query , denoted by EQ(ℋ), withℋ an MM, returns

• yes ifℳ ≈ ℋ, and
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Learner Teacher
Knows an MMℳ

OQ(𝑤) ∶ outputℳ(𝑤)?

outputℳ(𝑤)

EQ(ℋ) ∶ ℳ ≈ ℋ?

yes or a counterexample

Figure 3.8: Adaptation of Angluin’s framework for MMs.

3: In the sense that there exists a
run from the root to a state of this
subset that never leaves the subset.

• a word 𝑤 over 𝐼 such that outputℳ(𝑤) ≠ outputℋ(𝑤) otherwise.
Such a word 𝑤 is called a counterexample.

Figure 3.8 gives a visual representation of the framework. Part IV will extend
this framework to allow learning of MMs extended with timers. We highlight
that the notations introduced here differ from those used in [Vaa+22], in order
to ease Part IV.

The rest of this section is structured as follows. We start by defining the
data structure of 𝐿#, give useful properties, and explain how to construct a
hypothesis, assuming the data structure satisfies some constraints. This allows
us to provide the main loop of 𝐿# and how to process a counterexample in
Section 3.3.2. Finally, a complete example of an execution of 𝐿# is given in
Section 3.3.3. Before that, let us state that the algorithm eventually terminates
and its complexity.

Theorem 3.3.2 ([Vaa+22]). Let 𝑛 be the size of a minimal MM equivalent to
the teacher’s MM over the input alphabet 𝐼, and 𝜁 be the length of the longest
counterexample provided by the teacher. Then,

▶ the 𝐿# algorithm eventually terminates,
▶ and uses at most 𝑛−1 equivalence queries and 𝒪 (𝑛2|𝐼| + 𝑛 log 𝜁) mem-

bership queries.

3.3.1. Observation tree

From an MM ℳ, we can construct an infinite Mealy machine equivalent to
ℳ by unfolding the runs of ℳ into an infinite tree (of finite arity). Then,
a “prefix-closed”3 subset of states can be constructed, which we denote ℬ𝒯.
Furthermore, ℳ can be reconstructed from this subset: for each transition

𝑞
𝑖/𝑜
−−→ 𝑟 with 𝑞 ∈ ℬ𝒯 and 𝑟 ∉ ℬ𝒯, seek a state 𝑝 in ℬ𝒯 that has the same

behavior as 𝑟 (i.e., the transitions below 𝑝 and 𝑟 output the same symbols at

the same time) and redirect the transition into 𝑞
𝑖/𝑜
−−→ 𝑝. This is the idea behind

𝐿#: identify each state ofℳ by constructing a finite tree via output queries.
We call the data structure an observation tree.

Definition 3.3.3 (Observation tree). An observation tree 𝒯 is a tree-shaped
Mealy machine, i.e., for every state 𝑞 ∈ 𝑄𝒯 there exists a unique run 𝑞𝒯0

𝑤
−→ 𝑞.
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𝑡0

𝑡1

𝑡2

𝑡5

𝑡3

𝑡4 𝑡6

𝑡7

𝑖/𝑜

𝑗/𝑜′

𝑖/𝑜

𝑖/𝑜′

𝑗/𝑜
𝑖/𝑜

𝑖/𝑜′

Figure 3.9: A sample observation tree 𝒯.

4: In [Vaa+22], functional simula-
tions are defined for any MM. We
define it here for an observation
tree to have the same approach as
in Part IV.

Let us start by explaining how one can add new nodes and transitions in
𝒯. Assume we already have 𝑞𝒯0

𝑤
−→ 𝑞 ∈ runs(𝒯) and we want to have a run

reading 𝑤 ⋅ 𝑣. We thus need to add new nodes after 𝑞 such that the transitions
read the word 𝑣. For MMs, this is easy to achieve: simply ask OQ(𝑤 ⋅ 𝑣) and
add nodes and transitions accordingly (i.e., use the outputs obtained from the
query). From now on, we assume that any output query automatically creates
the nodes and their transitions.

We first characterize the fact that 𝒯 stores some of the runs of the teacher’s
MMℳ. Then, we introduce the notion of apartness that is used to prove that
two states of 𝒯 correspond to two different states inℳ. Finally, we give the
constraints the tree must satisfy for a hypothesis to be constructed, and the
construction itself.

Functional simulation

Given the fact that 𝒯 is constructed via output queries, it must be that every
run of 𝒯 mimics a run ofℳ. In particular, 𝒯 andℳ output the same word for
every input word that can be read within 𝒯. That is, for all word 𝑤 labeling
a run of 𝒯, we have outputℳ(𝑤) = output𝒯(𝑤). However, due to the tree-
shaped nature of 𝒯 and its finiteness, not all runs of ℳ are present in 𝒯.
This notion of “mimicry” is formally characterized via a functional simulation,
which maps every state of 𝒯 to some state ofℳ.4 In particular, the initial state
of 𝒯 must be mapped with the initial state ofℳ. Then, the remaining states
can be obtained by performing a depth- or breadth-first search, for instance
(as long as the input and output pairs match).

Definition 3.3.4 (Functional simulation). Let ℳ be a complete MM and
𝒯 be an observation tree. A functional simulation 𝑓 ∶ 𝒯 → ℳ is a map
𝑓 ∶ 𝑄𝒯 → 𝑄ℳ with

▶ 𝑓(𝑞𝒯0 ) = 𝑞ℳ0 , and

▶ for all 𝑞, 𝑞′ ∈ 𝑄𝒯, 𝑖 ∈ 𝐼, and 𝑜 ∈ 𝑂, 𝑞
𝑖/𝑜
−−→ 𝑞′ implies 𝑓(𝑞)

𝑖/𝑜
−−→ 𝑓(𝑞′).

We say that 𝒯 is an observation tree forℳ if there exists a functional simula-
tion 𝑓 ∶ 𝒯 → ℳ.

Example 3.3.5. Figure 3.9 gives an example of an observation tree 𝒯. Again,
it is a partial MM. So, transitions show the input and the output, separated
by a slash.
Let ℳ be the MM of Figure 2.3, which is repeated in the margin. Let us
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show that 𝒯 is an observation tree forℳ, i.e., that there exists a functional
simulation 𝑓 ∶ 𝒯 → ℳ. Let 𝑓 such that

𝑞0 𝑞1

𝑞2

𝑖/𝑜

𝑖/𝑜

𝑗/𝑜

𝑖/𝑜′

𝑗/𝑜′ 𝑗/𝑜

𝑓(𝑡0) = 𝑓(𝑡5) = 𝑓(𝑡7) = 𝑞0

𝑓(𝑡1) = 𝑓(𝑡3) = 𝑞1

𝑓(𝑡2) = 𝑓(𝑡4) = 𝑓(𝑡6) = 𝑞2.

One can then check that 𝑓 is indeed a functional simulation.

Apartness of states

Thanks to the functional simulation 𝑓 ∶ 𝒯 → 𝑀, we know that each state of
𝒯 corresponds to a state ofℳ. Hence, if we observe a difference in behavior
between two states 𝑝0 and 𝑝′

0 of 𝒯, then this difference also exists between
𝑓(𝑝0) and 𝑓(𝑝′

0) in ℳ. In other words, if we have runs starting from 𝑝0 and
𝑝′

0 reading the same input word but outputting different output words, then
𝑓(𝑝0) and 𝑓(𝑝′

0) exhibit the same difference. Hence, we can conclude that 𝑝0
and 𝑝′

0 are apart, i.e., they ought to be distinct.

Definition 3.3.6 (Apartness of states). Two states 𝑝0 and 𝑝′
0 are apart if

there are runs

𝑝0
𝑖1/𝑜1−−−→ 𝑝1

𝑖2/𝑜2−−−→ ⋯
𝑖𝑛/𝑜𝑛−−−→ 𝑝𝑛 ∈ runs(𝒯)

and

𝑝′
0

𝑖1/𝑜′
1−−−→ 𝑝′

1
𝑖2/𝑜′

2−−−→ ⋯
𝑖𝑛/𝑜′

𝑛−−−→ 𝑝′
𝑛 ∈ runs(𝒯)

such that 𝑜𝑛 ≠ 𝑜′
𝑛.

The word 𝑤 = 𝑖1 ⋯ 𝑖𝑛 ∈ 𝐼∗ is called a witness of 𝑝0 # 𝑝′
0, denoted by

𝑤 ⊢ 𝑝0 # 𝑝′
0.

Observe that # is symmetric, i.e., if 𝑞 # 𝑝, then 𝑝 # 𝑞.

Example 3.3.7. Let 𝒯 be the observation tree of 𝑡0

𝑡1 𝑡2

𝑡5 𝑡3𝑡4

𝑡6 𝑡7

𝑖/𝑜 𝑗/𝑜′

𝑖/𝑜 𝑖/𝑜′ 𝑗/𝑜

𝑖/𝑜𝑖/𝑜′

Figure 3.9 (which is repeated
in the margin) and 𝑓 ∶ 𝒯 → ℳ be the functional simulation of Example 3.3.5.

Since 𝑡0
𝑗/𝑜′

−−→ and 𝑡2
𝑗/𝑜
−−→, we conclude that 𝑗 ⊢ 𝑡0 # 𝑡2. Observe that

𝑓(𝑡0) = 𝑞0 ≠ 𝑓(𝑡2) = 𝑞2, i.e., it is correct to say that 𝑡0 and 𝑡2 are apart.
There may be multiple witnesses for the same apartness pair. For instance,

𝑡0
𝑖/𝑜
−−→ 𝑡1

𝑖/𝑜
−−→ 𝑡5 and 𝑡2

𝑖/𝑜′

−−→ 𝑡4
𝑖/𝑜′

−−→ 𝑡6

imply that 𝑖 and 𝑖 ⋅ 𝑖 are also witnesses of 𝑡0 # 𝑡2.
Contrarily, we cannot conclude that 𝑡0 # 𝑡1. Indeed, the only (nonempty)

run from 𝑡1 is 𝑡1
𝑖/𝑜
−−→ 𝑡5. As 𝑡0

𝑖/𝑜
−−→ outputs the same symbol, we are not able

to distinguish 𝑡1 and 𝑡0. Hence, ¬(𝑡0 # 𝑡1).
Finally, we give all possible apartness pairs with a possible witness for each
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of them: 𝑡0

𝑡1 𝑡2

𝑡5 𝑡3𝑡4

𝑡6 𝑡7

𝑖/𝑜 𝑗/𝑜′

𝑖/𝑜 𝑖/𝑜′ 𝑗/𝑜

𝑖/𝑜𝑖/𝑜′

𝑖 ⊢ 𝑡0 # 𝑡2 𝑖 ⊢ 𝑡0 # 𝑡4

𝑖 ⊢ 𝑡1 # 𝑡2 𝑖 ⊢ 𝑡1 # 𝑡4

𝑖 ⊢ 𝑡2 # 𝑡3 𝑖 ⊢ 𝑡3 # 𝑡4.

Let us now claim two important lemmas, called the weak co-transitivity and
soundness lemmas. The first one is heavily used in the learning algorithm to
find new words to add in the tree to get more apartness pairs, while the second
one states that the definition of apartness makes sense with regards to the
functional simulation.

We start with the weak co-transitivity lemma: if we can read the witness of the
apartness 𝑝0 # 𝑝′

0 from a third state 𝑟0, then we can conclude that 𝑟0 # 𝑝0 or
𝑟0 # 𝑝′

0 (or both). Hence, during the learning algorithm, if we need to deduce
that 𝑟0 # 𝑝0 or 𝑟′

0 # 𝑝′
0 with 𝑤 ⊢ 𝑝0 # 𝑝′

0, it is sufficient to add transitions in 𝒯
in order to obtain 𝑟0

𝑤
−→ ∈ runs(𝒯). By this lemma, we will necessarily get (at

least) one of the apartness states.

Lemma 3.3.8 (Co-transitivity lemma [Vaa+22]). For any states 𝑝0, 𝑝′
0, 𝑟0 of

𝒯 and word 𝑤 ∈ 𝐼∗ such that

▶ 𝑤 ⊢ 𝑝0 # 𝑝′
0, and

▶ 𝑟0
𝑤
−→ ∈ runs(ℳ),

it holds that 𝑤 ⊢ 𝑟0 # 𝑝0 or 𝑤 ⊢ 𝑟0 # 𝑝′
0.

Finally, the soundness lemma: as argued above, any 𝑝 # 𝑝′ occurring in 𝒯 also
proves that 𝑓(𝑝) ≠ 𝑓(𝑝′). That is, the definition of apartness makes sense and
is sound.

Lemma 3.3.9 (Soundness [Vaa+22]). For a functional simulation 𝑓 ∶ 𝒯 → ℳ,

∀𝑝, 𝑝′ ∈ 𝑄𝒯 ∶ 𝑝 # 𝑝′ ⇒ 𝑓(𝑝) ≠ 𝑓(𝑝′).

Basis, frontier, and hypothesis construction

The objective of the learning process is to extend the tree in order to eventually
construct a hypothesisℋ. More precisely, we want to deriveℋ immediately
from 𝒯, in the sense that the set of states of ℋ is a subset of the states of
𝒯. In order for this to make sense, we want to select a tree-shaped subset,
which will be denoted ℬ𝒯 , of 𝒯 that is rooted at 𝑞𝒯0 . We then need to redirect
the transitions leaving ℬ𝒯 back to some state in ℬ𝒯. We call this folding the
tree.

We first properly characterize this aforementioned subset ℬ𝒯 and give the
constraints 𝒯 has to satisfy forℋ to be constructed. In short, ℬ𝒯 is composed
of all the states 𝑝 such that 𝑝 is apart from any other state 𝑝′ in ℬ𝒯. By
Lemma 3.3.9, we then know that 𝑝 and 𝑝′ necessarily represent two distinct
states in ℳ. Since this holds for any 𝑝 and 𝑝′ in ℬ𝒯, it follows that ℬ𝒯 is
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comprised of the states that have been fully identified, i.e., we know that they
all correspond to distinct states inℳ.

Definition 3.3.10 (Basis and frontier). The states of 𝒯 are split into three
disjoint subsets:

▶ The basis ℬ𝒯 is a subtree of 𝑄𝒯 such that 𝑞𝒯0 ∈ ℬ𝒯, and, for all
𝑝 ≠ 𝑝′ ∈ ℬ𝒯, 𝑝 # 𝑝′.

▶ The frontier ℱ𝒯 is the set of immediate non-basis successors of basis
states, i.e.,

ℱ𝒯 = {𝑟 ∈ 𝑄𝒯 ∖ ℬ𝒯 ∣ ∃𝑝 ∈ ℬ𝒯 ∶ 𝑝 −→ 𝑟}.

We say that 𝑝 ∈ ℬ𝒯 and 𝑟 ∈ ℱ𝒯 are compatible if ¬(𝑝 # 𝑟). We write
compat𝒯(𝑟) for the set of all such states 𝑝:

compat𝒯(𝑟) = {𝑝 ∈ ℬ𝒯 ∣ ¬(𝑝 # 𝑟)}.

▶ The remaining states 𝑄𝒯 ∖ (ℬ𝒯 ∪ ℱ𝒯).

Example 3.3.11. Let us continue Example 3.3.7, i.e., we define the basis and
the frontier of the observation tree 𝒯 of 𝑡0

𝑡1 𝑡2

𝑡5 𝑡3𝑡4

𝑡6 𝑡7

𝑖/𝑜 𝑗/𝑜′

𝑖/𝑜 𝑖/𝑜′ 𝑗/𝑜

𝑖/𝑜𝑖/𝑜′

Figure 3.9 (which is repeated in the
margin). The initial state 𝑡0 is necessarily a basis state. Moreover, by the
apartness pairs shown in Example 3.3.7, we can fix ℬ𝒯 = {𝑡0, 𝑡2}. So, we
have ℱ𝒯 = {𝑡1, 𝑡3, 𝑡4} and the following compatible sets:

compat𝒯(𝑡1) = compat𝒯(𝑡3) = {𝑡0}, compat𝒯(𝑡4) = {𝑡2}.

Remark 3.3.12. We highlight that, for a given observation tree 𝒯, there may
be multiple different bases. That is, there may be different ways to partition
the states of 𝒯.

During the learning algorithm, we will ensure that the basis and the frontier
satisfy the following constraints:

▶ the basis is complete, in the sense that 𝑝
𝑖

−→ is defined for every 𝑖 ∈ 𝐼, and
▶ for every 𝑟 ∈ ℱ𝒯, compat𝒯(𝑟) ≠ ∅.

That is, the outgoing transitions of every basis state are all defined, and each
frontier state has a compatible state. This allows us to define the hypothesis
in a straightforward way: for each frontier state 𝑟, pick one basis state 𝑞 in

compat𝒯(𝑟) and redirect the transition 𝑝
𝑖

−→ 𝑟 ∈ runs(𝒯) into a transition

𝑝
𝑖

−→ 𝑞 ∈ runs(ℋ).

Definition 3.3.13 (Hypothesis construction). Let 𝔥 ∶ ℱ𝒯 → ℬ𝒯 be a func-
tion such that, for all 𝑟 ∈ ℱ𝒯, 𝔥(𝑟) ∈ compat𝒯(𝑟). Then, ℋ is an MM
defined as follows:

▶ 𝑄ℋ = ℬ𝒯,
▶ 𝑞ℋ0 = 𝑞𝒯0 , and
▶ all transitions that remain within the basis are copied as-is, while

transitions entering a frontier state are redirected using 𝔥, i.e., 𝛿 is
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𝑡0 𝑡2

𝑖/𝑜
𝑗/𝑜′

𝑖/𝑜′

𝑗/𝑜

Figure 3.10: The hypothesis constructed from the observation tree of Figure 3.9.

Lemma 3.3.8. For any states
𝑝0, 𝑝′

0, 𝑟0 of 𝒯 and word 𝑤 ∈
𝐼∗ such that

▶ 𝑤 ⊢ 𝑝0 # 𝑝′
0, and

▶ 𝑟0
𝑤
−→ ∈ runs(ℳ),

it holds that 𝑤 ⊢ 𝑟0 # 𝑝0 or
𝑤 ⊢ 𝑟0 # 𝑝′

0.

defined such that for all 𝑝
𝑖/𝑜
−−→ 𝑞 ∈ runs(𝒯) with 𝑝 ∈ ℬ𝒯 we have

• 𝑝
𝑖/𝑜
−−→ 𝑞 ∈ runs(ℋ) when 𝑞 ∈ ℬ𝒯, and

• 𝑝
𝑖/𝑜
−−→ 𝔥(𝑞) ∈ runs(ℋ) when 𝑞 ∈ ℱ𝒯

Example 3.3.14. Let us continue Example 3.3.11, i.e., we consider 𝑡0

𝑡1 𝑡2

𝑡5 𝑡3𝑡4

𝑡6 𝑡7

𝑖/𝑜 𝑗/𝑜′

𝑖/𝑜 𝑖/𝑜′ 𝑗/𝑜

𝑖/𝑜𝑖/𝑜′

the ob-
servation tree 𝒯 of Figure 3.9 (again, the tree is repeated in the margin),
with ℬ𝒯 = {𝑡0, 𝑡2} and ℱ𝒯 = {𝑡1, 𝑡4, 𝑡5}. Since the basis is complete and
each compatible set is not empty, we can construct a hypothesis. As the
compatible set of each frontier state contains a single basis state, defining 𝔥
is easy:

𝔥(𝑡1) = 𝔥(𝑡3) = 𝑡0, 𝔥(𝑡4) = 𝑡2.

We thus construct the hypothesis MM given in Figure 3.10.

Observe that a unique hypothesis can be constructed if and only if each
compatible set contains a unique element. Hence, in order to reduce the
number of equivalence queries needed, 𝐿# will also reduce the size of the
compatible sets as much as possible.

3.3.2. Main loop

We now give the main loop of 𝐿# for MMs. A pseudo-code is given in Algo-
rithm 3.2. We initialize 𝒯 to only contain 𝑞𝒯0 with ℬ𝒯 = {𝑞𝒯0 }, and ℱ𝒯 = ∅.
The main loop is split into two parts:

Refinement loop The refinement loop extends the tree until the basis is com-
plete, and ∣compat𝒯(𝑟)∣ = 1 for every frontier state 𝑟. To do so, it
performs the following operations, in this order, until no more changes
are possible:

Promotion If compat𝒯(𝑟) is empty for some frontier state 𝑟, then we
know that 𝑞 # 𝑟 for every 𝑞 ∈ ℬ𝒯. So, 𝑟 can be added to ℬ𝒯. We
say that we promote 𝑟.

Completion If an 𝑖-transition is missing from some basis state 𝑝, we
complete the basis with that transition by asking an output query.

WCT where WCT stands for Weak Co-Transitivity. In order to reduce
the compatible sets as much as possible, we leverage Lemma 3.3.8
as follows. If we have some 𝑟 ∈ ℱ𝒯 and 𝑝, 𝑝′ ∈ compat𝒯(𝑟) such
that 𝑝 ≠ 𝑝′ (i.e., ¬(𝑝 # 𝑟) and ¬(𝑝′ # 𝑟)), we know that there exists
a witness 𝑤 of 𝑝#𝑝′. By Lemma 3.3.8, if 𝑟

𝑤
−→ ∈ runs(𝒯), it follows
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Algorithm 3.2: The 𝐿# algorithm for MMs.

1: Initialize 𝒯 with ℬ𝒯 = {𝑞𝒯0 } and ℱ𝒯 = ∅
2: while true do
3: while 𝒯 is changed do ▷ Refinement loop
4: if ∃𝑟 ∈ ℱ𝒯 such that compat𝒯(𝑟) = ∅ then ▷ Promotion
5: ℬ𝒯 ← ℬ𝒯 ∪ {𝑟}
6: ℱ𝒯 ← ℱ𝒯 ∖ {𝑟}
7: else if ∃𝑝 ∈ ℬ𝒯, 𝑖 ∈ 𝐼 such that 𝑝

𝑖
−→ ∉ runs(𝒯) then ▷ Completion

8: Let 𝑣 be the word such that 𝑞𝒯0
𝑣
−→ 𝑝 ∈ runs(𝒯)

9: OQ(𝑣 ⋅ 𝑖)
10: ℱ𝒯 ← ℱ𝒯 ∪ {𝑟 ∣ 𝑝

𝑖
−→ 𝑟}

11: else if ∃𝑟 ∈ ℱ𝒯, 𝑝 ≠ 𝑝′ ∈ compat𝒯(𝑟) then ▷ WCT
12: Let 𝑣 be the word such that 𝑞𝒯0

𝑣
−→ 𝑟 ∈ runs(𝒯)

13: Let 𝑤 be a witness of 𝑝 # 𝑝′

14: OQ(𝑣 ⋅ 𝑤)
15: ℋ ← ConstructHypothesis ▷ Once ℬ𝒯 and ℱ𝒯 are stabilized
16: 𝑣 ← EQ(ℋ)
17: if 𝑣 = yes then returnℋ else ProcCounterEx(𝑣)

[Vaa+22]: Vaandrager et al. (2022),
“A New Approach for Active Au-
tomata Learning Based on Apart-
ness”

5: In particular, this means that
we do not obtain the complexity
claimed in Theorem 3.3.2.

that 𝑝 # 𝑟 ∨ 𝑝′ # 𝑟. So, we extend the tree by adding 𝑤 from 𝑟 and
necessarily obtain that compat𝒯(𝑟) is smaller.

Hypothesis and equivalence Once the refinement step no longer modifies 𝒯,
we can construct a hypothesisℋ from 𝒯 and call EQ(ℋ). If the teacher
answers yes, we then return ℋ. Otherwise, a counterexample 𝑤 is
provided and can be used to extend 𝒯, before refining it again.

Counterexample processing

Let 𝑤 = 𝑖1 ⋯ 𝑖𝑛 be the counterexample returned by some EQ(ℋ). We explain
how to extend the tree such that ℋ can no longer be constructed. Since 𝑤
is a counterexample, there must be a transition inℋ that is incorrect, in the
sense that it should lead to a state that is not yet known, i.e., we defined

𝑝
𝑖

−→ 𝔥(𝑟) ∈ runs(ℋ) but 𝑟 should be a basis state. In order to see this, we will
add new nodes in 𝒯 until 𝑝 is no longer in compat𝒯(𝑟). As we already ensured
that compat𝒯(𝑟) = {𝑝}, it follows that 𝑟 will be promoted at the start of the
next refinement loop.

Here, we give an algorithm that is different from the one proposed in [Vaa+22]
but is the foundation of the counterexample processing for Mealy machines
with timers of Part IV. Importantly, the one we describe is less efficient than
Vaandrager et al.’s approach. While [Vaa+22] performs a binary search to cut
the counterexample in half, we do a more simple linear search. We thus, in
general, require more output queries and the number of symbols used in them
is higher.5

First of all, observe that if we add 𝑞𝒯0
𝑤
−→ 𝑞 to the tree, it must be that 𝑞 ∉ ℬ𝒯 ∪

ℱ𝒯 . By construction, it is impossible to have a mistake with the transitions that



3. Active Learning of DFAs and MMs 34

remain within the basis. So, the mistakemust come from a (potentially missing)

transition 𝑝
𝑖

−→ with 𝑝 ∉ ℬ𝒯. The goal of the counterexample processing is
thus to identify one such problematic transition.

Notice that 𝑤 may be very long. By analyzing outputℳ(𝑤) (obtained by an
output query) and outputℋ(𝑤), it is possible to find a prefix 𝑤′ ⋅ 𝑖 of 𝑤 such
thatℳ andℋ do not output the same symbol when reading 𝑖. We then add
𝑤′ ⋅ 𝑖 in the tree and obtain

𝑞𝒯0
𝑤′

−→ 𝑞
𝑖/𝑜
−−→ ∈ runs(𝒯) ∧ 𝑞ℋ0

𝑤′

−→ 𝑞′ 𝑖/𝑜′

−−→ ∈ runs(ℋ) ∧ 𝑜 ≠ 𝑜′.

However, adding 𝑞𝒯0
𝑤′⋅𝑖
−−→ in the tree may not be enough for a compatible set

to shrink. Let 𝑟1 ∈ ℱ𝒯 and 𝑤′ ⋅ 𝑖 = 𝑣1 ⋅ 𝑣′
1 such that 𝑣′

1 ≠ 𝜀 and

𝑞𝒯0
𝑣1−→ 𝑟1

𝑣′
1−→ ∈ runs(𝒯).

It may be that we cannot read 𝑣′
1 from 𝔥(𝑟1) (recall that 𝔥(𝑟1) belongs to

compat𝒯(𝑟1)), i.e., 𝔥(𝑟1)
𝑣′

1−→ ∉ runs(𝒯). In that case, we ask an output query
to be able to read 𝑣′

1 from 𝔥(𝑟1).

If we obtain 𝑟1 # 𝔥(𝑟1), we can stop. Otherwise, we can apply the same
principle: let 𝑟2 ∈ ℱ𝒯 and 𝑣′

1 = 𝑣2 ⋅ 𝑣′
2 such that

𝑞𝒯0
𝑣2−→ 𝑟2

𝑣′
2−→ ∈ runs(𝒯),

and we ask an output query to add 𝔥(𝑟2)
𝑣′

2−→ ∈ runs(𝒯). If we have 𝑟2 #𝔥(𝑟2),
we can stop. Otherwise, we split 𝑣′

2, extend the tree, and so on until we obtain
𝑣𝑗 # 𝔥(𝑣𝑗) for some 𝑗.

We give an example of this processing, before claiming that such a 𝑗 always
exists.

Example 3.3.15. Letℋ be the MM of Figure 3.10 andℳ be the MM of the
teacher given in Figure 2.3 (which is repeated in the margin). Notably, in
Example 3.3.14,ℋ was

𝑞0 𝑞1

𝑞2

𝑖/𝑜

𝑖/𝑜

𝑗/𝑜

𝑖/𝑜′

𝑗/𝑜′ 𝑗/𝑜

constructed with the function 𝔥 such that

𝔥(𝑡1) = 𝔥(𝑡3) = 𝑡0, 𝔥(𝑡4) = 𝑡2.

We can see that ℳ and ℋ are not equivalent due to the counterexample
𝑤 = 𝑗⋅𝑖⋅𝑗⋅𝑗. Indeed, outputℳ(𝑤) = 𝑜′⋅𝑜′⋅𝑜⋅𝑜 while outputℋ(𝑤) = 𝑜′⋅𝑜′⋅𝑜⋅𝑜′.

We thus add 𝑡0
𝑗⋅𝑖⋅𝑗⋅𝑗
−−−→ in 𝒯 by asking OQ. Figure 3.11a gives the resulting

observation tree.
Notice that ¬(𝑡4 # 𝑡2), i.e., we can still constructℋ and we need to extend

the tree further. We split 𝑤 = (𝑗 ⋅ 𝑖) ⋅ (𝑗 ⋅ 𝑗) as 𝑡0
𝑗⋅𝑖
−→ 𝑡4 and 𝑡4 ∈ ℱ𝒯. We

add 𝑗 ⋅ 𝑗 from 𝔥(𝑡4) = 𝑡2, i.e., we now have the run 𝑡2
𝑗⋅𝑗
−→ 𝑡10, as shown in

Figure 3.11b.
This time, we have 𝑗 ⊢ 𝑡3 # 𝑡0, meaning that 𝑡0 is no longer compatible with
𝑡3. That is, compat𝒯(𝑡3) is now empty and 𝑡3 can be promoted. Hence,ℋ
can no longer be constructed from the resulting tree.
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𝑡0𝑡0

𝑡1

𝑡2𝑡2

𝑡5

𝑡3

𝑡4

𝑡6

𝑡7

𝑡8 𝑡9

𝑖/𝑜

𝑗/𝑜′

𝑖/𝑜

𝑖/𝑜′

𝑗/𝑜
𝑖/𝑜

𝑖/𝑜′

𝑗/𝑜 𝑗/𝑜

(a) After adding the complete counterexample.

𝑡0𝑡0

𝑡1

𝑡2𝑡2

𝑡5

𝑡3

𝑡4

𝑡6

𝑡7

𝑡8 𝑡9

𝑡10

𝑖/𝑜

𝑗/𝑜′

𝑖/𝑜

𝑖/𝑜′

𝑗/𝑜
𝑖/𝑜

𝑗/𝑜 𝑗/𝑜

𝑖/𝑜′

𝑗/𝑜

(b) After adding 𝑗 ⋅ 𝑗 from 𝑡2.

Figure 3.11: Observation trees obtained by processing the counterexample 𝑗 ⋅ 𝑖 ⋅ 𝑗 ⋅ 𝑗. Newly added nodes and
transitions are drawn with dashed lines. Basis nodes are highlighted with a gray background.

𝑡0𝑡0

𝑡1

𝑡2

𝑖/𝑜

𝑗/𝑜′

𝑡0

𝑖/𝑜

𝑗/𝑜′

Figure 3.12: The observation tree 𝒯1 and the hypothesisℋ1 constructed from it. Basis states are highlighted
with a gray background.

𝑞0 𝑞1

𝑞2

𝑖/𝑜

𝑖/𝑜

𝑗/𝑜

𝑖/𝑜′

𝑗/𝑜′ 𝑗/𝑜

While this counterexample processing algorithm differs from the one presented
in [Vaa+22], it is not hard to adapt their proof to show that our algorithm is
sufficient to break the last hypothesis.

Lemma3.3.16. There exists a frontier state 𝑟 such that 𝑟#𝔥(𝑟) after processing
a counterexample 𝑤.

3.3.3. Complete example

Finally, we give an example of a complete run of 𝐿#. Let ℳ be the MM of
Figure 2.3 (which is repeated in the margin). Similarly to the complete example
of 𝐿∗ (Section 3.2.3), we enumerate each observation tree and the basis and
frontier states, e.g., 𝒯1,ℬ𝒯3,ℱ𝒯4, and so on.

The initial observation tree has a single state 𝑡0, which is in the basis. Since
𝐼 = {𝑖, 𝑗}, the basis is not complete and we can apply Completion twice
(once for 𝑖 and once for 𝑗). The resulting tree 𝒯1 is given in Figure 3.12. We
have ℬ𝒯1 = {𝑡0},ℱ𝒯1 = {𝑡1, 𝑡2}, and compat𝒯1(𝑡1) = compat𝒯1(𝑡2) = 𝑡0.
That is, we satisfy every condition to construct a hypothesisℋ1, which is also
given in Figure 3.12.
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𝑡0𝑡0

𝑡1

𝑡2 𝑡3

𝑖/𝑜

𝑗/𝑜′
𝑗/𝑜

Figure 3.13: The observation tree 𝒯2. Newly added nodes and transitions are drawn with dashed lines.

𝑡0𝑡0

𝑡1

𝑡2𝑡2
𝑡3

𝑡4

𝑖/𝑜

𝑗/𝑜′

𝑗/𝑜

𝑖/𝑜′

Figure 3.14: The observation tree 𝒯3.

𝑡0𝑡0

𝑡1 𝑡2𝑡2

𝑡5 𝑡3𝑡4

𝑡6 𝑡7

𝑖/𝑜 𝑗/𝑜′

𝑖/𝑜 𝑖/𝑜′ 𝑗/𝑜

𝑖/𝑜𝑖/𝑜′

𝑡0 𝑡2

𝑖/𝑜
𝑗/𝑜′

𝑖/𝑜′

𝑗/𝑜

Clearly,ℋ1 andℳ are not equivalent. Let 𝑤1 = 𝑗 ⋅ 𝑗 ⋅ 𝑗 be the counterexample
returned by EQ(ℋ1), yielding

outputℳ(𝑗 ⋅ 𝑗 ⋅ 𝑗) = 𝑜′ ⋅ 𝑜 ⋅ 𝑜,
and

outputℋ1(𝑗 ⋅ 𝑗 ⋅ 𝑗) = 𝑜′ ⋅ 𝑜′ ⋅ 𝑜′.

That is, the prefix 𝑗 ⋅ 𝑗 is sufficient to distinguishℋ1 andℳ. We thus add 𝑗 ⋅ 𝑗 to
the tree and obtain 𝒯2 as shown in Figure 3.13. Observe that compat𝒯2(𝑡1) =
{𝑡0} and compat𝒯2(𝑡2) = ∅, i.e., we do not need to process the counterexample
anymore. We can then promote 𝑡2 (as its compatibility set is empty) and
complete the new basis to obtain 𝒯3 from Figure 3.14. This time, we have

compat𝒯3(𝑡1) = compat𝒯3(𝑡3) = compat𝒯3(𝑡4) = {𝑡0, 𝑡2}.

We thus apply WCT three times. First, we minimize the set compat𝒯3(𝑡1) by

adding the witness 𝑖 of 𝑡0#𝑡2 from the state 𝑡1. We obtain that 𝑡1#𝑡2, as 𝑡1
𝑖/𝑜
−−→

and 𝑡2
𝑖/𝑜′

−−→. We also add the witness 𝑖 from 𝑡3 and 𝑡4 and obtain 𝑡3 # 𝑡2 and
𝑡4 #𝑡0. The resulting tree is given in Figure 3.9 which is repeated in the margin
(except that basis states are highlighted). As explained in Example 3.3.14, we
construct the hypothesisℋ2 from Figure 3.10, which is also repeated in the
margin, below the observation tree.

Let 𝑤 = 𝑗 ⋅ 𝑖 ⋅ 𝑗 ⋅ 𝑗 be the counterexample returned by EQ(ℋ2). We process
it as explained in Example 3.3.15 and obtain the tree 𝒯4 of Figure 3.11b. We
have

compat𝒯4(𝑡1) = {𝑡0},
compat𝒯4(𝑡3) = ∅,

and
compat𝒯4(𝑡4) = {𝑡2}.

We can thus promote 𝑡3. As 𝑡3
𝑖

−→ and 𝑡3
𝑗
−→ are both already defined, we do

not have to apply Completion. That is, 𝒯5 is exactly 𝒯4, except that 𝑡3 ∈ ℬ𝒯5 ,
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𝑡0𝑡0

𝑡1

𝑡2𝑡2
𝑡3𝑡3

𝑡4

𝑡5 𝑡6

𝑡7

𝑡8 𝑡9

𝑡10

𝑡11

𝑡12

𝑡13

𝑡14

𝑖/𝑜

𝑗/𝑜′

𝑖/𝑜

𝑖/𝑜′

𝑗/𝑜
𝑖/𝑜

𝑗/𝑜 𝑗/𝑜

𝑗/𝑜′

𝑗/𝑜

𝑖/𝑜′

𝑗/𝑜

𝑗/𝑜

𝑖/𝑜

(a) The tree 𝒯6.

𝑡0 𝑡3

𝑡2

𝑖/𝑜

𝑖/𝑜
𝑗/𝑜

𝑖/𝑜′

𝑗/𝑜′ 𝑗/𝑜

(b) The hypothesisℋ6.

Figure 3.15: The observation tree 𝒯6 and its hypothesisℋ6.

𝑡0𝑡0

𝑡1 𝑡2𝑡2

𝑡5 𝑡3𝑡3𝑡4

𝑡6 𝑡7𝑡8

𝑡9

𝑡10

𝑖/𝑜 𝑗/𝑜′

𝑖/𝑜 𝑖/𝑜′ 𝑗/𝑜

𝑖/𝑜𝑖/𝑜′ 𝑗/𝑜

𝑗/𝑜

𝑗/𝑜

and is given in the margin. This results in the following compatible sets:

compat𝒯5(𝑡1) = {𝑡0, 𝑡3},
compat𝒯5(𝑡4) = {𝑡2},

and
compat𝒯5(𝑡7) = compat𝒯5(𝑡10) = {𝑡0, 𝑡2, 𝑡3}.

We thus apply WCT to reduce the sets. Since 𝑗 ⊢ 𝑡0 # 𝑡3, we add a transition
reading 𝑗 from 𝑡1, 𝑡7, and 𝑡10. We also need to add a transition reading 𝑖 from
𝑡10, as 𝑖 ⊢ 𝑡2 # 𝑡3. We then obtain the observation tree 𝒯6 of Figure 3.15a with
the following sets:

compat𝒯6(𝑡1) = compat𝒯6(𝑡10) = {𝑡3},
compat𝒯6(𝑡4) = {𝑡2},

and
compat𝒯6(𝑡7) = {𝑡0}.

Since 𝒯6 can no longer be refined, we can construct a hypothesisℋ6, given in
Figure 3.15b. This time, EQ(ℋ6) returns yes, i.e., we are done.
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One-Counter Automata and
Learning Visibly One-Counter

Automata 4.
Our focus in the second part Learning Realtime One-Counter Automata is to
provide an active learning algorithm for a subfamily of one-counter automata,
which are, in general, NFAs extended with a single natural counter. Such an
automaton can trigger different transitions according to the current value of
the counter. Since the counter does not have an upper bound, a one-counter
automaton induces an infinite transition system, unlike NFAs and DFAs. This
makes active learning algorithms for this class harder.

This chapter motivates why learning one-counter automata is interesting,
and summarizes a learning algorithm for a specific subfamily of one-counter
automata, called visibly one-counter automata [NL10]. That is, this chapter
serves as an introduction to Chapter 5 and its Appendix A, which contain our
main contributions to this topic.

Chapter contents

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
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4.1. Introduction

We introduced in Section 3.2 an active learning algorithm called 𝐿∗ that can
automatically infer DFAs by querying a teacher with membership and equiva-
lence queries [Ang87]. As said in Chapter 1, an important application of active
learning is to learn black-box models from (legacy) software and hardware
systems [GPY06; PVY02]. However, handling real-world applications usually
involves tailor-made abstractions to circumvent elements of the system which
result in an infinite state space [Aar+15]. We thus need learning algorithms
that focus on more expressive models, able to represent such infinite state
spaces.

In this part, we consider one-counter automata, which are finite automata ex-
tended with a natural counter that can be increased, decreased, and tested for
equality against a finite number of values. The counter allows such automata
to capture the behavior of some infinite-state systems. Additionally, their ex-
pressiveness has been shown sufficient to verify programs with lists [Bou+11]
and validate XML streams [CR04]. To the best of our knowledge, there is
no learning algorithm for general one-counter automata. Section 4.2 gives
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1: Allowing 𝜀-transitions in DFAs
does not change the expressivity.

a general definition of deterministic one-counter automata and argues why
learning them is complex.

Hence, we focus on two subfamilies of one-counter automata:

▶ visibly one-counter automata in which counter operations solely depend
on the alphabet symbol read by the transition (e.g., each time we read
an 𝑎, we must increment the counter). These restrictions allowed Neider
and Löding to design an active learning algorithm [NL10], for which we
give a summary in Section 4.3.

▶ realtime one-counter automata which lift this restriction on the counter
operation, i.e., each transition can arbitrarily increment or decrement
the counter no matter the read symbol. This family and its learning
algorithm (which is our main contribution in this part) will be discussed
in Chapter 5.

In both cases, we assume that we can observe the counter value, either due to
the sequence of input symbols read so far, or by querying the system we want
to learn. This means that the system with which we interact is not really a
black box. Rather, we see it as a gray box. Several recent active-learning works
make such assumptions to learn complex languages or ameliorate query-usage
bounds. For instance, in [Ber+21], the authors assume they have information
about the target language 𝐿 in the form of a superset of it. Similarly, in [AR16],
the authors assume 𝐿 is obtained as the composition of two languages, one of
which they know in advance. In [MO20], the teacher is assumed to have an
executable automaton representation of the (infinite-word) target language.
This helps them learn the automaton directly and to do so more efficiently
than other active learning algorithms for the same task. Finally, in [Gar+20] it
is assumed that constraints satisfied along the run of a system can be made
visible. They leverage this (tainting technique) to give a scalable learning
algorithm for register automata.

4.2. Deterministic one-counter automata

In general, a one-counter automaton is an NFA that is augmented with a
counter. We focus here on deterministic one-counter automaton and refer
to [FMR68; Pet11] for a more general definition. The counter can be tested
for equality against a finite number of values when triggering a transition.
In the context of this thesis, we restrict the tests to either check whether the
counter value is zero, or is strictly greater than zero. That is, we consider
{=0, >0} as the set of possible guards on the transitions. Furthermore, we
impose that the counter value can be changed by at most one, i.e., the set of
allowed counter operations is {+1, −1, 0}. However, unlike DFAs, we allow a
one-counter automaton to have transitions that do not read any symbol, i.e.,
𝜀-transitions.1 This means that an automaton can still increment or decrement
the counter an arbitrary number of times between two input symbols. That
being said, we forbid the definition of any 𝑎-transition with 𝑎 ∈ Σ when an
𝜀-transition is defined for a given state and a given guard. That is, either we
define an 𝜀-transition, or we define transitions reading actual symbols.
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𝑞0 𝑞1 𝑞2 𝑞3
𝑎[=0]
+1

𝑐[=0]
0

𝜀[=0]/0

𝑎[>0]/+1

𝑏[>0]
−1

𝑏[>0]/−1

𝑐[>0]
0 𝜀[>0]/−1

Figure 4.1: A sample deterministic one-counter automaton.

Deterministic one-counter automata can also be seen as deterministic push-
down automata in which the stack alphabet is composed of a unique symbol.
The guard =0 (resp. >0) is then equivalent to checking whether the stack is
empty (resp. not empty).

We first properly define what is a deterministic one-counter automaton, fol-
lowed by its runs (where we do not yet consider the counter value, i.e., we
see the automaton as a DFA). In particular, we define sound automata that
ensure that the counter can never be decremented when it is already zero, i.e.,
in a sound automaton, the counter will never be negative. We then define the
semantics of a DOCA, and argue, in Section 4.2.2, why it is hard to learn a
DOCA (intuitively, this is due to the 𝜀-transitions). Section 4.3 gives the main
ideas behind an active learning algorithm for a subclass of DOCAs, which
serves as a stepping stone for Chapter 5.

Definition 4.2.1 (Deterministic one-counter automata). A deterministic
one-counter automaton (DOCA, for short) is a tuple 𝒜 = (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿)
where:

▶ Σ is an alphabet,
▶ 𝑄 is a non-empty finite set of states, with 𝑞0 ∈ 𝑄 the initial state,
▶ 𝐹 ⊆ 𝑄 is the set of final states, and
▶ 𝛿 ∶ 𝑄 × (Σ ∪ {𝜀}) × {=0, >0} ⇀ 𝑄 × {+1, −1, 0} is a transition

function such that, for all 𝑞 ∈ 𝑄, 𝑎 ∈ Σ, and 𝑔 ∈ {=0, >0}, 𝛿(𝑞, 𝑎, 𝑔)
can be defined only when 𝛿(𝑞, 𝜀, 𝑔) is not.

We write 𝑞
𝑎[𝑔]
−−→

𝑜
𝑝 when (𝑝, 𝑜) ∈ 𝛿(𝑞, 𝑎, 𝑔).

A DOCA 𝒜 is termed sound if for every 𝑞
𝑎[=0]
−−−→

𝑜
it holds that 𝑜 ≠ −1.

As for NFAs and DFAs, we add a superscript to indicate which automaton

is considered, and missing symbols are quantified existentially, e.g., 𝑞
𝑎[𝑔]
−−→ 𝑝

means that there exist a state 𝑝 and a counter operation 𝑜 such that 𝑞
𝑎[𝑔]
−−→

𝑜
𝑝.

A run of 𝒜 either consists of a single state 𝑝0 or of a nonempty sequence of
transitions

𝑝0
𝑎1[𝑔1]
−−−→ 𝑝1

𝑎2[𝑔2]
−−−→ ⋯

𝑎𝑛[𝑔𝑛]
−−−−→ 𝑝𝑛.

We denote by runs(𝒜) the set of runs of 𝒜. As for finite automata, we often

write 𝑞
𝑎[𝑔]
−−→ ∈ runs(𝒜) to highlight that 𝛿(𝑞, 𝑎, 𝑔) is defined. Note that any

run is uniquely determined by its first state and its sequence of symbols and
guards.
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Example 4.2.2. A 4-state DOCA 𝒜 over Σ = {𝑎, 𝑏} is given in Figure 4.1.
Each transition gives the input symbol, the guard (between square brackets),
and the counter operation (either after a slash or below the transition). In
order to help the reading, transitions using the guard [=0] are drawn in
gray.
A sample run is

𝑞0
𝑎[=0]
−−−→

+1
𝑞1

𝑎[>0]
−−−→

+1
𝑞1

𝑏[>0]
−−−→

−1
𝑞2

𝑐[=0]
−−−→

0
𝑞3

𝜀[>0]
−−−→

−1
𝑞3.

It is not hard to see that 𝒜 is sound.

4.2.1. Semantics

Let us now define the semantics of a sound DOCA𝒜. Intuitively, we must keep
track of the current state 𝑞 and the current counter value 𝑛, in a pair we call a
configuration. If 𝑛 is zero, we then process the next symbol 𝑎 by retrieving the
pair (𝑝, 𝑜) = 𝛿(𝑞, 𝑎, =0) (if it is defined), applying the counter operation 𝑜, and
going to the state 𝑝. That is, we reach the configuration (𝑝, 𝑛 + 𝑜). Likewise
when 𝑛 > 0, except that we pass >0 to 𝛿 . From the reached configuration
(𝑝, 𝑛 + 𝑜), we may process a new symbol, and so on. That is, the semantics
of 𝒜 are defined via a (potentially infinite) transition system. Recall that it is
impossible to decrement a counter equal to zero, when 𝒜 is sound.

Definition 4.2.3 (Counted runs). Let 𝒜 be a sound DOCA, (𝑞, 𝑛), (𝑝, 𝑚) ∈
𝑄 × ℕ be two configurations, and 𝑎 ∈ Σ ∪ {𝜀}. There exists a transition
(𝑞, 𝑛)

𝑎
−→ (𝑝, 𝑚) if and only if 𝑚 = 𝑛 + 𝑜 and

(𝑝, 𝑜) = {
𝛿(𝑞, 𝑎, =0) if 𝑛 = 0
𝛿(𝑞, 𝑎, >0) if 𝑛 > 0.

A counted run of 𝒜 is either a single configuration (𝑝0, 𝑛0) or a nonempty
sequence of transitions

(𝑝0, 𝑛0)
𝑎1−→ (𝑝1, 𝑛1)

𝑎2−→ ⋯
𝑎ℓ−→ (𝑝ℓ, 𝑛ℓ).

We denote by cruns(𝒜) the set of all counted runs of 𝒜.

Again, missing symbols in (𝑞, 𝑛)
𝑎
−→ (𝑝, 𝑚) are quantified existentially. We lift

the notation to words as usual:

(𝑝0, 𝑛0)
𝑎1⋯𝑎ℓ−−−→ (𝑝ℓ, 𝑛ℓ) ∈ cruns(𝒜)

if there exists a counted run

(𝑝0, 𝑛0)
𝑎1−→ ⋯

𝑎ℓ−→ (𝑝ℓ, 𝑛ℓ) ∈ cruns(𝒜).

Notice that it is easy to go from a counted run to a run (by adding the appro-
priate guards and dropping the counter values). However, in general, given a
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run and a starting counter value, a corresponding counted run may not exist,
as illustrated in Example 4.2.5.

Let us now define the language of 𝒜 as the set of all words 𝑤 that label a
counted run from the initial configuration (𝑞0, 0) to some configuration (𝑞, 0)
with 𝑞 ∈ 𝐹 .

Definition 4.2.4 (Deterministic one-counter language). The language ac-
cepted by a sound DOCA 𝒜 is

ℒ(𝒜) = {𝑤 ∈ Σ∗ ∣ ∃𝑞 ∈ 𝐹 ∶ (𝑞0, 0)
𝑤
−→ (𝑞, 0) ∈ cruns(𝒜)}.

We say that a language 𝐿 is a deterministic one-counter language (DOCL, for
short) if there is a sound DOCA 𝒜 such that ℒ(𝒜) = 𝐿.

Example 4.2.5. 𝑞0

𝑞1

𝑞2

𝑞3

𝑎[=0], +1

𝑐[=0], 0

𝜀[=0]/0

𝑎[>0]/+1

𝑏[>0], −1

𝑏[>0]/−1

𝑐[>0], 0

𝜀[>0]/−1

Let 𝒜 be the DOCA of Figure 4.1, which is repeated in the
margin. A sample counted run is

(𝑞0, 0)
𝑎
−→ (𝑞1, 1)

𝑎
−→ (𝑞1, 2)

𝑏
−→ (𝑞2, 1)

𝑐
−→ (𝑞3, 1)

𝜀
−→ (𝑞3, 0).

Its corresponding run is

𝑞0
𝑎[=0]
−−−→

+1
𝑞1

𝑎[>0]
−−−→

+1
𝑞1

𝑏[>0]
−−−→

−1
𝑞2

𝑐[>0]
−−−→

0
𝑞3

𝜀[>0]
−−−→

−1
𝑞3.

Observe that there is another counted run of𝒜 labeled by 𝑎⋅𝑎 ⋅𝑏 ⋅ 𝑐, obtained
by not triggering the 𝜀-transition:

(𝑞0, 0)
𝑎
−→ (𝑞1, 1)

𝑎
−→ (𝑞1, 2)

𝑏
−→ (𝑞2, 1)

𝑐
−→ (𝑞3, 1).

That is, a DOCA may still have multiple runs for a given word.
Since there exists a run of 𝒜 reading 𝑎 ⋅ 𝑎 ⋅ 𝑏 ⋅ 𝑐 that ends in the configuration
(𝑞3, 0) (with 𝑞3 ∈ 𝐹 ), we conclude that 𝑎 ⋅ 𝑎 ⋅ 𝑏 ⋅ 𝑐 is accepted by 𝒜. One can
show that the language of 𝒜 is

ℒ(𝒜) = {𝑎𝑛𝑏𝑚𝑐 ∣ 0 < 𝑚 ≤ 𝑛}.

Finally, the run of Example 4.2.2 has no corresponding counted run. Indeed,
the guard =0 cannot be satisfied when reading 𝑐 (as the counter value is
necessarily strictly greater than zero).

4.2.2. Problems for active learning

To the best of our knowledge, there is no active learning algorithm for DOCLs.
In order to give the intuition as to why learning DOCLs is a hard task, let us
consider the language 𝐿 = {𝑎𝑛𝑏⌈𝑛/2⌉ ∣ 0 < 𝑛}. Figure 4.2 gives two DOCAs
accepting 𝐿. We highlight two problems, with regards to learning:

▶ The presence of 𝜀-transitions in the DOCA of Figure 4.2b means that the
DOCA may have multiple (counted) runs for a given word. For instance,
reading the word 𝑎 ⋅ 𝑎 ⋅ 𝑏 may end in the configuration (𝑞1, 1) or (𝑞2, 0).
That is, even if the automaton is deterministic (in the sense that, when
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𝑞0 𝑞1

𝑞2

𝑎[=0]/+1

𝑎[>0]/+1

𝑏[>0]/−1
𝑎[>0]/0

𝑏[>0]/−1

𝑏[>0]/−1

(a) The DOCA 𝒜1.

𝑞0 𝑞1 𝑞2

𝑎[=0]/+1

𝑎[>0]/+1

𝑏[>0]/−1 𝜀[>0]/−1

𝑏[>0]/−1

(b) The DOCA 𝒜2.

Figure 4.2: Two DOCAs accepting the language 𝐿 = {𝑎𝑛𝑏⌈𝑛/2⌉ ∣ 0 < 𝑛}.
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3: This will be properly introduced
in Chapter 5.
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a transition is triggered, there is at most one possible transition), the
behavior of a DOCA is still somewhat non-deterministic as, in the worst
case, some runs can have arbitrary lengths. In other words, a DOCA
can potentially have an infinite number of runs for a given word. This
non-determinism may be avoided by changing the syntax and semantics
of the model.2

▶ More importantly, two different DOCAs may compute two different
counter values for a given word. For instance, let 𝒜1 and 𝒜2 be the
DOCAs of Figure 4.2. While they both accept the same language, they
have two different approaches: 𝒜1 increases the counter value every
other 𝑎 (i.e., the counter stores the number of 𝑏 symbols to read), while
𝒜2 increases it every 𝑎 and relies on 𝜀-transitions to decrement the
counter adequately while processing the 𝑏 symbols. Hence, we have

(𝑞𝒜1
0 , 0)

𝑎
−→ (𝑞𝒜1

1 , 1)
𝑎
−→ (𝑞𝒜1

0 , 1)
𝑎
−→ (𝑞𝒜1

1 , 2) ∈ cruns(𝒜1)
and

(𝑞𝒜2
0 , 0)

𝑎
−→ (𝑞𝒜2

0 , 1)
𝑎
−→ (𝑞𝒜2

0 , 2)
𝑎
−→ (𝑞𝒜2

0 , 3) ∈ cruns(𝒜2).

That is, both automata do not associate the same counter value to the
word 𝑎 ⋅ 𝑎 ⋅ 𝑎. This implies two points:

• The counter value of a given word depends on the DOCA, i.e., it
is a property of the automaton, not of the language (and there is
no trivial canonic counter value one could compute). That is, the
teacher has to know a DOCA and must propose a new kind of
query to retrieve a counter value for a word.3

• It is not easy to deduce the counter operations occurring within a
DOCA.

These reasons make inferring a correct behavior for the counter a hard task.
Hence, Fahmy and Roos studied learning DOCAs where 𝜀-transitions are
not allowed [FR95]. We will discuss their paper in more details in the next
chapter. Neider and Löding also designed a learning algorithm for a further
restriction of DOCAs where the counter operations are deduced from the read
symbols [NL10], which is the focus of the next section.
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4.3. Learning visibly one-counter automata

In short, the restrictions Neider and Löding consider in [NL10] are:

▶ each transition has to read an input symbol, and
▶ every time we read a symbol 𝑎, we must perform the same counter

operation. That is, the modification of the counter solely depends on
the input symbol.

These restrictions are akin to those of visibly pushdown automata from [AM04].
We thus call these visibly one-counter automata. In this section, we give the
main ideas behind Neider and Löding’s active learning algorithm for visibly
one-counter automata [NL10], which gives intuition and serves as a sub-
routine for our learning algorithm presented in the next chapter. In particular,
we only provide proofs here when they are useful to build intuition.

We first define visibly one-counter automata, their semantics, and give a first
hierarchy of the one-counter languages considered so far in Section 4.3.2. Then,
in Section 4.3.3, we introduce behavior graphs, which are infinite automata
describing the behavior of a visibly one-counter automaton, and state their
useful properties. Finally, the learning algorithm is given in Section 4.3.4.

4.3.1. Visibly one-counter automata

As said above, a visibly one-counter automaton is a DOCA where 𝜀-transitions
are forbidden and in which each counter operation is dictated by the read
input symbol. For instance, each time we read an 𝑎 in a run of a VOCA, we
must increment the counter by one. We first introduce the notion of pushdown
alphabet, which gives the operation to apply for each symbol.

Definition 4.3.1 (Pushdown alphabet). A pushdown alphabet , denoted by
Σ̃ = Σ𝑐 ∪ Σ𝑟 ∪ Σint , is the union of three disjoint alphabets:

▶ Σ𝑐 is the set of calls where every call increments the counter by one,
▶ Σ𝑟 is the set of returns where every return decrements the counter by

one, and
▶ Σint is the set of internal symbols where an internal symbol does not

change the counter.

The sign of a symbol 𝑎 ∈ Σ̃, denoted by sign(𝑎), is the counter operation it
induces:

sign(𝑎) =
⎧{
⎨{⎩

1 if 𝑎 ∈ Σ𝑐

−1 if 𝑎 ∈ Σ𝑟

0 if 𝑎 ∈ Σint .

Since each symbol has a unique operation associated to it, it means that all
automata using a given pushdown alphabet will necessarily have the same
counter value for a word. That is, unlike for DOCAs, we can define the counter
value of a word and its height solely from the alphabet.
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Definition 4.3.2 (Counter value and height). The counter value of a word
𝑤 = 𝑎1 ⋯ 𝑎𝑛 ∈ Σ̃∗, denoted by cv(𝑤), is the sum of the signs of 𝑎1 to 𝑎𝑛, i.e.,

cv(𝑤) =
𝑛

∑
ℓ=1

sign(𝑎ℓ).

The height of 𝑤, denoted by height (𝑤), is the maximal counter value of any
of its prefixes, i.e.,

height (𝑤) = max
𝑢∈Pref (𝑤)

cv(𝑢).

Observe that cv(𝜀) = 0. We highlight that the counter value of a word 𝑢 ⋅𝑣 can
be obtained by summing the counter values of 𝑢 and 𝑣, as stated in the next
proposition. The proof follows immediately from the definition of a pushdown
alphabet.

Proposition 4.3.3. For two words 𝑢, 𝑣 over a pushdown alphabet Σ̃, we have

cv(𝑢𝑣) = cv(𝑢) + cv(𝑣).

We can now define VOCAs. For clarity, we give here a full definition instead
of restricting the definition of a DOCA. We highlight that in [NL10], one can
test the counter value against any natural between 0 and 𝑚, with 𝑚 a natural
parameter of the VOCA, and check if it is greater than 𝑚. That is, the set of
allowed guards is {=0, … , =𝑚, >𝑚}. For the sake of Chapter 5, we fix 𝑚 = 0,
i.e., the guards we consider are {=0, >0}. This restricts the set of languages
that can be described. As we did for DOCAs, we define sound VOCAs where
the counter can never go below zero. That is, it is not possible to read a return
symbol when the counter is already zero.

Definition 4.3.4 (Visibly one-counter automaton [NL10]). A visibly one-
counter automaton (VOCA, for short) is a tuple 𝒜 = (Σ̃, 𝑄, 𝑞0, 𝐹 , 𝛿) where:

▶ Σ̃ is a pushdown alphabet,
▶ 𝑄 is a non-empty finite set of states, with 𝑞0 ∈ 𝑄 initial state,
▶ 𝐹 ⊆ 𝑄 is the set of final states, and
▶ 𝛿 ∶ 𝑄 × Σ̃ × {=0, >0} ⇀ 𝑄 is a deterministic transition function. As

usual, we write 𝑞
𝑎[𝑔]
−−→ 𝑞′ if 𝛿(𝑞, 𝑎, 𝑔) = 𝑞′.

We say that 𝒜 is sound if for every 𝑞
𝑎[=0]
−−−→ 𝑞′ it holds that 𝑎 ∉ Σ𝑟.

As usual, we add a superscript to indicate which automaton is considered, and
missing symbols are quantified existentially.

A run of 𝒜 either consists of a single state 𝑝0 or of a nonempty sequence of
transitions

𝑝0
𝑎1[𝑔1]
−−−→ 𝑝1

𝑎2[𝑔2]
−−−→ ⋯

𝑎𝑛[𝑔𝑛]
−−−−→ 𝑝𝑛.

We denote by runs(𝒜) the set of runs of 𝒜. Again, we often write 𝑞
𝑎[𝑔]
−−→ ∈

runs(𝒜) to highlight that 𝛿(𝑞, 𝑎, 𝑔) is defined. Note that any run is uniquely
determined by its first state and the sequence of symbols and guards.
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𝑞0 𝑞1 𝑞2

𝑎𝑐[=0]
𝑎int [=0]

𝑏int [=0]

𝑎int [=0]
𝑏int [=0]

𝑏int [=0]

𝑎𝑐[>0]

𝑏int [>0]
𝑎𝑟[>0]

𝑏int [>0] 𝑎int [>0]
𝑏int [>0]

Figure 4.3: An example of a VCA.

Example 4.3.5. Let Σ̃ = {𝑎𝑐} ∪ {𝑎𝑟} ∪ {𝑎int , 𝑏int} be a pushdown alphabet.
Then,

cv(𝑎𝑐𝑎𝑐𝑏int𝑎𝑟𝑏int𝑎𝑟𝑏int) = 1 + 1 + 0 − 1 + 0 − 1 + 0
= 0

and
height (𝑎𝑐𝑎𝑐𝑏int𝑎𝑟𝑏int𝑎𝑟𝑏int) = cv(𝑎𝑐𝑎𝑐) = 2.

A 3-state VOCA 𝒜 over the pushdown alphabet Σ̃ is given in Figure 4.3.
Transitions functions give the input symbol and the guard between square
brackets. In order to help the reading, transitions using the guard [=0] are
drawn in gray. A sample run is

𝑞0
𝑎𝑐[=0]
−−−→ 𝑞0

𝑎𝑐[>0]
−−−→ 𝑞0

𝑏int [>0]
−−−−→ 𝑞1

𝑎𝑟[>0]
−−−−→ 𝑞1

𝑏int [>0]
−−−−→ 𝑞1

𝑎𝑟[>0]
−−−−→ 𝑞1

𝑎int [=0]
−−−−→ 𝑞2.

It is not hard to see that 𝒜 is sound.

Semantics

The semantics of a sound VOCA is defined as for sound DOCAs, except that
the counter operation to apply is deduced from the symbol (and not retrieved
from 𝛿). That is, for two configurations (𝑞, 𝑛), (𝑝, 𝑚), there is a transition
(𝑞, 𝑛)

𝑎
−→ (𝑝, 𝑚) if and only if 𝑚 = 𝑛 + sign(𝑎) and

𝑝 = {
𝛿(𝑞, 𝑎, =0) if 𝑛 = 0
𝛿(𝑞, 𝑎, >0) if 𝑛 > 0.

We then obtain a (potentially infinite) transition system between configura-
tions. Recall that it is impossible to decrement a counter equal to zero, when
𝒜 is sound. Counted runs are defined exactly as for DOCAs and we still write
cruns(𝒜) for the set of all counted runs of the sound VOCA 𝒜.

Again, missing symbols in (𝑞, 𝑛)
𝑎
−→ (𝑝, 𝑚) are quantified existentially. We lift

the notation to words as usual:

(𝑝0, 𝑛0)
𝑎1⋯𝑎ℓ−−−→ (𝑝ℓ, 𝑛ℓ) ∈ cruns(𝒜)
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if there exists a counted run

(𝑝0, 𝑛0)
𝑎1−→ ⋯

𝑎ℓ−→ (𝑝ℓ, 𝑛ℓ) ∈ cruns(𝒜).

A counted run is uniquely determined by its first configuration and word.

Then, the language of a VOCA is easy to define to define: a word 𝑤 is accepted
by 𝒜 if there is a counted run labeled by 𝑤 from the initial configuration (𝑞0, 0)
to some configuration (𝑞, 0) with 𝑞 ∈ 𝐹 .

Definition 4.3.6 (Visibly one-counter language). The language accepted
by a sound VOCA 𝒜 is

ℒ(𝒜) = {𝑤 ∈ Σ̃∗ ∣ ∃𝑞 ∈ 𝐹 ∶ (𝑞0, 0)
𝑤
−→ (𝑞, 0) ∈ cruns(𝒜)}.

We say that a language 𝐿 is a visibly one-counter language (VOCL, for short)
if there is a sound VOCA 𝒜 such that ℒ(𝒜) = 𝐿.

Example 4.3.7. Let 𝒜 be the sound VOCA of Figure 4.3, which is repeated in
the margin.

𝑞0

𝑞1

𝑞2

𝑎𝑐[=0]

𝑎int [=0]
𝑏int [=0]

𝑎int [=0]
𝑏int [=0]

𝑏int [=0]

𝑎𝑐[>0]

𝑏int [>0]

𝑏int [>0]
𝑎𝑟[>0]

𝑎int [>0]
𝑏int [>0]

A sample counted run is:

(𝑞0, 0)
𝑎𝑐−→ (𝑞0, 1)

𝑎𝑐−→ (𝑞0, 2)
𝑏int−→ (𝑞1, 2)

𝑎𝑟−→ (𝑞1, 1)
𝑏int−→ (𝑞1, 1)

𝑎𝑟−→ (𝑞1, 0)
𝑎int−−→ (𝑞2, 0).

Since the last configuration is (𝑞2, 0) and 𝑞2 ∈ 𝐹 , 𝑎𝑐 ⋅𝑎𝑐 ⋅𝑏int ⋅𝑎𝑟 ⋅𝑏int ⋅𝑎𝑟 ⋅𝑎int is
accepted by𝒜. By adding the appropriate guards (that depend on the current
counter value) and dropping the counter values from the configurations,
one can obtain the run from Example 4.3.5.
Now, let us consider the run

𝑞0
𝑎𝑐[=0]
−−−→ 𝑞0

𝑎𝑐[=0]
−−−→ 𝑞0

𝑏int [=0]
−−−−→ 𝑞2.

We argue that for any starting counter value 𝑛 ≥ 0, it is impossible to
construct a counted run that uses the same transitions of 𝒜. Since the first
symbol to process is 𝑎𝑐 ∈ Σ𝑐, we thus obtain that the next counter value
is 𝑛 + 1 > 0. So, no matter the value of 𝑛, the second guard can never be
satisfied.

4.3.2. A hierarchy of one-counter languages

Let us draw a hierarchy of the families of one-counter languages defined so
far (including regular languages), which will be extended in Chapter 5. First,
we show that the set of all VOCLs is a strict superset of the set of regular
languages. Second, we argue that any VOCL is a DOCL but that there exists
a DOCL for which there is no VOCA. Third, we prove that allowing non-
determinism in one-counter automata increases the expressivity. Finally, we
quickly state that one-counter languages are a strict subset of context-free
languages (see [HU79] for an introduction to context-free languages). We do
not provide proper proofs but focus instead on the intuitions behind them.
Figure 4.4 gives a visual representation of the resulting hierarchy.
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𝑆REG

𝑆VOCL

𝑆DOCL

𝑆OCL

𝑆CFL

Figure 4.4: A visual representation of the hierarchy of one-counter languages. Each 𝑆𝑖 denotes the set of
all languages of type 𝑖. CFL designates the set of context-free languages, while OCL stands for
(nondeterministic) one-counter languages.

𝑞0 𝑞1 𝑞2 𝑞3

𝑎[=0]/+1
𝑏[=0]
+1

𝑎[>0]/+1

𝑏[>0]
−1

𝑏[>0]/−1 𝑏[>0]/+1

𝑎[>0]
−1

𝑎[>0]/−1

Figure 4.5: A DOCA accepting the language {𝑎𝑛𝑏𝑛𝑏𝑚𝑎𝑚 ∣ 0 < 𝑛, 𝑚}.

Proposition 4.3.8. Any regular language is a VOCL but there exists a VOCL
that is not regular.

Sketch of proof. Let 𝐿REG ⊆ Σ be a regular language accepted by some DFA
𝒜. Moreover, let Σ̃ be a pushdown alphabet such that all symbols are
internal, i.e., Σ𝑐 = Σ𝑟 = ∅ and Σint = Σ. Then, construct a VOCA ℬ over
Σ̃ by copying 𝒜 and using only the guard =0. Since the counter is never
modified (as all symbols are internal), it is indeed sufficient to only define
transitions with =0. It is not hard to see that ℒ(𝒜) = ℒ(ℬ) = 𝐿REG. Hence,
any regular language is a VOCL.
Now, let Σ̃ be a pushdown alphabet such that Σ𝑐 = {𝑎}, Σ𝑟 = {𝑏}, and
Σint = ∅, and 𝐿VOCL = {𝑎𝑛𝑏𝑛 ∣ 𝑛 > 0} be a language. It is well-known that
there exists no DFA for 𝐿VOCL (one can show it by a pumping argument.
See [HU79] [HU79]: Hopcroft et al. (1979), In-

troduction to Automata Theory, Lan-
guages and Computation

, for instance). Hence, 𝐿VOCL is not regular. �

Proposition 4.3.9. Any VOCL is a DOCL but there exists a DOCL that is not
a VOCL.

Sketch of proof. Given the definitions of VOCA and DOCA, it is clear that
any VOCA can be transformed into a DOCA. Hence, every VOCL can be
accepted by some DOCA and is thus a DOCL.
For the other direction, let 𝐿DOCL = {𝑎𝑛𝑏𝑛𝑏𝑚𝑎𝑚 ∣ 0 < 𝑛, 𝑚} be a language
over the alphabet {𝑎, 𝑏}. Figure 4.5 gives a DOCA accepting 𝐿DOCL. Since the
counter has to be incremented when reading the 𝑛 first 𝑎 and decremented it
when reading the 𝑚 last 𝑎, it is impossible to construct a pushdown alphabet.
Indeed, 𝑎 has to be a call and a return symbol at the same time, which is not
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𝑞0 𝑞1 𝑞2

𝑎[=0]/+1 𝜀[=0]
0

𝑎[>0]/+1

𝑏[>0]
−1

𝑏[>0]/−1

𝜀[>0]
0 𝜀[>0]/−1

Figure 4.6: An OCA accepting the language {𝑎𝑛𝑏𝑚 ∣ 0 < 𝑚 ≤ 𝑛}.

permitted. Hence, no VOCA can accept 𝐿DOCL. �

Let us quickly introduce (nondeterministic) one-counter automaton (OCA, for

short). Unlike in a DOCA, it is permitted to have 𝑞
𝑎[𝑔]
−−→ and 𝑞

𝜀[𝑔]
−−→ defined

at the same time. Furthermore, the transitions are given as a relation (i.e.,
there can be multiple pairs of target state and counter operation for a given
tuple (𝑞, 𝑎, 𝑔)). That is, an OCA is an NFA augmented with a counter and
with 𝜀-transitions. One can easily adapt the definition of counted runs and
language to OCAs. A language 𝐿 is a one-counter language (OCL, for short) if
there exists an OCA accepting 𝐿.

Proposition 4.3.10. Any DOCL is an OCL but there exists an OCL that is
not a DOCL.

Sketch of proof. Again, by definition, it is clear that any DOCA can be seen
as an OCA. Hence, every DOCL is an OCL.
For the other direction, let us consider the language 𝐿OCL = {𝑎𝑛𝑏𝑚 ∣ 0 <
𝑚 ≤ 𝑛}. Figure 4.6 gives an OCA accepting 𝐿OCL.4 4: We highlight that 𝐿OCL is dif-

ferent from the language of Exam-
ple 4.2.5, which is accepted by a
DOCA.

We argue that there
exists no DOCA accepting that language. Towards a contradiction, assume
𝒜 is a DOCA such that ℒ(𝒜) = 𝐿. Let us fix some 𝑛 > ∣𝑄𝒜∣. We then have
the counted run

(𝑞𝒜0 , 0)
𝑎𝑛

−→ (𝑞, 𝑐) ∈ cruns(𝒜)

for some 𝑞 ∈ 𝑄𝒜 and 𝑐 ∈ ℕ. Since 𝑎𝑛𝑏𝑚 ∈ 𝐿 for every 0 < 𝑚 ≤ 𝑛 and by
the acceptance condition of a DOCA, it must be that

(𝑞𝒜0 , 0)
𝑎𝑛

−→ (𝑞, 𝑐)
𝑏
−→ (𝑝1, 0)

𝑏
−→ ⋯

𝑏
−→ (𝑝𝑚, 0) ∈ cruns(𝒜)

with 𝑝𝑖 ∈ 𝐹 𝒜 for every 𝑖 ∈ {1, … , 𝑚}. If we take 𝑚 > ∣𝑄𝒜∣ (and such that
𝑚 ≤ 𝑛), there must exist 𝑖 < 𝑗 ∈ {1, … , 𝑚} such that 𝑝𝑖 = 𝑝𝑗. Moreover,
we know that

(𝑞, 𝑐)
𝑏𝑖

−→ (𝑝𝑖, 0)
𝑏𝑗−𝑖

−−→ (𝑝𝑖, 0) ∈ cruns(𝒜).

We can thus pump this loop reading 𝑏𝑗−𝑖 as many times as we want, say
𝑛 + 1 times to obtain the counted run

(𝑞𝒜0 , 0)
𝑎𝑛

−→ (𝑞, 𝑐)
𝑏𝑖

−→ (𝑝𝑖, 0)
(𝑏𝑗−𝑖)𝑛+1

−−−−−→ (𝑝𝑖, 0) ∈ cruns(𝒜).

As 𝑝𝑖 ∈ 𝐹 𝒜, 𝑎𝑛 ⋅ 𝑏𝑖 ⋅ 𝑏(𝑗−𝑖)(𝑛+1) ∈ ℒ(𝒜). However, as (𝑗 − 𝑖)(𝑛 + 1) > 𝑛
(as 𝑗 − 𝑖 ≥ 1), the word cannot belong to 𝐿. Hence, ℒ(𝒜) ≠ 𝐿, which is a
contradiction. We conclude that 𝐿 cannot be a DOCL. �
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Definition 2.2.6. For a lan-
guage 𝐿 ⊆ Σ∗ and twowords
𝑢, 𝑣 ∈ Σ∗, we write 𝑢 ∼𝐿 𝑣
if for all 𝑤 ∈ Σ∗, we have
𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∈ 𝐿.

Definition 2.2.9. Let 𝐿 ⊆
Σ∗ be a language. We de-
fine the automaton 𝒜∼𝐿

=
(Σ, 𝑄, 𝑞0, 𝐹 , 𝛿) with

▶ 𝑄 = {J𝑤K∼𝐿
∣ 𝑤 ∈ Σ∗},

▶ 𝑞0 = J𝜀K∼𝐿
,

▶ 𝐹 = {J𝑤K∼𝐿
∣ 𝑤 ∈ 𝐿},

and
▶ 𝛿 ∶ 𝑄 × Σ → 𝑄 is the (to-

tal) function defined such
that for all 𝑤 ∈ Σ∗ and
𝑎 ∈ Σ,

J𝑤K∼𝐿

𝑎
−→ J𝑤 ⋅ 𝑎K∼𝐿

∈ runs(𝒜∼𝐿
).

5: The definition of behavior graph
from [NL10] is different as non-co-
reachable states are allowed. How-
ever, the two coincide on reachable
and co-reachable states.

Finally, we show that OCLs form a subset of context-free languages (CFL, for
short), which are the languages accepted by pushdown automata. That is, we
argue that a counter allows strictly less expressivity than a stack.

Proposition 4.3.11. Any OCL is a CFL but there exists a CFL that is not an
OCL.

Proof. Since one-counter automata can be seen as pushdown automata with
a single stack symbol, any OCL is a CFL.
On the opposite, let 𝐿CFL = {𝑤 ⋅ 𝑤𝑅 ∣ 𝑤 ∈ {0, 1}∗}, where 𝑤𝑅 denotes
the reverse word of 𝑤 (e.g., (𝑎𝑏𝑐)𝑅 = 𝑐𝑏𝑎). It is not hard to construct a
pushdown automaton accepting 𝐿CFL (see [HU79] [HU79]: Hopcroft et al. (1979), In-

troduction to Automata Theory, Lan-
guages and Computation

). While we do not do it
here, one can show that a counter is not sufficient to describe the reverse
word of 𝑤 when the alphabet has strictly more than one symbol. �

4.3.3. Behavior graph

Let us now introduce a finite representation for the (infinite) transition system
of VOCAs, as proposed by Neider and Löding in [NL10] and used in their
learning algorithm. The idea is to rely on the Myhill-Nerode congruence (see
Definition 2.2.6) to define a deterministic infinite automaton. This automaton
is shown to always have an ultimately periodic structure. Hence, it is sufficient
to encode the periodic behavior and the initial fragment up to it, which can be
done in finite memory.

Assumption 4.3.12. In order to avoid having to treat particular cases, we
assume from now on that any considered VOCL is non-empty.

First, we prove that two equivalent words according to the Myhill-Nerode
congruence ∼𝐿 have the same counter value, if they are in the prefix of the
language 𝐿.

Lemma 4.3.13. Let 𝐿 ⊆ Σ̃∗ be a VOCL and 𝑢, 𝑣 ∈ Pref (𝐿) such that 𝑢 ∼𝐿 𝑣.
Then, cv(𝑢) = cv(𝑣).

Proof. Let 𝑢, 𝑣 ∈ Pref (𝐿). Since 𝑢 ∈ Pref (𝐿), there exists 𝑤 ∈ Σ̃∗ such that
𝑢𝑤 ∈ 𝐿 and 𝑣𝑤 ∈ 𝐿 (as 𝑢 ∼𝐿 𝑣). We have cv(𝑢𝑤) = cv(𝑢) + cv(𝑤) = 0 and
cv(𝑣𝑤) = cv(𝑣) + cv(𝑤) = 0. We conclude that cv(𝑢) = cv(𝑣). �

This allows us to define a (potentially infinite) deterministic automaton from
∼𝐿, called the behavior graph of the language 𝐿. We gave in Definition 2.2.9
the definition of an automaton from ∼𝐿, using every equivalence class of ∼𝐿.
Here, we restrict the set of states to the classes J𝑤K∼𝐿

where 𝑤 is in the set of
prefixes of 𝐿. That is, the classes for words that are not in the prefix are of no
interest to us. In other words, we only keep the states that are reachable from
the initial state and co-reachable from some final state. Hence, the transition
function is partial.5 Observe that there necessarily exists a reachable and
co-reachable equivalence class by Assumption 4.3.12, i.e., the automaton is
not empty.
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Definition 4.3.14 (Behavior graph [NL10]). Let 𝐿 ⊆ Σ̃∗ be a VOCL, ∼𝐿 be
its Myhill-Nerode congruence, and 𝒜 be the deterministic (in)finite automa-
ton defined from ∼𝐿. The behavior graph of 𝐿 is the tuple

𝐵𝐺(𝐿) = (Σ̃, 𝑄𝐵𝐺(𝐿), 𝑞𝐵𝐺(𝐿)
0 , 𝐹 𝐵𝐺(𝐿), 𝛿𝐵𝐺(𝐿))

obtained from 𝒜 by restricting the set of states to

𝑄𝐵𝐺(𝐿) = {J𝑤K∼𝐿
∣ 𝑤 ∈ Pref (𝐿)}.

It holds that any class J𝑤K∼𝐿
∈ 𝐹 𝐵𝐺(𝐿) is such that cv(𝑤) = 0, by definition

of a VOCL. Let us quickly argue that 𝐵𝐺(𝐿) accepts 𝐿.

Proposition 4.3.15 ([NL10]). For any VOCL 𝐿, ℒ(𝐵𝐺(𝐿)) = 𝐿.

Sketch of proof. As 𝐿 is a VOCL, there exists a VOCA𝒜 such that ℒ(𝒜) = 𝐿.
One can show by a straight-forward induction that

∀(𝑞𝒜0 , 0)
𝑤
−→ (𝑞, 𝑛) ∈ cruns(𝒜) ∶ 𝑞𝐵𝐺(𝐿)

0
𝑤
−→ J𝑤K∼𝐿

.

The other direction also holds.
By definition of 𝐵𝐺(𝐿) from ∼𝐿, it is clear that

𝑤 ∈ 𝐿 ⇔ J𝑤K∼𝐿
∈ 𝐹 𝐵𝐺(𝐿).

Moreover, since ℒ(𝒜) = 𝐿,
𝑤 ∈ 𝐿 ⇔ 𝑤 ∈ ℒ(𝒜)

⇔ ∃𝑞 ∈ 𝐹 𝒜 ∶ (𝑞𝒜0 , 0)
𝑤
−→ (𝑞, 0)

⇔ 𝑞𝐵𝐺(𝐿)
0

𝑤
−→ J𝑤K∼𝐿

.
Hence,

𝑤 ∈ 𝐿 ⇔ 𝑤 ∈ ℒ(𝒜) ⇔ 𝑤 ∈ ℒ(𝐵𝐺(𝐿)). �

By Lemma 4.3.13, we know that all words in an equivalence class have the
same counter value. Hence, we can group together all the states of 𝐵𝐺(𝐿)
that share the same counter value ℓ, called the level ℓ. The width of 𝐵𝐺(𝐿) is
then defined as the maximal number of classes among all levels.

Definition 4.3.16 (Level and width). The level ℓ ∈ ℕ of 𝐵𝐺(𝐿), denoted
by level(𝐵𝐺(𝐿), ℓ) is the set of states with counter value ℓ, i.e.,

level(𝐵𝐺(𝐿), ℓ) = {J𝑤K∼𝐿
∈ 𝑄𝐵𝐺(𝐿) ∣ cv(𝑤) = ℓ}.

The width of 𝐵𝐺(𝐿), denoted by width(𝐵𝐺(𝐿)), is the maximal size of any
level:

width(𝐵𝐺(𝐿)) = max
ℓ∈ℕ

|level(𝐵𝐺(𝐿), ℓ)|.

It is shown in [NL10] that the number of states in each level is bounded by
a constant 𝐾 ∈ ℕ, i.e., the width is bounded. In particular, one can take 𝐾
equal to the number of states of any VOCA accepting 𝐿.
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𝑎𝑐

1
𝑎𝑐𝑎𝑐
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𝑏int
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𝑎𝑐 𝑎𝑐 𝑎𝑐 𝑎𝑐
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𝑎int , 𝑏int 𝑏int 𝑏int 𝑏int

Initial part Repeating part

Figure 4.7: Behavior graph of the language accepted by the VOCA from Figure 4.3.

Lemma 4.3.17 ([NL10]). Let 𝒜 be a VOCA accepting a VOCL 𝐿, and 𝐵𝐺(𝐿)
be the behavior graph of 𝐿. Then, width(𝐵𝐺(𝐿)) ≤ ∣𝑄𝒜∣.

Example 4.3.18.

𝑞0

𝑞1

𝑞2

𝑎𝑐[=0]

𝑎int [=0]
𝑏int [=0]

𝑎int [=0]
𝑏int [=0]

𝑏int [=0]

𝑎𝑐[>0]

𝑏int [>0]

𝑏int [>0]
𝑎𝑟[>0]

𝑎int [>0]
𝑏int [>0]

Let 𝐿 be the language accepted by the VCA 𝒜 of Fig-
ure 4.3, which is repeated in the margin. Its behavior graph 𝐵𝐺(𝐿) is
given in Figure 4.7. For clarity sake, each state J𝑤K∼𝐿

is represented by
one of its words, and all states in the same level are vertically aligned.
For instance, level(𝐵𝐺(𝐿), 0) is comprised of the classes of 𝜀 and 𝑏int , as
cv(𝜀) = cv(𝑏int) = 0. We can see that width(𝐵𝐺(𝐿)) = 2.

Finite representation

Neider and Löding proved that 𝐵𝐺(𝐿) always has a finite representation, even
though the graph itself is potentially infinite. This finite representation relies
on the fact that 𝐵𝐺(𝐿) has an ultimately periodic structure, i.e., it has an
“initial part” that is followed by a “repeating part” repeated ad infinitum. We
give here a short overview of the idea and refer to [NL10] for further details.

Let 𝐾 be the width of 𝐵𝐺(𝐿). The fact that 𝐾 is bounded (see Lemma 4.3.17)
allows us to enumerate the states at level ℓ via a mapping

𝜈ℓ ∶ level(𝐵𝐺(𝐿), ℓ) → {1, … , 𝐾}.

Using these enumerations 𝜈ℓ, ℓ ∈ ℕ, we can encode the transitions of 𝐵𝐺(𝐿)
as a sequence of (partial) mappings

𝜏ℓ ∶ {1, … , 𝐾} × Σ̃ ⇀ {1, … , 𝐾}.

For all ℓ ∈ ℕ, 𝑖 ∈ {1, … , 𝐾}, and 𝑎 ∈ Σ̃, the mapping 𝜏ℓ is defined as 𝜏ℓ(𝑖, 𝑎) =
𝑗 if there exist J𝑢K∼𝐿

, J𝑢𝑎K∼𝐿
∈ 𝑄𝐵𝐺(𝐿) such that

▶ cv(𝑢) = ℓ,
▶ 𝜈ℓ(J𝑢K∼𝐿

) = 𝑖, and
▶ 𝜈ℓ+sign(𝑎)(J𝑢𝑎K∼𝐿

) = 𝑗,
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and is left undefined otherwise.

Thus, if we fix the enumerations 𝜈ℓ, the behavior graph can be encoded as
the sequence of mappings 𝛼 = 𝜏0𝜏1𝜏2 …, called a description of 𝐵𝐺(𝐿). The
following theorem states that there always exists such a description which is
ultimately periodic.

Theorem 4.3.19 ([NL10]). Let 𝐵𝐺(𝐿) be the behavior graph of a VOCL 𝐿.
Then, there exists, for each level ℓ, an enumeration

𝜈ℓ ∶ level(𝐵𝐺(𝐿), ℓ) → {1, … ,width(𝐵𝐺(𝐿))},

such that the corresponding description 𝛼 of 𝐵𝐺(𝐿) is an ultimately periodic
word with offset 𝑚 > 0 and period 𝑘 ≥ 0, i.e.,

𝛼 = 𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔.

Conversely, from an ultimately periodic description of 𝐵𝐺(𝐿), it is possible to
construct a VOCA accepting 𝐿 [NL10, Lemma 1].

Example 4.3.20. Let us continue Example 4.3.18. We explain why 𝐵𝐺(𝐿)
has a finite representation. First, we define the enumerations 𝜈ℓ, ℓ ∈ ℕ:

𝜈0(J𝜀K∼𝐿
) = 1 𝜈0(J𝑏intK∼𝐿

) = 2
𝜈1(J𝑎𝑐K∼𝐿

) = 1 𝜈1(J𝑎𝑐𝑏intK∼𝐿
) = 2

𝜈2(J𝑎𝑐𝑎𝑐K∼𝐿
) = 1 𝜈2(J𝑎𝑐𝑎𝑐𝑏intK∼𝐿

) = 2
⋮ ⋮

In Figure 4.7, each state has its associated number next to it.
From these enumerations, we define the following 𝜏ℓ mappings (missing
values are undefined):

𝜏0(1, 𝑎𝑐) = 1 𝜏0(1, 𝑏int) = 2 𝜏0(2, 𝑎int) = 2 𝜏0(2, 𝑏int) = 2
𝜏1(1, 𝑎𝑐) = 1 𝜏1(1, 𝑏int) = 2 𝜏1(2, 𝑎𝑟) = 2 𝜏1(2, 𝑏int) = 2
𝜏2(1, 𝑎𝑐) = 1 𝜏2(1, 𝑏int) = 2 𝜏2(2, 𝑎𝑟) = 2 𝜏2(2, 𝑏int) = 2

⋮ ⋮ ⋮ ⋮

We can thus define the description 𝛼 = 𝜏0𝜏1𝜏2 … of 𝐵𝐺(𝐿). As 𝜏1 = 𝜏2 =
𝜏3 = ⋯, we have that 𝛼 = 𝜏0(𝜏1)𝜔, i.e., 𝛼 is an ultimately periodic description
of 𝐵𝐺(𝐿).

4.3.4. Learning visibly one-counter languages

We now focus on 𝐿∗
VOCA, the 𝐿∗ adaptation for VOCAs introduced in [NL10].

We refer to Section 3.2 for an introduction to 𝐿∗ for DFAs. Let 𝐿 be some
VOCL. The idea is to learn a fragment of the behavior graph of 𝐿 up to a fixed
counter limit ℓ, extract every possible ultimately periodic description of the
fragment, and construct a VOCA from each of these descriptions. If we find
one VOCA accepting 𝐿, we are done. Otherwise, we increase ℓ and repeat the
process.
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We first properly define the fragment of the behavior graph up to ℓ and explain
how to extract (ultimately periodic) descriptions from it, from which VOCAs
can be constructed. Once it is done, we can fix the learning framework (i.e.,
define the queries the learner can use). Finally, we introduce the algorithm
itself and state its complexity.

Bounded behavior graph

Formally, the fragment of 𝐵𝐺(𝐿) up to ℓ is a subgraph of 𝐵𝐺(𝐿) such that
the counter value of the states of that subgraph never exceeds ℓ. That is, the
height of the words that can be read within that subgraph never exceeds ℓ.

Definition 4.3.21 (Bounded behavior graph). Let 𝐵𝐺(𝐿) be a behavior
graph for some VOCL 𝐿. The bounded behavior graph up to ℓ is the DFA
𝐵𝐺≤ℓ(𝐿) such that

𝑄𝐵𝐺≤ℓ(𝐿) = {J𝑤K∼𝐿
∈ 𝑄𝐵𝐺(𝐿) ∣ height (𝑤) ≤ ℓ}.

The values of the (partial) function 𝛿𝐵𝐺≤ℓ(𝐿), the initial state, and the final
states are naturally defined over the subgraph.
The language of 𝐵𝐺≤ℓ(𝐿) is denoted by 𝐿≤ℓ.

Observe that 𝐿≤ℓ is regular, as 𝐵𝐺≤ℓ(𝐿) is a DFA.

We now explain how to construct VOCAs from 𝐵𝐺≤ℓ(𝐿). To do so, we ex-
tract every possible ultimately periodic description of the bounded behavior
graph, by identifying an isomorphism between two consecutive subgraphs of
𝐵𝐺≤ℓ(𝐿). That is, we fix values for the offset 𝑚 and period 𝑘 and see if the
subgraphs induced by the levels 𝑚 to 𝑚 + 𝑘 − 1, and by the levels 𝑚 + 𝑘 to
𝑚 + 2𝑘 − 1 are isomorphic. Note that this means we need to consider all pairs
of 𝑚 and 𝑘 such that 𝑚 + 2𝑘 − 1 ≤ ℓ. This can be done in polynomial time by
executing two depth-first searches in parallel [NL10]. Note also that multiple
ultimately periodic descriptions may be found, due to the finite knowledge of
the learner. From each ultimately periodic description, a VOCA can be built,
i.e., the procedure potentially yields many different VOCAs.

Queries

During learning, the learner can use membership queries and check whether a
hypothesis VOCA accepts the target language 𝐿. As the learning algorithmwill
construct bounded behavior graphs up to some natural ℓ (that will increase
each iteration), we must ensure that 𝐿≤ℓ is correctly learned. In general,
an antagonistic teacher may answer increasingly longer counterexamples to
VOCA equivalence queries, meaning that we can never conclude that 𝐿≤ℓ
is correctly learned. Hence, we require a new query that explicitly checks
whether a DFA accepts 𝐿≤ℓ. Figure 4.8 gives a visual representation of the
adapted Angluin’s framework.

Definition 4.3.22 (Queries for VOCLs). Let 𝐿 be the VOCL of the teacher.
A learner for VOCAs can use three types of queries:
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Learner Teacher
Knows 𝐿

MQ(𝑤) ∶ 𝑤 ∈ 𝐿?

yes or no

PEQ(ℋ, ℓ) ∶ ℒ(ℋ) = 𝐿≤ℓ?

yes or a counterexample

EQ(ℋ) ∶ ℒ(ℋ) = 𝐿?

yes or a counterexample

Figure 4.8: Adaptation of Angluin’s framework for VOCAs.

6: In [NL10], a so-called strati-
fied observation table, composed
of multiple observation tables (one
per level of the behavior graph) is
used. Here, we present a single ta-
ble.

▶ A membership query, denoted by MQ(𝑤), with 𝑤 ∈ Σ̃∗, returns
whether 𝑤 ∈ 𝐿.

▶ A partial equivalence query, denoted by PEQ(ℋ, ℓ), with ℋ a DFA
over Σ̃ and ℓ ∈ ℕ, returns

• yes if ℒ(ℋ) = 𝐿≤ℓ
• or a word 𝑤 such that 𝑤 ∈ ℒ(ℋ) ⇔ 𝑤 ∉ 𝐿≤ℓ

▶ An equivalence query, denoted by EQ(ℋ), with ℋ a VOCA over Σ̃,
returns

• yes if ℒ(ℋ) = 𝐿,
• or a word 𝑤 such that 𝑤 ∈ ℒ(ℋ) ⇔ 𝑤 ∉ 𝐿.

Learning algorithm

The data structure of the learner is an observation table, as in 𝐿∗, except
that a counter-value limit ℓ is taken into account.6 The aim of the table is to
approximate the equivalence classes of ∼𝐿≤ℓ

to learn the bounded behavior
graph 𝐵𝐺≤ℓ(𝐿). As said above, ℓ will increase over time.

Definition 4.3.23 (Observation table for VOCAs). Let ℓ ∈ ℕ be a counter-
value limit. An observation table up to ℓ is a tuple 𝒪≤ℓ = (𝑅, 𝑆, 𝑇) with

▶ 𝑅 ⊊ Σ̃∗ a finite prefix-closed set of representatives,
▶ 𝑆 ⊊ Σ̃∗ a finite suffix-closed set of separators,
▶ 𝑇 ∶ (𝑅 ∪ 𝑅Σ̃) ⋅ 𝑆 → {no,yes} such that

∀𝑤 ∈ (𝑅 ∪ 𝑅Σ̃) ⋅ 𝑆 ∶ 𝑇(𝑤) = yes ⇔ 𝑤 ∈ 𝐿≤ℓ.

Since 𝐿≤ℓ is regular, one can learn it by applying the classical 𝐿∗ algorithm.
That is, we fix a maximal counter value ℓ and refine 𝒪≤ℓ until it is closed and
Σ-consistent. From the resulting observation tree, a hypothesis DFAℋ can
be constructed. If ℋ accepts 𝐿≤ℓ, then one can extract ultimately periodic
descriptions and VOCAs, as explained above.

Recall that multiple VOCAs may be yielded. We ask an equivalence query
for each of them. If one of the VOCAs accepts the target language, we are
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Algorithm 4.1: Overall 𝐿∗
VOCA algorithm.

1: Initialize 𝒪≤ℓ with ℓ = 0, 𝑅 = 𝑆 = {𝜀}
2: while true do
3: Make 𝒪≤ℓ closed and Σ-consistent ▷ Using 𝐿∗

4: Construct the DFAℋ≤ℓ from 𝒪≤ℓ
5: 𝑣 ← PEQ(ℋ≤ℓ, ℓ)
6: if 𝑣 ≠ yes then
7: Update 𝒪≤ℓ with 𝑣 ▷ ℓ is not modified
8: else
9: 𝑊 ← ∅

10: for all ultimately periodic descriptions 𝛼 ofℋ≤ℓ do
11: Construct the VOCAℋ𝛼 from 𝛼
12: 𝑣𝛼 ← EQ(ℋ𝛼)
13: if 𝑣𝛼 = yes then returnℋ𝛼
14: else if height (𝑣𝛼) > ℓ then 𝑊 ← 𝑊 ∪ {𝑣𝛼}
15: if 𝑊 = ∅ then
16: LetℋVOCA

≤ℓ beℋ≤ℓ seen as a VOCA
17: 𝑤 ← EQ(ℋVOCA

≤ℓ )
18: if 𝑤 = yes then returnℋVOCA

≤ℓ ▷ The target language is regular
19: else 𝑊 ← 𝑊 ∪ {𝑤}
20: Select an arbitrary 𝑤 from 𝑊
21: ℓ ← height (𝑤) ▷ ℓ is increased
22: Update 𝒪≤ℓ with 𝑤

done. Otherwise, we need to refine the table and increase the counter limit
ℓ. However, not all of the counterexamples given by the teacher can be used.
Indeed, it may happen that the teacher returns a word that was incorrectly
accepted or rejected by a VOCA, but for which the information is already
present in the table (due to a description that covered only the first levels
in 𝐵𝐺≤ℓ(𝐿), for instance). Therefore, we only consider counterexamples 𝑤
with a height height (𝑤) > ℓ. If we cannot find such a counterexample, we
use 𝐵𝐺≤ℓ(𝐿) directly as a VCA (where only the guard =0 is used). Since
we know that ℒ(𝐵𝐺≤ℓ(𝐿)) = 𝐿≤ℓ, we are guaranteed to obtain a useful
counterexample.

Algorithm 4.1 gives a pseudo-code for 𝐿∗
VOCA while the next theorem summa-

rizes its complexity.

Theorem 4.3.24 ([NL10]). The 𝐿∗
VOCA algorithm has polynomial time and

space complexity in the width of the behavior graph, the offset and period of
an ultimately periodic description of the behavior graph, and the length of the
longest counterexample returned on (partial) equivalence queries.
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Learning Realtime One-Counter
Automata 5.

In this chapter, based on [BPS22], we present a learning algorithm for realtime
one-counter automata1, which are DOCAs where 𝜀-transitions are forbidden.
Our algorithm is based on 𝐿∗

VOCA [NL10] (presented in the previous chapter)
and uses partial equivalence query and counter value queries, on top of the
usual membership and equivalence queries. That is, we make the assump-
tion that we have an executable black box with observable counter values.
We prove that our algorithm runs in exponential time and space and that it
uses at most an exponential number of queries. We also present and discuss
experimental results obtained by learning randomly generated realtime one-
counter automata, and a use case on constructing automata to validate JSON
documents. We recommend reading the previous chapter before this one (in
particular, we require ideas introduced in Section 4.3). Technical proofs and
details are deferred to Appendix A.
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5.1. Introduction

One-counter automata with counter-value observability were observed to have
desirable properties by Bollig in [Bol16]. Importantly, in the same paper Bollig
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yes or
a counterexample

[Ang87]: Angluin (1987), “Learn-
ing Regular Sets from Queries and
Counterexamples”
[NL10]: Neider et al. (2010), Learn-
ing visibly one-counter automata in
polynomial time

[LN12]: Leucker et al. (2012),
“Learning Minimal Deterministic
Automata from Inexperienced
Teachers”
[CR04]: Chitic et al. (2004), “On Val-
idation of XML Streams Using Fi-
nite State Machines”
[FR95]: Fahmy et al. (1995), “Effi-
cient Learning of Real Time One-
Counter Automata”
[BGJ14]: Böhm et al. (2014), “Bisim-
ulation equivalence and regular-
ity for real-time one-counter au-
tomata”
[BR87]: Berman et al. (1987),
“Learning One-Counter Languages
in Polynomial Time (Extended Ab-
stract)”
[Roo88]: Roos (1988), Deciding
equivalence of deterministic one-
counter automata in polynomial
time with applications to learning

highlights a connection between such automata and VOCAs. We expose a
similar connection and are thus able to leverage Neider and Löding’s 𝐿∗

VOCA
algorithm [NL10] (see the previous chapter) as a sort of sub-routine for ours.

In the family of one-counter automata we consider in this chapter, called
realtime one-counter automata, the counter values cannot be inferred from
a given word anymore. Hence, we need counter value queries on top of the
queries used by 𝐿∗

VOCA, which we recall in the margin. Moreover, we have to
extend the classical definition of observation tables as used in, e.g., [Ang87;
NL10] (see Sections 3.2 and 4.3.4). Namely, entries in our tables are composed of
Boolean language information as well as a counter value or awildcard encoding
the fact that we do not (yet) care about the value of the corresponding word.
(Our use of wildcards is reminiscent of the work of Leucker and Neider [LN12]
on learning a regular language from an “inexperienced” teacher who may
answer queries in an unreliable manner.) Due to these extensions, much
work is required to prove that it is always possible to make a table closed
and consistent in finite time. A crucial element of our algorithm is that we
formulate queries for the teacher in a way which ensures the observation table
eventually induces a right congruence refining the classical Myhill-Nerode
congruence with counter-value information. (This is in contrast with [LN12],
where the ambiguity introduced by wildcards is resolved using SAT solvers.)

We evaluate an implementation of our algorithm on random benchmarks
and a use case inspired by [CR04]. Namely, we learn a realtime one-counter
automaton model for a simple JSON schema validator — i.e., a program that
verifies whether a JSON document satisfies a given JSON schema. This idea
will be further explored in Part III with a different family of automata.

It is noteworthy that, in [FR95], Fahmy and Roos claim to provide a learn-
ing algorithm for realtime one-counter automata. However, we were unable
to understand the algorithm and proofs in that paper due to lack of precise
formalization and detailed proofs. We also found an example where the pro-
vided algorithm did not produce the expected results. It is noteworthy that
Böhm et al. [BGJ14] made similar remarks about related works of Roos [BR87;
Roo88].

This chapter is structured as follows. We first define realtime one-counter
automata and their semantics, extend the hierarchy initiated in Section 4.3.2,
and introduce the learning framework (i.e., the available queries) we consider.
Then, in Section 5.3, we adapt the notion of behavior graphs introduced in
the previous chapter. Our learning algorithm 𝐿∗

ROCAis explained in Section 5.4
where we also give its complexity. Finally, an experimental evaluation is
performed in Section 5.5 before concluding in Section 5.6. Technical proofs
and details are deferred to Appendix A.

5.2. Realtime one-counter automata

A realtime one-counter automaton is, in short, a DOCA where 𝜀-transitions
are forbidden. That is, it is a DFA augmented with a single natural counter
where each transition can increment, decrement, or not modify that counter.
For convenience, we give here a complete definition (instead of stating the
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𝑞0 𝑞1 𝑞2

𝑎[=0]/+1
𝑎[=0]/0

𝑏[=0]/0

𝑎[=0]/0
𝑏[= 0]/0

𝑏[=0]/0

𝑎[>0]/+1

𝑏[>0]/0
𝑎[>0]/−1

𝑏[>0]/0 𝑎[>0]/0
𝑏[>0]/0

Figure 5.1: An example of an ROCA.

[FR95]: Fahmy et al. (1995), “Effi-
cient Learning of Real Time One-
Counter Automata”
[VP75]: Valiant et al. (1975), “Deter-
ministic One-Counter Automata”

restrictions over a DOCA). We allow two types of guards on the transitions:
=0 and >0, i.e., we can check whether the counter is zero during an execution
of the automaton. We also define sound ROCA in which the counter can never
go below zero. That is, a transition cannot decrement the counter when the
guard is =0. The model we present here is similar to the one from [FR95;
VP75].

Definition 5.2.1 (Realtime one-counter automaton). A realtime one-counter
automaton (ROCA, for short) 𝒜 is a tuple 𝒜 = (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿) where:

▶ Σ is an alphabet,
▶ 𝑄 is a non-empty finite set of states, with 𝑞0 ∈ 𝑄 the initial state,
▶ 𝐹 ⊆ 𝑄 is the set of final states, and
▶ 𝛿 ∶ 𝑄 × Σ × {=0, >0} ⇀ 𝑄 × {−1, 0, +1} is a deterministic (partial)

transition function. As usual, we write 𝑞
𝑎[𝑔]
−−→

𝑐
𝑞′ if 𝛿(𝑞, 𝑎, 𝑔) = (𝑞′, 𝑐).

An ROCA 𝒜 is termed sound if for every 𝑞
𝑎[=0]
−−−→

𝑐
it holds that 𝑐 ≠ −1.

As for DFAs, VOCAs, and so on, we add a superscript to indicate which
automaton is considered, and missing symbols are quantified existentially.

A run of 𝒜 either consists of a single state 𝑝0 or of a nonempty sequence of
transitions

𝑝0
𝑎1[𝑔1]
−−−→

𝑐1
𝑝1

𝑎2[𝑔2]
−−−→

𝑐2
⋯

𝑎𝑛[𝑔𝑛]
−−−−→

𝑐𝑛
𝑝𝑛.

We denote by runs(𝒜) the set of runs of 𝒜. As for finite automata, we often

write 𝑞
𝑎[𝑔]
−−→ ∈ runs(𝒜) to highlight that 𝛿(𝑞, 𝑎, 𝑔) is defined. Note that any

run is uniquely determined by its first state and the sequence of symbols and
guards.

Example 5.2.2. A 3-state ROCA𝒜 over Σ = {𝑎, 𝑏} is given in Figure 5.1. The
initial state 𝑞0 is marked by a small arrow and the two final states 𝑞1 and 𝑞2
are double-circled. The transitions give the input symbol, the condition on
the counter value, and the counter operation, in this order. In order to help
the reading, transitions using the guard [=0] are drawn in gray. A sample
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Definition 4.3.2. The
counter value of a word
𝑤 = 𝑎1 ⋯ 𝑎𝑛 ∈ Σ̃∗, denoted
by cv(𝑤), is the sum of
the signs of 𝑎1 to 𝑎𝑛, i.e.,
cv(𝑤) = ∑𝑛

ℓ=0 sign(𝑎ℓ).
The height of 𝑤, denoted by
height (𝑤), is the maximal
counter value of any of its
prefixes, i.e., height (𝑤) =
max𝑢∈Pref (𝑤) cv(𝑢).

run is

𝑞0
𝑎[=0]
−−−→

+1
𝑞0

𝑎[>0]
−−−→

+1
𝑞0

𝑏[>0]
−−−→

0
𝑞1

𝑎[>0]
−−−→

−1
𝑞1

𝑏[>0]
−−−→

0
𝑞1

𝑎[>0]
−−−→

−1
𝑞1

𝑎[=0]
−−−→

0
𝑞2.

It is not hard to see that 𝒜 is sound.

5.2.1. Semantics

Let us now define the semantics of a sound ROCA 𝒜 (in the same vein as what
we did for DOCAs and VOCAs). We keep track of the current state 𝑞 and the
current counter value 𝑛 in a configuration. If 𝑛 is zero, we then process the next
symbol 𝑎 by retrieving the pair (𝑝, 𝑐) = 𝛿(𝑞, 𝑎, =0), and applying the counter
operation 𝑐 on 𝑛. Likewise when 𝑛 > 0, except that we pass >0 to 𝛿 . We
then reach a new configuration (𝑝, 𝑛 + 𝑐) from which we may process a new
symbol, and so on. That is, the semantics of 𝒜 are defined via a (potentially
infinite) transition system. Recall that it is impossible to decrement a counter
equal to zero, when 𝒜 is sound.

Definition 5.2.3 (Counted runs). Let 𝒜 be a sound ROCA, (𝑞, 𝑛), (𝑝, 𝑚) ∈
𝑄 × ℕ be two configurations, and 𝑎 ∈ Σ be a symbol. There exists a
transition (𝑞, 𝑛)

𝑎
−→ (𝑝, 𝑚) if and only if 𝑚 = 𝑛 + 𝑐 and

(𝑝, 𝑐) = {
𝛿(𝑞, 𝑎, =0) if 𝑛 = 0
𝛿(𝑞, 𝑎, >0) if 𝑛 > 0.

A counted run of𝒜 is either a configuration (𝑝0, 𝑛0) or a nonempty sequence
of transitions

(𝑝0, 𝑛0)
𝑎1−→ (𝑝1, 𝑛1)

𝑎2−→ ⋯
𝑎ℓ−→ (𝑝ℓ, 𝑛ℓ).

We denote by cruns(𝒜) the set of all counted runs of 𝒜.

Again, missing symbols in (𝑞, 𝑛)
𝑎
−→ (𝑝, 𝑚) are quantified existentially. We

lift the notation to words as usual: (𝑝0, 𝑛0)
𝑎1⋯𝑎ℓ−−−→ (𝑝ℓ, 𝑛ℓ) ∈ cruns(𝒜) if there

exists a counted run (𝑝0, 𝑛0)
𝑎1−→ ⋯

𝑎ℓ−→ (𝑝ℓ, 𝑛ℓ) ∈ cruns(𝒜). A counted run is
uniquely determined by its first configuration and word.

As for VOCAs, one can construct a run from a counted run. The other way
does not hold in general (due to the counter values).

Let us adapt the notion of counter value and height (see Definition 4.3.2) to
ROCAs. Since we no longer have a pushdown alphabet, these values must
be determined from the ROCA itself. That is, different ROCAs over the same
alphabet may have different counter values for a given word, unlike for VO-
CAs.

Definition 5.2.4 (Counter value and height). Let 𝑤 ∈ Σ∗. The counter value
of 𝑤 according to 𝒜, denoted by cv𝒜(𝑤), is the counter value 𝑛 such that
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Definition 2.2.6. For a lan-
guage 𝐿 ⊆ Σ∗ and twowords
𝑢, 𝑣 ∈ Σ∗, we write 𝑢 ∼𝐿 𝑣
if for all 𝑤 ∈ Σ∗, we have
𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∈ 𝐿.

(𝑞0, 0)
𝑤
−→ (𝑞, 𝑛) ∈ cruns(𝒜).

The height of 𝑤 according to 𝒜, denoted by height𝒜(𝑤), is the maximal
counter value among the prefixes of 𝑤, i.e.,

height𝒜(𝑤) = max
𝑢∈Pref (𝑤)

cv𝒜(𝑢).

A word 𝑤 is accepted if there is a counted run from the initial configura-
tion (𝑞0, 0) to some configuration (𝑞, 0) such that 𝑞 ∈ 𝐹 . We highlight that
cv𝒜(𝑤) = 0. The definition of language of 𝒜 naturally follows.

Definition 5.2.5 (Realtime one-counter language). The language accepted
by a sound ROCA 𝒜 is

ℒ(𝒜) = {𝑤 ∈ Σ∗ ∣ ∃𝑞 ∈ 𝐹 ∶ (𝑞0, 0)
𝑤
−→ (𝑞, 0)}.

A language 𝐿 is called a realtime one-counter language (ROCL, for short) if
there is a sound ROCA 𝒜 such that ℒ(𝒜) = 𝐿.

Example 5.2.6.

𝑞0

𝑞1

𝑞2

𝑎[=0]/+1

𝑎[=0]/0
𝑏[=0]/0

𝑎[=0]/0
𝑏[=0]/0

𝑏[=0]/0

𝑎[>0]/+1

𝑏[>0]/0

𝑏[>0]/0
𝑎[>0]/−1

𝑎[>0]/0
𝑏[>0]/0

Let 𝒜 be the sound ROCA of Figure 5.1, which is repeated in
the margin. A sample counted run is:

(𝑞0, 0)
𝑎

−→
+1

(𝑞0, 1)
𝑎

−→
+1

(𝑞0, 2)
𝑏
−→
0

(𝑞1, 2)
𝑎

−→
−1

(𝑞1, 1)
𝑏
−→
0

(𝑞1, 1)
𝑎

−→
−1

(𝑞1, 0)
𝑎
−→
0

(𝑞2, 0).

This counted run is accepting and thus 𝑎𝑎𝑏𝑎𝑏𝑎𝑎 is accepted by 𝒜. Moreover,
cv𝒜(𝑎𝑎𝑏𝑎𝑏𝑎𝑎) = 0 and height𝒜(𝑎𝑎𝑏𝑎𝑏𝑎𝑎) = 2.
One can verify that the language of𝒜 is comprised of the words of the shape

𝑎ℓ ⋅ 𝑏 ⋅ 𝑏𝑘1 ⋅ 𝑎 ⋅ 𝑏𝑘2 ⋅ 𝑎 ⋯ 𝑏𝑘ℓ ⋅ 𝑎 ⋅ 𝑢

with ℓ, 𝑘1, 𝑘2, … , 𝑘ℓ ≥ 0, and 𝑢 ∈ {𝑎, 𝑏}∗.

Assumption 5.2.7. In order to avoid having to treat particular cases, we
assume from now on that any ROCL is non-empty.

We now introduce a refinement of the Myhill-Nerode congruence (see Def-
inition 2.2.6) for a ROCL 𝐿 accepted by some sound ROCA 𝒜. Classes are
refined according to the counter value of the words. That is, for two words
𝑢, 𝑣, we require that cv𝒜(𝑢 ⋅ 𝑤) = cv𝒜(𝑣 ⋅ 𝑤) for any word 𝑤 such that 𝑢 ⋅ 𝑤
and 𝑣 ⋅ 𝑤 are both in Pref (𝐿). The condition over the prefix of the language is
to avoid refining the classes too much: if any extension of 𝑢 ⋅ 𝑤 (for instance)
is never in 𝐿, the exact counter value is not useful for a learning algorithm. In
other words, the words that are not in the prefix of 𝐿 remain equivalent. We
highlight that the definition depends on 𝒜, due to the counter values of the
words.

Definition 5.2.8 (Refinement of Myhill-Nerode). Let 𝒜 be an ROCA accept-
ing the ROCL 𝐿 ⊆ Σ. We define the congruence relation ∼𝒜 over Σ∗ such
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𝑆REG

𝑆VOCL

𝑆ROCL

𝑆DOCL

𝑆OCL

𝑆CFL

Figure 5.2: One-counter languages hierarchy extended from Figure 4.4 with ROCLs. Each 𝑆𝑖 designates the
set of all languages of type 𝑖.

[FMR68]: Fischer et al. (1968),
“Counter Machines and Counter
Languages”

that 𝑢 ∼𝒜 𝑣 if and only if:

∀𝑤 ∈ Σ∗ ∶ 𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∈ 𝐿,
∀𝑤 ∈ Σ∗ ∶ 𝑢𝑤, 𝑣𝑤 ∈ Pref (𝐿) ⇒ cv𝒜(𝑢𝑤) = cv𝒜(𝑣𝑤).

It is easy to check that ∼𝒜 is a congruence.

Finally, we define the concept of bounded language. That is, given a language
𝐿 and a counter limit ℓ, we restrict 𝐿 to the words for which the height never
exceeds ℓ. More precisely, as the height can only be defined via an ROCA
accepting 𝐿, we define the bounded language of an ROCA. We explain in
Section 5.4 how to construct a DFA accepting this bounded language.

Definition 5.2.9 (Bounded language). Let 𝒜 be an ROCA. The bounded
language of 𝒜 up to ℓ, denoted by ℒ≤ℓ(𝒜), is

ℒ≤ℓ(𝒜) = {𝑤 ∈ ℒ(𝒜) ∣ height𝒜(𝑤) ≤ ℓ}.

5.2.2. Extended hierarchy of one-counter languages

Let us now extend the hierarchy of one-counter languages started in Sec-
tion 4.3.2 by adding the set of ROCLs. We argue that ROCLs are strictly
between VOCLs and DOCLs. In other words, allowing 𝜀-transitions in a one-
counter automaton allows one to encode more complex languages. Figure 5.2
gives the resulting hierarchy.

First, we state that ROCLs form a strict superset of VOCLs. The proof is
actually the same as the proof of Proposition 4.3.9, which we do not repeat
here.

Proposition 5.2.10. Any VOCL is a ROCL but there exists a ROCL that is
not a VOCL.

Fischer et al. [FMR68] showed that requiring that the automaton takes 𝑛 steps



5. Learning Realtime One-Counter Automata 64

Learner Teacher
Knows an ROCA 𝒜

MQ(𝑤) ∶ 𝑤 ∈ ℒ(𝒜)?

yes or no

CVQ(𝑤) ∶ cv𝒜(𝑤)?

cv𝒜(𝑤)

PEQ(ℋ, ℓ) ∶ ℒ(ℋ) = ℒ≤ℓ(𝒜)?

yes or a counterexample

EQ(ℋ) ∶ ℒ(ℋ) = ℒ(𝒜)?

yes or a counterexample

Figure 5.3: Adaptation of Angluin’s framework for ROCAs.

[Ang87]: Angluin (1987), “Learn-
ing Regular Sets from Queries and
Counterexamples”

to process a word of length 𝑛 reduces the expressivity compared to allowing
any number of steps ≥ 𝑛. However, they do not require that the counter is
zero for a word to be accepted. We thus here give a slightly adjusted (sketch
of) proof.

Proposition 5.2.11. Any ROCL is a DOCL but there exists a DOCL that is
not a ROCL.

Sketch of proof. By definition, any ROCA is a DOCA. Hence, every ROCL is
a DOCL.
Let 𝐿 = {𝑎𝑛𝑏𝑚𝑐 ∣ 0 < 𝑚 ≤ 𝑛}.

𝑞0

𝑞1

𝑞2

𝑞3

𝑎[=0], +1

𝑐[=0], 0

𝜀[=0]/0

𝑎[>0]/+1

𝑏[>0], −1

𝑏[>0]/−1

𝑐[>0], 0

𝜀[>0]/−1

Figure 4.1 (repeated in the margin) gives
a DOCA accepting 𝐿, i.e., 𝐿 is a DOCL. One can show that there exists no
ROCA accepting 𝐿 using arguments similar to those presented in the proof
of Proposition 4.3.10. In short, as the counter value of any accepted word

must be zero, it follows that there must exist a loop (𝑝, 𝑐)
𝑏ℓ

−→ (𝑝, 𝑐) with
0 ≤ 𝑐 ≤ 1 and such that (𝑝, 𝑐)

𝑐
−→ (𝑞𝑓, 0) ∈ cruns(𝒜) for some 𝑞𝑓 ∈ 𝐹 𝒜.

Hence, we can pump on that loop and show that 𝒜 has to accept words that
are not in 𝐿. �

5.2.3. Learning framework

For our learning algorithm for ROCAs, we adapt the framework of the learning
algorithm for VOCLs (see Definition 4.3.22), which itself is an adaptation of
Angluin’s framework [Ang87]. As we do not consider pushdown alphabets,
we cannot deduce the counter value of a word without running it through
an ROCA. Hence, on top of membership and (partial) equivalence queries,
we allow counter value queries to retrieve the counter value of some word
according to the teacher’s ROCA. This means that the teacher must know a
sound ROCA that accepts 𝐿. Figure 5.3 gives a visual representation of the
adapted Angluin’s framework.
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Definition 4.3.14. Let
𝐿 ⊆ Σ̃∗ be a VOCL, ∼𝐿 be its
Myhill-Nerode congruence,
and 𝒜 be the deterministic
(in)finite automaton defined
from ∼𝐿. The behavior graph
of 𝐿 is the tuple 𝐵𝐺(𝐿) =
(Σ̃, 𝑄𝐵𝐺(𝐿), 𝑞𝐵𝐺(𝐿)

0 , 𝐹 𝐵𝐺(𝐿),
𝛿𝐵𝐺(𝐿)) obtained from 𝒜 by
restricting the set of states
to 𝑄𝐵𝐺(𝐿) = {J𝑤K∼𝐿

∣ 𝑤 ∈
Pref (𝐿)}.

Definition 5.2.12 (Queries for ROCAs). Let 𝒜 be the sound ROCA of the
teacher. A learner for ROCAs can use four queries:

▶ A membership query, denoted by MQ(𝑤), with 𝑤 ∈ Σ∗, returns
whether 𝑤 ∈ ℒ(𝒜).

▶ A counter value query, denoted by CVQ(𝑤), with 𝑤 ∈ Pref (ℒ(𝒜)),
returns cv𝒜(𝑤).

▶ A partial equivalence query, denoted by PEQ(ℋ, ℓ), with ℋ a DFA
over Σ and ℓ ∈ ℕ, returns

• yes if ℒ(ℋ) = ℒ≤ℓ(𝒜),
• or a word 𝑤 such that 𝑤 ∈ ℒ(ℋ) ⇔ 𝑤 ∉ ℒ≤ℓ(𝒜).

▶ An equivalence query EQ(ℋ), withℋ an ROCA over Σ, returns

• yes if ℒ(ℋ) = ℒ(𝒜),
• or a word 𝑤 such that 𝑤 ∈ ℒ(ℋ) ⇔ 𝑤 ∉ ℒ(𝒜).

Remark 5.2.13. Given that different ROCAsmay give different counter values
to the same input word, one may wonder why a counter value query over
𝑤 does not return a range [ℓ, ℎ] such that cv𝒜(𝑤) ∈ [ℓ, ℎ] for any ROCA 𝒜.
While an upper bound may be useful, the lower bound will always be zero.
Indeed, for a given word 𝑤, one can always construct an ROCA 𝒜 such that
cv𝒜(𝑤) = 0 (by unraveling loops and using states to count up to a certain
bound, for instance). In this thesis, we instead assume that the teacher has
an ROCA and can provide a precise counter value.

The general ideas of our learning algorithm are similar to those of 𝐿∗
VOCA (see

Section 4.3.4). We will also learn a fragment of the target language, bounded
by some counter value. Then, from the learned DFA, we will extract multiple
ROCAs. We first adapt the concept of behavior graph, which is an infinite
deterministic automaton encoding the counted runs of an ROCA, and show
that it has a periodic structure, yielding a finite representation. Hence, learning
a large enough DFA will be enough to observe that periodic structure.

5.3. Behavior graph of a realtime one-counter
automaton

In this section, we rely on the notion of behavior graph introduced in Defi-
nition 4.3.14 for VOCAs and adapt it to ROCAs. While we could define the
behavior graph of a language for VOCLs, we here need the behavior graph
of an automaton, as the counter value and height of a word depend on this
automaton. As for VOCAs, this behavior graph is a potentially infinite deter-
ministic automaton. Nevertheless, we aim to show that the behavior graph
of an ROCA also possesses an ultimately periodic structure and, so, can be
represented in finite memory, using a trick similar to the finite representation
of the behavior graph of a VOCL (see Section 4.3.3).

While the behavior graph of a VOCL is defined from the Myhill-Nerode con-
gruence of the language, we rely on ∼𝒜 to define the behavior graph of an
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ROCA 𝒜. Since ∼𝒜 is a congruence, a (potentially infinite) deterministic au-
tomaton can be defined from it, as is done for the Myhill-Nerode congruence
in Definition 2.2.9. For clarity, we state the complete definition here.

Definition 5.3.1 (Behavior graph). Let 𝒜 be a sound ROCA accepting the
language𝐿 ⊆ Σ∗ and∼𝒜 be the refinement of theMyhill-Nerode congruence
for 𝒜. The behavior graph of 𝒜 is the deterministic (in)finite automaton
𝐵𝐺(𝒜) = (Σ, 𝑄𝐵𝐺(𝒜), 𝑞𝐵𝐺(𝒜)

0 , 𝐹 𝐵𝐺(𝒜), 𝛿𝐵𝐺(𝒜)) where:

▶ 𝑄𝐵𝐺(𝒜) = {J𝑤K∼𝒜 ∣ 𝑤 ∈ Pref (𝐿)},
▶ 𝑞𝐵𝐺(𝒜)

0 = J𝜀K∼𝒜,
▶ 𝐹 𝐵𝐺(𝒜) = {J𝑤K∼𝒜 ∣ 𝑤 ∈ 𝐿},
▶ 𝛿𝐵𝐺(𝒜) ∶ 𝑄𝐵𝐺(𝒜) ×Σ ⇀ 𝑄𝐵𝐺(𝒜) is the partial transition function such

that, for all J𝑤K∼𝒜, J𝑤𝑎K∼𝒜 ∈ 𝑄𝐵𝐺(𝒜) and 𝑎 ∈ Σ,

J𝑤K∼𝒜

𝑎
−→ J𝑤 ⋅ 𝑎K∼𝒜 ∈ runs(𝐵𝐺(𝒜)).

Note that 𝑄𝐵𝐺(𝒜) is not empty by Assumption 5.2.7. We highlight that 𝐵𝐺(𝒜)
only contains states that are reachable from the initial state and co-reachable
from a final state, and its transition function is partial.

As we did for VOCAs, we group together all equivalence classes sharing the
same counter value in what we call a level. The width of 𝐵𝐺(𝒜) is then the
maximal number of classes across all levels.

Definition 5.3.2 (Level and width). The level ℓ ∈ ℕ of 𝐵𝐺(𝒜), denoted by
level(𝐵𝐺(𝒜), ℓ) is the set of states of 𝐵𝐺(𝒜) with counter value ℓ, i.e.,

level(𝐵𝐺(𝒜), ℓ) = {J𝑤K∼𝒜 ∈ 𝑄𝐵𝐺(𝒜) ∣ cv𝒜(𝑤) = ℓ}.

The width of 𝐵𝐺(𝒜), denoted by width(𝐵𝐺(𝒜)), is the maximal size of any
level:

width(𝐵𝐺(𝒜)) = max
ℓ∈ℕ

|level(𝐵𝐺(𝒜), ℓ).|

The next proposition states that 𝐵𝐺(𝒜) accepts the same language as 𝒜. It
can be proved by a straightforward induction.

Proposition 5.3.3. Let𝒜 be a sound ROCA and 𝐵𝐺(𝒜) be its behavior graph.
Then, ℒ(𝐵𝐺(𝒜)) = ℒ(𝒜).

Example 5.3.4.

𝑞0

𝑞1

𝑞2

𝑎[=0]/+1

𝑎[=0]/0
𝑏[=0]/0

𝑎[=0]/0
𝑏[=0]/0

𝑏[=0]/0

𝑎[>0]/+1

𝑏[>0]/0

𝑏[>0]/0
𝑎[>0]/−1

𝑎[>0]/0
𝑏[>0]/0

Let 𝒜 be the ROCA of Figure 5.1, which is repeated in the
margin. Example 5.2.6 gives the language 𝐿 of 𝒜. We can check that
𝑏 ∼𝒜 𝑎𝑏𝑏𝑎:

▶ For all 𝑤 ∈ Σ∗, we have 𝑏𝑤 ∈ 𝐿 if and only if 𝑎𝑏𝑏𝑎𝑤 ∈ 𝐿.
▶ For all 𝑤 ∈ Σ∗ such that 𝑏𝑤 and 𝑎𝑏𝑏𝑎𝑤 are both in Pref (𝐿), we have

cv𝒜(𝑏𝑤) = cv𝒜(𝑎𝑏𝑏𝑎𝑤).

However, 𝑎𝑏 ≁𝒜 𝑎𝑎𝑏 since 𝑎𝑏 and 𝑎𝑎𝑏 are both in Pref (𝐿) but cv𝒜(𝑎𝑏) = 1
while cv𝒜(𝑎𝑎𝑏) = 2.
The behavior graph 𝐵𝐺(𝒜) of𝒜 is given in Figure 5.4. As in Example 4.3.18,
this behavior graph is ultimately periodic and has thus a finite representa-
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𝜀 𝑎 𝑎𝑎 𝑎𝑎𝑎 …

𝑏 𝑎𝑏 𝑎𝑎𝑏 𝑎𝑎𝑎𝑏 …

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎 𝑎 𝑎 𝑎

𝑎, 𝑏 𝑏 𝑏 𝑏

Figure 5.4: Behavior graph of the ROCA of Figure 5.1.

tion.

5.3.1. Finite representation

We now proceed on proving that there always exists a finite representation
for the behavior graph of any ROCA. First, we show that the width of 𝐵𝐺(𝒜)
is always bounded by the number of states of 𝒜.

Lemma 5.3.5. Let 𝐵𝐺(𝒜) be the behavior graph of a sound ROCA 𝒜. Then,
width(𝐵𝐺(𝒜)) ≤ ∣𝑄𝒜∣.

Proof. Let 𝐿 = ℒ(𝒜). Let 𝑤 and 𝑤′ be two words such that

(𝑞𝒜0 , 0)
𝑤
−→ (𝑞, 𝑛) ∈ cruns(𝒜)

and

(𝑞𝒜0 , 0)
𝑤′

−→ (𝑞, 𝑛) ∈ cruns(𝒜).

Observe that both counted runs end in the same configuration. Hence,
cv𝒜(𝑤) = cv𝒜(𝑤′) and 𝑤 ∈ Pref (𝐿) if and only if 𝑤′ ∈ Pref (𝐿). Moreover,
for any 𝑣 ∈ Σ∗, we have 𝑤𝑣 ∈ 𝐿 if and only if 𝑤′𝑣 ∈ 𝐿. There are two cases:

▶ If 𝑤, 𝑤′ ∈ Pref (𝐿), then we have 𝑤 ∼𝒜 𝑤′ as cv𝒜(𝑤) = cv𝒜(𝑤′).
▶ If 𝑤, 𝑤′ ∉ Pref (𝐿), then we have 𝑤 ∼𝒜 𝑤′, by definition.

In every case, 𝑤 ∼𝒜 𝑤′. So, there cannot be more than ∣𝑄𝒜∣ states per level.
That is, width(𝐵𝐺(𝒜)) ≤ ∣𝑄𝒜∣. �

This allows us to describe the behavior graph by enumerating the states of
each level and defining the transitions using these enumerations, as was done
for VOCAs in Section 4.3.3. More precisely, for each level ℓ of 𝐵𝐺(𝒜), we
define an enumeration

𝜈ℓ ∶ level(𝐵𝐺(𝒜), ℓ) → {1, … , 𝐾},

with 𝐾 = width(𝐵𝐺(𝒜)).
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Theorem 4.3.19. Let 𝐵𝐺(𝐿)
be the behavior graph of a
VOCL 𝐿. Then, there exists,
for each level ℓ, an enumer-
ation 𝜈ℓ ∶ level(𝐵𝐺(𝐿), ℓ) →
{1, … ,width(𝐵𝐺(𝐿))}, such
that the corresponding de-
scription 𝛼 of 𝐵𝐺(𝐿) is an ul-
timately periodic word with
offset 𝑚 > 0 and pe-
riod 𝑘 ≥ 0, i.e., 𝛼 =
𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔.

2: Observe that we add a subscript
𝑐 to 𝑎.

Once the enumerations are fixed, we have to encode the transitions. This
requires more care than for VOCAs, as we now have to explicitly take into
account the counter operation. That is, the counter operation of the transition
must also be stored, as it cannot be deduced from the symbol anymore. For
each level ℓ, the transitions are encoded via a mapping

𝜏ℓ ∶ {1, … , 𝐾} × Σ ⇀ {1, … , 𝐾} × {−1, 0, +1}

such that for all 𝑖 ∈ {1, … , 𝐾} and 𝑎 ∈ Σ, 𝜏ℓ(𝑖, 𝑎) = (𝑗, 𝑐) if there exist
J𝑢K∼𝒜, J𝑢𝑎K∼𝒜 ∈ 𝑄𝐵𝐺(𝒜) such that

▶ cv𝒜(𝑢) = ℓ,
▶ cv𝒜(𝑢𝑎) = ℓ + 𝑐,
▶ 𝜈ℓ(J𝑢K∼𝒜) = 𝑖, and
▶ 𝜈ℓ+𝑐(J𝑢𝑎K∼𝒜) = 𝑗,

and 𝜏ℓ(𝑖, 𝑎) is left undefined otherwise.

We thus obtain a description 𝛼 of 𝐵𝐺(𝒜) by listing each transition mapping:

𝛼 = 𝜏0𝜏1𝜏2 …

It remains to show that there always exists an ultimately periodic description,
as stated in the next theorem, which is the ROCA counterpart of Theorem 4.3.19.
The proof relies on an isomorphism we establish (in the next section) between
the behavior graph of an ROCA𝒜 and that of a suitable VOCA constructed from
𝒜, which is detailed in the next section. Once this isomorphism is obtained,
the theorem is immediate, thanks to Theorem 4.3.19. Finally, Section 5.3.3
explains how to construct an ROCA from an ultimately periodic description
of a behavior graph.

Theorem 5.3.6. Let 𝐵𝐺(𝒜) be the behavior graph of a sound ROCA𝒜. Then,
there exist, for each level ℓ, an enumeration

𝜈ℓ ∶ level(𝐵𝐺(𝒜), ℓ) → {1, … ,width(𝐵𝐺(𝒜))},

such that the corresponding description 𝛼 of 𝐵𝐺(𝒜) is an ultimately periodic
word with offset 𝑚 > 0 and period 𝑘 ≥ 0, i.e.,

𝛼 = 𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔.

5.3.2. Isomorphism with the behavior graph of a visibly
one-counter language

In order to show that the behavior graph of a sound ROCA 𝒜 accepting 𝐿
is isomorphic to the behavior graph of some VOCL (see Definition 4.3.14),
we first explain how to construct a VOCA accepting a VOCL 𝐿 encoding
the counter operations of the transitions of 𝒜. For instance, every transition
𝑞

𝑎
−→
+1

∈ runs(𝒜) becomes a transition reading 𝑎𝑐 in the VOCA.2

Let us start by defining the pushdown alphabet Σ̃ that will be used in the
constructed VOCA. In short, every symbol of Σ gives birth to a call symbol, a
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𝑞0

𝑞1

𝑞2

𝑎𝑐[=0]

𝑎int [=0]
𝑏int [=0]

𝑎int [=0]
𝑏int [=0]

𝑏int [=0]

𝑎𝑐[>0]

𝑏int [>0]

𝑏int [>0]
𝑎𝑟[>0]

𝑎int [>0]
𝑏int [>0]

3: Notice that �̃� does not depend
on𝒜 nor on𝒜.

return symbol, and an internal symbol. That is, let Σ̃ = Σ𝑐 ∪ Σ𝑟 ∪ Σint with

Σ𝑐 = {𝑎𝑐 ∣ 𝑎 ∈ Σ},
Σ𝑟 = {𝑎𝑟 ∣ 𝑎 ∈ Σ},

and
Σint = {𝑎int ∣ 𝑎 ∈ Σ}.

We then define a VOCA 𝒜 over Σ̃. The set of states, initial state, and the set
of final states are directly copied from the ROCA 𝒜. The transitions require

more care as we have to use the symbols from Σ̃. For all 𝑞
𝑎[𝑔]
−−→

𝑜
𝑝 ∈ runs(𝒜),

we define in 𝒜 a transition 𝑞
𝑏[𝑔]
−−→ 𝑝 such that

𝑏 =
⎧{
⎨{⎩

𝑎𝑐 if 𝑜 = +1
𝑎𝑟 if 𝑜 = −1
𝑎int if 𝑜 = 0.

Example 5.3.7. We consider again the ROCA 𝒜 given in Figure 5.1. The
VOCA 𝒜 constructed from 𝒜 is given in Figure 4.3 and is repeated in the
margin, for convenience.

Let us now move towards describing the language of 𝒜. Namely, we argue
that for every word 𝑤 over Σ, we can construct a word 𝑤 over Σ̃ such that
𝒜 and 𝒜 agree on the counter value of 𝑤 and 𝑤, and on whether the word
is accepted. To do so, we introduce a mapping 𝜆𝒜 ∶ Σ∗ ⇀ Σ̃∗. Given a word
𝑢 = 𝑎1 ⋯ 𝑎𝑘, its corresponding word 𝜆𝒜(𝑢) = 𝑎0 ⋯ 𝑎𝑘 is constructed such that
for each 𝑖 ∈ {1, … , 𝑘}:

𝑎𝑖 =
⎧{
⎨{⎩

𝑏𝑐 if cv𝒜(𝑎1 ⋯ 𝑎𝑖) > cv𝒜(𝑎1 ⋯ 𝑎𝑖−1) and 𝑎𝑖 = 𝑏
𝑏𝑟 if cv𝒜(𝑎1 ⋯ 𝑎𝑖) < cv𝒜(𝑎1 ⋯ 𝑎𝑖−1) and 𝑎𝑖 = 𝑏
𝑏int if cv𝒜(𝑎1 ⋯ 𝑎𝑖) = cv𝒜(𝑎1 ⋯ 𝑎𝑖−1) and 𝑎𝑖 = 𝑏.

Note that given 𝜆𝒜(𝑢) ∈ Σ̃∗, it is easy to get 𝑢 back: simply discard the index
in {𝑐, 𝑟, int} of each symbol of 𝜆𝒜(𝑢). We denote by �̃� this mapping from Σ̃
to Σ, i.e., �̃�(𝑎𝑥) = 𝑎 for 𝑎 ∈ Σ and 𝑥 ∈ {𝑐, 𝑟, int}.3

Example 5.3.8. Let us continue Example 5.3.7. We construct 𝜆𝒜(𝑢) for
𝑢 = 𝑎 ⋅ 𝑎 ⋅ 𝑏 ⋅ 𝑎 ⋅ 𝑏 ⋅ 𝑎 ⋅ 𝑎. Recall from Example 5.2.6 that we have the following
counted run for 𝑢 in 𝒜:

(𝑞0, 0)
𝑎
−→ (𝑞0, 1)

𝑎
−→ (𝑞0, 2)

𝑏
−→ (𝑞1, 2)

𝑎
−→ (𝑞1, 1)

𝑏
−→ (𝑞1, 1)

𝑎
−→ (𝑞1, 0)

𝑎
−→ (𝑞2, 0).

By encoding the counter operations into the symbols, we thus obtain the
word 𝜆𝒜(𝑢) = 𝑎𝑐 ⋅ 𝑎𝑐 ⋅ 𝑏int ⋅ 𝑎𝑟 ⋅ 𝑏int ⋅ 𝑎𝑟 ⋅ 𝑎int , which yields the following
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counted run in 𝒜:

(𝑞0, 0)
𝑎𝑐−→ (𝑞0, 1)

𝑎𝑐−→ (𝑞0, 2)
𝑏int−→ (𝑞1, 2)

𝑎𝑟−→ (𝑞1, 1)
𝑏int−→ (𝑞1, 1)

𝑎𝑟−→ (𝑞1, 0)
𝑎int−−→ (𝑞2, 0).

The function 𝜆𝒜 allows us to easily define the language of 𝒜 as the set of all
words 𝜆𝒜(𝑢) with 𝑢 ∈ ℒ(𝒜). Moreover, 𝒜 preserves the set of prefixes of
ℒ(𝒜) and the counter value of the words. These properties are easily proved
by construction.

Lemma 5.3.9. Let 𝒜 be a sound ROCA and 𝐴 be its corresponding VOCA. We
have:

▶ ∀𝑢 ∈ Σ∗ ∶ cv𝒜(𝑢) = cv(𝜆𝒜(𝑢)),
▶ ℒ(𝐴) = {𝜆𝒜(𝑢) ∣ 𝑢 ∈ ℒ(𝒜)}, and
▶ Pref (ℒ(𝐴)) = {𝜆𝒜(𝑢) ∣ 𝑢 ∈ Pref (ℒ(𝒜))}.

We can now clearly state the isomorphism between 𝐵𝐺(𝒜) and 𝐵𝐺(ℒ(𝒜)).
First of all, we need to translate the symbols between the two graphs, i.e., the
isomorphism is up to 𝜆𝒜 and �̃� depending on the direction. We have to show
that ∼𝒜 and ∼ℒ(𝒜) agree (i.e., they define the same equivalence classes up to 𝜆𝒜
and �̃�), which can be obtained by exploiting the definitions and properties of the
two relations (see Definitions 2.2.6 and 5.2.8, and Lemma 4.3.13). Furthermore,
by the previous lemma, we know that 𝜆𝒜 respects the counter values. Hence,
the class of 𝑤 is part of the level ℓ of 𝐵𝐺(𝒜) if and only if the class of 𝜆𝒜(𝑤)
is also on the level ℓ of 𝐵𝐺(ℒ(𝒜)). The proof is given in Section A.1.

Theorem 5.3.10. Let 𝒜 be a sound ROCA, 𝐵𝐺(𝒜) be its behavior graph, 𝒜
be the corresponding VOCA accepting 𝐿, and 𝐵𝐺(𝐿) be the behavior graph of
𝐿. Then,

▶ 𝐵𝐺(𝒜) and 𝐵𝐺(𝐿) are isomorphic up to 𝜆𝒜 and �̃�, and
▶ the isomorphism respects the counter values (i.e., level membership) and

both offset and period of periodic descriptions.

Hence, if 𝛼 is a periodic description of 𝐵𝐺(𝒜) with offset 𝑚 and period 𝑘, then
by 𝜆𝒜 we get a periodic description of 𝐵𝐺(𝐿) with the same offset and period.
The converse is also true by using �̃�. That is, we immediately obtain that there
exists a finite representation (via an ultimately periodic description) of 𝐵𝐺(𝒜),
i.e., Theorem 5.3.6 follows from the previous theorem and Theorem 4.3.19.

5.3.3. Constructing a realtime one-counter automaton from a
description

Finally, let us explain how to construct an ROCA 𝒜𝛼 from an ultimately
periodic description 𝛼 of a behavior graph 𝐵𝐺(𝒜) such that ℒ(𝒜) = ℒ(𝒜𝛼).
While this is not interesting in itself (as 𝒜 is already known here), it will
be useful during the learning algorithm. Indeed, the same algorithm will be
applied to descriptions derived from a fragment of 𝐵𝐺(𝒜).
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(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

𝑎[=0]/0

𝑏[=0]/0

𝑎[=0]/0

𝑏[=0]/0

𝑎[=0]/+1

𝑎[=0]/0
𝑏[=0]/0

𝑏[=0]/0

𝑏[>0]/0

𝑎[>0]/+1

𝑎[>0]/+1
𝑏[>0]/0

𝑏[>0]/0

𝑎[>0]/−1

𝑎[>0]/−1

Figure 5.5: The ROCA constructed from a periodic description of the behavior graph of Figure 5.4.

𝜀 𝑎 𝑎𝑎 …

𝑏 𝑎𝑏 𝑎𝑎𝑏 …

𝑎

𝑏

𝑎

𝑏

𝑎

𝑏

𝑎 𝑎 𝑏
𝑎, 𝑏 𝑏 𝑏

Let us provide an example giving the intuition of the construction.

Example 5.3.11. Let 𝒜 be the ROCA from Figure 5.1 and 𝐵𝐺(𝒜) be its
behavior graph from Figure 5.4 (which is repeated in the margin). Recall
that the width of 𝐵𝐺(𝒜) is 2. Let us assume that

𝜈0(J𝜀K∼𝒜) = 𝜈1(J𝑎K∼𝒜) = ⋯ = 1
𝜈0(J𝑏K∼𝒜) = 𝜈1(J𝑎𝑏K∼𝒜) = … = 2.

We then have the following 𝜏ℓ mappings:

𝜏0(1, 𝑎) = (1, +1) 𝜏0(1, 𝑏) = (2, 0)
𝜏0(2, 𝑎) = (2, 0) 𝜏0(2, 𝑏) = (2, 0)
𝜏1(1, 𝑎) = (1, +1) 𝜏1(1, 𝑏) = (2, 0)
𝜏1(2, 𝑎) = (2, −1) 𝜏1(2, 𝑏) = (2, 0)
𝜏2(1, 𝑎) = (1, +1) 𝜏2(1, 𝑏) = (2, 0)
𝜏2(2, 𝑎) = (2, −1) 𝜏2(2, 𝑏) = (2, 0)

⋮ ⋮

Let 𝛼 = 𝜏0(𝜏1𝜏2)𝜔 be a periodic description of 𝐵𝐺(𝒜).
We construct an ROCA 𝒜𝛼. The idea is to encode in the states the current
level ℓ and number 𝜈ℓ(𝑞) associated to the state 𝑞 ∈ 𝑄𝐵𝐺(𝒜) in the states
of 𝒜𝛼. Moreover, the counter value is never modified while in the levels
forming the initial part of 𝛼 (here, only the level 0, as 𝑚 = 1). However, the
counter value is modified every time we go from a level to another one in
the periodic part. That is,

𝑄𝒜𝛼 = {0, 1, 2} × {1, 2}.

Then, the transitions from a state (0, ⋅) (i.e., at level 0 in the behavior graph)
are easily defined by simply copying the information stored in 𝜏0. The
transitions from states (1, ⋅), (2, ⋅) (i.e., at levels 1 and 2) need to modify the
counter. The resulting ROCA 𝒜𝛼 is given in Figure 5.5. We can clearly see
that 𝒜𝛼 mimics the periodic description as the states (1, 0) and (2, 0) form
the initial part that is followed by a repeating part formed by the states
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MQ(𝑤) ∶
𝑤 ∈ ℒ(𝒜)?

yes or no

CVQ(𝑤) ∶
cv𝒜(𝑤)?

yes or no

PEQ(ℋ, ℓ) ∶
ℒ(ℋ) = ℒ≤ℓ(𝒜)?

yes or
a counterexample

EQ(ℋ) ∶
ℒ(ℋ) = ℒ(𝒜)?

yes or
a counterexample

(1, 1), (2, 1), (1, 2) and (2, 2).

The following proposition states the existence of such an ROCA 𝒜𝛼 and its
size. The formal proof is deferred to Section A.2.

Proposition 5.3.12. Let 𝐵𝐺(𝒜) be the behavior graph of some sound ROCA
𝒜 and 𝛼 = 𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔 be an ultimately periodic description
of 𝐵𝐺(𝒜) with offset 𝑚 and period 𝑘. Then, one can construct an ROCA 𝒜𝛼
from 𝛼 such that

▶ ℒ(𝒜𝛼) = ℒ(𝒜), and
▶ the size of 𝒜𝛼 is polynomial in 𝑚, 𝑘 and width(𝐵𝐺(𝒜)).

5.4. Learning algorithm

In this section, we introduce 𝐿∗
ROCA, a learning algorithm for ROCAs, using the

framework defined in Section 5.2.3. That is, we assume that the teacher knows
a sound ROCA 𝒜 accepting a language 𝐿, and we have four types of queries:
membership queries (MQ), counter value queries (CVQ), partial equivalence
queries (PEQ), and equivalence queries (EQ). See Definition 5.2.12 for their
definitions. We repeat the visual representation of the adapted Angluin’s
framework in the margin.

In order to learn the language 𝐿 by using these queries, the learner will learn
a periodic description 𝛼 of the behavior graph 𝐵𝐺(𝒜). From 𝛼, an ROCA
accepting 𝐿 can be constructed, thanks to Proposition 5.3.12. More precisely,
the idea is similar to 𝐿∗

VOCA (see Section 4.3.4): we learn 𝐵𝐺(𝒜) up to a counter
limit (i.e., we learn a DFA) from which we extract every possible ultimately
periodic description, each yielding an ROCA. If one of these ROCAs is correct,
we are done. Otherwise, we need to increase the counter limit and repeat the
procedure.

We start by properly defining this bounded behavior graph (as was done for
VOCAs), before introducing the adaptation of an observation table in Sec-
tion 5.4.2. Then, Section 5.4.3 explains how to obtain a right-congruence from
a table, allowing us to construct DFA and ROCA hypotheses in Section 5.4.4.
We give the main loop of our algorithm and a way to process counterexamples
in Section 5.4.5. Finally, we give a complete example of an execution of the
learning algorithm in Section 5.4.6. First, we give the following theorem that
summarizes our results. Its proof can be found in Section A.8.

Theorem 5.4.1. Let 𝒜 be the sound ROCA of the teacher and 𝜁 be the length
of the longest counterexample returned by the teacher on (partial) equivalence
queries. Then,

▶ the 𝐿∗
ROCAalgorithm eventually terminates and returns an ROCA accept-

ing ℒ(𝒜) and whose size is polynomial in ∣𝑄𝒜∣ and |Σ|,
▶ in time and space exponential in ∣𝑄𝒜∣, |Σ| and 𝜁, and
▶ asking a number of PEQ in 𝒪 (𝜁3), a number of EQ in 𝒪 (∣𝑄𝒜∣𝜁2), and

a number of MQ and CVQ exponential in ∣𝑄𝒜∣, |Σ| and 𝜁.
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5.4.1. Bounded behavior graph

We first define what the learner actually learns: the bounded behavior graph
up to some counter limit ℓ, which is a DFA accepting a subset of ℒ(𝒜) such
that the heights of the words that can be read in the DFA never exceeds ℓ.

Definition 5.4.2 (Bounded behavior graph). Let 𝐵𝐺(𝒜) be a behavior graph
of some sound ROCA 𝒜. The bounded behavior graph up to ℓ is the DFA
𝐵𝐺≤ℓ(𝒜) obtained from 𝐵𝐺(𝒜) such that

𝑄𝐵𝐺≤ℓ(𝒜) = {J𝑤K∼𝒜 ∈ 𝑄𝐵𝐺(𝒜) ∣ height𝒜(𝑤) ≤ ℓ}.

The values of the (partial) function 𝛿𝐵𝐺≤ℓ(𝒜), the initial state, and the final
states are naturally defined over the subgraph.
The language of 𝐵𝐺≤ℓ(𝒜), denoted by 𝐿≤ℓ, is

𝐿≤ℓ = ℒ≤ℓ(𝒜)

= {𝑤 ∈ ℒ(𝒜) ∣ height𝒜(𝑤) ≤ ℓ}
= {𝑤 ∈ ℒ(𝒜) ∣ ∀𝑣 ∈ Pref (𝑤) ∶ 0 ≤ cv𝒜(𝑣) ≤ ℓ}.

Notice that, by definition, each state of 𝐵𝐺≤ℓ(𝒜) is reachable. The next lemma
gives an upper bound on the number of states.

Lemma 5.4.3. The number of states of 𝐵𝐺≤ℓ(𝒜) is at most (ℓ + 1) ⋅ ∣𝑄𝒜∣.

Proof. By Lemma 5.3.5, each level of 𝐵𝐺(𝒜) Lemma 5.3.5. The width of
𝐵𝐺(𝒜) is at most ∣𝑄𝒜∣.

has at most ∣𝑄𝒜∣ states. There-
fore, 𝐵𝐺≤ℓ(𝒜) has at most (ℓ + 1) ⋅ ∣𝑄𝒜∣ states. �

We can thus immediately bound the number of equivalence classes J𝑤K∼𝒜 with
height𝒜(𝑤) ≤ ℓ. Indeed, all the words in Σ∗ ∖ Pref (𝐿) are in a single class
which is not present in 𝐵𝐺(𝒜) (and, thus, not in 𝐵𝐺≤ℓ(𝒜) either).

Corollary 5.4.4. The number of equivalence classes J𝑤K∼𝒜 with
height𝒜(𝑤) ≤ ℓ is at most (ℓ + 1) ⋅ ∣𝑄𝒜∣ + 1.

Observe that ultimately periodic descriptions can be extracted from 𝐵𝐺≤ℓ(𝒜),
similarly to what was done for VOCAs in Section 4.3.4. Moreover, if ℓ is big
enough, then one of these descriptions match with an ultimately periodic
description of 𝐵𝐺(𝒜). Hence, it is sufficient to learn 𝐵𝐺≤ℓ(𝒜), starting with
small values of ℓ and increasing it once we are sure that none of its descriptions
are good. The rest of this section explains how to learn 𝐵𝐺≤ℓ(𝒜), and how
and when to increase ℓ.

5.4.2. Observation table

As for 𝐿∗
VOCA, 𝐿∗

ROCArelies on an adaptation of the observation table of 𝐿∗ to
store the knowledge gathered during the learning process. More precisely, this
table approximates the equivalence classes of ∼𝒜 and therefore stores infor-
mation about both membership to ℒ(𝒜) and counter values (for words known
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[NL10]: Neider et al. (2010), Learn-
ing visibly one-counter automata in
polynomial time

4: Recall thatCVQ(𝑤) can only be
asked when 𝑤 is in the prefix of
ℒ(𝒜).

to be in Pref (𝐿)). As we want to actually learn 𝐵𝐺≤ℓ(𝒜) from which ROCAs
will be extracted, the table depends on a counter limit ℓ ∈ ℕ. Furthermore,
our table uses two sets of separators: ̂𝑆 which are used to store membership
information, and 𝑆 for counter value information. We define this formally,
before giving an example.

Definition 5.4.5 (Observation table up to ℓ). Let ℓ ∈ ℕ be a counter limit,
𝐵𝐺≤ℓ(𝒜) be the bounded behavior graph of a sound ROCA 𝒜 up to ℓ, and
𝐿≤ℓ be the language of 𝐵𝐺≤ℓ(𝒜). An observation table up to ℓ is a tuple
𝒪≤ℓ = (𝑅, 𝑆, ̂𝑆, 𝑇, 𝐶) with:

▶ 𝑅 ⊊ Σ∗ a finite prefix-closed set of representatives,
▶ 𝑆 ⊆ ̂𝑆 ⊊ Σ∗ two finite suffix-closed sets of separators,
▶ 𝑇 ∶ (𝑅 ∪ 𝑅Σ) ⋅ ̂𝑆 → {no,yes}, and
▶ 𝐶 ∶ (𝑅 ∪ 𝑅Σ) ⋅ 𝑆 → {0, … , ℓ} ∪ {⊥}.

Let Pref (𝒪≤ℓ) be the set of words that are known to be in the prefix of 𝐿≤ℓ,
i.e.,

Pref (𝒪≤ℓ)={𝑤 ∈ Pref (𝑢⋅𝑠) ∣ 𝑢 ∈ 𝑅 ∪ 𝑅Σ, 𝑠 ∈ ̂𝑆, 𝑇(𝑢 ⋅ 𝑠) = yes}.

For all 𝑢 ∈ 𝑅 ∪ 𝑅Σ, we require that:

∀𝑠 ∈ ̂𝑆 ∶ 𝑇(𝑢 ⋅ 𝑠) = {
yes if 𝑢 ⋅ 𝑠 ∈ 𝐿≤ℓ

no otherwise,

∀𝑠 ∈ 𝑆 ∶ 𝐶(𝑢 ⋅ 𝑠) = {
cv𝒜(𝑢 ⋅ 𝑠) if 𝑢 ⋅ 𝑠 ∈ Pref (𝒪≤ℓ)
⊥ otherwise.

Notice that the domains of 𝑇 and 𝐶 are different. We again highlight the fact
that our data structure is different from the table used for VOCAs [NL10]
and introduced in Section 4.3.4. The difference lies in our use of two sets of
separators, due to the fact that we can not compute the counter value of a
word directly from its symbols, but we need to ask a query to the teacher.4 We
argue below (in Example 5.4.8) why we need these two sets, once we know
how to fill the table. In the next section, we explain how to use 𝑇 and 𝐶 to
approximate ∼𝒜 (up to the counter limit ℓ).

Example 5.4.6. Let 𝒜 be the ROCA of Figure 5.1 and ℓ = 1 be the counter
limit we consider.

𝜀 𝑎

𝑏 𝑎𝑏

𝑎

𝑏 𝑏

𝑎

𝑎, 𝑏 𝑏

Hence, we learn 𝐵𝐺≤ℓ(𝒜) whose set of states is given by
the first two levels of 𝐵𝐺(𝒜) from Figure 5.4 (see the figure in the margin).
Figure 5.6 gives an observation table 𝒪≤1 up to ℓ = 1. Its first column
contains the elements of 𝑅 ∪ 𝑅Σ such that the upper part is constituted by
𝑅 = {𝜀, 𝑎, 𝑎𝑏, 𝑎𝑏𝑎, 𝑎𝑎} and the lower part by 𝑅Σ∖𝑅. The first row contains
the elements of ̂𝑆 such that the left part is constituted by 𝑆 = {𝜀} and the
right part by ̂𝑆 ∖ 𝑆.
For each element 𝑢𝑠 in (𝑅 ∪ 𝑅Σ) ⋅ 𝑆, we store the two values 𝑇(𝑢𝑠) and
𝐶(𝑢𝑠) in the cell at the intersection of row 𝑢 and column 𝑠. For instance,
these values are 0 and ⊥ for the row 𝑎𝑎 and column 𝜀.
For each element 𝑢𝑠 in (𝑅 ∪ 𝑅Σ) ⋅ 𝑆, we only need to store the value 𝑇(𝑢𝑠).
Notice that Pref (𝒪≤ℓ) is a proper subset of Pref (𝐿≤ℓ). For instance,
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𝜀 𝑎 𝑏𝑎
𝜀 no, 0 no yes
𝑎 no, 1 no yes
𝑎𝑏 no, 1 yes yes
𝑎𝑏𝑎 yes, 0 yes yes
𝑎𝑎 no, ⊥ no no
𝑏 yes, 0 yes yes
𝑎𝑏𝑏 no, 1 yes yes
𝑎𝑏𝑎𝑎 yes, 0 yes yes
𝑎𝑏𝑎𝑏 yes, 0 yes yes
𝑎𝑎𝑎 no, ⊥ no no
𝑎𝑎𝑏 no, ⊥ no no

Figure 5.6: Example of an observation table.

𝑎𝑎𝑏𝑎𝑏𝑎𝑎 ∉ Pref (𝒪≤ℓ) and 𝑎𝑎𝑏𝑎𝑏𝑎𝑎 ∈ Pref (𝐿≤ℓ).

Filling the table

Let us explain how to fill the table 𝒪≤ℓ, using queries. Obtaining the value
for 𝑇(𝑢 ⋅ 𝑠) (with 𝑢 ∈ 𝑅 ∪ 𝑅Σ and 𝑠 ∈ ̂𝑆) is as follows: ask MQ(𝑢 ⋅ 𝑠) to learn
whether 𝑢 ⋅ 𝑠 ∈ 𝐿. Clearly, if 𝑢 ⋅ 𝑠 ∉ 𝐿, we can immediately put a no in the
table, as 𝑢 ⋅ 𝑠 ∉ 𝐿≤ℓ. However, we have to be more careful when 𝑢 ⋅ 𝑠 ∈ 𝐿,
as it may be that the height of 𝑢 ⋅ 𝑠 in 𝒜 exceeds the limit ℓ. When 𝑢 ⋅ 𝑠 ∈ 𝐿,
every prefix 𝑥 of 𝑢 ⋅ 𝑠 is in the prefix of 𝐿 and we can thus ask CVQ(𝑥). This
allows us to determine whether 𝑢 ⋅ 𝑠 ∈ 𝐿≤ℓ, using one MQ and |𝑢 ⋅ 𝑠| CVQ,
which in turn allows us to update the set Pref (𝒪≤ℓ).

Assume that we learned that 𝑢 ⋅ 𝑠 ∈ Pref (𝒪≤ℓ) for some 𝑢 ∈ 𝑅 ∪ 𝑅Σ and
𝑠 ∈ 𝑆 and we want to fill 𝐶(𝑢 ⋅ 𝑠). Since 𝑢 ⋅ 𝑠 ∈ Pref (𝒪≤ℓ), we know that
𝑢 ⋅ 𝑠 ∈ Pref (𝐿) and we can ask CVQ(𝑢 ⋅ 𝑠). That is, determining 𝐶(𝑢 ⋅ 𝑠)
requires at most a single CVQ, due to how Pref (𝒪≤ℓ) is computed.

The next lemma is easily obtained given the above procedures, as 𝑅 ∪ 𝑅Σ is
prefix-closed and ̂𝑆 is suffix-closed.

Lemma 5.4.7. Filling 𝑇 and 𝐶 requires a number of MQ and CVQ that is
polynomial in the sizes of 𝑅 ∪ 𝑅Σ and ̂𝑆.

We now argue why it is necessary to use two sets of separators in Defini-
tion 5.4.5, via an example.

Example 5.4.8. Assume that we only use the set 𝑆 in Definition 5.4.5 and that
the current observation table is the leftmost table 𝒪≤1, given in Figure 5.7 for
the ROCA from

𝑞0

𝑞1

𝑞2

𝑎[=0]/+1

𝑎[=0]/0
𝑏[=0]/0

𝑎[=0]/0
𝑏[=0]/0

𝑏[=0]/0

𝑎[>0]/+1

𝑏[>0]/0

𝑏[>0]/0
𝑎[>0]/−1

𝑎[>0]/0
𝑏[>0]/0

Figure 5.1 (which is repeated in the margin, for convenience).
Moreover, assume that we use the classical 𝐿∗ algorithm (see Section 3.2).
As we can see, 𝒪≤1 is not closed since the row for 𝑎𝑏𝑏 ∈ 𝑅Σ (i.e., the row
with contents no, ⊥) does not appear in the upper part of the table. In other
words, there is no 𝑢 ∈ 𝑅 with the same row contents. So, we add 𝑎𝑏𝑏 in the
upper part (i.e., 𝑎𝑏𝑏 is now in 𝑅), and 𝑎𝑏𝑏𝑎 and 𝑎𝑏𝑏𝑏 in the lower part, to
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𝜀
𝜀 no, 0
𝑎 no, 1
𝑎𝑏 no, 1
𝑎𝑏𝑎 yes, 0
𝑏 yes, 0
𝑎𝑎 no, ⊥
𝑎𝑏𝑏 no, ⊥
𝑎𝑏𝑎𝑎 yes, 0
𝑎𝑏𝑎𝑏 yes, 0

𝜀
𝜀 no, 0
𝑎 no, 1
𝑎𝑏 no, 1
𝑎𝑏𝑎 yes, 0
𝑎𝑏𝑏 no, 1
𝑏 yes, 0
𝑎𝑎 no, ⊥
𝑎𝑏𝑎𝑎 yes, 0
𝑎𝑏𝑎𝑏 yes, 0
𝑎𝑏𝑏𝑎 yes, 0
𝑎𝑏𝑏𝑏 no, ⊥

𝜀
𝜀 no, 0
𝑎 no, 1
𝑎𝑏 no, 1
𝑎𝑏𝑎 yes, 0
𝑎𝑏𝑏 no, 1
𝑎𝑏𝑏𝑏 no, 1
𝑏 yes, 0
𝑎𝑎 no, ⊥
𝑎𝑏𝑎𝑎 yes, 0
𝑎𝑏𝑎𝑏 yes, 0
𝑎𝑏𝑏𝑎 yes, 0
𝑎𝑏𝑏𝑏𝑎 yes, 0
𝑎𝑏𝑏𝑏𝑏 no, ⊥

Figure 5.7: Observation tables exposing an infinite loop when using the 𝐿∗ algorithm.

[LN12]: Leucker et al. (2012),
“Learning Minimal Deterministic
Automata from Inexperienced
Teachers”

obtain the second table of Figure 5.7.
Notice that the row for 𝑎𝑏𝑏 is now no, 1. That is, the row changed, as the
set Pref (𝒪≤1) now contains 𝑎𝑏𝑏 as a prefix of 𝑎𝑏𝑏𝑎 ∈ 𝐿≤1. Again, the table
is not closed due to 𝑎𝑏𝑏𝑏, meaning that 𝑎𝑏𝑏𝑏 must be moved to the upper
part of the table. We obtain the third table of Figure 5.7 and exactly the
same problem: the row for 𝑎𝑏𝑏𝑏 changed and the table is not closed due
to 𝑎𝑏𝑏𝑏𝑏, and so on. Hence, trying to make the table closed leads to an
infinite loop. We thus need to refine 𝐿∗ to take into account two different
sets of separators: one that is used to know whether a word is in the target
language, and one for the counter values.

5.4.3. Approximation sets

To avoid an infinite loop when making the table closed, as described in the
previous example, we modify both the concept of table and how to derive an
equivalence relation from that table. As already explained, we introduce the
set ̂𝑆. However, this means that it is harder to extract a relation from 𝒪≤ℓ that
approximates ∼𝒜 (up to the counter limit ℓ). In particular, the presence of
the ⊥ symbols may lead to cases where two words 𝑢 ∼𝒜 𝑣 have different row
contents, i.e., 𝐶(𝑢𝑠) ≠ 𝐶(𝑣𝑠) for some 𝑠 ∈ 𝑆. We thus need to treat ⊥ as a
sort of wildcard, and require equality of rows, up to the ⊥ cells. Interestingly,
such wildcard entries in observation tables also feature in the work of Leucker
and Neider on learning from an “inexperienced” teacher [LN12].

Definition 5.4.9 (Approximation set). Let 𝒪≤ℓ be an observation table up
to ℓ, and 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ. Then, 𝑢 ∈ Approx(𝑣) if and only if:

▶ for all 𝑠 ∈ 𝑆, 𝑇(𝑢𝑠) = 𝑇(𝑣𝑠), and
▶ for all 𝑠 ∈ 𝑆, if 𝐶(𝑢𝑠) ≠ ⊥ and 𝐶(𝑣𝑠) ≠ ⊥, then 𝐶(𝑢𝑠) = 𝐶(𝑣𝑠).

The set Approx(𝑣) is called an approximation set .
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5: Of course, the sets may increase
in size due to new words.

We highlight that we still require equality of rows for 𝑇, i.e., only the values 𝐶
may differ. Moreover, only the separators in 𝑆 are considered.

When defining properties over approximation sets, we will mostly focus on
words for which we know their counter value. That is, we ignore words that,
as far as know with the current knowledge, belong to the bin class of 𝐵𝐺(𝒜).
Those words are such that 𝐶(𝑢) = ⊥ (which is the only possible value when
𝑢 ∉ Pref (𝒪≤ℓ)).

Definition 5.4.10 (⊥-word). If 𝐶(𝑢) = ⊥ with 𝑢 ∈ 𝑅 ∪ 𝑅Σ, we say that 𝑢
is a ⊥-word. We write 𝑅 (resp. 𝑅 ∪ 𝑅Σ) the set of representatives that are
not ⊥-words:

𝑅 = {𝑤 ∈ 𝑅 ∣ 𝐶(𝑢) ≠ ⊥}

𝑅 ∪ 𝑅Σ = {𝑤 ∈ 𝑅 ∪ 𝑅Σ ∣ 𝐶(𝑢) ≠ ⊥}.

Just like in [LN12], a crucial part of our learning algorithm concerns how
to obtain an equivalence relation from an observation table with wildcards.
Indeed, note that Approx does not define an equivalence relation as it is not
transitive, i.e., it is not true in general that if 𝑢 ∈ Approx(𝑣) and 𝑣 ∈ Approx(𝑤),
then 𝑢 ∈ Approx(𝑤) due to the ⊥ values. However, Approx is reflexive (i.e.,
𝑢 ∈ Approx(𝑢)) and symmetric (i.e., 𝑢 ∈ Approx(𝑣) ⇔ 𝑣 ∈ Approx(𝑢)).

Example 5.4.11. Let 𝒪≤ℓ be the table from Figure 5.6 𝜀 𝑎 𝑏𝑎
𝜀 no, 0 no yes
𝑎 no, 1 no yes
𝑎𝑏 no, 1 yes yes
𝑎𝑏𝑎 yes, 0 yes yes
𝑎𝑎 no, ⊥ no no
𝑏 yes, 0 yes yes
𝑎𝑏𝑏 no, 1 yes yes
𝑎𝑏𝑎𝑎 yes, 0 yes yes
𝑎𝑏𝑎𝑏 yes, 0 yes yes
𝑎𝑎𝑎 no, ⊥ no no
𝑎𝑎𝑏 no, ⊥ no no

(which is repeated in the
margin). Notice that 𝑆 = {𝜀} and we do not take into account ̂𝑆 = {𝑎, 𝑏𝑎}
to compute the approximation sets.
We compute Approx(𝜀). We can see that 𝑎𝑏𝑎 ∉ Approx(𝜀) as 𝑇(𝑎𝑏𝑎) = yes
and 𝑇(𝜀) = no. Moreover, 𝑎 ∉ Approx(𝜀) since 𝐶(𝑎) ≠ ⊥, 𝐶(𝜀) ≠
⊥, and 𝐶(𝑎) ≠ 𝐶(𝜀) With the same arguments, we also discard
𝑎𝑏, 𝑏, 𝑎𝑏𝑏, 𝑎𝑏𝑎𝑎, 𝑎𝑏𝑎𝑏. Thus, Approx(𝜀) = {𝜀, 𝑎𝑎, 𝑎𝑎𝑎, 𝑎𝑎𝑏}.
Finally, Approx(𝑎𝑎) = {𝜀, 𝑎, 𝑎𝑏, 𝑎𝑎, 𝑎𝑏𝑏, 𝑎𝑎𝑎, 𝑎𝑎𝑏}, i.e., every word 𝑢 such
that 𝑇(𝑢) = no is in the approximation set of 𝑎𝑎, due to the fact that 𝑎𝑎 is a
⊥-word.

We claim that, if we extend the observation table and observe that 𝑢 is in the
approximation set of 𝑣, then it must be that 𝑢 was already in the approximation
set of 𝑣 for every 𝑢 and 𝑣 present in the table before the extension. That is, the
approximation sets restricted to the already known words cannot increase.5

We denote by Approx′ the approximation sets with respect to the table 𝒪′
≤ℓ.

Lemma 5.4.12. Let 𝒪≤ℓ and 𝒪′
≤ℓ be two observation tables up to the same

counter limit ℓ ∈ ℕ such that 𝑅 ∪ 𝑅Σ ⊆ 𝑅′ ∪ 𝑅′Σ, 𝑆 ⊆ 𝑆′, and ̂𝑆 ⊆ ̂𝑆′.
Then,

∀𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ ∶ 𝑢 ∈ Approx′(𝑣) ⇒ 𝑢 ∈ Approx(𝑣).

Proof. By hypothesis, since both tables use the same counter limit ℓ, the
same language 𝐿≤ℓ is considered. Thus it holds that 𝑇(𝑢𝑠) = 𝑇 ′(𝑢𝑠) for all
𝑢 ∈ 𝑅 ∪ 𝑅Σ and 𝑠 ∈ 𝑆. Moreover, we have Pref (𝒪≤ℓ) ⊆ Pref (𝒪′

≤ℓ) and

∀𝑢𝑠 ∈ (𝑅 ∪ 𝑅Σ) ⋅ 𝑆 ∶ 𝐶(𝑢𝑠) ≠ ⊥ ⇒ 𝐶′(𝑢𝑠) = 𝐶(𝑢𝑠),
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[Ang87]: Angluin (1987), “Learn-
ing Regular Sets from Queries and
Counterexamples”

6: That is, under this condition,
Approx becomes an equivalence re-
lation.

and some 𝐶(𝑢𝑠) = ⊥ can possibly be replaced by 𝐶′(𝑢𝑠) ∈ {0, … , ℓ}.
Let 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ be such that 𝑢 ∈ Approx′(𝑣), i.e.,

∀𝑠 ∈ 𝑆′ ∶ 𝑇 ′(𝑢𝑠) = 𝑇 ′(𝑣𝑠)
and

∀𝑠 ∈ 𝑆′ ∶ 𝐶′(𝑢𝑠) ≠ ⊥ ∧ 𝐶′(𝑣𝑠) ≠ ⊥ ⇒ 𝐶′(𝑢𝑠) = 𝐶′(𝑣𝑠).

We want to show that 𝑢 ∈ Approx(𝑣).
Let 𝑠 ∈ 𝑆. We start by proving that 𝑇(𝑢𝑠) = 𝑇(𝑣𝑠). Since 𝑢 ∈ Approx′(𝑣),
we have 𝑇 ′(𝑢𝑠) = 𝑇 ′(𝑣𝑠). Therefore,

𝑇(𝑢𝑠) = 𝑇 ′(𝑢𝑠) = 𝑇 ′(𝑣𝑠) = 𝑇(𝑣𝑠).

We now show that

𝐶(𝑢𝑠) ≠ ⊥ ∧ 𝐶(𝑣𝑠) ≠ ⊥ ⇒ 𝐶(𝑢𝑠) = 𝐶(𝑣𝑠).

From 𝐶(𝑢𝑠) ≠ ⊥ ∧ 𝐶(𝑣𝑠) ≠ ⊥, it follows that 𝐶′(𝑢𝑠) ≠ ⊥ ∧ 𝐶′(𝑣𝑠) ≠ ⊥.
Since 𝑢 ∈ Approx′(𝑣), we have 𝐶(𝑢𝑠) = 𝐶′(𝑢𝑠) = 𝐶′(𝑣𝑠) = 𝐶(𝑣𝑠). �

We now move towards formalizing the relation between ∼𝒜 and Approx .
Namely, we can show that Approx is coarser than ∼𝒜 when we consider
(extended) representatives that are not ⊥-words. This restriction to 𝑅 ∪ 𝑅Σ
allows us to reason only on words that are known to be in the prefix of the
target language. We prove that two such words equivalent according to ∼𝒜
must necessarily have the same row contents. Furthermore, all ⊥-words are
in the same approximation set (which represents the “bin class” of ∼𝒜), which
follows naturally from the definition of a ⊥-word. The proper proof is deferred
to Section A.3.

Proposition 5.4.13. Let 𝒪≤ℓ be an observation table up to ℓ ∈ ℕ. Then,

∀𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ ∶ 𝑢 ∼𝒜 𝑣 ⇒ 𝑢 ∈ Approx(𝑣).

∀𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ ∖ 𝑅 ∪ 𝑅Σ ∶ Approx(𝑢) = Approx(𝑣).

Towards a congruence

In order to be able to construct a hypothesis from 𝒪≤ℓ, we have to derive
a congruence from the table. As is done in 𝐿∗ [Ang87], we define some
constraints that the table must respect in order to obtain a congruence relation
from Approx . This is more complex than for 𝐿∗, namely, the table must be
closed, Σ-consistent, and ⊥-consistent. The first two constraints are similar to
the ones already imposed by 𝐿∗ while the last one is new. Crucially, it implies
that Approx is transitive.6

Definition 5.4.14 (Closed, Σ-consistent, and ⊥-consistent table). Let 𝒪≤ℓ
be an observation table up to ℓ ∈ ℕ. We say the table is:

▶ closed if Approx(𝑢) ∩ 𝑅 ≠ ∅ for all 𝑢 ∈ 𝑅Σ, and open otherwise,
▶ Σ-consistent if for all 𝑢 ∈ 𝑅, 𝑎 ∈ Σ, and 𝑣 ∈ Approx(𝑢) ∩ 𝑅, 𝑢 ⋅ 𝑎 ∈
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Approx(𝑣 ⋅ 𝑎), and Σ-inconsistent otherwise,
▶ ⊥-consistent if for all 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ such that 𝑢 ∈ Approx(𝑣), it

holds that for all 𝑠 ∈ 𝑆 𝐶(𝑢 ⋅ 𝑠) = ⊥ if and only if 𝐶(𝑣 ⋅ 𝑠) = ⊥, and
⊥-inconsistent otherwise.

Example 5.4.15. Let 𝒪≤ℓ be the table from Figure 5.6 (which 𝜀 𝑎 𝑏𝑎
𝜀 no, 0 no yes
𝑎 no, 1 no yes
𝑎𝑏 no, 1 yes yes
𝑎𝑏𝑎 yes, 0 yes yes
𝑎𝑎 no, ⊥ no no
𝑏 yes, 0 yes yes
𝑎𝑏𝑏 no, 1 yes yes
𝑎𝑏𝑎𝑎 yes, 0 yes yes
𝑎𝑏𝑎𝑏 yes, 0 yes yes
𝑎𝑎𝑎 no, ⊥ no no
𝑎𝑎𝑏 no, ⊥ no no

is repeated in
the margin). We have Approx(𝑏) ∩ 𝑅 ≠ ∅ because 𝑎𝑏𝑎 ∈ Approx(𝑏). More
generally one can check that 𝒪≤ℓ is closed.
However, 𝒪≤ℓ is not Σ-consistent. Indeed,

𝜀 ⋅ 𝑏 ∉ ⋂
𝑣∈Approx(𝜀)∩𝑅

Approx(𝑣 ⋅ 𝑏)

since Approx(𝜀) ∩ 𝑅 = {𝜀, 𝑎𝑎} and 𝜀 ⋅ 𝑏 ∉ Approx(𝑎𝑎 ⋅ 𝑏).
Finally, 𝒪≤ℓ is also not ⊥-consistent since 𝑎𝑎 ∈ Approx(𝜀) but 𝐶(𝑎𝑎) = ⊥
and 𝐶(𝜀) = 0.

Before explaining how to ensure that the table satisfies the three conditions,
let us argue why it is sufficient to obtain a right-congruence. We highlight
again that Approx is transitive when 𝒪≤ℓ is ⊥-consistent. This allows us to
define an equivalence relation similarly to what is done in 𝐿∗: two rows are
equivalent when they have the same contents. Section 5.4.4 explains how to
construct an ROCA from this relation.

Definition 5.4.16 (Relation over 𝑅). Let 𝒪≤ℓ be a closed, Σ-, and ⊥-
consistent observation table up to ℓ. We say that two words 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ
are ≡𝒪≤ℓ

-equivalent, denoted by 𝑢 ≡𝒪≤ℓ
𝑣, if and only if 𝑢 ∈ Approx(𝑣).

It is not hard to see that ≡𝒪≤ℓ
is reflexive and symmetric. Showing that it

is transitive requires more care, due to the approximation sets, but can be
obtained from the definition of a ⊥-consistent table. Finally, as the next
proposition states, ≡𝒪≤ℓ

is a right-congruence over 𝑅 when the table is closed,
Σ- and ⊥-consistent.

Proposition 5.4.17. Let 𝒪≤ℓ be a closed, Σ- and ⊥-consistent observation
table up to ℓ ∈ ℕ. Then, ≡𝒪≤ℓ

is an equivalence relation over 𝑅 ∪ 𝑅Σ that is
a congruence over 𝑅.

Proof. We first show that ≡𝒪≤ℓ
is an equivalence relation over 𝑅∪𝑅Σ, before

proving that it is a congruence over 𝑅.

≡𝒪≤ℓ
is an equivalence relation over 𝑅 ∪ 𝑅Σ. It is easy to see that ≡𝒪≤ℓ

is reflexive and symmetric. We thus need to show the transitivity aspect.
Let 𝑢, 𝑣, 𝑤 ∈ 𝑅 ∪ 𝑅Σ be such that 𝑢 ∈ Approx(𝑣) and 𝑣 ∈ Approx(𝑤). We
want to show that 𝑢 ∈ Approx(𝑤), i.e.,

∀𝑠 ∈ 𝑆 ∶ 𝑇(𝑢𝑠) = 𝑇(𝑤𝑠)
and

∀𝑠 ∈ 𝑆 ∶ 𝐶(𝑢𝑠) ≠ ⊥ ∧ 𝐶(𝑤𝑠) ≠ ⊥ ⇒ 𝐶(𝑢𝑠) = 𝐶(𝑤𝑠).
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7: 𝑆, 𝑆 are left unchanged.

Let 𝑠 ∈ 𝑆. By hypothesis, we have 𝑇(𝑢𝑠) = 𝑇(𝑣𝑠) and 𝑇(𝑣𝑠) = 𝑇(𝑤𝑠). So,
𝑇(𝑢𝑠) = 𝑇(𝑤𝑠).
Now, assume 𝐶(𝑢𝑠) ≠ ⊥ ∧ 𝐶(𝑤𝑠) ≠ ⊥. Since the table is ⊥-consistent and
𝑢 ∈ Approx(𝑣), it must hold that 𝐶(𝑣𝑠) ≠ ⊥. Therefore, 𝐶(𝑢𝑠) = 𝐶(𝑣𝑠).
Likewise, we deduce that 𝐶(𝑣𝑠) = 𝐶(𝑤𝑠) since 𝑣 ∈ Approx(𝑤). We conclude
that 𝐶(𝑢𝑠) = 𝐶(𝑤𝑠).

≡𝒪≤ℓ
is a congruence over𝑅. Second, we prove that ≡𝒪≤ℓ

is a congruence
over 𝑅. Let 𝑢, 𝑣 ∈ 𝑅 be such that 𝑢 ≡𝒪≤ℓ

𝑣 and let 𝑎 ∈ Σ. Since the table is
closed, there exist 𝑢′, 𝑣′ ∈ 𝑅 such that 𝑢′ ≡𝒪≤ℓ

𝑢𝑎 and 𝑣′ ≡𝒪≤ℓ
𝑣𝑎. Since the

table is Σ-consistent, we have

𝑢𝑎 ∈ ⋂
𝑤∈Approx(𝑢)∩𝑅

Approx(𝑤𝑎).

Thus, as 𝑣 ∈ Approx(𝑢) ∩ 𝑅, we have 𝑢𝑎 ∈ Approx(𝑣𝑎), i.e., 𝑢𝑎 ≡𝒪≤ℓ
𝑣𝑎. It

follows that 𝑢′ ≡𝒪≤ℓ
𝑣′. �

Let us now explain how one can extend the table in order to make sure it
satisfies the three conditions. While we state lemmas giving the growth of the
table after resolving one problem, showing the following proposition saying
that we can always obtain a closed, Σ- and ⊥-consistent table in finite time
requires more work. The proof is deferred to Section A.8.2.

Proposition 5.4.18. Given an observation table 𝒪≤ℓ up to ℓ ∈ ℕ, there exists
an algorithm that makes it closed, Σ- and ⊥-consistent in a finite amount of
time.

Making the table closed

Assume 𝒪≤ℓ is open, i.e.,

∃𝑢 ∈ 𝑅Σ ∶ Approx(𝑢) ∩ 𝑅 = ∅.

We say that we have a 𝑢-openness. Notice that we have 𝑢 ∉ 𝑅 since 𝑢 ∈
Approx(𝑢) and Approx(𝑢) ∩ 𝑅 = ∅. We thus add 𝑢 as a new representative.7

Then, 𝑢 is no longer a wordmaking the table open, i.e., the previous 𝑢-openness
is resolved.

The next lemma states that this construction is correct, in the sense that the
openness is resolved, and the number of queries to do so. The proof is given
in Section A.4.

Lemma 5.4.19. Let 𝒪≤ℓ = (𝑅, 𝑆, ̂𝑆, 𝑇, 𝐶) be an observation table and
𝒪′

≤ℓ = (𝑅′, 𝑆′, ̂𝑆′, 𝑇 ′, 𝐶′) be the observation table obtained after resolving a
𝑢-openness (with 𝑢 ∈ 𝑅Σ ∖ 𝑅). Then,

▶ |𝑅′| = |𝑅| + 1, |𝑆′| = |𝑆|, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣,
▶ Approx′(𝑢) ∩ 𝑅′ = {𝑢}, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.
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8: 𝑅 is left unchanged. We add 𝑎𝑠
to 𝑆 in order to maintain 𝑆′ ⊆ 𝑆′.

9: 𝑅 and 𝑆 are left unchanged.

Making the table Σ-consistent

Assume 𝒪≤ℓ is Σ-inconsistent, i.e.,

∃𝑢𝑎 ∈ 𝑅Σ, ∃𝑣 ∈ 𝑅 ∶ 𝑣 ∈ Approx(𝑢) and 𝑢𝑎 ∉ Approx(𝑣𝑎).

We say that we have a (𝑢, 𝑣, 𝑎)-Σ-inconsistency. By definition, there exists
𝑠 ∈ 𝑆 such that either

▶ 𝑇(𝑢𝑎𝑠) ≠ 𝑇(𝑣𝑎𝑠), or
▶ 𝐶(𝑢𝑎𝑠) ≠ ⊥, 𝐶(𝑣𝑎𝑠) ≠ ⊥, and 𝐶(𝑢𝑎𝑠) ≠ 𝐶(𝑣𝑎𝑠).

In both cases, we add 𝑎𝑠 in both 𝑆 and ̂𝑆.8

The next lemma indicates that the (𝑢, 𝑣, 𝑎)-Σ-inconsistency is resolved since
it states that 𝑣 no longer belongs to Approx′(𝑢). Moreover, this approximation
set gets smaller, and the complexity in number of queries is also provided. The
proof is deferred to Section A.5.

Lemma 5.4.20. Let 𝒪≤ℓ be an observation table and 𝒪′
≤ℓ be the observation

table obtained after resolving a (𝑢, 𝑣, 𝑎)-Σ-inconsistency (with 𝑢𝑎 ∈ 𝑅Σ and
𝑣 ∈ 𝑅). Then,

▶ |𝑅′| = |𝑅|, |𝑆′| = |𝑆| + 1, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣ + 1,
▶ 𝑣 ∉ Approx′(𝑢),
▶ ∣Approx′(𝑢)∣ < |Approx(𝑢)|, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.

Making the table ⊥-consistent

Assume 𝒪≤ℓ is ⊥-inconsistent, i.e., there exist 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ and 𝑠 ∈ 𝑆 such
that

𝑢 ∈ Approx(𝑣) ∧ (𝐶(𝑢𝑠) ≠ ⊥ ⇔ 𝐶(𝑣𝑠) = ⊥) .

We say that we have a (𝑢, 𝑣, 𝑠)-⊥-inconsistency and we call mismatch the
disequality 𝐶(𝑢𝑠) ≠ ⊥ ⇔ 𝐶(𝑣𝑠) = ⊥. We now explain how to resolve this
⊥-inconsistency. Let us assume, without loss of generality, that 𝐶(𝑢𝑠) ≠ ⊥
and 𝐶(𝑣𝑠) = ⊥. So, 𝑢𝑠 ∈ Pref (𝒪≤ℓ), i.e., there exist 𝑢′ ∈ 𝑅 ∪ 𝑅Σ and 𝑠′ ∈ ̂𝑆
such that 𝑢𝑠 ∈ Pref (𝑢′𝑠′) and 𝑇(𝑢′𝑠′) = yes. We denote by 𝑠″ the word such
that 𝑢𝑠″ = 𝑢′𝑠′. Notice that 𝑠 is a prefix of 𝑠″. We have two cases according
to whether 𝑢′ is a prefix of 𝑢 (see Figure 5.8a) or 𝑢 is a proper prefix of 𝑢′ (see
Figure 5.8b).

▶ We first suppose that 𝑢′ is a prefix of 𝑢.
Let us show that 𝑠″ ∈ ̂𝑆 ∖ 𝑆. As ̂𝑆 is suffix-closed, and 𝑠″ is a suffix
of 𝑠′ ∈ ̂𝑆, it follows that 𝑠″ belongs to ̂𝑆. By contradiction, assume
𝑠″ ∈ 𝑆. Since 𝑢 ∈ Approx(𝑣) and 𝑇(𝑢𝑠″) = 𝑇(𝑢′𝑠′) = yes, we have
𝑇(𝑣𝑠″) = 𝑇(𝑢𝑠″) = yes. Moreover, since 𝑠 is a prefix of 𝑠″, it holds that
𝑣𝑠 ∈ Pref (𝒪≤ℓ). This means that 𝐶(𝑣𝑠) ≠ ⊥ which is a contradiction.
To resolve the (𝑢, 𝑣, 𝑠)-⊥-inconsistency, we add all suffixes of 𝑠″ in 𝑆. 9
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𝑢 𝑠

𝑢′ 𝑠′

𝑠″

(a) 𝑢′ is a prefix of 𝑢.

𝑢 𝑠

𝑢′ 𝑠′

𝑠″

(b) 𝑢 is a proper prefix of 𝑢′.

Figure 5.8: The different words used to resolve a (𝑢, 𝑣, 𝑠)-⊥-inconsistency.

10: 𝑅 and 𝑆 are left unchanged.

11: 𝑅 is left unchanged.

Proposition 5.4.17. Let 𝒪≤ℓ
be a closed, Σ- and ⊥-
consistent observation table
up to ℓ ∈ ℕ. Then, ≡𝒪≤ℓ

is
an equivalence relation over
𝑅 ∪ 𝑅Σ that is a congruence
over 𝑅.

▶ We then suppose that 𝑢 is a proper prefix of 𝑢′.
Then, to resolve the (𝑢, 𝑣, 𝑠)-⊥-inconsistency, we have two cases:

• If 𝑣𝑠″ ∈ 𝐿≤ℓ, we add all suffixes of 𝑠″ in ̂𝑆.10

• If 𝑣𝑠″ ∉ 𝐿≤ℓ, we add all suffixes of 𝑠″ in ̂𝑆 and in 𝑆.11

The next lemma indicates that the (𝑢, 𝑣, 𝑠)-⊥-inconsistency is indeed resolved,
i.e., 𝑢 ∉ Approx′(𝑣) or the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔ 𝐶(𝑣𝑠) = ⊥ is eliminated.
It also gives the complexity in number of queries. The proof is deferred to
Section A.6.

Lemma 5.4.21. Let 𝒪≤ℓ be an observation table and 𝒪′
≤ℓ be the observation

table obtained after resolving a (𝑢, 𝑣, 𝑠)-⊥-inconsistency (with 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ
and 𝑠 ∈ 𝑆). Then,

▶ |𝑅′| = |𝑅|, |𝑆′| ≤ |𝑅 ∪ 𝑅Σ| + ∣ ̂𝑆∣, ∣ ̂𝑆′∣ ≤ |𝑅 ∪ 𝑅Σ| + ∣ ̂𝑆∣,
▶ if 𝑢′ is a prefix of 𝑢, then 𝑢 ∉ Approx′(𝑣),
▶ if 𝑢 is a proper prefix of 𝑢′, then,

• if 𝑣𝑠″ ∈ 𝐿≤ℓ, then 𝑢 ∈ Approx′(𝑣) implies that 𝐶′(𝑢𝑠) = 𝐶′(𝑣𝑠),
and

• if 𝑣𝑠″ ∉ 𝐿≤ℓ, then 𝑢 ∉ Approx′(𝑣),
▶ either ∣Approx′(𝑣)∣ < |Approx(𝑣)| or the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔

𝐶(𝑣𝑠) = ⊥ is eliminated,
▶ if the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔ 𝐶(𝑣𝑠) = ⊥ is eliminated, we have

|𝑆′| = |𝑆|, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.

5.4.4. Hypothesis construction

Let us now explain how to construct the hypothesis DFA from 𝒪≤ℓ, once the
table is closed, Σ- and ⊥-consistent. The equivalence classes of ≡𝒪≤ℓ

form its
set of states and transitions are easily defined thanks to Proposition 5.4.17.
That is, the construction of the DFA follows naturally from the fact that ≡𝒪≤ℓ

is
a right-congruence. For convenience, we give here a complete construction.

Definition 5.4.22 (Hypothesis construction). Let 𝒪≤ℓ be a closed, Σ- and
⊥-consistent observation table up to ℓ ∈ ℕ. From ≡𝒪≤ℓ

, we define the DFA
ℋ≤ℓ = (Σ, 𝑄, 𝑞0, 𝐹 , 𝛿) with:
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▶ 𝑄 = {J𝑢K≡𝒪≤ℓ
∣ 𝑢 ∈ 𝑅},

▶ 𝑞0 = J𝜀K≡𝒪≤ℓ
,

▶ 𝐹 = {J𝑢K≡𝒪≤ℓ
∣ 𝑇(𝑢) = yes}, and

▶ the (total) transition function 𝛿 is defined such that for all J𝑢K≡𝒪≤ℓ
∈ 𝑄

and 𝑎 ∈ Σ,
J𝑢K≡𝒪≤ℓ

𝑎
−→ J𝑢𝑎K≡𝒪≤ℓ

∈ runs(ℋ≤ℓ).

The next lemma states thatℋ≤ℓ is well-defined and its definition makes sense
with regards to the information stored in the table 𝒪≤ℓ.

Lemma 5.4.23. Let 𝒪≤ℓ be a closed, Σ- and ⊥-consistent observation table
up to ℓ ∈ ℕ, and ℋ≤ℓ be the constructed DFA. Then,

▶ ℋ≤ℓ is well-defined and
▶ for all 𝑢 ∈ 𝑅 ∪ 𝑅Σ ∶ 𝑢 ∈ ℒ(ℋ≤ℓ) ⇔ 𝑢 ∈ 𝐿≤ℓ.

Proof. Let us first explain whyℋ≤ℓ is well-defined. The initial state is well
defined since 𝜀 ∈ 𝑅. The set of final states is well defined because

𝑢 ≡𝒪≤ℓ
𝑣 ∧ 𝑇(𝑢) = yes ⇒ 𝑇(𝑣) = yes.

The transition function is well defined because the table 𝒪≤ℓ is closed and
≡𝒪≤ℓ

is a congruence.
Let us prove the second statement of the lemma. An easy induction shows
that

∀𝑢 ∈ 𝑅 ∪ 𝑅Σ ∶ 𝑞0
𝑢
−→ J𝑢K≡𝒪≤ℓ

.

Therefore, for all such 𝑢, we get 𝑢 ∈ ℒ(ℋ≤ℓ) ⇔ 𝑢 ∈ 𝐿≤ℓ. �

Isomorphism with the behavior graph

Finally, let us argue that it is reasonable to learn 𝐿≤ℓ. That is, once ℓ is big
enough, we want to be able to construct an ROCA that accepts the target
language 𝐿. If ℋ≤ℓ accepts the language 𝐿≤ℓ, the next proposition states
that the initial fragments (up to a certain counter limit) of both ℋ≤ℓ and
𝐵𝐺(𝒜) are isomorphic. This means that, if ℓ is big enough, we can extract
a periodic description fromℋ≤ℓ that is valid for 𝐵𝐺(𝒜). A proof is given in
Section A.7.

Proposition 5.4.24. Let 𝐵𝐺(𝒜) be the behavior graph of an ROCA 𝒜, 𝐾 be
its width, 𝑚, 𝑘 be the offset and the period of a periodic description of 𝐵𝐺(𝒜),
𝑠 = 𝑚 + (𝐾 ⋅ 𝑘)4, and 𝒪≤ℓ be a closed, Σ- and ⊥-consistent observation table
up to ℓ > 𝑠 such that ℒ(ℋ≤ℓ) = 𝐿≤ℓ. Then, the subgraphs of 𝐵𝐺(𝒜) and
ℋ≤ℓ restricted to the reachable and co-reachable states and to the levels 0 to
ℓ − 𝑠 are isomorphic.
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Algorithm 5.1: Overall 𝐿∗
ROCAalgorithm.

1: Initialize 𝒪≤ℓ with ℓ = 0, 𝑅 = 𝑆 = ̂𝑆 = {𝜀}
2: while true do
3: Make 𝒪≤ℓ closed, Σ-consistent, and ⊥-consistent
4: Construct the DFAℋ≤ℓ from 𝒪≤ℓ
5: 𝑣 ← PEQ(ℋ≤ℓ, ℓ)
6: if 𝑣 ≠ yes then Update 𝒪≤ℓ with 𝑣 ▷ ℓ is not modified
7: else
8: 𝑊 ← ∅
9: for all periodic descriptions 𝛼 ofℋ≤ℓ do

10: Construct the VOCAℋ𝛼 from 𝛼
11: 𝑣𝛼 ← EQ(ℋ𝛼)
12: if 𝑣𝛼 = yes then returnℋ𝛼
13: else if 𝑣𝛼 ∈ ℒ(ℋ𝛼) ⇔ 𝑣𝛼 ∈ ℒ(ℋ≤ℓ) ∧ MQ(𝑣𝛼) = yes then
14: 𝑊 ← 𝑊 ∪ {𝑣𝛼}
15: if 𝑊 = ∅ then
16: LetℋROCA

≤ℓ beℋ≤ℓ seen as an ROCA
17: 𝑤 ← EQ(ℋROCA

≤ℓ )
18: if 𝑤 = yes then returnℋROCA

≤ℓ ▷ The target language is regular
19: else 𝑊 ← 𝑊 ∪ {𝑤}
20: Select an arbitrary 𝑤 from 𝑊
21: ℓ ← max𝑥∈Pref (𝑤) CVQ(𝑥) ▷ ℓ is increased
22: Update 𝒪≤ℓ with 𝑤

12: Counterexample processing is
given below.

Proposition 5.4.24. Let
𝐵𝐺(𝒜) be the behavior
graph of an ROCA 𝒜, 𝐾
be its width, 𝑚, 𝑘 be the
offset and the period of
a periodic description of
𝐵𝐺(𝒜), 𝑠 = 𝑚 + (𝐾 ⋅ 𝑘)4,
and 𝒪≤ℓ be a closed, Σ- and
⊥-consistent observation
table up to ℓ > 𝑠 such
that ℒ(ℋ≤ℓ) = 𝐿≤ℓ. Then,
the subgraphs of 𝐵𝐺(𝒜)
and ℋ≤ℓ restricted to the
reachable and co-reachable
states and to the levels 0 to
ℓ − 𝑠 are isomorphic.

5.4.5. Main loop

We are now ready to give the main loop of 𝐿∗
ROCA. Algorithm 5.1 gives a pseudo-

code. We start by initializing the observation table 𝒪≤ℓ with ℓ = 0, 𝑅 = 𝑆 =
̂𝑆 = {𝜀}. Then, we make the table closed, Σ-, and ⊥-consistent, construct

the DFAℋ≤ℓ, and ask PEQ(ℋ≤ℓ). If the teacher answers positively, we have
learned a DFA accepting 𝐿≤ℓ. Otherwise, we use the provided counterexample
to update the table without increasing ℓ.12

Once the learned DFA ℋ≤ℓ accepts the language 𝐿≤ℓ, we know by Propo-
sition 5.4.24 that the first levels of ℋ≤ℓ and 𝐵𝐺(𝒜) are isomorphic (once
restricted to the reachable and co-reachable states). This means that, once we
have learned a long enough initial fragment, we can extract a periodic descrip-
tion fromℋ≤ℓ that is valid for 𝐵𝐺(𝒜). Hence we extract all possible periodic
descriptions 𝛼 fromℋ≤ℓ, exactly as for VOCAs. By Proposition 5.3.12, each
of these descriptions 𝛼 yields an ROCAℋ𝛼 on which we ask an equivalence
query. If the teacher answers positively, we have learned an ROCA accepting
𝐿 and we are done. Otherwise, the teacher returns a counterexample 𝑣𝛼.

Given the fact that we will have to increase ℓ if none of the ROCAs accepts
𝐿, we must make sure that we can call CVQ(𝑣𝛼), i.e., that 𝑣𝛼 is in the prefix
of the target language. First, we check whether 𝑤 ∉ ℒ(ℋ𝛼) ⇔ 𝑤 ∈ ℒ(ℋ≤ℓ),
which may happen if the description 𝛼 only considers the first few levels of the
DFAℋ≤ℓ and, by doing so, discards important knowledge appearing on the
further levels. If it does not hold, then we know that every word in Pref (𝒪≤ℓ)
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Proposition 5.3.12.
Let 𝐵𝐺(𝒜) be the be-
havior graph of some
sound ROCA 𝒜 and 𝛼 =
𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔

be an ultimately periodic
description of 𝐵𝐺(𝒜) with
offset 𝑚 and period 𝑘. Then,
one can construct an ROCA
𝒜𝛼 from 𝛼 such that

▶ ℒ(𝒜𝛼) = ℒ(𝒜), and
▶ the size of 𝒜𝛼 is poly-

nomial in 𝑚, 𝑘 and
width(𝐵𝐺(𝒜)).

13: This requires a counter value
query.

14: Observe that the sets of separa-
tors are unchanged so far.

is correctly accepted or rejected byℋ𝛼. As we are not able to guess whether
𝑣𝛼 is in Pref (𝐿) from the current knowledge, we simply check whether 𝑣𝛼 ∈ 𝐿.
If it is the case, we know that we can call CVQ(𝑣𝛼), as required.

If we do not have any ROCAs or every counterexample was discarded, we use
ℋ≤ℓ directly as an ROCA (this can be done simply by constructing an ROCA
that simulatesℋ≤ℓ without ever modifying the counter). Since we know that
ℒ(ℋ≤ℓ) = 𝐿≤ℓ, we are sure the returned counterexample is usable. Note that
if 𝐿 is regular, it may happen thatℋ≤ℓ accepts 𝐿. In which case, we simply
return the ROCA constructed fromℋ≤ℓ.

Finally, let 𝑤 be an arbitrary counterexample among the ones that were not
discarded. The new counter limit is the height of 𝑤, i.e., ℓ = height𝒜(𝑤).13
This is possible thanks to the above constraints over the counterexamples. We
then extend and update the table by adding Pref (𝑤) to 𝑅. Notice that this
operation may change some values of 𝑇 since a word that was rejected may
now be accepted due to the higher counter limit.

Handling counterexamples

Given an observation table 𝒪≤ℓ that is closed, Σ-consistent and ⊥-consistent,
letℋ≤ℓ be the DFA constructed from 𝒪≤ℓ like described in Definition 5.4.22.
If the teacher’s answer to a PEQ overℋ≤ℓ is positive, the learned DFAℋ≤ℓ
exactly accepts 𝐿≤ℓ. Otherwise, the teacher returns a counterexample, that is,
a word 𝑤 ∈ Σ∗ such that

𝑤 ∈ 𝐿≤ℓ ⇔ 𝑤 ∉ ℒ(ℋ≤ℓ).

We extend and update the table 𝒪≤ℓ to obtain a new observation table 𝒪′
≤ℓ =

(𝑅′, 𝑆′, ̂𝑆′, 𝑇 ′, 𝐶′) where we add every prefix of 𝑤 as a new representative,
i.e.,

𝑅′ = 𝑅 ∪ Pref (𝑤).

We then compute 𝑇 ′ and 𝐶′ using membership and counter value queries.14

Counterexamples coming from EQ are handled in the same way, except that
the counter limit is increased to the height of the counterexample. These two
procedures allow us to state the growth of the representatives and separators
sets, as well as the number of needed queries.

Lemma 5.4.25. Let 𝒪≤ℓ be an observation table, 𝜁 be the length of the coun-
terexample returned by a PEQ or EQ, and 𝒪′

≤ℓ′ be the new table obtained by
processing the counterexample. Then,

▶ |𝑅′| ≤ |𝑅| + 𝜁, |𝑆′| = |𝑆|, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in 𝜁 and |𝒪≤ℓ|.

Proof. The first item is easily proved, given how a counterexample is handled.

Lemma 5.4.7. Filling 𝑇 and
𝐶 requires a polynomial
number of MQ and CVQ in
the sizes of 𝑅 ∪ 𝑅Σ and ̂𝑆.

Let us prove the last item. The worst case with respect to the number of
queries happenswhen ℓ′ > ℓ. In this case, we potentially have to (re)compute
all values in 𝑇 ′ and 𝐶′, as the counter limit has increased. By Lemma 5.4.7,
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this requires a number ofMQ andCVQ that is polynomial in 𝜁 and |𝒪≤ℓ|. �

Once the prefixes of the counterexample are added as new representatives,
we can resume the usual operations, i.e., making the table closed, Σ- and ⊥-
consistent before constructing the next hypothesis, and so on. We show that,
after processing a counterexample from a partial equivalence query, the new
equivalence relation ≡𝒪′

≤ℓ
(obtained once the table is stabilized) is a refinement

of ≡𝒪≤ℓ
with strictly more equivalence classes.

Proposition 5.4.26. Let 𝒪≤ℓ be a closed, Σ- and ⊥-consistent observation
table up to ℓ ∈ ℕ, and 𝒪′

≤ℓ be the closed, Σ- and ⊥-consistent observation
table obtained after processing a counterexample. Then,

∀𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ ∶ 𝑢 ≡𝒪′
≤ℓ

𝑣 ⇒ 𝑢 ≡𝒪≤ℓ
𝑣.

Furthermore, the index of ≡𝒪′
≤ℓ

is strictly greater than the index of ≡𝒪≤ℓ
.

Proof. Lemma 5.4.12. Let 𝒪≤ℓ and
𝒪′

≤ℓ be two observation ta-
bles up to the same counter
limit ℓ ∈ ℕ such that 𝑅 ∪
𝑅Σ ⊆ 𝑅′ ∪ 𝑅′Σ, 𝑆 ⊆ 𝑆′,
and ̂𝑆 ⊆ ̂𝑆′. Then, for all
𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ such that
𝑢 ∈ Approx′(𝑣), we have 𝑢 ∈
Approx(𝑣).

The first part of the claim is an immediate consequence of
Lemma 5.4.12.
We focus on showing that the index of ≡𝒪′

≤ℓ
is strictly greater than the

index of ≡𝒪≤ℓ
. By contradiction, let us assume this is false. Letℋ≤ℓ (resp.

ℋ′
≤ℓ) be the DFA constructed from ≡𝒪≤ℓ

(resp. ≡𝒪′
≤ℓ
). By definition of the

automata and the first part of the proposition, it holds that ℋ≤ℓ and ℋ′
≤ℓ

are isomorphic.
However, 𝑤 is a counterexample forℋ≤ℓ, i.e.,

𝑤 ∉ 𝐿≤ℓ ⇔ 𝑤 ∈ ℒ(ℋ≤ℓ).

Lemma 5.4.23. Let 𝒪≤ℓ be a
closed, Σ- and ⊥-consistent
observation table up to ℓ ∈
ℕ, and ℋ≤ℓ be the con-
structed DFA. Then,

▶ ℋ≤ℓ is well-defined and
▶ for all 𝑢 ∈ 𝑅 ∪ 𝑅Σ ∶ 𝑢 ∈

ℒ(ℋ≤ℓ) ⇔ 𝑢 ∈ 𝐿≤ℓ.

By Lemma 5.4.23 and since 𝑤 ∈ 𝑅′, we have

𝑤 ∈ 𝐿≤ℓ ⇔ 𝑤 ∈ ℒ(ℋ′
≤ℓ).

This is a contradiction withℋ≤ℓ andℋ′
≤ℓ being isomorphic. �

From Proposition 5.4.26 and Lemma 5.4.12, we deduce that after a finite number
of steps, we will obtain an observation table 𝒪≤ℓ and its corresponding DFA
ℋ≤ℓ such that ℒ(ℋ≤ℓ) = 𝐿≤ℓ. That is, we eventually learn 𝐿≤ℓ in finite
time.

Corollary 5.4.27. Let ℓ ∈ ℕ be a counter limit. With the described learning
process, a DFA accepting 𝐿≤ℓ is eventually learned.

Proof. On one hand, given an observation table 𝒪≤ℓ up to ℓ, by Lemma 5.4.12,
we have that for all 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ, 𝑢 ∼𝒜 𝑣 ⇒ 𝑢 ≡𝒪≤ℓ

𝑣, and all the words in

𝑅 ∪ 𝑅Σ ∖ 𝑅 ∪ 𝑅Σ are in the same equivalence class of ≡𝒪≤ℓ
.

On the other hand, by Lemma 5.4.3, the number of Lemma 5.4.3. The number
of states of 𝐵𝐺≤ℓ(𝒜) is at
most (ℓ + 1) ⋅ ∣𝑄𝒜∣.

equivalence classes of ∼𝒜
up to counter limit ℓ is bounded by (ℓ + 1)∣𝑄𝒜∣ + 1. With Proposition 5.4.26,
it follows that the index of ≡𝒪≤ℓ

eventually stabilizes.
This means that the teacher stops giving any counterexample and the final
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𝜀
𝜀 no, 0
𝑎 no, ⊥
𝑏 yes, 0

(a) Initial table.

𝜀
𝜀 no, 0
𝑏 yes, 0
𝑎 no, ⊥
𝑏𝑎 yes, 0
𝑏𝑏 yes, 0

(b) After resolving the 𝑏-openness.

𝜀 𝑏
𝜀 no, 0 yes, 0
𝑏 yes, 0 yes, 0
𝑎 no, ⊥ no, ⊥
𝑏𝑎 yes, 0 yes, 0
𝑏𝑏 yes, 0 yes, 0

(c) After resolving the (𝜀, 𝑎, 𝜀)-⊥-inconsistency.

𝜀 𝑏
𝜀 no, 0 yes, 0
𝑏 yes, 0 yes, 0
𝑎 no, ⊥ no, ⊥
𝑏𝑎 yes, 0 yes, 0
𝑏𝑏 yes, 0 yes, 0
𝑎𝑎 no, ⊥ no, ⊥
𝑎𝑏 no, ⊥ no, ⊥

(d) After resolving the 𝑎-openness.

Figure 5.9: Observation tables up to zero for Section 5.4.6.

𝑞0

𝑞1

𝑞2

𝑎[=0]/+1

𝑎[=0]/0
𝑏[=0]/0

𝑎[=0]/0
𝑏[=0]/0

𝑏[=0]/0

𝑎[>0]/+1

𝑏[>0]/0

𝑏[>0]/0
𝑎[>0]/−1

𝑎[>0]/0
𝑏[>0]/0

DFAℋ≤ℓ accepts 𝐿≤ℓ. �

5.4.6. Complete example

We conclude the description of our learning algorithm for ROCAs with an
example of an execution. Let 𝒜 be the ROCA of Figure 5.1 (which is repeated
in the margin).

We initialize the observation table with 𝜀 as the unique element of both 𝑅 and
𝑆 = ̂𝑆. Moreover, we set the counter limit to be ℓ = 0, i.e., we start with 𝒪≤0.
We then fill the table with membership and counter value queries. Figure 5.9a
gives the resulting table. Observe that 𝐶(𝑎) = ⊥, as 𝑎 is not in Pref (𝒪≤0).

We have the following approximation sets:

Approx(𝜀) = Approx(𝑎) = {𝜀, 𝑎} and Approx(𝑏) = {𝑏}.

Observe that this table is open, as Approx(𝑏) ∩ 𝑅 = ∅. We thus add 𝑏 as a new
representative, i.e., 𝑅 is now {𝜀, 𝑏}, and obtain the table of Figure 5.9b with

Approx(𝜀) = Approx(𝑎) = {𝜀, 𝑎} and Approx(𝑏) = {𝑏}.

The table is ⊥-inconsistent, as 𝑎 ∈ Approx(𝜀) but 𝐶(𝜀⋅𝜀) = 0 and 𝐶(𝑎⋅𝜀) = ⊥.
That is, the counter values for the column 𝜀 are different. To match with the
notations used above when explaining how to make a table ⊥-consistent, let
𝑢 = 𝜀, 𝑣 = 𝑎, 𝑠 = 𝜀, 𝑢′ = 𝑏, and 𝑠′ = 𝜀. We have that 𝑢 ⋅ 𝑠 = 𝜀 is a prefix of
𝑢′ ⋅ 𝑠′ = 𝑏, and 𝑇(𝑏) = yes. Let 𝑠″ = 𝑏 (observe that 𝑢 ⋅ 𝑠″ = 𝑏 = 𝑢′ ⋅ 𝑠′, as
required). Since 𝑢 is a proper prefix of 𝑢′, we call MQ(𝑣 ⋅ 𝑠″) = MQ(𝑎 ⋅ 𝑏),
which returns yes, indicating that 𝑎 ⋅ 𝑏 ∈ ℒ(𝒜). As we need to check whether
𝑎 ⋅ 𝑏 ∈ ℒ≤0(𝒜), we also call CVQ(𝑎 ⋅ 𝑏), which returns 1. Hence, 𝑎 ⋅ 𝑏 ∉ ℒ≤0(𝒜).
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𝜀

𝑏

𝑎

𝑏

𝑎

𝑎, 𝑏

𝑎, 𝑏

(a) The hypothesis DFA.

𝑏

𝑏

𝑎

𝑏[=0]/0

𝑎[=0]/0

𝑎[=0]/0
𝑏[=0]/0

𝑎[=0]/0
𝑏[=0]/0

(b) The hypothesis ROCA.

Figure 5.10: The hypotheses DFA and ROCA constructed from the table of Figure 5.9d.

Definition 5.4.16. Let 𝒪≤ℓ
be a closed, Σ-, and ⊥-
consistent observation table
up to ℓ. We say that two
words 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ are
≡𝒪≤ℓ

-equivalent, denoted by
𝑢 ≡𝒪≤ℓ

𝑣, if and only if 𝑢 ∈
Approx(𝑣).

As explained in Section 5.4.3, we add all the suffixes of 𝑏 to both 𝑆 and ̂𝑆. We
obtain the table given in Figure 5.9c with

Approx(𝜀) = {𝜀},
Approx(𝑏) = Approx(𝑏𝑎) = Approx(𝑏𝑏) = {𝑏, 𝑏𝑎, 𝑏𝑏},

and
Approx(𝑎) = {𝑎}.

The table is open, due to 𝑎. As before, we then add 𝑎 as a new representative,
which results in the table of Figure 5.9d with

Approx(𝜀) = {𝜀},
Approx(𝑏) = Approx(𝑏𝑎) = Approx(𝑏𝑏) = {𝑏, 𝑏𝑎, 𝑏𝑏},

and
Approx(𝑎) = Approx(𝑎𝑎) = Approx(𝑎𝑏) = {𝑎, 𝑎𝑎, 𝑎𝑏}.

Clearly, the table is closed and ⊥-consistent. It is also not hard to see that
it is Σ-consistent, as the intersection of each approximation set with 𝑅 is a
singleton. Hence, we can compute an equivalence relation ≡𝒪≤0

from the table
(see Definition 5.4.16) such that:

J𝜀K≡𝒪≤0
= {𝜀}

J𝑏K≡𝒪≤0
= {𝑏, 𝑏𝑎, 𝑏𝑏}

J𝑎K≡𝒪≤0
= {𝑎, 𝑎𝑎, 𝑎𝑏}.

We then construct the hypothesis DFA ℋ≤0, which is given in Figure 5.10a.
By a partial equivalence query overℋ≤0, we confirm that ℒ(ℋ≤0) = ℒ≤0(𝒜),
i.e., learning the bounded behavior graph up to 0 is done. Since we cannot
extract any ultimately periodic description fromℋ≤0, we immediately convert
it into an ROCAℋ𝑅𝑂𝐶𝐴 that never increases its counter. This ROCA is given
in Figure 5.10b. We call EQ(ℋ𝑅𝑂𝐶𝐴). Assume that the teacher returns the
word 𝑤 = 𝑎𝑎𝑏𝑎𝑎. By performing counter value queries on every prefix of the
counterexample, we increase the counter limit to 2, i.e., we now work with
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𝜀 𝑏
𝜀 no, 0 yes, 0
𝑏 yes, 0 yes, 0
𝑎 no, 1 no, ⊥
𝑎𝑎 no, 2 no, 2
𝑎𝑎𝑏 no, 2 no, ⊥
𝑎𝑎𝑏𝑎 no, 1 no, ⊥
𝑎𝑎𝑏𝑎𝑎 yes, 0 yes, 0
𝑏𝑎 yes, 0 yes, 0
𝑏𝑏 yes, 0 yes, 0
𝑎𝑏 no, ⊥ no, ⊥
𝑎𝑎𝑎 no, ⊥ no, ⊥
𝑎𝑎𝑏𝑏 no, ⊥ no, ⊥
𝑎𝑎𝑏𝑎𝑏 no, ⊥ no, ⊥
𝑎𝑎𝑏𝑎𝑎𝑎 yes, 0 yes, 0
𝑎𝑎𝑏𝑎𝑎𝑏 yes, 0 yes, 0

(a) Initial table.

𝜀 𝑏 𝑎 𝑎𝑎 𝑏𝑎𝑎
𝜀 no, 0 yes, 0 no no yes
𝑏 yes, 0 yes, 0 yes yes yes
𝑎 no, 1 no, 1 no no yes
𝑎𝑎 no, 2 no, 2 no no yes
𝑎𝑎𝑏 no, 2 no, 2 no yes yes
𝑎𝑎𝑏𝑎 no, 1 no, 1 yes yes yes
𝑎𝑎𝑏𝑎𝑎 yes, 0 yes, 0 yes yes yes
𝑏𝑎 yes, 0 yes, 0 yes yes yes
𝑏𝑏 yes, 0 yes, 0 yes yes yes
𝑎𝑏 no, 1 no, 1 yes yes yes
𝑎𝑎𝑎 no, ⊥ no, ⊥ no no no
𝑎𝑎𝑏𝑏 no, 2 no, 2 no yes yes
𝑎𝑎𝑏𝑎𝑏 no, 1 no, 1 yes yes yes
𝑎𝑎𝑏𝑎𝑎𝑎 yes, 0 yes, 0 yes yes yes
𝑎𝑎𝑏𝑎𝑎𝑏 yes, 0 yes, 0 yes yes yes

(b) After resolving the (𝑎𝑎, 𝑎𝑎𝑏, 𝑏)-⊥-inconsistency.

Figure 5.11: First observation tables up to two for Section 5.4.6.

15: We highlight that we do not
change 𝑆.

𝒪≤2. Furthermore, we add all the prefixes of 𝑤 as new representatives.

The resulting table is given in Figure 5.11a. One can check that 𝑎𝑎 is in
Approx(𝑎𝑎𝑏) but 𝐶(𝑎𝑎 ⋅ 𝑏) = 2 and 𝐶(𝑎𝑎𝑏 ⋅ 𝑏) = ⊥. That is, we have a
(𝑎𝑎, 𝑎𝑎𝑏, 𝑏)-⊥-inconsistency. As we did earlier, let 𝑢 = 𝑎𝑎, 𝑣 = 𝑎𝑎𝑏, 𝑠 =
𝑏, 𝑢′ = 𝑎𝑎𝑏𝑎𝑎, and 𝑠′ = 𝜀. We have 𝑢⋅𝑠 = 𝑎𝑎𝑏 is a prefix of 𝑢′ ⋅𝑠′ = 𝑎𝑎𝑏𝑎𝑎. Let
𝑠″ = 𝑏𝑎𝑎 (observe that 𝑢⋅𝑠″ = 𝑎𝑎𝑏𝑎𝑎 = 𝑢′ ⋅𝑠′, as required). Since 𝑢 is a proper
prefix of 𝑢′, we callMQ(𝑣 ⋅𝑠″) = MQ(𝑎𝑎𝑏 ⋅𝑏𝑎𝑎), which returns yes, indicating
that 𝑎𝑎𝑏𝑏𝑎𝑎 ∈ ℒ(𝒜). As we need to check whether 𝑎𝑎𝑏𝑏𝑎𝑎 ∈ ℒ≤2(𝒜), we
perform a counter value query on each prefix of 𝑎𝑎𝑏𝑏𝑎𝑎 and observe that the
height of the word is 2. Hence, 𝑎𝑎𝑏𝑏𝑎𝑎 ∈ ℒ≤2(𝒜). We thus add all suffixes of
𝑠″ = 𝑏𝑎𝑎 in ̂𝑆.15 Figure 5.11b gives the obtained table. Observe that adding the
new columns changed the prefix of the language encoded in the observation
table and some values for 𝐶 changed. For instance, 𝐶(𝑎 ⋅ 𝑏) is now 1, instead
of ⊥. Furthermore, the ⊥-inconsistency is indeed resolved.

Since 𝑎𝑎𝑏𝑎 ∈ Approx(𝑎) but 𝑎𝑎𝑏𝑎 ⋅ 𝑎 ∉ Approx(𝑎 ⋅ 𝑎), we have a (𝑎, 𝑎𝑎𝑏𝑎, 𝑎)-Σ-
inconsistency. We also have that 𝑇(𝑎 ⋅ 𝜀) ≠ 𝑇(𝑎𝑎𝑏𝑎 ⋅ 𝜀). Hence, the Σ-
inconsistency us resolved by adding all the suffixes of 𝑎 ⋅ 𝜀 to both 𝑆 and ̂𝑆.
Figure 5.12 gives the resulting table, which has a (𝑎𝑎, 𝑎𝑎𝑏, 𝑎)-Σ-inconsistency.
As 𝑇(𝑎𝑎 ⋅ 𝑎) ≠ 𝑇(𝑎𝑎𝑏 ⋅ 𝑎), we add all suffixes of 𝑎 ⋅ 𝑎 to both 𝑆 and ̂𝑆 and obtain
the table of Figure 5.13.

We have a (𝑎, 𝑎𝑎𝑎, 𝜀)-⊥-inconsistency, which can be resolved by adding all
suffixes of 𝑏𝑎𝑎 to 𝑆. Furthermore, Approx(𝑎𝑎𝑎) ∩ 𝑅 = ∅, i.e., we also have
a 𝑎𝑎𝑎-openness, which is resolved by adding 𝑎𝑎𝑎 as a new representative.
Figure 5.14 gives the corresponding table.

One can check that this table is closed, Σ and ⊥-consistent. Hence, we can
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𝜀 𝑏 𝑎 𝑎𝑎 𝑏𝑎𝑎
𝜀 no, 0 yes, 0 no, 1 no yes
𝑏 yes, 0 yes, 0 yes, 0 yes yes
𝑎 no, 1 no, 1 no, 2 no yes
𝑎𝑎 no, 2 no, 2 no, ⊥ no yes
𝑎𝑎𝑏 no, 2 no, 2 no, 1 yes yes
𝑎𝑎𝑏𝑎 no, 1 no, 1 yes, 0 yes yes
𝑎𝑎𝑏𝑎𝑎 yes, 0 yes, 0 yes, 0 yes yes
𝑏𝑎 yes, 0 yes, 0 yes, 0 yes yes
𝑏𝑏 yes, 0 yes, 0 yes, 0 yes yes
𝑎𝑏 no, 1 no, 1 yes, 0 yes yes
𝑎𝑎𝑎 no, ⊥ no, ⊥ no, ⊥ no no
𝑎𝑎𝑏𝑏 no, 2 no, 2 no, 1 yes yes
𝑎𝑎𝑏𝑎𝑏 no, 1 no, 1 yes, 0 yes yes
𝑎𝑎𝑏𝑎𝑎𝑎 yes, 0 yes, 0 yes, 0 yes yes
𝑎𝑎𝑏𝑎𝑎𝑏 yes, 0 yes, 0 yes, 0 yes yes

Figure 5.12: After resolving the (𝑎, 𝑎𝑎𝑏𝑎, 𝑎)-Σ-inconsistency of Figure 5.11b.

𝜀 𝑏 𝑎 𝑎𝑎 𝑏𝑎𝑎
𝜀 no, 0 yes, 0 no, 1 no, 2 yes
𝑏 yes, 0 yes, 0 yes, 0 yes, 0 yes
𝑎 no, 1 no, 1 no, 2 no, ⊥ yes
𝑎𝑎 no, 2 no, 2 no, ⊥ no, ⊥ yes
𝑎𝑎𝑏 no, 2 no, 2 no, 1 yes, 0 yes
𝑎𝑎𝑏𝑎 no, 1 no, 1 yes, 0 yes, 0 yes
𝑎𝑎𝑏𝑎𝑎 yes, 0 yes, 0 yes, 0 yes, 0 yes
𝑏𝑎 yes, 0 yes, 0 yes, 0 yes, 0 yes
𝑏𝑏 yes, 0 yes, 0 yes, 0 yes, 0 yes
𝑎𝑏 no, 1 no, 1 yes, 0 yes, 0 yes
𝑎𝑎𝑎 no, ⊥ no, ⊥ no, ⊥ no, ⊥ no
𝑎𝑎𝑏𝑏 no, 2 no, 2 no, 1 yes, 0 yes
𝑎𝑎𝑏𝑎𝑏 no, 1 no, 1 yes, 0 yes, 0 yes
𝑎𝑎𝑏𝑎𝑎𝑎 yes, 0 yes, 0 yes, 0 yes, 0 yes
𝑎𝑎𝑏𝑎𝑎𝑏 yes, 0 yes, 0 yes, 0 yes, 0 yes

Figure 5.13: After resolving the (𝑎𝑎, 𝑎𝑎𝑏, 𝑎)-Σ-inconsistency of Figure 5.12.
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𝜀 𝑏 𝑎 𝑎𝑎 𝑏𝑎𝑎
𝜀 no, 0 yes, 0 no, 1 no, 2 yes, 0
𝑏 yes, 0 yes, 0 yes, 0 yes, 0 yes, 0
𝑎 no, 1 no, 1 no, 2 no, ⊥ yes, 0
𝑎𝑎 no, 2 no, 2 no, ⊥ no, ⊥ yes, 0
𝑎𝑎𝑏 no, 2 no, 2 no, 1 yes, 0 yes, 0
𝑎𝑎𝑏𝑎 no, 1 no, 1 yes, 0 yes, 0 yes, 0
𝑎𝑎𝑏𝑎𝑎 yes, 0 yes, 0 yes, 0 yes, 0 yes, 0
𝑎𝑎𝑎 no, ⊥ no, ⊥ no, ⊥ no, ⊥ no, ⊥
𝑏𝑎 yes, 0 yes, 0 yes, 0 yes, 0 yes, 0
𝑏𝑏 yes, 0 yes, 0 yes, 0 yes, 0 yes, 0
𝑎𝑏 no, 1 no, 1 yes, 0 yes, 0 yes, 0
𝑎𝑎𝑏𝑏 no, 2 no, 2 no, 1 yes, 0 yes, 0
𝑎𝑎𝑏𝑎𝑏 no, 1 no, 1 yes, 0 yes, 0 yes, 0
𝑎𝑎𝑏𝑎𝑎𝑎 yes, 0 yes, 0 yes, 0 yes, 0 yes, 0
𝑎𝑎𝑏𝑎𝑎𝑏 yes, 0 yes, 0 yes, 0 yes, 0 yes, 0
𝑎𝑎𝑎𝑎 no, ⊥ no, ⊥ no, ⊥ no, ⊥ no, ⊥
𝑎𝑎𝑎𝑏 no, ⊥ no, ⊥ no, ⊥ no, ⊥ no, ⊥

Figure 5.14: After resolving the (𝑎, 𝑎𝑎𝑎, 𝜀)-⊥-inconsistency and the 𝑎𝑎𝑎-openness of Figure 5.13.

16: An algorithm to compute an
ultimately periodic description is
given in [NL10]. We immedi-
ately give the computed descrip-
tion here.

define the following equivalence relation ≡𝒪≤2
:

J𝜀K≡𝒪≤2
= {𝜀}

J𝑏K≡𝒪≤2
= {𝑏, 𝑎𝑎𝑏𝑎𝑎, 𝑏𝑎, 𝑏𝑏, 𝑎𝑎𝑏𝑎𝑎𝑎, 𝑎𝑎𝑏𝑎𝑎𝑏}

J𝑎K≡𝒪≤2
= {𝑎}

J𝑎𝑎K≡𝒪≤2
= {𝑎𝑎}

J𝑎𝑎𝑏K≡𝒪≤2
= {𝑎𝑎𝑏, 𝑎𝑎𝑏𝑏}

J𝑎𝑎𝑏𝑎K≡𝒪≤2
= {𝑎𝑎𝑏𝑎, 𝑎𝑏, 𝑎𝑎𝑏𝑎𝑏}

J𝑎𝑎𝑎K≡𝒪≤2
= {𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎, 𝑎𝑎𝑎𝑎𝑏}

We can construct a 7-state DFAℋ≤2, which is given in Figure 5.16. By a partial
equivalence query overℋ≤2, we confirm thatℒ(ℋ≤2) = ℒ≤2(𝒜), i.e., learning
the bounded behavior graph up to 2 is done. From that DFA, we obtain an
ultimately periodic description.16 First, we enumerate the states:

𝜈0(J𝜀K≡𝒪≤2
)=𝜈1(J𝑎K≡𝒪≤2

)=𝜈2(J𝑎𝑎K≡𝒪≤2
)=𝜈3(J𝑎𝑎𝑎K≡𝒪≤2

)=1

𝜈0(J𝑏K≡𝒪≤2
)=𝜈1(J𝑎𝑎𝑏𝑎K≡𝒪≤2

)=𝜈2(J𝑎𝑎𝑏K≡𝒪≤2
)=2.

This allows to abstract the transitions as:

𝜏0(1, 𝑎) = 𝜏1(1, 𝑎) = 𝜏2(1, 𝑎) = (1, +1)
𝜏0(1, 𝑏) = 𝜏1(1, 𝑏) = 𝜏2(1, 𝑏) = (2, 0)

𝜏0(2, 𝑎) = 𝜏0(2, 𝑏) = 𝜏1(2, 𝑏) = 𝜏2(2, 𝑏) = (2, 0)
𝜏1(2, 𝑎) = 𝜏2(2, 𝑎) = (2, −1).

Then, we construct an ROCAℋ, as explained in Section 5.4.4, which is given in
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𝑏

Figure 5.15: The hypothesis DFA constructed from the table of Figure 5.14.

𝑏

𝑏

𝑎 𝑎𝑎

𝑎𝑎𝑏𝑎 𝑎𝑎𝑏

𝑏[=0]/0

𝑎[=0]/0

𝑎[=0]/0
𝑏[=0]/0

𝑎[=0]/+1

𝑏[=0]/0

𝑎[=0]/0

𝑏[=0]/0

𝑏[>0]/0

𝑎[>0]/+1

𝑏[>0]/0

𝑏[>0]/0

𝑎[>0]/−1

𝑎[>0]/−1
𝑏[>0]/0

𝑎[>0]/+1

Figure 5.16: A hypothesis ROCA constructed from the DFA of Figure 5.15.

Figure 5.16. An equivalence query overℋ returns yes, meaning that ℒ(ℋ) =
ℒ(𝒜), and we are done.

To conclude, we repeat our main theorem and recall that its proof can be found
in Section A.8.

Theorem 5.4.1. Let 𝒜 be the sound ROCA of the teacher and 𝜁 be the length
of the longest counterexample returned by the teacher on (partial) equivalence
queries. Then,

▶ the 𝐿∗
ROCAalgorithm eventually terminates and returns an ROCA accept-

ing ℒ(𝒜) and whose size is polynomial in ∣𝑄𝒜∣ and |Σ|,
▶ in time and space exponential in ∣𝑄𝒜∣, |Σ| and 𝜁, and
▶ asking a number of PEQ in 𝒪 (𝜁3), a number of EQ in 𝒪 (∣𝑄𝒜∣𝜁2), and

a number of MQ and CVQ exponential in ∣𝑄𝒜∣, |Σ| and 𝜁.

5.5. Experimental results

We evaluated our learning algorithm 𝐿∗
ROCAon two types of benchmarks. The

first one uses randomly generated ROCAs, while the second one focuses
on a new approach to learn an ROCA that can efficiently verify whether a
JSON document is valid against a given JSON schema. While there already
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[Baa+19]: Baazizi et al. (2019),
“Schemas And Types For JSON
Data”

17: The worst-case scenario does
not change much, however.

Definition 5.4.9. Let 𝒪≤ℓ be
an observation table up to ℓ,
and 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ. Then,
𝑢 ∈ Approx(𝑣) if and only if:

▶ for all 𝑠 ∈ 𝑆, 𝑇(𝑢𝑠) =
𝑇(𝑣𝑠), and

▶ for all 𝑠 ∈ 𝑆, if 𝐶(𝑢𝑠) ≠
⊥ and 𝐶(𝑣𝑠) ≠ ⊥, then
𝐶(𝑢𝑠) = 𝐶(𝑣𝑠).

The set Approx(𝑣) is called
an approximation set .

existed several algorithms that infer a JSON schema from a collection of JSON
documents (see survey [Baa+19]), this was, to the best of our knowledge, the
first effort towards an approach based on automata learning techniques.

We first discuss some optimizations and implementation details, followed by
the random benchmarks in Section 5.5.2. We then introduce more precisely
the context of our JSON-based use case and give the results in Section 5.5.3.

5.5.1. Implementation details

We present here two optimizations regarding an observation table 𝒪≤ℓ =
(𝑅, 𝑆, ̂𝑆, 𝑇, 𝐶) up to ℓ. The first one is an efficient way to store and manipulate
Pref (𝒪≤ℓ), while the second one improves the computations of the approxi-
mation sets. Finally, we give our experimental framework.

Using a tree to store observations

The first optimization we consider is to store Pref (𝒪≤ℓ) in a tree structure,
called the observation tree and denoted by 𝒯≤ℓ. Then, when a new word 𝑢 is
added in Pref (𝒪≤ℓ), it is sufficient to only update the path in 𝒯≤ℓ leading to
𝑢. Finally, instead of directly storing the values for 𝑇 and 𝐶 in the table 𝒪≤ℓ,
each cell of 𝒪≤ℓ stores a pointer to a node in the tree 𝒯≤ℓ. We only give the
general intuition here.

Hence, our goal is to store all the values that are needed in 𝒪≤ℓ, i.e., the values
for the functions 𝑇 and 𝐶 (on their respective domains). If we store all the
information directly in 𝒯≤ℓ, having to recompute some 𝐶 due to a change in
Pref (𝒪≤ℓ) is more immediate. Indeed, only the prefixes of a word 𝑢 added to
Pref (𝒪≤ℓ) can potentially have new values for 𝐶. It is thus sufficient to only
iterate over the ancestors of the node storing the data for 𝑢. In other words,
the tree structure reduces the runtime complexity.17

When new representatives or separators have to be added in 𝒪≤ℓ, nodes are
added in 𝒯≤ℓ and the table is extended and updated with pointers to the tree.
Moreover, when a word 𝑢 is added in 𝒯≤ℓ, all the prefixes 𝑥 of 𝑢 must also be
added, even if 𝑥 ∉ (𝑅 ∪ 𝑅Σ) ̂𝑆. As a consequence, the number of nodes in 𝒯≤ℓ
will be greater than ∣(𝑅 ∪ 𝑅Σ) ̂𝑆∣ since all the prefixes are stored in the tree.
In other words, the tree increases the memory consumption of the algorithm
but significantly improves the run time.

Efficient computation of approximation sets

Let us now discuss how to efficiently compute the approximation sets. Let
𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ. If there exists 𝑠 ∈ 𝑆 such that 𝑇(𝑢𝑠) ≠ 𝑇(𝑣𝑠), it immediately
follows that 𝑣 ∉ Approx(𝑢). Thus, when computing Approx(𝑢), we know that
it is not interesting to consider words 𝑣 that do not agree with 𝑢 on the values
of 𝑇. To do so, we define a relation that groups together words having the
same row contents, when we only consider 𝑇. For two words 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ,
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18: The complexity can be reduced
to a constant time, in average, if
we assume the set relies on hash
tables.

19: https://learnlib.de/page
s/automatalib

20: https://learnlib.de/

[IHS15]: Isberner et al. (2015), “The
Open-Source LearnLib - A Frame-
work for Active Automata Learn-
ing”

21: https://github.com/Doc
Skellington/automatalib/, ht
tps://github.com/DocSkelli

ngton/learnlib/, and https:

//github.com/DocSkellingto

n/LStar-ROCA-Benchmarks. A
Zenodo artifact is available at http
s://zenodo.org/records/556

9340.

22: All random draws are assumed
to come from a uniform distribu-
tion.

we write 𝑢 ∼𝒪≤ℓ
𝑣 if and only if for all 𝑠 ∈ 𝑆, 𝑇(𝑢𝑠) and 𝑇(𝑣𝑠) are equal. The

approximation sets can thus be defined as:

Definition 5.5.1 (Optimization of Definition 5.4.9). Let 𝒪≤ℓ be an obser-
vation table up to ℓ, 𝑢 ∈ 𝑅 ∪ 𝑅Σ, and 𝑣 ∈ J𝑢K∼𝒪≤ℓ

. Then, 𝑣 ∈ Approx(𝑢)
if

∀𝑠 ∈ 𝑆 ∶ 𝐶(𝑢𝑠) ≠ ⊥ ∧ 𝐶(𝑣𝑠) ≠ ⊥ ⇒ 𝐶(𝑢𝑠) = 𝐶(𝑣𝑠).

With this definition, to compute Approx(𝑢), it is enough to iterate over the
elements 𝑣 ∈ J𝑢K∼𝒪≤ℓ

(instead of all 𝑣 ∈ 𝑅 ∪ 𝑅Σ).

One can efficiently store each equivalence class of ∼𝒪≤ℓ
using a set, in order

to obtain a polynomial time complexity for lookup, addition, and removal of
an element, in the size of the table.18 Moreover, we can also store the Approx
sets instead of recomputing them from scratch each time.

Notice that updating the classes of ∼𝒪≤ℓ
can be easily done. Suppose a value

𝑇(𝑢𝑠) (with 𝑢 ∈ 𝑅 ∪ 𝑅Σ and 𝑠 ∈ 𝑆) is modified, and let J𝑣K∼𝒪≤ℓ
be the class of

𝑢 before the modification. We have to remove 𝑢 from the set for J𝑣K∼𝒪≤ℓ
and

then add it to the set for J𝑢K∼𝒪≤ℓ
. This can be done in polynomial time.

Finally, we need to compute the Approx sets only when the table has to be
made closed, Σ- and ⊥-consistent (since new elements are added in 𝑅 ∪ 𝑅Σ,
𝑆, or ̂𝑆). Notice that not all approximation sets are modified and thus should
not be recomputed. This happens for Approx(𝑢) when J𝑢K∼𝒪≤ℓ

is not modified
and the values 𝐶(𝑢𝑠) remain unchanged.

Experimental framework

The ROCAs and the learning algorithm were implemented by extending the
well-known Java libraries AutomataLib 19 and LearnLib 20 [IHS15]. These
modifications and the benchmarks can be consulted on our GitHub repos-
itories.21 The server used for the computations ran Debian 10 over Linux
5.4.73-1-pve with a 4-core Intel® Xeon® Silver 4214R Processor with 16.5M
cache, and 64GB of RAM. Moreover, we used OpenJDK version 11.0.12.

5.5.2. Random realtime one-counter automata

We discuss our benchmarks based on randomly generated ROCAs. We begin
by explaining how this random generation works, followed by how we check
equivalence of two ROCAs. We finally comment our results.

Random generation of ROCAs

An ROCA 𝒜 with given size 𝑛 = ∣𝑄𝒜∣ is randomly generated as follows:22

▶ for all 𝑞 ∈ 𝑄𝒜, 𝑞 has a probability 0.5 of being final,

https://learnlib.de/pages/automatalib
https://learnlib.de/pages/automatalib
https://learnlib.de/
https://github.com/DocSkellington/automatalib/
https://github.com/DocSkellington/automatalib/
https://github.com/DocSkellington/learnlib/
https://github.com/DocSkellington/learnlib/
https://github.com/DocSkellington/learnlib/
https://github.com/DocSkellington/LStar-ROCA-Benchmarks
https://github.com/DocSkellington/LStar-ROCA-Benchmarks
https://github.com/DocSkellington/LStar-ROCA-Benchmarks
https://zenodo.org/records/5569340
https://zenodo.org/records/5569340
https://zenodo.org/records/5569340
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Algorithm 5.2: Algorithm for checking the equivalence of two ROCAs.
Require: Two ROCAs 𝒜 and 𝒜𝛼, and the period 𝑘 of the description 𝛼 used to construct 𝒜𝛼
Ensure: Returns yes if our approximation for ℒ(𝒜) = ℒ(𝒜𝛼) holds, or a counterexample

1: 𝑄 ← a queue initialized with (𝜀, (𝑞𝒜0 , 0), (𝑞𝒜𝛼
0 , 0))

2: ℓ ← (∣𝑄𝒜∣ ⋅ ∣𝑄𝒜𝛼∣)2

3: repeat
4: while 𝑄 is not empty do
5: (𝑤, 𝑐𝒜, 𝑐𝒜𝛼

) ← the next element in 𝑄 ▷ We pop the tuple from 𝑄
6: for all 𝑎 ∈ Σ do
7: Let (𝑞, 𝑛) ∈ 𝑄𝒜 × ℕ such that 𝑐𝒜

𝑎
−→ (𝑞, 𝑛) ∈ cruns(𝒜)

8: Let (𝑝, 𝑚) ∈ 𝑄𝒜𝛼 × ℕ such that 𝑐𝒜𝛼

𝑎
−→ (𝑝, 𝑚) ∈ cruns(𝒜𝛼)

9: if (𝑞 ∈ 𝐹 𝒜 ∧ 𝑛 = 0) ⇔ ¬(𝑝 ∈ 𝐹 𝒜𝛼 ∧ 𝑚 = 0) then
10: return 𝑤𝑎 ▷ 𝑤𝑎 is a witness that 𝒜 and 𝒜𝛼 are not equivalent
11: else if 𝑛 ≤ ℓ ∧ 𝑚 ≤ ℓ and (𝑤𝑎, (𝑞, 𝑛), (𝑝, 𝑚)) has not yet been seen then
12: Add (𝑤𝑎, (𝑞, 𝑛), (𝑝, 𝑚)) in 𝑄
13: ℓ ← ℓ + 𝑘
14: until we stop with probability 0.5
15: return yes

[BGJ14]: Böhm et al. (2014), “Bisim-
ulation equivalence and regular-
ity for real-time one-counter au-
tomata”
23: In short, Böhm et al. show that
there exist some polynomials sat-
isfying some properties and that
allow to decide the equivalence.
However, there is no algorithm pro-
vided to compute these polynomi-
als.
24: The teacher might, with some
small probability, answer with false
positives but never with false neg-
atives.

▶ for all 𝑞 ∈ 𝑄𝒜 and 𝑎 ∈ Σ, we have 𝑞
𝑎[>0]
−−−→

𝑐
𝑝 with 𝑝 a random state in

𝑄𝒜 and 𝑐 a random counter operation in {−1, 0, +1}. Moreover, we

define 𝑞
𝑎[=0]
−−−→

𝑐
𝑝 in a similar way except that 𝑐 ∈ {0, +1}.

Since this generation does not guarantee the produced ROCA has 𝑛 reachable
states, we produce 100 ROCAs and select the ROCAwith a number of reachable
states that is maximal. However, note that it is still possible the resulting ROCA
does not have 𝑛 (co)-reachable states.

Equivalence of two ROCAs

The language equivalence problem of ROCAs is known to be decidable and
NL-complete [BGJ14]. Unfortunately, the algorithm described in [BGJ14] is
difficult to implement.23 Instead, we use an “approximate” equivalence oracle
for our experiments.24

Let 𝒜 and ℬ be two ROCAs such that ℬ is the learned ROCA from a periodic
description with period 𝑘. The algorithm explores the configuration space of
both ROCAs in parallel. If, at some point, it reaches a pair of configurations
such that one is accepting and the other not, then we have a counterexample.
However, to have an algorithm that eventually stops, we need to bound the
counter value of the configurations to explore. Our approach is to first explore
up to counter value |𝒜 × ℬ|2 (in view of [BGJ14, Proposition 18] about shortest
accepting runs in an ROCA). If no counterexample is found, we add 𝑘 to the
bound and, with probability 0.5, a new exploration is done up to the new
bound. We repeat this whole process until we find a counterexample or until
the random draw forces us to stop. This is summarized in Algorithm 5.2.
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∣𝑄𝒜∣ |Σ| TO (20 min)

4 1 0
4 2 5
4 3 16
4 4 41
5 1 0
5 2 23
5 3 55
5 4 83

Table 5.1: Number (over 100) of executionswith a timeout (TO). The executions for themissing pairs (∣𝑄𝒜∣, |Σ|)
could all finish.
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Figure 5.17: Results for the benchmarks based on random ROCAs.

Results

For our random benchmarks, we let the size ∣𝑄𝒜∣ of the ROCA𝒜 vary between
one and five, and the size |Σ| of the alphabet between one and four. For each
pair (∣𝑄𝒜∣, |Σ|), we execute the learning algorithm on 100 ROCAs (generated
as explained above). We set a timeout of 20 minutes and a memory limit of
16GB. The number of executions with a timeout is given in Table 5.1 (we do
not give the pairs (∣𝑄𝒜∣, |Σ|) where every execution could finish).

The mean of the total time taken by the algorithm is given in Figure 5.17a.
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25: This also confirms the growth
of the number of representa-
tives and separators stated in
Section A.8.

[Bra17]: Bray (2017), “The
JavaScript Object Notation (JSON)
Data Interchange Format”

[CR04]: Chitic et al. (2004), “On Val-
idation of XML Streams Using Fi-
nite State Machines”

26: The standard specifies a sixth
type (null) that we do not consider
in our use case.

27: https://json-schema.org

One can see that it has an exponential growth in both sizes ∣𝑄𝒜∣ and |Σ|. Note
that executions with a timeout had their execution time set to 20 minutes, in
order to highlight the curve. Let us now drop all the executions with a timeout.
The mean length of the longest counterexample provided by the teacher for
(partial) equivalence queries is presented in Figure 5.17b and the final size of
the sets 𝑅 and ̂𝑆 are presented in Figures 5.17c and 5.17d. Note that the curves
go down due to the limited number of remaining executions (for instance, the
ones that could finish did not require long counterexamples). We can see that

̂𝑆 grows larger than 𝑅. We conclude that these empirical results confirm the
theoretical complexity claims from Theorem 5.4.1.25

We conclude this section on the benchmarks based on random ROCAs by
highlighting the fact that our random ROCAs do not reflect real-life automata.
That is, in more concrete cases, ROCAs may have a natural structure that
is induced by the problem. Thus, results may be very different. Hence, we
applied our learning algorithm to a more realistic use case.

5.5.3. JSON documents and JSON Schemas

Let us now discuss the second set of benchmarks, which is a proof of concept
for our learning algorithm based on JSON documents [Bra17]. This format is
the currently most popular one used for exchanging information on the web.
We give here the main ideas. A more thorough introduction is given in Part III,
alongside a validation algorithm that can handle more cases.

Our goal is to construct an ROCA that can validate a JSON document, according
to some given constraints. This use case is inspired by [CR04] but applied on
a more recent format.

A JSON document is a text document that follows a specific structure. Namely,
five different types of data can be present in a document:26

▶ An object is an unordered collection of pairs key-value where key is a
finite string and value can be any of the five different data types. An
object must start with { and end with }.

▶ An array is an ordered collection of values. Again, a value can be any of
the five different data types. An array must start with [ and end with ].

▶ A string is a finite sequence of any Unicode characters and must start
and end with ".

▶ A number is any positive or negative decimal real number. In particular,
an integer is any positive or negative number without a decimal part.

▶ A boolean can be true or false.

A JSON document must start with an object.

In the context we consider, the constraints a document must satisfy are given
by a JSON Schema which is itself a JSON document describing the kind of
values that must be associated to each key. An example of a schema is given
in Figure 5.18. JSON schemas are described more thoroughly on the official
website27 and in Part III. They can be seen as a counterpart to DTDs for XML
documents. A schema can allow a recursive structure (to model a tree, for
instance). The ranges for the different values can be restricted. For example,

https://json-schema.org
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1 {

2 "title": "Fast",

3 "type": "object",

4 "required": ["string", "double", "integer", "boolean", "object", "array"],

5 "additionalProperties": false,

6 "properties": {

7 "string": {"type": "string"},

8 "double": {"type": "number"},

9 "integer": {"type": "integer"},

10 "boolean": {"type": "boolean"},

11 "object": {

12 "type": "object",

13 "required": ["anything"],

14 "additionalProperties": false,

15 "properties": {

16 "anything": {

17 "type": ["number", "integer", "boolean", "string"]

18 }

19 }

20 },

21 "array": {

22 "type": "array",

23 "items": {"type": "string"},

24 "minItems": 2

25 }

26 }

27 }

Figure 5.18: Example of a JSON schema.

one can force an integer to be in the interval [0, 10], or to be a multiple of two,
and so on.

Learning a JSON Schema as an ROCA

We propose to validate a JSON document against a given JSON schema as
follows. The learner learns an ROCA from the schema. With this ROCA, one
can easily decide whether a JSON document is valid against the schema.

In this learning process, we suppose the teacher knows the target schema and
the queries are specialized as follows:

Membership query The learner provides a JSON document and the teacher
returns true if and only if the document is valid for the schema.

Counter value query The learner provides a JSON document and the teacher
returns the number of unmatched { and [. Adding the two values is a
heuristic abstraction that allows us to summarize two-counter informa-
tion into a single counter value. Importantly, the abstraction is a design
choice regarding our implementation of a teacher for these experiments
and not an assumption made by our learning algorithm. The approach
given in Part III lifts this constraint.

Partial equivalence query The learner gives a DFA and a counter limit ℓ. The
teacher randomly generates an a-priori fixed number of documents with
a height not exceeding the counter limit ℓ and checks whether the DFA
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28: The schema was downloaded
from JSON Schema Store https:

//www.schemastore.org/json/.
We modified the file to remove all
constraints of type “enum”.

29: https://about.codecov.io

and the schema both agree on the documents’ validity. If a disagreement
is noticed, the incorrectly classified document is returned.

Equivalence query The learner provides an ROCA. The teacher also gener-
ates an a-priori number of randomly generated documents (but, this
time, without a bound on the height) and verifies that the ROCA and
the schema both agree on the documents’ validity. If one is found, an
incorrectly classified document is returned.

Note that the randomness of the (partial) equivalence queries implies that the
learned ROCA may not exactly recognize the set of documents accepted by
the schema. Setting the number of generated documents to be a large number
helps reducing the probability that an incomplete ROCA is learned. One could
also control the randomness of the generation to force some important keys
to appear, even if these keys are not required in the schema.

In order for an ROCA to be learned in a reasonable time, some abstractions
must be made mainly for reducing the alphabet size.

▶ If an object has a key named key, we consider the sequence of characters
"key" as a single alphabet symbol.

▶ Strings, integers, and numbers are abstracted as follows. All strings
are replaced by "\S", all integers by "\I", and all numbers by "\D".
Booleans are left as-is since they can only take two values (true or
false).

▶ The symbols ,, {, }, [, ], : are all considered as different alphabet
symbols (note that since " is considered directly into the keys’ symbols
or the values’ symbols, that symbol does not appear here).

Moreover, notice that the alphabet is not known at the start of the learning
process (due to the fact that keys can be any strings). Therefore we slightly
modify the learning algorithm to support growing alphabets. More precisely,
the learner’s alphabet starts with the symbols { and } (to guarantee we can
at least produce a syntactically valid JSON document for the first partial
equivalence query) and is augmented each time a new symbol is seen.

A last abstraction was applied for our benchmarks: we assume that each
object is composed of an ordered (instead of unordered) collection of pairs
key-value. It is to be denoted by that the learning algorithm can learn without
this restriction. However it requires substantially more time as all possible
orders inside each object must be considered (and they all induce a different
set of states in the ROCA). Part III will present a validation algorithm (based
on automata learning) where objects remain unordered. The use case we
show here only serves as a benchmark for ROCA learning and should not be
considered as a usable validation algorithm for JSON documents.

Results

We considered three JSON schemas. The first one is the document from Fig-
ure 5.18 which lists all possible types of values (i.e., it contains an integer, a
double, and so on). The second one is a real-world JSON schema28 used by
a code coverage tool called Codecov.29 Finally, the third schema encodes a
recursive list, i.e., an object containing a list with at most one object defined

https://www.schemastore.org/json/
https://www.schemastore.org/json/
https://about.codecov.io
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Schema TO (1h) Time (s) 𝜁 |𝑅| ∣ ̂𝑆∣ ∣𝑄𝒜∣ |Σ|

Figure 5.18 0 16.39 31.00 55.55 32.00 33.00 19.00
Codecov 27 1045.64 12.99 57.84 33.74 44.29 14.70

Figure 5.19 19 922.19 49.49 171.94 50.49 51.16 9.00

Table 5.2: Results for JSON benchmarks.

{

"type": "object",

"properties": {

"name": {"type": "string"},

"children": {

"type": "array",

"maxItems": 1,

"items": {"$ref": "#"}

}

},

"required": ["name"],

"additionalProperties": false

}

Figure 5.19: Recursive JSON schema.

[IHS14b]: Isberner et al. (2014),
“The TTT Algorithm: A
Redundancy-Free Approach to
Active Automata Learning”
[Isb15]: Isberner (2015), “Founda-
tions of active automata learning:
an algorithmic perspective”

[Vaa+22]: Vaandrager et al. (2022),
“A New Approach for Active Au-
tomata Learning Based on Apart-
ness”

recursively. This last example is used to force the behavior graph to be ulti-
mately periodic, and is given in Figure 5.19. The {"$ref": "#"} indicates
that the each item in the array children is defined as the top object, i.e., we
have a recursive definition.

The Table 5.2 gives the results of the benchmarks, obtained by fixing the
number of random documents by (partial) equivalence query to be 1000. For
each schema, 100 experiments were conducted with a time limit of one hour by
execution. We can see that real-world JSON schemas and recursively-defined
schemas can be both learned by our approach. One last interesting statistics
we can extract from the results is that the number of representatives is larger
than the number of separators, unlike for the random benchmarks.

5.6. Conclusion

We have presented a new learning algorithm 𝐿∗
ROCAfor realtime one-counter

automata, using membership, counter value, partial equivalence, and equiv-
alence queries. The algorithm executes in exponential time and space, and
requires at most an exponential number of queries. We have implemented this
algorithm and evaluated it on two benchmarks.

As future work, we believe one might be able to remove the use of partial
equivalence queries. In this direction, perhaps replacing our use of Neider
and Löding’s VOCA algorithm by Isberner’s TTT algorithm [IHS14b; Isb15]
might help, due to the differences in how the gathered knowledge is stored
in both algorithms. The 𝐿# algorithm of Vaandrager et al. [Vaa+22], as it
does not infer an equivalence relation but instead focuses on identifying the
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[RS93]: Rivest et al. (1993), “In-
ference of Finite Automata Using
Homing Sequences”

[Ang87]: Angluin (1987), “Learn-
ing Regular Sets from Queries and
Counterexamples”

[KV94]: Kearns et al. (1994), An In-
troduction to Computational Learn-
ing Theory

differences in behavior of two states (see Section 3.3) may also simplify the
learning algorithm for ROCAs.

Another interesting direction concerns lowering the (query) complexity of
our algorithm. In [RS93], it is proved that 𝐿∗ algorithm [Ang87] can be
modified so that adding a single separator after a failed equivalence query
is enough to update the observation table. This would remove the suffix-
closedness requirements on the separator sets 𝑆 and ̂𝑆. It is not immediately
clear to us whether the definition of ⊥-consistency presented here holds in that
context. Further optimizations, such as discrimination tree-based algorithms
(e.g., Kearns and Vazirani’s algorithm [KV94]), also do not need the separator
set to be suffix-closed.

It would also be interesting to directly learn the one-counter language instead
of an ROCA. Indeed, our algorithm learns some ROCA that accepts the target
language. It would be desirable to learn some canonical representation of the
language (e.g., a minimal automaton, for some notion of minimality).

Finally, as far as we know, there currently is no active learning algorithm for
deterministic one-counter automata (where 𝜀-transitions are allowed).



[BPS22]: Bruyère et al. (2022),
“Learning Realtime One-Counter
Automata”

Lemma 5.3.9. Let 𝒜 be a
sound ROCA and𝐴 be its cor-
responding VOCA. We have:

▶ ∀𝑢 ∈ Σ∗ ∶ cv𝒜(𝑢) =
cv(𝜆𝒜(𝑢)),

▶ ℒ(𝐴) = {𝜆𝒜(𝑢) ∣ 𝑢 ∈
ℒ(𝒜)}, and

▶ Pref (ℒ(𝐴)) = {𝜆𝒜(𝑢) ∣
𝑢 ∈ Pref (ℒ(𝒜))}.

Technical Details and Proofs of
Chapter 5 A.

This chapter, based on [BPS22], contains the technical details and proofs that
were not given in Chapter 5. That is, it serves as the appendix of the previous
chapter.
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A.1. Proof of Theorem 5.3.10

Theorem 5.3.10. Let 𝒜 be a sound ROCA, 𝐵𝐺(𝒜) be its behavior graph, 𝒜
be the corresponding VOCA accepting 𝐿, and 𝐵𝐺(𝐿) be the behavior graph of
𝐿. Then,

▶ 𝐵𝐺(𝒜) and 𝐵𝐺(𝐿) are isomorphic up to 𝜆𝒜 and �̃�, and
▶ the isomorphism respects the counter values (i.e., level membership) and

both offset and period of periodic descriptions.

Let 𝐿 = ℒ(𝒜). In order to show that the two behavior graphs are isomorphic,
it is sufficient to prove that ∼𝒜 and ∼𝐿 agree, i.e.,

∀𝑢, 𝑣 ∈ Pref (𝐿) ∶ 𝑢 ∼𝒜 𝑣 ⇔ 𝜆𝒜(𝑢) ∼𝐿 𝜆𝒜(𝑣).

Indeed, as, by Lemma 5.3.9,

Pref (𝐿) = Pref (ℒ(𝒜)) = {𝜆𝒜(𝑢) ∣ 𝑢 ∈ Pref (𝐿)},

we will get the required one-to-one correspondence between the states J𝑢K∼𝒜

of 𝐵𝐺(𝒜) and the states J𝜆𝒜(𝑢)K∼�̃�
of 𝐵𝐺(𝐿). Notice that this correspondence

respects the counter values of the states since all words in state J𝑢K∼𝒜 have the
same counter value cv𝒜(𝑢)which is equal (by Lemma 5.3.9) to the counter value
cv(𝜆𝒜(𝑢)) of all words in state J𝜆𝒜(𝑢)K∼�̃�

. In other words, both J𝜆𝒜(𝑢)K∼�̃�
and
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J𝑢K∼𝒜 are in level cv𝒜(𝑢) = cv(𝜆𝒜(𝑢)) of their corresponding behavior graphs.
That is, the second part of the theorem follows directly from the first.

∼𝒜 implies ∼�̃�. Let 𝑢, 𝑣 ∈ Pref (𝐿) be such that 𝑢∼𝒜𝑣, i.e., for all 𝑤 ∈ Σ∗,

𝑢 ⋅ 𝑤 ∈ 𝐿 ⇔ 𝑣 ⋅ 𝑤 ∈ 𝐿
and

𝑢 ⋅ 𝑤, 𝑣 ⋅ 𝑤 ∈ Pref (𝐿) ⇒ cv𝒜(𝑢 ⋅ 𝑤) = cv𝒜(𝑣 ⋅ 𝑤).

We show that 𝜆𝒜(𝑢)∼𝐿 𝜆𝒜(𝑣), i.e., for all 𝑤 ∈ Σ̃∗, it holds that 𝜆𝒜(𝑢) ⋅𝑤 ∈ 𝐿 if
and only if 𝜆𝒜(𝑣) ⋅ 𝑤 ∈ 𝐿. Let 𝑤 ∈ Σ̃∗ and assume 𝜆𝒜(𝑢) ⋅ 𝑤 ∈ 𝐿. By definition
of 𝒜, there exists 𝑥 ∈ Σ∗ such that 𝑢 ⋅ 𝑥 ∈ 𝐿 and 𝜆𝒜(𝑢 ⋅ 𝑥) = 𝜆𝒜(𝑢) ⋅ 𝑤. Since
𝑢 ∼𝒜 𝑣, we get 𝑣 ⋅ 𝑥 ∈ 𝐿 and for all 𝑦 ∈ Pref (𝑥), cv𝒜(𝑢 ⋅ 𝑦) = cv𝒜(𝑣 ⋅ 𝑦). By
definition of 𝒜, it follows that 𝜆𝒜(𝑣) ⋅ 𝑤 ∈ 𝐿, meaning that

𝜆𝒜(𝑢) ⋅ 𝑤 ∈ 𝐿 ⇒ 𝜆𝒜(𝑣) ⋅ 𝑤 ∈ 𝐿.

Using a similar argument, we prove that

𝜆𝒜(𝑣) ⋅ 𝑤 ∈ 𝐿 ⇒ 𝜆𝒜(𝑢) ⋅ 𝑤 ∈ 𝐿,

meaning that 𝜆𝒜(𝑢) ∼𝐿 𝜆𝒜(𝑣).

∼𝐿 implies ∼𝒜. We now show that

∀𝜆𝒜(𝑢), 𝜆𝒜(𝑣) ∈ Pref (𝐿) ∶ 𝜆𝒜(𝑢) ∼�̃� 𝜆𝒜(𝑣) ⇒ 𝑢 ∼𝒜 𝑣.

First, let us show that for all 𝑤 ∈ Σ∗, we have 𝑢 ⋅ 𝑤 ∈ 𝐿 if and only if
𝑣 ⋅ 𝑤 ∈ 𝐿. Assume that 𝑢 ⋅ 𝑤 ∈ 𝐿. Then, 𝜆𝒜(𝑢 ⋅ 𝑤) = 𝜆𝒜(𝑢) ⋅ 𝑤 ∈ 𝐿 with
𝑤 ∈ Σ̃∗. As 𝜆𝒜(𝑢) ∼𝐿 𝜆𝒜(𝑣), we get 𝜆𝒜(𝑣) ⋅ 𝑤 ∈ 𝐿. Hence by discarding
with �̃� the index in {𝑐, 𝑟, int} of each symbol of 𝜆𝒜(𝑣) ⋅ 𝑤, we obtain that
𝑣 ⋅ 𝑤 ∈ 𝐿. The other implication is proved similarly and we have thus proved
that 𝑢 ⋅ 𝑤 ∈ 𝐿 ⇔ 𝑣 ⋅ 𝑤 ∈ 𝐿.

Second, let us show that

∀𝑤 ∈ Σ∗ ∶ 𝑢 ⋅ 𝑤, 𝑣 ⋅ 𝑤 ∈ Pref (𝐿) ⇒ cv𝒜(𝑢 ⋅ 𝑤) = cv𝒜(𝑣 ⋅ 𝑤).

Let 𝑤 ∈ Σ∗ and 𝑤 ∈ Σ̃∗ be such that 𝜆𝒜(𝑢⋅𝑤) = 𝜆𝒜(𝑢)⋅𝑤 ∈ Pref (𝐿). It follows
that 𝜆𝒜(𝑢) ⋅ 𝑤 ∼�̃� 𝜆𝒜(𝑣) ⋅ 𝑤 and 𝜆𝒜(𝑣) ⋅ 𝑤 ∈ Pref (𝐿) since 𝜆𝒜(𝑢) ∼𝐿 𝜆𝒜(𝑣).
From

𝜆𝒜(𝑢) ⋅ 𝑤 ∼𝐿 𝜆𝒜(𝑣) ⋅ 𝑤
and

𝜆𝒜(𝑣) ⋅ 𝑤, 𝜆𝒜(𝑣) ⋅ 𝑤 ∈ Pref (𝐿),

we deduce cv(𝜆𝒜(𝑢) ⋅ 𝑤) = cv(𝜆𝒜(𝑣) ⋅ 𝑤)

Lemma 4.3.13. For a VOCL
𝐿 and 𝑢, 𝑣 ∈ Pref (𝐿) such
that 𝑢 ∼𝐿 𝑣, cv(𝑢) = cv(𝑣).

by Lemma 4.3.13. We also have that
𝜆𝒜(𝑣) ⋅ 𝑤 = 𝜆𝒜(𝑣 ⋅ 𝑤). Hence, by Lemma 5.3.9, we get cv𝒜(𝑢𝑤) = cv𝒜(𝑣𝑤).

Lemma 5.3.9. Let 𝒜 be a
sound ROCA and𝐴 be its cor-
responding VOCA. We have:

▶ ∀𝑢 ∈ Σ∗ ∶ cv𝒜(𝑢) =
cv(𝜆𝒜(𝑢)),

▶ ℒ(𝐴) = {𝜆𝒜(𝑢) ∣ 𝑢 ∈
ℒ(𝒜)}, and

▶ Pref (ℒ(𝐴)) = {𝜆𝒜(𝑢) ∣
𝑢 ∈ Pref (ℒ(𝒜))}.
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1: If 𝛿𝒜 is not total, it is sufficient
to define the missing transitions as

𝑞
𝑎[𝑔]
−−→

0
⊥.

2: As 𝑚 − 1 is the highest level,
i. e., the counter value is bounded

Conclusion. We established the one-to-one correspondence between the
states of 𝐵𝐺(𝒜) and the states of 𝐵𝐺(𝐿). Notice that it puts in correspon-
dence the initial (resp. final) states of both behavior graphs. We have also a
correspondence with respect to the transitions (up to 𝜆𝒜 and �̃�). Indeed, this
follows from how both transition functions 𝛿𝐵𝐺(𝒜) and 𝛿𝐵𝐺(𝐿) are defined.

A.2. Proof of Proposition 5.3.12

Proposition 5.3.12. Let 𝐵𝐺(𝒜) be the behavior graph of some sound ROCA
𝒜 and 𝛼 = 𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔 be an ultimately periodic description
of 𝐵𝐺(𝒜) with offset 𝑚 and period 𝑘. Then, one can construct an ROCA 𝒜𝛼
from 𝛼 such that

▶ ℒ(𝒜𝛼) = ℒ(𝒜), and
▶ the size of 𝒜𝛼 is polynomial in 𝑚, 𝑘 and width(𝐵𝐺(𝒜)).

To prove this proposition, we first explicitly give the construction of the
ROCA. Let 𝐿 = ℒ(𝒜) = ℒ(𝐵𝐺(𝒜)), 𝐾 be the width of 𝐵𝐺(𝒜), and 𝛼 =
𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔 be an ultimately periodic description of 𝐵𝐺(𝒜).
Recall that the mappings 𝜏ℓ used in 𝛼 are defined as

𝜏ℓ ∶ {1, … , 𝐾} × Σ ⇀ {1, … , 𝐾} × {−1, 0, +1}.

Let us explain how to construct an ROCA 𝒜𝛼 accepting 𝐿. In short, as long as
we remain in the levels 0 to 𝑚 − 1, the counter value is never modified. That
is, only the periodic part of 𝛼 induces increments or decrements of the counter.
To ease the writing of the proof, we assume that all transitions are defined,
i.e., 𝛿𝒜 is total. Moreover, we assume that 𝒜 has a single bin state, denoted by
⊥.1 We have two cases, depending on whether 𝑘 is null.

A.2.1. When the width is null

First, assume 𝑘 = 0, i.e., 𝛼 = 𝜏0 … 𝜏𝑚−1. Then, 𝐵𝐺(𝒜) is finite2, meaning that
𝐿 is actually a regular language. We thus construct𝒜𝛼 as a DFA (i.e., an ROCA
that does not modify its counter). In other words, all counter operations are 0,
meaning that we only have to define the transitions using the guard =0. Let
us thus construct the ROCA 𝒜𝛼 such that

▶ the states stores the current level and the number of the current equiva-
lence class within that level (given by the enumeration 𝜈ℓ), i.e.,

𝑄𝒜𝛼 = {0, … , 𝑚 − 1} × {1, … , 𝐾},

▶ we know that cv𝒜(𝜀) = 0 (by definition of the semantics of 𝒜), so

𝑞𝒜𝛼
0 = (0, 𝜈0(J𝜀K∼𝒜)),
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▶ likewise, every word 𝑤 ∈ 𝐿 is such that cv𝒜(𝑤) = 0, so

𝐹 𝒜𝛼 = {(0, J𝑤K∼𝒜) ∣ 𝑤 ∈ 𝐿},

▶ the transition function is defined naturally over those states, since we
never modify the counter: for all 𝑞 ∈ {1, … , 𝐾}, ℓ ∈ {0, … , 𝑚 − 1}, and
𝑎 ∈ Σ, let (𝑝, 𝑐) = 𝜏ℓ(𝑞, 𝑎) and define

(ℓ, 𝑞)
𝑎[=0]
−−−→

𝑐
(ℓ + 𝑐, 𝑝).

It is not hard to see that𝒜𝛼 is sound and accepts𝐿. Moreover, ∣𝑄𝒜𝛼∣ is bounded
by 𝑚 ⋅ 𝐾, i.e., the size of the ROCA is polynomial in 𝑚 and width(𝐵𝐺(𝒜)).
That is, Proposition 5.3.12 is easily obtained when 𝑘 = 0.

A.2.2. When the width is not null

Now, assume 𝑘 ≠ 0, i.e., 𝛼 has a periodic part. As said above, we construct 𝒜𝛼
such that the counter value remains zero as long as we remain within the initial
part of the description 𝛼 (i.e., in the levels 0 to 𝑚 − 1). In the periodic part,
the counter operations follow the changes in the levels. The idea is similar to
the previous case, except that we use a modulo-𝑘 (+𝑚) counter in the states
for the periodic part. That is, 𝒜𝛼 is constructed such that

▶ the states stores the current level (modulo 𝑘) and the number of the
current equivalence class within that level (given by the enumeration
𝜈ℓ), i.e.,

𝑄𝒜𝛼 = {0, … , 𝑚 + 𝑘 − 1} × {1, … , 𝐾} ⊎ {⊥},

▶ the level of the initial state is necessarily zero:

𝑞𝒜𝛼
0 = (0, 𝜈0(J𝜀K∼𝒜)),

▶ the final states are all in the level zero:

𝐹 𝒜𝛼 = {(0, J𝑤K∼𝒜) ∣ 𝑤 ∈ 𝐿},

▶ the transition function requires more care, this time, as we must update
the counter in the periodic part of 𝛼. Let 𝑞 ∈ {1, … , 𝐾} and 𝑎 ∈ Σ.

• First, the transitions of the initial part: for all ℓ ∈ {0, … , 𝑚 − 1},
let (𝑝, 𝑐) = 𝜏ℓ(𝑞, 𝑎) and define

(ℓ, 𝑞)
𝑎[=0]
−−−→

𝑐
(ℓ + 𝑐, 𝑝).

• When we are at the level 𝑚 (i.e., the boundary between the initial
and the periodic parts), we must check whether we need to go the
initial part (i.e., the level 𝑚 − 1) or loop back to the end of the peri-
odic part (i.e., the level 𝑚 + 𝑘 − 1). It is sufficient to check whether
the counter value is zero, due to the rest of this construction. Let
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(𝑝, 𝑐) = 𝜏𝑚(𝑞, 𝑎) and define the transitions as follows:

𝑐 = 0 ⇒ (𝑚, 𝑞)
𝑎[=0]
−−−→

0
(𝑚, 𝑝)

∧(𝑚, 𝑞)
𝑎[>0]
−−−→

0
(𝑚, 𝑝)

𝑐 = +1 ⇒ (𝑚, 𝑞)
𝑎[=0]
−−−→

+1
(𝑚 + (1 mod 𝑘), 𝑝)

∧(𝑚, 𝑞)
𝑎[>0]
−−−→

+1
(𝑚 + (1 mod 𝑘), 𝑝)

𝑐 = −1 ⇒ (𝑚, 𝑞)
𝑎[=0]
−−−→

−1
(𝑚 − 1, 𝑝)

∧(𝑚, 𝑞)
𝑎[>0]
−−−→

−1
(𝑚 + 𝑘 − 1, 𝑝).

When 𝑐 = +1, the 1 mod 𝑘 is only useful when 𝑘 = 1 to guarantee
that we remain between 0 and 𝑚 + 𝑘 − 1 = 𝑚.

• When we are between 𝑚 + 1 and 𝑚 + 𝑘 − 2, we simply copy the
transitions from the mappings 𝜏ℓ. We also know that the counter
is necessarily non-zero. For all ℓ ∈ {𝑚 + 1, … , 𝑚 + 𝑘 − 2}, let
(𝑝, 𝑐) = 𝜏ℓ(𝑞, 𝑎) and define

(ℓ, 𝑞)
𝑎[>0]
−−−→

𝑐
(ℓ + 𝑐, 𝑝).

• Finally, it remains to treat the last level in the periodic part, i.e.,
the level 𝑚 + 𝑘 − 1. Observe that when 𝑘 = 1, this case is already
handled by the second item (as 𝑚 + 𝑘 − 1 = 𝑚). So, assume 𝑘 > 1
and let (𝑝, 𝑐) = 𝜏𝑚+𝑘−1(𝑞, 𝑎) and define the transitions as follows:

𝑐 = 0 ⇒ (𝑚 + 𝑘 − 1, 𝑞)
𝑎[>0]
−−−→

0
(𝑚 + 𝑘 − 1, 𝑝)

𝑐 = +1 ⇒ (𝑚 + 𝑘 − 1, 𝑞)
𝑎[>0]
−−−→

+1
(𝑚, 𝑝)

𝑐 = −1 ⇒ (𝑚 + 𝑘 − 1, 𝑞)
𝑎[>0]
−−−→

−1
(𝑚 + 𝑘 − 2, 𝑝).

Clearly, the size of 𝒜𝛼 is polynomial in 𝑚, 𝑘 and 𝐾. It remains to show that
ℒ(𝒜𝛼) = 𝐿 = ℒ(𝒜) to obtain Proposition 5.3.12, i.e.,

∀𝑢 ∈ Σ∗, 𝑢 ∈ 𝐿 ⇔ 𝑢 ∈ ℒ(𝒜𝛼).

To do so, given how are defined the final states of 𝒜𝛼, we just need the
following lemma, stating the equivalence between the runs of 𝐵𝐺(𝒜) and the
counted runs of 𝒜𝛼.

Lemma A.2.1. We have J𝜀K∼𝒜

𝑢
−→ J𝑢K∼𝒜 ∈ runs(𝐵𝐺(𝒜)) if and only if

((0, 𝜈0(J𝜀K∼𝒜)), 0)
𝑢
−→ ((𝑐, 𝜈𝑐(J𝑢K∼𝒜)),max{0, 𝑛 − 𝑚})
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is a counted run of 𝒜𝛼, with 𝑛 = cv𝒜(𝑢) and

𝑐 = {
𝑛 if 𝑛 ≤ 𝑚,
𝑚 + ((𝑛 − 𝑚) mod 𝑘) otherwise.

Notice that if J𝑢K∼𝒜 is a reachable state in 𝐵𝐺(𝒜), then 𝑢 ∈ Pref (𝐿) by
definition. Moreover, by construction of 𝐵𝐺(𝒜), only the reachable states
J𝑢K∼𝒜 are present in 𝐵𝐺(𝒜). Thus, 𝑢 ∈ Pref (𝐿) and cv𝒜(𝑢) is well-defined.

Proof of Lemma A.2.1. We do a proof by induction over the length of 𝑢.

Base case. Let 𝑢 ∈ Σ∗ such that |𝑢| = 0, i.e., 𝑢 = 𝜀. We have

(𝑞𝒜𝛼
0 , 0)

𝜀
−→ (𝑞𝒜𝛼

0 , 0) ∈ cruns(𝒜𝛼)

𝑞𝐵𝐺(𝒜)
0

𝜀
−→ 𝑞𝐵𝐺(𝒜)

0 ∈ runs(𝐵𝐺(𝒜))
and

𝑞𝒜𝛼
0 = 𝜈0(J𝜀K∼𝒜).

Hence, the equivalence between the run and the counted run is satisfied.

Induction step. Let 𝑖 ∈ ℕ and assume the lemma holds for any 𝑣 ∈ Σ∗

of length 𝑖. Let 𝑢 ∈ Σ∗ such that |𝑢| = 𝑖 + 1, i.e., 𝑢 = 𝑣𝑎 with 𝑎 ∈ Σ
and 𝑣 ∈ Σ∗ such that |𝑣| = 𝑖. By the induction hypothesis, we thus have
J𝜀K∼𝒜

𝑣
−→ J𝑣K∼𝒜 ∈ runs(𝐵𝐺(𝒜)) if and only if

((0, 𝜈0(J𝜀K∼𝒜)), 0)
𝑣
−→ ((𝑐′, 𝜈𝑐′(J𝑣K∼𝒜)),max{0, 𝑛′ − 𝑚})

is a counted run of 𝒜𝛼, with 𝑛′ = cv𝒜(𝑣) and

𝑐′ = {
𝑛′ if 𝑛′ ≤ 𝑚,
𝑚 + ((𝑛′ − 𝑚) mod 𝑘) otherwise.

It is consequently sufficient to prove that the last transition is correct, i.e.,
J𝑣K∼𝒜

𝑎
−→ J𝑢K∼𝒜 ∈ runs(𝐵𝐺(𝒜)) if and only if

((𝑐′, 𝜈𝑐′(J𝑣K∼𝒜)),max{𝑛′ − 𝑚})
𝑎
−→ ((𝑐, 𝜈𝑐(J𝑢K∼𝒜)),max{𝑛 − 𝑚})

is a counted run of 𝒜𝛼, with 𝑛 = cv𝒜(𝑢) and

𝑐 = {
𝑛 if 𝑛 ≤ 𝑚,
𝑚 + ((𝑛 − 𝑚) mod 𝑘) otherwise.

We do so in three cases:

▶ If (𝑛′ < 𝑚) ∨ (𝑛′ = 𝑚 ∧ 𝑛 ≤ 𝑚), then max{0, 𝑛 − 𝑚} = 0 =
max{0, 𝑛′−𝑚}, i.e., we only have to use the guard=0 in the transitions
of 𝒜𝛼. Moreover, we do not change the counter value. We have
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𝑐′ = 𝑛′ = cv𝒜(𝑣), 𝑐 = 𝑛 = cv𝒜(𝑢), and the following equivalences:3 3: Note that −1 ≤ 𝑛 − 𝑛′ ≤ 1.

J𝑣K∼𝒜

𝑎
−→ J𝑢K∼𝒜 ∈ runs(𝐵𝐺(𝒜))

⇔ 𝜏𝑛′(𝜈𝑛′(J𝑣K∼𝒜), 𝑎) = (𝜈𝑛(J𝑢K∼𝒜), 𝑛 − 𝑛′)
⇔ 𝜏𝑐′(𝜈𝑐′(J𝑣K∼𝒜), 𝑎) = (𝜈𝑐(J𝑢K∼𝒜), 𝑛 − 𝑛′)

⇔ (𝑐′, 𝜈𝑐′(J𝑣K∼𝒜))
𝑎[=0]
−−−→

0
(𝑐, 𝜈𝑐(J𝑢K∼𝒜)) ∈ runs(𝒜𝛼)

⇔ ((𝑐′, 𝜈𝑐′(J𝑣K∼𝒜)), 0)
𝑎
−→ ((𝑐, 𝜈𝑐(J𝑢K∼𝒜)), 0)
is a counted run of 𝒜𝛼.

▶ If 𝑛′ = 𝑚 and 𝑛 > 𝑚, then 𝑛 = 𝑚 + 1 since 𝑛′ = cv𝒜(𝑣) and
𝑛 = cv𝒜(𝑢).4 4: So, 𝑛 − 𝑛′ = 1.Moreover, max{0, 𝑛′ − 𝑚} = 0 and max{0, 𝑛 − 𝑚} =
max{0, 𝑚 + 1 − 𝑚} = 1. Again, we only need to use the guard
=0. However, we increase the counter value this time. We have
𝑐′ = 𝑚, 𝑐 = 𝑚 + ((𝑚 + 1 − 𝑚) mod 𝑘) = 𝑚 + (1 mod 𝑘), and the
following equivalences:

J𝑣K∼𝒜

𝑎
−→ J𝑢K∼𝒜 ∈ runs(𝐵𝐺(𝒜))

⇔ 𝜏𝑛′(𝜈𝑛′(J𝑣K∼𝒜), 𝑎) = (𝜈𝑛(J𝑢K∼𝒜), 𝑛 − 𝑛′)
⇔ 𝜏𝑐′(𝜈𝑐′(J𝑣K∼𝒜), 𝑎) = (𝜈𝑐(J𝑢K∼𝒜), +1)

⇔ (𝑐′, 𝜈𝑐′(J𝑣K∼𝒜))
𝑎[=0]
−−−→

+1
(𝑐, 𝜈𝑐(J𝑢K∼𝒜)) ∈ runs(𝒜𝛼)

⇔ ((𝑐′, 𝜈𝑐′(J𝑣K∼𝒜)), 0)
𝑎
−→ ((𝑐, 𝜈𝑐(J𝑢K∼𝒜)), 1)
is a counted run of 𝒜𝛼.

▶ Finally, if 𝑛′ > 𝑚, thenmax{0, 𝑛′−𝑚} = 𝑛′−𝑚 andmax{0, 𝑛−𝑚} =
𝑛 − 𝑚. This time, we modify the counter value and we need to use the
guard >0. We have 𝑐′ = 𝑚 + ((𝑛′ − 𝑚) mod 𝑘), 𝑐 = 𝑚 + ((𝑛 − 𝑚)
mod 𝑘), and the following equivalences:5 5: Again, −1 ≤ 𝑛 − 𝑛′ ≤ 1.

J𝑣K∼𝒜

𝑎
−→ J𝑢K∼𝒜 ∈ runs(𝐵𝐺(𝒜))

⇔ 𝜏𝑛′(𝜈𝑛′(J𝑣K∼𝒜), 𝑎) = (𝜈𝑛(J𝑢K∼𝒜), 𝑛 − 𝑛′)
⇔ 𝜏𝑐′(𝜈𝑐′(J𝑣K∼𝒜), 𝑎) = (𝜈𝑐(J𝑢K∼𝒜), 𝑛 − 𝑛′)

⇔ (𝑐′, 𝜈𝑐′(J𝑣K∼𝒜))
𝑎[>0]
−−−→
𝑛−𝑛′

(𝑐, 𝜈𝑐(J𝑢K∼𝒜)) ∈ runs(𝒜𝛼)

⇔ ((𝜈𝑐′(J𝑣K∼𝒜), 𝑐′), 𝑛′−𝑚)
𝑎
−→((𝜈𝑐(J𝑢K∼𝒜), 𝑐), 𝑛−𝑚)
is a counted run of 𝒜𝛼.

We have shown that the last transition is correct, in every case. �

By this lemma, it is thus clear that ℒ(𝒜𝛼) = 𝐿 = ℒ(𝐵𝐺(𝒜)). That is, we have
showed Proposition 5.3.12 when 𝑘 ≠ 0. We thus covered every case.
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A.3. Proof of Proposition 5.4.13

Proposition 5.4.13. Let 𝒪≤ℓ be an observation table up to ℓ ∈ ℕ. Then,

∀𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ ∶ 𝑢 ∼𝒜 𝑣 ⇒ 𝑢 ∈ Approx(𝑣).

∀𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ ∖ 𝑅 ∪ 𝑅Σ ∶ Approx(𝑢) = Approx(𝑣).

Let 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ be such that 𝑢 ∼𝒜 𝑣. We show that 𝑢 ∈ Approx(𝑣). That
is,

∀𝑠 ∈ 𝑆 ∶ 𝑇(𝑢𝑠) = 𝑇(𝑣𝑠) (A.3.i)
∀𝑠 ∈ 𝑆 ∶ 𝐶(𝑢𝑠) ≠ ⊥ ∧ 𝐶(𝑣𝑠) ≠ ⊥ ⇒ 𝐶(𝑢𝑠) = 𝐶(𝑣𝑠) (A.3.ii)

Proving (A.3.i). We start by proving (A.3.i). Let 𝑠 ∈ 𝑆 be such that 𝑢𝑠 ∈ 𝐿≤ℓ.
We show that 𝑣𝑠 ∈ 𝐿≤ℓ. Since 𝑢∼𝒜 𝑣 and 𝑢𝑠 ∈ 𝐿≤ℓ ⊆ 𝐿, it follows that 𝑣𝑠 ∈ 𝐿.
In order to conclude 𝑣𝑠 ∈ 𝐿≤ℓ, we need to prove that ∀𝑥 ∈ Pref (𝑣𝑠), we have
cv𝒜(𝑥) ≤ ℓ. Let 𝑥 ∈ Pref (𝑣𝑠).

▶ Assume 𝑥 ∈ Pref (𝑣). By hypothesis, we know that 𝑣 is not a ⊥-word,
i.e., 𝑣 ∈ 𝑅 ∪ 𝑅Σ. Thus, 𝑣 ∈ Pref (𝒪≤ℓ) ⊆ Pref (𝐿≤ℓ), allowing us to
conclude that cv𝒜(𝑥) ≤ ℓ.

▶ Assume 𝑥 = 𝑣𝑦 with 𝑦 ∈ Pref (𝑠). As 𝑢 ∼𝒜 𝑣 and 𝑢𝑦, 𝑣𝑦 ∈ Pref (𝐿)
(since 𝑢𝑠, 𝑣𝑠 ∈ 𝐿), we obtain that cv𝒜(𝑢𝑦) = cv𝒜(𝑣𝑦). As 𝑢𝑠 ∈ 𝐿≤ℓ by
hypothesis, we know that cv𝒜(𝑢𝑦) ≤ ℓ. Therefore, cv𝒜(𝑥) = cv𝒜(𝑣𝑦) ≤
ℓ.

We have proved 𝑢𝑠 ∈ 𝐿≤ℓ ⇒ 𝑣𝑠 ∈ 𝐿≤ℓ. The other implication is proved
similarly. We thus conclude that 𝑇(𝑢𝑠) = 𝑇(𝑣𝑠), as 𝑢𝑠 and 𝑣𝑠 are either both
in 𝐿≤ℓ, or both not in the language.

Proving (A.3.ii). We now prove (A.3.ii). Let 𝑠 ∈ 𝑆 be such that 𝐶(𝑢𝑠) ≠ ⊥
and 𝐶(𝑣𝑠) ≠ ⊥. By hypothesis, we have 𝑢𝑠, 𝑣𝑠 ∈ Pref (𝒪≤ℓ) ⊆ Pref (𝐿≤ℓ)
and, thus, 𝑢𝑠, 𝑣𝑠 ∈ Pref (𝐿). Since 𝑢 ∼𝒜 𝑣, it holds cv𝒜(𝑢𝑠) = cv𝒜(𝑣𝑠) ≤ ℓ.
Moreover, since 𝑢𝑠, 𝑣𝑠 ∈ Pref (𝒪≤ℓ), we have 𝐶(𝑢𝑠) = cv𝒜(𝑢𝑠) = cv𝒜(𝑣𝑠) =
𝐶(𝑣𝑠), which proves (A.3.ii).

Second part of the proposition. We now proceed to the proof of the second
part of the proposition. Any word 𝑢 ∈ 𝑅 ∪ 𝑅Σ ∖ 𝑅 ∪ 𝑅Σ is a ⊥-word. It
follows that for all 𝑠 ∈ 𝑆, 𝑇(𝑢𝑠) = no and 𝐶(𝑢𝑠) = ⊥. Therefore all the
⊥-words are in the same approximation set.
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Lemma 5.4.12. Let 𝒪≤ℓ and
𝒪′

≤ℓ be two observation ta-
bles up to the same counter
limit ℓ ∈ ℕ such that 𝑅 ∪
𝑅Σ ⊆ 𝑅′ ∪ 𝑅′Σ, 𝑆 ⊆ 𝑆′,
and ̂𝑆 ⊆ ̂𝑆′. Then, for all
𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ such that
𝑢 ∈ Approx′(𝑣), we have 𝑢 ∈
Approx(𝑣).

Lemma 5.4.7. Filling 𝑇 and
𝐶 requires a polynomial
number of MQ and CVQ in
the sizes of 𝑅 ∪ 𝑅Σ and ̂𝑆.

A.4. Proof of Lemma 5.4.19

Lemma 5.4.19. Let 𝒪≤ℓ = (𝑅, 𝑆, ̂𝑆, 𝑇, 𝐶) be an observation table and
𝒪′

≤ℓ = (𝑅′, 𝑆′, ̂𝑆′, 𝑇 ′, 𝐶′) be the observation table obtained after resolving a
𝑢-openness (with 𝑢 ∈ 𝑅Σ ∖ 𝑅). Then,

▶ |𝑅′| = |𝑅| + 1, |𝑆′| = |𝑆|, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣,
▶ Approx′(𝑢) ∩ 𝑅′ = {𝑢}, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.

Recall that we resolve a 𝑢-openness by “promoting” 𝑢 (currently in 𝑅Σ ∖ 𝑅) to
the set of representatives. This means that there are new rows in 𝑅Σ. Observe
𝑆, ̂𝑆 are left unchanged.

The first item of the lemma is easily proved, given how a openness is resolved.
We prove the remaining two items of the lemma in order.

𝑢 is the unique element in Approx′(𝑢). Since 𝑅′ = 𝑅 ∪ {𝑢} and 𝑢 ∈
Approx′(𝑢), it suffices to show that Approx′(𝑢) ∩ 𝑅 = ∅ to get Approx′(𝑢) ∩
𝑅′ = {𝑢}.

By contradiction, assume ∃𝑣 ∈ 𝑅 such that 𝑣 ∈ Approx′(𝑢). By Lemma 5.4.12,
since 𝑣 ∈ 𝑅 and 𝑢 ∈ 𝑅Σ, we have 𝑣 ∈ Approx(𝑢). However, due to the
𝑢-openness, we know that Approx(𝑢) ∩ 𝑅 = ∅. We thus have a contradiction
and we conclude that Approx′(𝑢) ∩ 𝑅′ = {𝑢}.

Number of queries. Let us prove the last item. To extend and update 𝒪≤ℓ,
the learner asks queries to the teacher in order to compute the new value
𝑇 ′(𝑢𝑎𝑠) (resp. 𝐶′(𝑢𝑎𝑠)) for each 𝑎 ∈ Σ and each 𝑠 ∈ ̂𝑆 (resp. 𝑠 ∈ 𝑆). Moreover,
as 𝑅′ ≠ 𝑅, the set Pref (𝒪′

≤ℓ) may strictly include Pref (𝒪≤ℓ), and thus all the
values 𝐶′(𝑢′𝑠), 𝑢′ ∈ 𝑅 ∪ 𝑅Σ, 𝑠 ∈ 𝑆 must be recomputed. By Lemma 5.4.7,
this requires a number of membership and counter value queries polynomial
in |𝒪≤ℓ|.

A.5. Proof of Lemma 5.4.20

Lemma 5.4.20. Let 𝒪≤ℓ be an observation table and 𝒪′
≤ℓ be the observation

table obtained after resolving a (𝑢, 𝑣, 𝑎)-Σ-inconsistency (with 𝑢𝑎 ∈ 𝑅Σ and
𝑣 ∈ 𝑅). Then,

▶ |𝑅′| = |𝑅|, |𝑆′| = |𝑆| + 1, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣ + 1,
▶ 𝑣 ∉ Approx′(𝑢),
▶ ∣Approx′(𝑢)∣ < |Approx(𝑢)|, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.
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Lemma 5.4.12. Let 𝒪≤ℓ and
𝒪′

≤ℓ be two observation ta-
bles up to the same counter
limit ℓ ∈ ℕ such that 𝑅 ∪
𝑅Σ ⊆ 𝑅′ ∪ 𝑅′Σ, 𝑆 ⊆ 𝑆′,
and ̂𝑆 ⊆ ̂𝑆′. Then, for all
𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ such that
𝑢 ∈ Approx′(𝑣), we have 𝑢 ∈
Approx(𝑣).

Lemma 5.4.7. Filling 𝑇 and
𝐶 requires a polynomial
number of MQ and CVQ in
the sizes of 𝑅 ∪ 𝑅Σ and ̂𝑆.

Recall that we resolve a (𝑢, 𝑣, 𝑎)-Σ-inconsistency as follows. By definition,
there exists 𝑠 ∈ 𝑆 such that either

▶ 𝑇(𝑢𝑎𝑠) ≠ 𝑇(𝑣𝑎𝑠), or
▶ 𝐶(𝑢𝑎𝑠) ≠ ⊥ ∧ 𝐶(𝑣𝑎𝑠) ≠ ⊥ ∧ 𝐶(𝑢𝑎𝑠) ≠ 𝐶(𝑣𝑎𝑠).

In both cases, we add 𝑎𝑠 as a new separator in both 𝑆 and ̂𝑆. Observe that 𝑅
is left unchanged.

The first item of the lemma is easily proved, given the above procedure. We
prove the remaining three items of the lemma in order.

𝑣 is no longer in the approximation set of 𝑢. Let us first explain why
𝑣 ∉ Approx′(𝑢). Let 𝑎𝑠 ∈ 𝑆′ as above. We have two cases.

▶ If 𝑇(𝑢𝑎𝑠) ≠ 𝑇(𝑣𝑎𝑠), we keep the same inequality 𝑇 ′(𝑢𝑎𝑠) ≠ 𝑇 ′(𝑣𝑎𝑠), as
ℓ is unchanged. Thus, by definition, 𝑣 ∉ Approx′(𝑢).

▶ If 𝐶(𝑢𝑎𝑠) ≠ ⊥, 𝐶(𝑣𝑎𝑠) ≠ ⊥, and 𝐶(𝑢𝑎𝑠) ≠ 𝐶(𝑣𝑎𝑠), we have 𝐶′(𝑢𝑎𝑠) =
𝐶(𝑢𝑎𝑠) ≠ ⊥ (likewise for 𝑣𝑎𝑠), Therefore, it holds that 𝐶′(𝑢𝑎𝑠) ≠
⊥, 𝐶′(𝑣𝑎𝑠) ≠ ⊥, and 𝐶′(𝑢𝑎𝑠) ≠ 𝐶′(𝑣𝑎𝑠). Thus, we again get 𝑣 ∉
Approx′(𝑢).

The approximation set of 𝑢 is smaller. As 𝑣 ∈ Approx(𝑢), 𝑣 ∉ Approx′(𝑢),
and 𝑅 = 𝑅′, we get ∣Approx′(𝑢)∣ < |Approx(𝑢)| by Lemma 5.4.12.

Number of queries. Let us prove the last item. To extend and update
𝒪≤ℓ, the learner asks queries to the teacher so as to compute the new value
𝑇 ′(𝑢′𝑎𝑠) (resp. 𝐶′(𝑢′𝑎𝑠)) for each 𝑢′ ∈ 𝑅 ∪ 𝑅Σ. Moreover, as Pref (𝒪′

≤ℓ) may
have changed, we must recompute the values 𝐶′(𝑢′𝑠′) for every 𝑢′ ∈ 𝑅 ∪ 𝑅Σ
and 𝑠′ ∈ 𝑆. By Lemma 5.4.7, this requires a number of membership and
counter value queries in polynomial |𝒪≤ℓ|.
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6: Unlike in the last two sections,
the number of representatives and
separators is not immediate.

A.6. Proof of Lemma 5.4.21

Lemma 5.4.21. Let 𝒪≤ℓ be an observation table and 𝒪′
≤ℓ be the observation

table obtained after resolving a (𝑢, 𝑣, 𝑠)-⊥-inconsistency (with 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ
and 𝑠 ∈ 𝑆). Then,

▶ |𝑅′| = |𝑅|, |𝑆′| ≤ |𝑅 ∪ 𝑅Σ| + ∣ ̂𝑆∣, ∣ ̂𝑆′∣ ≤ |𝑅 ∪ 𝑅Σ| + ∣ ̂𝑆∣,
▶ if 𝑢′ is a prefix of 𝑢, then 𝑢 ∉ Approx′(𝑣),
▶ if 𝑢 is a proper prefix of 𝑢′, then,

• if 𝑣𝑠″ ∈ 𝐿≤ℓ, then 𝑢 ∈ Approx′(𝑣) implies that 𝐶′(𝑢𝑠) = 𝐶′(𝑣𝑠),
and

• if 𝑣𝑠″ ∉ 𝐿≤ℓ, then 𝑢 ∉ Approx′(𝑣),
▶ either ∣Approx′(𝑣)∣ < |Approx(𝑣)| or the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔

𝐶(𝑣𝑠) = ⊥ is eliminated,
▶ if the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔ 𝐶(𝑣𝑠) = ⊥ is eliminated, we have

|𝑆′| = |𝑆|, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.

Let us recall howwe resolve a (𝑢, 𝑣, 𝑠)-⊥-inconsistency. Let us assume, without
loss of generality, that 𝐶(𝑢𝑠) ≠ ⊥ and 𝐶(𝑣𝑠) = ⊥. So, 𝑢𝑠 ∈ Pref (𝒪≤ℓ),
i.e., there exist 𝑢′ ∈ 𝑅 ∪ 𝑅Σ and 𝑠′ ∈ ̂𝑆 such that 𝑢𝑠 ∈ Pref (𝑢′𝑠′) and
𝑇(𝑢′𝑠′) = yes. We denote by 𝑠″ the word such that 𝑢𝑠″ = 𝑢′𝑠′. Notice that 𝑠
is a prefix of 𝑠″. We have two cases:

▶ If 𝑢′ is a prefix of 𝑢, we add all suffixes of 𝑠″ to 𝑆 and leave 𝑅 and ̂𝑆
unchanged.

▶ If 𝑢 is a proper prefix of 𝑢′, there are again two cases:

• If 𝑣𝑠″ ∈ 𝐿≤ℓ, we add all suffixes of 𝑠″ to ̂𝑆 and leave 𝑅 and 𝑆
unchanged.

• If 𝑣𝑠″ ∉ 𝐿≤ℓ, we all all suffixes of 𝑠″ to 𝑆 and ̂𝑆, and leave 𝑅
unchanged.

We start by proving the second, third, and fourth items of the lemma, before
showing the first and the last two items.6

If 𝑢′ is a prefix of 𝑢, then 𝑢 ∉ Approx′(𝑣). Suppose 𝑢′ is a prefix of
𝑢, and consider 𝑠″ ∈ ̂𝑆. We have 𝑇(𝑣𝑠″) = no since otherwise, as ex-
plained above, 𝑣𝑠 ∈ Pref (𝒪≤ℓ) in contradiction with 𝐶(𝑣𝑠) = ⊥. Therefore,
𝑇 ′(𝑣𝑠″) = 𝑇(𝑣𝑠″) = no. We also have 𝑇 ′(𝑢𝑠″) = 𝑇 ′(𝑢′𝑠′) = 𝑇(𝑢′𝑠′) = yes
(by definition of 𝑢′𝑠′). Since 𝑠″ ∈ 𝑆′, it follows that 𝑢 ∉ Approx′(𝑣).

When 𝑢 is a proper prefix of 𝑢′. Suppose that 𝑢 is a proper prefix of
𝑢′. The subcase 𝑣𝑠″ ∉ 𝐿≤ℓ is solved similarly. Consider again 𝑠″ ∈ 𝑆′.
By hypothesis we have 𝑇 ′(𝑣𝑠″) = no. Recall that we have 𝑇 ′(𝑢𝑠″) = yes.
Therefore 𝑢 ∉ Approx′(𝑣).

In the other subcase (𝑣𝑠″ ∈ 𝐿≤ℓ), we have 𝑣𝑠 ∈ Pref (𝒪′
≤ℓ) since 𝑠″ ∈ ̂𝑆′,

𝑇 ′(𝑣𝑠″) = yes and 𝑣𝑠 is a prefix of 𝑣𝑠″. As 𝑢𝑠 ∈ Pref (𝒪) by hypothesis, we
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Lemma 5.4.12. Let 𝒪≤ℓ and
𝒪′

≤ℓ be two observation ta-
bles up to the same counter
limit ℓ ∈ ℕ such that 𝑅 ∪
𝑅Σ ⊆ 𝑅′ ∪ 𝑅′Σ, 𝑆 ⊆ 𝑆′,
and ̂𝑆 ⊆ ̂𝑆′. Then, for all
𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ such that
𝑢 ∈ Approx′(𝑣), we have 𝑢 ∈
Approx(𝑣).

Lemma 5.4.7. Filling 𝑇 and
𝐶 requires a polynomial
number of MQ and CVQ in
the sizes of 𝑅 ∪ 𝑅Σ and ̂𝑆.

𝑢 𝑠

𝑢′ 𝑠′

𝑠″

also have 𝑢𝑠 ∈ Pref (𝒪′
≤ℓ). Hence𝐶′(𝑢𝑠) ≠ ⊥∧𝐶′(𝑣𝑠) ≠ ⊥. If 𝑣 ∈ Approx′(𝑢),

it follows that 𝐶′(𝑢𝑠) = 𝐶′(𝑣𝑠).

The approximation set is smaller or a mismatch is eliminated. The
fourth item of the lemma follows directly from the first two items, thanks to
Lemma 5.4.12.

The first and last two items. We consider the different cases as above,
which all together will lead to the remaining items of this lemma.

Suppose first that 𝑢′ is a prefix of 𝑢. Then by construction of 𝒪′
≤ℓ, we have

𝑅′ = 𝑅, 𝑆′ = 𝑆 ∪ Suff (𝑠″), and ̂𝑆′ = ̂𝑆. As 𝑆′ ⊆ ̂𝑆′, we get |𝑆′| ≤ ∣ ̂𝑆∣.
Moreover, as 𝑅, ̂𝑆 are unchanged and Suff (𝑠″) is added to 𝑆, we only need
to add the new values 𝐶′(𝑦𝑧) to 𝒪′

≤ℓ, for all 𝑦 ∈ 𝑅 ∪ 𝑅Σ and 𝑧 ∈ Suff (𝑠″).
Therefore there is no MQ and a polynomial number of CVQ in |𝒪≤ℓ| (by
Lemma 5.4.7).

Second, suppose that 𝑢 is a proper prefix of 𝑢′. We have two subcases according
to whether 𝑣𝑠″ ∈ 𝐿≤ℓ. To determine which subcase applies, by Lemma 5.4.7
and the preceding argument, this requires one MQ and at most |𝑣𝑠″| CVQ.
The latter number is polynomial in the size of 𝒪≤ℓ. Indeed we have 𝑣 ∈ 𝑅∪𝑅Σ,
𝑠″ = 𝑥𝑠′ with 𝑠′ ∈ ̂𝑆 and 𝑥 prefix of 𝑢′ ∈ 𝑅 ∪ 𝑅Σ (see Figure 5.8a, which is
repeated in the margin), and thus

|𝑣𝑠″| ≤ |𝑣| + |𝑢′| + |𝑠′|.

Consider the first subcase 𝑣𝑠″ ∈ 𝐿≤ℓ. Then by construction of 𝒪′
≤ℓ, we have

𝑅′ = 𝑅, 𝑆′ = 𝑆, and ̂𝑆′ = ̂𝑆 ∪ Suff (𝑠″). Recall that as 𝑠′ ∈ ̂𝑆 is a suffix of 𝑠″,
there are only |𝑥| suffixes to add to ̂𝑆 with |𝑥| ≤ |𝑢′|. Thus,

∣ ̂𝑆′∣ ≤ ∣ ̂𝑆∣ + |𝑅 ∪ 𝑅Σ|.

Notice also that this is the only subcase where the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔
𝐶(𝑣𝑠) = ⊥ may be eliminated and for which we have |𝑆′| = |𝑆|. For each
new suffix 𝑧 to add to ̂𝑆 and each 𝑦 ∈ 𝑅 ∪ 𝑅Σ, we have to add the new value
𝑇 ′(𝑦𝑧) to 𝒪′

≤ℓ, and this requires a polynomial number of MQ and CVQ in
|𝒪≤ℓ| (by Lemma 5.4.7). Moreover, as Pref (𝒪′

≤ℓ) may have changed, the values
𝐶′(𝑦𝑧) have to be recomputed for all 𝑦 ∈ 𝑅 ∪ 𝑅Σ, 𝑧 ∈ 𝑆. This requires again
a polynomial number of CVQ in |𝒪≤ℓ|.

Finally consider the second subcase 𝑣𝑠″ ∉ 𝐿≤ℓ. Then by construction of 𝒪′
≤ℓ,

we have 𝑅′ = 𝑅, 𝑆′ = 𝑆∪Suff (𝑠″), and ̂𝑆′ = ̂𝑆∪Suff (𝑠″). Therefore this case
is similar to the previous subcase with the exception that 𝑆′ = 𝑆 ∪ Suff (𝑠″).
The same arguments can be repeated for ̂𝑆. As 𝑆′ ⊆ ̂𝑆′, it follows that

|𝑆′| ≤ ∣ ̂𝑆∣ + |𝑅 ∪ 𝑅Σ|.

The way that 𝒪′
≤ℓ is extended and updated can also be repeated, which leads

again to a polynomial number of MQ and CVQ.
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[NL10]: Neider et al. (2010), Learn-
ing visibly one-counter automata in
polynomial time

Theorem 5.3.10. Let 𝒜 be a
sound ROCA, 𝐵𝐺(𝒜) be its
behavior graph,𝒜 be the cor-
responding VOCA accepting
𝐿, and 𝐵𝐺(𝐿) be the behav-
ior graph of 𝐿. Then,

▶ 𝐵𝐺(𝒜) and 𝐵𝐺(𝐿) are
isomorphic up to 𝜆𝒜 and
�̃�, and

▶ the isomorphism respects
the counter values (i.e.,
level membership) and
both offset and period of
periodic descriptions.

A.7. Proof of Proposition 5.4.24

Proposition 5.4.24. Let 𝐵𝐺(𝒜) be the behavior graph of an ROCA 𝒜, 𝐾 be
its width, 𝑚, 𝑘 be the offset and the period of a periodic description of 𝐵𝐺(𝒜),
𝑠 = 𝑚 + (𝐾 ⋅ 𝑘)4, and 𝒪≤ℓ be a closed, Σ- and ⊥-consistent observation table
up to ℓ > 𝑠 such that ℒ(ℋ≤ℓ) = 𝐿≤ℓ. Then, the subgraphs of 𝐵𝐺(𝒜) and
ℋ≤ℓ restricted to the reachable and co-reachable states and to the levels 0 to
ℓ − 𝑠 are isomorphic.

Proving this proposition requires a preliminary lemma stating that one can
bound the height cv𝒜(𝑤) of a witness 𝑤 for non-equivalence with respect to
∼𝒜. We recall that height𝒜(𝑤) = max𝑥∈Pref (𝑤) cv𝒜(𝑥).

Lemma A.7.1. Let 𝒜 be an ROCA accepting a language 𝐿 ⊆ Σ∗, 𝐵𝐺(𝒜) be
its behavior graph, 𝛼 be a periodic description of 𝐵𝐺(𝒜) with offset 𝑚 and
period 𝑘, and 𝑠 = 𝑚 + (𝐾 ⋅ 𝑘)4. Let J𝑢K∼𝒜 and J𝑣K∼𝒜 be two distinct states of
𝐵𝐺(𝒜) such that cv𝒜(𝑢) = cv𝒜(𝑣). Then, there exists a word 𝑤 ∈ Σ∗ such
that

𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∉ 𝐿,

height𝒜(𝑢𝑤) ≤ 𝑠 + cv𝒜(𝑢),
and

height𝒜(𝑣𝑤) ≤ 𝑠 + cv𝒜(𝑢)

Such a property is proved in [NL10, Lemma 3] for VOCAs and immediately
transfers to ROCAs by Theorem 5.3.10. We now prove Proposition 5.4.24.

Proof of Proposition 5.4.24. Let 𝐵𝐺(𝒜) be the behavior graph of 𝒜 and let
ℋ≤ℓ be theDFA constructed from the table𝒪≤ℓ. Recall that by definition of𝑅,
𝑢 ∈ 𝑅 ⇔ 𝐶(𝑢) ≠ ⊥, i.e., 𝑢 ∈ Pref (𝒪≤ℓ). Recall that Pref (𝒪≤ℓ) ⊆ Pref (𝐿).
We denote by 𝑅≤ℓ−𝑠 (resp. 𝑅 ∪ 𝑅Σ≤ℓ−𝑠) the set of elements 𝑢 of 𝑅 (resp.
𝑅 ∪ 𝑅Σ) such that height𝒜(𝑢) ≤ ℓ − 𝑠.
We consider the following two subautomata:

▶ ℬ equal toℋ≤ℓ restricted to the states J𝑢K≡𝒪≤ℓ
with 𝑢 ∈ 𝑅≤ℓ−𝑠, and

▶ the bounded behavior graph 𝐵𝐺≤ℓ−𝑠(𝒜).

Both automata accept 𝐿≤ℓ−𝑠 and all their states are reachable. We show that
there exists an isomorphism between the two. Let 𝜑 such that

∀𝑢 ∈ 𝑅≤ℓ−𝑠 ∶ 𝜑(J𝑢K≡𝒪≤ℓ
) = J𝑢K∼𝒜.

We prove that 𝜑 embeds ℬ to 𝐵𝐺≤ℓ−𝑠(𝒜). Therefore ℬ and 𝜑(ℬ) will be
isomorphic subautomata both accepting 𝐿≤ℓ−𝑠. It will follow that the reach-
able and co-reachable parts of ℬ and 𝐵𝐺≤ℓ−𝑠(𝒜) will also be isomorphic as
stated in Proposition 5.4.24.
First notice that by definition of 𝜑, J𝑢K∼𝒜 is a state of 𝐵𝐺≤ℓ−𝑠(𝒜) because
𝑢 ∈ Pref (𝐿) and height𝒜(𝑢) ≤ ℓ − 𝑠, for all 𝑢 ∈ 𝑅≤ℓ−𝑠.
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Then let us show that:

∀𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ≤ℓ−𝑠 ∶ 𝑢 ≡𝒪≤ℓ
𝑣 ⇔ 𝑢 ∼𝒜 𝑣, (A.7.i)

in order to deduce that 𝜑 respects the equivalence classes. Let 𝑢, 𝑣 ∈
𝑅 ∪ 𝑅Σ≤ℓ−𝑠. Proposition 5.4.13. Let 𝒪≤ℓ

be an observation table up to
ℓ ∈ ℕ. Then, for all 𝑢, 𝑣 ∈
𝑅 ∪ 𝑅Σ such that 𝑢∼𝒜 𝑣, we
have 𝑢 ∈ Approx(𝑣).
Moreover, all 𝑢 ∈ 𝑅 ∪ 𝑅Σ ∖
𝑅 ∪ 𝑅Σ belong to the same
approximation set.

By Proposition 5.4.13, we already know that 𝑢 ∼𝒜 𝑣 ⇒
𝑢 ≡𝒪≤ℓ

𝑣. Assume 𝑢 ≡𝒪≤ℓ
𝑣 and, towards a contradiction, assume 𝑢 ≁𝒜 𝑣.

If cv𝒜(𝑢) ≠ cv𝒜(𝑣), it holds that 𝐶(𝑢) ≠ 𝐶(𝑣) (since 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ). It
follows that 𝑢 ∉ Approx(𝑣), that is, 𝑢 ≢𝒪≤ℓ

𝑣, which is a contradiction.
So, we get cv𝒜(𝑢) = cv𝒜(𝑣). Since 𝑢 ≁𝒜 𝑣, we know by Lemma A.7.1
that there exists a witness 𝑤 ∈ Σ∗ such that 𝑢𝑤 ∈ 𝐿 ⇔ 𝑣𝑤 ∉ 𝐿 and
height𝒜(𝑢𝑤), height𝒜(𝑣𝑤) ≤ ℓ (since 𝑠 + cv𝒜(𝑢) ≤ 𝑠 + ℓ − 𝑠 = ℓ). Since
ℒ(ℋ≤𝒜) = 𝐿≤ℓ, it is impossible that

𝑞ℋ≤ℓ
0

𝑢
−→ 𝑝 ∈ runs(ℋ≤ℓ) and 𝑞ℋ≤ℓ

0
𝑣
−→ 𝑝 ∈ runs(ℋ≤ℓ).

That is, both words cannot end in the same state. As 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ, by
definition of ℋ≤ℓ, it follows that 𝑢 ≢𝒪≤ℓ

𝑣 which is again a contradiction.
We have proved that 𝑢 ≡𝒪≤ℓ

𝑣 ⇔ 𝑢 ∼𝒜 𝑣.
Note that 𝜑 puts the initial states of both subautomata, ℬ and 𝐵𝐺≤ℓ−𝑠(𝒜),
in correspondence:

𝜑(𝑞ℬ0 ) = 𝜑(𝑞ℋ≤ℓ
0 ) = 𝜑(J𝜀K≡𝒪≤ℓ

) = J𝜀K∼𝒜 = 𝑞𝐵𝐺≤ℓ(𝒜)
0

= 𝑞𝐵𝐺≤ℓ−𝑠(𝒜)
0 .

Let us show that it is also the case for the final states. Let 𝑢 ∈ 𝑅≤ℓ−𝑠.
If J𝑢K≡𝒪≤ℓ

∈ 𝐹ℬ, then by definition, 𝑇(𝑢) = yes, i.e., 𝑢 ∈ 𝐿≤ℓ ⊆ 𝐿. It

follows that J𝑢K∼𝒜 ∈ 𝐹 𝐵𝐺≤ℓ−𝑠(𝒜). Conversely, if J𝑢K∼𝒜 ∈ 𝐹 𝐵𝐺≤ℓ(𝒜), then by
definition 𝑢 ∈ 𝐿 and moreover height𝒜(𝑢) ≤ ℓ − 𝑠 ≤ ℓ. Thus 𝑢 ∈ 𝐿≤ℓ and
J𝑢K≡𝒪≤ℓ

∈ 𝐹ℬ.
It remains to prove that 𝜑 respects the transitions. Let J𝑢K≡𝒪≤ℓ

, J𝑢′K≡𝒪≤ℓ
∈

𝑅≤ℓ−𝑠 such that 𝑢′ ≡𝒪≤ℓ
𝑢𝑎 with 𝑎 ∈ Σ. By (A.7.i), we have 𝑢′ ∼𝒜 𝑢𝑎. By

definition of both transition functions, we get

J𝑢K≡𝒪≤ℓ

𝑎
−→ J𝑢′K≡𝒪≤ℓ

∈ runs(ℬ)

and
J𝑢K∼𝒜

𝑎
−→ J𝑢′K∼𝒜 ∈ runs(𝐵𝐺≤ℓ−𝑠(𝒜)).

From all the above points, we conclude that 𝜑 embeds ℬ in 𝐵𝐺≤ℓ−𝑠(𝒜)
and that it is an isomorphism between their reachable and co-reachable
parts. �

A.8. Complexity of the learning algorithm

This section is devoted to the proof of our main theorem establishing the
complexity of 𝐿∗

ROCAand the number of required queries, which we repeat for
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convenience.

Theorem 5.4.1. Let 𝒜 be the sound ROCA of the teacher and 𝜁 be the length
of the longest counterexample returned by the teacher on (partial) equivalence
queries. Then,

▶ the 𝐿∗
ROCAalgorithm eventually terminates and returns an ROCA accept-

ing ℒ(𝒜) and whose size is polynomial in ∣𝑄𝒜∣ and |Σ|,
▶ in time and space exponential in ∣𝑄𝒜∣, |Σ| and 𝜁, and
▶ asking a number of PEQ in 𝒪 (𝜁3), a number of EQ in 𝒪 (∣𝑄𝒜∣𝜁2), and

a number of MQ and CVQ exponential in ∣𝑄𝒜∣, |Σ| and 𝜁.

We already argued in Section 5.4 that it is possible to make an observation
table closed, Σ- and ⊥-consistent in finite time. More precisely, Lemmas 5.4.19
to 5.4.21 and 5.4.25 state the growth of the number of representatives and
separators, and the number of needed queries, when making the table “good”
and when processing the counterexamples. Let us recall these lemmas, for
convenience.

Lemma 5.4.19. Let 𝒪≤ℓ = (𝑅, 𝑆, ̂𝑆, 𝑇, 𝐶) be an observation table and
𝒪′

≤ℓ = (𝑅′, 𝑆′, ̂𝑆′, 𝑇 ′, 𝐶′) be the observation table obtained after resolving a
𝑢-openness (with 𝑢 ∈ 𝑅Σ ∖ 𝑅). Then,

▶ |𝑅′| = |𝑅| + 1, |𝑆′| = |𝑆|, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣,
▶ Approx′(𝑢) ∩ 𝑅′ = {𝑢}, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.

Lemma 5.4.20. Let 𝒪≤ℓ be an observation table and 𝒪′
≤ℓ be the observation

table obtained after resolving a (𝑢, 𝑣, 𝑎)-Σ-inconsistency (with 𝑢𝑎 ∈ 𝑅Σ and
𝑣 ∈ 𝑅). Then,

▶ |𝑅′| = |𝑅|, |𝑆′| = |𝑆| + 1, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣ + 1,
▶ 𝑣 ∉ Approx′(𝑢),
▶ ∣Approx′(𝑢)∣ < |Approx(𝑢)|, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.
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Lemma 5.4.21. Let 𝒪≤ℓ be an observation table and 𝒪′
≤ℓ be the observation

table obtained after resolving a (𝑢, 𝑣, 𝑠)-⊥-inconsistency (with 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ
and 𝑠 ∈ 𝑆). Then,

▶ |𝑅′| = |𝑅|, |𝑆′| ≤ |𝑅 ∪ 𝑅Σ| + ∣ ̂𝑆∣, ∣ ̂𝑆′∣ ≤ |𝑅 ∪ 𝑅Σ| + ∣ ̂𝑆∣,
▶ if 𝑢′ is a prefix of 𝑢, then 𝑢 ∉ Approx′(𝑣),
▶ if 𝑢 is a proper prefix of 𝑢′, then,

• if 𝑣𝑠″ ∈ 𝐿≤ℓ, then 𝑢 ∈ Approx′(𝑣) implies that 𝐶′(𝑢𝑠) = 𝐶′(𝑣𝑠),
and

• if 𝑣𝑠″ ∉ 𝐿≤ℓ, then 𝑢 ∉ Approx′(𝑣),
▶ either ∣Approx′(𝑣)∣ < |Approx(𝑣)| or the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔

𝐶(𝑣𝑠) = ⊥ is eliminated,
▶ if the mismatch 𝐶(𝑢𝑠) ≠ ⊥ ⇔ 𝐶(𝑣𝑠) = ⊥ is eliminated, we have

|𝑆′| = |𝑆|, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in |𝒪≤ℓ|.

Lemma 5.4.25. Let 𝒪≤ℓ be an observation table, 𝜁 be the length of the coun-
terexample returned by a PEQ or EQ, and 𝒪′

≤ℓ′ be the new table obtained by
processing the counterexample. Then,

▶ |𝑅′| ≤ |𝑅| + 𝜁, |𝑆′| = |𝑆|, ∣ ̂𝑆′∣ = ∣ ̂𝑆∣, and
▶ the number of MQ and the number of CVQ are both bounded by a

polynomial in 𝜁 and |𝒪≤ℓ|.

In this section, we suppose that we have an ROCA 𝒜 that accepts a language
𝐿 ⊆ Σ∗. We denote 𝜁 the length of the longest counterexample returned
by the teacher on (partial) equivalence queries. Let us call an iteration of
Algorithm 5.1 a round. That is, a round consists in making the current table
closed, Σ- and ⊥-consistent and then handling the counterexample provided
either by a PEQ or an EQ. Notice that the total number of rounds performed by
the learning algorithm coincides with the total number of partial equivalence
queries.

We first give a lemma giving an upper bound for values given by some recur-
sive functions, before discussing the number of (partial) equivalence queries
needed throughout the learning process. From there, we will be able to fully
characterize the growth of the number of representatives and separators in
Section A.8.2. Finally, Section A.8.3 gives the proof of Theorem 5.4.1.

Lemma A.8.1. Let 𝛼, 𝛽 ≥ 1 be constants and 𝑆 be a function defined as:

𝑆(0) = 𝛽,
𝑆(𝑗) = 𝑆(𝑗 − 1) ⋅ 𝛼 ⋅ 𝑗 + 𝛽, ∀𝑗 ≥ 1.

Then, for all 𝑗 ∈ ℕ, it holds that

𝑆(𝑗) ≤ (𝑗 + 1) ⋅ (𝛼 ⋅ 𝑗)𝑗 ⋅ 𝛽.
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Proof. Let 𝑃 (𝑘, ℓ) = 𝑘 ⋅ (𝑘 + 1) ⋅ (𝑘 + 2) ⋯ ℓ for any 𝑘, ℓ ∈ ℕ such that
1 ≤ 𝑘 ≤ ℓ. Notice that 𝑃 (𝑘, ℓ) ≤ ℓℓ−𝑘+1 ≤ ℓℓ.
Let 𝑗 ∈ ℕ. We have:

𝑆(𝑗) = 𝑆(𝑗 − 1) ⋅ 𝛼 ⋅ 𝑗 + 𝛽
= (𝑆(𝑗 − 2) ⋅ 𝛼 ⋅ (𝑗 − 1) + 𝛽) ⋅ 𝛼 ⋅ 𝑗 + 𝛽
= ((𝑆(𝑗 − 3) ⋅ 𝛼 ⋅ (𝑗 − 2) + 𝛽) ⋅ 𝛼 ⋅ (𝑗 − 1) + 𝛽) ⋅ 𝛼 ⋅ 𝑗 + 𝛽
= …

= 𝑆(0) ⋅ 𝛼𝑗𝑃(1, 𝑗) + 𝛽 ⋅ (
𝛼𝑗−1𝑃(2, 𝑗) + 𝛼𝑗−2𝑃(3, 𝑗)

+ ⋯ + 𝛼𝑃(𝑗, 𝑗) + 1
)

= 𝛽 ⋅ (
𝛼𝑗𝑃 (1, 𝑗) + 𝛼𝑗−1𝑃 (2, 𝑗) + 𝛼𝑗−2𝑃(3, 𝑗)

+ ⋯ + 𝛼𝑃(𝑗, 𝑗) + 1
)

≤ (𝑗 + 1) ⋅ (𝛼 ⋅ 𝑗)𝑗 ⋅ 𝛽.

�

A.8.1. Number of (partial) equivalence queries

We start with the number of (partial) equivalence queries asked by 𝐿∗
ROCA.

Proposition A.8.2. In 𝐿∗
ROCA,

▶ the final counter limit ℓ is bounded by 𝜁,
▶ the number of PEQ in in 𝒪 (𝜁3),
▶ the number of EQ is in 𝒪 (∣𝑄𝒜∣𝜁2).

Proof. The proof is inspired by [NL10]. First, notice that the counter limit
ℓ of 𝒪≤ℓ is increased only when a counterexample for an EQ is processed.
Thus, ℓ is determined by the height of a counterexample, and this height
cannot exceed 𝜁

2
≤ 𝜁. Moreover, it follows that the number of times ℓ is

increased is in 𝒪 (𝜁).
Second, let us study the number of PEQ for a fixed counter limit ℓ. Recall
that the index of ≡𝒪≤ℓ

strictly increases after each

Proposition 5.4.26. Let 𝒪≤ℓ
be a closed, Σ- and ⊥-
consistent observation table
up to ℓ ∈ ℕ, and 𝒪′

≤ℓ be the
closed, Σ- and ⊥-consistent
observation table obtained af-
ter processing a counterex-
ample. Then, for all 𝑢, 𝑣 ∈
𝑅 ∪ 𝑅Σ such that 𝑐 ≡𝒪′

≤ℓ
𝑣,

we have 𝑢 ≡𝒪≤ℓ
𝑣. Further-

more, the index of ≡𝒪′
≤ℓ

is
strictly greater than the in-
dex of ≡𝒪≤ℓ

.

provided counterexample
(see Proposition 5.4.26) and that the number of equivalence classes of ∼𝒜 up
to ℓ is bounded by (ℓ + 1)∣𝑄𝒜∣ + 1

Lemma 5.4.3. The number
of states of 𝐵𝐺≤ℓ(𝒜) is at
most (ℓ + 1) ⋅ ∣𝑄𝒜∣.

(see Lemma 5.4.3).
Proposition 5.4.13. Let 𝒪≤ℓ
be an observation table up to
ℓ ∈ ℕ. Then, for all 𝑢, 𝑣 ∈
𝑅 ∪ 𝑅Σ such that 𝑢∼𝒜 𝑣, we
have 𝑢 ∈ Approx(𝑣).
Moreover, all 𝑢 ∈ 𝑅 ∪ 𝑅Σ ∖
𝑅 ∪ 𝑅Σ belong to the same
approximation set.

By Proposition 5.4.13,
it follows that we ask at most 𝒪 (∣𝑄𝒜∣𝜁) PEQ by fixed ℓ. Therefore, the total
number of PEQ is 𝒪 (∣𝑄𝒜∣𝜁2).
Finally, let us study the number of EQ when a DFAℋ≤ℓ accepting 𝐿≤ℓ has
been learned. We generate at most ℓ2 periodic descriptions (as the number
of pairs of offset and period is bounded by ℓ2). We thus ask an EQ for the
ROCA constructed from each such description, i.e., at most 𝒪 (𝜁2) queries.
This leads to a total number of EQ in 𝒪 (𝜁3). �
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A.8.2. Growth of the number of representatives and separators

In this section, we study the size of the observation table at the end of the
execution of our learning algorithm. We denote by 𝑅𝑓 (resp. ̂𝑆𝑓) the final set
𝑅 (resp. ̂𝑆) at the end of the execution. With this study, we will be able to
show that making an observation table closed and consistent can be done in a
finite amount of time. That is, we prove Proposition 5.4.18, which we restate.
We will also be able to count the total number of MQ and CVQ performed
during the execution of the algorithm.

Proposition 5.4.18. Given an observation table 𝒪≤ℓ up to ℓ ∈ ℕ, there exists
an algorithm that makes it closed, Σ- and ⊥-consistent in a finite amount of
time.

Recall that, by Lemma 5.4.19, resolving a single openness can be done in
finite time. Likewise for a single Σ-inconsistency (Lemma 5.4.20), or a single
⊥-inconsistency (Lemma 5.4.21). We thus have to show that we apply these
operations finitely many times.

We begin with the study of the size of 𝑅𝑓 ∪ 𝑅𝑓Σ.

Proposition A.8.3. We have the following properties:

▶ The size of 𝑅𝑓 ∪ 𝑅𝑓Σ is in 𝒪 (∣𝑄𝒜∣|Σ|𝜁4).
▶ During the process of making a table closed, Σ- and ⊥-consistent, the

number of resolved openness cases is in 𝒪 (∣𝑄𝒜∣𝜁).

Proof. We first study the growth of 𝑅 and the number of resolved open-
ness cases after one round of the learning algorithm, i.e., after first making
the current table 𝒪≤ℓ closed, Σ- and ⊥-consistent, and then handling a
counterexample to a (partial) equivalence query.
During the process of making 𝒪≤ℓ closed, Σ- and ⊥-consistent, notice that
𝑅 increases only when an openness is resolved (by Lemmas 5.4.19 to 5.4.21).
Furthermore, when a 𝑢-openness is resolved, 𝑅 is increased with 𝑢 which is
the only representative in its new approximation set. By Proposition 5.4.13,
it follows that the number of

Proposition 5.4.13. Let 𝒪≤ℓ
be an observation table up to
ℓ ∈ ℕ. Then, for all 𝑢, 𝑣 ∈
𝑅 ∪ 𝑅Σ such that 𝑢∼𝒜 𝑣, we
have 𝑢 ∈ Approx(𝑣).
Moreover, all 𝑢 ∈ 𝑅 ∪ 𝑅Σ ∖
𝑅 ∪ 𝑅Σ belong to the same
approximation set.

resolved openness cases is bounded by the
index of ∼𝒜 up to counter limit ℓ.

Lemma 5.4.3. The number
of states of 𝐵𝐺≤ℓ(𝒜) is at
most (ℓ + 1) ⋅ ∣𝑄𝒜∣.

This index is bounded by (ℓ + 1)∣𝑄𝒜∣ + 1
(see Lemma 5.4.3). As ℓ ≤ 𝜁 by Proposition A.8.2, the number of resolved
openness cases is in𝒪 (∣𝑄𝒜∣𝜁) and 𝑅 may increase by at most (𝜁+1)∣𝑄𝒜∣+1
words. By adding the potential ⊥-word of 𝑅 ∖𝑅, we get that 𝑅 may increase
by at most (𝜁 + 1)∣𝑄𝒜∣ + 2 words.
After that, to handle the counterexample provided by the teacher, 𝑅 may
still increase by at most 𝜁 words (by Lemma 5.4.25).
Let us now study the size of 𝑅𝑓. We denote by 𝑟(𝑖) the size of 𝑅 respectively
at the initialization of the learning algorithm when 𝑖 = 0 and after each
round 𝑖, when 𝑖 ≥ 1. We have

𝑟(0) = 1,
∀𝑖 > 0 ∶ 𝑟(𝑖) ≤ 𝑟(𝑖 − 1) + (𝜁 + 1)∣𝑄𝒜∣ + 2 + 𝜁.

Recall that the number of rounds is bounded by the total number of PEQ,
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which is in𝒪 (𝜁3) by Proposition A.8.2. Hence, the size of 𝑅𝑓 is in𝒪 (∣𝑄𝒜∣𝜁4)
and the size of 𝑅𝑓 ∪ 𝑅𝑓Σ is in 𝒪 (∣𝑄𝒜∣|Σ|𝜁4). �

In the next proposition, we study how the sizes of 𝑆 and ̂𝑆 increase when
making an observation table closed, Σ- and ⊥-consistent. Recall that both
𝑆 and ̂𝑆 do not change when resolving openness cases (see Lemma 5.4.19).
Moreover, during the process of making the table consistent (see Lemmas 5.4.20
and 5.4.21), either an approximation set decreases in size or a mismatch is
eliminated. Below, we study how many times each of these two cases may
happen.

Proposition A.8.4. Let 𝒪≤ℓ be an observation table and let 𝒪′
≤ℓ be the result-

ing table after making 𝒪≤ℓ closed, Σ- and ⊥-consistent. Then, with 𝛼 being
the size of 𝑅𝑓 ∪ 𝑅𝑓Σ,

▶ |𝑆′| is in 𝒪 (𝛼4𝛼2+2∣ ̂𝑆∣) and ∣ ̂𝑆′∣ is in 𝒪 (𝛼4𝛼2+4∣ ̂𝑆∣).
▶ the number of times that an approximation set decreases is bounded by 𝛼2

and the number of times a mismatch is eliminated is in 𝒪 (𝛼4𝛼2+3∣ ̂𝑆∣).

Proof. Resolving Σ- and ⊥-inconsistencies during the process of making 𝒪≤ℓ
closed and consistent either decreases approximation sets or eliminates mis-
matches, and the latter case only occurs when resolving a ⊥-inconsistency
(see Lemmas 5.4.20 and 5.4.21).
Let us first study the number of times that an approximation set may decrease.
By definition, each processed approximation set is a subset of 𝑅′ ∪ 𝑅′Σ and
there are at most |𝑅′ ∪ 𝑅′Σ| such sets. Therefore the number of times an
approximation set decreases is bounded by |𝑅′ ∪ 𝑅′Σ|2, and thus by

𝛼2. (A.8.i)

Let us now study the growth of both 𝑆 and ̂𝑆. By Lemmas 5.4.19 to 5.4.21, 𝑆
and ̂𝑆 may increase when resolving Σ- and ⊥-inconsistencies only. Let us
denote by ̂𝑠 the initial size of ̂𝑆 and by ̂𝑠(𝑖, 𝑗) the size of the current set ̂𝑆
after 𝑖 + 𝑗 steps composed of 𝑖 eliminations of mismatches and 𝑗 decreases
of approximation sets. During such steps, by Lemmas 5.4.20 and 5.4.21, the
size of ̂𝑆 increases by at most |𝑅′ ∪ 𝑅′Σ| ≤ 𝛼 words. Therefore we get:

̂𝑠(0, 0) = ̂𝑠,
∀𝑖 + 𝑗 > 0 ∶ ̂𝑠(𝑖, 𝑗) ≤ (𝑖 + 𝑗)𝛼 + ̂𝑠. (A.8.ii)

Let us introduce another notation: 𝑠(𝑗) is the size of the current set 𝑆 after
𝑗 decreases of approximation sets and a certain number of eliminations of
mismatches such that the last step is one decrease of an approximation set.
Thus, 𝑠(0) ≤ ̂𝑠, since 𝑆 ⊆ ̂𝑆, and from 𝑠(𝑗 − 1) to 𝑠(𝑗), a certain number of
mismatches is resolved followed by one decrease of an approximation set.
Let us recall that when a mismatch is resolved, the current 𝑆 is unchanged
(see Lemma 5.4.21). It follows that from 𝑠(𝑗 − 1) to 𝑠(𝑗), at most:

𝑠(𝑗 − 1)𝛼 mismatches (A.8.iii)
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are resolved (indeed for a fixed 𝑠(𝑗 − 1), at most |𝑅 ∪ 𝑅Σ| mismatches can
be resolved). Hence, from (A.8.iii), we get

𝑠(𝑗) ≤ ̂𝑠(𝑠(𝑗 − 1)𝛼, 𝑗)

and, from (A.8.ii), we get

𝑠(𝑗) ≤ (𝑠(𝑗 − 1)𝛼 + 𝑗)𝛼 + ̂𝑠.

It follows that:

𝑠(0) ≤ ̂𝑠,
𝑠(𝑗) ≤ 𝑠(𝑗 − 1)𝛼2𝑗 + ̂𝑠.

We thus get
𝑠(𝑗) ≤ (𝑗 + 1)(𝛼2𝑗)𝑗 ̂𝑠,

via Lemma A.8.1. Recall that there are at most 𝛼2 decreases of approximation
sets by (A.8.i). Moreover, to have the table closed, Σ- and ⊥-consistent, the
last such decrease could be followed by several eliminations of mismatches
that do not change the size of the current 𝑆. Therefore, at the end of the
process,

|𝑆′| = 𝑠(𝛼2) ≤ (𝛼2 + 1)(𝛼2𝛼2)𝛼2
̂𝑠

which is in 𝒪 (𝛼4𝛼2+2∣ ̂𝑆∣). By (A.8.iii), we also get that the total number of
eliminations of mismatches is:

𝑠(𝛼2)𝛼 (A.8.iv)

which is in 𝒪 (𝛼4𝛼2+3∣ ̂𝑆∣).
Finally we can deduce the size of the resulting set ̂𝑆′ when the table is closed,
Σ- and ⊥-consistent: it is equal to ̂𝑠(𝑖, 𝑗) with 𝑖 = 𝑠(𝛼2)𝛼 by (A.8.iv) and
𝑗 = 𝛼2 by (A.8.i). By (A.8.ii), we get

∣ ̂𝑆′∣ ≤ (𝑠(𝛼2)𝛼 + 𝛼2)𝛼 + ̂𝑠

which is in 𝒪 (𝛼4𝛼2+4∣ ̂𝑆∣). �

As a corollary of Propositions A.8.3 and A.8.4, we obtain a table can be made
closed, Σ- and ⊥-consistent in a finite amount of time. That is, we immediately
obtain a proof for Proposition 5.4.18. In view of these two results, we decided
to handle a counterexample 𝑤 to a (partial) equivalence query by adding
Pref (𝑤) to the current set 𝑅. Indeed, an alternative could have been to add
Suff (𝑤) to ̂𝑆. It should however be clear that this is not such a good idea
because of the exponential growth of ̂𝑆 as established in Proposition A.8.4. In
contrast, the size of 𝑅 at the end of the learning process is only polynomial
(see Proposition A.8.3).

We now study the size of ̂𝑆𝑓 which turns out to be exponential.

Proposition A.8.5. The size of ̂𝑆𝑓 is exponential in ∣𝑄𝒜∣, |Σ| and 𝜁.
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Proof. We first study the growth of ̂𝑆 after one round of the learning al-
gorithm. We first make the current table 𝒪≤ℓ closed, Σ- and ⊥-consistent,
and then handle a counterexample to a (partial) equivalence query. For the
resulting table 𝒪′

≤ℓ′, we have by Lemma 5.4.25 and proposition A.8.4 that
there is some constant 𝑐 such that:

∣ ̂𝑆′∣ ≤ 𝑐𝛼4𝛼2+4∣ ̂𝑆∣. (A.8.v)

Recall that the number of rounds is bounded by the total number of partial
equivalence queries, which is in 𝒪 (𝜁3) by Proposition A.8.2. Since initially

̂𝑆 = {𝜀}, we get by (A.8.v) that

∣ ̂𝑆𝑓∣ ≤ (𝑐𝛼4𝛼2+4)
𝒪(𝜁3)

.

Since 𝛼 = ∣𝑅𝑓 ∪ 𝑅𝑓Σ∣ is polynomial in ∣𝑄𝒜∣, |Σ| and 𝜁 by Proposition A.8.3,
it follows that ∣ ̂𝑆𝑓∣ is exponential in ∣𝑄𝒜∣, |Σ| and 𝜁. �

We get the next corollary about the total number of membership and counter
value queries asked by the learner during the execution of the learning algo-
rithm.

Corollary A.8.6. In the learning algorithm, the number of MQ and CVQ is
exponential in ∣𝑄𝒜∣, |Σ| and 𝜁.

Proof. We first study the number of membership and counter value queries
after one round of the learning algorithm. Recall that both numbers are
polynomial in the size of the current table after resolving an openness,
a Σ-inconsistency, a ⊥-inconsistency, or handling a counterexample (see
Lemmas 5.4.19 to 5.4.21 and 5.4.25). Moreover, recall that making the table
closed, Σ- and ⊥-consistent requires

▶ resolving at most 𝒪 (∣𝑄𝒜∣𝜁) openness cases (by Proposition A.8.3),
▶ at most 𝛼2 decreases of approximation sets, and
▶ at most 𝒪 (𝛼4𝛼2+3∣ ̂𝑆∣) eliminations of mismatches (by Proposi-

tion A.8.4),

where 𝛼 = ∣𝑅𝑓 ∪ 𝑅𝑓Σ∣ ∈ 𝒪 (∣𝑄𝒜∣|Σ|𝜁4) by Proposition A.8.3. Hence, we get
after one round a number of MQ and CVQ that is exponential in ∣𝑄𝒜∣, |Σ|
and 𝜁.
Second, as the number of rounds is in 𝒪 (𝜁3), the total number of MQ and
CVQ during the learning algorithm is again exponential in ∣𝑄𝒜∣, |Σ| and
𝜁. �

A.8.3. Proof of Theorem 5.4.1

We are now ready to prove our main theorem establishing the complexity of
the learning algorithm (Theorem 5.4.1), which we repeat one more time.
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Theorem 5.4.1. Let 𝒜 be the sound ROCA of the teacher and 𝜁 be the length
of the longest counterexample returned by the teacher on (partial) equivalence
queries. Then,

▶ the 𝐿∗
ROCAalgorithm eventually terminates and returns an ROCA accept-

ing ℒ(𝒜) and whose size is polynomial in ∣𝑄𝒜∣ and |Σ|,
▶ in time and space exponential in ∣𝑄𝒜∣, |Σ| and 𝜁, and
▶ asking a number of PEQ in 𝒪 (𝜁3), a number of EQ in 𝒪 (∣𝑄𝒜∣𝜁2), and

a number of MQ and CVQ exponential in ∣𝑄𝒜∣, |Σ| and 𝜁.

We need a last lemma studying the complexity of the basic operations car-
ried out by the learner during this algorithm. By basic operations, given an
observation table 𝒪≤ℓ, we mean:

▶ to check whether 𝑢 ∈ Approx(𝑣),
▶ to check whether 𝑢 ∈ Pref (𝒪≤ℓ),
▶ to check whether 𝒪≤ℓ is closed,
▶ to check whether 𝒪≤ℓ is Σ-consistent,
▶ to check whether 𝒪≤ℓ is ⊥-consistent,
▶ to construct the automatonℋ≤ℓ when 𝒪≤ℓ is closed, Σ- and ⊥-consistent,
▶ to compute the periodic descriptions 𝛼1, … , 𝛼𝑛 in ℋ≤ℓ and construct

the ROCAs 𝒜𝛼1
, … ,𝒜𝛼𝑛

,
▶ to modifyℋ≤ℓ to see it as an ROCA.

Lemma A.8.7. Given an observation table 𝒪≤ℓ, each basic operation of the
learner is in time polynomial in |𝒪≤ℓ|.

Proof. Since the actual complexity of the basic operations greatly depends
on the implementation details, we give here a very naive complexity. For
instance, to check whether 𝑢 ∈ Approx(𝑣) with 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ, we test for
every 𝑠 ∈ 𝑆 if 𝑇(𝑢𝑠) = 𝑇(𝑣𝑠) and 𝐶(𝑢𝑠) ≠ ⊥ ∧ 𝐶(𝑣𝑠) ≠ ⊥ ⇒ 𝐶(𝑢𝑠) =
𝐶(𝑣𝑠). This operation is therefore in 𝒪 (|𝑆|) which is polynomial in |𝒪≤ℓ|.
Let 𝑢 ∈ Σ∗. Checking whether 𝑢 ∈ Pref (𝒪≤ℓ) is equivalent to checking if

∃𝑣 ∈ 𝑅 ∪ 𝑅Σ, 𝑠 ∈ ̂𝑆 ∶ 𝑢 ∈ Pref (𝑣𝑠) ∧ 𝑇(𝑣𝑠) = yes,

leading to a polynomial complexity.
Checking whether the table is closed, i.e.,

∀𝑢 ∈ 𝑅Σ ∶ Approx(𝑢) ∩ 𝑅 ≠ ∅

can be done in time polynomial in |𝒪≤ℓ|. Likewise, checking whether the
table is Σ-consistent, i.e.,

∀𝑢𝑎 ∈ 𝑅Σ ∶ 𝑢𝑎 ∈ ⋂
𝑣∈Approx(𝑢)∩𝑅

Approx(𝑣𝑎),

and is ⊥-consistent, i.e., for all 𝑢, 𝑣 ∈ 𝑅 ∪ 𝑅Σ and 𝑠 ∈ 𝑆

𝑢 ∈ Approx(𝑣) ⇒ 𝐶(𝑢𝑠) ≠ ⊥ ⇔ 𝐶(𝑣𝑠) ≠ ⊥.

Let 𝑛 be the index of ≡𝒪≤ℓ
. To constructℋ≤ℓ, we need to select one repre-
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sentative 𝑢 by equivalence class of ≡𝒪≤ℓ
and to define the transitions (which

implies finding the class of 𝑢𝑎). Since 𝑛 is bounded by |𝑅|, the construction
ofℋ≤ℓ has a complexity polynomial in |𝒪≤ℓ|.
By [NL10] [NL10]: Neider et al. (2010), Learn-

ing visibly one-counter automata in
polynomial time

, we know that finding the periodic descriptions in ℋ≤ℓ is in
polynomial time. The construction of an ROCA from a description is also in
polynomial time,

Proposition 5.3.12.
Let 𝐵𝐺(𝒜) be the be-
havior graph of some
sound ROCA 𝒜 and 𝛼 =
𝜏0 … 𝜏𝑚−1(𝜏𝑚 … 𝜏𝑚+𝑘−1)𝜔

be an ultimately periodic
description of 𝐵𝐺(𝒜) with
offset 𝑚 and period 𝑘. Then,
one can construct an ROCA
𝒜𝛼 from 𝛼 such that

▶ ℒ(𝒜𝛼) = ℒ(𝒜), and
▶ the size of 𝒜𝛼 is poly-

nomial in 𝑚, 𝑘 and
width(𝐵𝐺(𝒜)).

by Proposition 5.3.12.
Finally, to seeℋ≤ℓ as an ROCA, it is sufficient to modify it with a transition
function that keeps the counter always equal to 0.
Thus, every basic operation for the learner is in polynomial time in the size
of the table. �

We finally conclude with the proof of our main theorem.

Proof of Theorem 5.4.1. The number of different kinds of queries is estab-
lished in Proposition A.8.2 and Corollary A.8.6. By Propositions A.8.3
and A.8.4, the space used by the learning algorithm is mainly the space
used to store the observation table which is polynomial (resp. exponential)
in ∣𝑄𝒜∣, |Σ| and 𝜁 for 𝑅𝑓 ∪ 𝑅𝑓Σ (resp. for ̂𝑆𝑓).
Finally, the algorithm runs in time exponential in ∣𝑄𝒜∣, |Σ| and 𝜁. Indeed
each basic operation of the learner is in time polynomial in the size of the
table by Lemma A.8.7, the algorithm is executed in at most 𝒪 (𝜁3) rounds
by Proposition A.8.2, and each round results in at most 𝒪 (∣𝑄𝒜∣𝜁) openness
cases, 𝛼2 decreases of approximation sets, 𝒪 (𝛼4𝛼2+3∣ ̂𝑆∣) eliminations of
mismatches, and has to handle one counterexample by Propositions A.8.3
and A.8.4 (where 𝛼 = ∣𝑅𝑓 ∪ 𝑅𝑓Σ∣). �
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JSON Documents and Schemas 6.
Our focus in the third part Validating JSON Documents is to provide a validation
algorithm to verify whether a JSON document satisfies a set of constraints
(given as a JSON schema), in a streaming context where the document is
received piece by piece. In Section 5.5.3, we presented a potential use case of
our learning algorithm for realtime one-counter automata. However, we had to
impose constraints on the considered JSON documents. Namely, objects which
are supposed to be unordered collections of key-value pairs were considered
as ordered. In this part, we lift such constraints.

This chapter, based on [BPS23], introduces JSON documents and schemas with
more details, alongside the validation problem and the “classical” algorithm,
and serves as an introduction for Chapter 7 and its Appendix B which contain
our contributions on this subject.

Chapter contents
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6.1. Introduction

JavaScript Object Notation (JSON) has overtaken XML as the de facto standard
data-exchange format, in particular for web applications. JSON documents are
easier to read for programmers and end users since they only have arrays and
objects as structured types. Moreover, in contrast to XML, they do not include
named open and end tags for all values, but open and end tags (braces actually)
for arrays and objects only. For instance, some components of Microsoft Azure,
of GitHub and of AWS can be interacted with via JSON documents. It is also
noteworthy that many applications rely on JSON documents to store local
configurations, even if they do not have to be shared over a network, e.g.,
Visual Studio Code.

Given the prevalent usage of JSON documents in real-world cases, it is impor-
tant to verify that a received document is valid, in the sense that its structure
satisfies some constraints. Naturally, these constraints depend on the exact
application. JSON schema1 is a simple schema language that allows users to
define them. Many examples can be found on various websites.2

Several previous results have been obtained about the formalization of XML
schemas and the use of formal methods to validate XML documents (see,
e.g., [BCS15; KMV07; Mar+17; NS18; Sch12; SV02]). Recently, a standard to
formalize JSON schemas has been proposed and (hand-coded) validation tools

https://json-schema.org/
https://www.schemastore.org/json/
https://www.schemastore.org/json/
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3: https://json-schema.org/

[Pez+16]: Pezoa et al. (2016), “Foun-
dations of JSON Schema”

[Bra17]: Bray (2017), “The
JavaScript Object Notation (JSON)
Data Interchange Format”

[Pez+16]: Pezoa et al. (2016), “Foun-
dations of JSON Schema”
4: https://www.json.org/jso
n-en.html

for such schemas can be found online3. Pezoa et al, in [Pez+16], observe that
the standard of JSON documents is still evolving and that the formal semantics
of JSON schemas is also still changing. Furthermore, validation tools seem to
make different assumptions about both documents and schemas. The authors
of [Pez+16] carry out an initial formalization of JSON schemas into formal
grammars from which they are able to construct a batch validation tool from
a given JSON schema.

Whenever a document has to be transmitted over a network, it will be frag-
mented into multiple smaller chunks of data, which are received piece by piece
in the target system. We call this a streaming context. This makes the process
of checking whether a document is correct with regards to the constraints
encoded in a schema harder. The easy solution would be to buffer the doc-
ument correctly being received in memory but that increases the memory
consumption, which may not be appropriate when the validation is done on a
server which has to answer quickly and process multiple documents at the
same time.

In this chapter, we first properly define JSON documents and their structure.
Then, in Section 6.3, we introduce JSON schemas, and, in Section 6.4, the
abstractions we consider throughout this part. Finally, Section 6.5 gives an
algorithm that validates whether a document satisfies the constraints given
as a schema, and its limits. The next chapter presents a different validation
algorithm, based on automata learning.

6.2. JSON documents

In this section, we formally define JSON documents [Bra17]. Our presentation
is inspired by [Pez+16] and simplifies some aspects for readability. We refer to
the official JSON website4 for a full description. The next section presents a
way to describe the structure these documents should follow.

The JSON format defines six different types of JSON values:

▶ true, false are JSON values.
▶ null is a JSON value.
▶ Any decimal number (positive, negative) is a JSON value, called a number .

In particular any number that is an integer is called an integer .
▶ Any finite sequence of Unicode characters starting and ending with " is

a JSON value, called a string value.
▶ If 𝑣1, 𝑣2, … , 𝑣𝑛 are JSON values and 𝑘1, 𝑘2, … , 𝑘𝑛 are pairwise distinct

string values, then

{𝑘1 ∶ 𝑣1, 𝑘2 ∶ 𝑣2, … , 𝑘𝑛 ∶ 𝑣𝑛}

is a JSON value, called an object . Each 𝑘𝑖 ∶ 𝑣𝑖 is called a key-value pair
such that 𝑘𝑖 is the key. The collection of these pairs is unordered. That
is, {𝑘1 ∶ 𝑣1, 𝑘2 ∶ 𝑣2} and {𝑘2 ∶ 𝑣2, 𝑘1 ∶ 𝑣1} are considered as being exactly
the same object.

https://json-schema.org/
https://www.json.org/json-en.html
https://www.json.org/json-en.html
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object ∶∶= { } Empty object
| {string ∶ value(, string ∶ value)∗} Non-empty object

array ∶∶= [ ] Empty array
| [value(,value)∗] Non-empty array

value ∶∶= true | false | null | string | number Primitive values
| object
| array

Figure 6.1: Formal grammar for JSON documents. For clarity, rules for string and number are not provided
here.

1 {

2 "title": "Validating Streaming JSON Documents with Learned VPAs",

3 "keywords": ["visibly pushdown automata", "JSON documents", "streaming validation"],

4 "conference": {

5 "name": "TACAS",

6 "year": 2023

7 }

8 }

Figure 6.2: A JSON document.

5: That is, true, false, null,
numbers (including integers), and
strings

6: In [Bra17], a JSON document
can be any JSON value and dupli-
cated keys are allowed inside ob-
jects. In this part, we followwhat is
commonly used in practice: JSON
documents are objects, and keys
are pairwise distinct inside objects.

7: Arrays are indexed from 0.

▶ If 𝑣1, 𝑣2, … , 𝑣𝑛 are JSON values, then [𝑣1, 𝑣2, … , 𝑣𝑛] is a JSON value,
called an array. Each 𝑣𝑖 is an element and the collection thereof is
ordered. That is, [𝑣1, 𝑣2] are [𝑣2, 𝑣1] are two different arrays (if 𝑣1 ≠ 𝑣2).

JSON values described by the first four items5 are called primitive values. Fig-
ure 6.1 gives a formal grammar for JSON values. For clarity, we do not provide
rules for string values and numbers, as they follow definitions occurring in
many computer languages. In this part, JSON documents are supposed to be
objects.6

Example 6.2.1. An example of a JSON document is given in Figure 6.2. We
can see that this document is an object containing three keys:

▶ "title", whose associated value is a string value,
▶ "keywords", whose value is an array containing string values, and
▶ "conference", whose value is an object. This inner object contains

two keys:

• "name", whose value is a string value, and
• "year", whose value is an integer.

It is possible to navigate through JSON documents. If 𝐽 is an object and 𝑘
is a key, then 𝐽[𝑘] is the value 𝑣 such that the key-value pair 𝑘 ∶ 𝑣 appears
in 𝐽. If 𝐽 is an array and 𝑛 is a natural number, then 𝐽[𝑛] is the (𝑛 + 1)-th
element of 𝐽.7 More generally, values can be retrieved from JSON documents
by using JSON pointers that are sequences of references as defined previously.
For instance, in Example 6.2.1, J[keywords][1], where J is the root of the
document, allows to retrieve the value "JSON documents".
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8: In particular, schemas allow one
to define constraints subject to the
presence of certain values. We do
not discuss this here.
9: https://json-schema.org/

[Pez+16]: Pezoa et al. (2016), “Foun-
dations of JSON Schema”

6.3. JSON schema

As said above, applications that process JSON documents expect them to follow
a fixed structure. For instance, one may impose that a document necessarily
has keys "title" (whose value must be a string) and "conference" (whose
value must be another object), and, optionally, a key "keywords" (whose value
is an array of strings). In this part, we focus on JSON schemas as tools to define
these constraints. We give here a simplified presentation of JSON schemas8

and refer to the official website9 for a complete description and to [Pez+16]
for a more thorough formalization (i.e., a formal grammar with its syntax and
semantics). We say that a JSON document satisfies the schema if it verifies the
constraints imposed by this schema.

A JSON schema is itself a JSON document that uses several keywords that help
to shape and restrict the set of JSON documents that this schema specifies,
e.g.,

▶ it can be imposed that a string value has a minimum/maximum length
or satisfies a pattern expressed by a regular expression;

▶ that a number belongs to some interval or is a multiple of some number.
▶ within object schemas, restrictions can be imposed on the key-value

pairs of the objects. For example, the value associated with some key
has itself to satisfy a certain schema, or some particular keys must be
present in the object. A minimum/maximum number of pairs can also
be imposed;

▶ within array schemas, it can be imposed that all elements of the array
satisfy a certain schema, or that the array has a minimum/maximum
size;

▶ schemas can be combined with Boolean operations, in the sense that
a JSON document must satisfy the conjunction/disjunction of several
JSON schemas, or it must not satisfy a certain JSON schema;

▶ a schema can be the enumeration of certain JSON values;
▶ a schema can be defined as one referred to by a JSON pointer. This

allows a recursive structure for the JSON documents satisfying a certain
schema.

Example 6.3.1. The schema from Figure 6.3 describes the objects that can
have three keys:

▶ "title", whose associated value must be a string value,
▶ "keywords", whose value must be an array containing string values,

and
▶ "conference", whose value must be an object.

Among these keys, "title" and "conference" are required. The JSON
document of Figure 6.2 satisfies this JSON schema.

https://json-schema.org/
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1 {

2 "type": "object",

3 "required": ["title", "conference"],

4 "properties": {

5 "title": { "type": "string" },

6 "keywords": {

7 "type": "array",

8 "items": { "type": "string" }

9 },

10 "conference": {

11 "type": "object",

12 "required": ["name", "year"],

13 "properties": {

14 "name": { "type": "string" },

15 "year": { "type": "integer" }

16 }

17 }

18 }

19 }

Figure 6.3: A JSON schema.

10: In turn, this will allow us to ac-
tively learn an automaton in Chap-
ter 7.

11: In short, an enumeration speci-
fies a set of allowed values.

6.4. Abstract JSON documents and schemas

For the purpose of this part, we consider somewhat abstract JSON values,
documents, and schemas. The abstractions we introduce here allow us to think
of JSON document as words over some alphabet.10

We do not consider the restrictions that can be imposed on string values and
numbers, and we abstract all string values as s, and all numbers as n (as i
when they are integers). We denote by

ΣpVal = {true, false, null, s, n, i}

the alphabet composed of the primitive values. We also do not consider
enumerations.11

Concerning the key-value pairs appearing in objects, each key together with
the symbol “∶” following the key is abstracted as an alphabet symbol 𝑘. We
write Σkey for the finite alphabet of allowed keys.

We use # instead of a comma in objects and arrays, and ≺ and ≻ (resp. ⊏ and
⊐) instead of “{” and “}” (resp. “[” and “]”). Finally, we denote by ΣJSON the set
of all considered symbols, i.e.,

ΣJSON = ΣpVal ∪ Σkey ∪ {#, ≺, ⊏, ≻, ⊐}.

Example 6.4.1. The JSON document given in Example 6.2.1 is abstracted as
the word

≺title s # keywords ⊏s # s # s⊐ #
conference ≺name s # year i≻≻.
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S ∶∶= 𝑣 with 𝑣 ∈ ΣpVal Primitive schema
| ≺𝑘1S1#𝑘2S2#…#𝑘𝑛S𝑛≻, with 𝑛 ≥ 0 and

𝑘𝑖 ≠ 𝑘𝑗 ∈ Σkey for all 𝑖 ≠ 𝑗 ∈ {1, … , 𝑛}
Object schema

| ⊏𝜀 ∨ S1(#S1)∗⊐ Array schema (no fixed number)
| ⊏S1 # ⋯ # S1⊐, with 𝑛 ≥ 0 occurrences

of S1

Array schema (fixed number)

| S1 ∨ ⋯ ∨ S𝑛 Boolean operation (or)
| S1 ∧ ⋯ ∧ S𝑛 Boolean operation (and)
| ¬S1 Boolean operation (not)

∀𝑗 ∶ S𝑗 ∶∶= S Sub-schemas have the same shape

Figure 6.4: Extended CFG for an abstracted JSON schema.

12: In an abuse of notation, the
non-terminals of 𝒮 are also called
schemas.

13: That is, 𝐽 is either a primitive
value or a well-formed object or ar-
ray.

We now use the formalism of extended context-free grammars (extended CFGs)
to define JSON schemas with the abstractions mentioned previously. We re-
call that in an extended CFG, the right-hand sides of productions are regular
expressions over the terminals and non-terminals. Here, we even use general-
ized regular expressions such that intersections and negations are allowed in
addition to union, concatenation and Kleene-∗ operations.

An extended CFG 𝒢 defining a JSON schema is given in Figure 6.4. It uses the
alphabet ΣJSON of terminals, an alphabet 𝒮 = {S, S1, S2, … } of non-terminals
(with S being the axiom), and a finite series of productions.12

This extended CFG 𝒢 must be closed , i.e., whenever it contains a production

S ∶∶= ≺𝑘1S1 # 𝑘2S2 # … # 𝑘𝑛S𝑛≻,

then it also contains all productions

S ∶∶= ≺𝑘𝑖1
S𝑖1

# 𝑘𝑖2
S𝑖2

# … # 𝑘𝑖𝑛
S𝑖𝑛

≻

where (𝑖1, … , 𝑖𝑛) is a permutation of (1, … , 𝑛). Indeed, we recall that objects
are unordered collections of key-value pairs.

Example 6.4.2. The JSON schema of Example 6.3.1 can be defined as follows:

S0 ∶∶= ≺title S1 # keywords S2 # conference S3≻
S0 ∶∶= ≺title S1 # conference S3≻
S1 ∶∶= s

S2 ∶∶= ⊏𝜀 ∨ S1(#S1)∗⊐
S3 ∶∶= ≺name S1 # year S4≻
S4 ∶∶= i

where we add to the first, second, and fifth productions all the related
productions with key permutations. The axiom of this grammar is S0.

6.4.1. Semantics

Let us now describe the semantics of a closed extended CFG 𝒢 defining a JSON
schema. Let S ∈ 𝒮 be a non-terminal symbol and 𝐽 be a valid JSON value.13
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14: In the sequel, we abuse nota-
tion and speak of JSON values, doc-
uments and schemas instead of ab-
stractions.

We say that 𝐽 satisfies S, or 𝐽 is valid with regards to S, denoted by 𝐽 ⊧ S, if
one of the following holds:

▶ S is a primitive schema 𝑣 and 𝐽 = 𝑣.
▶ S is an object schema ≺𝑘1S1 #𝑘2S2 #…#𝑘𝑛S𝑛≻, 𝐽 is an object ≺𝑘1𝑣1 #

𝑘2𝑣2 # … # 𝑘𝑛𝑣𝑛≻ such that 𝑣𝑖 ⊧ S𝑖 for every 𝑖 ∈ {1, … , 𝑛}.
▶ S is an array schema ⊏𝜀∨S1(#S1)∗⊐, 𝐽 is an array, and for each element

𝑣 of 𝐽, we have 𝑣 ⊧ S1.
▶ S is an array schema ⊏S1 # … # S1⊐ with 𝑛 ≥ 0 occurrences of S1, 𝐽 is

an array of size 𝑛, and for each element 𝑣 of 𝐽, we have 𝑣 ⊧ S1.
▶ S is S1 ∨ S2 ∨ ⋯ ∨ S𝑛 and there exists 𝑖 ∈ {1, … , 𝑛} such that 𝐽 ⊧ S𝑖.
▶ S is S1 ∧ S2 ∧ … ∧ S𝑛 and for all 𝑖 ∈ {1, … , 𝑛} we have 𝐽 ⊧ S𝑖.
▶ S is ¬S1 and 𝐽 2 S1.

Let us make some comment about this semantics. If 𝐽 is an object satisfying
S with respect to the production S ∶∶= ≺𝑘1S1 # 𝑘2S2 # … # 𝑘𝑛S𝑛≻, as 𝒢 is
closed, then the document 𝐽 with any permutation of its key-value pairs also
satisfies S as 𝒢 contains all the related productions with key permutations.
Notice also that an array 𝐽 can be composed of any number of elements or
of a fixed number of elements, all satisfying the same schema. Moreover, the
empty object ≺≻ and the empty array ⊏⊐ are allowed.

We denote by ℒ(𝒢) the set of all JSON values 𝐽 satisfying the axiom S of 𝒢.
Hence, when a JSON schema, given as a grammar 𝒢, defines a set of JSON
documents, this set of documents is the language ℒ(𝒢).14

Example 6.4.3. Consider the closed extended CFG 𝒢 of Example 6.4.2. The
JSON document 𝐽 of Example 6.4.1, equal to

≺title s # keywords ⊏s # s # s⊐ #
conference ≺name s # year i≻≻.

satisfies the axiom 𝑆0 of 𝒢. This is also the case for the document 𝐽 ′ equal
to

≺conference ≺name s # year i≻ # title s #
keywords ⊏s # s # s⊐≻.

Therefore, 𝐽, 𝐽 ′ are both valid and 𝐽, 𝐽 ′ ∈ ℒ(𝒢).

The set of all JSON values can be defined by a particular grammar as given in
the next lemma.

Lemma 6.4.4. For a given set of keys Σkey, the set of all valid JSON values
(i.e., primitive values or well-formed objects and arrays) 𝐽 is equal to ℒ(𝒢U)
where 𝒢U is the closed extended CFG given in Figure 6.5, called universal, with
𝑈 being the axiom.

Remark 6.4.5. As mentioned in [Pez+16] [Pez+16]: Pezoa et al. (2016), “Foun-
dations of JSON Schema”

, we suppose to work with well-
formed extended CFGs that avoid problematic situations like in the pro-
duction S ∶∶= ¬S or the productions S ∶∶= S1 ∨ S2, S2 ∶∶= S. That is, we
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U ∶∶= 𝑣 for all 𝑣 ∈ ΣpVal Primitive values
| ⊏𝜀 ∨ 𝑈(#𝑈)∗⊐ Arrays
| ≺𝑘1𝑈 #…#𝑘𝑛𝑈 for all sequences (𝑘1, … , 𝑘𝑛), 𝑛 ≥ 0, of pairwise

distinct keys of Σkey

Objects

Figure 6.5: Universal extended CFG.

[Pez+16]: Pezoa et al. (2016), “Foun-
dations of JSON Schema”

15: That is, when we do not know
the whole document beforehand
but we receive it piece by piece.

avoid grammars with cyclic definitions inside the productions that involve
Boolean operations (see [Pez+16] for more details).

6.5. Validation of JSON documents

Let us now explain the classical algorithm used in many implementations for
validating a JSON document 𝐽0 against a JSON schema 𝑆0. It is a recursive
algorithm that follows the semantics of a closed extended CFG 𝒢 defining this
schema. For instance, if the current value 𝐽 is an object, we iterate over each
key-value pair in 𝐽 and its corresponding sub-schema in the current schema
𝑆. Then, 𝐽 satisfies 𝑆 if and only if the values in the key-value pairs all satisfy
their corresponding sub-schema.

Algorithm 6.1 gives a pseudo-code for the classical validation algorithm. We
refer to [Pez+16] for a complexity analysis and a more thorough discussion.

As long as the grammar 𝒢 does not contain any Boolean operations, this
algorithm is straightforward and linear in the size of both the initial document
𝐽0 and schema 𝑆0. However, if 𝒢 contains Boolean operations, then the current
value 𝐽 may be processed multiple times. For instance, to verify whether 𝐽
satisfies 𝑆1 ∧ 𝑆2 ∧ ⋯ ∧ 𝑆𝑛, 𝐽 must be validated against each 𝑆𝑖.

Hence, when we want to validate a document in a streaming context,15 the
classical algorithm has to buffer the document being received in memory,
which increases the amount of memory required for an execution. This may
be problematic when the validation process runs on a server that has to answer
quickly, especially when multiple processes run in parallel. In the next chapter,
we present a different approach that requires less memory.
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Algorithm 6.1: Classical validation algorithm for JSON documents.
Require: A JSON value 𝐽 and a JSON schema given as a non-terminal symbol S in the closed extended CFG
Ensure: Returns yes if and only if 𝐽 ⊧ S

1: function ClassicalValidation(𝐽, S)
2: if S is a primitive schema then return 𝐽 = S
3: else if S is an object schema then
4: if 𝐽 is not an object then return no
5: if the same key 𝑘 appears multiple times in 𝑗 then return no
6: if the set of keys appearing in 𝐽 differs from the set of keys of S then return no
7: for all key 𝑘 appearing in 𝐽 do
8: Let S𝑘 be the non-terminal following 𝑘 in the production of S
9: if ClassicalValidation(𝐽[𝑘], S𝑘) = no then

10: return no
11: else if S is an array schema then
12: if 𝐽 is not an array then return no
13: Let 𝑛 be the length of 𝐽
14: if S requires 𝑚 values and 𝑛 ≠ 𝑚 then return no
15: Let S′ be the non-terminal appearing in the production of S
16: for all 𝑖 ∈ {0, … , 𝑛} do
17: if ClassicalValidation(𝐽[𝑖], S′) = no then
18: return no
19: else if S = S1 ∨ ⋯ ∨ S𝑛 then
20: if for all 𝑖 ∈ {1, … , 𝑛}, ClassicalValidation(𝐽, S𝑖) = no then
21: return no
22: else if S = S1 ∧ ⋯ ∧ S𝑛 then
23: if there exists 𝑖 ∈ {1, … , 𝑛} such that ClassicalValidation(𝐽, S𝑖) = no then
24: return no
25: else if S = ¬S′ then
26: if ClassicalValidation(𝐽, S𝑖) = yes then return no

return yes
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Validating JSON Documents by
Learning Automata 7.

In this chapter, based on [BPS23], we present a validation algorithm for JSON
documents against a JSON schema that relies on learning an automaton ac-
cepting the same set of documents as the schema. More precisely, we learn
a special kind of pushdown automaton, called visibly pushdown automata,
thanks to a learning algorithm called TTTVPL [Isb15].

Given the exponential number of documents due to the exponential number
of permutations of key-value pairs inside an object (see Chapter 6), we fix
an order over the keys and learn an automaton that only accepts documents
following this order. We then construct a tool telling us how to jump around
in the automaton in order to also accept documents that do not follow this
order. We also present and discuss experimental results obtained by validating
documents against real-world JSON schemas. Technical proofs and details are
deferred to Appendix B.
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7.1. Introduction

In this chapter, we again consider the problem of validating a JSON document
against a JSON schema. We assume that the schema is given as an extended
context-free grammar, as was presented in Section 6.4. That is, we rely on the
formalization work of [Pez+16].

We propose here a streaming validation algorithm, i.e., an algorithm that works
on documents that are received piece by piece (such as what happens for a
web server). To our knowledge, this is the first JSON validation algorithm that
is streaming. For XML, works that study streaming document validation base
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such algorithms on the construction of some automaton (see, e.g., [SV02], for
XML). In the previous part, we first experimented with one-counter automata
for this purpose. We submit that visibly-pushdown automata (VPAs) are a better
fit for this task — this is in line with [KMV07], where the same was proposed
for streaming XML documents. In contrast to one-counter automata,1 we show
that VPAs are expressive enough to capture the language of JSON documents
satisfying any JSON schema.

We also explain that active learning à la Angluin [Ang87] (see Section 3.2)
is a good alternative to the automatic construction of such a VPA from the
formal semantics of a given JSON schema. This is possible in the presence
of labeled examples or a computer program that can answer membership
and (approximate) equivalence queries about a set of JSON documents. This
learning approach has two advantages. First, we derive from the learned
VPA a streaming validator for JSON documents. Second, by automatically
learning an automaton representation, we circumvent the need to write a
schema and subsequently validate that it represents the desired set of JSON
documents. Indeed, it is well known that one of the highest bars that users
have to clear to make use of formal methods is the effort required to write a
formal specification, in this case, a JSON schema.

This chapter is structured as follows. In Section 7.2, we recall the concept
of VPA and the structure we impose for our learning context. Namely, we
work on 1-single entry VPAs [Alu+05; Isb15] where all call transitions lead to
the initial state, and that admit a unique minimal automaton. We also recall
how to learn such an automaton using TTT [Isb15]. Then, in Section 7.3,
we argue that there always exists such a VPA that accepts the same set of
JSON documents as an (abstract) JSON schema, implying that our learning
approach is feasible and makes sense. Then, in Section 7.4, we present our
new streaming validation algorithm based on learned VPAs. This algorithm
relies on a specific graph that abstracts the transitions of the VPA with respect
to the objects that appear in the accepted JSON documents. We define this
graph and prove several useful properties before providing the validation
algorithm, for which we prove time and space complexity results and its
correctness. Finally, in Section 7.5 we discuss the implementation of our
algorithms and show experimental results comparing our validation approach
with the classical algorithm (see Section 6.5). Technical proofs and details are
deferred to Appendix B.

7.2. Visibly pushdown automata

In Definition 4.3.1, we introduced the notion of pushdown alphabet. For sim-
plicity, we restate the definition here and slightly adjust it for the sake of this
chapter.

Definition 7.2.1 (Pushdown alphabet). A pushdown alphabet , denoted by
Σ̃ = Σ𝑐 ∪ Σ𝑟 ∪ Σint , is the union of three disjoint alphabets:

▶ Σ𝑐 is the set of calls where every call pushes a symbol to the stack,
▶ Σ𝑟 is the set of returns where every return pops a symbol from the



7. Validating JSON Documents by Learning Automata 137
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[AM04]: Alur et al. (2004), “Visibly
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stack, and
▶ Σint is the set of internal symbols where an internal symbol does not

change the stack.

In this part, we work with the particular alphabet of return symbols

Σ𝑟 = { ̄𝑎 ∣ 𝑎 ∈ Σ𝑐}.

Let us now introduce tools that will be used throughout the chapter to guar-
antee that a JSON value is well-formed, starting with a function giving us the
number of unmatched call and return symbols.2

Definition 7.2.2 (Balance). The call/return balance function 𝛽 ∶ Σ∗ → ℤ is
defined as

𝛽(𝑢𝑎) = 𝛽(𝑢) +
⎧{
⎨{⎩

1 if 𝑎 ∈ Σ𝑐,
−1 if 𝑎 ∈ Σ𝑟,

0 if 𝑎 ∈ Σint .

We can then define well-matched words as the set of words for which the
balance is null. That is, we see the same number of return and call symbols
and, in any prefix of the words, the number of return symbols never exceeds
the number of call symbols. The following definition gives a more constructive
approach (i.e., it explains how to obtain a well-matched word).

Definition 7.2.3 (Well-matched words). Given a pushdown alphabet Σ̃, the
set WM(Σ̃) of well-matched words over Σ̃ is defined inductively:

▶ 𝜀 ∈ WM(Σ̃),
▶ ∀𝑎 ∈ Σint , 𝑎 ∈ WM(Σ̃),
▶ if 𝑤, 𝑤′ ∈ WM(Σ̃), then 𝑤𝑤′ ∈ WM(Σ̃),
▶ if 𝑎 ∈ Σ𝑐, 𝑤 ∈ WM(Σ̃), then 𝑎𝑤 ̄𝑎 ∈ WM(Σ̃).

The depth of a well-matched word 𝑤, denoted by depth(𝑤), is the maximum
number of unmatched call symbols among the prefixes of 𝑤, i.e.,

depth(𝑤) = max
𝑢∈Pref (𝑤)

𝛽(𝑢).

Observe that, for all 𝑤 ∈ WM(Σ̃), we have 𝛽(𝑢) ≥ 0 for each prefix 𝑢 of 𝑤
and 𝛽(𝑢) ≤ 0 for each suffix 𝑢 of 𝑤.

We now give the definition of VPAs [AM04]. In short, it is a nondeterministic
finite automaton augmented with a stack. Each time we read a call, we push a
symbol (given by the transition) on the stack. Conversely, a return transition
can only be triggered when the symbols at the top of the stack and given by
the transition are the same, in which the top symbol of the stack is popped.

Definition 7.2.4 (Visibly pushdown automaton). A visibly pushdown au-
tomaton (VPA, for short) is a tuple 𝒜 = (Σ̃, Γ, 𝑄, 𝑞0, 𝐹 , 𝛿) where

▶ Σ̃ is a pushdown alphabet,
▶ Γ is the stack alphabet ,
▶ 𝑄 is the finite non-empty set of states, with 𝑞0 ∈ 𝑄 the initial state,
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𝑞0 𝑞1 𝑞2

𝑎/𝛾

𝑏
̄𝑎[𝛾]

̄𝑎[𝛾]

Figure 7.1: A sample VPA.

▶ 𝐹 ⊆ 𝑄 is the finite non-empty set of final states, and
▶ 𝛿 is a finite set of transitions of the form 𝛿 = 𝛿𝑐 ∪ 𝛿𝑟 ∪ 𝛿𝑖𝑛𝑡 where

• 𝛿𝑐 ⊆ (𝑄 × Σ𝑐) × (𝑄 × Γ) is the set of call transitions. We write
𝛿𝑐(𝑞, 𝑎) to denote the set of pairs (𝑝, 𝛾) such that ((𝑞, 𝑎), (𝑝, 𝛾)) ∈
𝛿 and 𝑞

𝑎/𝛾
−−→ 𝑝 when (𝑝, 𝛾) ∈ 𝛿𝑐(𝑞, 𝑎).

• 𝛿𝑟 ⊆ (𝑄 × Σ𝑟 × Γ) × 𝑄 is the set of return transitions. We write
𝛿𝑟(𝑞, 𝑎, 𝛾) to denote the set of states 𝑝 such that ((𝑞, 𝑎, 𝛾), 𝑝) ∈ 𝛿
and 𝑞

𝑎[𝛾]
−−→ 𝑝 when 𝑝 ∈ 𝛿𝑟(𝑞, 𝑎, 𝛾).

• 𝛿𝑖𝑛𝑡 ⊆ (𝑄 × Σint) × 𝑄 is the set of internal transitions. We write
𝛿𝑟(𝑞, 𝑎) to denote the set of states 𝑝 such that ((𝑞, 𝑎), 𝑝) ∈ 𝛿 and
𝑞

𝑎
−→ 𝑝 when 𝑝 ∈ 𝛿𝑖𝑛𝑡(𝑞, 𝑎).

As for DFAs, VOCAs, and so on, we add a superscript to indicate which
automaton is considered, and missing symbols are quantified existentially.
Unlike for NFAs, ROCAs, and so on, we refrain from defining runs due to the
three different transition functions.

Example 7.2.5. Let Σ̃ = ({𝑎}, { ̄𝑎}, {𝑏}) be a pushdown alphabet and Γ = {𝛾}
be a stack alphabet. A 3-state VPA 𝒜 is given in Figure 7.1.
Call transitions give the input symbol and the stack symbol to push, sep-

arated by a slash, e.g., 𝑞0
𝑎/𝛾
−−→ 𝑞1. Likewise, return transition give the

input symbol, followed by the stack symbol between square brackets, e.g.,

𝑞0
�̄�[𝛾]
−−→ 𝑞2. Finally, internal transitions simply give their input symbol.

7.2.1. Semantics

Let us now describe the semantics of a VPA. Recall that for VOCAs and ROCAs,
we had to keep track of the counter value when defining counted runs (see
Definition 5.2.3). We define stacked runs similarly, by keeping track of the
current stack contents. That is, we consider configurations which are pairs
(𝑞, 𝜎) where 𝑞 ∈ 𝑄 is a state and 𝜎 ∈ Γ∗ is the stack content. We define the
transitions between configurations (𝑞, 𝜎), (𝑞′, 𝜎′) as follows:

▶ (𝑞, 𝜎)
𝑎
−→ (𝑞′, 𝜎), with 𝑎 ∈ Σint .

▶ (𝑞, 𝜎)
𝑎/𝛾
−−→ (𝑞′, 𝛾 ⋅ 𝜎), with 𝑎 ∈ Σ𝑐 and 𝛾 ∈ Γ.

▶ (𝑞, 𝛾 ⋅ 𝜎)
𝑎[𝛾]
−−→ (𝑞′, 𝜎), with 𝑎 ∈ Σ𝑟 and 𝛾 ∈ Γ.

Again, missing symbols in a transition are quantified existentially. Observe
that stack symbols are pushed to the left of the stack.
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Definition 7.2.6 (Stacked runs). Let 𝒜 be a VPA. A stacked run of 𝒜 is
either a configuration (𝑝0, 𝜎0) or a nonempty sequence of transitions

(𝑝0, 𝜎0)
𝑎1−→ (𝑝1, 𝜎1)

𝑎2−→ ⋯
𝑎𝑛−→ (𝑝𝑛, 𝜎𝑛).

We denote by sruns(𝒜) the set of all counted runs of 𝒜.

This allows us to easily define when a word is accepted: we start from the
initial configuration (𝑞0, 𝜀), read a word 𝑤, and must end in a configuration
(𝑝, 𝜀) with 𝑝 ∈ 𝐹 . We highlight that we request that the stack is empty for a
word to be accepted.

Definition 7.2.7 (Visibly pushdown language). The language accepted by
a VPA 𝒜 is

ℒ(𝒜) = {𝑤 ∈ Σ̃∗ ∣ ∃𝑞 ∈ 𝐹 ∶ (𝑞0, 𝜀)
𝑤
−→ (𝑞, 𝜀) ∈ sruns(𝒜)}.

A language 𝐿 is called a visibly pushdown language (VPL, for short) if there
is a VPA 𝒜 such that ℒ(𝒜) = 𝐿.

Notice that a VPL is only composed of well-matched words. This differs from
the original definition of VPAs in [Alu+05] where ill-matched words can also
be accepted.

Let us now define a relation over states that tells us whether it is possible
to reach the configuration (𝑝, 𝜀) from the configuration (𝑞, 𝜀). That is, there
must exist a word 𝑤 such that 𝛽(𝑤) = 0 (i.e., a well-matched word) and
(𝑝, 𝜀)

𝑤
−→ (𝑞, 𝜀) ∈ sruns(𝒜).

Definition 7.2.8 (Reachability relation). Given a VPA 𝒜 over Σ̃, the reacha-
bility relation Reach𝒜 of 𝒜 is:

Reach𝒜 = {(𝑞, 𝑞′) ∈ 𝑄 × 𝑄 ∣ ∃𝑤 ∈ WM(Σ̃) ∶ (𝑞, 𝜀)
𝑤
−→ (𝑞′, 𝜀)}.

Finally, we say that 𝑝 ∈ 𝑄 is a bin state if there exists no stacked run of the

form (𝑞, 𝜀)
𝑤
−→ (𝑝, 𝜎)

𝑤′

−→ (𝑞′, 𝜀) with 𝑞 ∈ 𝑄0 and 𝑞′ ∈ 𝐹 . If a VPA 𝒜 has bin
states, those states can be removed from 𝑄 as well as the transitions containing
bin states without modifying the accepted language.

Example 7.2.9. Let us continue Example 7.2.5, i.e., let 𝒜 be the VPA of
Figure 7.1, which is repeated in the margin.
The word 𝑎𝑏𝑎 ̄𝑎 ̄𝑎 is accepted by 𝒜.

𝑞0

𝑞1

𝑞2

𝑎/𝛾𝑏

�̄�[𝛾]

�̄�[𝛾]

Indeed, we have the following stacked
run:

(𝑞0, 𝜀)
𝑎
−→ (𝑞1, 𝛾)

𝑏
−→ (𝑞0, 𝛾)

𝑎
−→ (𝑞1, 𝛾2)

�̄�
−→ (𝑞2, 𝛾)

�̄�
−→ (𝑞2, 𝜀) ∈ sruns(𝒜).

As 𝑞2 ∈ 𝐹 and the stack is empty, we conclude that 𝑤 ∈ ℒ(𝒜). One can
show that

ℒ(𝒜) = {𝑎(𝑏𝑎)𝑛 ̄𝑎𝑛+1 ∣ 𝑛 ∈ ℕ}.
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7.2.2. Minimal deterministic visibly pushdown automata and
properties

Given a VPA 𝒜, we say that it is deterministic if 𝒜 does not have two distinct
transitions with the same left-hand side. By left-hand side, we mean (𝑞, 𝑎) for
a call transition (𝑞, 𝑎, 𝑞′, 𝛾) ∈ 𝛿𝑐 or an internal transition (𝑞, 𝑎, 𝑞′) ∈ 𝛿𝑖𝑛𝑡, and
(𝑞, 𝑎, 𝛾) for a return transition (𝑞, 𝑎, 𝛾, 𝑞′) ∈ 𝛿𝑟. The following theorem states
that a VPA can always be made deterministic [Alu+05; Tan09]. We briefly
describe the construction, as our validation algorithm will use similar tricks.

Theorem 7.2.10. For any VPA 𝒜 over Σ̃, one can construct a deterministic
VPA ℬ over Σ̃ such that ℒ(𝒜) = ℒ(ℬ). Moreover, the size of ℬ is in 𝒪(2|𝒜|2)

and the size of its stack alphabet is in 𝒪(|Σ𝑐| ⋅ 2|𝒜|2).

Proof. Let𝒜 be a VPA over Σ̃. The states of ℬ are subsets 𝑅 of the reachabil-
ity relation Reach𝒜 of 𝒜 and the stack symbols of ℬ are of the form (𝑅, 𝑎)
with 𝑅 ⊆ Reach𝒜 and 𝑎 ∈ Σ𝑐.
Let𝑤 = 𝑢1𝑎1𝑢2𝑎2 … 𝑢𝑛𝑎𝑛𝑢𝑛+1 be such that𝑛 ≥ 0 and 𝑢𝑖 ∈ WM(Σ̃), 𝑎𝑖 ∈ Σ𝑐
for all 𝑖. That is, we decompose 𝑤 in terms of its unmatched call symbols.
For all 𝑖, let 𝑅𝑖 be equal to

{(𝑝, 𝑞) ∣ (𝑝, 𝜀)
𝑢𝑖−→ (𝑞, 𝜀)}.

Then, after reading 𝑤, the deterministic VPA ℬ has its current state equal to
𝑅𝑛+1 and its stack containing (𝑅𝑛, 𝑎𝑛) … (𝑅2, 𝑎2)(𝑅1, 𝑎1). Assume we are
reading the symbol 𝑎 after 𝑤, then ℬ performs the following transition from
𝑅𝑛+1:

▶ if 𝑎 ∈ Σ𝑐, then push (𝑅𝑛+1, 𝑎) on the stack and go to the state 𝑅 = 𝕀𝑄
(a new unmatched call symbol is read),

▶ if 𝑎 ∈ Σint , then go to the state

𝑅 = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑝′) ∈ 𝑅𝑛+1 ∶ (𝑝′, 𝑎, 𝑞) ∈ 𝛿𝑖𝑛𝑡}

(𝑢𝑛+1 is extended to the well-matched word 𝑢𝑛+1𝑎),
▶ if 𝑎 ∈ Σ𝑟, then pop (𝑅𝑛, 𝑎𝑛) from the stack if ̄𝑎𝑛 = 𝑎, and go to the

state

𝑅 = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑝′) ∈ 𝑅𝑛, (𝑝′, 𝑎𝑛, 𝑟′, 𝛾) ∈ 𝛿𝑐,
(𝑟′, 𝑟) ∈ 𝑅𝑛+1, (𝑟, 𝑎, 𝛾, 𝑞) ∈ 𝛿𝑟}

(the call symbol 𝑎𝑛 is matched with the return symbol 𝑎 = ̄𝑎𝑛, leading
to the well-matched word 𝑢𝑛𝑎𝑛𝑢𝑛+1𝑎).

Finally the initial state of ℬ is 𝕀𝑄0
and its final states are sets 𝑅 containing

some (𝑝, 𝑞) with 𝑝 ∈ 𝑄0 and 𝑞 ∈ 𝐹 . �

The family of VPLs is closed under several natural operations, as given in the
next theorem [AM04].
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Theorem 7.2.11. Let 𝐿1 and 𝐿2 be two VPLs over Σ̃. Then, 𝐿1 ∪ 𝐿2, 𝐿1 ∩ 𝐿2,
WM(Σ̃) ∖ 𝐿1, 𝐿1 ⋅ 𝐿2, and 𝐿∗

1 are VPLs over Σ̃.

Though a VPL 𝐿 in general does not have a unique minimal deterministic VPA
𝒜 accepting 𝐿, imposing the following subclass leads to a unique minimal
acceptor, called 1-single entry visibly pushdown automata [Alu+05; Isb15].3

Definition 7.2.12 (1-module single entry visibly pushdown automata). A
1-module single entry visibly pushdown automata (1-SEVPA, for short) is a
deterministic VPA 𝒜 such that

▶ its stack alphabet Γ is equal to 𝑄 × Σ𝑐, and
▶ all its call transitions (𝑞, 𝑎, 𝑞′, 𝛾) ∈ 𝛿𝑐 are such that 𝑞′ = 𝑞0 and

𝛾 = (𝑞, 𝑎).

Theorem 7.2.13 ([Alu+05]). For any VPL 𝐿, there exists a unique minimal
(with regards to the number of states) 1-SEVPA accepting 𝐿, up to a renaming
of the states.4 4: This 1-SEVPA may be exponen-

tially bigger than the size of a VPA
accepting 𝐿.Let us remark two facts about minimal 1-SEVPAs. First, given a minimal

1-SEVPA 𝒜, there may exist a smaller VPA accepting the same language (that
is therefore not a 1-SEVPA). Second, the transition relation of 𝒜 is a total
function, meaning that 𝒜 may have a bin state (that is unique, in case of
existence).

7.2.3. Learning visibly pushdown automata

In Section 3.2, we explained how one can apply the 𝐿∗ algorithm to actively
learn a DFA [Ang87]. This algorithm necessitates membership and equivalence
queries. Isberner et al. [IHS14b] proposed a variation of 𝐿∗, called the TTT
algorithm, which improves the efficiency of the 𝐿∗ algorithm by eliminating
redundancies in counterexamples provided by the teacher.

In [Isb15], an efficient learning algorithm for VPLs is given by extending
Angluin’s learning algorithm, but using exactly the same types of queries.
The Myhill-Nerode congruence for regular languages is extended to VPLs as
follows [Alu+05; Isb15].

Definition 7.2.14 (Extended Myhill-Nerode congruence). Given a push-
down alphabet Σ̃ and a VPL 𝐿 over Σ̃, we define the set CP(Σ̃) of context
pairs:6 6: Notice that a non-empty word

in (WM(Σ̃) ⋅ Σ𝑐)
∗
is an element of

Pref (WM(Σ̃)) ending with a call
symbol.

CP(Σ̃) = {(𝑢, 𝑣) ∈ (WM(Σ̃) ⋅ Σ𝑐)
∗

× Suff (WM(Σ̃)) ∣ 𝛽(𝑢) = −𝛽(𝑣)}.

Then, the Myhill-Nerode congruence for VPL is the relation ≃𝐿⊆ WM(Σ̃) ×
WM(Σ̃) such that 𝑤 ≃𝐿 𝑤′ if and only if

∀(𝑢, 𝑣) ∈ CP(Σ̃) ∶ 𝑢𝑤𝑣 ∈ 𝐿 ⇔ 𝑢𝑤′𝑣 ∈ 𝐿.

The minimal 1-SEVPA accepting 𝐿, described in Theorem 7.2.13, is constructed
from ≃𝐿 such that its states are the equivalence classes of ≃𝐿.
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Finally, we state that one can actively learn a minimal 1-SEVPA accepting a
given VPL [Isb15].

Theorem 7.2.15. Let 𝐿 be a VPL over Σ̃, 𝑛 be the index of ≃𝐿, and 𝜁 be the
length of the longest counterexample returned by the teacher for an EQ. Then,
one can learn the minimal 1-SEVPA accepting 𝐿 with

▶ at most 𝑛 − 1 equivalence queries and
▶ a number of membership queries polynomial in 𝑛, |Σ|, and log 𝜁.

In his PhD Thesis [Isb15], Isberner designed an adaptation of TTT to VPLs,
which we denote TTTVPL.

7.3. Visibly pushdown automata for abstracted JSON
schemas

In Sections 6.2 and 6.3, we introduced JSON documents, which can be used to
store and transfer information, as well as JSON schemas, which can be used
to describe constraints a document should satisfy. We say that a JSON value
is valid for a schema, if it satisfies the semantics of the schema. Furthermore,
we abstracted documents and schemas in Section 6.4 and provided a formal
grammar that is equivalent to a schema. In this section, we claim that there
always exists a VPA for that formal grammar. That is, given a schema, one
can construct a VPA accepting exactly the set of documents that are valid.

First of all, we have to give the pushdown alphabet corresponding to the
symbols of the JSON schema. As in Section 6.4, we assume we have two
alphabets. The first, ΣpVal, contains all (abstracted) primitive values, i.e.,

ΣpVal = {true, false, null, s, n, i},

while the second, Σkey, is composed of the keys that are defined in the JSON
schema. Recall that the colon symbol following a key in an object is part of
the abstract key symbol. That is, "key": is treated as a single symbol in the
key alphabet. Finally, commas are replaced by the # symbol, while { (resp. }, [,
and ]) are written ≺ (resp. ≻, ⊏, and ⊐).

We then define a pushdown alphabet Σ̃JSON where

▶ the set of call symbols is {≺, ⊏} (i.e., the symbols opening an object or
an array),

▶ the set of return symbols is {≻, ⊐} (i.e., the symbols closing an object
or an array), and

▶ the set of internal symbols is ΣpVal ∪ Σkey ∪ {#}.

Then, any (abstract) JSON document must be a well-matched word over Σ̃JSON

(i.e., in WM(Σ̃JSON)) to be valid.

Finally, for a closed extended CFG 𝒢 defining a JSON schema, let us write ℒ(𝒢)
for the set of JSON documents over Σ̃JSON satisfying this schema. Moreover,
given an order < of Σkey, ℒ<(𝒢) is the subset of ℒ(𝒢) composed of the JSON
documents whose key order inside objects respects the order <.
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Theorem 7.2.13. For any
VPL 𝐿, there exists a unique
minimal (with regards to the
number of states) 1-SEVPA
accepting 𝐿, up to a renam-
ing of the states.

Theorem 7.2.15. Let 𝐿 be a
VPL over Σ̃, 𝑛 be the index
of ≃𝐿, and 𝜁 be the length of
the longest counterexample
returned by the teacher for
an EQ. Then, one can learn
the minimal 1-SEVPA accept-
ing 𝐿 with

▶ at most 𝑛 − 1 equivalence
queries and

▶ a number of membership
queries polynomial in 𝑛,
|Σ|, and log 𝜁.

8: It is common to proceed this
way in automata learning when ex-
act equivalence is intractable, as ex-
plained in [Ang87, Section 4].

We highlight that a key order over objects occurs naturally in many imple-
mentations of JSON libraries. For instance, the order < can be defined as the
iteration order over the data structure (such as a hash map).

Example 7.3.1. Consider again the JSON schema of Example 6.4.2. Let us
order the alphabet Σkey such that

title < keywords < conference < name < year.

The JSON document 𝐽 of Example 6.4.1 belongs to ℒ<(𝒢) but none
of the documents equal to 𝐽 up to any permutation of its key-value
pairs belong to ℒ<(𝒢) (permutations of the three pairs with keys
title, keywords, conference and of the two pairs with keys name, year).

The next theorem states that, given a JSON schema, there exists a VPA 𝒜 (resp.
ℬ) accepting all JSON documents satisfying this schema (resp. only those
respecting the key order). These two VPAs can be supposed to be minimal
1-SEVPAs by Theorem 7.2.13. The minimal 1-SEVPA ℬ could be exponentially
smaller than the minimal 1-SEVPA 𝒜 as the order of the key-value pairs is
fixed inside objects (see an illustrating example in Section B.1). We use this
minimal 1-SEVPA ℬ in the next section for the validation of JSON documents.
The proof of the theorem is deferred to Section B.2.

Theorem 7.3.2. Let 𝒢 be a closed extended CFG defining a JSON schema.
Then, there exists a VPA 𝒜 such that ℒ(𝒜) = ℒ(𝒢).
Moreover for all orders < of Σkey, there exists a VPA ℬ such that ℒ(ℬ) =
ℒ<(𝒢).

While the proof of the theorem provides a constructive approach, the con-
struction depends on the formal semantics of JSON schemas which are still
changing and being debated. Thus, to be more robust to changes in the seman-
tics, we prefer to learn a VPA. Given an order on Σkey and a JSON schema 𝑆
defined by a closed extended CFG 𝒢, the minimal 1-SEVPA accepting ℒ<(𝒢)
can be learned in the sense of Theorem 7.2.15. Notice that we have to adapt
the learning algorithm if the teacher only knows the schema 𝑆:

▶ Amembership query over a JSON document asks whether this document
satisfies 𝑆.

▶ An equivalence query is answered by generating a certain number of
random (valid and invalid) JSON documents and by verifying that the
learned VPAℋ and the schema 𝑆 agree on the documents’ validity.8

▶ In membership and equivalence queries, the considered JSON documents
have the order of their key-value pairs respecting the given order of
Σkey.

The randomness used in the equivalence queries implies that the learned
1-SEVPA may not exactly accept ℒ<(𝒢). Setting the number of generated
documents to be large helps reducing the probability that an incorrect 1-
SEVPA is learned. We discuss in Section 7.5 how to generate adequate JSON
documents for equivalence queries.
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9: Recall that any valid object or ar-
ray must be a well-matched word.

10: Notice that a vertex only stores
the key 𝑘 and not the word 𝑘 ⋅ 𝑣.

7.4. Streaming validation of JSON documents

As explained in the previous chapter, one important computational problem
related to JSON schemas consists in determining whether a JSON document 𝐽
satisfies a schema 𝑆. In this section, we provide a streaming algorithm that
validates a JSON document against a JSON schema. By “streaming”, we mean
an algorithm that performs the validation test by processing the document in
a single pass, symbol by symbol, and by using a limited amount of memory
with respect to the size of the given document.

Our approach is new and works as follows. Given a JSON schema 𝑆, we learn
the minimal 1-SEVPA 𝒜 accepting the language ℒ(𝒜) equal to the set of all
JSON documents 𝐽 satisfying 𝑆 and respecting a given order < on Σkey. We
know that this is possible as explained in the previous section. Unfortunately,
checking whether a JSON document 𝐽 satisfies the JSON schema 𝑆 does not
amount to checking whether 𝐽 ∈ ℒ(𝒜) as the key-value pairs inside the objects
of 𝐽 can be arbitrarily ordered. Instead, we design a streaming algorithm that
uses 𝒜 in a clever way to allow arbitrary orders of key-value pairs. To do this,
we use a key graph defined and shown to be computable in the sequel. Then,
we describe our validation algorithm and study its complexity.

Henceforth we fix a schema 𝑆 given by a closed extended CFG 𝒢, an order <
on Σkey, and a 1-SEVPA 𝒜 accepting ℒ<(𝒢).

7.4.1. Key graph

In this section, w.l.o.g. we suppose that 𝒜 has no bin states. We explain how to
associate to 𝒜 a particular graph G𝒜, called key graph, abstracting the stacked
runs of 𝒜 labeled by the contents of the objects appearing in words of ℒ<(𝒢).
More precisely, we seek every possible word 𝑘 ⋅ 𝑣 with 𝑘 a key and 𝑣 a valid
value, i.e., a primitive value, an object, or an array.9 We then create a vertex

(𝑝, 𝑘, 𝑝′) if (𝑝, 𝜀)
𝑘⋅𝑣
−−→ (𝑝′, 𝜀) is a stacked run of 𝒜.10 Finally, we define an edge

between (𝑝1, 𝑘1, 𝑝′
1) and (𝑝2, 𝑘2, 𝑝′

2) when 𝑝′
1

#
−→ 𝑝2. That is, there exists a

stacked run

(𝑝1, 𝜀)
𝑘1⋅𝑣1−−−→ (𝑝′

1, 𝜀)
#
−→ (𝑝2, 𝜀)

𝑘2⋅𝑣2−−−→ (𝑝′
2, 𝜀) ∈ sruns(𝒜).

Definition 7.4.1 (Key graph). The key graph G𝒜 of 𝒜 has:

▶ the vertices (𝑝, 𝑘, 𝑝′) with 𝑝, 𝑝′ ∈ 𝑄𝒜 and 𝑘 ∈ Σkey if there exists a
stacked run

(𝑝, 𝜀)
𝑘⋅𝑣
−−→ (𝑝′, 𝜀) ∈ sruns(𝒜)

with
𝑣 ∈ ΣpVal ∪ {𝑎 ⋅ 𝑢 ⋅ ̄𝑎 ∣ 𝑎 ∈ Σ𝑐, 𝑢 ∈ WM(Σ̃JSON)},

and
▶ the edges ((𝑝1, 𝑘1, 𝑝′

1), (𝑝2, 𝑘2, 𝑝′
2)) if there exists an internal transition

𝑝′
1

#
−→ 𝑝2.
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𝑞0

𝑞1 𝑞2 𝑞3 𝑞4

𝑞5 𝑞6 𝑞7

𝑞8𝑞9𝑞10𝑞11

title

s # conference

name s #

year
i≻, (𝑞4, ≺)≻, (𝑞0, ≺)

(a) The 1-SEVPA.

𝑞0, title, 𝑞2 𝑞3, conference, 𝑞10

𝑞0, name, 𝑞6 𝑞7, year, 𝑞9

(b) The key graph.

Figure 7.2: A 1-SEVPA for the schema from Figure 6.3, without considering the key keywords, and its key
graph.

By the next lemma, paths in G𝒜 focus on contents of objects being part of
JSON documents satisfying 𝑆. Moreover, they abstract stacked runs of 𝒜 in
the sense that only keys 𝑘𝑖 are stored and the subpaths labeled by the values
𝑣𝑖 are implicit. A proof is given in Section B.3.

Lemma 7.4.2. In a key graph G𝒜, there exists a path

((𝑝1, 𝑘1, 𝑝′
1)(𝑝2, 𝑘2, 𝑝′

2) … (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛))

with 𝑝1 = 𝑞𝒜0 if and only if there exist

▶ a word 𝑢 = 𝑘1𝑣1 # 𝑘2𝑣2 # … # 𝑘𝑛𝑣𝑛 such that each 𝑘𝑖𝑣𝑖 is a key-value
pair and 𝑢 is a factor of a word in ℒ<(𝒢), and

▶ a path (𝑞𝒜0 , 𝜀)
𝑢
−→ (𝑝′

𝑛, 𝜀) ∈ sruns(𝒜) that decomposes as follows:

∀𝑖 ∈ {1, … , 𝑛} ∶ (𝑝𝑖, 𝜀)
𝑘𝑖𝑣𝑖−−→ (𝑝′

𝑖, 𝜀)
and

∀𝑖 ∈ {1, … , 𝑛 − 1} ∶ (𝑝′
𝑖, 𝜀)

#
−→ (𝑝𝑖+1, 𝜀).

Example 7.4.3.

{

"type": "object",

"required": ["title",

"conference"],↪

"properties": {

"title": { "type":

"string" },↪

"keywords": {

"type": "array",

"items": { "type":

"string" }↪

},

"conference": {

"type": "object",

"required": ["name",

"year"],↪

"properties": {

"name": { "type":

"string" },↪

"year": { "type":

"integer" }↪

}

}

}

}

Consider the schema from Figure 6.3 (repeated in the mar-
gin), without the key keywords and its associated schema. It is defined
by the following closed CFG 𝒢 (where the related productions with key
permutations are not indicated, see Example 6.4.2):

S0 ∶∶= ≺title S1 # conference S2≻
S1 ∶∶= s

S2 ∶∶= ≺name S1 # year S3≻
S3 ∶∶= i

A 1-SEVPA 𝒜 accepting ℒ<(𝒢) is given in Figure 7.2a. For clarity, call
transitions11 11: Recall the particular form of

call transitions and stack alphabet
for 1-SEVPAs, see Definition 7.2.12.

and the bin state are not represented. In Figure 7.2b, we depict



7. Validating JSON Documents by Learning Automata 146

its corresponding key graph G𝒜. Since we have the stacked run

(𝑞0, 𝜀)
title s

−−−−→ (𝑞2, 𝜀) ∈ sruns(𝒜),

the triplet (𝑞0, title, 𝑞2) is a vertex of G𝒜. Likewise, (𝑞0, name, 𝑞6) and
(𝑞7, year, 𝑞9) are vertices. Finally, as we have

(𝑞3, 𝜀)
conference

−−−−−−→ (𝑞4, 𝜀)
≺
−→ (𝑞0, (𝑞4, ≺))

name s # year i

−−−−−−−−−→ (𝑞9, (𝑞4, ≺))
≻
−→ (𝑞10, 𝜀) ∈ sruns(𝒜),

the triplet (𝑞3, conference, 𝑞10) is also a vertex of G𝒜. Finally, we have an

edge from (𝑞0, title, 𝑞2) to (𝑞3, conference, 𝑞10), since (𝑞2, 𝜀)
#
−→ (𝑞3, 𝜀).

From Lemma 7.4.2, we get that the key graph contains a finite number of paths,
i.e., it is always acyclic.

Corollary 7.4.4. In the key graphG𝒜, there is no path ((𝑝1, 𝑘1, 𝑝′
1)(𝑝2, 𝑘2, 𝑝′

2)
… (𝑝𝑛, 𝑘𝑛, 𝑝′

𝑛)) with 𝑝1 = 𝑞𝒜0 such that 𝑘𝑖 = 𝑘𝑗 for some 𝑖 ≠ 𝑗.

Proof. Towards a contradiction, assume the opposite. By Lemma 7.4.2, there
exists

(𝑞𝒜0 , 𝜀)
𝑢
−→ (𝑝′

𝑛, 𝜀) ∈ sruns(𝒜)

such that 𝑢 = 𝑘1𝑣1 # 𝑘2𝑣2 # … # 𝑘𝑛𝑣𝑛 is factor of a word in ℒ<(𝒢). This is
impossible because keys must be pairwise distinct inside objects appearing
in JSON documents. �

Finally, let us discuss the size of G𝒜. While the number of vertices follow
directly from the definition, the number of different paths in the graph requires
a bit more work.

Lemma 7.4.5. The key graph G𝒜 has 𝒪(∣𝑄𝒜∣2 ⋅ ∣Σkey∣) vertices. Moreover,
visiting all vertices along all the paths of G𝒜 that start from a vertex (𝑝, 𝑘, 𝑝′)
such that 𝑝 = 𝑞𝒜0 is in

𝒪(∣𝑄𝒜 × Σkey∣
∣Σkey∣) .

Proof. The first statement is trivial. Let us prove the second one. First,
notice that a given vertex (𝑝, 𝑘, 𝑝′) has at most 𝛼 = ∣Σkey × 𝑄𝒜∣ successors
(𝑞, 𝑘′, 𝑞′) as 𝒜 is deterministic. Second, the length of a longest path in G𝒜 is
bounded by ∣Σkey∣ by Corollary 7.4.4. Third, the number of vertices in the
longest paths starting with the vertex (𝑞𝒜0 , 𝑘, 𝑝′) is bounded by

𝛼∣Σkey∣ − 1
𝛼 − 1 .

As there are 𝛼 potential starting vertices (𝑞𝒜0 , 𝑘, 𝑝′), the announced upper
bound follows. �
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Computing the key graph

Let us now provide a polynomial time algorithm to compute G𝒜 from 𝒜. First,
we explain how to compute the reachability relation Reach𝒜 ⊆ 𝑄𝒜 × 𝑄𝒜:

▶ Initially, Reach𝒜 is the transitive closure of

𝕀𝑄𝒜 ∪ {(𝑞, 𝑞′) ∣ ∃(𝑞, 𝑎, 𝑞′) ∈ 𝛿𝑖𝑛𝑡}.

▶ Repeat until Reach𝒜 does not change:

• Add to Reach𝒜 all elements (𝑞, 𝑞′) such that there exist a call tran-

sition 𝑞
𝑎/𝛾
−−→ 𝑝 and a return transition 𝑝′ �̄�[𝛾]

−−→ 𝑞′, with (𝑝, 𝑝′) ∈
Reach𝒜.

• Close Reach𝒜 with its transitive closure.

This process terminates as the set 𝑄𝒜 × 𝑄𝒜 is finite. It is easy to see that
Reach𝒜 can be computed in time polynomial in ∣𝑄𝒜∣ and |𝛿|.

Second, recall that 𝒜 can have bin states. We compute them, if there are
any, and we remove them and the related transitions from 𝒜. We provide a
polynomial time algorithm to do so in Section B.4.

Finally, let us give an algorithm computing G𝒜. Its vertices are computed as

follows: (𝑝, 𝑘, 𝑝′) is a vertex in G𝒜 if there exist an internal transition 𝑝
𝑘
−→ 𝑞

with 𝑘 ∈ Σkey and

▶ an internal transition 𝑞
𝑎
−→ 𝑝′ with 𝑎 ∈ ΣpVal, or

▶ a call transition 𝑞
𝑎/𝛾
−−→ 𝑟 and a return transition 𝑟′ �̄�[𝛾]

−−→ 𝑝′ with (𝑟, 𝑟′) ∈
Reach𝒜.

We compute the edges of G𝒜 as follows: ((𝑝1, 𝑘1, 𝑝′
1), (𝑝2, 𝑘2, 𝑝′

2)) is an edge

in G𝒜 if there exists an internal transition 𝑝′
1

#
−→ 𝑝2.

Therefore, the given algorithm for computing G𝒜 is polynomial, whose precise
complexity is given in the next proposition and proved in Section B.4.

Proposition 7.4.6. Computing the key graph G𝒜 is in time

𝒪(|𝛿|2 + |𝛿| ⋅ ∣𝑄𝒜∣4 + ∣𝑄𝒜∣5 + ∣𝑄𝒜∣4 ⋅ ∣Σkey∣
2) .

Wehighlight that the 1-SEVPA𝒜 and its key graph have to be computed exactly
once (assuming the underlying schema does not change). That is, learning 𝒜
and constructing G𝒜 is a preprocessing step of our validation algorithm, and
both models can be immediately reused to validate multiple documents against
the same schema.

7.4.2. Validation algorithm

In this section, we provide a streaming algorithm that validates JSON docu-
ments against a given JSON schema.
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[AM04]: Alur et al. (2004), “Visibly
pushdown languages”

13: In the particular case of the
“empty” object ≺≻, the 5-tuple
(𝑅, ≺, 𝐾, 𝑘,Bad) is replaced by
(𝑅, ≺). This situation will be clari-
fied during the presentation of our
algorithm.

14: For clarity, we focus on generic
VPAs first, and then specialize to 1-
SEVPAs.

Given a word 𝑤 ∈ Σ∗
JSON ∖{𝜀}, we want to check whether 𝑤 ∈ ℒ(𝒢). The main

difficulty is that the key-value pairs inside an object are arbitrarily ordered in 𝑤
while a fixed key order is encoded in the 1-SEVPA𝒜 (such thatℒ(𝒜) = ℒ<(𝒢)).
Due to this, we will have to “jump around” in𝒜, while trying to decide whether
there exists a stacked run that reads the object in the learned order. That is, we
add some non-determinism within the 1-SEVPA to guess the stacked run. Our
validation algorithm is inspired by the algorithm computing a deterministic
VPA equivalent to some given VPA [AM04] (see Theorem 7.2.10 and its proof)
and uses the key graph G𝒜 to treat arbitrary orders of the key-value pairs
inside objects.

During the reading of 𝑤 ∈ Σ∗
JSON ∖ {𝜀}, in addition to checking whether

𝑤 ∈ WM(Σ̃JSON), the algorithm updates a subset 𝑅 ⊆ Reach𝒜 and modifies
the content of a stack 𝑆𝑡𝑘 (by pushing, popping, and modifying the element
on top of 𝑆𝑡𝑘).

First, let us explain the information stored in 𝑅. Assume that we have read
the prefix 𝑧𝑎𝑢 of 𝑤 such that 𝑎 ∈ Σ𝑐 is the last unmatched call symbol (thus
𝑧𝑎 ∈ (WM(Σ̃JSON) ⋅ Σ𝑐)

∗
and 𝑢 ∈ WM(Σ̃JSON)).

▶ If 𝑎 is the symbol ⊏ (i.e., the start of an ordered array), then we have

𝑅 = {(𝑝, 𝑞) ∣ (𝑝, 𝜀)
𝑢
−→ (𝑞, 𝜀) ∈ sruns(𝒜)}.

▶ If 𝑎 is the symbol ≺ (i.e., the start of an unordered object), then we have

𝑢 = 𝑘1𝑣1 # 𝑘2𝑣2 # … 𝑘𝑛−1𝑣𝑛−1 # 𝑢′

such that 𝑢′ ∈ WM(Σ̃JSON) and 𝑢′ is prefix of 𝑘𝑛 ⋅ 𝑣𝑛, where each 𝑘𝑖 ⋅ 𝑣𝑖
is a key-value pair. Then,

𝑅 = {(𝑝, 𝑞) ∣ (𝑝, 𝜀)
𝑢′

−→ (𝑞, 𝜀) ∈ sruns(𝒜)}.

In the first case, by using 𝑅 as defined previously, we adopt the same approach
as for the determinization of VPAs. In the second case, with 𝑢, we are currently
reading the key-value pairs of an object in some order that is not necessarily
the one encoded in 𝒜. In this case, the set 𝑅 is focused on the key-value pair
𝑘𝑛 ⋅ 𝑣𝑛 currently being read, i.e., on the word 𝑢′ (instead of the whole word 𝑢).
After reading of the whole object ≺𝑘1𝑣1 # 𝑘2𝑣2 # … ≻, we will use the key
graph G𝒜 to update the current set 𝑅.

Second, let us explain the form of the elements stored in the stack 𝑆𝑡𝑘. Such
an element is

▶ either a pair (𝑅, ⊏),
▶ or a 5-tuple (𝑅, ≺, 𝐾, 𝑘,Bad),

where

▶ 𝑅 is a set as described previously,
▶ 𝐾 ⊆ Σkey is a subset of keys,
▶ 𝑘 ∈ Σkey is a key, and
▶ Bad is a set containing some vertices of G𝒜.13
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We are now ready to detail our streaming validation algorithm.14 Before
beginning to read 𝑤, we initialize 𝑅 to the set 𝕀{𝑞𝒜0 } and 𝑆𝑡𝑘 to the empty stack.
We are now going to explain how to update the current set 𝑅 and the current
contents of the stack 𝑆𝑡𝑘 while reading the input word 𝑤. Suppose that we
are reading the symbol 𝑎 in 𝑤. In some cases, we will also peek the symbol 𝑏
following 𝑎 (which is a lookahead of one symbol).

Case (1) Suppose that 𝑎 is the symbol ⊏. This means that we begin to read an
array. Hence, (𝑅, ⊏) is pushed on 𝑆𝑡𝑘 and 𝑅 is updated to

𝑅Upd = 𝕀𝑄.

We thus proceed exactly as in the proof of Theorem 7.2.10.
Case (2) Suppose that 𝑎 ∈ Σint and ⊏ appears on top of 𝑆𝑡𝑘. We are thus

reading the elements of an array. Hence 𝑅 is updated to

𝑅Upd = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑞′) ∈ 𝑅, 𝑞′ 𝑎
−→ 𝑞}.

Again, we proceed as in the proof of Theorem 7.2.10.
Case (3) Suppose that 𝑎 is the symbol ⊐. This means that we finished reading

an array. If the stack is empty or its top element contains ≺, then
𝑤 ∉ ℒ(𝒢) and we stop the algorithm (as the word is not a valid JSON
value). Otherwise (𝑅′, ⊏) is popped from 𝑆𝑡𝑘 and 𝑅 is updated to

𝑅Upd = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ⊏/𝛾
−−→ 𝑟′, (𝑟′, 𝑟) ∈ 𝑅, 𝑟

⊐[𝛾]
−−→ 𝑞},

as in the proof of Theorem 7.2.10.
Case (4) Suppose that 𝑎 is the symbol ≺.

▶ Let us first consider the particular case where the symbol 𝑏 follow-
ing ≺ is equal to ≻, meaning that we will read the object ≺≻. In
this case, (𝑅, ≺) is pushed on 𝑆𝑡𝑘 and 𝑅 is updated to

𝑅Upd = 𝕀𝑄

as in Case (1).
▶ Otherwise, if 𝑏 belongs to Σkey, we begin to read a (non-empty)

object whose treatment is different from that of an array as its
key-value pairs can be read in any order. Then, 𝑅 is updated to

𝑅Upd = 𝕀𝑃𝑏

where
𝑃𝑏 = {𝑝 ∈ 𝑄 ∣ ∃(𝑝, 𝑏, 𝑝′) ∈ G𝒜},

and (𝑅, ≺, 𝐾, 𝑏,Bad) is pushed on 𝑆𝑡𝑘 such that
• 𝐾 is the singleton {𝑏} and
• Bad is the empty set.

The 5-tuple pushed on 𝑆𝑡𝑘 indicates that the key-value pair that
will be read next begins with key 𝑏; moreover 𝐾 = {𝑏} because this
is the first pair of the object. The meaning of Bad will be clarified
later. The updated set 𝑅Upd is equal to the identity relation on 𝑃𝑏
since after reading ≺, we will start reading a key-value pair whose



7. Validating JSON Documents by Learning Automata 150

abstracted state inG𝒜 can be any state from 𝑃𝑏. Later while reading
the object whose reading is here started, we will update the 5-tuple
on top of 𝑆𝑡𝑘 as explained below.

▶ Finally, it remains to consider the case where 𝑏 ∉ Σkey ∪ {≻}. In
this final case, we have that 𝑤 ∉ ℒ(𝒢) and we stop the algorithm.

Case (5) Suppose that 𝑎 ∈ Σint ∖ {#} and ≺ appears on top of 𝑆𝑡𝑘. Therefore,
we are currently reading a key-value pair of an object. Then, 𝑅 is updated
to

𝑅Upd = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑞′) ∈ 𝑅, 𝑞′ 𝑎
−→ 𝑞′}.

Case (6) Suppose that 𝑎 is the symbol # and ≺ appears on top of 𝑆𝑡𝑘. This
means that we just finished reading a key-value pair whose key 𝑘 is stored
in the 5-tuple (𝑅′, ≺, 𝐾, 𝑘,Bad) on top of 𝑆𝑡𝑘, and that another key-
value pair will be read after symbol #. The set 𝐾 in (𝑅′, ≺, 𝐾, 𝑘,Bad)
stores all the keys of the key-values pairs already read including 𝑘.

▶ If the symbol 𝑏 following # does not belong to Σkey, then 𝑤 ∉ ℒ(𝒢)
and we stop the algorithm.

▶ If 𝑏 belongs to 𝐾, this means that the object contains twice the
same key, i.e., 𝑤 ∉ ℒ(𝒢), and we also stop the algorithm.

▶ Otherwise, the set 𝑅 is updated to

𝑅Upd = 𝕀𝑃𝑏
,

with 𝕀𝑃𝑏
as defined above (as we begin the reading of a new key-

value pair whose key is 𝑏), and the 5-tuple (𝑅′, ≺, 𝐾, 𝑘,Bad) on
top of 𝑆𝑡𝑘 is updated such that

• 𝐾 is replaced by 𝐾 ∪ {𝑏},
• 𝑘 is replaced by 𝑏, and
• all vertices (𝑝, 𝑘, 𝑝′) of G𝒜 such that (𝑝, 𝑝′) ∉ 𝑅 are added to
the set Bad .

Recall that the vertex (𝑝, 𝑘, 𝑝′) of G𝒜 is a witness of a stacked run

(𝑝, 𝜀)
𝑘⋅𝑣
−−→ (𝑝′, 𝜀) ∈ sruns(𝒜)

for some key-value pair 𝑘 ⋅ 𝑣. Hence, by adding this vertex (𝑝, 𝑘, 𝑝′)
to Bad , we mean that the pair that has just been read does not use
such a path.

Case (7) Suppose that 𝑎 is the symbol ≻. Therefore, we end the reading of an
object. If the stack is empty or its top element contains ⊏, then 𝑤 ∉ ℒ(𝒢)
and we stop the algorithm. Otherwise the top of 𝑆𝑡𝑘 contains either
(𝑅′, ≺) or (𝑅′, ≺, 𝐾, 𝑘,Bad) that we pop from 𝑆𝑡𝑘.

▶ If (𝑅′, ≺) is popped, then we are ending the reading of the object
≺≻. Hence, we proceed as in Case (3): 𝑅 is updated to

𝑅Upd = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ≺/𝛾
−−→ 𝑟′ ≻[𝛾]

−−→ 𝑞}.

Notice that 𝑅 does not appear in 𝑅Upd as 𝑅 = 𝕀𝑄.
▶ If (𝑅′, ≺, 𝐾, 𝑘,Bad) is popped, we are reading the last key-value

pair with key 𝑘 and we add to Bad all vertices (𝑝, 𝑘, 𝑝′) of G𝒜 such
that (𝑝, 𝑝′) ∉ 𝑅 as done in Case (6). Next, let Valid(𝐾,Bad) be
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15: See Definition 7.2.12.

the set of pairs of states (𝑟, 𝑟′) ∈ 𝑄2 such that there exists a path
((𝑝1, 𝑘1, 𝑝′

1) … (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛)) in G𝒜 with

• 𝑝1 = 𝑟, 𝑝′
𝑛 = 𝑟′,

• (𝑝𝑖, 𝑘𝑖, 𝑝′
𝑖) ∉ Bad for all 𝑖 ∈ {1, … , 𝑛},

• 𝐾 = {𝑘1, 𝑘2, … , 𝑘𝑛}.
Then, 𝑅 is updated to:

𝑅Upd = {(𝑝, 𝑞) ∣∃(𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ≺/𝛾
−−→ 𝑟′,

(𝑟′, 𝑟) ∈ Valid(𝐾,Bad), 𝑟
≻[𝛾]
−−→ 𝑞}.

We thus proceed as in Case (3) except that condition (𝑟′, 𝑟) ∈ 𝑅 is
replaced by (𝑟′, 𝑟) ∈ Valid(𝐾,Bad). With the latter condition, we
check that the key-value pairs that have been read as composing
an object of 𝑤 are such that the same pairs ordered as imposed by
𝒜 label some stacked run of 𝒜, i.e., the corresponding abstracted
path appears in G𝒜.

Case (8) Suppose that 𝑎 ∈ Σint and 𝑆𝑡𝑘 is empty, then 𝑤 ∉ ℒ(𝒢) and we stop
the algorithm. Indeed an internal symbol appears either in an array or
in an object (see Cases (2), (5), and (6)).

Finally, when the input word 𝑤 is completely read, we check whether the stack
𝑆𝑡𝑘 is empty and the computed set 𝑅 contains a pair (𝑞𝒜0 , 𝑞) with 𝑞 ∈ 𝐹 .

Notice that the previous algorithm is supposed to have a 1-SEVPA as input,
for which all the call transitions (𝑞, 𝑎, 𝑞′, 𝛾) are such that 𝑞′ = 𝑞𝒜0 .15 Therefore,
some simplifications can be done in the algorithm, namely:

▶ in Case (1), 𝑅 is updated to 𝑅Upd = 𝕀{𝑞𝒜0 },
▶ in Case (3), 𝑅 is updated to

𝑅Upd = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ⊏/𝛾
−−→ 𝑞𝒜0 , (𝑞𝒜0 , 𝑟) ∈ 𝑅, 𝑟

⊐[𝛾]
−−→ 𝑞},

▶ in Case (7), if (𝑅′, ≺) is popped, then

𝑅Upd = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ≺/𝛾
−−→ 𝑞𝒜0

≻[𝛾]
−−→ 𝑞},

otherwise 𝑅 is updated to

𝑅Upd = {(𝑝, 𝑞) ∣∃(𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ≺/𝛾
−−→ 𝑞𝒜0 ,

(𝑞𝒜0 , 𝑟) ∈ Valid(𝐾,Bad), 𝑟
≻[𝛾]
−−→ 𝑞}.

In particular, the computation of Valid(𝐾,Bad) can be restricted to pairs
(𝑟, 𝑟′) such that 𝑟 = 𝑞𝒜0 .

The resulting algorithm is given in Algorithm 7.1. This algorithm does not
include the preprocessing algorithm of learning a 1-SEVPA 𝒜 from the JSON
schema 𝑆 and of computing the key graph G𝒜.

Finally, the next theorem, whose proof is deferred to Section B.5, gives the
time and memory complexities of the algorithm.
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Algorithm 7.1: Streaming algorithm for validating JSON documents against a given JSON schema.

Require: A 1-SEVPA 𝒜 over Σ̃JSON accepting ℒ<(𝒢) for a closed extended CFG 𝒢 defining a JSON schema, its
key graph G𝒜, and a word 𝑤 ∈ Σ∗

JSON ∖ {𝜀}.
Ensure: yes is returned if and only if 𝑤 ∈ ℒ(𝒢).
1: (𝑅, 𝑆𝑡𝑘) ← (𝕀{𝑞𝒜0 }, 𝜀); 𝑎 ← 𝑤1 ▷ 𝑤𝑖 is the 𝑖th symbol of 𝑤
2: for all 𝑖 ∈ {2, … , |𝑤|} do
3: if 𝑖 ≤ |𝑤| then 𝑏 ← 𝑤𝑖 else 𝑏 ← 𝜀
4: if 𝑎 ∈ Σ𝑐 then
5: if 𝑎 = ⊏ then Push(𝑆𝑡𝑘, (𝑅, ⊏)); 𝑅 ← 𝕀{𝑞𝒜0 }
6: else ▷ As 𝑎 ∈ Σ𝑐, we have 𝑎 = ≺
7: if 𝑏 = ≻ then Push(𝑆𝑡𝑘, (𝑅, ≺)); 𝑅 ← 𝕀{𝑞𝒜0 }
8: else if 𝑏 ∈ Σkey then Push(𝑆𝑡𝑘, (𝑅, ≺, {𝑏}, 𝑏, ∅)); 𝑅 ← 𝕀𝑃𝑏

9: else return no
10: else if 𝑎 ∈ Σ𝑟 then
11: if 𝑎 = ⊐ (resp. ≻) and there is no ⊏ (resp. ≺) on top of 𝑆𝑡𝑘 then return no
12: if 𝑎 = ⊐ then
13: (𝑅′, ⊏) ← Pop(𝑆𝑡𝑘)
14: 𝑅 ← {(𝑝, 𝑞) ∣ (𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ⊏/𝛾

−−→ 𝑞0, (𝑞0, 𝑟) ∈ 𝑅, 𝑟
⊐[𝛾]
−−→ 𝑞}

15: else if (𝑎 = ≻ and (𝑅′, ≺) is on top of 𝑆𝑡𝑘 for some 𝑅′) then
16: (𝑅′, ≺) ← Pop(𝑆𝑡𝑘)
17: 𝑅 ← {(𝑝, 𝑞) ∣ (𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ≺/𝛾

−−→ 𝑞𝒜0
≻[𝛾]
−−→ 𝑞}

18: else
19: (𝑅′, ≺, 𝐾, 𝑘,Bad) ← Pop(𝑆𝑡𝑘)
20: Bad ← Bad ∪ {(𝑝, 𝑘, 𝑝′) ∈ G𝒜 ∣ (𝑝, 𝑝′) ∉ 𝑅}
21: 𝑉 ← Valid(𝐾,Bad)
22: 𝑅 ← {(𝑝, 𝑞) ∣ (𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ≺/𝛾

−−→ 𝑞𝒜0 , (𝑞0, 𝑟) ∈ 𝑉 , 𝑟
≻[𝛾]
−−→ 𝑞}

23: else if 𝑎 ∈ Σint then
24: if (⊏ appears on top of 𝑆𝑡𝑘) or (𝑎 ≠ # and ≺ appears on top of 𝑆𝑡𝑘) then
25: 𝑅 ← {(𝑝, 𝑞) ∣ (𝑝, 𝑝′) ∈ 𝑅, 𝑝′ 𝑎

−→ 𝑞}
26: else if 𝑎 = # and ≺ appears on top of 𝑆𝑡𝑘 then
27: (𝑅′, ≺, 𝐾, 𝑘,Bad) ← Pop(𝑆𝑡𝑘)
28: if (𝑏 ∉ Σkey or 𝑏 ∈ 𝐾) then return no
29: 𝐾 ← 𝐾 ∪ {𝑏}
30: Bad ← Bad ∪ {(𝑝, 𝑘, 𝑝′) ∈ G𝒜 ∣ (𝑝, 𝑝′) ∉ 𝑅}
31: Push(𝑆𝑡𝑘, (𝑅′, ≺, 𝐾, 𝑏,Bad)); 𝑅 ← 𝕀𝑃𝑏

32: else return no
33: 𝑎 ← 𝑏
34: if (𝑆𝑡𝑘 = 𝜀 and there exists (𝑞0, 𝑞) ∈ 𝑅 with 𝑞 ∈ 𝐹 ) then return yes else return no
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16: See https://github.com/D
ocSkellington/automatalib,
https://github.com/DocSkel

lington/learnlib, https://gi
thub.com/DocSkellington/JS

ONSchemaTools, and https://gi
thub.com/DocSkellington/Va

lidatingJSONDocumentsWithL

earnedVPA. A Zenodo artifact is
available at https://zenodo.org
/records/7309690.

Theorem 7.4.7. Let 𝑆 be a JSON schema defined by a closed extended CFG
𝒢 and 𝒜 be a 1-SEVPA 𝒜 accepting ℒ<(𝒢). Then, checking whether a JSON
document 𝐽 with depth depth(𝐽) satisfies the schema 𝑆

▶ is in time

𝒪(|𝐽| ⋅ (|𝑄|4 + |𝑄|∣Σkey∣ ⋅ ∣Σkey∣
∣Σkey∣+1)) ,

▶ and uses an amount of memory in

𝒪 (|𝛿| + |𝒜|2 ⋅ ∣Σkey∣ + depth(𝐽) ⋅ (|𝒜|2 + ∣Σkey∣)) .

7.5. Implementation and experiments

In this section, we discuss the Java implementation of our framework. That
is, we implemented a way to learn a 1-SEVPA 𝒜 from a JSON schema, the
construction of the key graph G𝒜, and our validation algorithm.

Recall that we introduced in Section 6.5 the “classical” validation algorithm,
used in many implementations. In order to match the abstractions we de-
fined (see Section 6.4) and to have options to tune the learning process, we
implemented our own classical validator. This implementation includes some
optimizations:

▶ If an object does not contain all the required keys, we immediately return
false, without needing to validate each key-value pair.

▶ If an object or an array has too few or too many elements (with regards
to the constraints defined in the schema), we also immediately return
false.

Our goal in this section is to compare this classical approach and our stream-
ing algorithm. Before performing this comparison, we explain how one can
implement a teacher for the learning framework, i.e., a teacher that has a JSON
schema and has to decide whether a JSON document is valid for the schema,
and whether a 1-SEVPA accepts the target language. In particular, Section 7.5.1
explains how to generate random JSON documents, while Section 7.5.2 focuses
on the queries of the teacher. Then, Section 7.5.3 discusses the experimental
framework and the results. Finally, Section 7.5.4 studies a worst-case scenario
for the classical algorithm.

The reader is referred to the code documentation for more details about our
implementation.16

In the remaining of this section, let us assume we have a JSON schema 𝑆0.

7.5.1. Generating JSON documents

The learning process of a 1-SEVPA from a JSON schema 𝑆0 requires to generate
JSON documents that satisfy or do not satisfy 𝑆0 (see Section 7.3). We briefly
explain in this section the generators that we implemented, first for generating
valid documents and then for generating invalid documents.

https://github.com/DocSkellington/automatalib
https://github.com/DocSkellington/automatalib
https://github.com/DocSkellington/learnlib
https://github.com/DocSkellington/learnlib
https://github.com/DocSkellington/JSONSchemaTools
https://github.com/DocSkellington/JSONSchemaTools
https://github.com/DocSkellington/JSONSchemaTools
https://github.com/DocSkellington/ValidatingJSONDocumentsWithLearnedVPA
https://github.com/DocSkellington/ValidatingJSONDocumentsWithLearnedVPA
https://github.com/DocSkellington/ValidatingJSONDocumentsWithLearnedVPA
https://github.com/DocSkellington/ValidatingJSONDocumentsWithLearnedVPA
https://zenodo.org/records/7309690
https://zenodo.org/records/7309690
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17: The recursive schemas will be
discussed later.

[DLS78]: DeMillo et al. (1978),
“Hints on Test Data Selection: Help
for the Practicing Programmer”
[JH11]: Jia et al. (2011), “An Analy-
sis and Survey of the Development
of Mutation Testing”

Valid documents

If the grammar 𝒢 defining the 𝑆0 does not contain any Boolean operations,
generating a document satisfying the schema is easy by following the semantics
of 𝒢 as explained in Section 6.4.1. Let us roughly explain how the generation
works when 𝒢 contains Boolean operations and 𝑆0 is not recursive.17 We
follow the productions of 𝒢 in a top-down manner as follows. If the current
production is a disjunction

S ∶∶= S1 ∨ S2 ∨ ⋯ ∨ S𝑛,

then we select one S𝑖 and replace this production by S ∶∶= S𝑖. It may happen
that the chosen S𝑖 leads to no valid JSON document. Thus, we may need to
try multiple 𝑆𝑖 before successfully generating a valid document. In case of a
production

S ∶∶= S1 ∧ S2 ∧ ⋯ ∧ S𝑛

or ¬𝑆1, then we propagate these Boolean operations lower in the grammar by
replacing each S𝑖 by its production and by rewriting the resulting right-hand
side as a disjunction. For instance, if

S ∶∶= S1 ∧ S2

with S1 ∶∶= i and S2 ∶∶= ≺𝑘S3≻ ∨ s, then we get

S ∶∶= (i ∧ ≺𝑘S3≻) ∨ (i ∧ s).

In this simple example, no choice in the disjunction leads to a valid docu-
ment. In general, the propagation of Boolean operations may require several
iterations before yielding a JSON document. We implemented two types of
generator, supporting all Boolean operations:

▶ a random generator where each choice in disjunctions is made at random,
and

▶ an exhaustive generator that explores every choice, thus producing every
valid document one by one.

Invalid documents

We also implemented modifications of these generators to allow the creation
of invalid documents. The idea is to follow the same algorithm as before but to
sometimes deviate from the grammar 𝒢. For instance, if the current production
describes an integer, we can decide to instead generate an array or a string.
Moreover, among a predefined finite set of possible deviations, we can either
choose one randomly or exhaustively explore each of them, in a way similar
to mutation testing [DLS78; JH11]. As for valid documents, we respectively
call random and exhaustive those two generators.



7. Validating JSON Documents by Learning Automata 155

18: Using the JSON schema field
called patternProperties.

[Isb15]: Isberner (2015), “Founda-
tions of active automata learning:
an algorithmic perspective”

19: https://learnlib.de/page
s/automatalib

20: https://learnlib.de/

21: The values of 𝐶 and 𝐷 are
given in Section 7.5.3.

22: We observed such a situation
several times from our experimen-
tation.
23: This is supported by LearnLib.

Maximal depth for recursive schemas

We also allow the user to set a maximal depth (i.e., the maximal number of
nested objects or arrays). When a generator reaches the maximal depth, it can
no longer produce objects or arrays. This is useful for recursive schemas or
when generating invalid documents, as it permits us to be sure we eventually
produce a document of finite depth.

Support for enumerations and regular expressions for keys

It is noteworthy that the implementation supports an abstracted version of
enumerations of JSON values inside documents. Recall that, for instance, all
strings are abstracted by s. In a similar way, an enumeration is abstracted
by e. While this implies that the exact values are lost, it allows us to keep
the enumerations inside the considered schemas. Moreover, if the schemas
contains regular expressions to define the keys inside an object,18 the regular
expression is directly used as the key. That is, we do not generate a string that
matches the expression but uses the expression itself as the key.

7.5.2. Learning algorithm and queries

Let us now focus on the learning algorithm itself, and in particular on the
membership and equivalence queries. We recall that the equivalence queries
are performed by generating a certain number of (valid and invalid) JSON
documents and by verifying that the learned VPA ℋ and the given schema
𝑆0 agree on the documents’ validity. As said in Section 7.3, we use the TTTVPL
algorithm [Isb15] to learn a 1-SEVPA from 𝑆0. More precisely, we rely on
the implementation made by Isberner in the well-known Java libraries Au-
tomataLib 19 and LearnLib 20.

Using the fact that the membership and equivalence queries can be defined
independently from the actual learning algorithm, we implement the queries
as follows. We use the random and exhaustive generators of valid and invalid
documents as explained in Section 7.5.1 and we fix two constants 𝐶 and 𝐷
depending on the schema to be learned.21 For a membership query over a word
𝑤 ∈ Σ∗

JSON, the teacher runs the classical validator described in Algorithm 6.1
on 𝑤 and 𝑆0. For an equivalence query over a learned 1-SEVPAℋ, the teacher
performs multiple checks, in this order:

1. Is there a loop (𝑞ℋ0 , 𝑎, 𝑞ℋ0 ) over the initial state ofℋ reading an internal
symbol 𝑎 ∈ Σint?22 In that case, we generate a word 𝑤 accepted byℋ.23

The word 𝑎𝑤 is then a counterexample since it is also accepted by ℋ
but it is not a valid document (it is not an object).

2. Using a (random or exhaustive) generator for valid documents, is there
a valid document 𝑤 that is not accepted by ℋ? In that case, 𝑤 is a
counterexample. If the used generator is the exhaustive one, we gen-
erate every possible valid document one by one over the course of all
equivalence queries. We stop using it once all documents have been gen-
erated. If the generator is the random one, for each equivalence query,

https://learnlib.de/pages/automatalib
https://learnlib.de/pages/automatalib
https://learnlib.de/
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1 {

2 "type": "object",

3 "properties": {

4 "name": { "type": "string" },

5 "children": {

6 "type": "array",

7 "maxItems": 1,

8 "items": { "$ref": "#" }

9 }

10 },

11 "required": ["name"],

12 "additionalProperties": false

13 }

Figure 7.3: The recursive JSON schema.

Corollary 7.4.4. In the
key graph G𝒜, there is no
path ((𝑝1, 𝑘1, 𝑝′

1)(𝑝2, 𝑘2, 𝑝′
2)

… (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛)) with 𝑝1 = 𝑞𝒜0

such that 𝑘𝑖 = 𝑘𝑗 for some
𝑖 ≠ 𝑗.

we generate 𝐶 valid documents for each document depth between 0 and
𝐷.

3. Using a (random or exhaustive) generator for invalid documents, is
there an invalid document 𝑤 that is accepted byℋ? In that case, 𝑤 is a
counterexample. Both generators are used as explained in the previous
step.

4. In the key graph Gℋ, is there a path

((𝑝1, 𝑘1, 𝑝′
1)(𝑝2, 𝑘2, 𝑝′

2) … (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛))

with 𝑝1 = 𝑞ℋ0 such that 𝑘𝑖 = 𝑘𝑗 for some 𝑖 ≠ 𝑗 (see Corollary 7.4.4)? In
that case, from this path, we construct a counterexample, i.e., a word
accepted by ℋ that is not a valid document. See Section B.6 for the
details.

Ifℋ fails every test (i.e., we could not find a counterexample), we conclude
thatℋ is correct, the equivalence query succeeds, and we finish the learning
process.

7.5.3. Experimental evaluation

We now discuss our experimental results, starting with a description of the six
schemas we considered. We then give, for each schema, the time and memory
needed to learn a 1-SEVPA and to construct its key graph. Finally, we compare
the classical validation algorithm presented in Section 6.5 and ours, on several
randomly generated JSON documents, some of which being valid, while the
others are invalid.

Evaluated schemas

For the experimental evaluation of our algorithms, we consider the following
schemas, sorted in increasing size:

1. A schema that accepts documents defined recursively. Each object con-
tains a string and can contain an array whose single element satisfies
the whole schema, i.e., this is a recursive list. See Figure 7.3.
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1 {

2 "Title": "Fast",

3 "type": "object",

4 "required": ["string", "double", "integer", "boolean", "object", "array"],

5 "additionalProperties": false,

6 "properties": {

7 "string": { "type": "string" },

8 "double": { "type": "number" },

9 "integer": { "type": "integer" },

10 "boolean": { "type": "boolean" },

11 "object": {

12 "type": "object",

13 "required": ["anything"],

14 "additionalProperties": false,

15 "properties": {

16 "anything": {

17 "type": ["number", "integer", "boolean", "string"]

18 }

19 }

20 },

21 "array": {

22 "type": "array",

23 "items": { "type": "string" },

24 "minItems": 2

25 }

26 }

27 }

Figure 7.4: The JSON schema accepting documents with all types.

24: This schema can be down-
loaded from https://raw.gith

ubusercontent.com/Yash-Sin

gh1/vscode-snippets-json-s

chema/main/schema.json

25: https://json.schemastore
.org/vim-addon-info.json

26: https://json.schemastore
.org/proxies.json

27: https://json.schemastore
.org/codecov.json

28: That is, we added all the keys
in a required field in each object.

29: https://github.com/DocSk
ellington/ValidatingJSONDo

cumentsWithLearnedVPA

2. A schema that accepts documents containing each type of values, i.e.,
an object, an array, a string, a number, an integer, and a Boolean. See
Figure 7.4.

3. A schema that defines how snippets must be described in Visual Studio
Code.24

4. A recursive schema that defines how the metadata files for VIM plugins
must be written.25

5. A schema that defines how Azure Functions Proxies files must look like.26

6. A schema that defines the configuration file for a code coverage tool
called codecov.27

That is, we consider two schemas written by ourselves to test our framework,
and four schemas that are used in real world cases. The last four schemas were
modified to make all object keys mandatory28 and to remove unsupported
keywords. All schemas and scripts used for the benchmarks can be consulted
on our repository.29 In the rest of this section, the schemas are referred to by
their order in the enumeration.

We present three types of experimental results. First, we discuss the time
and the number of membership and equivalence queries needed to learn a
1-SEVPA from a JSON schema. Then, given such a 1-SEVPA 𝒜, we give the
time and memory required to compute its reachability relation Reach𝒜 and its
key graphG𝒜. Finally, the time and memory used to validate a JSON document
using the classical and our new algorithms are provided. The server used for
the benchmarks ran Debian 10 over Linux 5.4.73-1-pve with a 4-core Intel®
Xeon® Silver 4214R Processor with 16.5M cache, and 64GB of RAM. Moreover,

https://raw.githubusercontent.com/Yash-Singh1/vscode-snippets-json-schema/main/schema.json
https://raw.githubusercontent.com/Yash-Singh1/vscode-snippets-json-schema/main/schema.json
https://raw.githubusercontent.com/Yash-Singh1/vscode-snippets-json-schema/main/schema.json
https://raw.githubusercontent.com/Yash-Singh1/vscode-snippets-json-schema/main/schema.json
https://json.schemastore.org/vim-addon-info.json
https://json.schemastore.org/vim-addon-info.json
https://json.schemastore.org/proxies.json
https://json.schemastore.org/proxies.json
https://json.schemastore.org/codecov.json
https://json.schemastore.org/codecov.json
https://github.com/DocSkellington/ValidatingJSONDocumentsWithLearnedVPA
https://github.com/DocSkellington/ValidatingJSONDocumentsWithLearnedVPA
https://github.com/DocSkellington/ValidatingJSONDocumentsWithLearnedVPA
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Time (s) Membership Equivalence |𝑄| |Σ| |𝛿𝑐| |𝛿𝑟| |𝛿𝑖| Diameter

2.2 2055.0 5.0 7 15 14 3.0 5.0 3.0
4.5 69514.0 3.0 24 20 48 3.0 26.0 12.0
9.0 21943.0 5.0 16 17 32 7.0 18.0 13.0

9590.3 4246085.0 36.4 150 27 300 2946.5 760.3 9.0
35008.2 4063971.7 30.5 121 35 242 2123.0 752.5 13.3

Timeout 633049534.0 192.0 884 77 1768 89695.0 8557.0 28.0

Table 7.1: Results of the learning benchmarks. For the first five schemas, values are averaged out of ten
experiments. For the last schema, only one experiment was conducted.

30: Check Item 4. in Section 7.5.2.

Corollary 7.4.4. In the
key graph G𝒜, there is no
path ((𝑝1, 𝑘1, 𝑝′

1)(𝑝2, 𝑘2, 𝑝′
2)

… (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛)) with 𝑝1 = 𝑞𝒜0

such that 𝑘𝑖 = 𝑘𝑗 for some
𝑖 ≠ 𝑗.

we used OpenJDK version 11.0.12.

Learning VPAs

As the first part of the preprocessing step of our validation algorithm, we must
learn a 1-SEVPA. For the first three evaluated schemas, we use an exhaustive
generator thanks to the small number of valid documents that can be produced
(up to a certain depth 𝐷 defined below). For the remaining three schemas, we
rely instead on a random generator where we fix the number of generated doc-
uments per round at 𝐶 = 10000. For both exhaustive and random generators,
the maximal depth of the generated documents is set at 𝐷 = 𝑑𝑒𝑝𝑡ℎ(𝑆) + 1,
where 𝑑𝑒𝑝𝑡ℎ(𝑆) is the maximal number of nested defined objects and arrays
in the schema 𝑆, except for the recursive list schema where 𝐷 = 10, and for
the recursive VIM plugins schema where 𝐷 = 7.

In all cases, we learn the 1-SEVPA while measuring the total time (including
the time needed for the membership and equivalence queries), and the total
number of queries. After removing the bin state of the resulting 1-SEVPA (see
Section B.4), we also measure its number of states and transitions, as well as
its diameter. For the first five schemas, we do not set a time limit and repeat
the learning process ten times. For the last schema, we set a time limit of
one week and, for time constraints, only perform the learning process once.
After that, we stop the computation and retrieve the learned 1-SEVPA at that
point.

Recall that for one of the checks performed in an equivalence query,30 we must
construct the key graph of the hypothesisℋ. In particular, we must compute
its reachability relation Reachℋ. As we observe that a counterexample implies
only a small change inℋ, we gain efficiency by avoiding to compute the new
reachability relation from scratch at each equivalence query.

The results for the learning benchmarks are given in Table 7.1. The learning
process for the last schema was not completed after one week. The retrieved
learned 1-SEVPA is therefore an approximation of this schema. Its key graph
has repeated keys along some of its paths, a situation that cannot occur if
the 1-SEVPA was correctly learned, see Corollary 7.4.4. Notice that, when
using a random generator, different runs of the algorithm may yield different
1-SEVPAs.
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Reach𝒜 G𝒜

Time (s) Memory (kB) Size Time (s) Computation (kB) Storage (kB) Size

34 492 31 100 2231 65 3
67 1152 213 234 2623 69 9
67 737 125 118 2223 69 10

1756 10316 5832 1715 11827 419 418
2208 13978 4420 2839 17968 667 541

377141 212970 270886 187659 120398 16335 6397

Table 7.2: Time and memory needed to compute Reach𝒜 and G𝒜, and their size. Values are taken from a
single experiment. For G𝒜, the Computation (resp. Storage) column gives the memory required to
compute G𝒜 (resp. to store G𝒜).

Lemma7.4.5.The key graph
G𝒜 has 𝒪(∣𝑄𝒜∣2 ⋅ ∣Σkey∣)
vertices. Moreover, visiting
all vertices along all the paths
ofG𝒜 that start from a vertex
(𝑝, 𝑘, 𝑝′) such that 𝑝 = 𝑞𝒜0 is

in 𝒪(∣𝑄𝒜 × Σkey∣
∣Σkey∣) .

Construction of the key graph

The second part of the preprocessing step is to construct the key graph of the
learned 1-SEVPA. For each evaluated schema, we select the learned 1-SEVPA
with the largest set of states, in order to report a worst-case measure. From that
1-SEVPA𝒜, we compute its reachability relation Reach𝒜 and its key graph G𝒜,
and measure the time and memory used, as well as their sizes. Values obtained
after a single experiment are given in Table 7.2. We can see that the size of
the key graph is far from the theoretical upper bound in 𝒪(∣𝑄𝒜∣2 ⋅ ∣Σkey∣) of
Lemma 7.4.5. Moreover, its storage does not consume more than one megabyte,
except for codecov schema. That is, even for non-trivial schemas, the key graph
is relatively lightweight.

Comparing validation algorithms

Finally, we compare both validation algorithms: the classical one and our new
streaming algorithm. For the latter, we use the 1-SEVPA (and its key graph)
selected in the previous section. We first generate 5000 valid and 5000 invalid
JSON documents using a random generator, with a maximal depth equal to
𝐷 = 20. We then execute both validation algorithms on these documents,
while measuring the time and memory required. On all considered documents,
both algorithms return the same classification output, even for the partially
learned 1-SEVPA.

Since obtaining a close approximation of the consumed memory requires Java
to “stop the world” to destroy all unused objects, we execute each algorithm
twice: one time where we only measure time, and a second time where we
request the memory to be cleaned each iteration of the algorithm (or each
recursive call).

For our algorithm, we only measure the memory required to execute the
algorithm, as we do not need to store the whole document to be able to
process it. We also do not count the memory to store the 1-SEVPA and its key
graph. As the classical algorithm must have the complete document stored in
memory, in this case, we sum the RAM consumption for the document and for
the algorithm itself. This is coherent to what happens in actual web-service
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Figure 7.5: Results of validation benchmarks for the metadata files for VIM plugins. Blue crosses give the
values for our algorithm, and red circles the values for the classical validator. Values are averaged
out of ten experiments.

31: See Section B.5.

handling: Whenever a new validation request is received, we would spawn
a new subprocess that handles a specific document. Since the 1-SEVPA and
its key graph are the same for all subprocesses, they would be loaded in a
memory space shared by all processes.

In order to focus on the three largest schemas, we defer the presentation of
the first three schemas to Section B.7. Results for VIM plugins, Azure Functions
Proxies, and codecov are given in Figures 7.5 to 7.7. The blue crosses give the
values for our algorithm, while the red circles stand for the classical algorithm.
The x-axis gives the number of symbols of our alphabet in each document.
We can see that our algorithm usually requires more time than the classical
algorithm to validate a document. We observed that a majority of the total time
is spent computing the set Valid(𝐾,Bad). For both VIM plugins and Azure
Functions Proxies, our algorithm consumes less memory than the classical
algorithm. We observed that, even if we add the number of bytes needed to
store the automaton and the key graph (see Tables 7.1 and 7.2), we remain
under the classical algorithm, especially for large documents.

For the last codecov schema, we recall that the learning process was not com-
pleted, leading to an approximated 1-SEVPA whose key graph has repeated
keys. We had to modify our validation algorithm, in particular the computa-
tion of the set Valid(𝐾,Bad):31 when visiting each path of the key graph, we
pay attention to stop it on the second visit of a key. This means that we have
to explore some invalid paths, increasing the memory and time consumed by
our algorithm. Thus, it appears that, while a 1-SEVPA that is not completely
learned can still be used in our algorithm to correctly decide whether a docu-
ment is valid, stopping the learning process early may drastically increase the
time and space required.
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Figure 7.6: Results of validation benchmarks for the Azure Functions Proxies file.
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Figure 7.7: Results of validation benchmarks for the configuration files of codecov.

7.5.4. Worst case for the classical validator

Finally, let us consider one last schema, purposefully made to highlight the dif-
ferences between both algorithms. Its extended CFG (up to key permutations)
is as follows, with ℓ ≥ 1:

S ∶∶= S1 ∧ S2 ∧ ⋯ ∧ Sℓ

∀𝑖 ∈ {1, … , ℓ} ∶ S𝑖 ∶∶= 𝑅𝑖 ∨ 𝑅𝑖+1 ∨ ⋯ ∨ 𝑅ℓ

∀𝑖 ∈ {1, … , ℓ} ∶ 𝑅𝑖 ∶∶= ≺𝑘𝑖s # 𝑘𝑖+1s # … # 𝑘ℓs≻

Notice the difference between S𝑖 and S𝑖+1: 𝑅𝑖 is removed from S𝑖 to get S𝑖+1.
Hence an equivalent grammar is S ∶∶= 𝑅ℓ. On the one hand, the classical
validator has to explore each S𝑖 in the conjunction, and each 𝑅𝑗 in the related
disjunction, before finally considering Sℓ and thus 𝑅ℓ. On the other hand, as
we learn minimal 1-SEVPAs, we can here easily construct a 1-SEVPA directly
for the simplified grammar S ∶∶= 𝑅ℓ. This example is a worst-case for the



7. Validating JSON Documents by Learning Automata 162

Reach𝒜 G𝒜

Time (s) Memory (kB) Size Time (s) Computation (kB) Storage (kB) Size

33.0 492.0 31.0 109.0 1981.0 60.0 2.0

Table 7.3: Time and memory needed to compute Reach𝒜 and G𝒜, and their size. Values are taken from a
single experiment. For G𝒜, the Computation (resp. Storage) column gives the memory required to
compute G𝒜 (resp. to store G𝒜).
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Figure 7.8: Results of validation benchmarks for the worst-case schema, with ℓ = 10.

classical validator, while being easy to handle for our algorithm, as shown in
Table 7.3 and Figure 7.8.

7.6. Conclusion

In this chapter, we have proved that, given any JSON schema, one can construct
a VPA that accepts the same set of JSON documents as the schema. Leveraging
this fact and TTT, we designed a learning algorithm that yields a VPA for the
schema, under a fixed order of the keys inside objects. We then abstracted as a
key graph the part of this VPA dealing with objects, and proposed a streaming
algorithm that uses both the graph and the VPA to decide whether a document
is valid for the schema, under any order on the keys.

As future work, one could focus on constructing the VPA directly from the
schema, without going through a learning algorithm. While this task is easy
if the schema does not contain Boolean operations, it is not yet clear how
to proceed in the general case. Second, it could be worthwhile to compare
our algorithm against an implementation of a classical algorithm used in the
industry. This would require either to modify the industrial implementations
to support abstractions, or to modify our algorithm to work on unabstracted
JSON schemas. Third, in our validation approach, we decided to use a VPA
accepting the JSON documents satisfying a fixed key order — thus requiring
to use the key graph and its costly computation of the set Valid(𝐾,Bad). It
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[SSM08]: Seidl et al. (2008), “Count-
ing in trees”

[FS21]: Frohme et al. (2021), “Com-
positional learning of mutually re-
cursive procedural systems”

[FS18]: Frohme et al. (2018), “Ac-
tive Mining of Document Type Def-
initions”

could be interesting to make additional experiments to compare this approach
with one where we instead use a VPA accepting the JSON documents and all
their key permutations — in this case, reasoning on the key graph would no
longer be needed.

Furthermore, motivated by obtaining efficient querying algorithms on XML
trees, the authors of [SSM08] have introduced the concept of mixed automata
in a way to accept subsets of unranked trees where some nodes have ordered
sons and some other have unordered sons. It would be interesting to adapt
our validation algorithm to different formalisms of documents, such as the
one of mixed automata.

Finally, exploring the possibility of using systems of procedural automata (SPAs,
for short) [FS21], which form an extension of DFAs that can mutually call
each other. The restrictions imposed by Frohme and Steffen for the learning
algorithm (namely, that calls and returns between the different DFAs are
observable) make the model akin to VPAs. As SPAs have specific structures
(i.e., distinct DFAs with special transitions indicating how to jump between
them) and as the learning algorithm proposed in [FS21] has a lower time
complexity than TTTVPL, it may be interesting to adapt the ideas from our
validation algorithm to SPAs, potentially yielding an algorithm with a better
time complexity. Notably, Frohme and Steffen applied their algorithm to infer
automata encoding Document Type Definitions (DTDs) which are used to
encode constraints over XML documents [FS18].
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Technical Proofs and Details of
Chapter 7 B.

This chapter, based on [BPS23], contains the technical details and proofs that
were not given in Chapter 7. That is, it serves as the appendix of the previous
chapter.
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B.1. Interest of fixing a key order

In this section, we provide a family of JSON schemas 𝑆𝑛, 𝑛 ≥ 1, and a key-
order, such that the minimal 1-SEVPA 𝒜𝑛 accepting all the JSON documents
satisfying 𝑆𝑛 is exponentially larger than the minimal 1-SEVPA ℬ𝑛 accepting
those documents respecting the key order.

Let Σkey = {𝑘1, … , 𝑘𝑛} with the key order 𝑘1 < ⋯ < 𝑘𝑛. The proposed JSON
schema 𝑆𝑛 is the one defining all JSON documents

≺𝑘𝑖1
s # … # 𝑘𝑖𝑛

s≻

where (𝑘𝑖1
, … , 𝑘𝑖𝑛

) is a permutation of (𝑘1, … , 𝑘𝑛). It is easy to see that the
1-SEVPA ℬ𝑛 has 𝒪 (𝑛) states since it only accepts the document

≺𝑘1s # … # 𝑘𝑛s≻.

Let us show that the 1-SEVPA 𝒜𝑛 has at least 2𝑛 states.

Let us consider the state 𝑞 of 𝒜𝑛 such that

(𝑞0, 𝜀)
≺
−→ (𝑞0, 𝛾)

𝑥
−→ (𝑞, 𝛾)

𝑦
−→ (𝑝, 𝛾)

≻
−→ (𝑟, 𝜀) ∈ sruns(𝒜)

with 𝑟 ∈ 𝐹 , 𝑥 = 𝑘𝑖1
s # … # 𝑘𝑖ℓ

s, and 𝑦 = 𝑘𝑖ℓ+1
s # … # 𝑘𝑖𝑛

s where
(𝑘𝑖1

, … , 𝑘𝑖ℓ
, … , 𝑘𝑖𝑛

) is a permutation of (𝑘1, … , 𝑘𝑛). It is not possible to have

another stacked run (𝑞0, 𝛾)
𝑥′

−→ (𝑞, 𝛾) of 𝒜 with 𝑥′ = 𝑘𝑗1
s # … # 𝑘𝑗𝑚

s such
that {𝑘𝑖1

, … , 𝑘𝑖ℓ
} ≠ {𝑘𝑗1

, … , 𝑘𝑗𝑚
}. Otherwise, 𝒜𝑛 would accept an invalid

document. It follows that there are as many such states 𝑞 as there are subsets
{𝑘𝑖1

, … , 𝑘𝑖ℓ
} of Σkey. Therefore 𝒜𝑛 has at least 2𝑛 states.
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1: Some difficulties arise from the
presence of Boolean operators in
the grammar productions.

2: This process terminates because
the grammar is well-formed (see
Remark 6.4.5).

B.2. Proof of Theorem 7.3.2

Theorem 7.3.2. Let 𝒢 be a closed extended CFG defining a JSON schema.
Then, there exists a VPA 𝒜 such that ℒ(𝒜) = ℒ(𝒢).
Moreover for all orders < of Σkey, there exists a VPA ℬ such that ℒ(ℬ) =
ℒ<(𝒢).

In order to prove this theorem, we first apply multiple modifications to the
grammar. Then, we will construct a VPA from the resulting grammar and
show that this VPA is equivalent to the grammar.

Let 𝒢 be a closed extended CFG defining a JSON schema. To prove the existence
of a VPA 𝒜 accepting ℒ(𝒢), we adapt a construction provided in the proof
of [KMV07, Theorem 1].1 Recall that

Σ𝑐 = {≺, ⊏},
Σ𝑟 = {≻, ⊐},

and
Σint = ΣpVal ∪ Σkey ∪ {#}.

The terminal alphabet of 𝒢 is equal to the (pushdown) alphabet

Σ̃JSON = Σ𝑐 ∪ Σ𝑟 ∪ Σint .

Suppose that its non-terminal alphabet is equal to

𝒮 = {S0, S1, … , S𝑛}

where 𝑆0 is the axiom. We assume that any production that has 𝑆0 as left-hand
side is of the form 𝑆0 ∶∶= ≺𝑒≻, where 𝑒 is a generalized regular expression
over the alphabet 𝒮 ∪ Σint , as JSON documents are supposed to be objects. We
need to apply several steps in a way to construct the required VPA 𝒜.

(𝑖) We transform the grammar 𝒢 such that:

▶ the left-hand sides of productions are pairwise distinct,
▶ each production is of the form S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗 such that 𝑎𝑗 ∈ {≺, ⊏} and

𝑒𝑗 is a generalized regular expression over the alphabet 𝒮 ∪ Σint .

We proceed as follows to obtain the transformed grammar.

1. If S𝑗 appears as the left-hand side of 𝑘 ≥ 2 productions, then it is replaced
by 𝑘 new non-terminal symbols S𝑗1

, S𝑗2
, … , S𝑗𝑘

(one for each of the 𝑘
productions), and each of occurrence of S𝑗 in the right-hand side of
productions is replaced by S𝑗1

∨ S𝑗2
∨ ⋯ ∨ S𝑗𝑘

.
2. Any production S𝑗 ∶∶= 𝑣 with 𝑣 ∈ ΣpVal is deleted. Each occurrence of

S𝑗 in the right-hand side of productions is replaced by 𝑣.
3. We proceed as in the previous item with all productions S𝑗 ∶∶= S𝑗1

∨
S𝑗2

∨ ⋯ ∨ S𝑗𝑛
, S𝑗 ∶∶= S𝑗1

∧ S𝑗2
∧ ⋯ ∧ S𝑗𝑛

, and S𝑗 ∶∶= ¬S𝑗1
.

After this transformation, a non-terminal S𝑗 uniquely identifies a production
and the latter is of the form S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗 with 𝑎𝑗 ∈ {≺, ⊏}.2 Notice that the
axiom S0 of the original grammar may have been replaced by several axioms.
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Lemma 6.4.4. For a given
set of keys Σkey, the set of all
valid JSON values (i.e., prim-
itive values or well-formed
objects and arrays) 𝐽 is equal
to ℒ(𝒢U) where 𝒢U is the
closed extended CFG given
in Figure 6.5, called universal,
with 𝑈 being the axiom.

Given a production S𝑗 ∶∶= ≺𝑒𝑗≻, the generalized regular expression 𝑒𝑗 is of
the form 𝑘1𝜙1 # 𝑘2𝜙2 # … # 𝑘𝑛𝜙𝑛 where each 𝜙𝑖 is a Boolean expression
of elements from ΣpVal ∪ 𝒮. Similarly, the expression 𝑒𝑗 in each production
S𝑗 ∶∶= ⊏𝑒𝑗⊐ is of the form either 𝜀 ∨ 𝜙1(#𝜙1)∗, or 𝜙1 # … # 𝜙1.

(𝑖𝑖) In a way to obtain a normal form for the productions

S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗,

we simplify the Boolean expressions 𝜙𝑖 that appear in the generalized regular
expressions 𝑒𝑗, and the productions containing them, as follows.

1. Each Boolean expression 𝜙𝑖 is put into disjunctive normal form (DNF).
We will see that 0 (meaning false) may appear inside 𝜙𝑖 that is thus
simplified with the usual Boolean rules.

2. In each DNF 𝜙𝑖,

▶ each conjunction that contains some 𝑣, 𝑣′ ∈ ΣpVal, with 𝑣 ≠ 𝑣′, is
replaced by 0,

▶ each conjunction that contains some 𝑣 ∈ ΣpVal and𝑆 ∈ 𝒮 is replaced
by 0 (indeed 𝑆 defines either an object or an array),

▶ each conjunction that contains some 𝑆, 𝑆′ ∈ 𝒮 is replaced by 0,
whenever 𝑆 defines an object and 𝑆′ an array, or the contrary.

3. Every production S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗 such that 𝑒𝑗 contains a Boolean expres-
sion 𝜙𝑖 equal to 0 is replaced by S𝑗 ∶∶= 0, with one exception detailed
hereafter. Each occurrence of S𝑗 in the right-hand side of other produc-
tions is thus replaced by 0. The exception is

S𝑗 ∶∶= ⊏𝜀 ∨ 𝜙1(#𝜙1)∗⊐

which is simplified into
S𝑗 ∶∶= ⊏𝜀⊐

when 𝜙1 is equal to 0.

After this second step, symbol 0 does not appear in any DNF formula 𝜙𝑖 and
some productions may have the form S𝑗 ∶∶= 0.

In the next steps (𝑖𝑖𝑖) and (𝑖𝑣), we want to modify the grammar such that
operators ¬ and ∧ disappear from the DNF formulas 𝜙𝑖.

(𝑖𝑖𝑖) The simplified DNF formulas 𝜙𝑖 have literals of the form 𝑣 ¬𝑣, S𝑗, or ¬S𝑗,
with 𝑣 ∈ Σkey, S𝑗 ∈ 𝒮. We want to define each ¬𝑣 and ¬S𝑗 by some additional
new productions, in a way to replace them by those productions.

1. For this purpose, we first add the productions defining the set of all JSON
values as given in Lemma 6.4.4 (we recall that these productions use the
non-terminal 𝑈).

2. Let us explain how to define ¬𝑣, with 𝑣 ∈ ΣpVal, by adequate new
productions. We need to define all JSON values except 𝑣. This is possible
by adapting the grammar of Lemma 6.4.4 and by using the non-terminal
𝑈:

▶ 𝑅1 ∶∶= 𝑣′ for all 𝑣′ ∈ ΣpVal ∖ {𝑣},
▶ 𝑅2 ∶∶= ≺𝑘1𝑈 # 𝑘2𝑈 # … # 𝑘𝑛𝑈≻ for all sequences (𝑘1, … , 𝑘𝑛),

𝑛 ≥ 0, of pairwise distinct keys of Σkey,
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3: The used Boolean operators are
limited to ∨

▶ 𝑅3 ∶∶= ⊏𝜀 ∨ 𝑈(#𝑈)∗⊐,
▶ S¬𝑣 ∶∶= 𝑅1 ∨ 𝑅2 ∨ 𝑅3.

We can then replace each occurrence of ¬𝑣 in the DNF formulas 𝜙𝑖 by
S¬𝑣.

3. Let us now explain how to define ¬S𝑗, with S𝑗 ∈ 𝒮, by adequate produc-
tions. Recall that S𝑗 is the left-hand side of the production S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗.
Let us consider the particular example 𝑎𝑗𝑒𝑗 ̄𝑎𝑗 = ≺𝑘1𝜙1 # 𝑘2𝜙2≻ (the
reader could infer the general case from this particular example). We
need to define all JSON values except the ones defined by S𝑗. Defining
¬𝑆𝑗 is done thanks to the following grammar:

▶ 𝑇1 ∶∶= ≺𝑘′
1𝑈 # 𝑘′

2𝑈 # … # 𝑘′
𝑛𝑈≻ for all sequences (𝑘′

1, … , 𝑘′
𝑛),

𝑛 ≥ 0, of pairwise distinct keys of Σkey, except sequence (𝑘1, 𝑘2),
▶ 𝑇1 ∶∶= ≺𝑘1¬𝜙1 # 𝑘2𝜙2≻
▶ 𝑇1 ∶∶= ≺𝑘1𝜙1 # 𝑘2¬𝜙2≻
▶ 𝑇1 ∶∶= ≺𝑘1¬𝜙1 # 𝑘2¬𝜙2≻
▶ 𝑇2 ∶∶= 𝑣 for all 𝑣 ∈ ΣpVal,
▶ 𝑇3 ∶∶= ⊏𝜀 ∨ 𝑈(#𝑈)∗⊐,
▶ S¬S𝑗

∶∶= 𝑇1 ∨ 𝑇2 ∨ 𝑇3.

We can then replace each occurrence of ¬𝑆𝑗 in the DNF formulas 𝜙𝑖 by
S¬S𝑗

.

With this step, several new productions have been added to the productions
𝑆𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗, with 𝑆𝑗 ∈ 𝒮. We again apply to those new productions the
transformations described in (𝑖) and (𝑖𝑖), and we replace each occurrence of ¬𝑣
and ¬S𝑗 by S¬𝑣 and S¬𝑆𝑗

respectively. Notice there is no occurrence of neither
¬𝑈, nor ¬𝑅𝑗, nor ¬𝑇𝑗, 𝑗 = 1, 2, 3, in the new productions,3 and, therefore,
no need to define them by some productions. After this step, no production
contains the negation of a primitive value or a non-terminal. We use the same
notation 𝒮 for the set of all non-terminals.

(𝑖𝑣) We now proceed to simplify the conjunctions away. For each set of non-
terminals {𝑆𝑖1

, … , 𝑆𝑖𝑘
} ⊆ 𝒮, we want to define 𝜑 = 𝑆𝑖1

∧ … ∧ 𝑆𝑖𝑘
by an

additional new production with a left-hand side denoted by S𝜑. We have the
following cases:

1. If the set {𝑆𝑖1
, … , 𝑆𝑖𝑘

} contains some non-terminals defining objects
and some others defining arrays, then we define S𝜑 ∶∶= 0.

2. If the set contains only non-terminals defining objects, we can assume
𝑆𝑖ℓ

∶∶= ≺𝑘ℓ
1𝜙ℓ

1 # … # 𝑘ℓ
𝑚ℓ

𝜙ℓ
𝑚ℓ

≻. We have two possibilities:

▶ If all 𝑆𝑖ℓ
use the same sequence (𝑘1, … , 𝑘𝑚) of keys, then we set

S𝜑 ∶∶= ≺𝑘1(∧𝑘
ℓ=1𝜙ℓ

1) # … # 𝑘𝑚(∧𝑘
ℓ=1𝜙ℓ

𝑚)≻.
▶ Otherwise, we set S𝜑 ∶∶= 0.

3. Suppose that the set contains only non-terminals defining arrays.

▶ In the case where all arrays have a fixed number of elements, we
perform as in the previous item.

▶ If these arrays all define an unbounded number of elements, i.e.,
S𝑖ℓ

∶∶= ⊏𝜀 ∨ 𝜙ℓ(#𝜙ℓ)∗⊐, then we set

S𝜑 ∶∶= ⊏𝜀 ∨ (∧𝑘
ℓ=1𝜙ℓ)(#(∧𝑘

ℓ=1𝜙ℓ))∗⊐.
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4: Steps (𝑖𝑖) − (𝑖𝑣) are new com-
pared to the proof of [KMV07, The-
orem 1], due to the presence of
Boolean operators ¬ and ∧ in the
grammar productions.

▶ We now focus on the case where some non-terminals define a
fixed number 𝑚 of elements (which we can assume is the same
for each non-terminal; otherwise, let S𝜑 ∶∶= 0), and some other
non-terminals define an unbounded number of elements. Then, we
set

S𝜑 ∶∶= ⊏(∧𝑘
ℓ=1𝜙ℓ) # … # (∧𝑘

ℓ=1𝜙ℓ)⊐,

such that we define 𝑚 elements.

Once the new productions S𝜑 are defined for all conjunctions 𝜑 = 𝑆𝑖1
∧

… ∧ 𝑆𝑖𝑘
, we replace by S𝜑 every occurrence of 𝜑 in the DNF formulas of the

productions. Moreover, as the new productions with left-hand side S𝜑 may
contain occurrences of formulas of the form ∧𝑘

ℓ=1𝜙ℓ, we put those formulas in
DNF and we also replace the resulting conjunctions 𝜑′ by the non-terminal
S𝜑′. In this way, no production contains anymore neither negations nor
conjunctions.

(𝑣) Finally, here is the last step to obtain the required VPA 𝒜 accepting ℒ(𝒢).
We have a series of productions in our grammar, whose some have a right-
hand side equal to 0. We delete those productions. For the remaining ones, we
rename by 𝒮 = {S1, … , S𝑛} the resulting alphabet of non-terminals, and by
S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗 the production whose S𝑗 ∈ 𝒮 is the unique left-hand side, for all
𝑗 ∈ {1, … , 𝑛}. We partition 𝒮 into 𝒮≺ ∪𝒮⊏, such that S𝑗 ∈ 𝒮𝑎𝑗 according to the
value of 𝑎𝑗 in the production S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗. Recall that the axiom of the original
grammar 𝒢 may have been replaced by several axioms in 𝒮 by step (𝑖). Recall
also that the DNF formulas appearing inside each 𝑒𝑗 are now disjunctions of
symbols from 𝒮∪ Σint , i.e., 𝑒𝑗 is a classical regular expression over 𝒮∪ Σint (i.e.,
a regular expression using union, concatenation and Kleene-∗ operation).4

It may happen that 𝒮 contains no axiom S𝑗 (since each production S𝑗 ∶∶= 0,
with S𝑗 being an axiom, has been deleted). In this case, it is easy to construct
a VPA accepting the empty language. For the sequel, we thus suppose that
this situation does not hold.

For each production S𝑗 ∶∶= 𝑎𝑗𝑒𝑗 ̄𝑎𝑗, we construct a complete DFA ℬ𝑗 over the
alphabet 𝒮 ∪ Σint for the (classical) regular expression 𝑒𝑗. Specifically, let

ℬ𝑗 = (S ∪ Σint , 𝑄ℬ𝑗, 𝑞ℬ𝑗
0 , 𝑞ℬ𝑗

0 , 𝛿ℬ𝑗)

be that DFA. If this automaton has bin states, we suppose that it is unique and
denoted by ⊥𝑗. We then construct the cartesian product ℬ of all the automata
ℬ𝑗, 𝑗 ∈ {1, … , 𝑛}.

We are finally ready to construct the VPA𝒜, which is more precisely a 1-SEVPA
over Σ̃JSON and using Γ = 𝑄𝒜 × {≺, ⊏} as its stack alphabet. We define 𝒜
such that:

▶ Its set of states is the set of states of ℬ with a new state 𝑞𝑓 which is the
unique final state of 𝒜. Moreover, the initial state of 𝒜 is composed of
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5: After reading 𝑎, we jump to the
initial state of 𝒜 and push (𝑝, 𝑎)
on the stack
6: At the end of a run in ℬ that is
accepting inℬ𝑗, with (𝑝, 𝑎) on top
of the stack, we go to the state 𝑝′

after reading �̄�.

the initial state of each ℬ𝑗. That is,

𝑄𝒜 = {𝑞𝑓} ⊎ (𝑄ℬ1 × 𝑄ℬ2 × ⋯ × 𝑄ℬ𝑛)

𝑞𝒜0 = (𝑞ℬ1
0 , … , 𝑞ℬ𝑛

0 ) = 𝑞ℬ0
𝐹 𝒜 = {𝑞𝑓}.

▶ The set of internal transitions 𝛿𝒜𝑖𝑛𝑡 are the transitions of ℬ labeled by
symbols in Σint (and, thus, not in 𝒮).

▶ For each transition 𝑝
S𝑗
−→ 𝑝′ ∈ runs(ℬ) where S𝑗 ∈ S𝑎, with 𝑎 ∈ {≺, ⊏},

we add the following transitions in 𝒜:

• the call transition 𝑝
𝑎/(𝑝,𝑎)
−−−−→ 𝑞𝒜0 in 𝛿𝒜𝑐 ,5 and

• the return transitions 𝑞
�̄�[(𝑝,𝑎)]
−−−−→ 𝑝′ in 𝛿𝒜𝑟 for all 𝑞 = (𝑞1, … , 𝑞𝑛) ∈

𝑄𝒜 such that 𝑞𝑗 ∈ 𝐹ℬ𝑗.6

▶ For each 𝑗 ∈ {1, … , 𝑛} such that S𝑗 is an axiom, we add the call transition

𝑞𝒜0
≺/(𝑞𝒜0 ,≺)
−−−−−→ 𝑞𝒜0 to 𝛿𝒜𝑐 and the return transition 𝑞𝒜0

≻[(𝑞𝒜0 ,≺)]
−−−−−→ 𝑞𝑓 to 𝛿𝒜𝑟 for

all 𝑞 = (𝑞1, … , 𝑞𝑛) ∈ 𝑄𝒜 such that 𝑞𝑗 ∈ 𝐹ℬ𝑗.

Notice that the constructed 1-SEVPA may be non deterministic by the way the
return transitions have been defined (it is deterministic when we only consider
the internal and call transitions).

Let us prove the following lemma, stating that 𝒜 accepts ℒ(𝒢). This will be
sufficient to conclude the proof of Theorem 7.3.2. Indeed, from that lemma,
we can derive that if S𝑗 is an axiom of 𝒢, then 𝑎𝑤 ̄𝑎 satisfies S𝑗 if and only
if the stacked run for 𝑤 ends in a state (𝑞1, … , 𝑞𝑛) in which 𝑞𝑗 ∈ 𝐹ℬ𝑗. By
construction of 𝒜, this is equivalent to reach the final state 𝑞𝑓 after reading
𝑎𝑤 ̄𝑎 from the initial state 𝑞𝒜0 . Hence we conclude that the language of 𝒜 is
the union of the languages described by each axiom, i.e., 𝒜 accepts ℒ(𝒢).

That is, once the lemma is proved, we have the first statement of Theorem 7.3.2.
The theorem also states that given a grammar 𝒢 and an order < over Σkey,
a VPA 𝒜 can be constructed such that ℒ(𝒜) = ℒ<(𝒢). The construction is
exactly the same as done above, by taking into account the fixed order imposed
on Σkey in the productions defining objects.

LemmaB.2.1. For any non-terminal S𝑗 ∈ 𝒮𝑎 (with 𝑎 ∈ {≺, ⊏}) and any word
𝑎𝑤 ̄𝑎 ∈ WM(Σ̃), it holds that 𝑎𝑤 ̄𝑎 ∈ ℒ(S𝑗) if and only if there exists a state
𝑞 = (𝑞1, … , 𝑞𝑛) ∈ 𝑄𝒜 such that 𝑞𝑗 ∈ 𝐹ℬ𝑗 and (𝑞𝒜0 , 𝜀)

𝑤
−→ (𝑞, 𝜀) ∈ sruns(𝒜).

Proof. To ease the writing of the proof, let us introduce a notation to desig-
nate the language of a disjunction over 𝒮:

ℒ(S𝑖1
∨ ⋯ ∨ S𝑖𝑛

) =
𝑛

⋃
𝑗=1

ℒ(S𝑖𝑗
),

where each S𝑖𝑗
is a non-terminal of 𝒢 and ℒ(S𝑖𝑗

) is the set of words that
satisfy S𝑖𝑗

. We also write S ∈ 𝜙 when the non-terminal S is present in the
disjunction 𝜙.
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Let 𝑎 ∈ {≺, ⊏}, 𝑆𝑗 ∈ 𝒮𝑎 be a non-terminal of 𝒢, and 𝑎𝑤 ̄𝑎 ∈ WM(Σ̃). We
prove our lemma by induction over the depth of 𝑤 (recall that the depth of
𝑤 is the maximal number of unmatched call symbols among the prefixes of
𝑤).

Base case. The depth of 𝑤 is zero, i.e., 𝑤 ∈ Σ∗
int . By construction of 𝒜, we

have

(𝑞𝒜0 , 𝜀)
𝑤
−→ (𝑞, 𝜀) ∈ sruns(𝒜)

⇔ 𝑞𝒜0
𝑤
−→ 𝑞 ∈ runs(ℬ).

So, by construction of ℬ, 𝑤 ∈ ℒ(S𝑗) if and only if 𝑞𝑗 ∈ 𝐹ℬ𝑗.7 7: Recall that 𝑞𝒜0 = 𝑞ℬ0 .

Induction step. Let 𝑑 ∈ ℕ and assume the lemma holds for every word of
depth lower or equal to 𝑑. Let 𝑤 ∈ WM(Σ̃) of depth 𝑑 + 1. We suppose that
the production of S𝑗 is of the shape

S𝑗 ∶∶= 𝑎𝑢1𝜙1 … 𝑢𝑚𝜙𝑚𝑢𝑚+1 ̄𝑎 (B.2.i)

with each 𝑢ℓ ∈ Σ∗
int and 𝜙𝑗 is a disjunction over non-terminals of 𝒮. Notice

that this covers the definition of objects, and of arrays of shape ⊏𝜙1 #
… # 𝜙1⊐. The case for the second definition of arrays (where S𝑗 ∶∶= ⊏𝜀 ∨
𝜙1(#𝜙1)∗⊐) can be handled in a similar fashion. We prove the equivalence
stated in the lemma by showing both directions.

Membership implies stacked run. Assume 𝑎𝑤 ̄𝑎 ∈ ℒ(S𝑗). We want to prove
that there is a run in 𝒜 reading 𝑤 that ends in a state 𝑞 = (𝑞1, … , 𝑞𝑛) such
that 𝑞𝑗 ∈ 𝐹ℬ𝑗.
As 𝑎𝑤 ̄𝑎 ∈ ℒ(S𝑗), see (B.2.i), we can decompose

𝑤 = 𝑢1𝑏1𝑤1�̄�1 … 𝑢𝑚𝑏𝑚𝑤𝑚�̄�𝑚𝑢𝑚+1

such that 𝑏ℓ𝑤ℓ�̄�ℓ ∈ ℒ(𝜙ℓ) and 𝑤ℓ has depth ≤ 𝑑, for each ℓ ∈ {1, … , 𝑚}.
That is, there exists a non-terminal Sℎℓ

∈ 𝜙ℓ such that 𝑏ℓ𝑤ℓ�̄�ℓ ∈ ℒ(Sℎℓ
). By

the induction hypothesis, we thus have states 𝑟1, … , 𝑟𝑚 such that (𝑞𝒜0 , 𝜀)
𝑤ℓ−→

(𝑟ℓ, 𝜀) ∈ sruns(𝒜) and 𝑟ℓ
ℎℓ

∈ 𝐹ℬℎℓ for each ℓ ∈ {1, … , 𝑚}. Then, we have
the following stacked run in 𝒜, with 𝑝ℓ, 𝑠ℓ ∈ 𝑄 and 𝛼ℓ ∈ Γ

(𝑞𝒜0 , 𝜀)
𝑢1−→ (𝑝1, 𝜀)

𝑏1−→ (𝑞𝒜0 , 𝛼1)
𝑤1−→ (𝑟1, 𝛼1)

�̄�1−→ (𝑠1, 𝜀)
𝑢2−→ …

𝑢𝑚−−→ (𝑝𝑚, 𝜀)
𝑏𝑚−→ (𝑞𝒜0 , 𝛼𝑚)

𝑤𝑚−−→ (𝑟𝑚, 𝛼𝑚)
�̄�𝑚−→ (𝑠𝑚, 𝜀)

𝑢𝑚+1
−−−→ (𝑞, 𝜀) ∈ sruns(𝒜)

with the following equivalent run in ℬ

𝑞𝒜0
𝑢1−→ 𝑝1

Sℎ1−−→ 𝑠1 𝑢2−→ …
𝑢𝑚−−→ 𝑝𝑚

Sℎ𝑚−−→ 𝑠𝑚 𝑢𝑚+1
−−−→ 𝑞 ∈ runs(ℬ).

By construction of ℬ, as 𝑎𝑤 ̄𝑎 ∈ ℒ(S𝑗), it must be that

𝑢1Sℎ1
𝑢2 … 𝑢𝑚Sℎ𝑚

𝑢𝑚+1 ∈ ℒ(ℬ𝑗),

which is equivalent to 𝑞𝑗 ∈ 𝐹ℬ𝑗.
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Stacked run implies membership. Assume there is a state 𝑞 = (𝑞1, … , 𝑞𝑛)
such that 𝑞𝑗 ∈ 𝐹ℬ𝑗 and (𝑞𝒜0 , 𝜀)

𝑤
−→ (𝑞, 𝜀). We show that 𝑎𝑤 ̄𝑎 ∈ ℒ(S𝑗). We

decompose
𝑤 = 𝑢′

1𝑏′
1𝑤′

1�̄�′
1 … 𝑢′

𝑡𝑏′
𝑡𝑤′

𝑡�̄�′
𝑡𝑢′

𝑡+1

with 𝑡 ≥ 1 (as the depth of 𝑤 is positive), 𝑢′
ℓ ∈ Σ∗

int , and 𝑏′
ℓ𝑤′

ℓ�̄�′
ℓ ∈ WM(Σ̃)

for each ℓ. Thus, we can decompose the given run into

(𝑞𝒜0 , 𝜀)
𝑢′

1−→ (𝑝1, 𝜀)
𝑏′

1−→ (𝑞𝒜0 , 𝛼1)
𝑤′

1−→ (𝑟1, 𝛼1)
�̄�′

1−→ (𝑠1, 𝜀)
𝑢′

2−→ …
𝑢′

𝑡−→ (𝑝𝑡, 𝜀)
𝑏′

𝑡−→ (𝑞𝒜0 , 𝛼𝑡)
𝑤′

𝑡−→ (𝑟𝑡, 𝛼𝑡)
�̄�′

𝑡−→ (𝑠𝑡, 𝜀)
𝑢′

𝑡+1
−−→ (𝑞, 𝜀) ∈ sruns(𝒜)

As 𝑞𝑗 ∈ 𝐹ℬ𝑗, it must be that 𝑞𝑗 ≠ ⊥𝑗. By construction of 𝒜 and ℬ, we
then have 𝑝ℓ

𝑗 ≠ ⊥𝑗 and 𝑠ℓ
𝑗 ≠ ⊥𝑗 for every ℓ ∈ {1, … , 𝑡}. Moreover, for each

ℓ ∈ {1, … , 𝑡}, there must exist a non-terminal Sℎℓ
such that 𝑟ℓ

ℎℓ
∈ 𝐹ℬℎℓ . We

thus have a corresponding run in ℬ

𝑞𝒜0
𝑢′

1−→ 𝑝1
Sℎ1−−→ 𝑠1 𝑢′

2−→ …
𝑢′

𝑡−→ 𝑝𝑡
Sℎ𝑡−−→ 𝑠𝑡

𝑢′
𝑡+1

−−→ 𝑞 ∈ runs(ℬ)

By the induction hypothesis, it follows that 𝑏′
ℓ𝑤′

ℓ�̄�′
ℓ ∈ ℒ(Sℎℓ

) for all ℓ. Recall
that, by our assumption, the latter run, seen in ℬ𝑗, leads to the final state
𝑞𝑗 ∈ 𝐹ℬ𝑗 . That is, 𝑢′

1Sℎ1
… 𝑢′

𝑡Sℎ𝑡
𝑢′

𝑡+1 belongs toℒ(ℬ𝑗). By (B.2.i), this means
that 𝑡 = 𝑚, each 𝑢′

ℓ is equal to 𝑢ℓ, and each 𝑆ℎℓ
belongs to 𝜙ℓ. Therefore

𝑎𝑤 ̄𝑎 belongs to ℒ(S𝑗). The lemma is thus proved. As stated before, we then
deduce that 𝒜 accepts ℒ(𝒢). �

B.3. Proof of Lemma 7.4.2

Lemma 7.4.2. In a key graph G𝒜, there exists a path

((𝑝1, 𝑘1, 𝑝′
1)(𝑝2, 𝑘2, 𝑝′

2) … (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛))

with 𝑝1 = 𝑞𝒜0 if and only if there exist

▶ a word 𝑢 = 𝑘1𝑣1 # 𝑘2𝑣2 # … # 𝑘𝑛𝑣𝑛 such that each 𝑘𝑖𝑣𝑖 is a key-value
pair and 𝑢 is a factor of a word in ℒ<(𝒢), and

▶ a path (𝑞𝒜0 , 𝜀)
𝑢
−→ (𝑝′

𝑛, 𝜀) ∈ sruns(𝒜) that decomposes as follows:

∀𝑖 ∈ {1, … , 𝑛} ∶ (𝑝𝑖, 𝜀)
𝑘𝑖𝑣𝑖−−→ (𝑝′

𝑖, 𝜀)
and

∀𝑖 ∈ {1, … , 𝑛 − 1} ∶ (𝑝′
𝑖, 𝜀)

#
−→ (𝑝𝑖+1, 𝜀).

We only prove one implication, the other being easily proved. Suppose that
there exists a path

((𝑝1, 𝑘1, 𝑝′
1)(𝑝2, 𝑘2, 𝑝′

2) … (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛))
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8: Recall that 𝒜 is deterministic
meaning that given a left-hand side
of a transition, we have access in
constant time to its right-hand side.

in G𝒜 with 𝑝1 = 𝑞0. Then, by definition of G𝒜, there exists a stacked run of
𝒜

(𝑞0, 𝜀)
𝑢
−→ (𝑝′

𝑛, 𝜀) ∈ sruns(𝒜). (B.3.i)

with 𝑢 = 𝑘1𝑣1 # 𝑘2𝑣2 # … # 𝑘𝑛𝑣𝑛 such that

∀𝑖 ∶ 𝑣𝑖 ∈ ΣpVal ∪ {𝑎𝑢 ̄𝑎 ∣ 𝑎 ∈ Σ𝑐, 𝑢 ∈ WM(Σ̃JSON)}.

As 𝑝′
𝑛 is not a bin state, there exists another stacked run

(𝑞0, 𝜀)
𝑡

−→ (𝑝′
𝑛, 𝜎)

𝑡′

−→ (𝑞, 𝜀) ∈ sruns(𝒜) (B.3.ii)

with 𝑞 ∈ 𝐹 .

Let us decompose 𝑡 in terms of its unmatched call symbols, i.e.,

𝑡 = 𝑡1 ⋅ 𝑎1 ⋅ 𝑡2 ⋅ 𝑎2 … 𝑡𝑚 ⋅ 𝑎𝑚 ⋅ 𝑡𝑚+1

such that 𝑚 ≥ 0 and 𝑡𝑖 ∈ WM(Σ̃JSON), 𝑎𝑖 ∈ Σ𝑐 for all 𝑖. It follows that in
(B.3.ii), |𝜎| = 𝑚. Therefore, with 𝑡 = 𝑡″ ⋅ 𝑡𝑚+1 and since 𝒜 is a 1-SEVPA, we
get the stacked run

(𝑞0, 𝜀)
𝑡″

−→ (𝑞0, 𝜎)
𝑡𝑚+1
−−−→ (𝑝′

𝑛, 𝜎)
𝑡′

−→ (𝑞, 𝜀) ∈ sruns(𝒜).

By (B.3.i), we can replace 𝑡𝑚+1 by 𝑢 showing that the word 𝑡″ ⋅ 𝑢 ⋅ 𝑡′ belongs
to ℒ(𝒜) = ℒ<(𝒢). Moreover, as each

𝑣𝑖 ∈ ΣpVal ∪ {𝑎𝑢 ̄𝑎 ∣ 𝑎 ∈ Σ𝑐, 𝑢 ∈ WM(Σ̃JSON)},

it follows that 𝑘𝑖 ⋅ 𝑣𝑖 is a key-value pair for all 𝑖.

B.4. Complexity of the key graph

We recall that the algorithm for computing the key graphG𝒜 from the 1-SEVPA
𝒜 requires three main steps:

1. compute the reachability relation Reach𝒜,
2. detect the bin state and remove it from 𝒜 (it is unique, if it exists), and
3. compute the vertices and edges of G𝒜.

We proceed as follows and give the related time complexities.8

B.4.1. Computing the reachability relation

First, we enrich the reachability relation Reach𝒜 with words as follows. We
define a map Wit𝑅𝒜 ∶ Reach𝒜 → Σ∗ such that for all (𝑞, 𝑞′) ∈ Reach𝒜, we have
Wit𝑅𝒜(𝑞, 𝑞′) = 𝑤 with

(𝑞, 𝜀)
𝑤
−→ (𝑞′, 𝜀) ∈ sruns(𝒜).
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9: An algorithm computing
Reach𝒜 is given in Section 7.4.1.

10: We can restrict to 𝑞𝒜0 , as we
work with 1-SEVPAs having all
their call transitions going to 𝑞𝒜0 .

The word 𝑤 is a witness of the membership of (𝑞, 𝑞′) to Reach𝒜. We compute
this map as follows by choosing the witnesses step by step while computing
Reach𝒜.9

▶ Initially, for all 𝑞 ∈ 𝑄, we define Wit𝑅𝒜(𝑞, 𝑞) = 𝜀, and for each (𝑞, 𝑞′)
such that 𝑞 ≠ 𝑞′ and there exists an internal transition 𝑞

𝑎
−→ 𝑞′, we define

Wit𝑅𝒜(𝑞, 𝑞′) = 𝑎.
▶ During the computation of Reach𝒜, there are two scenarios where a new

element (𝑞, 𝑞′) is added to Reach𝒜

1. There exists a call transition 𝑞
𝑎/𝛾
−−→ 𝑝 and a return transition 𝑝′ �̄�[𝛾]

−−→
𝑞′, with (𝑝, 𝑝′) ∈ Reach𝒜. In that case, let Wit𝑅𝒜(𝑝, 𝑝′) = 𝑤 the
already known witness and define

Wit𝑅𝒜(𝑞, 𝑞′) = 𝑎 ⋅ 𝑤 ⋅ ̄𝑎.

2. There exist (𝑞, 𝑝), (𝑝, 𝑞′) ∈ Reach𝒜. In that case, we apply the
transitive closure: let Wit𝑅𝒜(𝑞, 𝑝) = 𝑤 and Wit𝑅𝒜(𝑝, 𝑞′) = 𝑤′, and
define

Wit𝑅𝒜(𝑞, 𝑞′) = 𝑤 ⋅ 𝑤′.

Lemma B.4.1. Computing the relation Reach𝒜 enriched with the map Wit𝑅𝒜
is in time

𝒪(∣𝑄𝒜∣5 + |𝛿| ⋅ ∣𝑄𝒜∣4) .

Proof. The relation Reach𝒜 with its witnesses are stored in a matrix of size
∣𝑄𝒜∣2. The initialization is in 𝒪(∣𝑄𝒜∣2 + |𝛿𝑖𝑛𝑡|).

The main loop uses at most ∣𝑄𝒜∣2 steps. One operation inside this loop is

the transitive closure that can be computed in 𝒪(∣𝑄𝒜∣3) with Warshall’s

algorithm. The other operation is in 𝒪(|𝛿𝑐| ⋅ ∣𝑄𝒜∣2).
Therefore, the overall complexity of computing Reach𝒜 is in

𝒪(∣𝑄𝒜∣5 + |𝛿| ⋅ ∣𝑄𝒜∣4) . �

B.4.2. Computing the bin state

Second, for detecting the bin state of 𝒜, we define the following set 𝑍𝒜 ⊆
𝑄𝒜:

𝑍𝒜 = {𝑝 ∈ 𝑄𝒜 ∣ ∃𝑞 ∈ 𝐹 ∶ (𝑞𝒜0 , 𝜀)
𝑤
−→ (𝑞𝒜0 , 𝜎) ∈ sruns(𝒜)

and (𝑝, 𝜎)
𝑤′

−→ (𝑞, 𝜀) ∈ sruns(𝒜)},

enriched with the witness mapWit⊥𝒜 ∶ 𝑍𝒜 → (Σ∗)2 that assigns to each 𝑝 ∈ 𝑍𝒜
a pair of words (𝑤, 𝑤′) as in the previous definition. In the definition of 𝑍𝒜,
notice the same stack content 𝜎 in both configurations (𝑞𝒜0 , 𝜎) and (𝑝, 𝜎), and
the presence of 𝑞𝒜0 in the first configuration.10

From this set 𝑍𝒜, we easily derive the next lemma.
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13: If 𝑝′ already belongs to 𝑍𝒜, we
do nothing.

Lemma B.4.2. For each state 𝑝 ∈ 𝑄𝒜, 𝑝 is not a bin state if and only if
𝑝 ∈ 𝑍𝒜.

Proof. Assume 𝑝 is not a bin state, i.e., by definition, there exists a stacked
run traversing 𝑝:

(𝑞𝒜0 , 𝜀)
𝑡

−→ (𝑝, 𝜎)
𝑡′

−→ (𝑞, 𝜀) ∈ sruns(𝒜)

with 𝑞 ∈ 𝐹 . By repeating the argument given in the proof of Lemma 7.4.2
(see (B.3.ii)), we get that this path decomposes as

(𝑞𝒜0 , 𝜀)
𝑡″

−→ (𝑞𝒜0 , 𝜎)
𝑡𝑚+1
−−−→ (𝑝, 𝜎)

𝑡′

−→ (𝑞, 𝜀) ∈ sruns(𝒜)

with 𝑡 = 𝑡″ ⋅ 𝑡𝑚+1 such that 𝑡″ contains 𝑚 unmatched call symbols and
𝑡𝑚+1 ∈ WM(Σ̃JSON).11 11: Observe that 𝑡𝑚+1 may con-

tain call and return symbols, as
long as the balance of 𝑡𝑚+1 is null.

This shows that 𝑝 ∈ 𝑍𝒜.
Now, assume 𝑝 ∈ 𝑍𝒜, i.e., there exists two stacked runs

(𝑞𝒜0 , 𝜀)
𝑤
−→ (𝑞𝒜0 , 𝜎) ∈ sruns(𝒜)

and

(𝑝, 𝜎)
𝑤′

−→ (𝑞, 𝜀) ∈ sruns(𝒜)

with 𝑞 ∈ 𝐹 . If we prove that (𝑞𝒜0 , 𝑝) ∈ Reach𝒜, we are done. As 𝒜 is a
minimal 1-SEVPA,12 12: So, every state of 𝒜 is reach-

able from 𝑞𝒜0 by reading a well-
chosen (potentially unbalanced)
word.

there exists some stacked run

(𝑞𝒜0 , 𝜀)
𝑡

−→ (𝑝, 𝜎′) ∈ sruns(𝒜).

As done above with (B.3.ii), we get that this stacked run decomposes as

(𝑞𝒜0 , 𝜀)
𝑡″

−→ (𝑞𝒜0 , 𝜎′)
𝑡𝑚+1
−−−→ (𝑝, 𝜎′) ∈ sruns(𝒜),

with 𝑡″ a word with 𝑚 unmatched call symbols, and 𝑡𝑚+1 a well-matched

word. As (𝑞𝒜0 , 𝜎′)
𝑡𝑚+1
−−−→ (𝑝, 𝜎′) is a stacked run of𝒜, it follows that (𝑞𝒜0 , 𝑝) ∈

Reach𝒜.
Observe that, since 𝑡𝑚+1 is a well-matched word, it is possible to read it
from any configuration (𝑞𝒜0 , ⋅). Hence, we have the stacked run

(𝑞𝒜0 , 𝜀)
𝑤
−→ (𝑞𝒜0 , 𝜎)

𝑡𝑚+1
−−−→ (𝑝, 𝜎)

𝑤′

−→ (𝑞, 𝜀),

showing that 𝑝 is not a bin. �

We compute 𝑍𝒜 and Wit⊥𝒜 as follows:

▶ Initially, add 𝑞 to 𝑍𝒜 for all 𝑞 ∈ 𝐹 , and assign the witness Wit⊥𝒜(𝑞) =
(𝜀, 𝜀) to 𝑞.

▶ Then, repeat until 𝑍𝒜 stabilizes:

Direct reachability If we have (𝑝′, 𝑝) ∈ Reach𝒜 with 𝑝 ∈ 𝑍𝒜,Wit⊥𝒜(𝑝) =
(𝑤, 𝑤′), and Wit𝑅𝒜(𝑝′, 𝑝) = 𝑡′, then add13 𝑝′ to 𝑍𝒜 with

Wit⊥𝒜(𝑝′) = (𝑤, 𝑡′ ⋅ 𝑤′).
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Via call and return If we have a call transition 𝑟
𝑎/𝛾
−−→ 𝑞𝒜0 and a return

transition 𝑝′ �̄�[𝛾]
−−→ 𝑝 such that 𝑝 ∈ 𝑍𝒜 and (𝑞𝒜0 , 𝑟) ∈ Reach𝒜 with

Wit⊥𝒜(𝑝) = (𝑤, 𝑤′) and Wit𝑅𝒜(𝑞𝒜0 , 𝑟) = 𝑡 then add 𝑝′ to 𝑍𝒜 with

Wit⊥𝒜(𝑝′) = (𝑤 ⋅ 𝑡 ⋅ 𝑎, ̄𝑎 ⋅ 𝑤′).

This algorithm is correct as shown by the next lemma.

Lemma B.4.3. Let 𝑍 computed by the algorithm above. Then, 𝑍 = 𝑍𝒜.

Proof. It is easy to see that 𝑍 ⊆ 𝑍𝒜. Let us prove that 𝑍𝒜 ⊆ 𝑍. Let 𝑝 ∈ 𝑍𝒜.
That is, we have 𝑤, 𝑤′ ∈ Σ∗, 𝜎 ∈ Γ∗ and 𝑞 ∈ 𝐹 such that

(𝑞𝒜0 , 𝜀)
𝑤
−→ (𝑞𝒜0 , 𝜎) ∈ sruns(𝒜)

(𝑝, 𝜎)
𝑤′

−→ (𝑞, 𝜀) ∈ sruns(𝒜).
(B.4.i)

We prove by induction over 𝛽(𝑤) = −𝛽(𝑤′) that 𝑝 ∈ 𝑍.

Base case. 𝛽(𝑤) = 0, i.e., 𝜎 = 𝜀. Thus, we can focus on the witnesses (𝜀, 𝑤′)
instead of (𝑤, 𝑤′), as

(𝑞𝒜0 , 𝜀)
𝜀
−→ (𝑞𝒜0 , 𝜀) ∈ sruns(𝒜).

Moreover, we have 𝑤′ ∈ WM(Σ̃) and (𝑝, 𝑞) ∈ Reach𝒜. By the initialization,
𝑞 ∈ 𝑍, and by the item Direct reachability, 𝑝 ∈ 𝑍.

Induction step. 𝛽(𝑤) > 0. In that case, we can decompose 𝑤 = 𝑡𝑤1𝑎𝑤2,
with 𝑡 ∈ (WM(Σ̃) ⋅ Σ𝑐)

∗
, 𝑎 ∈ Σ𝑐, 𝑤1, 𝑤2 ∈ WM(Σ̃), and 𝑤′ = 𝑤″ ̄𝑎𝑡′, with

𝑤″ ∈ WM(Σ̃), ̄𝑎 ∈ Σ𝑟. We can thus decompose the stack runs of (B.4.i) into

(𝑞𝒜0 , 𝜀)
𝑡

−→ (𝑞𝒜0 , 𝜎1)
𝑤1−→ (𝑟, 𝜎1)

𝑎
−→ (𝑞𝒜0 , 𝜎)

𝑤2−→ (𝑞𝒜0 , 𝜎) ∈ sruns(𝒜)
and

(𝑝, 𝜎)
𝑤″

−→ (𝑠, 𝜎)
�̄�
−→ (𝑠′, 𝜎1)

𝑡′

−→ (𝑞, 𝜀) ∈ sruns(𝒜).

Therefore, we can focus on the witnesses (𝑡𝑤1𝑎, 𝑤′) instead of (𝑤, 𝑤′). Since

(𝑞𝒜0 , 𝜀)
𝑡

−→ (𝑞𝒜0 , 𝜎1) ∈ sruns(𝒜)
and

(𝑠′, 𝜎1)
𝑡′

−→ (𝑞, 𝜀) ∈ sruns(𝒜),

it holds that 𝑠′ ∈ 𝑍𝒜 and, by induction, 𝑠′ ∈ 𝑍. By the item Via call and
return, 𝑠 ∈ 𝑍. Finally, by the step Direct reachability, 𝑝 ∈ 𝑍.
In conclusion, we have 𝑝 ∈ 𝑍𝒜 ⇒ 𝑝 ∈ 𝑍. As said above, it is easy to see
that 𝑍 ⊆ 𝑍𝒜, i.e., that 𝑝 ∈ 𝑍 ⇒ 𝑝 ∈ 𝑍𝒜. Hence, we have the claimed
equivalence. �
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Lemma B.4.4. Detecting and removing the bin state of 𝒜, if it exists, is in
time

𝒪(|𝛿| ⋅ ∣𝑄𝒜∣4) .

Proof. Let us first show that computing the set 𝑍𝒜 is in

𝒪(|𝛿| ⋅ ∣𝑄𝒜∣4) .

The initialization is in𝒪 (∣𝑄𝒜∣). The main loop uses at most ∣𝑄𝒜∣ steps until
𝑍𝒜 stabilizes. Its body is in 𝒪(∣𝑄𝒜∣3 + |𝛿𝑟| ⋅ ∣𝑄𝒜∣3). Second, detecting the

bin state of 𝒜 can be done in 𝒪(∣𝑄𝒜∣2) by iterating over all values of 𝑍𝒜

Lemma B.4.2. For each state
𝑝 ∈ 𝑄𝒜, 𝑝 is not a bin state if
and only if 𝑝 ∈ 𝑍𝒜.

(thanks to Lemma B.4.2).
Finally, removing this bin state from 𝒜 and its related transitions is in
𝒪 (∣𝑄𝒜∣ + |𝛿|). Therefore we get the complexity announced in the lemma.

�

B.4.3. Computing the key graph

Third, the vertices and the edges G𝒜 are computed as follows: (𝑝, 𝑘, 𝑝′) is a

vertex in G𝒜 if there exist an internal transition 𝑝
𝑘
−→ 𝑞 with 𝑘 ∈ Σkey and

▶ an internal transition 𝑞
𝑎
−→ 𝑝′ with 𝑎 ∈ ΣpVal, or

▶ a call transition 𝑞
𝑎/𝛾
−−→ 𝑟 and a return transition 𝑟′ �̄�[𝛾]

−−→ 𝑝′, with (𝑟, 𝑟′) ∈
Reach𝒜.

and ((𝑝1, 𝑘1, 𝑝′
1), (𝑝2, 𝑘2, 𝑝′

2)) is an edge in G𝒜 if there exists an internal tran-

sition 𝑝′
1

#
−→ 𝑝2.

Lemma B.4.5. Constructing the key graph G𝒜 is in

𝒪(|𝛿|2 + |𝛿| ⋅ ∣𝑄𝒜∣2 + ∣𝑄𝒜∣4 ⋅ ∣Σkey∣
2) .

Proof. Constructing the vertices of G𝒜 is in

𝒪(|𝛿𝑖𝑛𝑡|
2 + |𝛿𝑖𝑛𝑡| ⋅ ∣𝑄𝒜∣2) .

Constructing its edges is in

𝒪(∣𝑄𝒜∣4 ⋅ ∣Σkey∣
2)

by Lemma 7.4.5.

Lemma7.4.5.The key graph
G𝒜 has 𝒪(∣𝑄𝒜∣2 ⋅ ∣Σkey∣)
vertices. Moreover, visiting
all vertices along all the paths
ofG𝒜 that start from a vertex
(𝑝, 𝑘, 𝑝′) such that 𝑝 = 𝑞𝒜0 is

in 𝒪(∣𝑄𝒜 × Σkey∣
∣Σkey∣) .

We thus immediately obtain the lemma. �

The complexity announced in Proposition 7.4.6 (repeated just after) follows
from the previous Lemmas B.4.1, B.4.4 and B.4.5
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Corollary 7.4.4. In the
key graph G𝒜, there is no
path ((𝑝1, 𝑘1, 𝑝′

1)(𝑝2, 𝑘2, 𝑝′
2)

… (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛)) with 𝑝1 = 𝑞𝒜0

such that 𝑘𝑖 = 𝑘𝑗 for some
𝑖 ≠ 𝑗.

Lemma7.4.5.The key graph
G𝒜 has 𝒪(∣𝑄𝒜∣2 ⋅ ∣Σkey∣)
vertices. Moreover, visiting
all vertices along all the paths
ofG𝒜 that start from a vertex
(𝑝, 𝑘, 𝑝′) such that 𝑝 = 𝑞𝒜0 is

in 𝒪(∣𝑄𝒜 × Σkey∣
∣Σkey∣) .

Proposition 7.4.6. Computing the key graph G𝒜 is in time

𝒪(|𝛿|2 + |𝛿| ⋅ ∣𝑄𝒜∣4 + ∣𝑄𝒜∣5 + ∣𝑄𝒜∣4 ⋅ ∣Σkey∣
2) .

B.5. Proof of Theorem 7.4.7

Theorem 7.4.7. Let 𝑆 be a JSON schema defined by a closed extended CFG
𝒢 and 𝒜 be a 1-SEVPA 𝒜 accepting ℒ<(𝒢). Then, checking whether a JSON
document 𝐽 with depth depth(𝐽) satisfies the schema 𝑆

▶ is in time

𝒪(|𝐽| ⋅ (|𝑄|4 + |𝑄|∣Σkey∣ ⋅ ∣Σkey∣
∣Σkey∣+1)) ,

▶ and uses an amount of memory in

𝒪 (|𝛿| + |𝒜|2 ⋅ ∣Σkey∣ + depth(𝐽) ⋅ (|𝒜|2 + ∣Σkey∣)) .

We start with the time complexity of Algorithm 7.1. Before doing so, let us
mention that in addition to the key graph G𝒜, for each key 𝑘 ∈ Σkey, we have
a list, denoted by 𝐿𝑖𝑠𝑡𝑘, in which all the vertices in G𝒜 of the form (𝑝, 𝑘, 𝑝′)
are stored. Those lists are useful to compute the set Bad (see Lines 20 and 30
of Algorithm 7.1).

Let us also comment on how the set Valid(𝐾,Bad) is computed in Line 21.
Recall that G𝒜 has a finite number of paths (see Corollary 7.4.4) and that each
element (𝑟, 𝑟′) of Valid(𝐾,Bad) is such that 𝑟 = 𝑞𝒜0 . By a recursive algorithm,
we visit each path of G𝒜 starting with any vertex of the form (𝑝, 𝑘, 𝑝′) with
𝑝 = 𝑞𝒜0 . We stop visiting such a path as soon as we visit a vertex containing a
key 𝑘 ∉ 𝐾 or belonging to Bad . During the visit of the current path, we collect
the keys appearing in its vertices in a set 𝐾′. When the path reaches some
vertex (𝑟, 𝑘, 𝑟′) with 𝐾′ = 𝐾, then we add (𝑞𝒜0 , 𝑟′) to Valid(𝐾,Bad). Hence,
computing Valid(𝐾,Bad) is in

𝒪(∣Σkey∣ ⋅ ∣𝑄𝒜 × Σkey∣
∣Σkey∣) = 𝒪(|𝑄|∣Σkey∣ ⋅ ∣Σkey∣

∣Σkey∣+1)

by Lemma 7.4.5 and because checking whether 𝐾′ and 𝐾 are equal is in
𝒪 (∣Σkey∣).

Let us now consider each case of Algorithm 7.1 and study its complexity (when
yes is returned). Recall that 𝒜 is deterministic meaning that given a left-hand
side of a transition, we have access in constant time to its right-hand side.
Notice that at several places, the current set 𝑅 ⊆ 𝑄2 is updated as 𝕀𝑃 for some
subset 𝑃 ⊆ 𝑄, which can be done in 𝒪 (|𝑄|2). The different cases are the
following ones:

▶ The cases 𝑎 = ⊏ (Line 5) and 𝑎 = ≺ (Line 6) are in 𝒪 (|𝑄|2).
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Lemma7.4.5.The key graph
G𝒜 has 𝒪(∣𝑄𝒜∣2 ⋅ ∣Σkey∣)
vertices. Moreover, visiting
all vertices along all the paths
ofG𝒜 that start from a vertex
(𝑝, 𝑘, 𝑝′) such that 𝑝 = 𝑞𝒜0 is

in 𝒪(∣𝑄𝒜 × Σkey∣
∣Σkey∣) .

14: It is not necessary to count its
transitions as it is acyclic, by Corol-
lary 7.4.4.

Corollary 7.4.4. In the
key graph G𝒜, there is no
path ((𝑝1, 𝑘1, 𝑝′

1)(𝑝2, 𝑘2, 𝑝′
2)

… (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛)) with 𝑝1 = 𝑞𝒜0

such that 𝑘𝑖 = 𝑘𝑗 for some
𝑖 ≠ 𝑗.

▶ The case 𝑎 = ⊐ (Line 12) is in 𝒪 (|𝑅| ⋅ |𝑅′|) for computing the updated
set

𝑅Upd = {(𝑝, 𝑞) ∣ ∃(𝑝, 𝑝′) ∈ 𝑅′, 𝑝′ ⊏/𝛾
−−→ 𝑞𝒜0 , (𝑞𝒜0 , 𝑟) ∈ 𝑅, 𝑟

⊐[𝛾]
−−→ 𝑞}.

Indeed we have access in constant time to the call transition 𝑝′ ⊏/𝛾
−−→ 𝑞𝒜0

and the return transition 𝑟
⊐[𝛾]
−−→ 𝑞 when computing 𝑅Upd . Therefore, this

case is in 𝒪 (|𝑄|4).
▶ The case 𝑎 ∈ Σint with ⊏ appearing on top of 𝑆𝑡𝑘 or 𝑎 ≠ # if ≺ appears

on top of 𝑆𝑡𝑘 (Line 24) is in 𝒪 (|𝑄|2).
▶ The case 𝑎 = # (Line 26) is in 𝒪 (|𝑄|2). Indeed, finding the vertices

(𝑝, 𝑘, 𝑝′) that have to be added to Bad can be done in𝒪 (|𝑄|2) by travers-
ing the list 𝐿𝑖𝑠𝑡𝑘.

▶ The case 𝑎 = ≻ (Lines 15 and 18) has some similarities with the case
𝑎 = ⊐. In case (𝑅′, ≺) is popped, then this step is in 𝒪 (|𝑄|2) as 𝑅 does
not appear in the computation of 𝑅Upd . In the other case, we need to
compute the set Valid(𝐾,Bad) ⊆ 𝑄2. This step is thus in

𝒪(|𝑄|4 + |𝑄|∣Σkey∣ ⋅ ∣Σkey∣
∣Σkey∣+1) .

Therefore, the overall time complexity of Algorithm 7.1 is in

𝒪(|𝐽| ⋅ (|𝑄|4 + |𝑄|∣Σkey∣ ⋅ ∣Σkey∣
∣Σkey∣+1)) .

We now proceed with the memory complexity. Algorithm 7.1 uses auxiliary
memory to store:

▶ the given 1-SEVPA 𝒜,
▶ its key graph G𝒜 with the lists 𝐿𝑖𝑠𝑡𝑘, 𝑘 ∈ Σkey, as introduced above,
▶ the current set 𝑅, the current symbol 𝑎 and the symbol 𝑏 following 𝑎,
▶ the stack 𝑆𝑡𝑘 whose elements are of the form either (𝑅′, ⊏), or (𝑅′, ≺),

or (𝑅′, ≺, 𝐾, 𝑘,Bad), and
▶ the set Valid(𝐾,Bad).

Let us denote by |𝒜| (resp. |𝛿|) the number of states (resp. of transitions) of the
1-SEVPA 𝒜. By Lemma 7.4.5, the key graph has 𝒪 (|𝒜|2 ⋅ ∣Σkey∣) vertices.14

The same 𝒪 (|𝒜|2 ⋅ ∣Σkey∣) holds for the lists 𝐿𝑖𝑠𝑡𝑘, 𝑘 ∈ Σkey, as they are
together composed of the vertices of G𝒜.

The sizes of 𝑅 and Valid(𝐾,Bad) are in 𝒪 (|𝒜|2) as they are subsets of 𝑄2.
The biggest elements in the stack 𝑆𝑡𝑘 are of the form (𝑅′, ≺, 𝐾, 𝑘,Bad) with
𝐾 ⊆ Σkey and Bad containing some vertices of G𝒜, thus with a size in
𝒪 (|𝒜|2 + ∣Σkey∣).

The number of elements stored in the stack 𝑆𝑡𝑘 is bounded by the depth
depth(𝐽) of the JSON document 𝐽.

All in all, the memory used by Algorithm 7.1 is in

𝒪 (|𝛿| + |𝒜|2 ⋅ ∣Σkey∣ + depth(𝐽) ⋅ (|𝒜|2 + ∣Σkey∣)) .
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B.6. Generating a counterexample from the key
graph

The goal of this section is to prove the following lemma, allowing us to perform
the last check in an equivalence query (see Section 7.5.2).

Lemma B.6.1. et ℋ be an automaton constructed by the learner. If the key
graph Gℋ contains a path ((𝑝1, 𝑘1, 𝑝′

1) … (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛)) with 𝑝1 = 𝑞0 such that

𝑘𝑖 = 𝑘𝑗 for some 𝑖 ≠ 𝑗, then one can construct a word accepted by ℋ that is
not a valid JSON document.

We proceed exactly as in the proof of Lemma 7.4.2. In the key graph Gℋ ofℋ,
let

((𝑝1, 𝑘1, 𝑝′
1)(𝑝2, 𝑘2, 𝑝′

2) … (𝑝𝑛, 𝑘𝑛, 𝑝′
𝑛)) (B.6.i)

be a path with 𝑝1 = 𝑞ℋ0 such that 𝑘𝑖 = 𝑘𝑗 for some 𝑖 ≠ 𝑗. Then, in the proof
of Lemma 7.4.2, we proved that there exists a stacked run

(𝑞0, 𝜀)
𝑡″

−→ (𝑞0, 𝜎)
𝑢
−→ (𝑝′

𝑛, 𝜎)
𝑡′

−→ (𝑞, 𝜀) ∈ sruns(ℋ) (B.6.ii)

with 𝑞 ∈ 𝐹ℋ such that 𝑢 = 𝑘1𝑣1 # … # 𝑘𝑛𝑣𝑛 is part of an object. his shows
that the word 𝑡″ ⋅ 𝑢 ⋅ 𝑡′ is accepted byℋ and is not a valid document by the
presence of the repeated keys 𝑘𝑖, 𝑘𝑗. Let us explain how to construct this word
𝑡″ ⋅ 𝑢 ⋅ 𝑡′.

For this purpose, we are going to use the witnesses introduced in Section B.4.
First, thanks to the map Witℋ associated with Reachℋ and computed in Sec-
tion B.4, we can similarly enrich the vertices of Gℋ with witnesses: we assign
a key-value pair 𝑘 ⋅ 𝑣 = Witℋ(𝑝, 𝑘, 𝑝′) to each vertex (𝑝, 𝑘, 𝑝′) of Gℋ such
that

(𝑞, 𝜀)
𝑘⋅𝑣
−−→ (𝑞′, 𝜀) ∈ sruns(ℋ).

Therefore, from a path in Gℋ like (B.6.i), we derive the witness 𝑢 = 𝑘1𝑣1 #
⋯ # 𝑘𝑛𝑣𝑛 such that

(𝑞0, 𝜀)
𝑢
−→ (𝑝′

𝑛, 𝜀) ∈ sruns(ℋ).

It remains to extend this witness 𝑢 into a witness 𝑡″ ⋅ 𝑢 ⋅ 𝑡′ of a stacked run
like in (B.6.ii). This is possible by noticing that 𝑝′

𝑛 ∈ 𝑍𝒜. Therefore with the
computed witness Wit′ℋ(𝑞0, 𝑝′

𝑛) = (𝑤, 𝑤′) and the stacked run

(𝑞0, 𝜀)
𝑢
−→ (𝑝′

𝑛, 𝜀) ∈ sruns(ℋ),

we get the stacked run

(𝑞0, 𝜀)
𝑤
−→ (𝑞0, 𝜎)

𝑢
−→ (𝑝′

𝑛, 𝜎)
𝑤′

−→ (𝑞, 𝜀) ∈ sruns(ℋ)

for some 𝑞 ∈ 𝐹ℋ. The witness 𝑤 ⋅ 𝑢 ⋅ 𝑤′ of this path is the required counterex-
ample.
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Figure B.1: Results of validation benchmarks for the recursive list schema.
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Figure B.2: Results of validation benchmarks for the schema iterating over the types of values.

B.7. Validation results for the first three schemas

Results for the comparison of the classical and our new validation algorithms
on the first three schemas of Section 7.5 are given in Figures B.1 to B.3. Recall
that blue crosses give the values for our algorithm, while the red circles stand
for the classical algorithm.
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Figure B.3: Results of validation benchmarks for the snippet configuration of Visual Studio Code.
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Mealy Machines with Timers



1: See Section 2.2.2.
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“Timed Automata: Semantics, Al-
gorithms and Tools”

Introduction and Timed Mealy
machines 8.

In the third part, Mealy Machines with Timers, we extend Mealy machines1

with resources that can measure the time that elapsed since a previous event.
We present two different types of resources:

▶ The first ones are clocks. Each transition of a timed Mealy machine can
reset a set of clocks (set their values to zero). Then, as time goes on, the
values of the clocks increase. Furthermore, each transition has a guard,
which is a condition over the clocks, i.e., the transition can be triggered
only when the current values of the clocks satisfy the guard.
Timed Mealy machines are the focus of this chapter.

▶ The second ones are timers. A transition of a Mealy machine with timers
can set the value of a timer to a natural constant. Then, as time goes on,
the values of the timers decrease. When a timer reaches zero, a special
symbol, called a timeout, occurs.
This model is introduced in Chapter 9, while Chapter 10 provides a
learning algorithm for Mealy machines with timers.

Chapter contents

8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
8.2. Timed Mealy machines . . . . . . . . . . . . . . . . . . . . . . 184

8.2.1. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 186
8.3. Reachability and regions . . . . . . . . . . . . . . . . . . . . . 187
8.4. Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.5. Other results . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.1. Introduction

Many systems used in practice have some form of timing constraints. For
instance, some switches allow to control the intensity of the light depending
on how long the switch is pressed. If one were to model such a switch, the
considered automaton ought to be able to measure time. Alur and Dill [AD94]
introduced timed automata, which are finite state automata equipped with
real-valued clock variables that measure the time between state transitions.
These clock variables all increase at the same rate when time elapses, and can
be reset and used in guards along transitions. Timed automata have become a
framework of choice for modeling and analysis of real-time systems, equipped
with a rich theory, supported by powerful tools (such as UPPAAL [Beh+06]
and TChecker2), and with numerous applications [Bou+18; Cla+18; BK08;
BY03].

In this chapter, we present timed Mealy machines, which are a straightforward
adaptation of timed automata where each transition outputs a symbol. Beside
the semantics of timed Mealy machines, we recall here two results for timed
systems, which will be useful for the next chapters:

https://github.com/ticktac-project/tchecker
https://github.com/ticktac-project/tchecker
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▶ In Section 8.3, we study the problem of deciding whether a given state
can be reached by some (unknown) timed run. It is known to be PSPACE-
complete [AL02]. While the hardness comes from the reduction from
the acceptance problem for linear bounded Turing machines, the mem-
bership is obtained by abstracting the timed behavior of the machine.
More specifically, we group together valuations of the clocks that share
common properties (called regions), which yields a finite-state machine
of exponential size. As the region machine can be computed on the fly,
we obtain the PSPACE membership.

▶ Since the number of states obtained by the above approach is extremely
large, we introduce a more efficient representation of the state space,
using the notions of zones, in Section 8.4.

Furthermore, Section 8.5 lists various other interesting results. We refer
to [Cla+18; BK08] for a more thorough introduction to timed automata.

For information, there exist active learning algorithms for timed automata,
that each consider various restrictions:

▶ when a single clock can be used [An+20],
▶ when each transition can reset at most one clock [An+21],
▶ when a clock is associated to each input symbol and measures the time

that elapsed since the last time that symbol was read [GJL10; HJM20],
▶ when the automaton is assumed to be deterministic but can use an

arbitrary number of clocks (without any further restriction) [Wag23],
▶ and many more [APT20; TZA24; VWW07].

Furthermore, some works apply automata learning to verify systems, such
as [San23].

8.2. Timed Mealy machines

Let us define timed Mealy machines and their semantics. Our presentation
is inspired by [Cla+18, Chapter 29]. As said above, such a machine has a set
of clocks that can have any non-negative real value (i.e., is in ℝ≥0). We first
define the syntax of the model before giving its semantics.

Let 𝐶 be a set of clocks. A clock constraint over 𝐶 is a formula described by
the following grammar:

𝜙 ∶∶= 𝑥 < 𝑐 ∣ 𝑥 ≤ 𝑐 ∣ 𝑐 < 𝑥 ∣ 𝑐 ≤ 𝑥 ∣ 𝜙1 ∧ 𝜙2 ∣ ⊤

with 𝑥 ∈ 𝐶, 𝑐 ∈ ℕ, and ⊤ denotes the constraint that is always satisfied. We
denote by Φ(𝐶) the set of all constraints following that grammar. We write
𝑐1 ≤ 𝑥 ≤ 𝑐2 as a shortcut for 𝑐1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑐2 for instance, and 𝑥 = 𝑐 for
𝑐 ≤ 𝑥 ≤ 𝑐.

We sometimes make use of diagonal clock constraints, which additionally allow
constraints of the form 𝑥 − 𝑦 < 𝑐 and 𝑥 − 𝑦 ≤ 𝑐. We denote by Φ𝐷(𝐶) for the
union of Φ(𝐶) and the set of all diagonal constraints.

A timed Mealy machine is then a Mealy machine augmented with a set of
clocks 𝐶. Each transition possesses a guard (i.e., a constraint in Φ(𝐶)) and
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𝑞0 𝑞1 𝑞2

[0 ≤ 𝑥 < 1]𝑖/𝑜, ∅
[1 ≤ 𝑥 ≤ 2]𝑖/𝑜′

{𝑥}

[1 ≤ 𝑦 ≤ 5]𝑖/𝑜

{𝑦}

[𝑥 > 4 ∧ 𝑦 < 7]𝑖/𝑜, ∅ [2 < 𝑥]𝑖/𝑜′, {𝑥}

[0 ≤ 𝑥 ≤ 2]𝑖/𝑜

{𝑥, 𝑦}

Figure 8.1: A sample timed Mealy machine such that Inv(𝑞0) = 0 ≤ 𝑥 ≤ 2, Inv(𝑞1) = 0 ≤ 𝑥 ≤ 3 ∧ 0 ≤ 𝑦 ≤ 5,
and Inv(𝑞2) = 0 ≤ 𝑦 ≤ 1.

can reset a subset of 𝐶. Furthermore, a constraint over 𝐶, called an invariant,
is given for each state. This will be used in the semantics to restrict how much
time can elapse without triggering a transition, for instance. We focus here on
non-deterministic machines.

Definition 8.2.1 (Timed Mealy machine). A timed Mealy machine (TMM,
for short) is a tupleℳ = (𝐼, 𝑂, 𝐶, 𝑄, 𝑞0, Inv, 𝛿) where:

▶ 𝑄 and 𝑞0 are the set of states and the initial state,
▶ Inv ∶ 𝑄 → Φ(𝐶) is a function that maps an invariant to each state,

and
▶ 𝛿 ∶ (𝑄 × Φ(𝐶) × 𝐼) × (𝑄 × 2𝐶 × 𝑂) is the transition relation. As

usual, we write 𝛿(𝑞, 𝑔, 𝑖) for the set of triplets (𝑝, 𝑟, 𝑜) such that

((𝑞, 𝑔, 𝑖), (𝑝, 𝑟, 𝑜)) ∈ 𝛿 and 𝑞
[𝑔]𝑖/𝑜
−−−→

𝑟
𝑝 when (𝑝, 𝑟, 𝑜) ∈ 𝛿(𝑞, 𝑔, 𝑖).

As usual, we add, when needed, a superscript to indicate which TMM is

considered, e.g., 𝑄ℳ, 𝑞ℳ0 , etc. Missing symbols in 𝑞
[𝑔]𝑖/𝑜
−−−→

𝑟
𝑞′ are quantified

existentially, e.g., 𝑞
[𝑔]𝑖/𝑜
−−−→

𝑟
means there exists 𝑞′ such that 𝑞

[𝑔]𝑖/𝑜
−−−→

𝑟
𝑞′, and 𝑞

𝑖
−→

means there exist 𝑜, 𝑔, and 𝑢 such that 𝑞
[𝑔]𝑖/𝑜
−−−→

𝑢
.

A run 𝜋 ofℳ either consists of a single state 𝑝0 or of a nonempty sequence of
transitions, i.e.,

𝜋 = 𝑝0
[𝑔1]𝑖1/𝑜1−−−−−→

𝑟1
𝑝1

[𝑔1]𝑖2/𝑜2−−−−−→
𝑟2

⋯
[𝑔1]𝑖𝑛/𝑜𝑛−−−−−→

𝑟𝑛
𝑝𝑛.

We denote by runs(ℳ) the set of runs ofℳ. We often write 𝑞
[𝑔]𝑖
−−→ ∈ runs(ℳ)

to highlight that 𝛿(𝑞, 𝑔, 𝑖) is defined.

Example 8.2.2. Letℳ be the TMM of Figure 8.1 with 𝐼 = {𝑖}, 𝑂 = {𝑜, 𝑜′},
and 𝐶 = {𝑥, 𝑦}. Guards and resets are given along each transition. For
instance, the transition from 𝑞0 to 𝑞1 requires that 𝑥 is between 1 and 2, and
resets 𝑥.
A sample run is

𝜋 = 𝑞0
[0≤𝑥<1]𝑖/𝑜
−−−−−−→

∅
𝑞0

[1≤𝑥≤2]𝑖/𝑜′

−−−−−−−→
{𝑥}

𝑞1
[1≤𝑦≤5]𝑖/𝑜
−−−−−−→

{𝑦}
𝑞2

[0≤𝑥≤2]𝑖/𝑜
−−−−−−→

{𝑥,𝑦}
𝑞0.
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3: That is, we start with every
clock already at zero.

8.2.1. Semantics

Let us now define the timed semantics of a TMM, via an infinite-state la-
beled transition system describing all possible configurations and transitions
between them.

A valuation is a (total) function 𝜅 ∶ 𝐶 → ℝ≥0 that assigns nonnegative real
numbers to clocks. A configuration of ℳ is a pair (𝑞, 𝜅) where 𝑞 ∈ 𝑄 and 𝜅
a valuation. The initial configuration is the pair (𝑞0, 𝜅0) where 𝜅0(𝑥) = 0 for
every 𝑥 ∈ 𝐶.3 When we let 𝑑 ∈ ℝ≥0 units of time elapse in a valuation 𝜅, we
write 𝜅 + 𝑑 for the resulting valuation that satisfies (𝜅 + 𝑑)(𝑥) = 𝜅(𝑥) + 𝑑 for
all 𝑥 ∈ 𝐶.

We now define the conditions that must be satisfied for a transition from (𝑞, 𝜅)
to (𝑞′, 𝜅′) to exist. We define two types of transitions: some wait a given delay
in a state, while the others follow the transitions defined in 𝛿 . In every case, 𝜅
(resp. 𝜅′) must satisfy the invariant of 𝑞 (resp. 𝑞′). This ensures that we only
consider valuations that make sense with regards to the defined constraints.

Definition 8.2.3 (Timed run). We define the transitions between configu-
rations (𝑞, 𝜅), (𝑞′, 𝜅′) as follows.

▶ (𝑞, 𝜅)
𝑑
−→ (𝑞, 𝜅′) is a delay transition, if

• 𝜅 satisfies Inv(𝑞),
• 𝑑 ∈ ℝ≥0, and
• 𝜅′ = (𝜅 + 𝑑) satisfies Inv(𝑞).

▶ (𝑞, 𝜅)
𝑖/𝑜
−−→

𝑟
(𝑞′, 𝜅′) is a discrete transition, if

• 𝑞
[𝑔]𝑖/𝑜
−−−→

𝑟
𝑞′ ∈ runs(ℳ),

• 𝜅 satisfies the conjunction of Inv(𝑞) and 𝑔,
• 𝜅′(𝑥) is 0 if 𝑥 is in 𝑟, and 𝜅(𝑥) otherwise, for all clocks 𝑥, and
• 𝜅′ satisfies Inv(𝑞′).

A timed run of ℳ is a sequence of configuration transitions such that de-
lay and discrete transitions alternate, beginning and ending with a delay
transition. The set of all timed runs ofℳ is denoted truns(ℳ).
The untimed projection of a timed run 𝜌, denoted by untime(𝜌), is the run
obtained by omitting the valuations and delay transitions of 𝜌. A run 𝜋 is
said to be feasible if there exists a timed run 𝜌 such that untime(𝜌) = 𝜋.

Again, missing symbols in (𝑞, 𝜅)
𝑖/𝑜
−−→

𝑢
(𝑞′, 𝜅′) or (𝑞, 𝜅)

𝑑
−→ (𝑞, 𝜅 − 𝑑) are quanti-

fied existentially.

A timed word over a set Σ is an alternating sequence of delays from ℝ≥0 and
symbols from Σ, such that it starts and ends with a delay. The length of a
timed word 𝑤, denoted by |𝑤|, is the number of symbols of Σ in 𝑤, e.g., if
|𝑤| = 0, then 𝑤 = 𝑑 with 𝑑 ∈ ℝ≥0. Note that, when Σ = 𝐼, a timed run
reading a timed word 𝑤 is uniquely determined by its first configuration and
𝑤. We thus write (𝑝, 𝜅)

𝑤
−→ for a timed run.
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4: To construct a timed automaton
from a TMM, simply drop the out-
puts and set every state to be final.

[AD94]: Alur et al. (1994), “A The-
ory of Timed Automata”
[AL02]: Aceto et al. (2002), “Is your
model checker on time? On the
complexity of model checking for
timed modal logics”
[WDR13]: Waez et al. (2013), “A
survey of timed automata for the
development of real-time systems”

Example 8.2.4.
𝑞0

𝑞1

𝑞2

[0 ≤ 𝑥 < 1]𝑖/𝑜, ∅

[1 ≤ 𝑥 ≤ 2]𝑖/𝑜′, {𝑥}

[1 ≤ 𝑦 ≤ 5]𝑖/𝑜, {𝑦}

[𝑥 > 4 ∧ 𝑦 < 7]
𝑖/𝑜, ∅

[2 < 𝑥]𝑖/𝑜′, {𝑥}

[0
≤

𝑥
≤

2]
𝑖/

𝑜,
{𝑥

,𝑦
}

A sample timed run of the sound TMM of Figure 8.1 (repeated
in the margin) is

𝜌 = (𝑞0, 𝑥 = 0, 𝑦 = 0)
0.5
−−→ (𝑞0, 𝑥 = 0.5, 𝑦 = 0.5)

𝑖/𝑜
−−→

∅
(𝑞0, 𝑥 = 0.5, 𝑦 = 0.5)

1
−→ (𝑞0, 𝑥 = 1.5, 𝑦 = 1.5)

𝑖/𝑜′

−−→
{𝑥}

(𝑞1, 𝑥 = 0, 𝑦 = 1.5)

2
−→ (𝑞1, 𝑥 = 2, 𝑦 = 3.5)

𝑖/𝑜
−−→
{𝑦}

(𝑞2, 𝑥 = 2, 𝑦 = 0)

0
−→ (𝑞2, 𝑥 = 2, 𝑦 = 0)

𝑖/𝑜
−−−→
{𝑥,𝑦}

(𝑞0, 𝑥 = 0, 𝑦 = 0)
2
−→ (𝑞0, 𝑥 = 2, 𝑦 = 2).

Then, untime(𝜌) is the run 𝜋 of Example 8.2.2, i.e., 𝜋 is feasible. Notice the
transitions with a null delay, indicating that two actions occur “at the same
time”. Finally, all valuations satisfy the invariants of their corresponding
state.
The run 𝑞0

𝑖
−→ 𝑞1

𝑖
−→ 𝑞1 is not feasible. Indeed, it is impossible to reach

a valuation satisfying the guard 𝑥 > 4 ∧ 𝑦 < 7, as the invariant of 𝑞1 is
0 ≤ 𝑥 ≤ 3 ∧ 0 ≤ 𝑦 ≤ 5. That is, the maximal value of 𝑥 in 𝑞1 is 3, which
does not satisfy 𝑥 > 4.

The classical notion of timed automaton (and its semantics) can easily be
obtained from the above definitions: drop outputs and add a set of final states
𝐹 .4 The definitions of (timed) runs do not need to change (apart from the
absence of outputs). Then, a timed run is accepting if the state in the last
configuration is final. The language of an automaton is the set of all timed
words that label an accepting timed run.

8.3. Reachability and regions

Let us introduce the reachability problem which, given a TMMℳ and a state 𝑞,
asks whether there exists a valuation 𝜅 such that (𝑞ℳ0 , 𝜅0) −→ (𝑞, 𝜅) is a timed
run of ℳ. For timed automata (and, thus, for timed Mealy machines), it is
known to be PSPACE-complete [AD94; AL02; WDR13].

Theorem 8.3.1 ([AD94]). The reachability problem for TMMs is PSPACE-
complete.

In short, the hardness comes from a reduction from the acceptance problem
for Linear-bounded Turing machine (LBTM, for short). We do not give the
proof for TMMs here. In Section 9.5, we rely on a similar approach for Mealy
machines with timers and provide the details there.

The membership can be obtained by grouping together configurations that
share the same timed behavior into regions.

Definition 8.3.2 (Clock region [AD94]). Letℳ = (𝐼, 𝑂, 𝐶, 𝑄, 𝑞0, Inv, 𝛿) be
a TMM. For a clock 𝑥 ∈ 𝐶, 𝑚𝑥 denotes the largest constant against which 𝑥
is compared in the invariants or guards ofℳ. Two valuations 𝜅 and 𝜅′ are
clock-equivalent, denoted by 𝜅 ≅ 𝜅′, if
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[Cer92]: Cerans (1992), “Decidabil-
ity of Bisimulation Equivalences
for Parallel Timer Processes”
[TY01]: Tripakis et al. (2001),
“Analysis of Timed Systems Using
Time-Abstracting Bisimulations”
[Cla+18]: Clarke et al. (2018),Hand-
book of Model Checking

5: We do not explicitly give the def-
inition for clock-regions. However,
in Section 9.5, we give a construc-
tion for timer-regions.

6: The untimed projection of the
language of a timed automaton.

▶ for all 𝑥 ∈ 𝐶, ⌊𝜅(𝑥)⌋ = ⌊𝜅′(𝑥)⌋ or 𝜅(𝑥), 𝜅′(𝑥) > 𝑚𝑥, and
▶ for all 𝑥 ∈ 𝐶 with 𝜅(𝑥) ≤ 𝑚𝑥, frac(𝜅(𝑥)) = 0 if and only if

frac(𝜅′(𝑥)) = 0, and
▶ for all 𝑥1, 𝑥2 ∈ 𝐶 with 𝜅(𝑥1) ≤ 𝑚𝑥1

and 𝜅(𝑥2) ≤ 𝑚𝑥2
, frac(𝜅(𝑥1)) ≤

frac(𝜅(𝑥2)) if and only if frac(𝜅′(𝑥1)) ≤ frac(𝜅′(𝑥2)).

A clock region for ℳ is an equivalence class of clock valuations induced
by ≅. We lift the relation to configurations: (𝑞, 𝜅) ≅ (𝑞′, 𝜅′) if and only if
𝜅 ≅ 𝜅′ and 𝑞 = 𝑞′.

One can show that the region equivalence is a (strong) time-abstracting bisim-
ulation [Cer92; TY01; Cla+18]:

Definition 8.3.3 (Timed-abstracted bisimulation [Cer92]). A relation 𝑅 on
the states 𝑄ℳ ofℳ is a time-abstracted bisimulation if, for every 𝑖 ∈ 𝐼, and
configurations (𝑞1, 𝜅1) and (𝑞2, 𝜅2),

▶ (𝑞1, 𝜅1) 𝑅 (𝑞2, 𝜅2) and

▶ (𝑞1, 𝜅1)
𝑑1⋅𝑖
−−→ (𝑞′

1, 𝜅′
1) for some delay 𝑑1 ∈ ℝ≥0

imply

▶ (𝑞2, 𝜅2)
𝑑2⋅𝑖
−−→ (𝑞′

2, 𝜅′
2) for some 𝑑2 ∈ ℝ≥0 and

▶ (𝑞′
1, 𝜅′

1) 𝑅 (𝑞′
2, 𝜅′

2),

and vice-versa.

From the equivalence classes of ≅, one can build a finite automaton (or Mealy
machine if outputs are kept), called the region automaton [AD94].5 This
automaton uses the input symbol ofℳ and also a special symbol 𝜏 that abstracts
a delay transition: while a discrete transition allows to change state and,
potentially, reset some clocks, reading 𝜏 is akin to let time elapse: we go from

the state J(𝑞, 𝜅)K≅ to J(𝑞, 𝜅′)K≅ if (𝑞, 𝜅)
𝑑
−→ (𝑞, 𝜅′) for some 𝑑 ∈ ℝ≥0. Finally,

the initial state is the equivalence class of (𝑞ℳ0 , 𝜅0) where 𝜅0(𝑥) = 0 for all
clocks 𝑥. Let us denote this automaton by ℛ(ℳ).

It is possible to show that a state J(𝑞, 𝜅)K≅ of ℛ(ℳ) is reachable if and only if
(𝑞, 𝜅) is reachable by a timed run ofℳ [Cla+18]. While the region automaton
has exponentially many states in the number of clocks, it is possible to compute
a run on the fly, hence, in polynomial time. We immediately obtain the PSPACE
membership of Theorem 8.3.1.

Finally, regions can be used as a tool for other decision problems, such as
untimed language6 equivalence and language equivalence of two timed au-
tomata [Cla+18].

8.4. Zones

While regions offer an interesting and useful abstraction of the infinite state
space of the semantics of a TMM, the number of states in the region automaton
is exponential in the number of clocks and the maximal constants appearing
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[Hen+92]: Henzinger et al. (1992),
“SymbolicModel Checking for Real-
time Systems”

[BY03]: Bengtsson et al. (2003),
“Timed Automata: Semantics, Al-
gorithms and Tools”
[Bou+22]: Bouyer et al. (2022),
“Zone-Based Verification of Timed
Automata: Extrapolations, Simula-
tions and What Next?”

in the guards. Hence, efforts have been made to develop more efficient repre-
sentations of the state space [Hen+92] by using zones. In short, zones form
a coarser relation over the state space. We here give the definition of zones
and some of their properties and refer to [BY03; Bou+22] for a more complete
introduction.

Definition 8.4.1 (Zones [Hen+92]). Let 𝐶 be a set of clocks. A subset 𝑍 of
the valuations over 𝐶 is called a zone if there exists 𝜙 ∈ Φ(𝐶) such that 𝑍 is
exactly the set of valuations that satisfy 𝜙.
We define the following operations on zones:

▶ The upward closure of 𝑍 where we let some time elapsed in all valua-
tions of 𝑍. That is, we obtain all valuations that can be reached from
𝑍 by just waiting, i.e.,

𝑍↑= {𝜅 + 𝑑 ∣ 𝜅 ∈ 𝑍, 𝑑 ∈ ℝ≥0}.

▶ The reset of 𝑍 under 𝑟 ⊆ 𝐶 is obtained by resetting the clocks 𝑟 in
each valuation of 𝑍, i.e.,

𝑍[𝑟] = {𝜅 ∣ ∃𝜅′ ∈ 𝑍, ∀𝑥 ∈ 𝑟, 𝑦 ∈ 𝐶 ∖ 𝑟 ∶ 𝜅(𝑥) = 0 ∧ 𝜅(𝑦) = 𝜅′(𝑦).}

One can show that 𝑍↑, 𝑍[𝑟], and 𝑍 ∩ 𝑍′ are zones over 𝐶, when 𝑍 and 𝑍′ are
zones and 𝑟 ⊆ 𝐶 [Hen+92]. Zones can be efficiently computed via difference
bound matrices (DBM) [Cla+18; BY03; Bou+22]. Moreover, a zone timed Mealy
machine (or zone timed automaton) can be constructed, which we denote
zone(ℳ). Instead of providing a formal definition for zone(ℳ), we give an
example.

Example 8.4.2.
𝑞0

𝑞1

𝑞2

[0 ≤ 𝑥 < 1]𝑖/𝑜, ∅

[1 ≤ 𝑥 ≤ 2]𝑖/𝑜′, {𝑥}

[1 ≤ 𝑦 ≤ 5]𝑖/𝑜, {𝑦}

[𝑥 > 4 ∧ 𝑦 < 7]
𝑖/𝑜, ∅

[2 < 𝑥]𝑖/𝑜′, {𝑥}

[0
≤

𝑥
≤

2]
𝑖/

𝑜,
{𝑥

,𝑦
}

Let ℳ be the TMM of Figure 8.1, which is repeated in the
margin. Recall that Inv(𝑞0) = 0 ≤ 𝑥 ≤ 2, Inv(𝑞1) = 0 ≤ 𝑥 ≤ 3 ∧ 0 ≤ 𝑦 ≤ 5,
and Inv(𝑞2) = 0 ≤ 𝑦 ≤ 1. We construct the zone TMM zone(ℳ). Rather,
we construct the zone Mealy machine (the guards and invariants can be
copied fromℳ to obtain a TMM).
The initial state is obtained by letting time elapse in the initial configuration
(𝑞0, 𝜅0) (such that 𝜅0(𝑐) = 0 for all clocks 𝑐) and restricting the set of
valuations to those that satisfy the invariant of 𝑞0. That is, we first compute
the upward closure of {𝜅0}, which is the set {𝜅0}↑= {𝜅0 + 𝑑 ∣ 𝑑 ∈ ℝ≥0}.
We then only keep the valuations that satisfy 0 ≤ 𝑥 ≤ 2, i.e., every valuation
𝜅 such that 0 ≤ 𝜅(𝑥) = 𝜅(𝑦) ≤ 2. For simplicity, we denote this set by
0 ≤ 𝑥 = 𝑦 ≤ 2. The initial state of zone(ℳ) is then (𝑞0, 0 ≤ 𝑥 = 𝑦 ≤ 2).
Let us define its outgoing transitions. We start with the transition

𝑞0
[0≤𝑥<1]𝑖/𝑜
−−−−−−→

∅
𝑞0 ofℳ. First, we compute the intersection of 0 ≤ 𝑥 = 𝑦 ≤ 2

and 0 ≤ 𝑥 < 1 (to keep the valuations that can trigger the transition), which
yields the zone 0 ≤ 𝑥 = 𝑦 < 1. Then, we again let time elapse and keep the
valuations that satisfy Inv(𝑞0). That is, we define the transition

(𝑞0, 0 ≤ 𝑥 = 𝑦 ≤ 2)
𝑖/𝑜
−−→ (𝑞0, 0 ≤ 𝑥 = 𝑦 ≤ 2).7 7: The zone TMMs copied the

guard [0 ≤ 𝑥 < 1] and the reset
∅ from the transition ofℳ.
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Zone 𝑍𝐶

Figure 8.2: Visualization of some of the zones of Example 8.4.2.

𝑞0, 0 ≤ 𝑥 = 𝑦 ≤ 2 𝑞1, 𝑍𝐴

𝑞2, 𝑍𝐵𝑞2, 𝑍𝐶

[0 ≤ 𝑥 < 1]𝑖/𝑜, ∅

[1 ≤ 𝑥 ≤ 2]𝑖/𝑜′, {𝑥}

[1 ≤ 𝑦 ≤ 5]𝑖/𝑜, {𝑦}

[2 < 𝑥]𝑖/𝑜′, {𝑥}

[0 ≤ 𝑥 ≤ 2]𝑖/𝑜, {𝑥, 𝑦}
[0 ≤ 𝑥 ≤ 2]𝑖/𝑜, {𝑥, 𝑦}

Figure 8.3: The zone TMM of the TMM of Figure 8.1. The zones 𝑍𝐴, 𝑍𝐵, and 𝑍𝐶 are depicted in Figure 8.2.

Let us now consider the transition 𝑞0
[1≤𝑥≤2]𝑖/𝑜′

−−−−−−−→
{𝑥}

𝑞1 ofℳ. Again, we restrict

the valuations of the zone 0 ≤ 𝑥 = 𝑦 ≤ 2 to those that satisfy 1 ≤ 𝑥 ≤ 2,
i.e., the set given by 1 ≤ 𝑥 = 𝑦 ≤ 2. The transition ofℳ restarts 𝑥. So, after
taking the transition, we are in the zone 𝑥 = 0 ∧ 1 ≤ 𝑦 ≤ 2. It remains to
let time elapse and take the intersection with Inv(𝑞1). We obtain the zone

𝑍𝐴 = (0 ≤ 𝑥 ≤ 3) ∧ (1 ≤ 𝑦 ≤ 5) ∧ (−2 ≤ 𝑥 − 𝑦 ≤ −1).

This zone is represented by the darkest area of Figure 8.2. That is, we define
the transition

(𝑞0, 0 ≤ 𝑥 = 𝑦 ≤ 2)
𝑖/𝑜′

−−→ (𝑞1, 𝑍𝐴).

We can continue this process and define states and transitions as we discover
them. Figure 8.3 gives the resulting zone TMM.
Observe that the self-loop over 𝑞1 is not reproduced in zone(ℳ). This is
due to the fact that the intersection of 𝑍𝐴 and (𝑥 > 4 ∧ 𝑦 < 7) is empty.
That is, we only define transitions when the target zone is non-empty. In
other words, computing the zone TMM allows to “prune” the transitions
that are never feasible. Even better, one can show that every run of zone(ℳ)
is feasible.
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[WDR13]: Waez et al. (2013), “A
survey of timed automata for the
development of real-time systems”

9: Recall that an automaton can be
obtained from a Mealy machine by
dropping the outputs and setting
every state to be final.

[AD94]: Alur et al. (1994), “A The-
ory of Timed Automata”

8.5. Other results

To conclude this introduction to timed machines, let us list some known
properties. (We refer to [WDR13] for more properties.) We call a language
𝐿 timed regular if there exists a timed automaton9 𝒜 that accepts 𝐿 [AD94].
The first theorem gives properties over the set of timed regular languages.

Theorem 8.5.1 ([AD94]). The class of timed regular languages is closed under
union, intersection, concatenation, and Kleene-star.
The untimed language of a timed regular language is a regular language.

One could need to check whether a timed regular language is empty or not,
which is a decidable problem.

Theorem 8.5.2 ([AD94]). The emptiness problem for timed automata is
PSPACE-complete.

There are also problems that are known to be undecidable, when considering
timed automata in general (i.e., without any restrictions).

Theorem 8.5.3 ([AD94]). Given two timed automata 𝒜 and 𝒜′, all of the
following decision problems are undecidable:

▶ Are the languages of 𝒜 and 𝒜′ equal?
▶ Is the language of 𝒜 included in the language of 𝒜′?
▶ Does 𝒜 accept any timed word?10 10: This is known as the universal-

ity problem.

From the undecidability of the inclusion problem, we immediately obtain that
the family of timed regular languages is not closed under complement [AD94].

While we refrain from defining this subfamily here, it is noteworthy that
some of the problems become decidable for deterministic timed automata. For
instance, the inclusion and equivalence problems for deterministic automata
become PSPACE-complete [AD94].
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Mealy Machines with Timers 9.
In this chapter, based on [Bru+23; Bru+24], we introduce a subfamily of timed
Mealy machines, called Mealy machines with timers, in which timing con-
straints are given by setting a timer to a given value. Later on, this timer will
eventually reach zero, provoking a special timeout symbol. It may happen that
a timer times out at the same time an input is provided, or that two timers
reach zero at the same time, leading to a non-deterministic behavior of the
machine, as it can arbitrarily decide which action to process first.

We study many problems in this chapter: how to decide whether the Mealy
machines are equivalent, what is the complexity of deciding whether a state
is reachable by some timed run, and whether every untimed behavior of a
machine can be witnessed via timed runs in which all delays are positive.
Furthermore, we highlight that a timed Mealy machine (see the previous
chapter) can be constructed from a Mealy machine with timers, i.e., the model
we present here is indeed a subfamily of timed Mealy machines.

Technical proofs and details are deferred to Appendix C.
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9.1. Introduction

As said in the previous chapter, timed automata were introduced by Alur &
Dill [AD94] as finite-state automata equipped with real-valued clock variables
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for measuring the time between state transitions. These clock variables all
increase at the same rate when time elapses, they can be reset along transitions,
and be used in guards along transitions and in invariant predicates for states.
Timed automata have become a framework of choice for modeling and analysis
of real-time systems, equipped with a rich theory, supported by powerful
tools, and with numerous applications [Bou+18]. In the previous chapter, we
extended timed automata to timed Mealy machines, i.e., timed automata with
outputs.

Interestingly, whereas the values of clocks in a timed automaton increase over
time, designers of real-time systems (e.g. embedded controllers and network
protocols) typically use timers to enforce timing constraints, and the values of
these timers decrease over time. If an application starts a timer with a certain
value 𝑡, then this value decreases over time and after 𝑡 time units — when the
value has become 0 — a timeout event occurs. It is straightforward to encode
the behavior of timers using a timed automaton. Timed automata allow one
to express a richer class of behaviors than what can be described using timers,
and can for instance express that the time between two events is contained in
an interval [𝑡 − 𝑑, 𝑡 + 𝑑]. Moreover, timed automata can express constraints
on the timing between arbitrary events, not just between start and timeout of
timers.

However, the expressive power of timed automata entails certain problems.
For instance, one can easily define timed automata models in which time stops
at some point (timelocks) or an infinite number of discrete transitions occurs
in a finite time (Zeno behavior). Thus timed automata may describe behav-
ior that cannot be realized by any physical system. Also, learning [Ang87;
HS18] of timed automata models in a black-box setting turns out to be chal-
lenging [GJP06; GJL10; An+20; Wag23]. For a learner who can only observe
the external events of a system and their timing, it may be really difficult to
infer the logical predicates (invariants and guards) that label the states and
transitions of a timed automaton model of this system. As a result, all known
learning algorithms for timed automata suffer from combinatorial explosions,
which severely limits their practical usefulness.

For these reasons, it is interesting to consider variations of timed automata
(rather, of timed Mealy machines here) whose expressivity is restricted by
using timers instead of clocks, as introduced by Dill in [Dil89]. In a Mealy
machine with timers (MMT), a transition may start a timer by setting it to
a certain value. Whenever a timer reaches zero, it produces an observable
timeout symbol that triggers a transition in the automaton. Dill also shows
that the space of timer valuations can be abstracted into a finite number of
so-called regions. However, the model we study here is slightly different, as,
unlike Dill, we allow a timer to be stopped before reaching zero. We also study
the regions of our MMT and give an upper bound on their number.

Vaandrager et al. [VBE21] provide a black-box active learning algorithm for
Mealy machines with a single timer, and evaluate it on a number of realistic
applications, showing that it outperforms the timed automata based approaches
of Aichernig et al. [APT20] and An et al. [An+20]. Even though many realistic
systems can be modeled as MM1Ts (e.g., the benchmarks described in [VBE21]
and the brick sorter and traffic controller examples in [Die+23]), the restriction
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to a single timer is a serious limitation. Therefore, Kogel et al. [KKG23] propose
Mealy machines with local timers (MMLTs), an extension of Mealy machines
with one timer to multiple timers subject to carefully chosen constraints to
enable efficient learning. Although quite interesting, the constraints of MMLTs
are too restrictive for many applications (e.g., the FDDI protocol presented in
the next chapter). Also, any MMLT can be converted to an equivalent MM1T. If
we want to extend the learning algorithm of [VBE21] to a setting with multiple
(non-local) timers, we need to deal with the issue of races, i.e., situations where
multiple timers reach zero (and thus timeout) simultaneously. If a race occurs,
then (despite the automaton being deterministic!) the automaton can process
the simultaneous timeouts in various orders, leading to nondeterministic
behavior.

An active learning algorithm for MMTs is presented in the next chapter. We
here formally define the model and study multiple problems:

▶ We show that a timed Mealy machine (TMM) can be constructed from
an MMT in Section 9.3.

▶ In Section 9.4, we define two ways of testing equivalence between two
MMTs: one that focuses on timed runs, and one that remains in the un-
timed world. We show that the latter implies the first, i.e., it is sufficient
to test the untimed equivalence.

▶ In Section 9.5, we adapt to MMTs the reachability problem and the notion
of regions that we introduced for TMMs in Section 8.3.

▶ As said above, races lead to nondeterministic behaviors. We thus provide
in Section 9.6 an algorithm that can decide whether every untimed
behavior of an MMT can be observed via timed runs without races, i.e.,
whether races are required.

▶ Finally, in Section 9.7, we adapt to MMTs the notion of zones introduced
in Section 8.4 for TMMs.

Technical details and proofs are deferred to Appendix C.

9.2. Mealy machines with timers

A Mealy machine with timers is a Mealy machine augmented with a finite
number of timers, which can be used to enforce timing constraints over the
behavior of the machine, e.g., if we sent a message and we did not receive the
acknowledgment after 𝑑 units of time, we resend the message. In this section,
we first properly define Mealy machines with timers, alongside their (timed)
semantics. We then introduce in Section 9.2.2 the notion of blocks, which
abstract timed runs. Finally, Section 9.2.3 discusses enabled timers (i.e., timers
that can time out after reading a run), which allows us to define when an MMT
is complete.

Given a timer 𝑥, we write to[𝑥] for its timeout symbol. Then, if 𝑋 is a set of
timers, TO[𝑋] is the set of all timeout symbols, i.e.,

TO[𝑋] = {to[𝑥] ∣ 𝑥 ∈ 𝑋}.
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Furthermore, ifℳ is a Mealy machine using 𝑋 as its set of timers and 𝐼 as its
set of input symbols, we denote by 𝐴(ℳ) the set of actions of ℳ: reading an
input (an input action), or processing a timeout (a timeout action), i.e.,

𝐴(ℳ) = 𝐼 ∪ TO[𝑋].

Finally, the set of updates of ℳ is

𝑈(ℳ) = (𝑋 × ℕ>0) ∪ {⊥},

where (𝑥, 𝑐) means that the timer 𝑥 is started with value 𝑐, and ⊥ stands for
no timer update.

We impose certain constraints on the shape of our machines:

▶ a timer must be explicitly started to become active,
▶ a timer 𝑥 can time out only when it is active, and
▶ a to[𝑥]-transition may only restart 𝑥 (if the update is not ⊥).

These restrictions allow us to define hereafter the timed semantics in a straight-
forward approach.

Definition 9.2.1 (Mealy machine with timers). AMealy machine with timers
(MMT, for short) is a tupleℳ = (𝐼, 𝑂, 𝑋, 𝑄, 𝑞0, 𝜒, 𝛿) where:

▶ 𝐼 is an input alphabet, 𝑂 an output alphabet, and 𝑋 a finite set of
timers,

▶ 𝑄 is a finite set of states, with 𝑞0 ∈ 𝑄 the initial state,
▶ 𝜒 ∶ 𝑄 → 𝒫(𝑋) is a (total) function that assigns a set of active timers

to each state, and
▶ 𝛿 ∶ 𝑄 × 𝐴(ℳ) ⇀ 𝑄 × 𝑂 × 𝑈(ℳ) is a (partial) transition function that

assigns a state-output-update triple to a state-action pair. We write

𝑞
𝑖/𝑜
−−→

𝑢
𝑞′ if 𝛿(𝑞, 𝑖) = (𝑞′, 𝑜, 𝑢).

An MMTℳ is sound if for all 𝑞, 𝑞′ ∈ 𝑄, 𝑖 ∈ 𝐴(ℳ), 𝑜 ∈ 𝑂, 𝑥 ∈ 𝑋, 𝑐 ∈ ℕ>0:

𝜒(𝑞0) = ∅

𝑞
𝑖/𝑜
−−→

⊥
𝑞′ ⇒ 𝜒(𝑞′) ⊆ 𝜒(𝑞)

𝑞
𝑖/𝑜

−−−→
(𝑥,𝑐)

𝑞′ ⇒ 𝑥 ∈ 𝜒(𝑞′) ∧ 𝜒(𝑞′) ∖ {𝑥} ⊆ 𝜒(𝑞)

𝑞
to[𝑥]/𝑜
−−−−→

⊥
𝑞′ ⇒ 𝑥 ∈ 𝜒(𝑞) ∧ 𝑥 ∉ 𝜒(𝑞′)

𝑞
to[𝑥]/𝑜
−−−−→

(𝑦,𝑐)
𝑞′ ⇒ 𝑥 ∈ 𝜒(𝑞) ∧ 𝑥 = 𝑦.

As usual, we add, when needed, a superscript to indicate which MMT is

considered, e.g., 𝑄ℳ, 𝑞ℳ0 , etc. Missing symbols in 𝑞
𝑖/𝑜
−−→

𝑢
𝑞′ are quantified

existentially, e.g., 𝑞
𝑖/𝑜
−−→

𝑢
means there exists 𝑞′ such that 𝑞

𝑖/𝑜
−−→

𝑢
𝑞′, and 𝑞

𝑖
−→

means there exist 𝑜 and 𝑢 such that 𝑞
𝑖/𝑜
−−→

𝑢
. We say that a transition 𝑞

𝑖
−→
𝑢

𝑞′
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𝑞0 𝑞1 𝑞2
𝑖/𝑜

𝑥1 ≔ 1

𝑖/𝑜′, 𝑥2 ≔ 2
to[𝑥1]/𝑜, 𝑥1 ≔ 1

𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′

⊥

Figure 9.1: An MMT with 𝜒(𝑞0) = ∅, 𝜒(𝑞1) = {𝑥1}, 𝜒(𝑞2) = {𝑥1, 𝑥2}.

1: Observe that a transition cannot
(re)start a timer and stop the same
timer.

▶ starts (resp. restarts) the timer 𝑥 if 𝑢 = (𝑥, 𝑐) and 𝑥 is inactive (resp.
active) in 𝑞,

▶ stops the timer 𝑥 if 𝑖 ≠ to[𝑥] and 𝑥 is inactive in 𝑞′,1 and
▶ discards 𝑥 if it stops or restarts 𝑥.

A run 𝜋 ofℳ either consists of a single state 𝑝0 or of a nonempty sequence of
transitions

𝜋 = 𝑝0
𝑖1/𝑜1−−−→

𝑢1
𝑝1

𝑖2/𝑜2−−−→
𝑢2

⋯
𝑖𝑛/𝑜𝑛−−−→

𝑢𝑛
𝑝𝑛.

We denote by runs(ℳ) the set of runs ofℳ. We often write 𝑞
𝑖

−→ ∈ runs(ℳ)
to highlight that 𝛿(𝑞, 𝑖) is defined. We lift the notation to words 𝑖1 ⋯ 𝑖𝑛 as

usual: 𝑝0
𝑖1⋯𝑖𝑛−−−→ 𝑝𝑛 ∈ runs(ℳ) if there exists a run 𝑝0

𝑖1−→ ⋯
𝑖𝑛−→ 𝑝𝑛 ∈ runs(ℳ).

Note that any run 𝜋 is uniquely determined by its first state 𝑝0 and word, as
ℳ is deterministic.

Definition 9.2.2 (𝑥-spanning run). A run 𝑝0
𝑖1−→
𝑢1

⋯
𝑖𝑛−→
𝑢𝑛

𝑝𝑛 is termed 𝑥-
spanning (with 𝑥 ∈ 𝑋) if it begins with a transition (re)starting 𝑥, ends with
a to[𝑥]-transition, and no intermediate transition restarts or stops 𝑥. That is,

▶ 𝑢1 = (𝑥, 𝑐),
▶ 𝑖𝑛 = to[𝑥],
▶ 𝑢𝑗 ≠ (𝑥, 𝑑) for all 𝑗 ∈ {2, … , 𝑛 − 1} and 𝑑 ∈ ℕ>0, and
▶ 𝑥 ∈ 𝜒(𝑝𝑗) for all 𝑗 ∈ {2, … , 𝑛 − 1}.

Example 9.2.3. Figure 9.1 shows an MMT ℳ with timers 𝑋 = {𝑥1, 𝑥2},
inputs 𝐼 = {𝑖}, and outputs 𝑂 = {𝑜, 𝑜′}. In the initial state 𝑞0, no timer is
active, while 𝑥1 is active in 𝑞1 and 𝑞2, and 𝑥2 is active in 𝑞2. Timer updates
are shown on the transitions. For instance, 𝑥1 is started with value 1 when

going from 𝑞0 to 𝑞1. The transition 𝑞2
𝑖

−→ 𝑞2 restarts 𝑥1 with value 1. A
sample run is

𝛾 = 𝑞0
𝑖/𝑜

−−−→
(𝑥1,1)

𝑞1
𝑖/𝑜′

−−−→
(𝑥2,2)

𝑞2
to[𝑥1]/𝑜′

−−−−−→
⊥

𝑞0 ∈ runs(ℳ).

which can be written as 𝛾 = 𝑞0
𝑖⋅𝑖⋅to[𝑥1]
−−−−−→ 𝑞0. The run

𝑞0
𝑖

−−−→
(𝑥1,1)

𝑞1
𝑖

−−−→
(𝑥2,2)

𝑞2
to[𝑥1]
−−−→ 𝑞0
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is 𝑥1-spanning, while

𝑞2
𝑖

−−−→
(𝑥1,1)

𝑞2
𝑖

−−−→
(𝑥1,1)

𝑞2
to[𝑥1]
−−−→ 𝑞0

is not as the second transition restarts 𝑥1.

9.2.1. Timed semantics

Let us now define the timed semantics of an MMT, via an infinite-state la-
beled transition system describing all possible configurations and transitions
between them.

A valuation is a partial function 𝜅∶ 𝑋 ⇀ ℝ≥0 that assigns nonnegative real
numbers to timers. For 𝑌 ⊆ 𝑋, we write Val(𝑌 ) for the set of all valuations
𝜅 with dom(𝜅) = 𝑌. A configuration of ℳ is a pair (𝑞, 𝜅) where 𝑞 ∈ 𝑄 and
𝜅 ∈ Val(𝜒(𝑞)). The initial configuration is the pair (𝑞0, 𝜅0) where 𝜅0 = ∅ since
𝜒(𝑞0) = ∅. If 𝜅 ∈ Val(𝑌 ) is a valuation in which all timers from 𝑌 have a value
of at least 𝑑 ∈ ℝ≥0, then 𝑑 units of time may elapse. We write 𝜅 − 𝑑 ∈ Val(𝑌 )
for the resulting valuation that satisfies (𝜅 − 𝑑)(𝑥) = 𝜅(𝑥) − 𝑑, for all 𝑥 ∈ 𝑌. If
the valuation 𝜅 contains a value 𝜅(𝑥) = 0 for some timer 𝑥, then 𝑥 may time
out.

Definition 9.2.4 (Timed run). We define the transitions between configu-
rations (𝑞, 𝜅), (𝑞′, 𝜅′) as follows.

▶ (𝑞, 𝜅)
𝑑
−→ (𝑞, 𝜅′) is a delay transition if

• 𝜅(𝑥) ≥ 𝑑 for every 𝑥 ∈ 𝜒(𝑞), and
• 𝜅′ = 𝜅 − 𝑑.

▶ (𝑞, 𝜅)
𝑖/𝑜
−−→

𝑢
(𝑞′, 𝜅′) is a discrete transition, if

• 𝑞
𝑖/𝑜
−−→

𝑢
𝑞′ ∈ runs(ℳ),

• if 𝑢 = (𝑥, 𝑐), then
∗ 𝜅′(𝑥) = 𝑐, and
∗ for every 𝑦 ∈ 𝜒(𝑞′) such that 𝑢 ≠ (𝑦, ⋅), 𝜅′(𝑦) = 𝜅(𝑦), and

• 𝜅(𝑥) = 0 if 𝑖 = to[𝑥].
Moreover, if 𝑖 = to[𝑥], the transition is a timeout transition. Otherwise,
it is an input transition.

A timed run of ℳ is a sequence of configuration transitions such that de-
lay and discrete transitions alternate, beginning and ending with a delay
transition. The set of all timed runs ofℳ is denoted truns(ℳ).
The untimed projection of a timed run 𝜌, denoted by untime(𝜌), is the run
obtained by omitting the valuations and delay transitions of 𝜌. A run 𝜋 is
termed feasible if there exists a timed run 𝜌 such that untime(𝜌) = 𝜋. Finally,
ℳ is feasible if every run ofℳ is feasible.

Again, missing symbols in (𝑞, 𝜅)
𝑖/𝑜
−−→

𝑢
(𝑞′, 𝜅′) or (𝑞, 𝜅)

𝑑
−→ (𝑞, 𝜅 − 𝑑) are quanti-

fied existentially.
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2: For simplicity, we ignore out-
puts here.

A timed word over a set Σ is an alternating sequence of delays from ℝ≥0 and
symbols from Σ, such that it starts and ends with a delay. The length of a
timed word 𝑤, denoted by |𝑤|, is the number of symbols of Σ in 𝑤, e.g., if
|𝑤| = 0, then 𝑤 = 𝑑 with 𝑑 ∈ ℝ≥0. Note that, when Σ = 𝐴(ℳ), a timed run
reading a timed word 𝑤 is uniquely determined by its first configuration and
𝑤. We thus write (𝑝, 𝜅)

𝑤
−→ for a timed run. A timed run 𝜌 is called 𝑥-spanning

(with 𝑥 ∈ 𝑋) if untime(𝜌) is 𝑥-spanning.

Finally, a timed output word (tow, for short) is a timed word over 𝑂. Given a
timed run 𝜌, we write tow(𝜌) for the sequence of alternating delays and output
symbols seen along the transitions of 𝜌. We write toutputs(𝑤) for the set of
all tows produced by the timed runs reading the timed word 𝑤.

Example 9.2.5.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥
A sample timed run of the soundMMT of Figure 9.1 (repeated

in the margin) is

𝜌 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
1
−→ (𝑞1, 𝑥1 = 0)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 0, 𝑥2 = 2)
0
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 2)

to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, ∅)
1.5
−−→ (𝑞0, ∅).

Then, untime(𝜌) is the run 𝛾 of Example 9.2.3, which implies that 𝛾 is feasible.
Notice the transitions with a null delay, indicating that two actions occur
“at the same time”. In such a situation, the MMT can arbitrarily decide
the order in which the actions are processed. Here, we first triggered the
𝑖-transition before reading to[𝑥1]. An other timed run of the automaton may
have done the opposite. Hence, the MMT may non-deterministic behavior.
This non-determinism is studied in Section 9.6.
The run 𝑞0

𝑖⋅𝑖⋅to[𝑥2]
−−−−−→ is not feasible, as any timed run 𝜌′ such that

untime(𝜌′) = 𝑞0
𝑖⋅𝑖
−→ 𝑞2 is such that the value of 𝑥2 is strictly greater than

the value of 𝑥1. By consequence, 𝑥1 must necessarily time out before 𝑥2

and there is no timed run whose untimed projection is 𝑞0
𝑖⋅𝑖⋅to[𝑥2]
−−−−−→.

The labels of the delay and discrete transitions of 𝜌 form a timed word over
𝐴(ℳ) equal to

𝑤 = 1 ⋅ 𝑖 ⋅ 1 ⋅ 𝑖 ⋅ 0 ⋅ to[𝑥1] ⋅ 1.5.

Since it has four actions, |𝑤| = 4. Furthermore,

tow(𝜌) = 1 ⋅ 𝑜 ⋅ 1 ⋅ 𝑜′ ⋅ 0 ⋅ 𝑜′ ⋅ 1.5.

Finally, the timed run (𝑞0, ∅)
0.5⋅𝑖⋅1⋅𝑖⋅0⋅to[𝑥1]⋅2
−−−−−−−−−−→ is 𝑥1-spanning, as 𝑞0

𝑖⋅𝑖⋅to[𝑥1]
−−−−−→

is 𝑥1-spanning.

9.2.2. Blocks

In this section, we abstract the timed runs of anMMTℳ.2 To better understand
howℳ behaves, we decompose timed run 𝜌 (reading the timedword 𝑑0⋅𝑖0 ⋯ 𝑖𝑛⋅
𝑑𝑛+1) into blocks. Recall that a to[𝑥]-transition can only occur if there is an
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earlier transition (re)starting 𝑥. That is, for any 𝑖𝑘 = to[𝑥], there must exist
𝑗 < 𝑘 such that the update of the transition reading 𝑖𝑗 (re)starts 𝑥. Blocks then
describe which transition (re)starts a timer for which we observe a timeout and
the fate of the timer (e.g., whether the timer is killed before we can observe its
timeout).

Definition 9.2.6 (Block). Let

𝜌 = (𝑝0, 𝜅0)
𝑑1−→ (𝑝0, 𝜅0 − 𝑑1)

𝑖1−→
𝑢1

(𝑝1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛−→
𝑢𝑛

(𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1) ∈ truns(ℳ)

be a timed run. A block of 𝜌 is a pair 𝐵 = (𝑘1𝑘2 … 𝑘𝑚, 𝛾) such that
𝑖𝑘1

, 𝑖𝑘2
, … , 𝑖𝑘𝑚

is a maximal subsequence of actions of 𝜌 such that

▶ 𝑖𝑘1
∈ 𝐼,

▶ 𝑝𝑘ℓ−1

𝑖𝑘ℓ⋯𝑖𝑘ℓ+1
−−−−−−→ 𝑝𝑘ℓ+1

is 𝑥-spanning for some timer 𝑥 and for all 1 ≤
ℓ < 𝑚, and

▶ 𝛾 is the timer fate of 𝐵 defined as:

𝛾 =

⎧{{{
⎨{{{⎩

⊥ if 𝑖𝑘𝑚
does not restart any timer

if 𝑖𝑘𝑚
restarts a timer which is discarded (by some 𝑖ℓ,

with 𝑘𝑚 < ℓ ≤ 𝑛 or by the end of the run), when its
value is zero

× otherwise.

In the timer fate definition, consider the case where 𝑖𝑘𝑚
restarts a timer 𝑥.

For the purposes of Section 9.6, it is convenient to know whether 𝑥 is later
discarded or not, and in case it is discarded, whether this occurs when its
value is zero (i.e., whether 𝛾 is × or ). Furthermore, the information that 𝑥
is still active in the last configuration (𝑞, 𝜅) of 𝜌 and whether it times out is
important. Hence, both × and cover the cases occurring when a timed run
ends.

When no confusion is possible, we denote a block by a sequence of inputs
rather than the corresponding sequence of indices, i.e., 𝐵 = (𝑖𝑘1

𝑖𝑘2
… 𝑖𝑘𝑚

, 𝛾).
In the sequel, we use notation 𝑖 ∈ 𝐵 to denote an action 𝑖 belonging to the
sequence of 𝐵.

By definition of an MMT, recall that the same timer 𝑥 is restarted along a block
𝐵. Hence we also say that 𝐵 is an 𝑥-block. Note also that the sequence of a
block can be composed of a single input 𝑖 ∈ 𝐼.

Example 9.2.7. Consider the timed run 𝜌 of Example 9.2.5 from the MMTℳ
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𝐵1

𝐵2

(a) Timed run 𝜌.

𝐵1

𝐵2

(b) Timed run 𝜎.

𝐵2

𝐵3
𝐵1

(c) Timed run 𝜋.

𝐵2

𝐵1 𝐵3 𝐵4

(d) Timed run 𝜏.

Figure 9.2: Block representations of four timed runs.

depicted in Figure 9.1 (and repeated in the margin):
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥

𝜌 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
1
−→ (𝑞1, 𝑥1 = 0)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 0, 𝑥2 = 2)
0
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 2)

to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, ∅)
1.5
−−→ (𝑞0, ∅).

It has two blocks: an 𝑥1-block 𝐵1 = (𝑖 to[𝑥1], ⊥) and an 𝑥2-block 𝐵2 =
(𝑖, ×), both represented in Figure 9.2a.3 3: When using the action indices in

the blocks, we have 𝐵1 = (1 3, ⊥)
and 𝐵2 = (2, ×).

In this visual representation of the
blocks, time flows left to right and is represented by the thick horizontal line.
A “gap” in that line indicates that the time is stopped, i.e., the delay between
two consecutive actions is zero. We draw a vertical line for each action, and
join together actions belonging to a block by a horizontal (non-thick) line.
Moreover, a dotted line finished by × represents a block whose timer fate is
×.
Consider another timed run 𝜎 from 𝒜:

𝜎 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
1
−→ (𝑞1, 𝑥1 = 0)

to[𝑥1]/𝑜
−−−−→

(𝑥1,1)
(𝑞1, 𝑥1 = 1)

0
−→ (𝑞1, 𝑥1 = 1)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1)

to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, ∅)
0.5
−−→ (𝑞0, ∅).

This timed run has also two blocks represented in Figure 9.2b, such that
𝐵1 = (𝑖 to[𝑥1] to[𝑥1], ⊥) with 𝑥1 timing out twice.
We conclude this example with two other timed runs, 𝜋 and 𝜏, such that
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5: Recall that the sequence of a
block can be composed of a single
action.

some of their blocks have a timer fate 𝛾 ≠ ⊥. Let 𝜋 and 𝜏 be the timed runs:

𝜋 = (𝑞0, ∅)
0.5
−−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
0
−→ (𝑞1, 𝑥1 = 1)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞2, 𝑥1 = 1, 𝑥2 = 1)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 0)

to[𝑥2]/𝑜
−−−−→

⊥
(𝑞1, 𝑥1 = 0)

0
−→ (𝑞1, 𝑥1 = 0)

to[𝑥1]/𝑜
−−−−→

(𝑥1,1)
(𝑞1, 𝑥1 = 1)

0.5
−−→ (𝑞1, 𝑥1 = 0.5)

and

𝜏 = (𝑞0, ∅)
0.5
−−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
0
−→ (𝑞1, 𝑥1 = 1)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
0.8
−−→ (𝑞2, 𝑥1 = 0.2, 𝑥2 = 1.2)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞2, 𝑥1 = 1, 𝑥2 = 1.2)
0.5
−−→ (𝑞2, 𝑥1 = 0.5, 𝑥2 = 0.7)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞2, 𝑥1 = 1, 𝑥2 = 0.7)
0.7
−−→ (𝑞2, 𝑥1 = 0.3, 𝑥2 = 0)
to[𝑥2]/𝑜
−−−−→

⊥
(𝑞1, 𝑥1 = 0.3)

0.2
−−→ (𝑞1, 𝑥1 = 0.1).

The run 𝜋 has three blocks 𝐵1 = (𝑖, ) (𝑥1 is started by 𝑖 and then discarded
while its value is zero), 𝐵2 = (𝑖 to[𝑥2], ⊥), and 𝐵3 = (𝑖 to[𝑥1], ×) (𝑥1 is
again started in 𝐵3 but 𝜋 ends before 𝑥1 reaches value zero). Those blocks
are represented in Figure 9.2c, where we visually represent the timer fate of
𝐵1 by a dotted line finished by . Finally, the run 𝜏 has its blocks depicted in
Figure 9.2d. This time, 𝑥1 is discarded before reaching zero, i.e., 𝐵1 = (𝑖, ×).

As illustrated by the previous example, blocks satisfy the following prop-
erty.5

Lemma 9.2.8. Let

𝜌 = (𝑝0, 𝜅0)
𝑑1−→ (𝑝0, 𝜅0 − 𝑑1)

𝑖1−→
𝑢1

(𝑝1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛−→
𝑢𝑛

(𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1) ∈ truns(ℳ)

be a timed run an MMT. Then, the sequences of the blocks of 𝜌 form a partition
of the set of indices {1, … , 𝑛} of the actions of 𝜌.
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9.2.3. Enabled timers and complete machines

Let us now move towards defining when a machine is deemed complete.
Intuitively, we require that, if a timer 𝑥 can time out in a state 𝑞 (via some

timed run), then 𝑞
to[𝑥]
−−→ must be defined. In order to properly define this, we

first introduce enabled timers, which are those timers that can time out.

Definition 9.2.9 (Enabled timers). Given a timed run

𝜌 = (𝑞ℳ0 , ∅)
𝑑1−→ (𝑞ℳ0 , ∅ − 𝑑1)

𝑖1−→ (𝑞1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛−→ (𝑞𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑞𝑛, 𝜅𝑛 − 𝑑𝑛+1)

of a sound MMTℳ, we define its set of enabled timers, denoted 𝜒ℳ
0 (𝜌), as

𝜒ℳ
0 (𝜌) = {𝑥 ∈ 𝑋ℳ ∣ (𝜅𝑛 − 𝑑𝑛+1)(𝑥) = 0}.

The set of enabled timers of a run 𝜋 = 𝑞ℳ0
𝑖1−→ 𝑞1

𝑖2−→ ⋯
𝑖𝑛−→ 𝑞𝑛, denoted

𝜒ℳ
0 (𝜋), is the union of all 𝜒ℳ

0 (𝜌) such that 𝜌 is a timed run of ℳ whose
untimed projection is 𝜋.
Finally, the set of enabled timers of a state 𝑝, denoted 𝜒ℳ

0 (𝑝), is the union of
all 𝜒ℳ

0 (𝜋) such that 𝜋 = 𝑞ℳ0
𝑤
−→ 𝑝 is a run ofℳ.

Example 9.2.10.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥
Let us again consider the MMT ℳ of Figure 9.1 and the

timed run

𝛾 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖
−→ (𝑞1, 𝑥1 = 1)

1
−→ (𝑞1, 𝑥1 = 0).

Then, 𝜒ℳ
0 (𝛾) = {𝑥1}. Furthermore,

𝜒ℳ
0 (𝑞0

𝑖
−→ 𝑞1) = 𝜒ℳ

0 (untime(𝛾)) = {𝑥1}.

Finally, given the (untimed projections of the timed) runs of Examples 9.2.5
and 9.2.7, it is not hard to see that

𝜒ℳ
0 (𝑞0) = ∅,

𝜒ℳ
0 (𝑞1) = {𝑥1},

and
𝜒ℳ

0 (𝑞2) = {𝑥1, 𝑥2}.

This allows us to easily define when an MMT is complete: for every state, the
set of defined transitions must be exactly those reading an input and those
reading the timeouts of enabled timers.

Definition 9.2.11 (Complete MMT). An MMT ℳ is said to be complete

when for every state 𝑞 ofℳ, 𝑞
𝑖

−→ ∈ runs(ℳ) if and only if 𝑖 ∈ 𝐼∪TO[𝜒ℳ
0 (𝑞)]

The MMT of Figure 9.1 is complete.
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6: That is, 𝑗 and 𝑘 belong to the
same block.

Computing enabled timers

While computing the enabled timers of a timed run is easy (simply check the
values of each timer in the last valuation), it is harder to determine the set for
runs (and, thus, for states).

We first explain how to compute 𝜒ℳ
0 (𝜋) with 𝜋 ∈ runs(ℳ). The idea is

as follows. Whenever we take a to[𝑥]-transition, there must be an earlier
transition that (re)started 𝑥 to some constant 𝑐 ∈ ℕ>0 (i.e., the two transitions
belong to the same block). Moreover, the elapsed time between the transition
must be equal to 𝑐. Hence, we can accumulate some constraints along the
transitions of 𝜋. Using these constraints, we are able to determine which timer
can potentially time out at the end of 𝜋.

More formally, let

𝜋 = 𝑝0
𝑖1/𝑜1−−−→

𝑢1
𝑝1

𝑖2/𝑜2−−−→
𝑢2

⋯
𝑖𝑛/𝑜𝑛−−−→

𝑢𝑛
𝑝𝑛 ∈ runs(ℳ)

with 𝑝0 = 𝑞ℳ0 (i.e., we start from the initial state). If 𝜋 is feasible, there must
exist a timed run

𝜌 = (𝑝0, ∅)
𝑑1−→ (𝑝0, ∅)

𝑖1/𝑜1−−−→
𝑢1

(𝑝1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛/𝑜𝑛−−−→
𝑢𝑛

(𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1)

such that untime(𝜌) = 𝜋 and

▶ for all 𝑗 ∈ {1, … , 𝑛 + 1}, 𝑑𝑗 ∈ ℝ≥0,

▶ for any 𝑗 and 𝑘 such that 𝑝𝑗−1
𝑖𝑗

−−−→
(𝑥,𝑐)

𝑝𝑗
𝑖𝑗+1
−−→ ⋯

𝑖𝑘=to[𝑥]
−−−−→ 𝑝𝑘 is an 𝑥-

spanning run,6 the sum of the delays 𝑑𝑗+1 to 𝑑𝑘 must be equal to 𝑐, i.e.,
∑𝑘

ℓ=𝑗+1 𝑑ℓ = 𝑐, and
▶ for any 𝑗 such that 𝑢𝑗 = (𝑥, 𝑐) and there is no 𝑘 > 𝑗 such that 𝑖𝑘 = to[𝑥],

then either 𝑥 is restarted or stopped by some transition, or the run ends
before to[𝑥] can occur or be processed.

• In the first case, let 𝑘 > 𝑗 such that 𝑖𝑘 ≠ to[𝑥] and 𝑝𝑘−1
𝑖𝑘−→ restarts

or stops 𝑥. Then, the sum of the delays 𝑑𝑗+1 to 𝑑𝑘 must be strictly
less than 𝑐, i.e., ∑𝑘

ℓ=𝑗+1 𝑑ℓ ≤ 𝑐.
• In the second case (so, 𝑥 ∈ 𝜒(𝑝𝑛) and 𝑥 does not time out after
waiting 𝑑𝑛+1), the sum of the delays 𝑑𝑗+1 to 𝑑𝑛+1 must be strictly
less than 𝑐, i.e., ∑𝑛+1

ℓ=𝑗+1 𝑑ℓ ≤ 𝑐.

Observe that these constraints are all linear. Moreover, if we consider the
delays 𝑑𝑗 as variables, one can still gather the constraints and use them to find
a value for each 𝑑𝑗. We denote by cnstr(𝜋) the set of constraints for 𝜋 over the
variables representing the delays. Notice that there may be multiple different
solutions. Importantly, from the arguments given above, a solution always
exists if and only if 𝜋 is feasible.
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7: Observe that the untimed pro-
jection of the resulting timed run is
no longer 𝜋, due to the new time-
out action.

8: Although we did not define
toutputs𝒩(⋅) for TMMs, its defini-
tion follows naturally from the se-
mantics of𝒩.

9: See Section 9.2 for the defi-
nitions of clock constraints and
TMMs.

Lemma 9.2.12. Let ℳ be a sound and complete MMT and 𝜋 ∈ runs(ℳ).
Then, cnstr(𝜋) has a solution if and only if 𝜋 is feasible.

It remains to explain how to compute 𝜒ℳ
0 (𝜋) from cnstr(𝜋). For every timer

𝑥 ∈ 𝜒(𝑝𝑛) (i.e., for every timer that may be enabled after reading 𝜋), we do as
follows:

▶ Let 𝑝𝑗
𝑖𝑗

−−−→
(𝑥,𝑐)

𝑝𝑗+1 be the last transition of 𝜋 that (re)started 𝑥. Replace

the constraint ∑𝑛+1
ℓ=𝑗+1 𝑑ℓ ≤ 𝑐 by ∑𝑛+1

ℓ=𝑗+1 𝑑ℓ = 𝑐, i.e., we force 𝑥 to time
out at the end of the timed run.

▶ Compute a solution to the refined cnstr(𝜋). There are two possibilities:

• A solution exists, meaning that there exists a timed run ending
with

(𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1)
to[𝑥]
−−→ (𝑝𝑛+1, 𝜅𝑛+1)

0
−→ (𝑝𝑛+1, 𝜅𝑛+1).

Hence, 𝑥 is enabled in that timed run, meaning that it is also enabled
for 𝜋, i.e., 𝑥 ∈ 𝜒ℳ

0 (𝜋).7
• A solution does not exist, meaning that 𝑥 can never time out after

𝜋, i.e., 𝑥 ∉ 𝜒ℳ
0 (𝜋).

We can thus compute 𝜒ℳ
0 (𝜋) in finite time.

Lifting this procedure to any state 𝑞 is complex, as a timer may only be enabled
after looping over some states a precise number of times, i.e., guessing which
run to consider among all runs from 𝑞ℳ0 to 𝑞 is a hard task. One way to achieve
this is to compute the region automaton or the zone MMT, as introduced in
Sections 9.5 and 9.7.1. Notice that, if there are only finitely many runs from 𝑞ℳ0
to 𝑞, it becomes easy to compute 𝜒ℳ

0 (𝑞): take the union of the enabled timers
of each run. This idea will be used when learning (see the next chapter).

9.3. Relation with timed Mealy machine

In this section, we provide a construction to go from an MMT to a timed Mealy
machine (TMM). That is, we convert timers into clocks. We also provide an
example where the other direction (i.e., from clocks into timers) does not hold.
That is, we show the following theorem.8

Theorem 9.3.1. For every MMT ℳ, there exists a TMM 𝒩 such that
toutputsℳ(𝑤) = toutputs𝒩(𝑤) for every timed word 𝑤 over 𝐼. The opposite
direction does not hold.

Recall that Φ(𝐶) denotes the set of clock constraints over the set of clocks
𝐶.9

9.3.1. From timers to clocks

Let ℳ be an MMT. We assume that 𝑋 = {𝑥1, … , 𝑥𝑛} and construct a TMM
𝒩 using 𝑋 as its set of clocks (i.e., 𝐶 = 𝑋). The idea is as follows. Let 𝑉𝑥𝑖

be
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𝑞0, ∅ 𝑞1, 𝑥1 ↦ 1 𝑞2, 𝑥1 ↦ 1, 𝑥2 ↦ 2
[⊤]𝑖/𝑜

{𝑥1}

[𝑥1 = 1]to[𝑥1]/𝑜, {𝑥1} [⊤]𝑖/𝑜′

{𝑥2}

[𝑥2 = 2]to[𝑥2]/𝑜

∅

[⊤]𝑖/𝑜, {𝑥1}

[𝑥1 = 1]to[𝑥1]/𝑜′

∅

Figure 9.3: The timed Mealy machine constructed from the Mealy machine with timers of Figure 9.1, with
Inv((𝑞0, ∅)) = ⊤, Inv((𝑞1, 𝑥1 ↦ 1)) = 0 ≤ 𝑥1 ≤ 1, and Inv((𝑞2, 𝑥1 ↦ 1, 𝑥2 ↦ 2)) = 0 ≤ 𝑥1 ≤
1 ∧ 0 ≤ 𝑥2 ≤ 2.

the set of all constants at which 𝑥𝑖 is set on the transitions of ℳ, and 𝑉 be
the union of all 𝑉𝑥. Then, the states of 𝒩 are pairs composed of a state 𝑞 of
ℳ, and a function 𝑓 ∶ 𝜒(𝑞) → 𝑉 with the intent that it stores the last value at
which each timer was started.

While input-transitions can be triggered anytime, a to[𝑥𝑖]-transition can only
occur when the valuation of 𝑥𝑖 is zero. Hence, in 𝒩, the guard for a to[𝑥𝑖]-
transition is 𝑥𝑖 = 𝑐𝑖. Finally, we use the invariants of the states of𝒩 to force a
transition to be taken, i.e., we set a limit over the time that can elapse within
a state without triggering a transition.

We give a simple example before the formal definition. We then provide a
more complex example, highlighting the interest of the functions 𝑓 in the
states of𝒩.

Example 9.3.2.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥
Let ℳ be the MMT of Figure 9.1 (which is repeated in the

margin). Figure 9.3 gives the TMM 𝒩 constructed from ℳ. We write
𝑥1 ↦ 1, 𝑥2 ↦ 2 to denote the function 𝑓 such that 𝑓(𝑥1) = 1 and 𝑓(𝑥2) = 2.
It is not hard to see that any timed run of ℳ can be mimicked in 𝒩, and
vice-versa, given the invariants of the states and the guards of the transitions.

Definition 9.3.3 (From MMT to TMM). Letℳ = (𝐼, 𝑂, 𝑋, 𝑄ℳ, 𝑞ℳ0 , 𝜒, 𝛿ℳ)
be a sound and complete MMT. We define the TMM 𝒩 =
(𝐼, 𝑂, 𝑋, 𝑄𝒩, 𝑞𝒩0 , Inv, 𝛿𝒩) such that

▶ 𝑄𝒩 = {(𝑞, 𝑓) ∣ 𝑞 ∈ 𝑄ℳ, 𝑓 ∶ 𝜒(𝑞) → 𝑉 },
▶ 𝑞𝒩0 = (𝑞0, ∅),
▶ Inv ∶ 𝑄𝒩 → 𝑉 is a total function defined as follows. For every

(𝑞, 𝑓) ∈ 𝑄𝒩, Inv((𝑞, 𝑓)) ensures that the values of the clocks do not
exceed 𝑓(𝑥), i.e.,

Inv((𝑞, 𝑓)) = {
⊤ if 𝜒(𝑞) = ∅
⋀𝑥∈𝜒(𝑞) 0 ≤ 𝑥 ≤ 𝑓(𝑥) otherwise.

▶ The transition relation 𝛿𝒩 is defined by copying the transitions of
ℳ and “updating” the function 𝑓 according to the updates. That is,

for every (𝑞, 𝑓) ∈ 𝑄𝒩 and transition 𝑞
𝑖/𝑜
−−→

𝑢
𝑞′ of ℳ, we define the
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10: However, due to the exponen-
tial blowup of Definition 9.3.3, com-
plexity results may not transfer di-
rectly.

transition
(𝑞, 𝑓)

[𝑔]𝑖/𝑜
−−−→

𝑟
(𝑞′, 𝑓 ′) ∈ runs(𝒩)

with

𝑟 = {
{𝑥} if 𝑢 = (𝑥, ⋅)
∅ otherwise,

𝑔 = {
𝑥 = 𝑓(𝑥) if 𝑖 = to[𝑥]
⊤ otherwise,

and 𝑓 ′ ∶ 𝜒(𝑞′) → 𝑉 is such that

∀𝑥 ∈ 𝜒(𝑞′) ∶ 𝑓 ′(𝑥) = {
𝑐 if 𝑢 = (𝑥, 𝑐)
𝑓(𝑥) if 𝑢 ≠ (𝑥, ⋅).

Let us now give a more complex example, illustrating the need of the functions
in the states of the TMM.

Example 9.3.4. Let us consider the MMT of Figure 9.4a. Observe that the
self-loops over 𝑞2 and 𝑞3 restart 𝑥1 and 𝑥2 (respectively) with values that
are different from the first time each timer is started. Hence, in the corre-
sponding TMM, states 𝑞2 and 𝑞3 need to be split, depending on whether the
self-loops have already been triggered. Indeed, the conditions to remain
in the state, and when a timeout can occur must change. Figure 9.4b gives
the TMM. Again, it is not hard to see any timed run of the MMT can be
reproduced in the TMM, and vice-versa.

Observe that, in the worst case, Definition 9.3.3 induces an exponential blowup
in the number of timers. Indeed, the number of states of 𝒩 is bounded by
∣𝑄ℳ∣ ⋅ |𝑉||𝑋|. We now give an example where an exponential number of states
is required.

Example 9.3.5. Let 𝑛 ∈ ℕ>0, 𝐼 = {𝑖1, 𝑖2, 𝑗}, and 𝑋 = {𝑥1, … , 𝑥𝑛}. Let
ℳ be the MMT of Figure 9.5. For clarity, outputs are not represented on
the figure, and any missing transition leads to 𝑞0. We have 𝑉𝑥1

= ⋯ =
𝑉𝑥𝑛

= 𝑉 = {1, 2}. Let us focus on the states 𝑝1 to 𝑝𝑛. Notice that, for every
𝑖, 𝑗 ∈ {1, … , 𝑛}, it is possible to reach the state 𝑝𝑖 such that the timer 𝑥𝑗 was
last started at 1 (resp. 2). By Definition 9.3.3, each 𝑝𝑖 then induces 2𝑛 states
in the TMM𝒩. That is, ∣𝑄𝒩∣ is exponential in the number of timers ofℳ.

In conclusion, since an MMT can be converted into a TMM, we can leverage
many properties and algorithms developed for timed automata (see Chap-
ter 8).10 Nonetheless, in the next sections, we develop a more specific theory
for MMTs. That is, we adapt the notion of regions and zones and show that
reachability remains PSPACE-complete. Furthermore, we study whether it is
possible to observe every untimed behavior of an MMT with timed runs in
which all delays are positive.
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𝑞0 𝑞1 𝑞2

𝑞3

𝑖/𝑜
𝑥1 ≔ 1

𝑖/𝑜′, 𝑥2 ≔ 3
to[𝑥1]/𝑜, 𝑥1 ≔ 1 𝑖/𝑜, 𝑥1 ≔ 2

to[𝑥2]/𝑜, ⊥

𝑖/𝑜′, 𝑥2 ≔ 1

to[𝑥1]/𝑜′

⊥
to[𝑥2]/𝑜

⊥

(a) The MMT with 𝜒(𝑞0) = ∅, 𝜒(𝑞1) = {𝑥1}, 𝜒(𝑞2) = {𝑥1, 𝑥2}, and 𝜒(𝑞3) = {𝑥2}.

𝑞0, ∅ 𝑞1, 𝑥1 ↦ 1

𝑞2, 𝑥1 ↦ 1, 𝑥2 ↦ 3 𝑞2, 𝑥1 ↦ 2, 𝑥2 ↦ 3

𝑞3, 𝑥2 ↦ 3

𝑞3, 𝑥2 ↦ 1

𝑖/𝑜

{𝑥1}

[𝑥1 = 1]to[𝑥1]/𝑜, {𝑥1}

[⊤]𝑖/𝑜′, {𝑥2}[𝑥2 = 3]to[𝑥2]/𝑜, ∅

[⊤]𝑖/𝑜

{𝑥1}

[𝑥1 = 1]to[𝑥1]/𝑜′, ∅

[⊤]𝑖/𝑜, {𝑥1}

[⊤]𝑖/𝑜′, {𝑥2}

[⊤]𝑖/𝑜′, {𝑥2}

[𝑥2 = 3]to[𝑥2]/𝑜

∅

[𝑥1 = 2]to[𝑥1]/𝑜

∅

[𝑥2 = 3]to[𝑥2]/𝑜

∅

[𝑥2 = 1]to[𝑥2]/𝑜

∅

(b) The TMM with Inv((𝑞0, ∅)) = ⊤, Inv((𝑞1, 𝑥1 ↦ 1)) = 0 ≤ 𝑥1 ≤ 1, Inv((𝑞2, 𝑥1 ↦ 1, 𝑥2 ↦ 3)) = 0 ≤ 𝑥1 ≤
1 ∧ 0 ≤ 𝑥3 ≤ 3, Inv((𝑞2, 𝑥1 ↦ 2, 𝑥2 ↦ 3)) = 0 ≤ 𝑥1 ≤ 2 ∧ 0 ≤ 𝑥3 ≤ 3, Inv((𝑞2, 𝑥2 ↦ 3)) = 0 ≤ 𝑥3 ≤ 3, and
Inv((𝑞2, 𝑥2 ↦ 1)) = 0 ≤ 𝑥3 ≤ 1.

Figure 9.4: A Mealy machine with timers and its constructed timed Mealy machine.
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𝑞0 𝑞1 ⋯ 𝑞𝑛

𝑝1𝑝2⋯𝑝𝑛

𝑗/𝑥1 ≔ 1 𝑗/𝑥2 ≔ 1 𝑗/𝑥𝑛 ≔ 1

𝑗/⊥

𝑖1/𝑥1 ≔ 1
𝑖2/𝑥1 ≔ 2

𝑗/⊥

𝑖1/𝑥2 ≔ 1
𝑖2/𝑥2 ≔ 2

𝑗/⊥𝑗/⊥

𝑖1/𝑥𝑛 ≔ 1
𝑖2/𝑥𝑛 ≔ 2

𝑗/⊥

Figure 9.5: An MMT, with 𝜒(𝑞0) = ∅, 𝜒(𝑞1) = {𝑥1}, … , 𝜒(𝑞𝑛) = {𝑥1, … , 𝑥𝑛} = 𝜒(𝑝1) = ⋯ = 𝜒(𝑝𝑛), for
which Definition 9.3.3 yields an exponential number of states. For clarity, outputs are omitted and
any missing transition goes to 𝑞0.

𝑞0 𝑞1

𝑞2

[0 ≤ 𝑥 < 1]𝑖/𝑜, ∅

[𝑥 ≥ 1]𝑖/𝑜′, ∅

(a) The TMM with Inv(𝑞0) = Inv(𝑞1) = Inv(𝑞2) = ⊤.

𝑞0 𝑞1 𝑞2

𝑞3 𝑞4

𝜀/𝜀, 𝑥 ≔ 1 𝑖/𝑜, ⊥

to[𝑥]/𝜀, ⊥

𝑖/𝑜′, ⊥

(b) The MMT with 𝜒(𝑞0) = 𝜒(𝑞2) = 𝜒(𝑞3) =
𝜒(𝑞4) = ∅, and 𝜒(𝑞1) = {𝑥}.

Figure 9.6: A timed Mealy machine and a candidate corresponding Mealy machine with timers.

9.3.2. From clocks to timers

Let us now argue that it is not always possible to convert a TMM into an
MMT. Since clocks are always running, it is possible to describe transitions
from the initial state that can only occur with a specific timing in a TMM.
However, these timed behaviors cannot be reproduced in an MMT without
changing the definition (as no timer is active in the initial state). Hence, we
allow in this section the use of 𝜀-transitions in an MMT. That is, timers can
be started without having to read any symbol. Furthermore, we assume that
timeout transitions do not output any symbol (i.e., only the input transitions
can produce an output). Still, there exists a TMM that cannot be perfectly
simulated by any MMT.

Let𝒩 be the TMM of Figure 9.6a. Let 𝑤 = 1 ⋅ 𝑖 ⋅ 1 be a timed word, and 𝜌 be
the timed run of𝒩 reading 𝑤, i.e.,

𝜌 = (𝑞0, 𝑥 = 0)
1
−→ (𝑞0, 𝑥 = 1)

𝑖/𝑜′

−−→ (𝑞2, 𝑥 = 1)
1
−→ (𝑞2, 𝑥 = 2).

Observe that it is the unique run of𝒩 that can read 𝑤, as there is a single guard
that is satisfied by the valuation 𝑥 = 1. That is, toutputs𝒩(𝑤) = 1 ⋅ 𝑜′ ⋅ 1.

If we were to create a corresponding MMTℳ, we would need a timer, say 𝑦,
that mimics 𝑥 and that is used to know whether we should take the transition
𝑞0

𝑖
−→ 𝑞1 or 𝑞0

1
−→ 𝑞2. More specifically, 𝑦 should be started by a transition
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reading 𝜀 (i.e., reading no symbol) and at value 1 (given the constant appearing
in the guards of𝒩).

Figure 9.6b gives a candidate MMT following these ideas. Let us now look at
two possible timed runs reading 𝑤:

𝜎 = (𝑞0, ∅)
0
−→ (𝑞0, ∅)

𝜀
−→ (𝑞1, 𝑥 = 1)

1
−→ (𝑞1, 𝑥 = 0)

𝑖/𝑜
−−→ (𝑞2, ∅)

1
−→ (𝑞2, ∅)

and

𝜎′ = (𝑞0, ∅)
0
−→ (𝑞0, ∅)

𝜀
−→ (𝑞1, 𝑥 = 1)

1
−→ (𝑞1, 𝑥 = 0)

to[𝑥]/𝜀
−−−−→ (𝑞3, ∅)

0
−→ (𝑞3, ∅)

𝑖/𝑜′

−−→ (𝑞4, ∅)
1
−→ (𝑞4, ∅).

Hence, toutputsℳ(𝑤) contains (at least) 1⋅𝑜⋅1 and 1⋅𝑜′ ⋅1. Since the first output
word is not in toutputs𝒩(𝑤), we conclude thatℳ is not a valid candidate for
the simulation of𝒩. However, it is not hard to see that any MMT that does
not follow the above ideas cannot simulate𝒩. We thus conclude that there
are TMMs that cannot be reproduced by MMTs, even by changing the syntax
and semantics of MMTs.

9.4. Equivalence of two Mealy machines with timers

Given two sound and complete MMTs, it may be useful to decide whether
they describe the same timed behaviors, despite the fact that they do not use
the same timers. In this section, we present two different approaches to test
equivalence: the first one “hides” the timeouts behind the delays (so, in a timed
context), while the second onesymbolically describes (untimed) runs. We also
claim that the second implies the first.

9.4.1. Timed equivalence

For the timed equivalence approach, recall that it is not possible to let time
elapse when a timer times out. Hence, a complete MMTℳ can be assumed to
automatically process timeouts when they occur. From a timed run

𝜌 = (𝑝0, 𝜅0)
𝑑1−→ (𝑝0, 𝜅0 − 𝑑1)

𝑖1/𝑜1−−−→ ⋯
𝑑𝑛−→ (𝑝𝑛−1, 𝜅𝑛−1 − 𝑑𝑛)

𝑖𝑛/𝑜𝑛−−−→ (𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1),

we construct a timed word over 𝐼 (i.e., without any timeout actions) as fol-
lows:

▶ Drop every timeout transition from 𝑑1 ⋅ 𝑖1 ⋯ 𝑖𝑛 ⋅ 𝑑𝑛+1.
▶ The resulting word may have two consecutive delays 𝑑𝑖 and 𝑑𝑖+1 without

any action in between. In that case, simply sum 𝑑𝑖 and 𝑑𝑖+1 to obtain a
new delay. Repeat this until we obtain a well-formed timed word over 𝐼.

We call such a word a timed input word (tiw, for short) and denote by tiw(𝜌)
the tiw obtained from the timed run 𝜌. It is not hard to reconstruct a timed
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run from a tiw: simply follow the provided delays and input symbols, while
automatically adding timeout actions whenever needed. As more than one
timer may time out simultaneously (or some timers time out at the same time
an input must be processed), a single tiw 𝑤 can induce many timed runs. Let
tiwruns(𝑤) be the set of all timed runs induced by 𝑤.

Recall that any timed run 𝜌 yields a timed word tow(𝜌) over 𝑂, called a timed
output word (tow, in short). We highlight that the number of output symbols
in tow(𝜌) may be greater than the number of input symbols in tiw(𝜌), due to
the timeouts. We lift toutputs(𝑤), with 𝑤 a tiw, to denote the set of all tows
produced by the timed runs in tiwruns(𝑤).

Example 9.4.1. Let ℳ be the MMT of Figure 9.1 (repeated in the margin)
and 𝑤 = 1 ⋅ 𝑖 ⋅ 1 ⋅ 𝑖 ⋅ 1.5 be a tiw. There are two possible timed runs in
tiwruns(𝑤):11 11: These are the timed runs 𝜌 and

𝜎 from Examples 9.2.5 and 9.2.7.

𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥

𝜌 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
1
−→ (𝑞1, 𝑥1 = 0)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 0, 𝑥2 = 2)
0
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 2)

to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, ∅)
1.5
−−→ (𝑞0, ∅)

and

𝜎 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
1
−→ (𝑞1, 𝑥1 = 0)

to[𝑥1]/𝑜
−−−−→

(𝑥1,1)
(𝑞1, 𝑥1 = 1)

0
−→ (𝑞1, 𝑥1 = 1)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1)

to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, ∅)
0.5
−−→ (𝑞0, ∅).

Observe that we insert the timeouts of 𝑥1 and 𝑥2 whenever needed. We
thus have two different tows:

tow(𝜌) = 1 ⋅ 𝑜 ⋅ 1 ⋅ 𝑜′ ⋅ 0 ⋅ 𝑜′ ⋅ 1.5
and

tow(𝜎) = 1 ⋅ 𝑜 ⋅ 1 ⋅ 𝑜 ⋅ 0 ⋅ 𝑜′ ⋅ 1 ⋅ 𝑜′ ⋅ 0.5.

Hence, |toutputs(𝑤)| = 2.

We can now easily define the equivalence of two MMTsℳ and𝒩: for every
tiw, bothℳ and𝒩 produce the same tows.

Definition 9.4.2 (Timed equivalence). Two sound and complete MMTs

ℳ and 𝒩 are timed equivalent , denoted by ℳ
time
≈ 𝒩, if and only if

toutputsℳ(𝑤) = toutputs𝒩(𝑤) for all tiws 𝑤.
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9.4.2. Symbolic equivalence

The second approach aims at abstracting the timeouts while remaining in
the “untimed world”. For this purpose, we define symbolic words as words w
over the alphabet A = 𝐼 ∪ TO[ℕ>0] to describe the 𝑥-spanning sub-runs of
a run in the following way. Along a run 𝜋 of a sound MMT, for any to[𝑥]-
transition there must exist an earlier transition (re)starting 𝑥. The part of the
run between the last such transition and the to[𝑥] is 𝑥-spanning. Hence, for a
given to[𝑥]-transition of 𝜋, there exists a unique transition that is the source of
this timeout transition. Let 𝑤 = 𝑖1 ⋯ 𝑖𝑛 be a word over 𝐴(ℳ) that is the label
of a run

𝜋 = 𝑝0
𝑖1−→
𝑢1

𝑝1
𝑖2−→
𝑢2

⋯
𝑖𝑛−→
𝑢𝑛

𝑝𝑛 ∈ runs(ℳ).

The symbolic word (sw, for short) of 𝑤 is the word 𝑤 = i1 ⋯ in over A such
that, for every 𝑘 ∈ {1, … , 𝑛},

▶ ik = 𝑖𝑘 if 𝑖𝑘 ∈ 𝐼, and
▶ ik = to[𝑗] where 𝑗 < 𝑘 is the index of the last transition (re)starting 𝑥 if

𝑖𝑘 = to[𝑥].

Conversely, given a symbolic word w = i1 … in over A, one can convert it into
a run 𝑞0

𝑤
−→ using concrete timeout symbols such that 𝑤 = w if such a run

exists inℳ. In short, for a symbol to[𝑗], it suffices to retrieve the 𝑗-th transition
of the run. If that transition (re)starts a timer 𝑥, to[𝑗] is then replaced by to[𝑥].
Section C.1 gives further details.

Example 9.4.3.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥
Let ℳ be the MMT of Figure 9.1 (repeated in the margin)

and
𝜋 = 𝑞0

𝑖
−−−→
(𝑥1,1)

𝑞1
to[𝑥1]

−−−→
(𝑥1,1)

𝑞1
to[𝑥1]

−−−→
(𝑥1,1)

𝑞1 ∈ runs(ℳ).

Let us construct the symbolic word w = i1⋅i2⋅i3 such that 𝑖 ⋅ to[𝑥1] ⋅ to[𝑥1] =
w. As the first action of 𝜋 is the input 𝑖, we get i1 = 𝑖. The second action
of 𝜋 is to[𝑥1] and the last transition to (re)start 𝑥1 is the first transition of 𝜋.
So, i2 = to[1]. Likewise, the last symbol i3 of w must be to[2], as the second
transition of 𝜋 restarts 𝑥1. Hence, w = 𝑖 ⋅ to[1] ⋅ to[2].
In the opposite direction, it is not hard to see that the symbolic word w =
𝑖 ⋅ 𝑖 ⋅ to[2] ⋅ to[1] induces the run

𝑞0
𝑖

−−−→
(𝑥1,1)

𝑞1
𝑖

−−−→
(𝑥2,2)

𝑞2
to[𝑥2]
−−−→ 𝑞2

to[𝑥1]
−−−→ 𝑞0 ∈ runs(ℳ)

such that 𝑖 ⋅ 𝑖 ⋅ to[𝑥2] ⋅ to[𝑥1] = w.

We now define a notion of symbolic equivalence between two MMTsℳ and𝒩
such that for any symbolic word w,ℳ has a feasible run reading w if and only
if𝒩 has a feasible run reading w, and outputs and updates starting spanning
sub-runs are the same (up to timer renaming).

Definition 9.4.4 (Symbolic equivalence). Two sound and complete MMTs
ℳ and 𝒩 are symbolically equivalent , denoted by ℳ

sym
≈ 𝒩, if for every
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symbolic word w = i1 ⋯ in over A,

𝑞ℳ0
i1/𝑜1−−−→

𝑢1
𝑞1

i2/𝑜2−−−→
𝑢2

⋯
in/𝑜𝑛−−−→

𝑢𝑛
𝑞𝑛

is a feasible run inℳ (where every 𝑞𝑗 is a state ofℳ) if and only if

𝑞𝒩0
i1/𝑜′

1−−−→
𝑢′

1

𝑞′
1

i2/𝑜′
2−−−→

𝑢′
2

⋯
in/𝑜′

𝑛−−−→
𝑢′𝑛

𝑞′
𝑛

is feasible in𝒩 (where every 𝑞′
𝑗 is a state of𝒩). Moreover,

▶ 𝑜𝑗 = 𝑜′
𝑗 for all 𝑗 ∈ {1, … , 𝑛}, and

▶ if 𝑞𝑗−1
ij⋯ik

−−−→ 𝑞𝑘 is spanning, then 𝑢𝑗 = (𝑥, 𝑐), 𝑢′
𝑗 = (𝑥′, 𝑐′), and 𝑐 = 𝑐′.

Notice that the run 𝑞𝑗−1
ij⋯ik

−−−→ 𝑞𝑘 is spanning in ℳ if and only if the run

𝑞′
𝑗−1

ij⋯ik

−−−→ 𝑞′
𝑘 is spanning in 𝒩 as both machines read the same symbolic

word. Notice also that no condition is imposed on the updates 𝑢𝑗, 𝑢′
𝑗 appearing

outside the start of spanning runs. As outputs and updates at the start of
spanning runs are the same, symbolic equivalence implies timed equivalence.
Section C.2 gives a proof and a counterexample for the reverse implication.

Proposition 9.4.5. Let ℳ and 𝒩 be two sound and complete MMTs. If
ℳ

sym
≈𝒩, then ℳ

time
≈ 𝒩.

9.5. Reachability and regions

The reachability problem asks, given an MMTℳ and a state 𝑞, whether there
exists a timed run 𝜌 ∈ truns(ℳ) from the initial configuration (𝑞ℳ0 , ∅) to some
configuration (𝑞, 𝜅). In this section, we argue that this problem is PSPACE-
complete. For simplicity, we ignore all outputs.

Theorem 9.5.1. The reachability problem for MMTs is PSPACE-complete.

For hardness, we reduce from the acceptance problem for linear bounded Turing
machines (LBTM, for short), as done for timed automata (see Section 8.3). In
short, given an LBTM 𝒜 and a word 𝑤 of length 𝑛, we construct an MMT that
uses 𝑛 timers 𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑛, such that the timer 𝑥𝑖 encodes the value of the
𝑖-th cell of the tape of 𝒜. We also rely on a timer 𝑥 that is always (re)started
at 1, and is used to synchronize the 𝑥𝑖 timers and the simulation of 𝒜. The
simulation is split into phases: the MMT first seeks the symbol on the current
cell 𝑖 of the tape (which can be derived from the moment at which the timer
𝑥𝑖 times out, using the number of times 𝑥 timed out since the beginning of the
phase). Then, the MMT simulates a transition of 𝒜 by restarting 𝑥𝑖, reflecting
the new value of the 𝑖-th cell. Finally, the MMT can reach a designated state if
and only if 𝒜 is in an accepting state. Therefore, the reachability problem is
PSPACE-hard. Complete details are provided in Section C.3

For membership, we follow the classical argument used to establish that the
reachability problem for timed automata is in PSPACE (see Section 8.3): we
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[Alu99]: Alur (1999), “Timed Au-
tomata”
[AD94]: Alur et al. (1994), “A The-
ory of Timed Automata”
[BK08]: Baier et al. (2008), Princi-
ples of model checking

13: As we are solely interested
in encoding the runs of an MMT
(where outputs are ignored), we do
not define the set of final states. It
can be defined as being exactly the
set of states of the automaton.

Definition 8.3.3. A relation
𝑅 on the states 𝑄ℳ ofℳ is a
time-abstracted bisimulation
if, for every 𝑖 ∈ 𝐼, and config-
urations (𝑞1, 𝜅1) and (𝑞2, 𝜅2),

▶ (𝑞1, 𝜅1) 𝑅 (𝑞2, 𝜅2) and

▶ (𝑞1, 𝜅1)
𝑑1⋅𝑖
−−→ (𝑞′

1, 𝜅′
1) for

some delay 𝑑1 ∈ ℝ≥0

imply

▶ (𝑞2, 𝜅2)
𝑑2⋅𝑖
−−→ (𝑞′

2, 𝜅′
2) for

some 𝑑2 ∈ ℝ≥0 and
▶ (𝑞′

1, 𝜅′
1) 𝑅 (𝑞′

2, 𝜅′
2),

and vice-versa.

[TY01]: Tripakis et al. (2001),
“Analysis of Timed Systems Using
Time-Abstracting Bisimulations”
[Cla+18]: Clarke et al. (2018),Hand-
book of Model Checking

first define region automata for MMTs (which are a simplification of region
automata for timed automata) and observe that reachability in anMMT reduces
to reachability in the corresponding region automaton. The region automaton
is of size exponential in the number of timers and polynomial in the number
of states of the MMT. Hence, the reachability problem for MMTs is in PSPACE
via standard arguments.

We define region automata for MMTs much like they are defined for timed
automata [Alu99; AD94; BK08] (see Definition 8.3.2).

Definition 9.5.2 (Timer region). Let ℳ = (𝐼, 𝑂, 𝑋, 𝑄, 𝑞0, 𝜒, 𝛿) be an
MMT. Two valuations 𝜅 and 𝜅′ are timer-equivalent, denoted by 𝜅 ≅ 𝜅′, if
dom(𝜅) = dom(𝜅′) and the following hold:

▶ for all 𝑥 ∈ 𝑋, ⌊𝜅(𝑥)⌋ = ⌊𝜅′(𝑥)⌋ and
▶ for all 𝑥 ∈ 𝑋, frac(𝜅(𝑥)) = 0 if and only if frac(𝜅′(𝑥)) = 0, and
▶ for all 𝑥1, 𝑥2 ∈ 𝑋, frac(𝜅(𝑥1)) ≤ frac(𝜅(𝑥2)) if and only if

frac(𝜅′(𝑥1)) ≤ frac(𝜅′(𝑥2)).

A timer region for ℳ is an equivalence class of timer valuations induced
by ≅. We lift the relation to configurations: (𝑞, 𝜅) ≅ (𝑞′, 𝜅′) if and only if
𝜅 ≅ 𝜅′ and 𝑞 = 𝑞′.

We are now able to define an automaton from ≅.13 We introduce a new symbol
𝜏 that is used to abstract the non-zero delays. That is, every delay transition

𝑞
𝑑
−→ 𝑝 with 𝑑 > 0 is replaced by some transition reading 𝜏.

Definition 9.5.3 (Region automaton). The region automaton ofℳ is denoted
ℛ(ℳ) and such that

▶ its alphabet is Σ = {𝜏} ∪ 𝐴(ℳ),
▶ its set of states 𝑄ℛ(ℳ) is the quotient of the configurations by ≅, i.e.

𝑄ℛ(ℳ) = {(𝑞, 𝜅) ∣ 𝑞 ∈ 𝑄, 𝜅 ∈ Val(𝜒(𝑞))}/≅,

▶ its initial state 𝑞ℛ(ℳ)
0 is the class of the initial configuration ofℳ, i.e.,

𝑞ℛ(ℳ)
0 = J(𝑞ℳ0 , ∅)K≅ = (𝑞ℳ0 , J∅K≅)

(by definition of ≅),
▶ its transition relation 𝛿 ⊆ 𝑆 × Σ × 𝑆 includes

• J(𝑞, 𝜅)K≅
𝜏
−→ J(𝑞, 𝜅 − 𝑑)K≅ if (𝑞, 𝜅)

𝑑
−→ (𝑞, 𝜅 − 𝑑) in ℳ whenever

𝑑 > 0, and
• J(𝑞, 𝜅)K≅

𝑖
−→ J(𝑞′, 𝜅′)K≅ if (𝑞, 𝜅)

𝑖
−→
𝑢

(𝑞′, 𝜅′) inℳ.

It is easy to check that the timer-equivalence relation on configurations is
a (strong) time-abstracting bisimulation [TY01; Cla+18] (see Definition 8.3.3).
That is, for all (𝑞1, 𝜅1) ≅ (𝑞2, 𝜅2) the following holds:

▶ if (𝑞1, 𝜅1)
𝑖

−→
𝑢

(𝑞′
1, 𝜅′

1), then there is (𝑞2, 𝜅2)
𝑖

−→
𝑢

(𝑞′
2, 𝜅′

2) with (𝑞′
1, 𝜅′

1) ≅
(𝑞′

2, 𝜅′
2),
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14: Again, we ignore outputs.

▶ if (𝑞1, 𝜅1)
𝑑1−→ (𝑞1, 𝜅′

1), then there exists (𝑞2, 𝜅2)
𝑑2−→ (𝑞2, 𝜅′

2) where 𝑑1,
𝑑2 > 0 may differ such that (𝑞1, 𝜅′

1) ≅ (𝑞2, 𝜅′
2), and

▶ the above also holds if (𝑞1, 𝜅1) and (𝑞2, 𝜅2) are swapped.

Using this property, we can prove the following about ℛ(ℳ):

▶ ℛ(ℳ) is finite, by a bound over the number of states, which is polynomial
in ∣𝑄ℳ∣ and exponential in |𝑋|, and

▶ there exists a timed run inℳ from (𝑞, 𝜅) to (𝑞′, 𝜅′) if and only if there
exists a run from the class of (𝑞, 𝜅) to the class of (𝑞′, 𝜅′) in ℛ(ℳ), i.e.,
there is an equivalence between the runs of both machines.14

Lemma 9.5.4. Let ℳ be an MMT and ℛ(ℳ) be its region automaton. For a
timer 𝑥 ∈ 𝑋, 𝑐𝑥 denotes the largest constant to which 𝑥 is updated in ℳ. Let
𝐶 = max𝑥∈𝑋 𝑐𝑥. Then, the number of states of ℛ(ℳ) is bounded by

∣𝑄ℳ∣ ⋅ |𝑋|! ⋅ 2|𝑋| ⋅ (𝐶 + 1)|𝑋|.

Moreover, for all 𝑞, 𝑞′ ∈ 𝑄ℳ, 𝜅 ∈ Val(𝜒ℳ(𝑞)), 𝜅′ ∈ Val(𝜒ℳ(𝑞′)), there exists
a timed run from (𝑞, 𝜅) to (𝑞′, 𝜅′) in ℳ if and only if there exists a run from
J(𝑞, 𝜅)K≅ to J(𝑞′, 𝜅′)K≅ in ℛ(ℳ).

Proof. For the first statement of the lemma, recall that each state of the
region automaton is of the form (𝑞, J𝜅K≅) with 𝑞 ∈ 𝑄ℳ. So, the number of
possible 𝑞 is equal to ∣𝑄ℳ∣. Concerning the number of region classes J𝜅K≅,
(𝐶 + 1)|𝑋| is related to the integer parts of the timers between 0 and 𝐶, 2|𝑋|

to which timers have a zero fractional part, and |𝑋|! to the order of these
fractional parts.
The second statement of the lemma follows from the definition of the region
automatonℛ(ℳ). Notice that delay transitions with delay 0 inℳ disappear
in ℛ(ℳ). �

Despite its exponential size, it is possible to compute the region automaton on
the fly. That is, seeking a run traversing a state 𝑞 can be done in PSPACE. This
is formalized after the example.

Example 9.5.5.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥
Let us consider the MMT ℳ of Figure 9.1 (repeated in the

margin) and the timed run 𝜋 given in Example 9.2.7:

𝜋 = (𝑞0, ∅)
0.5
−−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
0
−→ (𝑞1, 𝑥1 = 1)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞2, 𝑥1 = 1, 𝑥2 = 1)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 0)

to[𝑥2]/𝑜
−−−−→

⊥
(𝑞1, 𝑥1 = 0)

0
−→ (𝑞1, 𝑥1 = 0)

to[𝑥1]/𝑜
−−−−→

(𝑥1,1)
(𝑞1, 𝑥1 = 1)

0.5
−−→ (𝑞1, 𝑥1 = 0.5).
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The corresponding run 𝜋′ in the region automaton ℛ(ℳ) is

𝜋′ = (𝑞0, J∅K≅)
𝜏
−→ (𝑞0, J∅K≅)

𝑖
−→ (𝑞1, J𝑥1 = 1K≅)

𝑖
−→ (𝑞2, J𝑥1 = 1, 𝑥2 = 2K≅)

𝜏
−→ (𝑞2, J𝑥1 = 0, 𝑥2 = 1K≅)

𝑖
−→ (𝑞2, J𝑥1 = 1, 𝑥2 = 1K≅)

𝜏
−→ (𝑞2, J𝑥1 = 0, 𝑥2 = 0K≅)

to[𝑥2]
−−−→ (𝑞1, J𝑥1 = 0K≅)

to[𝑥1]
−−−→ (𝑞1, J𝑥1 = 1K≅)

𝜏
−→ (𝑞1, J0 < 𝑥1 < 1K≅).

Notice that the transitions with delay zero of 𝜋 do not appear in 𝜋′.

We can now prove the upper bound (i.e., the PSPACE membership) of Theo-
rem 9.5.1.

Upper bound of Theorem 9.5.1. To decide the reachability problem for MMTs,
by Lemma 9.5.4, we can simulate a run of the corresponding region automa-
ton. Instead of constructing the region automaton in full, we can do so “on
the fly”. This yields a nondeterministic decision procedure for the reachabil-
ity problem which, due to the form (𝑞, J𝜅K≅) of the states of ℛ(ℳ), requires
polynomial space only. Since NPSPACE = PSPACE, we obtain the upper
bound stated in Theorem 9.5.1. �

9.6. Non-determinism due to zero delays

In a timed run

𝜌 = (𝑝0, 𝜅0)
𝑑1−→ (𝑝0, 𝜅0 − 𝑑1)

𝑖1−→
𝑢1

(𝑝1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛−→
𝑢𝑛

(𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1)

of an MMTℳ, it may happen that some 𝑑𝑗 = 0, i.e., that two actions occur at
the same time. As already said,ℳ can process 𝑖𝑗 and 𝑖𝑗+1 in any order, meaning
that the behavior of ℳ is non-deterministic (see Example 9.2.7). While this
non-determinism can be avoided by imposing that any delay is positive, doing
so may prevent some feasible untimed runs to be observed via timed runs.
That is, there may be a feasible untimed run ofℳ that requires a zero delay
in any corresponding timed run. For instance, it is the case for the untimed
projection of the timed run 𝜋 of Example 9.2.7.

In this section, we study the problem of deciding whether an MMT has some
untimed runs requiring zero delays. Our main tool will be to wiggle the blocks
in a run, in the sense that we will slightly change the delays before a block in
order to remove these zero delays, whenever possible, while still seeing the
same actions in the same order. In order to be able to do so, we require that
we have non-zero delays at the very start and at the very end of 𝜌, i.e., that
𝑑1, 𝑑𝑛+1 > 0. Furthermore, we require that none of the active timers in 𝑞𝑛
can timeout in the last configuration, i.e., that (𝜅𝑛 − 𝑑𝑛+1)(𝑥) > 0 for every
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𝜌
𝐵1

𝐵2

1 1 0 1.5

𝜌′
𝐵1

𝐵2

1 0.7 0.3 1.5

Figure 9.7: Modifying the delays in order to remove a race.

𝐵1

𝐵2

𝐵2

𝐵3
𝐵1

𝐵1

𝐵2

𝑥 ∈ 𝜒(𝑞𝑛). Such runs are called padded , and we denote by ptruns(ℳ) the set
of all padded timed runs ofℳ.

In this section, we solely focus on padded runs (which will allow to wiggle
the blocks that appear at the start or at the end of a run). Let us first properly
introduce the decision problemwe study. We call a situation where two actions
occur at the same time a race.

Definition 9.6.1 (Race). Let 𝐵, 𝐵′ be two blocks of a padded timed run 𝜌
with timer fates 𝛾 and 𝛾′. We say that 𝐵 and 𝐵′ participate in a race if:

▶ either there exist actions 𝑖 ∈ 𝐵 and 𝑖′ ∈ 𝐵′ such that the sum of
the delays between 𝑖 and 𝑖′ in 𝜌 is equal to zero, i.e., no time elapses
between them,

▶ or there exists an action 𝑖 ∈ 𝐵 that is the first action along 𝜌 to discard
the timer started by the last action 𝑖′ ∈ 𝐵′ and 𝛾′ = , i.e., the timer
of 𝐵′ (re)started by 𝑖′ reaches value zero when 𝑖 discards it.

We also say that the actions 𝑖 and 𝑖′ participate in this race.

The first case of the race definition appears in Figure 9.2a (repeated in the
margin), while the second case appears in Figure 9.2c (also repeated). In
particular, 𝐵1 and 𝐵3 participate in a race. The nondeterminism is highlighted
in Figures 9.2a and 9.2b (also repeated in the margin) where two actions (𝑖
and to[𝑥]) occur at the same time but are processed in a different order in
each figure. Unfortunately, imposing a particular way of resolving races (i.e.,
imposing a particular action order) may seem arbitrary when modelling real-
world systems. It is therefore desirable for the set of sequences of actions
along timed runs to be independent to the resolution of races.

Definition 9.6.2 (Race-avoiding). An MMTℳ is race-avoiding if and only
if for all padded timed runs 𝜌 ∈ ptruns(ℳ) with races, there exists some
𝜌′ ∈ ptruns(ℳ) with no races such that untime(𝜌′) = untime(𝜌).

Example 9.6.3. Let us come back to the timed run 𝜌 of Example 9.2.5 that
contains a race (see Figure 9.2a, which is the first figure repeated in the
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margin):

𝜌 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
1
−→ (𝑞1, 𝑥1 = 0)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 0, 𝑥2 = 2)
0
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 2)

to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, ∅)
1.5
−−→ (𝑞0, ∅).

By moving the second occurrence of action 𝑖 slightly earlier in 𝜌 (we say
that we wiggle the corresponding block), we obtain the timed run 𝜌′:

𝜌′ = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
0.7
−−→ (𝑞1, 𝑥1 = 0.3)

𝑖
−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 0.3, 𝑥2 = 2)
0.3
−−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1.7)

to[𝑥1]
−−−→

⊥
(𝑞0, ∅)

1.5
−−→ (𝑞0, ∅).

Notice that untime(𝜌′) = 𝑞0
𝑖

−→ 𝑞1
𝑖

−→ 𝑞2
to[𝑥1]
−−−→ 𝑞0 = untime(𝜌). Moreover,

𝜌′ contains no races as indicated in Figure 9.7.

Notice that several blocks could participate in the same race. The notion of
block has been defined for padded timed runs only, as we do not want to
consider runs that end abruptly during a race (some pending timeouts may
not be processed at the end of the timed run, for instance). Moreover, it is
always possible for the first delay to be positive as no timer is active in the
initial state. Finally, non-zero delays at the start and the end of the runs allow
to wiggle the blocks.

Let us now give the theorem that we prove throughout this section. In short,
the PSPACE-hardness comes from a reduction from the acceptance problem of
LBTMs (akin to what was done for the reachability problem), while the 3EXP
membership is obtained via a monadic second-order formula.

Theorem 9.6.4. Deciding whether an MMT is race-avoiding is PSPACE-hard
and in 3EXP. It is in PSPACE if the sets of actions 𝐼 and of timers 𝑋 are fixed.

The formal proof is given in Section C.7 but requires tools that we now intro-
duce. In Section 9.6.1, we formally define the idea of wiggling blocks, while
Section 9.6.2 studies a characterization of when an MMT has a run in which
zero delays are required. Section 9.6.3 gives an MSO formula that encodes our
decision problem and which is used to show the 3EXP upper bound. Finally,
Section 9.6.4 lists a few sufficient conditions that are easier to test.

9.6.1. Wiggling a timed run

First, let us formalize how to wiggle a padded timed run 𝜌 ofℳ. Our approach
is to study how to slightly move blocks along the time line of 𝜌 in a way to
get another 𝜌′ ∈ ptruns(ℳ) where the races are eliminated while keeping the
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actions in the same order as in 𝜌. We call this action wiggling. We give an
example before formalizing this notion.

Example 9.6.5.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥

We consider again the MMT of Figure 9.1, which is repeated
in the margin. We have seen in Example 9.6.3 and Figure 9.7 that the block
𝐵2 of 𝜌 can be slightly moved to the left to obtain the timed run 𝜌′ with no
race such that untime(𝜌) = untime(𝜌′). Figure 9.7 illustrates how to move
𝐵2 by changing some of the delays.
In contrast, this is not possible for the timed run 𝜋 of Example 9.2.7.

𝐵2

𝐵3
𝐵1

Indeed
looking at Figure 9.2c (also repeated in the margin), we see that it is impos-
sible to move block 𝐵2 to the left due to its race with 𝐵1 (remember that we
need to keep the same action order). It is also not possible to move it to the
right due to its race with 𝐵3. Similarly, it is impossible to move 𝐵1 neither
to the right (due to its race with 𝐵2), nor to the left (otherwise its timer will
time out instead of being discarded by 𝐵3). Finally, one can also check that
block 𝐵3 cannot be moved.

Given a padded timed run 𝜌 reading 𝑑1 ⋅ 𝑖1 ⋯ 𝑖𝑛 ⋅ 𝑑𝑛+1 and a block 𝐵 =
(𝑘1 … 𝑘𝑚, 𝛾) of 𝜌 participating in a race, we say that we can wiggle if for
some 𝜖, we can move 𝐵 to the left (by 𝜖 < 0) or to the right (by 𝜖 > 0), and
obtain a timed run 𝜌′ ∈ ptruns(ℳ) such that

▶ untime(𝜌) = untime(𝜌′) = 𝑖1 ⋯ 𝑖𝑛, and
▶ 𝐵 no longer participates in any race.

Definition 9.6.6 (Wiggle). Given a padded timed run 𝜌 reading 𝑑1 ⋅ 𝑖1 ⋯ 𝑖𝑛 ⋅
𝑑𝑛+1 and a block 𝐵 = (𝑘1 … 𝑘𝑚, 𝛾) of 𝜌 participating in a race, we say that
we can wiggle if there are some 𝜖 ∈ ℝ and padded timed run 𝜌′ reading
𝑑′

1 ⋅ 𝑖1 ⋯ 𝑖𝑛 ⋅ 𝑑′
𝑛+1 such that

▶ for all 𝑖𝑘ℓ
∈ 𝐵 with 𝑘ℓ > 1, if 𝑖𝑘ℓ−1 ∉ 𝐵 (the action before 𝑖𝑘ℓ

in 𝜌 does
not belong to 𝐵), then 𝑑′

𝑘ℓ
= 𝑑𝑘ℓ

+ 𝜖,
▶ if there exists 𝑖𝑘ℓ

∈ 𝐵 with 𝑘ℓ = 1 (the first action of 𝐵 is the first
action of 𝜌), then 𝑑′

1 = 𝑑1 + 𝜖,
▶ for all 𝑖𝑘ℓ

∈ 𝐵 with 𝑘ℓ < 𝑛, if 𝑖𝑘ℓ+1 ∉ 𝐵 (the action after 𝑖𝑘ℓ
in 𝜌 does

not belong to 𝐵), then 𝑑′
𝑘ℓ+1 = 𝑑𝑘ℓ+1 − 𝜖,

▶ if there exists 𝑖𝑘ℓ
∈ 𝐵 with 𝑘ℓ = 𝑛 (the last action of 𝐵 is the last

action of 𝜌), then 𝑑′
𝑛+1 = 𝑑𝑛+1 − 𝜖,

▶ for all other 𝑑′
𝑘, we have 𝑑′

𝑘 = 𝑑𝑘.

As 𝜌′ ∈ ptruns(ℳ) and untime(𝜌) = untime(𝜌′), we must have 𝑑′
𝑘 ≥ 0 for

all 𝑘 and 𝑑′
1, 𝑑′

𝑛+1 > 0.
We say that we can wiggle 𝜌, or that 𝜌 is wigglable, if it is possible to wiggle
its blocks, one block at a time, to obtain 𝜌′ ∈ ptruns(ℳ) with no races such
that untime(𝜌) = untime(𝜌′).

Observe that to wiggle 𝐵 we move every action of 𝐵. Moreover, if all padded
timed runs with races of an MMTℳ are wigglable, thenℳ is race-avoiding.

In the next sections, we first associate a graph with any 𝜌 ∈ ptruns(ℳ) in
a way to characterize when 𝜌 is wigglable thanks to this graph. We then
state the equivalence between the race-avoiding characteristic of an MMT and
the property that all 𝜌 ∈ ptruns(ℳ) can be wiggled (Theorem 9.6.11). This
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𝐵2 𝐵1

(a) Graph 𝐺𝜌.

𝐵1 𝐵2 𝐵3

(b) Graph 𝐺𝜋.

Figure 9.8: Block graphs of the timed runs 𝜌 and 𝜋 of Example 9.2.7.

allows us to provide logic formulas to determine whether an MMT has an
unwigglable run, and then to prove the upper bound of Theorem 9.6.4. We
also discuss its lower bound. Finally, we discuss some sufficient hypotheses
for a race-avoiding MMT.

9.6.2. Block graph and characterization

Given an MMT ℳ and a padded timed run 𝜌 ∈ ptruns(ℳ), we now study
the conditions required to be able to wiggle 𝜌. For this purpose, we define
the following graph 𝐺𝜌 associated with 𝜌. When two blocks 𝐵 and 𝐵′ of 𝜌
participate in a race, we write 𝐵 ≺ 𝐵′ if there exist actions 𝑖 ∈ 𝐵 and 𝑖′ ∈ 𝐵′

such that 𝑖, 𝑖′ participate in this race and, according to Definition 9.6.1:

▶ either 𝑖 occurs before 𝑖′ along 𝜌 and the total delay between 𝑖 and 𝑖′ is
zero,

▶ or the timer of 𝐵′ (re)started by 𝑖′ reaches value zero when 𝑖 discards it.

Definition 9.6.7 (Block graph). The block graph of a padded timed run 𝜌 is
the tuple 𝐺𝜌 = (𝑉 , 𝐸) where

▶ 𝑉 is the set of blocks of 𝜌, and
▶ 𝐸 ⊆ 𝑉 × 𝑉 is such that there is an edge (𝐵, 𝐵′) if and only if 𝐵 ≺ 𝐵′.

Example 9.6.8.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥
Letℳ be the MMT from Figure 9.1, and 𝜌 and 𝜋 be the timed

runs from Example 9.2.7:

𝜌 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
1
−→ (𝑞1, 𝑥1 = 0)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 0, 𝑥2 = 2)
0
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 2)

to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, ∅)
1.5
−−→ (𝑞0, ∅).

𝜋 = (𝑞0, ∅)
0.5
−−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
0
−→ (𝑞1, 𝑥1 = 1)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞2, 𝑥1 = 1, 𝑥2 = 1)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 0)

to[𝑥2]/𝑜
−−−−→

⊥
(𝑞1, 𝑥1 = 0)

0
−→ (𝑞1, 𝑥1 = 0)

to[𝑥1]/𝑜
−−−−→

(𝑥1,1)
(𝑞1, 𝑥1 = 1)

0.5
−−→ (𝑞1, 𝑥1 = 0.5).

The block decompositions of 𝜋 and 𝜌 are represented in

𝐵1

𝐵2

Figures 9.2a and 9.2c
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Proposition 9.6.9. Letℳ be
an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Then, 𝜌 can be wig-
gled if and only if 𝐺𝜌 is
acyclic.

and are repeated in the margin.

𝐵2

𝐵3
𝐵1

For the run 𝜌, it holds that 𝐵2 ≺ 𝐵1 leading
to the block graph 𝐺𝜌 depicted in Figure 9.8a. For the run 𝜋, we get the
block graph 𝐺𝜋 depicted in Figure 9.8b.
Notice that 𝐺𝜌 is acyclic while 𝐺𝜋 is cyclic. By the following proposition,
this difference is enough to characterize that 𝜌 can be wiggled and 𝜋 cannot.

Proposition 9.6.9. Letℳ be an MMT and 𝜌 ∈ ptruns(ℳ) be a padded timed
run with races. Then, 𝜌 can be wiggled if and only if 𝐺𝜌 is acyclic.

Intuitively, a block cannot be moved to the left (resp. right) if it has a predeces-
sor (resp. successor) in the block graph, due to the races in which it participates.
Hence, if a block has both a predecessor and a successor, it cannot be wiggled
(see Figures 9.2c and 9.8b for instance). Then, the blocks appearing in a cycle
of the block graph cannot be wiggled. The other direction holds by observing
that we can do a topological sort of the blocks if the graph is acyclic. We then
wiggle the blocks, one by one, according to that sort. A complete proof is
provided in Section C.4.

The next corollary is illustrated by Figure 9.9 with the simple cycle (𝐵0, 𝐵1, 𝐵2,
𝐵3, 𝐵4, 𝐵0).

Corollary 9.6.10. Let ℳ be an MMT and 𝜌 ∈ ptruns(ℳ) be a padded timed
run with races. Suppose that 𝐺𝜌 is cyclic. Then there exists a cycle 𝒞 in 𝐺𝜌
such that

▶ any block of 𝒞 participates in exactly two races described by this cycle,
▶ for any race described by 𝒞, exactly two blocks of 𝒞 participate in the

race,
▶ the blocks 𝐵 = (𝑘1 … 𝑘𝑚, 𝛾) of 𝒞 satisfy either 𝑚 ≥ 2, or 𝑚 = 1 and

𝛾 = .

Proof. As 𝐺𝜌 is cyclic, we consider a cycle of minimal length.
First notice that a block 𝐵 of this cycle can only appear once per race. Indeed,
the value at which a timer is (re)started in the block is positive, thus imposing
non-zero delays between two actions of 𝐵 (i.e., two actions of 𝐵 can not
participate in a common race).
Second, by minimality of its length, the cycle is simple, implying that each
of its blocks participates in exactly two races, one with its unique successor
(in the cycle) and another one with its unique predecessor.
Third, assume that three blocks 𝐵1, 𝐵2 and 𝐵3 participate in a common race,
in that order. By the previous remark, they are pairwise distinct, and it must
be that 𝐵1 ≺ 𝐵2, 𝐵2 ≺ 𝐵3 and 𝐵1 ≺ 𝐵3. It follows that we get a smaller
cycle by eliminating 𝐵2, which is a contradiction.
Finally, assume that the cycle contains some block 𝐵 = (𝑘1, 𝛾) with 𝛾 ≠ .
Let 𝐵1 ≺ 𝐵 (resp. 𝐵 ≺ 𝐵2) be the predecessor (resp. successor) of 𝐵 in the
cycle. Due to the form of 𝐵, the three blocks 𝐵1, 𝐵2 and 𝐵 participate in the
same race, which is impossible. �

From the definition of wiggling, we know that if all padded timed runs with
races of an MMTℳ are wigglable, thenℳ is race-avoiding. The converse also
holds as stated in the next theorem. By Proposition 9.6.9, this means that an
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𝐵0

𝐵1

𝐵2𝐵4

𝐵3

Figure 9.9: Races of a padded timed run 𝜌 with 𝐵ℓ ≺ 𝐵ℓ+1 mod 5, 0 ≤ ℓ ≤ 4.

[GTW03]: Grädel et al. (2003), Au-
tomata, logics, and infinite games: a
guide to current research
[Tho97]: Thomas (1997), “Lan-
guages, Automata, and Logic”

MMT is race-avoiding if and only if the block graph of all its padded timed
run is acyclic.

Theorem 9.6.11. An MMT ℳ is race-avoiding

▶ if and only if any padded timed run 𝜌 ∈ ptruns(ℳ) with races can be
wiggled,

▶ if and only if for any padded timed run 𝜌 ∈ ptruns(ℳ), its block graph
𝐺𝜌 is acyclic.

Let us sketch the proof given in Section C.5. Clearly, the second equivalence
follows from Proposition 9.6.9. Hence, it is sufficient to focus on the first equiv-
alence. By modifying 𝜌 ∈ ptruns(ℳ) to explicitly encode when a timer is dis-
carded, one can show the races of 𝜌 cannot be avoided if the block graph of 𝜌 is
cyclic as follows. Given two actions 𝑖, 𝑖′ of this modified run, it is possible to de-
fine the relative elapsed time between 𝑖 and 𝑖′, denoted by reltime(𝑖, 𝑖′), from the
sum 𝑑 of all delays between 𝑖 and 𝑖′: if 𝑖 occurs before 𝑖′, then reltime(𝑖, 𝑖′) = 𝑑,
otherwise reltime(𝑖, 𝑖′) = −𝑑. Lifting this to a sequence of actions from 𝜌 is
defined naturally. Then, one can observe that the relative elapsed time of a
cyclic sequence of actions is zero, i.e., reltime(𝑖1, 𝑖2, … , 𝑖𝑘, 𝑖1) = 0. Finally,
from a cycle of 𝐺𝜌 as described in Corollary 9.6.10, we extract a cyclic sequence
of actions and prove, thanks to the concept of relative elapsed time, that any
run 𝜌′ such that untime(𝜌) = untime(𝜌′) must contain some races.

9.6.3. Existence of an unwigglable run

In this section, we give the intuition for the announced complexity bounds
for the problem of deciding whether an MMT ℳ is race-avoiding (Theo-
rem 9.6.4).

Let us begin with the 3EXP-membership. The crux of our approach is to use
the characterization of the race-avoiding property given in Theorem 9.6.11, to
work with a slight modification of the region automaton ℛ(ℳ) ofℳ, and to
construct a finite-state automaton whose language is the set of runs of ℛ(ℳ)
whose block graph is cyclic. Hence, deciding whether ℳ is race-avoiding
amounts to deciding whether the language accepted by the latter automaton
is empty. To do so, we construct a monadic second-order (MSO, for short;
see [GTW03; Tho97] for an introduction) formula that is satisfied by words 𝑤
labeling a run 𝜌 of ℛ(ℳ) if and only if the block graph of 𝜌 is cyclic.

Our modification of ℛ(ℳ) is best seen as additional annotations on the states
and transitions of ℛ(ℳ). We extend the alphabet Σ as follows:

▶ we add a timer to each action 𝑖 ∈ Σ̂ to remember the updated timers
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Lemma 9.5.4. Let ℳ be an
MMT andℛ(ℳ) be its region
automaton. For a timer 𝑥 ∈
𝑋, 𝑐𝑥 denotes the largest con-
stant to which 𝑥 is updated
in ℳ. Let 𝐶 = max𝑥∈𝑋 𝑐𝑥.
Then, the number of states
of ℛ(ℳ) is bounded by

∣𝑄ℳ∣ ⋅ |𝑋|! ⋅ 2|𝑋| ⋅ (𝐶 + 1)|𝑋|.

Moreover, for all 𝑞, 𝑞′ ∈
𝑄ℳ, 𝜅 ∈ Val(𝜒ℳ(𝑞)), 𝜅′ ∈
Val(𝜒ℳ(𝑞′)), there exists a
timed run from (𝑞, 𝜅) to
(𝑞′, 𝜅′) in ℳ if and only
if there exists a run from
J(𝑞, 𝜅)K≅ to J(𝑞′, 𝜅′)K≅ in
ℛ(ℳ).

▶ we also use new symbols di[𝑥], 𝑥 ∈ 𝑋, with the intent of explicitly
encoding in ℛ(ℳ) when the timer 𝑥 is discarded while its value is zero.

Therefore, the modified alphabet is

Σ = {𝜏} ∪ (Σ̂ × (𝑋 ∪ {⊥})) ∪ {di[𝑥] ∣ 𝑥 ∈ 𝑋}.

As a transition inℳ can discard more than one timer, we store the set 𝐷 of
discarded timers in the states of ℛ(ℳ), as well as outgoing transitions labeled
by di[𝑥], for all discarded timers 𝑥. For this, the states of ℛ(ℳ) become

𝑄ℛ(ℳ) = {(𝑞, J𝜅K≅, 𝐷) ∣ 𝑞 ∈ 𝑄ℳ, 𝜅 ∈ Val(𝜒(𝑞)), 𝐷 ⊆ 𝑋}

and 𝛿ℛ(ℳ) is modified in the natural way so that 𝐷 is updated as required.
Note that the size of this modified ℛ(ℳ) is only larger than what is stated in
Lemma 9.5.4 by a factor of 2|𝑋|.

Note that any 𝑥-block (𝑖𝑘1
, … , 𝑖𝑘𝑚

, 𝛾) of a timed run 𝜌 inℳ is translated into
the sequence of symbols (𝑖′

𝑘1
, … , 𝑖′

𝑘𝑚
, 𝛾′) in the corresponding run 𝜌′ of the

modified ℛ(ℳ) with an optional symbol 𝛾′ such that:

▶ 𝑖′
𝑘ℓ

= (𝑖𝑘ℓ
, 𝑥), for 1 ≤ ℓ < 𝑚,

▶ 𝑖′
𝑘𝑚

= (𝑖𝑘𝑚
, ⊥) if 𝛾 = ⊥, and (𝑖𝑘𝑚

, 𝑥) otherwise,
▶ 𝛾′ = di[𝑥] if 𝛾 = , and 𝛾′ does not exist otherwise.

It follows that, instead of considering padded timed runs 𝜌 ∈ ptruns(ℳ) and
their block graph 𝐺𝜌, we work with their corresponding (padded) runs, blocks,
and block graphs in the modified region automaton ℛ(ℳ) ofℳ.

Example 9.6.12. Let us consider the run 𝜋′ of ℛ(ℳ) originally given in
Example 9.5.5, i.e.,

𝜋′ = (𝑞0, J∅K≅)
𝜏
−→ (𝑞0, J∅K≅)

𝑖
−→ (𝑞1, J𝑥1 = 1K≅)

𝑖
−→ (𝑞2, J𝑥1 = 1, 𝑥2 = 2K≅)

𝜏
−→ (𝑞2, J𝑥1 = 0, 𝑥2 = 1K≅)

𝑖
−→ (𝑞2, J𝑥1 = 1, 𝑥2 = 1K≅)

𝜏
−→ (𝑞2, J𝑥1 = 0, 𝑥2 = 0K≅)

to[𝑥2]
−−−→ (𝑞1, J𝑥1 = 0K≅)

to[𝑥1]
−−−→ (𝑞1, J𝑥1 = 1K≅)

𝜏
−→ (𝑞1, J0 < 𝑥1 < 1K≅).

With our modifications, it becomes

(𝑞0, J∅K≅, ∅)
𝜏
−→ (𝑞0, J∅K≅, ∅)

(𝑖,𝑥1)
−−−→ (𝑞1, J𝑥1 = 1K≅, ∅)

(𝑖,𝑥2)
−−−→ (𝑞2, J𝑥1 = 1, 𝑥2 = 2K≅, ∅)
𝜏
−→ (𝑞2, J𝑥1 = 0, 𝑥2 = 1K≅, ∅)
(𝑖,𝑥1)
−−−→ (𝑞2, J𝑥1 = 1, 𝑥2 = 1K≅, {𝑥1})
di[𝑥1]
−−−→ (𝑞2, J𝑥1 = 1, 𝑥2 = 1K≅, ∅)
𝜏
−→ (𝑞2, J𝑥1 = 0, 𝑥2 = 0K≅, ∅)



9. Mealy Machines with Timers 223

Corollary 9.6.10. Letℳ be
an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Suppose that 𝐺𝜌 is
cyclic. Then there exists a
cycle 𝒞 in 𝐺𝜌 such that

▶ any block of 𝒞 partici-
pates in exactly two races
described by this cycle,

▶ for any race described by
𝒞, exactly two blocks of 𝒞
participate in the race,

▶ the blocks 𝐵 =
(𝑘1 … 𝑘𝑚, 𝛾) of 𝒞 sat-
isfy either 𝑚 ≥ 2, or
𝑚 = 1 and 𝛾 = .

Theorem 9.6.4. Deciding
whether an MMT is race-
avoiding is PSPACE-hard and
in 3EXP. It is in PSPACE if the
sets of actions 𝐼 and of timers
𝑋 are fixed.

(to[𝑥2],⊥)
−−−−−→ (𝑞1, J𝑥1 = 0K≅, ∅)
(to[𝑥1],𝑥1)
−−−−−−→ (𝑞1, J𝑥1 = 1K≅, ∅)
𝜏
−→ (𝑞1, J0 < 𝑥1 < 1K≅, ∅).

The transition with label di[𝑥1] indicates that the timer 𝑥1 is discarded in the
original timed run while its value equals zero (see the race in which blocks
𝐵1 and 𝐵3 participate in

𝐵2

𝐵3
𝐵1

Figure 9.2c, which is repeated in the margin). The
three blocks of 𝜋 become

𝐵′
1 = ((𝑖, 𝑥1), di[𝑥1]),

𝐵′
2 = ((𝑖, 𝑥2), (to[𝑥2], ⊥)),

and
𝐵′

3 = ((𝑖, 𝑥1), (to[𝑥1], 𝑥1)).

The fact that in 𝜋, 𝐵1 and 𝐵2 participate in a race (with a zero-delay be-
tween their respective actions 𝑖 and 𝑖), is translated in 𝜋′ with the non
existence of the 𝜏-symbol between the symbols (𝑖, 𝑥1) and (𝑖, 𝑥2) in 𝐵′

1 and
𝐵′

2 respectively.

Proposition 9.6.13. Let ℳ be an MMT and ℛ(ℳ) be its modified region
automaton. We can construct an MSO formula Φ of size linear in Σ and 𝑋
such that a word labeling a run 𝜌 of ℛ(ℳ) satisfies Φ if and only if 𝜌 is a
padded run that cannot be wiggled. Moreover, the formula Φ, in prenex normal
form, has three quantifier alternations.

The formula Φ of this proposition (proved in Section C.6) describes the ex-
istence of a cycle 𝒞 of blocks 𝐵0, … , 𝐵𝑘−1 such that 𝐵ℓ ≺ 𝐵ℓ+1 mod 𝑘 for any
0 ≤ ℓ ≤ 𝑘 − 1, as described in Corollary 9.6.10 (see Figure 9.9). To do so, we
consider the actions (i.e., symbols of the alphabet Σ of ℛ(ℳ)) participating
in the races of 𝒞: 𝑖0, 𝑖1, … , 𝑖𝑘−1 and 𝑖′

0, 𝑖′
1, … , 𝑖′

𝑘−1 such that for all ℓ, 𝑖ℓ, 𝑖′
ℓ

belong to the same block, and 𝑖′
ℓ, 𝑖ℓ+1 mod 𝑘 participate in a race. One can write

MSO formulas expressing that two actions participate in a race (there is no
𝜏 transition between them), that two actions belong to the same block, and,
finally, the existence of these two action sequences.

From the formula Φ of Proposition 9.6.13, by the Büchi-Elgot-Trakhtenbrot
theorem, we can construct a finite-state automaton whose language is the
set of all words satisfying Φ. Its size is triple-exponential. We then compute
the intersection𝒩 of this automaton with ℛ(ℳ) — itself exponential in size.
Finally, the language of𝒩 is empty if and only if each padded timed run ofℳ
can be wiggled, and emptiness can be checked in polynomial time with respect
to the triple-exponential size of 𝒩, thus showing the 3EXP-membership of
Theorem 9.6.4. Notice that when we fix the sets of inputs Σ and of timers
𝑋, the formula Φ becomes of constant size. Constructing 𝒩 and checking
its emptiness can be done “on the fly”, yielding a nondeterministic decision
procedure which requires a polynomial space only. We thus obtain that, under
fixed inputs and timers, deciding whether an MMT is race-avoiding is in
PSPACE.



9. Mealy Machines with Timers 224

15: We recall that a run 𝜋 is fea-
sible if there exists a timed run 𝜌
such that untime(𝜌) = 𝜋.

The complexity lower bound of Theorem 9.6.4 follows from the PSPACE-
hardness of the reachability problem for MMTs (see the intuition given in
Section 9.5). We can show that any run in the MMT constructed from the
given LBTM and word 𝑤 can be wiggled. Once the designated state for the
reachability reduction is reached, we add a widget that forces a run that can-
not be wiggled. Therefore, as the only way of obtaining a run that cannot be
wiggled is to reach a specific state (from the widget), the problem whether an
MMT is race-avoiding is PSPACE-hard. Notice that this hardness proof is no
longer valid if we fix the sets Σ and 𝑋.

A formal proof for Theorem 9.6.4 is given in Section C.7.

9.6.4. Sufficient hypotheses

Let us discuss some sufficient hypotheses for anMMTℳ to be race-avoiding.

1. If every state inℳ has at most one active timer, thenℳ is race-avoiding.
Up to renaming the timers, we actually have a single-timer MMT in this
case.

2. If we modify the notion of timed run to impose non-zero delays every-
where in the run (even between two timeouts), thenℳ is race-avoiding.
Indeed, the only races that can appear are when a zero-valued timer is
discarded, and it is impossible to form a cycle in the block graph with
only this kind of races. Imposing a non-zero delay before a timeout is
debateable. Nevertheless, imposing a non-zero delay before inputs only
is not a sufficient hypothesis.

3. Let us fix a total order < over the timers, and modify the semantics of
an MMT to enforce that, in a race, any action of an 𝑥-block is processed
before an action of a 𝑦-block, if 𝑥 < 𝑦 (𝑥 is preemptive over 𝑦). Then, the
MMT is race-avoiding. Towards a contradiction, assume there are blocks
𝐵0, 𝐵1, … , 𝐵𝑘−1

Corollary 9.6.10. Letℳ be
an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Suppose that 𝐺𝜌 is
cyclic. Then there exists a
cycle 𝒞 in 𝐺𝜌 such that

▶ any block of 𝒞 partici-
pates in exactly two races
described by this cycle,

▶ for any race described by
𝒞, exactly two blocks of 𝒞
participate in the race,

▶ the blocks 𝐵 =
(𝑘1 … 𝑘𝑚, 𝛾) of 𝒞 sat-
isfy either 𝑚 ≥ 2, or
𝑚 = 1 and 𝛾 = .

forming a cycle as described in Corollary 9.6.10, where
each 𝐵𝑖 is an 𝑥𝑖-block. By the order and the races, we get 𝑥0 ≤ 𝑥1 ≤
… ≤ 𝑥𝑘−1 ≤ 𝑥0, i.e., we have a single timer (as in the first hypothesis).
Hence, it is always possible to wiggle, which is a contradiction.

9.7. Zones

In this section, we introduce zones, which are used to represent sets of val-
uations and are akin to the homonymous concept for timed automata (see
Section 8.4). Then, for a given MMTℳ, we construct its zone MMT which is it-
self an MMT. We then show multiple useful properties. Importantly, we obtain
thatℳ and its zone MMT are timed and symbolically equivalent. Furthermore,
every run of a zone MMT is feasible.15

Let 𝑋 be a set of timers. A zone 𝑍 over 𝑋 is a set of valuations over 𝑋, i.e.,
𝑍 ⊆ Val(𝑋), described by the following grammar:

𝜙 ∶∶= 𝑥 < 𝑐 ∣ 𝑥 ≤ 𝑐 ∣ 𝑐 < 𝑥 ∣ 𝑐 ≤ 𝑥 ∣ 𝑥 − 𝑦 < 𝑐 ∣ 𝑥 − 𝑦 ≤ 𝑐 ∣ 𝜙1 ∧ 𝜙2
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[Cla+18]: Clarke et al. (2018),Hand-
book of Model Checking

with 𝑥, 𝑦 ∈ 𝑋 and 𝑐 ∈ ℕ. It may be that a zone is empty. For the particular
case 𝑋 = ∅, we have that Val(𝑋) = {∅}, meaning that a zone 𝑍 is either the
zone {∅} or the empty zone.

Given a zone 𝑍 over 𝑋, a set 𝑌 ⊆ 𝑋, a timer 𝑥 (that does not necessarily
belong to 𝑋), and a constant 𝑐 ∈ ℕ>0, we define the following operations:

▶ The downward closure of 𝑍 where we let some time elapsed in all valu-
ations of 𝑍. That is, we obtain all valuations that can be reached from
𝑍 by just waiting (we consider delays that do not exceed the smallest
value to avoid going below zero):

𝑍↓= {𝜅 − 𝑑 ∣ 𝜅 ∈ 𝑍, 𝑑 ≤ min
𝑦∈dom(𝜅)

𝜅(𝑦)}.

▶ The restriction of 𝑍 to 𝑌 ≠ ∅ where, for every valuation of 𝑍, we discard
the values associated with timers in 𝑋 ∖ 𝑌, i.e., we only keep the timers
that are in 𝑌:

𝑍⌈𝑌 = {𝜅′ ∈ Val(𝑌 ) ∣ ∃𝜅 ∈ 𝑍, ∀𝑦 ∈ 𝑌 ∶ 𝜅′(𝑦) = 𝜅(𝑦)}.

If 𝑌 is empty, then we define the restriction as:

𝑍⌈∅ = {
∅ if 𝑍 = ∅
{∅} otherwise.

▶ The assignment of 𝑥 to 𝑐 in the zone 𝑍 over 𝑋. Either 𝑥 is already in 𝑋
in which case we simply overwrite the value of 𝑥 by 𝑐, or 𝑥 is not in 𝑋
in which case we “extend” the valuations of 𝑍 by adding 𝑥:

𝑍[𝑥 = 𝑐] = {𝜅′ ∈ Val(𝑋 ∪ {𝑥}) ∣ 𝜅′(𝑥) = 𝑐∧
∃𝜅 ∈ 𝑍, ∀𝑦 ∈ 𝑋 ∖ {𝑥} ∶ 𝜅′(𝑦) = 𝜅(𝑦)}.

▶ The timeout of 𝑥 in 𝑍 where we keep all valuations of 𝑍 in which 𝑥 ∈ 𝑋
times out:

to[𝑍, 𝑥] = {𝜅 ∈ 𝑍 ∣ 𝜅(𝑥) = 0}.

If 𝑍 is a zone, then 𝑍↓, 𝑍⌈𝑌, 𝑍[𝑥 = 𝑐], and to[𝑍, 𝑥] are again zones [Cla+18].
Observe that 𝑍↓ and to[𝑍, 𝑥] are zones over 𝑋 (when 𝑥 ∈ 𝑋), 𝑍⌈𝑌 is a zone
over 𝑌, and 𝑍[𝑥 = 𝑐] is a zone over 𝑋 ∪ {𝑥}.

In the next example, we write (𝑥 = 𝑐) to denote the zone over 𝑋 = {𝑥}
composed of the unique valuation 𝜅 such that 𝜅(𝑥) = 𝑐, and 𝑐 ≤ 𝑥 ≤ 𝑐′ as a
shortcut for 𝑐 ≤ 𝑥 ∧ 𝑥 ≤ 𝑐′ (when 𝑐 = 𝑐′, we simply write 𝑥 = 𝑐). Likewise,
we write 𝑐 ≤ 𝑥 − 𝑦 ≤ 𝑐′ instead of 𝑐 ≤ 𝑥 − 𝑦 ∧ 𝑥 − 𝑦 ≤ 𝑐′. Moreover, negative
constants are allowed, i.e., 𝑐 ∈ ℤ. For instance, −1 ≤ 𝑥 − 𝑦 ≤ 3 is a shortcut
for (𝑦 − 𝑥 ≤ 1) ∧ (𝑥 − 𝑦 ≤ 3).

Example 9.7.1. The downward closure of the set {(𝑥1 = 1)} is the zone

𝑍 = {(𝑥1 = 1)}↓= {𝜅 ∣ 0 ≤ 𝜅(𝑥1) ≤ 1}.

This zone can be described by the constraint 0 ≤ 𝑥1 ≤ 1. Then, to[𝑍, 𝑥1] =
{(𝑥1 = 0)}. We can also restrict 𝑍 to either ∅ or {𝑥1}: 𝑍⌈∅ = {∅} and
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0 1
0

1

2

𝑥
𝑦

Zone 𝑍𝐴
Zone 𝑍𝐵
Zone 𝑍𝐶

Figure 9.10: Visualization of some of the zones of Example 9.7.1.

𝑍⌈{𝑥1} = 𝑍.
Let us say we start a new timer 𝑥2 with value 2:

𝑍[𝑥2 = 2] = {𝜅 ∣ 0 ≤ 𝜅(𝑥1) ≤ 1 ∧ 𝜅(𝑥2) = 2}
= (0 ≤ 𝑥1 ≤ 1) ∧ (𝑥2 = 2).

We then let time elapse to obtain the zone

𝑍𝐴 = (𝑍[𝑥2 = 2])↓
= ((0 ≤ 𝑥1 ≤ 1) ∧ (𝑥2 = 2))↓
= (0 ≤ 𝑥1 ≤ 1) ∧ (0 ≤ 𝑥2 ≤ 2) ∧ (−2 ≤ 𝑥1 − 𝑥2 ≤ −1).

This zone 𝑍𝐴 is visually represented as the dark gray part of Figure 9.10.
While to[𝑍𝐴, 𝑥2] is empty (as 𝑥1 is strictly smaller than 𝑥2), we have that

to[𝑍𝐴, 𝑥1] = (𝑥1 = 0) ∧ (0 ≤ 𝑥2 ≤ 2) ∧ (−2 ≤ 𝑥1 − 𝑥2 ≤ −1)
= (𝑥1 = 0) ∧ (1 ≤ 𝑥2 ≤ 2)

is not empty. One could also consider these valuations where we restart
𝑥1 to 1 (without necessarily letting it time out, i.e., the valuation can be
anywhere in the black area of Figure 9.10), and let time elapse:

𝑍𝐵 = (𝑍𝐴[𝑥1 = 1])↓
= ((𝑥1 = 1) ∧ (1 ≤ 𝑥2 ≤ 2))↓
= (0 ≤ 𝑥1 ≤ 1) ∧ (0 ≤ 𝑥2 ≤ 2) ∧ (−1 ≤ 𝑥1 − 𝑥2 ≤ 0),

which is represented in Figure 9.10 in light gray. This time, the set of
valuations of 𝑍𝐵 where 𝑥2 times out is not empty:

to[𝑍𝐵, 𝑥2] = (0 ≤ 𝑥1 ≤ 1) ∧ (𝑥2 = 0) ∧ (−1 ≤ 𝑥1 − 𝑥2 ≤ 0)
= (𝑥1 = 0) ∧ (𝑥2 = 0).
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16: Observe that 𝑥 must be an en-
abled timer of 𝑞. However, there
may be enabled timers of 𝑞 that can-
not reach zero in the zone 𝑍, i. e.,
it is a necessary but not sufficient
condition.

Likewise, there are valuations of 𝑍𝐵 where 𝑥1 times out:

to[𝑍𝐵, 𝑥1] = (𝑥1 = 0) ∧ (0 ≤ 𝑥2 ≤ 2) ∧ (−1 ≤ 𝑥1 − 𝑥2 ≤ 0)
= (𝑥1 = 0) ∧ (0 ≤ 𝑥2 ≤ 1).

Let us compute what happens when we consider these valuations where 𝑥1
times out and we restart 𝑥1 once more:

𝑍𝐶 = ((to[𝑍𝐵, 𝑥1])[𝑥1 = 1])↓
= (((𝑥1 = 0) ∧ (0 ≤ 𝑥2 ≤ 1))[𝑥1 = 1])↓
= ((𝑥1 = 1) ∧ (0 ≤ 𝑥2 ≤ 1))↓
= (0 ≤ 𝑥1 ≤ 1) ∧ (0 ≤ 𝑥2 ≤ 2) ∧ (0 ≤ 𝑥1 − 𝑥2 ≤ 1).

Figure 9.10 represents this zone with the lightest gray. The set of valuations
where 𝑥1 times out is empty, while there are valuations where 𝑥2 is equal
to zero.
Finally, we highlight that the valuations on the lines forming the frontiers
between two zones in Figure 9.10 belong to both zones. That is, any config-
uration 𝜅 such that 0 ≤ 𝜅(𝑥1) ≤ 1, 0 ≤ 𝜅(𝑥2) ≤ 2, and 𝜅(𝑥1) − 𝜅(𝑥2) = −1
(i.e., the frontier between 𝑍𝐴 and 𝑍𝐵) belong to both 𝑍𝐴 and 𝑍𝐵. In other
words, a valuation can belong to multiple zones.

9.7.1. Zone Mealy machine with timers

Given a sound and complete MMTℳ, we explain how to construct its zone
MMT that we denote zone(ℳ). The states of zone(ℳ) are pairs (𝑞, 𝑍) where
𝑞 is a state ofℳ and 𝑍 is a zone included in Val(𝜒(𝑞)). The idea to construct
zone(ℳ) is to start from the pair (𝑞ℳ0 , {∅}) and explore every outgoing tran-
sition of 𝑞ℳ0 . In general, we want to define the outgoing transitions of the
current pair (𝑞, 𝑍). To do so, we consider the outgoing transitions of 𝑞 in the
complete machineℳ.

▶ For every 𝑞
𝑖

−→
𝑢

𝑞′ with 𝑖 ∈ 𝐼, we reproduce the same transition in
zone(ℳ) (as it is always possible to trigger an input transition). That is,

we define (𝑞, 𝑍)
𝑖

−→
𝑢

(𝑞′, 𝑍′) with a zone 𝑍′ that depends on the update:
if 𝑢 = ⊥, then 𝑍′ is obtained by the restriction of 𝑍 to the active timers
of 𝑞′; if 𝑢 = (𝑥, 𝑐), then we first assign 𝑥 to 𝑐. In both cases, we also let
time elapse, i.e., we always compute the downward closure.

▶ We perform the same idea with every 𝑞
to[𝑥]
−−→ such that 𝑥 ∈ 𝜒(𝑞), except

that we first only consider the valuations of 𝑍 where 𝑥 is zero. If to[𝑍, 𝑥]
is empty, we do not define the transition.16

Hence, in this way, we construct the states (𝑞, 𝑍) of zone(ℳ) such that 𝑍 ≠ ∅
and that are reachable from its initial state (𝑞ℳ0 , {∅}).

Definition 9.7.2 (Zone MMT). Letℳ be a sound and complete MMT. We
first define the tuple 𝒵 = (𝐼𝒵, 𝑂𝒵, 𝑋𝒵, 𝑄𝒵, 𝑞𝒵0 , 𝜒𝒵, 𝛿𝒵) with:

▶ 𝐼𝒵 = 𝐼ℳ, 𝑂𝒵 = 𝑂ℳ, and 𝑋𝒵 = 𝑋ℳ,
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▶ 𝑄𝒵 = {(𝑞, 𝑍) ∣ 𝑞 ∈ 𝑄ℳ, 𝑍 ⊆ Val(𝜒ℳ(𝑞)), 𝑍 ≠ ∅},
▶ 𝑞𝒵0 = (𝑞ℳ0 , {∅}),
▶ For any (𝑞, 𝑍) ∈ 𝑄𝒵, we define 𝜒𝒵((𝑞, 𝑍)) = 𝜒ℳ(𝑞), i.e., we simply

copy the active timers of 𝑞,
▶ Let (𝑞, 𝑍) ∈ 𝑄𝒵 and 𝑞

𝑖/𝑜
−−→

𝑢
𝑞′ be a transition ofℳ. We define

𝑍′ =

⎧{{{
⎨{{{⎩

𝑍 if 𝑢 = ⊥ and 𝑖 ∈ 𝐼
𝑍[𝑥 = 𝑐] if 𝑢 = (𝑥, 𝑐) and 𝑖 ∈ 𝐼
to[𝑍, 𝑥] if 𝑢 = ⊥ and 𝑖 = to[𝑥]
(to[𝑍, 𝑥])[𝑥 = 𝑐] if 𝑢 = (𝑥, 𝑐) and 𝑖 = to[𝑥].

Then, if 𝑍′ ≠ ∅, we restrict 𝑍′ to 𝜒ℳ(𝑞′) and let time elapse. That is,
we define

𝛿𝒵((𝑞, 𝑍), 𝑖) = ((𝑞′, (𝑍′⌈𝜒ℳ(𝑞′))↓) , 𝑜, 𝑢) .

The zone MMT of ℳ, noted zone(ℳ), is then the MMT 𝒵 restricted to its
reachable states.

Observe that the set of actions of zone(ℳ) is the set of actions of ℳ, i.e.,
𝐴(zone(ℳ)) = 𝐴(ℳ).

Example 9.7.3.
𝑞0

𝑞1𝑞2

𝑖/𝑜, 𝑥1 ≔ 1
𝑖/𝑜′, 𝑥2 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 1𝑖/𝑜, 𝑥1 ≔ 1
to[𝑥2]/𝑜, ⊥

to[𝑥1]/𝑜′, ⊥
Let ℳ be the MMT of Figure 9.1, which is repeated in the

margin. Recall that 𝜒ℳ(𝑞0) = ∅, 𝜒ℳ(𝑞1) = {𝑥1}, and 𝜒ℳ(𝑞2) = {𝑥1, 𝑥2}.
We construct its zone MMT zone(ℳ). We start with the state 𝑞𝒵0 = (𝑞0, {∅}).
Since there is no active timer, it is sufficient to define the 𝑖-transition:

(𝑞0, {∅})
𝑖/𝑜

−−−→
(𝑥1,1)

(𝑞1, 0 ≤ 𝑥1 ≤ 1).

We can then define the to[𝑥1]- and the 𝑖-transition of the state (𝑞1, 0 ≤ 𝑥1 ≤
1):

(𝑞1, 0 ≤ 𝑥1 ≤ 1)
to[𝑥1]/𝑜
−−−−→

(𝑥1,1)
(𝑞1, 0 ≤ 𝑥1 ≤ 1)

and

(𝑞1, 𝑥1 ≤ 2)
𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, (0 ≤ 𝑥1 ≤ 1) ∧ (0 ≤ 𝑥2 ≤ 2)

∧ (−2 ≤ 𝑥1 − 𝑥2 ≤ −1)).

Observe that the reached zone is the zone 𝑍𝐴 of Example 9.7.1. By the same
example, we know that 𝑥2 cannot time out in 𝑍𝐴. Let us define the to[𝑥1]-

transition by first computing the target zone, knowing that 𝑞2
to[𝑥1]/𝑜′

−−−−−→
⊥

𝑞0:

((to[𝑍𝐴, 𝑥1])⌈{𝑥2})↓ = (((𝑥1 = 0) ∧ (1 ≤ 𝑥2 ≤ 2))⌈{𝑥2})↓
= 1 ≤ 𝑥2 ≤ 2↓
= 0 ≤ 𝑥2 ≤ 2.
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𝑞0, ∅ 𝑞1, 0 ≤ 𝑥1 ≤ 1 𝑞2, 𝑍𝐴 𝑞2, 𝑍𝐵

𝑞2, 𝑍𝐵 ∪ 𝑍𝐶

𝑞1, 𝑥1 = 0𝑞2, 𝑥1 = 0 ∧ 𝑥2 = 2

𝑞2, 0 ≤ 𝑥1 ≤ 1 ∧ 0 ≤ 𝑥2 ≤ 2 ∧ 𝑥1 − 𝑥2 = −1

𝑖/𝑜
𝑥1 ≔ 1

to[𝑥1]/𝑜, 𝑥1 ≔ 1

𝑖/𝑜′

𝑥2 ≔ 2
𝑖/𝑜

𝑥1 ≔ 1

𝑖/𝑜′

𝑥2 ≔ 2

𝑖/𝑜, 𝑥1 ≔ 1

𝑖/𝑜, 𝑥1 ≔ 1

to[𝑥2]/𝑜
⊥

to[𝑥1]/𝑜
𝑥1 ≔ 1

𝑖/𝑜
𝑥1 ≔ 1

to[𝑥1]/𝑜′

⊥

to[𝑥1]/𝑜′

⊥

𝑖/𝑜′, 𝑥1 ≔ 1

to[𝑥2]/𝑜
⊥

to[𝑥1]/𝑜′

⊥

to[𝑥1]/𝑜
⊥

to[𝑥1]/𝑜
⊥

Figure 9.11: The zone MMT of the MMT of Figure 9.1.

Hence, we define the transition

(𝑞2, 𝑍𝐴)
to[𝑥1]/𝑜′

−−−−−→
⊥

(𝑞0, {∅}).

Let us now focus on defining the 𝑖-transition from (𝑞2, 𝑍𝐴). As 𝑞2
𝑖/𝑜

−−−→
(𝑥1,1)

𝑞2

inℳ, the resulting zone is

𝑍𝐵 = (0 ≤ 𝑥1 ≤ 1) ∧ (0 ≤ 𝑥2 ≤ 2) ∧ (−1 ≤ 𝑥1 − 𝑥2 ≤ 0),

by Example 9.7.1. So, we define

(𝑞2, 𝑍𝐴)
𝑖/𝑜

−−−→
(𝑥1,1)

(𝑞2, 𝑍𝐵).

Figure 9.11 gives the zone MMT ofℳ.

Let us now argue that zone(ℳ) has finitely many states and it is sound (when
ℳ is sound).
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Proposition 9.4.5. Let ℳ
and𝒩 be two sound and com-
plete MMTs. Ifℳ

sym
≈𝒩, then

ℳ
time
≈ 𝒩.

Lemma 9.7.4. Let ℳ be a sound MMT. Then, zone(ℳ) has finitely many
states and is sound.

Proof. The zone MMT is clearly sound because its transitions mimics the
transitions ofℳ and for any (𝑞, 𝑍) ∈ 𝑄𝒵, we have 𝜒𝒵((𝑞, 𝑍)) = 𝜒ℳ(𝑞).
By construction, the states (𝑞, 𝑍) of zone(ℳ) are such that 𝑍 is a zone over
𝜒ℳ(𝑞), described as a finite conjunction of constraints of the shape 𝑥 ⋈ 𝑐
or 𝑥 − 𝑦 ⋈ 𝑐, with ⋈∈ {<, ≤, ≥, >} and 𝑐 ∈ ℕ. For each timer 𝑥, let 𝑐𝑥
be the maximal constant appearing on an update (re)starting 𝑥. Since the
value of a timer can only decrease, it is clear that we will never reach a zone
where 𝑥 > 𝑐𝑥. Moreover, as the value of a timer must remain at least zero at
any time, we also have a lower bound. In other words, we know that each
timer 𝑥 will always be confined between zero and 𝑐𝑥. From the shape of the
constraints and these bounds, it follows immediately that there are finitely
many zones. Hence, zone(ℳ) has finitely many states. �

The following theorem states multiple properties of the zone MMT. Its proof
is given in Section C.8.

Theorem 9.7.5. Let ℳ be a complete and sound MMT, and zone(ℳ) be its
zone MMT. Then,

▶ both MMTs ℳ and zone(ℳ) have the same timed behaviors, i.e., it
holds that for every timed word 𝑤, state 𝑞 ∈ 𝑄ℳ, and valuation 𝜅 ∈
Val(𝜒ℳ(𝑞)),

(𝑞ℳ0 , ∅)
𝑤
−→ (𝑞, 𝜅) ∈ truns(ℳ)

if and only if there exists a zone 𝑍 over 𝜒ℳ(𝑞) such that 𝜅 ∈ 𝑍 and

((𝑞ℳ0 , {∅}), ∅)
𝑤
−→ ((𝑞, 𝑍), 𝜅) ∈ truns(zone(ℳ)).

▶ ℳ and zone(ℳ) have the same feasible runs,
▶ zone(ℳ) is sound and complete,
▶ ℳ and zone(ℳ) are symbolically equivalent, and
▶ any run of zone(ℳ) is feasible.

We then immediately obtain that ℳ and zone(ℳ) are timed equivalent by
Proposition 9.4.5.

9.8. Conclusion

In this chapter, we presented Mealy machines with timers and their semantics.
We showed that one can construct a timed Mealy machine (using clocks) from
an MMT. Furthermore, we proved that deciding whether a state is reachable
by some timed run remains PSPACE-complete, and adapted the notions of
regions and zones to timers. Finally, we studied how to decide whether an
MMT contains runs requiring non-zero delays to be observed, i.e., whether an
MMT is race-avoiding.
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Proposition 9.4.5. Let ℳ
and𝒩 be two sound and com-
plete MMTs. Ifℳ

sym
≈𝒩, then

ℳ
time
≈ 𝒩.

For future work, one may try to tighten the complexity bounds for the latter
decision problem, both when fixing the sets 𝐼 and 𝑋 and when not. Further-
more, while we showed that a timed Mealy machine can be constructed from
an MMT, we do not know about the other direction. That is, the sub-family of
timed Mealy machines that is equivalent to MMTs is yet unknown. Finally, by
Proposition 9.4.5, we know that symbolic equivalence implies timed equiva-
lence, for any pair of MMTs. We showed in Section C.2 that the other direction
does not hold, when the MMTs are not race-avoiding. It may be interesting to
study whether both definitions are equivalent, when we can assume that all
delays are positive.
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Active Learning of Mealy Machines
with Timers 10.

In the previous chapter, we introduced Mealy machines with timers (MMTs) for
which we now provide an active learning algorithm, based on [Bru+24]. The
idea is to learn the timed system symbolically, i.e., by abstracting away the
delays. We show that this symbolic approach can be implemented via concrete
timed runs, when the target MMT is race-avoiding.

Our learning algorithm is an extension of the 𝐿# algorithm forMealymachines.
We refer to Section 3.3 for an introduction to 𝐿#. That is, we use an observation
tree (which is itself a partial MMT) to store the (symbolic) runs of the MMT of
the teacher. Within this tree, we identify states that expose different (timed)
behaviors in their subtrees (i.e., the notion of apartness of 𝐿#), allowing us
to construct a complete MMT hypothesis. Technical details and proofs are
deferred to Appendix C.
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10.1. Introduction

Extendingmodel learning algorithms to a setting that incorporates quantitative
timing information turns out to be challenging. Twenty years ago, the first
papers on this subject were published [GJL04; MP04], but we still do not
have scalable algorithms for a general class of timed models. Consequently,
in applications of model learning technology timing issues still need to be
artificially suppressed.
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Several authors have proposed active learning algorithms for the popular
framework of timed automata (TA; see Chapter 8) [AD94], which extends
DFAs with clock variables. Some of these proposals, for instance [GJP06;
GJL10; HJM20], have not been implemented due to their high complexity (both
in terms of time and memory, and in the theoretical point of view). In re-
cent years, however, several algorithms have been proposed and implemented
that successfully learned realistic benchmark models. A first line of work
restricts to subclasses of TAs such as deterministic one-clock timed automata
(DOTAs) [An+20; XAZ22]. A second line of work explores synergies between
active and passive learning algorithms. Aichernig et al. [Tap+19; APT20],
for instance, employ a passive learning algorithm based on genetic program-
ming to generate hypothesis models, which are subsequently refined using
equivalence queries. A major result was obtained recently by Waga [Wag23],
who presents an algorithm for active learning of (general) deterministic TAs
and shows the effectiveness of the algorithm on various benchmarks. Waga’s
algorithm is inspired by ideas of Maler and Pnueli [MP04]. In particular, based
on the notion of elementary languages of [MP04], Waga uses symbolic queries,
which are then implemented using finitely many concrete queries. A challenge
for learning algorithms for timed automata is the inference of the guards
and resets that label transitions. As a result, the algorithm of Waga [Wag23]
requires an exponential number of concrete membership queries to implement
a single symbolic query.

In the previous chapter, we introduced Mealy machines with timers (MMT),
which form a subfamily of timed automata with outputs, and we claimed that
MMTs are easier to learn. It is noteworthy that Jonsson and Vaandrager already
tried to devise an active learning algorithm for MMTs based on 𝐿∗ [JV18],
although their work was never published. This chapter provides an active
learning algorithm for MMTs based on 𝐿# [Vaa+22] (see Section 3.3), and
using ideas of Maler and Pnueli [MP04]. Experiments with a prototype imple-
mentation, written in Rust, show that our algorithm is able to efficiently learn
realistic benchmarks.

This chapter is structured as follows. Section 10.2 describes the basic learning
framework for MMTs, in particular the three types of symbolic queries that an
MMT learner may use, and claim that these symbolic queries can be performed
with finitely many concrete output and equivalence queries. Then, Section 10.3
describes the observation tree that our algorithm uses to record the outcomes
of symbolic queries. It also lifts the notion of apartness from the 𝐿# algorithm
to the timed setting. Two states of an observation tree are apart if they can
not correspond to the same state of the hidden MMT. The notion of apartness
is parametrized by a matching, which specifies how the timers of both states
correspond to each other. Section 10.4 describes our new learning algorithm
for MMTs, called 𝐿#

MMT. Analogous to 𝐿#, the 𝐿#
MMT algorithm maintains a

growing set of basis states, states in the observation tree that are pairwise apart,
for any possible matching. Basis states will act as states in a hypothesis MMT
that will be constructed by the learner. Successors of basis states that are not in
the basis themselves are called frontier states. Like in 𝐿#, we perform queries
in order to establish apartness of frontier states from as many basis states as
possible, for as many matchings as possible. If a frontier state is apart from
all basis states, for all possible matchings, then 𝐿#

MMT may extend the basis. If
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𝑞0 𝑞1 𝑞2
𝑖/𝑜, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2
𝑖/𝑜′, 𝑦 ≔ 3

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

to[𝑦]/𝑜, ⊥

Figure 10.1: Running example MMT with 𝜒(𝑞0) = ∅, 𝜒(𝑞1) = {𝑥}, 𝜒(𝑞2) = {𝑥, 𝑦}.

1: By identifying a finite subset of
states, called the basis, as is the case
for 𝐿# (see Section 3.3.1).

2: Recall that an MMTℳ is feasi-
ble when every run of ℳ is feasi-
ble.

there exists a basis state and a matching for which a frontier state is not apart,
this provides 𝐿#

MMT with information on how it may construct a hypothesis
model. The mechanism for hypothesis construction for MMTs is closely related
to the chronometric relational morphisms of Maler and Pnueli [MP04]. Finally,
Section 10.5 discusses our prototype implementation and the results for the
benchmarks. Technical details and proofs are deferred to Appendix C.

Running example and outline of 𝐿#
MMT

Throughout this chapter, we use the MMT ℳ of Figure 10.1 as our running
example. One can check thatℳ is sound, complete, and race-avoiding. How-

ever,ℳ has some unfeasible runs. For instance, 𝑞0
𝑖⋅𝑖⋅to[𝑦]
−−−−→ is not feasible, due

to the fact that 𝑦 is started with a bigger value than 𝑥.

As we did for MMs (see Section 3.3.1), one can unfold the runs ofℳ into an
infinite tree (of finite arity), rooted at 𝑞ℳ0 :

▶ consider all outgoing 𝑖-transitions of a state 𝑞 with 𝑖 ∈ 𝐼, create a new

state 𝑝, and define the transition 𝑞ℳ0
𝑖

−→ 𝑝;
▶ let 𝜋 be the unique (due to the tree-shaped structure) run from the initial

state to 𝑞, consider all to[𝑥]-transitions such that 𝑥 is enabled after 𝜋 (i.e.,
𝑥 ∈ 𝜒0(𝜋)), and again create a new state and transition; and

▶ repeat this for every new state 𝑝.

We claim that we can construct a finite MMT from this infinite tree.1

The goal of the learner in our algorithm 𝐿#
MMT is to infer a finite part of this

infinite tree such that this part is sufficiently big to be able to construct anMMT
𝒩 that is timed equivalent to ℳ (which can be checked via an equivalence
query). However, as a timer must be enabled after the run from the initial
state for a timeout transition to be defined, the tree may lack some transitions

compared to its corresponding state in ℳ. For instance, the run 𝑞ℳ0
𝑖⋅𝑖⋅to[𝑦]
−−−−→

cannot be reproduced in the tree (as the value of 𝑦 is necessarily bigger than
the value of 𝑥). As we will argue in the next sections, this is problematic, as it
means that some states of the tree have strictly less enabled timers than their
corresponding states in the teacher’s MMT.

Hence, we assume that the teacher’s MMT is feasible.2 In particular, this can
be achieved by constructing its zone MMT, as introduced in Section 9.7. Let
us recall the main theorem over the zone MMT:



10. Active Learning of Mealy Machines with Timers 235

𝑞0 𝑞1 𝑞2 𝑞3 𝑞4

𝑞5

𝑖/𝑜
𝑥 ≔ 2
to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′

𝑦 ≔ 3
to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2
to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑥]/𝑜, 𝑥 ≔ 2

Figure 10.2: The zone MMT of the MMT of Figure 10.1, with 𝜒(𝑞0) = ∅, 𝜒(𝑞1) = {𝑥}, and 𝜒(𝑞) = {𝑥, 𝑦} for
all the other states 𝑞.

[Ang87]: Angluin (1987), “Learn-
ing Regular Sets from Queries and
Counterexamples”

3: The s stands for symbolically.

Theorem 9.7.5. Let ℳ be a complete and sound MMT, and zone(ℳ) be its
zone MMT. Then,

▶ both MMTs ℳ and zone(ℳ) have the same timed behaviors, i.e., it
holds that for every timed word 𝑤, state 𝑞 ∈ 𝑄ℳ, and valuation 𝜅 ∈
Val(𝜒ℳ(𝑞)),

(𝑞ℳ0 , ∅)
𝑤
−→ (𝑞, 𝜅) ∈ truns(ℳ)

if and only if there exists a zone 𝑍 over 𝜒ℳ(𝑞) such that 𝜅 ∈ 𝑍 and

((𝑞ℳ0 , {∅}), ∅)
𝑤
−→ ((𝑞, 𝑍), 𝜅) ∈ truns(zone(ℳ)).

▶ ℳ and zone(ℳ) have the same feasible runs,
▶ zone(ℳ) is sound and complete,
▶ ℳ and zone(ℳ) are symbolically equivalent, and
▶ any run of zone(ℳ) is feasible.

Figure 10.2 gives the zone MMT ofℳ.

We fix a set of inputs 𝐼 and a set of outputs 𝑂 and assume that both the learner
and the teacher use these sets.

10.2. Learning framework

As usual for learning algorithms, we rely on Angluin’s framework [Ang87]:
we assume we have a teacher who knows an MMT ℳ, and a learner who
does not know ℳ but can query the teacher to obtain knowledge about ℳ.
However, we needℳ to satisfy some constraints: it must be sound, complete,
race-avoiding, and feasible. We say thatℳ is s-learnable3 when it satisfies the
four requirements. We highlight that an s-learnable MMT can be constructed
from an MMT that is already sound, complete, and race-avoiding, by com-
puting its zone MMT. The following proposition is a direct consequence of
Theorem 9.7.5.

Proposition 10.2.1. For any sound, complete, and race-avoiding MMT ℳ,
there exists an s-learnable MMT 𝒩 such that ℳ

sym
≈𝒩.
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Proposition 9.4.5. Let ℳ
and𝒩 be two sound and com-
plete MMTs. Ifℳ

sym
≈𝒩, then

ℳ
time
≈ 𝒩.

[Vaa+22]: Vaandrager et al. (2022),
“A New Approach for Active Au-
tomata Learning Based on Apart-
ness”
[SG09]: Shahbaz et al. (2009), “In-
ferring Mealy Machines”

4: If it is not, it is possible to wiggle
the blocks. See Section 9.6.

By Proposition 9.4.5, we then obtain thatℳ and𝒩 are timed equivalent.

In this section, we describe the queries a learner for MMTs can use. First of
all, let us recall the queries for (classical) Mealy machines [Vaa+22; SG09]:

Definition 3.3.1. Letℳ be the MM of the teacher. A learner for MMs can
use two types of queries:

▶ An output query, denoted by OQ(𝑤), with 𝑤 a word over 𝐼, returns
outputℳ(𝑤).

▶ An equivalence query , denoted by EQ(ℋ), withℋ an MM, returns

• yes ifℳ ≈ ℋ, and
• a word 𝑤 over 𝐼 such that outputℳ(𝑤) ≠ outputℋ(𝑤) otherwise.
Such a word 𝑤 is called a counterexample.

We adapt those queries to take into account the timed behavior induced by
the timers ofℳ. We do it in two ways: one that uses timed input words (see
Section 9.4.1), and one that uses symbolic words (see Section 9.4.2). Finally,
we claim that symbolic queries can be performed with finitely many concrete
queries, whenℳ is race-avoiding (which is why that aspect is required in the
definition of s-learnable).

10.2.1. Concrete queries

The concrete queries are a direct adaptation of the queries for classical MM:
one requests the output of a timed word, and one asks whether a hypothesis
is correct.

Definition 10.2.2 (Concrete queries for MMTs). Letℳ be the sound, com-
plete, and race-avoiding MMT of the teacher. A learner for MMTs can use
two types of concrete queries:

▶ OQ(𝑤) with 𝑤 a tiw such that toutputsℳ(𝑤) ≠ ∅: the teacher outputs
a tow in toutputsℳ(𝑤).

▶ EQ(ℋ) with ℋ a sound and complete MMT ℋ: the teacher replies

yes ifℳ
time
≈ ℋ, or a tiw 𝑤 such that toutputsℳ(𝑤) ≠ toutputsℋ(𝑤).

Asℳ is race-avoiding, we can assume without loss of generality that the re-
turned counterexample 𝑤 has a unique run inℳ, i.e., that ∣toutputsℳ(𝑤)∣ = 1.4
Figure 10.3 gives a visual representation of the adapted Angluin’s framework
for MMTs.

10.2.2. Symbolic queries

On the opposite, symbolic queries necessitate a symbolic word. While output
and equivalence queries are easily adapted to the symbolic case (again, see
Section 9.4.2), we cannot obtain information about enabled timers solely from
them. Hence, we need a new type of query, called a wait query, in order to
deal with timed behavior.
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Learner Teacher
Knows an MMTℳ

OQ(𝑤) ∶ toutputsℳ(𝑤)?

toutputsℳ(𝑤)

EQ(ℋ) ∶ ℳ
time
≈ ℋ?

yes or a counterexample

Figure 10.3: Adaptation of Angluin’s framework for MMTs, with concrete queries.

Definition 10.2.3 (Symbolic queries for MMTs). Letℳ be the sound, com-
plete, and race-avoiding MMT of the teacher. A learner for MMTs can use
three types of symbolic queries

▶ A symbolic output query , denoted by OQs(w), with w an sw such that
𝑞ℳ0

w

−→ ∈ runs(ℳ), returns the outputs of 𝑞ℳ0
w

−→.
▶ A symbolic wait query , denoted by WQs(w), with w an sw such that

𝑞ℳ0
𝑖1−→ ⋯

𝑖𝑛−→ 𝑞𝑛 ∈ runs(ℳ)

with 𝑖1 ⋯ 𝑖𝑛 = w, returns the set of all pairs (𝑗, 𝑐) such that

𝑞𝑗−1
𝑖𝑗⋯𝑖𝑛⋅to[𝑥]
−−−−−−→ is 𝑥-spanning.

▶ A symbolic equivalence query, denoted by EQs(ℋ), withℋ a sound
and complete MMT, returns yes ifℋ

sym
≈ℳ, or an sw w = i1 ⋯ in such

that

• either 𝑞ℋ0
w

−→ ∈ runs(ℋ) ⇔ 𝑞ℳ0
w

−→ ∉ runs(ℳ),
• or there exists 𝑗 such that

𝑞ℳ0
i1⋯ij−1

−−−−→ 𝑞
ij/𝑜
−−→

𝑢
∈ runs(ℳ),

𝑞ℋ0
i1⋯ij−1

−−−−→ 𝑞′
ij/𝑜′

−−−→
𝑢′

∈ runs(ℋ),

and
∗ 𝑜 ≠ 𝑜′ or

∗ 𝑢 = (𝑥, 𝑐), 𝑢′ = (𝑥′, 𝑐′), 𝑐 ≠ 𝑐′, and 𝑞
ij⋯ik

−−−→ is 𝑥-spanning
for some 𝑘 ∈ {𝑗 + 1, … , 𝑛}.

OQs and EQs are analogous to regular output and equivalence queries in the
setting of Mealy machines, while WQs provides, for each timer 𝑥 enabled at
the end of the run induced by the given symbolic word, the transition which
last (re)started 𝑥 and the constant with which 𝑥 was (re)started. Figure 10.4
gives a visual representation of the symbolic queries for MMTs.

To conclude this section, we claim that these three symbolic queries can be
performed via concrete output and equivalence queries, i.e., queries using
tiws instead of sws, whenℳ is sound, complete, and race-avoiding. A proof
is provided in Section C.9. Note, however, that it requires properties on the
data structure used during the learning process and introduced in the next
section.
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Learner Teacher
Knows an MMTℳ

OQs(w) ∶ outputs of 𝑞ℳ0
w

−→?

outputs of the run

WQs(w) ∶ enabled timers after w?

the set of pairs (𝑗, 𝑐)

EQs(ℋ) ∶ ℳ
sym
≈ℋ?

yes or a counterexample

Figure 10.4: Adaptation of Angluin’s framework for MMTs, with symbolic queries.

[Vaa+22]: Vaandrager et al. (2022),
“A New Approach for Active Au-
tomata Learning Based on Apart-
ness”
5: That is, every state has a unique
incoming transition, except for the
initial state. Hence, for every state
𝑞 there is a unique run from the
initial state to 𝑞.

6: See Section 9.2.3 for a way to
compute the set of enabled timers,
in general.

Proposition 10.2.4. For any s-learnable MMTs, the three symbolic queries can
be implemented via a polynomial number of concrete output and equivalence
queries.

10.3. Observation tree

In this section, we describe the main data structure of our learning algorithm,
which is a modification of the observation tree used by 𝐿# [Vaa+22] (see
Section 3.3). Such a tree, denoted by 𝒯, is a partial MMT that stores the
observations obtained via symbolic queries. We impose that 𝒯 is tree-shaped5

and feasible. Each state 𝑞 of 𝒯 has its own timer 𝑥𝑞 that can only be started by
the incoming transition of 𝑞, and may only be restarted by a to[𝑥𝑞]-transition.
Thanks to its tree-shape nature, we can impose strict constraints on the set
of active and enabled timers of a state 𝑞: a timer 𝑥 is active in 𝑞 if and only
if there is an 𝑥-spanning run traversing 𝑞, and is enabled if and only if the
to[𝑥]-transition is defined from 𝑞.6

Definition 10.3.1 (Observation tree). An observation tree is a tree-shaped
sound MMT 𝒯 = (𝐼, 𝑂, 𝑋, 𝑄, 𝑞0, 𝜒, 𝛿) such that

▶ 𝑋 = {𝑥𝑞 ∣ 𝑞 ∈ 𝑄 ∖ {𝑞0}},

▶ ∀𝑝
𝑖

−−−→
(𝑥,𝑐)

𝑞 with 𝑖 ∈ 𝐼 ∶ 𝑥 = 𝑥𝑞,

▶ every run of 𝒯 is feasible,
▶ ∀𝑞 ∈ 𝑄, 𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝜒(𝑞) if and only if there is an 𝑥-spanning run

traversing 𝑞, and
▶ ∀𝑞 ∈ 𝑄, 𝑥 ∈ 𝑋 ∶ 𝑥 ∈ 𝜒0(𝑞) if and only if 𝑞

to[𝑥]
−−→ ∈ runs(𝒯).

Example 10.3.2. Figure 10.5 gives an example of an observation tree 𝒯. To
ease the reading, we write 𝑥𝑖 instead of 𝑥𝑡𝑖

for all states 𝑡𝑖. The active
timers are as follows: 𝜒(𝑡1) = 𝜒(𝑡2) = {𝑥1}, 𝜒(𝑡3) = 𝜒(𝑡5) = {𝑥1, 𝑥3},
𝜒(𝑡6) = {𝑥3, 𝑥6}, and 𝜒(𝑡) = ∅ for the other states 𝑡. In every case, we
satisfy that 𝑥 ∈ 𝜒(𝑡) if and only if there is an 𝑥-spanning run going through
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𝑡0 𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡7

𝑡8

𝑡9

𝑡10

𝑖/𝑜, 𝑥1 ≔ 2

𝑖/𝑜′, 𝑥3 ≔ 3

to[𝑥1]/𝑜, 𝑥1 ≔ 2 to[𝑥1]/𝑜, ⊥

to[𝑥1]/𝑜, 𝑥1 ≔ 2

𝑖/𝑜′, 𝑥6 ≔ 2

to[𝑥3]/𝑜, ⊥

to[𝑥6]/𝑜, ⊥

to[𝑥1]/𝑜, ⊥

to[𝑥3]/𝑜, ⊥

Figure 10.5: Sample observation tree (we write 𝑥𝑖 instead of 𝑥𝑡𝑖
for all states 𝑡𝑖) with 𝜒(𝑡1) = 𝜒(𝑡2) = {𝑥1},

𝜒(𝑡3) = 𝜒(𝑡5) = {𝑥1, 𝑥3}, 𝜒(𝑡6) = {𝑥3, 𝑥6}, and 𝜒(𝑡) = ∅ for the other states 𝑡.

Definition 3.3.4. Letℳ be a
completeMMand𝒯 be an ob-
servation tree. A functional
simulation 𝑓 ∶ 𝒯 → ℳ is a
map 𝑓 ∶ 𝑄𝒯 → 𝑄ℳ with

▶ 𝑓(𝑞𝒯0 ) = 𝑞ℳ0 , and
▶ for all 𝑞, 𝑞′ ∈ 𝑄𝒯, 𝑖 ∈ 𝐼,

and 𝑜 ∈ 𝑂, 𝑞
𝑖/𝑜
−−→ 𝑞′ im-

plies 𝑓(𝑞)
𝑖/𝑜
−−→ 𝑓(𝑞′).

We say that 𝒯 is an observa-
tion tree for ℳ if there ex-
ists a functional simulation
𝑓 ∶ 𝒯 → ℳ.

7: However, there may be active
timers in 𝑓(𝑞) that are unknown in
𝑞.

𝑡, and a transition 𝑡
to[𝑥]
−−→ is defined if and only if 𝑥 ∈ 𝜒0(𝑡). Moreover, every

run of 𝒯 is feasible.

During the learning process, it is not always be possible to decide whether
the update of a new transition must be (𝑥, 𝑐) or ⊥. Instead, we assume by
default that a transition does nothing, i.e., its update is ⊥. Later on, we may
discover that this transition actually (re)starts a timer, and its update will be
replaced by some (𝑥, 𝑐). Hence, in the rest of this section, we will use ⊥ as a
sort of wildcard. We first characterize the fact that the transitions of 𝒯 must
correspond to the transitions of some hidden MMTℳ (which, in Section 10.4,
will be the MMT we want to learn), except that a ⊥ in 𝒯 may be a (𝑥, 𝑐) inℳ.
The fact that not all updates are known implies that some active and enabled
timers may be missing in 𝒯 compared toℳ. We then adapt, in Section 10.3.2,
the notion of apartness of [Vaa+22] for MMTs.

10.3.1. Functional simulation

As we did for classical MMs with Definition 3.3.4 in order to link the (finitely
many) runs of 𝒯 to runs of ℳ, we introduce a function 𝑓 ∶ 𝑄𝒯 → 𝑄ℳ that

maps states of 𝒯 to states of ℳ such that every transition 𝑞
𝑖

−→ of 𝒯 can be
reproduced from 𝑓(𝑞) while producing the same output. In addition, since 𝒯
andℳ may use different timers, we need a function 𝑔 ∶ 𝑋𝒯 ⇀ 𝑋ℳ that maps
every active timer of 𝒯 to a timer ofℳ. We require that

▶ when a timer 𝑥 is active in 𝑞, the corresponding timer 𝑔(𝑥) is active in
𝑓(𝑞),7 and

▶ when 𝑥 and 𝑦 are distinct timers that are both active in some state 𝑞, we
do not allow 𝑔 to map 𝑥 and 𝑦 to the same timer ofℳ.

These conditions imply that

▶ the number of timers that are active in 𝑓(𝑞) is at least as large as the
number of timers active in 𝑞,

▶ for any transition 𝑞
𝑖/𝑜
−−→

𝑢
𝑞′ in 𝒯, there exists a transition 𝑓(𝑞)

𝑖′/𝑜
−−→

𝑢′
𝑓(𝑞′)

in ℳ such that 𝑖′ = 𝑖 if 𝑖 ∈ 𝐼, or 𝑖′ = to[𝑔(𝑥)] if 𝑖 = to[𝑥], i.e., we read
a corresponding action, output the same symbol and reach the state
corresponding to 𝑞′, and
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▶ if 𝑢 = (𝑥, 𝑐), then 𝑢′ = (𝑔(𝑥), 𝑐), i.e., we do the same update. However,
if 𝑢 = ⊥, we may not have found the actual update yet, so we do not
impose anything on 𝑢′ (it can be any update in 𝑈(ℳ)).

Then, for a run 𝜋 of 𝒯, we can consider its corresponding run inℳ via 𝑓 and
𝑔, denoted by ⟨𝑓, 𝑔⟩(𝜋), which must preserve the spanning sub-runs.

Definition 10.3.3 (Functional simulation). Let 𝒯 be an observation tree
andℳ be an s-learnable MMT. A functional simulation ⟨𝑓, 𝑔⟩ ∶ 𝒯 → ℳ is a
pair of a map

𝑓 ∶ 𝑄𝒯 ⇀ 𝑄ℳ

and a map
𝑔 ∶ ⋃

𝑞∈𝑄𝒯

𝜒𝒯(𝑞) → 𝑋ℳ.

Let 𝑔 be lifted to actions such that 𝑔(𝑖) = 𝑖 for every 𝑖 ∈ 𝐼, and 𝑔(to[𝑥]) =
to[𝑔(𝑥)] for every 𝑥 ∈ dom(𝑔). We require that ⟨𝑓, 𝑔⟩ preserves initial states,
active timers, and transitions:

𝑓(𝑞𝒯0 ) = 𝑞ℳ0 (FS0)

∀𝑞 ∈ 𝑄𝒯, ∀𝑥 ∈ 𝜒𝒯(𝑞) ∶ 𝑔(𝑥) ∈ 𝜒ℳ(𝑓(𝑞)) (FS1)

∀𝑞 ∈ 𝑄𝒯, ∀𝑥, 𝑦 ∈ 𝜒𝒯(𝑞) ∶ 𝑥 ≠ 𝑦 ⇒ 𝑔(𝑥) ≠ 𝑔(𝑦) (FS2)

∀𝑞
𝑖/𝑜

−−−→
(𝑥,𝑐)

𝑞′ ∶ 𝑓(𝑞)
𝑔(𝑖)/𝑜

−−−−→
(𝑔(𝑥),𝑐)

𝑓(𝑞′) (FS3)

∀𝑞
𝑖/𝑜
−−→

⊥
𝑞′ ∶ 𝑓(𝑞)

𝑔(𝑖)/𝑜
−−−→ 𝑓(𝑞′). (FS4)

Thanks to (FS3) and (FS4), we lift ⟨𝑓, 𝑔⟩ to runs in a straightforward manner.
We require that for all runs 𝜋 of 𝒯,

⟨𝑓, 𝑔⟩(𝜋) is 𝑦-spanning ⇒ ∃𝑥 ∶ 𝜋 is 𝑥-spanning and 𝑔(𝑥) = 𝑦. (FS5)

If there exists ⟨𝑓, 𝑔⟩ ∶ 𝒯 → ℳ, we say that 𝒯 is an observation tree for ℳ.

Example 10.3.4.

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑖/𝑜, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑦 ≔ 3

to[𝑥]/𝑜, 𝑥 ≔ 2𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑥]/𝑜
𝑥 ≔ 2

Let ℳ be the MMT of Figure 10.2, which is repeated in
the margin. Recall that ℳ is s-learnable. Then, the observation tree 𝒯 of
Figure 10.5 (which is repeated on the next page) is an observation tree for
ℳ with the functional simulation ⟨𝑓, 𝑔⟩ such that

𝑓(𝑡0) = 𝑓(𝑡8) = 𝑓(𝑡10) = 𝑞0

𝑓(𝑡1) = 𝑓(𝑡2) = 𝑓(𝑡4) = 𝑞1

𝑓(𝑡3) = 𝑞2

𝑓(𝑡5) = 𝑓(𝑡6) = 𝑞3

𝑓(𝑡7) = 𝑓(𝑡9) = 𝑞5,
and

𝑔(𝑥1) = 𝑔(𝑥6) = 𝑥
𝑔(𝑥3) = 𝑦.
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Let 𝜋 = 𝑡1
𝑖⋅to[𝑥1]⋅to[𝑥3]
−−−−−−−→, which is 𝑥3-spanning. Observe that

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

⟨𝑓, 𝑔⟩(𝜋) = 𝑞1
𝑖⋅to[𝑥]⋅to[𝑦]
−−−−−−→

is 𝑦-spanning and 𝜋 is 𝑥3-spanning. As 𝑔(𝑥3) = 𝑦, (FS5) is satisfied.

Observe that for fixed 𝒯 andℳ there exists at most one functional simulation.
Further properties can be deduced from the definition of ⟨𝑓, 𝑔⟩.

Corollary 10.3.5. Let 𝒯 be an observation tree for an s-learnable ℳ with
⟨𝑓, 𝑔⟩. Then, for all states 𝑞 ∈ 𝑄𝒯, we have:

▶ ∣𝜒𝒯(𝑞)∣ ≤ ∣𝜒ℳ(𝑓(𝑞))∣, and
▶ for all 𝑥 ∈ 𝜒𝒯

0 (𝑞), 𝑔(𝑥) ∈ 𝜒ℳ
0 (𝑓(𝑞)).

Proof. We start with the first part, i.e., ∣𝜒𝒯(𝑞)∣ ≤ ∣𝜒ℳ(𝑓(𝑞))∣. By (FS1), we
have that any timer 𝑥 that is active in 𝑞 is such that 𝑔(𝑥) is active in 𝑓(𝑥).
Moreover, by (FS2), 𝑔(𝑥) ≠ 𝑔(𝑦) for any 𝑥 ≠ 𝑦 ∈ 𝜒𝒯(𝑞). So, it is not possible
for 𝑞 to have more active timers than 𝑓(𝑞).
Now, the second part, i.e., ∀𝑥 ∈ 𝜒𝒯

0 (𝑞) ∶ 𝑔(𝑥) ∈ 𝜒ℳ
0 (𝑓(𝑞)). Let 𝑥 ∈ 𝜒𝒯

0 (𝑞).
By definition of 𝒯, it follows that 𝑞

to[𝑥]
−−→ is defined. So, by (FS3) and (FS4),

we have 𝑓(𝑞)
to[𝑔(𝑥)]
−−−−→, meaning that 𝑔(𝑥) ∈ 𝜒ℳ

0 (𝑓(𝑞)), asℳ is complete. �

Let us now characterize when a state 𝑞 is deemed explored, in the sense that
we know exactly its set of enabled timers, that is, when compared toℳ. As
we know that 𝜒𝒩(𝑞𝒩0 ) = ∅ for any sound MMT𝒩, it follows that 𝑞𝒯0 is always
explored.

Definition 10.3.6 (Explored states). Let 𝑞 ∈ 𝑄𝒯 and 𝜋 be the unique run
from 𝑞𝒯0 to 𝑞 in 𝒯. We say that 𝑞 is explored if

∣𝜒𝒯
0 (𝑞)∣ = ∣𝜒ℳ

0 (𝑓(𝑞))∣.

Define ℰ𝒯 as the maximal set of explored states of 𝒯 that induces a subtree

containing 𝑞𝒯0 , i.e., 𝑝 ∈ ℰ𝒯 for all 𝑝
𝑖

−→ 𝑞 with 𝑞 ∈ ℰ𝒯.

Observe that there exists a one-to-one correspondence between
∀𝑞 ∈ 𝑄𝒯,𝑥, 𝑦 ∈ 𝜒𝒯(𝑞) ∶

𝑥 ≠ 𝑦 ⇒ 𝑔(𝑥) ≠ 𝑔(𝑦)
(FS2)

𝜒𝒯
0 (𝑞) and

𝜒ℳ
0 (𝑓(𝑞)) when 𝑞 is explored, by (FS2) and Corollary 10.3.5.

A learning algorithm to construct 𝒯 and to extend ℰ𝒯, when needed, from a
hidden MMT is given in Section 10.4. We now give an example for explored
states, before arguing why we require the teacher’s MMT to be feasible.

Example 10.3.7. Let 𝒯 be the observation tree of Figure 10.5 (which is
repeated in the margin above) and ⟨𝑓, 𝑔⟩ the functional simulation of
Example 10.3.4. We can define the set of explored states to be ℰ𝒯 =
{𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡5, 𝑡6}. Notice that 𝑡4 does not have any enabled timer, while
𝑓(𝑡4) = 𝑞1 has an enabled timer. Thus, 𝑡4 is indeed not explored.
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𝑞0

𝑞1

𝑞2

𝑖/𝑜, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑦 ≔ 3

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

to
[𝑦

]/
𝑜,

⊥

[Vaa+22]: Vaandrager et al. (2022),
“A New Approach for Active Au-
tomata Learning Based on Apart-
ness”

8: In our example, we have
𝑔(𝑥1) = 𝑔(𝑥6), for instance.

Let us now explain why we require the teacher’s MMT to be feasible. Let 𝒯
be the observation tree of Figure 10.5 and𝒩 be the not-s-learnable MMT of
Figure 10.1, which is repeated in the margin. We can still define the maps
𝑓 ∶ 𝑄𝒯 → 𝑄𝒩 and 𝑔 ∶ 𝑋𝒯 → 𝑋𝒩:

𝑓(𝑡0) = 𝑓(𝑡8) = 𝑓(𝑡10) = 𝑞0

𝑓(𝑡1) = 𝑓(𝑡2) = 𝑓(𝑡4) = 𝑞1

𝑓(𝑡3) = 𝑓(𝑡5) = 𝑓(𝑡6) = 𝑓(𝑡7) = 𝑓(𝑡9) = 𝑞2,
and

𝑔(𝑥1) = 𝑔(𝑥6) = 𝑥
𝑔(𝑥3) = 𝑦.

We have ∣𝜒𝒯
0 (𝑡3)∣ = 1 but ∣𝜒𝒩

0 (𝑓(𝑡3))∣ = ∣𝜒𝒩
0 (𝑞2)∣ = 2. However, as every run

of 𝒯 must be feasible and 𝑥3 cannot time out in 𝑡3, it is impossible to get the
equality. Therefore, in order to define explored states, we must require thatℳ
is s-learnable. Moreover, this definition of explored states is needed to have
the one-to-one correspondence between 𝜒𝒯

0 (𝑞) and 𝜒ℳ
0 (𝑓(𝑞)), which is vital

for some proofs. Finally, the notion of apartness we are about to define solely
considers what happens after a state, i.e., the transitions leading to the states
are not considered at all. This means that, when we take the corresponding
runs in the teacher’s MMT, we know nothing about the active and enabled
timers. That is, our (natural) approach for apartness is another argument
towards our definition of explored states within the tree, and the requirements
we impose to have an s-learnable MMT.

10.3.2. Apartness

The learning process, presented in Section 10.4, will construct an observation
tree by using symbolic queries. In order to be able to construct a hypothesis
from the tree, we need to distinguish the states that have clearly different
timed behaviors, as is the case for 𝐿# (see Section 3.3).

Let 𝒯 be an observation tree for an s-learnableℳ. Similar to the 𝐿# algorithm
for Mealy machines [Vaa+22], we define a notion of apartness for MMTs. In
the setting of Mealy machines, states 𝑝, 𝑝′ are apart (denoted 𝑝 # 𝑝′) if they
have different output responses to the same input word. As our observation
tree has timers, we need to handle the fact that different timers can represent

the same timer in ℳ.8 There are some easy cases, e.g., if 𝑝
𝑖/𝑜
−−→ and 𝑝′ 𝑖/𝑜′

−−→
such that 𝑜 ≠ 𝑜′ for some input 𝑖, then 𝑝 and 𝑝′ can be deemed apart. However,
in general, we have to decide whether two timers 𝑥 ∈ 𝜒(𝑝) and 𝑦 ∈ 𝜒(𝑝′)
should be assumed equivalent. While, in theory, one could use the functional
simulation ⟨𝑓, 𝑔⟩ ∶ 𝒯 → ℳ to group together (or, match) timers 𝑥, 𝑦 such that
𝑔(𝑥) = 𝑔(𝑦), the functional simulation is unknown during learning. Hence,
we need to guess how to group the timers. In order to do so, we consider
matchings between the active timers of two states. We will also need to lift
the notion of matching to encompass the timers started along a run, allowing
us to finally define the apartness of states.
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9: The small 𝑡 in the notation aims
to distinguish between apartness
of timers 𝑡# and apartness of states
#, as introduced below.

10: In the following, we will need
to describe situations where 𝑥𝑝𝑘 is
started and not 𝑥𝑝′

𝑘
, or vice-versa.

Hence, we define matchings over
every timer, not just those that are
actually started.

Apartness of timers

First,

∀𝑞 ∈ 𝑄𝒯,𝑥, 𝑦 ∈ 𝜒𝒯(𝑞) ∶
𝑥 ≠ 𝑦 ⇒ 𝑔(𝑥) ≠ 𝑔(𝑦)

(FS2)
recall that (FS2) states that if two distinct timers 𝑥, 𝑦 are both active in

the same state, 𝑔(𝑥) ≠ 𝑔(𝑦). That is, 𝑥 and 𝑦 must correspond to different
timers in ℳ. Hence, we say that 𝑥, 𝑦 are apart , denoted 𝑥 𝑡# 𝑦,9 whenever
there exists 𝑞 ∈ 𝑄𝒯 such that 𝑥, 𝑦 ∈ 𝜒𝒯(𝑞).

Matchings

As said above, we need to guess which timers in different parts of 𝒯 have to
be considered “as one”, i.e., we conjecture that 𝑔(𝑥) = 𝑔(𝑦). We rely on the
concept of matching to encode this conjectured equivalence of timers. We
first do it between the timers active in a pair of states, and then lift it to runs
starting from these two states, in order to accommodate the fresh timers.

Given two finite sets 𝑆 and 𝑇, a relation 𝑚 ⊆ 𝑆 × 𝑇 is a matching from 𝑆 to 𝑇
if it is an injective partial function. We write 𝑚 ∶ 𝑆 ↔ 𝑇 if 𝑚 is a matching
from 𝑆 to 𝑇. A matching 𝑚 is maximal if it is total or surjective.

Given two states 𝑝 and 𝑝′ of an observation tree 𝒯, we consider a matching
𝑚 ∶ 𝜒𝒯(𝑝) ↔ 𝜒𝒯(𝑝′), denoted by abuse of notation as 𝑚 ∶ 𝑝 ↔ 𝑝′. We say
that 𝑚 is valid if it is consistent with (FS2). More formally,

Definition 10.3.8 (Valid matching). A matching 𝑚 ∶ 𝑝 ↔ 𝑝′ is said to be
valid if

∀𝑥 ∈ dom(𝑚) ∶ ¬(𝑥 𝑡# 𝑚(𝑥)).

We lift 𝑚 to actions:

𝑚(𝑖) = {
𝑖 if 𝑖 ∈ 𝐼
to[𝑚(𝑥)] if 𝑖 = to[𝑥] with 𝑥 ∈ dom(𝑚).

Let 𝜋 = 𝑝0
𝑖1−→ 𝑝1

𝑖2−→ ⋯
𝑖𝑛−→ 𝑝𝑛 and 𝜋′ = 𝑝′

0
𝑖′

1−→ 𝑝′
1

𝑖′
2−→ ⋯

𝑖′
𝑛−→ 𝑝′

𝑛. We lift a
matching 𝑚 ∶ 𝑝0 ↔ 𝑝′

0 to runs 𝜋, 𝜋′ starting from 𝑝0 and 𝑝′
0 as follows. For 𝜋′

to match 𝜋, we require that for all 𝑗 ∈ {1, … , 𝑛}:

▶ If 𝑖𝑗 ∈ 𝐼, then 𝑖′
𝑗 = 𝑖𝑗.

▶ If 𝑖𝑗 = to[𝑥] for some 𝑥 ∈ 𝑋𝒯 then there are two possibilities:

• 𝑥 ∈ 𝜒𝒯(𝑝0), in which case 𝑖′
𝑗 is to[𝑚(𝑥)], or

• 𝑥 = 𝑥𝑝𝑘
for some 𝑘 (i.e., 𝑥 is started along the run), in which case

𝑖′
𝑗 is to[𝑥𝑝′

𝑘
] with the same 𝑘.

That is, 𝑖′
𝑗 must use the “same” timer according to 𝑚 or the updates of

the run.

When 𝜋 and 𝜋′ match, we write 𝑚𝜋
𝜋′ ∶ 𝜋 ↔ 𝜋′ with

𝑚𝜋
𝜋′ = 𝑚 ∪ {(𝑥𝑝𝑘

, 𝑥𝑝′
𝑘
) ∣ 𝑘 ≤ 𝑛}

and 𝑖′
𝑗 = 𝑚𝜋

𝜋′(𝑖𝑗) for every 𝑗.10 For a fixed 𝜋 ∈ runs(𝒯) and 𝑚, there is at most
one run 𝜋′ ∈ runs(𝒯) such that 𝑚𝜋

𝜋′ ∶ 𝜋 ↔ 𝜋′. We denote by read𝑚
𝜋 (𝑝′

0) this
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𝑥1

𝑥1

𝑥3

𝜒(𝑡1) 𝜒(𝑡3)

Figure 10.6: Visualization of the matching 𝑚 of Example 10.3.9. The dashed lines represent the apartness of
timers, i.e., 𝑥1

𝑡# 𝑥3.

unique run 𝜋′ if it exists (if it does not, the function is left undefined). That is,
the function “reads” 𝜋 from 𝑝′

0, using 𝑚 to rename the timers.

Example 10.3.9. In the examples, we write 𝑥 ↦ 𝑥′, 𝑦 ↦ 𝑦′ for the matching
𝑚 such that 𝑚(𝑥) = 𝑥′ and 𝑚(𝑦) = 𝑦′.
Let 𝒯 be the observation tree of Figure 10.5 (which is repeated in the margin)
and

𝜋 = 𝑡0
𝑖

−−−→
(𝑥1,2)

𝑡1
to[𝑥1]
−−−→ 𝑡2 ∈ runs(𝒯).

We compute read∅
𝜋(𝑡3) (where ∅ denotes the empty matching).

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

The first

symbol in 𝜋 is 𝑖, i.e., we take the transition 𝑡3
𝑖

−−−→
(𝑥6,2)

𝑡6. The second symbol

in 𝜋 is to[𝑥1]. Since 𝑥1 was a fresh timer started along 𝜋, we retrieve the
corresponding fresh timer in the new run, which is 𝑥6. Hence,

read∅
𝜋(𝑡3) = 𝑡3

𝑖
−→ 𝑡6

to[𝑥6]
−−−→ 𝑡9.

Let us now consider the run

𝜋′ = 𝑡1
𝑖

−→ 𝑡3
to[𝑥1]
−−−→ 𝑡5 ∈ runs(𝒯).

Let 𝑚 ∶ 𝑡1 ↔ 𝑡3 be the (maximal) matching such that 𝑥1 ↦ 𝑥3. This
matching is represented in Figure 10.6 where we use solid lines to represent
the matching 𝑚 and dashed lines for the apartness of timers. Observe

that 𝑚 is invalid, as 𝑥1, 𝑥3 ∈ 𝜒(𝑡3). Nevertheless, read𝑚
𝜋′(𝑡3) = 𝑡3

𝑖
−→

𝑡6
to[𝑚(𝑥1)]=to[𝑥3]
−−−−−−−−−→ 𝑡10.

Finally, let 𝑚′ ∶ 𝑡1 ↔ 𝑡3 such that 𝑚′ = 𝑥1 ↦ 𝑥1. As 𝑚′(𝑥1) is not enabled
in 𝑡6, read

𝑚′

𝜋′ (𝑡3) is undefined.

Apartness of states

Two states 𝑝0 and 𝑝′
0 are apart under a matching 𝑚, if we have runs 𝜋 = 𝑝0

𝑤
−→

and 𝜋′ = read𝑚
𝜋 (𝑝′

0) such that 𝑚𝜋
𝜋′ is invalid (in which case we say that the

apartness is structural), or the runs exhibit different behaviors (the apartness
is behavioral).

Definition 10.3.10 (Apartness). Two states 𝑝0, 𝑝′
0 are 𝑚-apart with 𝑚 ∶

𝑝0 ↔ 𝑝′
0, denoted by 𝑝0 #𝑚 𝑝′

0, if there are 𝜋 = 𝑝0
𝑖1−→ ⋯

𝑖𝑛/𝑜
−−→

𝑢
𝑝𝑛 and
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𝜋′ = 𝑝′
0

𝑖′
1−→ ⋯

𝑖′
𝑛/𝑜′

−−−→
𝑢′

𝑝′
𝑛, with 𝑚𝜋

𝜋′ ∶ 𝜋 ↔ 𝜋′, and

Structural apartness there exists 𝑥 ∈ dom(𝑚𝜋
𝜋′) such that 𝑥 𝑡# 𝑚𝜋

𝜋′(𝑥), or
Behavioral apartness one of the following holds:

𝑜 ≠ 𝑜′ (outputs)
𝑢 = (𝑥, 𝑐) ∧ 𝑢′ = (𝑥′, 𝑐′) ∧ 𝑐 ≠ 𝑐′ (constants)

𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯 ∧ |𝜒0(𝑝𝑛)| ≠ |𝜒0(𝑝′

𝑛)| (sizes)

𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯 ∧ ∃𝑥 ∈ dom(𝑚𝜋

𝜋′) ∶ (𝑥 ∈ 𝜒0(𝑝𝑛)
⇔ 𝑚𝜋

𝜋′(𝑥) ∉ 𝜒0(𝑝′
𝑛))

(enabled)

The word 𝑤 = 𝑖1 … 𝑖𝑛 ∈ 𝐴(𝒯)∗ is called a witness of 𝑝0 #𝑚 𝑝′
0, denoted by

𝑤 ⊢ 𝑝0 #𝑚 𝑝′
0.

Example 10.3.11.

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

Let 𝒯 be the observation tree of Figure 10.5, which is
repeated in the margin. By Example 10.3.9, we have the following runs:

𝜋 = 𝑡0
𝑖/𝑜

−−−→
(𝑥1,2)

𝑡1
to[𝑥1]/𝑜
−−−−→

(𝑥1,2)
𝑡2

and

read∅
𝜋(𝑡3) = 𝑡3

𝑖/𝑜′

−−−→
(𝑥6,2)

𝑡6
to[𝑥6]/𝑜
−−−−→

⊥
𝑡9.

As the first transition of 𝜋 outputs 𝑜 but the first transition of read∅
𝜋(𝑡3)

outputs 𝑜′ ≠ 𝑜, we conclude that 𝑖 ⊢ 𝑡0 #∅ 𝑡3 by (outputs). Since 𝑡1, 𝑡6 ∈ ℰ𝒯
(see Example 10.3.7) and

|𝜒0(𝑡1)| = 1 ≠ |𝜒0(𝑡6)| = 2,

we have 𝜀 ⊢ 𝑡1 #∅ 𝑡6 and 𝑖 ⊢ 𝑡0 #∅ 𝑡3 by (sizes).
Moreover,

𝜋′ = 𝑡1
𝑖/𝑜′

−−−→
(𝑥3,3)

𝑡3
to[𝑥1]/𝑜
−−−−→

(𝑥1,2)
𝑡5

and

read𝑥1↦𝑥3
𝜋′ (𝑡3) = 𝑡3

𝑖/𝑜′

−−−→
(𝑥6,2)

𝑡6
to[𝑥3]/𝑜
−−−−→

⊥
𝑡10.

Since 𝑥1 ↦ 𝑥3 is invalid (as 𝑥1
𝑡# 𝑥3), 𝑡1 #𝑥1↦𝑥3 𝑡3 is structural. We also

have 𝑖 ⊢ 𝑡1 #𝑥1↦𝑥3 𝑡3 due to (constants).
Recall that read𝑥1↦𝑥1

𝜋′ (𝑡3) is undefined as 𝑥1 ∉ 𝜒0(𝑡6) (see Example 10.3.9).
As 𝑡3, 𝑡6 ∈ ℰ𝒯, we thus have 𝑖 ⊢ 𝑡1 #𝑥1↦𝑥1 𝑡3 by (enabled).

Extensibility

Observe that if 𝑤 is a witness of 𝑝 #𝑚 𝑝′ and read𝑚
𝑝

𝑤
−→(𝑝′) gives the run 𝑝′ 𝑤′

−→,

it holds that 𝑤′ is a witness of 𝑝′ #𝑚−1 𝑝. That is, while the definition of
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11: This holds by definition of
an observation tree, see Defini-
tion 10.3.1.

apartness of states is not symmetric, one can easily obtain it, by changing the
witness.

Moreover, any extension 𝑚′ of 𝑚 is such that 𝑤 ⊢ 𝑝 #𝑚′ 𝑝′, i.e., taking a larger
matching does not break the apartness, as

read𝑚
𝑝

𝑤
−→(𝑝′) = read𝑚′

𝑝
𝑤
−→(𝑝′) = 𝑝′ 𝑤′

−→ .

Lemma 10.3.12. Let 𝑚 ∶ 𝑝 ↔ 𝑝′ and 𝑚′ ∶ 𝑝 ↔ 𝑝′ be two matchings such
that 𝑤 ⊢ 𝑝 #𝑚 𝑝′ and 𝑚 ⊆ 𝑚′. Then, 𝑤 ⊢ 𝑝 #𝑚′ 𝑝′.

Proof. Let 𝑤 ⊢ 𝑝 #𝑚 𝑝′ and 𝑚 ⊆ 𝑚′. Moreover, let 𝑝0 = 𝑝, 𝑝′
0 = 𝑝′, and

𝜋 = 𝑝0
𝑖1−→ 𝑝1

𝑖2−→ ⋯
𝑖𝑛/𝑜
−−→

𝑢
𝑝𝑛 and 𝜋′ = read𝑚

𝑝
𝑤
−→(𝑝′) = 𝑝′

0
𝑖′

1−→ 𝑝′
1

𝑖′
2−→ ⋯

𝑖′
𝑛/𝑜′

−−−→
𝑢′

𝑝′
𝑛, with 𝑚𝜋

𝜋′ ∶ 𝜋 ↔ 𝜋′. By definition, each 𝑖𝑗 is either an input, or to[𝑥]
with 𝑥 ∈ dom(𝑚𝜋

𝜋′). Thus, since 𝑚 ⊆ 𝑚′, it follows that read𝑚′

𝑝
𝑤
−→(𝑝′) uses

exactly the same actions and takes the same transitions as read𝑚
𝑝

𝑤
−→(𝑝′). That

is, read𝑚′

𝑝
𝑤
−→(𝑝′) = read𝑚

𝑝
𝑤
−→(𝑝′). There are five cases:

▶ There exists 𝑥 ∈ dom(𝑚𝜋
𝜋′) such that 𝑥 𝑡# 𝑚𝜋

𝜋′(𝑥). If 𝑥 𝑡# 𝑚(𝑥), then
𝑥 𝑡# 𝑚′(𝑥) since 𝑚 ⊆ 𝑚′. If there exists 𝑘 ∈ {1, … , 𝑛} such that
𝑥𝑝𝑘

𝑡# 𝑥𝑝′
𝑘
, this does not change when extending 𝑚. Hence, 𝑥 ∈

dom(𝑚′𝜋
𝜋′) and 𝑥 𝑡# 𝑚′𝜋

𝜋′(𝑥), i.e., we have 𝑤 ⊢ 𝑝 #𝑚′ 𝑝′.
▶ 𝑜 ≠ 𝑜′, which, clearly, does not depend on 𝑚. So, 𝑤 ⊢ 𝑝 #𝑚′ 𝑝′.
▶ Likewise if 𝑢 = (𝑥, 𝑐) and 𝑢′ = (𝑥′, 𝑐′) with 𝑐 ≠ 𝑐′.
▶ 𝑝𝑛, 𝑝′

𝑛 ∈ ℰ𝒯 and |𝜒0(𝑝𝑛)| ≠ |𝜒0(𝑝′
𝑛)|, which, again, does not depend

on 𝑚. So, 𝑤 ⊢ 𝑝 #𝑚′ 𝑝′.
▶ 𝑝𝑛, 𝑝′

𝑛 ∈ ℰ𝒯 and there is 𝑥 ∈ dom(𝑚𝜋
𝜋′) such that 𝑥 ∈ 𝜒0(𝑝𝑛) ⇔

𝑚𝜋
𝜋′(𝑥) ∉ 𝜒0(𝑝′

𝑛). If 𝑥 ∈ dom(𝑚) and as 𝑚 ⊆ 𝑚′, we still have
𝑥 ∈ 𝜒0(𝑝𝑛) ⇔ 𝑚′(𝑥) ∉ 𝜒0(𝑝′

𝑛). Likewise if there is a 𝑘 ∈ {1, … , 𝑛}
such that 𝑥𝑝𝑘

∈ 𝜒0(𝑝𝑛) ⇔ 𝑥𝑝′
𝑘

∉ 𝜒0(𝑝′
𝑛). Therefore, we have again

𝑤 ⊢ 𝑝 #𝑚′ 𝑝′.

In every case, we obtain that 𝑤 ⊢ 𝑝 #𝑚′ 𝑝′. �

Weak co-transitivity

The next lemma states that if we can read a witness 𝑤 of the behavioral
apartness 𝑝0 #𝑚 𝑝′

0 from a third state 𝑟0 via some matching 𝜇 ∶ 𝑝0 ↔ 𝑟0, then
we can conclude that 𝑝0 and 𝑟0 are 𝜇-apart or that 𝑝′

0 and 𝑟0 are (𝜇∘𝑚−1)-apart.
𝑢 = (𝑥, 𝑐)

∧ 𝑢′ = (𝑥′, 𝑐′)
∧ 𝑐 ≠ 𝑐′

(constants)However, when 𝑝0 #𝑚 𝑝′
0 is due to (constants), we need to extend the witness,

due to (constants) in Definition 10.3.10. In this case, since 𝑥 is active in 𝑝𝑛 (as

𝑢 = (𝑥, 𝑐)), there must exist an 𝑥-spanning run 𝑝𝑛−1
𝑖𝑛/𝑜
−−→

𝑢
𝑝𝑛

𝑤𝑥

−→.11 Hence,

we actually “read” 𝑤 ⋅ 𝑤𝑥 from 𝑟0, in order to ensure that an update (𝑥′, 𝑐′) is
present on the last transition of read𝜇

𝑝0

𝑤
−→

(𝑟0).
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𝜒(𝑟0)

𝜒(𝑝0)

𝜒(𝑝′
0)

(a) Well-defined.

? 𝑥
𝜒(𝑟0)

𝜒(𝑝0)

𝜒(𝑝′
0)

(b) Ill-defined: (𝜇 ∘ 𝑚−1)(𝑥) has no value.

Figure 10.7: Visualizations of compositions 𝜇 ∘ 𝑚−1 where 𝑚 is drawn with solid lines, 𝜇 with dashed lines,
and 𝜇 ∘ 𝑚−1 with dotted lines.

[Vaa+22]: Vaandrager et al. (2022),
“A New Approach for Active Au-
tomata Learning Based on Apart-
ness”

Notice that the lemma requires that dom(𝑚) ⊆ dom(𝜇) for the matching
𝜇 ∘ 𝑚−1. See Figure 10.7 for illustrations of a well- and an ill-defined 𝜇 ∘ 𝑚−1.
Details are given in Section C.10.

Lemma 10.3.13 (Weak co-transitivity). Let 𝑝0, 𝑝′
0, 𝑟0 ∈ 𝑄𝒯, 𝑚 ∶ 𝑝0 ↔ 𝑝′

0
and 𝜇 ∶ 𝑝0 ↔ 𝑟0 be two matchings such that dom(𝑚) ⊆ dom(𝜇). Let 𝑤 =
𝑖1 ⋯ 𝑖𝑛 be a witness of the behavioral apartness 𝑝0#𝑚𝑝′

0 and read𝑚
𝑝0

𝑤
−→𝑝𝑛

(𝑝′
0) =

𝑝′
0

𝑤′

−→ 𝑝′
𝑛. Let 𝑤𝑥 be defined as follows:

▶ if 𝑝0 #𝑚 𝑝′
0 due to (constants), 𝑤𝑥 is a word such that 𝑝𝑛−1

𝑖𝑛−→ 𝑝𝑛
𝑤𝑥

−→
is 𝑥-spanning,

▶ otherwise, 𝑤𝑥 = 𝜀.

If read𝜇

𝑝0

𝑤⋅𝑤𝑥
−−−→

(𝑟0) ∈ runs(𝒯) with 𝑟𝑛 ∈ ℰ𝒯, then 𝑝0 #𝜇 𝑟0 or 𝑝′
0 #𝜇∘𝑚−1 𝑟0.

Soundness

Finally, we argue that the definition of apartness is reasonable: when 𝑝 #𝑚 𝑝′,
then at least one of the following must hold:

▶ 𝑓(𝑝) ≠ 𝑓(𝑝′), i.e., the two states are really distinct, or
▶ 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥)) for some 𝑥, i.e., the renaming of the timers is erroneous.

A proof is given in Section C.11.

Theorem 10.3.14 (Soundness). Let𝒯 be an observation tree for an s-learnable
MMTℳ with the functional simulation ⟨𝑓, 𝑔⟩, 𝑝, 𝑝′ ∈ 𝑄𝒯, and 𝑚 ∶ 𝑝 ↔ 𝑝′ be
a matching. If 𝑝 #𝑚 𝑝′, then

▶ 𝑓(𝑝) ≠ 𝑓(𝑝′), or
▶ there is 𝑥 ∈ dom(𝑚) such that 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥)).

10.4. Learning algorithm

We now describe our learning algorithm for MMTs, called 𝐿#
MMT. Let ℳ be

the hidden MMT we want to learn. Again, we require that ℳ is sound and
complete.

In 𝐿#
MMT, similarly to what is done in 𝐿# [Vaa+22], the learner constructs
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an observation tree 𝒯 for ℳ by asking OQs, WQs, and EQs. Eventually, an
hypothesis ℋ is constructed, i.e., a machine the learner thinks to be correct. If
ℋ andℳ are equivalent, the algorithm stops. Otherwise, the tree is extended
by some counterexample provided by the teacher and then refined until the
conditions are satisfied once more. We highlight that the functional simulation
⟨𝑓, 𝑔⟩ ∶ 𝒯 → ℳ is unknown to the learner. Nevertheless, it can obtain some
information about it via the notion of apartness introduced in Section 10.3.2.

We first explain how to extend the tree using symbolic queries. Then, as we
did in Section 3.3.1 for 𝐿#, we define the basis and the frontier and explain
how to compute these sets while enforcing some properties in Section 10.4.2.
These properties allow us to construct the hypothesis ℋ, as explained in
Section 10.4.3. The main loop of 𝐿#

MMT is given in Section 10.4.4, while Sec-
tion 10.4.5 focuses on counterexample processing. Finally, a complete example
is found in Section 10.4.6. The following theorem gives the complexity of 𝐿#

MMT.
Section C.15 gives a proof (that requires the next sections). We highlight that
if ∣𝑋ℳ∣ is fixed, then 𝐿#

MMT is polynomial in ∣𝑄ℳ∣, |𝐼|, and the length of the
longest counterexample.

Theorem 10.4.1. Let ℳ be an s-learnable MMT and 𝜁 be the length of the
longest counterexample. Then,

▶ the 𝐿#
MMT algorithm eventually terminates and returns an MMT 𝒩 such

that ℳ
time
≈ 𝒩 and whose size is polynomial in ∣𝑄ℳ∣ and factorial in

∣𝑋ℳ∣, and
▶ in time and number of OQs,WQs,EQs polynomial in ∣𝑄ℳ∣, |𝐼|, and 𝜁,

and factorial in ∣𝑋ℳ∣.

10.4.1. Using symbolic queries to extend the tree

In this section, we explain how to use symbolic output and wait queries to
extend the tree, while maintaining the set of explored states. We first give
a formal description before illustrating the procedure. Assume 𝒯 is already
an observation tree forℳ with the functional simulation ⟨𝑓, 𝑔⟩. Let 𝑞 ∈ 𝑄𝒯

and 𝑤 = 𝑖1 ⋯ 𝑖𝑛 be the unique word such that 𝑞𝒯0
𝑤
−→ 𝑞 ∈ runs(𝒯). We want to

create the outgoing transitions from 𝑞. Let w = 𝑤 be the symbolic word of 𝑤
and

𝑝0
𝑖1−→ ⋯

𝑖𝑛−→ 𝑝𝑛 ∈ runs(𝒯)
and

𝑓(𝑝0)
𝑔(𝑖1)
−−−→ ⋯

𝑔(𝑖𝑛)
−−−→ 𝑓(𝑝𝑛) ∈ runs(ℳ),

with 𝑝0 = 𝑞𝒯0 and 𝑝𝑛 = 𝑞, be the concrete runs reading w in 𝒯 andℳ. As the
run exists in 𝒯, the corresponding run inℳ necessarily exists, by definition
of ⟨𝑓, 𝑔⟩.

First, we focus on creating the 𝑖-transition from 𝑞 for an input 𝑖 ∈ 𝐼. Asℳ is
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complete, it follows that

𝑞ℳ0
𝑔(𝑖1)⋯𝑔(𝑖𝑛)
−−−−−−−→ 𝑓(𝑞)

𝑔(𝑖)=𝑖
−−−→ ∈ runs(ℳ).

Moreover, 𝑖 can be used as a symbolic symbol i = 𝑖, by definition. Hence,
OQs(w ⋅ i) returns a sequence of outputs 𝜔 ⋅ 𝑜 (with 𝜔 ∈ 𝑂∗ and 𝑜 ∈ 𝑂). We

create a new state 𝑞′ in 𝒯 and define the transition 𝑞
𝑖/𝑜
−−→

⊥
𝑞′ with a ⊥-update

as we do not know anything yet about the update of 𝑓(𝑞)
𝑖

−→ inℳ.

Creating the timeout-transitions from 𝑞 requires more care. We first have
to determine what is the set of enabled timers of 𝑓(𝑞). To do so, we ask a
symbolic wait query WQs(w) that indicates which transitions of the run inℳ
last (re)started a timer 𝑥 that is enabled in 𝑓(𝑞). That is, for every pair (𝑗, 𝑐)
returned by the teacher, we know that for some timer 𝑥,

𝑓(𝑝𝑗−1)
𝑔(𝑖𝑗)
−−−→
(𝑥,𝑐)

⋯
𝑔(𝑖𝑛)
−−−→ 𝑓(𝑝𝑛)

to[𝑥]
−−→

is 𝑥-spanning inℳ. So, for each such pair (𝑗, 𝑐), we modify the 𝑗-th transition

𝑝𝑗−1
𝑖𝑗
−→
𝑢

𝑝𝑗 in 𝒯 by replacing 𝑢 = ⊥ with 𝑢 = (𝑦, 𝑐) where 𝑦 = 𝑥𝑝𝑗
if 𝑖𝑗 ∈ 𝐼,

and 𝑦 = 𝑥′ if 𝑖𝑗 = to[𝑥′]. This 𝑗-th transition now (re)starts a timer 𝑦.

It remains to create the to[𝑦]-transition from 𝑞 to get that 𝑦 ∈ 𝜒𝒯
0 (𝑞). By the

wait query, we are sure that

𝑞ℳ0
w

−→ 𝑓(𝑝𝑛)
to[𝑗]
−−→ ∈ runs(ℳ)

and, so, OQs(w ⋅ to[𝑗]) necessarily returns a sequence of outputs 𝜔 ⋅ 𝑜 (again,

𝜔 ∈ 𝑂∗ and 𝑜 ∈ 𝑂). We can thus create a new transition 𝑞
to[𝑦]/𝑜
−−−→

⊥
𝑞′. By

treating in this way all pairs (𝑗, 𝑐) returned by the teacher, some updates may
be changed, meaning that some of the traversed 𝑝𝑗 in 𝒯 may have new active
timers.

It is not hard to see that 𝒯 remains an observation tree forℳwith a functional
simulation ⟨𝑓 ′, 𝑔′⟩ extending ⟨𝑓, 𝑔⟩ by encompassing the new states and timers

of 𝒯. Indeed, we only create a transition 𝑞
𝑖

−→ 𝑞′ when we are sure that

𝑓 ′(𝑞)
𝑔′(𝑖)
−−→ 𝑓 ′(𝑞′) is defined; updates come

⟨𝑓, 𝑔⟩(𝜋) is 𝑦-spanning ⇒
∃𝑥 ∶ 𝜋 is 𝑥-spanning

∧ 𝑔(𝑥) = 𝑦
(FS5)

from a wait query and (FS5) is
satisfied. Finally, 𝒯 is sound and all of its runs are feasible.

Let us now discuss the set ℰ𝒯 of explored states. Clearly, asℳ is s-learnable,
when we callWQs(w) and create the appropriate transitions from 𝑞, we have

∣𝜒𝒯
0 (𝑞)∣ = ∣𝜒ℳ

0 (𝑓(𝑞))∣,

Definition 10.3.6. Let 𝑞 ∈
𝑄𝒯 and 𝜋 be the unique run
from 𝑞𝒯0 to 𝑞 in 𝒯. We say
that 𝑞 is explored if

∣𝜒𝒯
0 (𝑞)∣ = ∣𝜒ℳ

0 (𝑓(𝑞))∣.

Define ℰ𝒯 as the maximal set
of explored states of 𝒯 that
induces a subtree containing

𝑞𝒯0 , i.e., 𝑝 ∈ ℰ𝒯 for all 𝑝
𝑖

−→ 𝑞
with 𝑞 ∈ ℰ𝒯.as required in Definition 10.3.6. Hence, the tree-shaped set ℰ𝒯 is exactly

composed of the initial state 𝑞𝒯0 (for which 𝜒𝒯
0 (𝑞𝒯0 ) = ∅) and the states in which

we performed a wait query. This means that when the outgoing transitions of
a state 𝑞 have been newly computed, we can add 𝑞 to ℰ𝒯.
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Example 10.4.2.

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑖/𝑜, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑦 ≔ 3

to[𝑥]/𝑜, 𝑥 ≔ 2𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑥]/𝑜
𝑥 ≔ 2

Let ℳ be the s-learnable MMT of Figure 10.2, and 𝒯 be

the observation tree of Figure 10.5, except that 𝑡3
𝑖

−→ ∉ runs(𝒯), i.e., the
subtree rooted at 𝑡6 is not present in the tree. Both figures are given in
the margin. We construct the missing subtree, via OQs and WQs. Let
ℰ𝒯 = {𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡5}.
First, we create the 𝑡3

𝑖
−→ transition. Let 𝑤 = 𝑖 ⋅ 𝑖 be the unique word such

that 𝑡0
𝑤
−→ 𝑡3 and w = 𝑤 = 𝑖 ⋅ 𝑖 be the corresponding symbolic word.

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5

𝑡7𝑡8

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,𝑥

1
≔

2
to[𝑥

3 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

As

𝒯 is an observation tree forℳ, if follows that 𝑞ℳ0
w⋅𝑖
−→ ∈ runs(ℳ). So, we

can call OQs(w ⋅ 𝑖), which returns 𝑜 ⋅ 𝑜′ ⋅ 𝑜′. The last symbol 𝑜′ must then

be outputted by the new transition, i.e., we create 𝑡3
𝑖/𝑜′

−−→
⊥

𝑡6. Indeed, recall
that every transition has initially a ⊥ update, which is changed when an
update (𝑥, 𝑐) is discovered.
We then perform a symbolic wait query in 𝑡6, i.e., call WQs(w ⋅ 𝑖), which
returns the set {(2, 3), (3, 2)} meaning that the second transition of the run

𝑞𝒯0
w⋅𝑖
−→ must (re)start a timer with the constant 3, and the third transition

must also (re)start a timer but with the constant 2. So, the ⊥ of the newly
created transition is replaced by (𝑥6, 2) (as the label of the transition is an
input). It remains to create the to[𝑥3]- and to[𝑥6]-transitions by performing
two symbolic output queries. We call OQs(w ⋅ 𝑖 ⋅ to[2]) and OQs(w ⋅ 𝑖 ⋅ to[3])
(we know that both words label runs ofℳ by the symbolic wait query), and
create the transitions. We thus obtain the tree of Figure 10.5. Finally, since
𝑡3 ∈ ℰ𝒯 and we discovered the set of enabled timers of 𝑡6, we can add 𝑡6 to
ℰ𝒯. Observe that ℰ𝒯 still satisfies Definition 10.3.6.

From now on, we assume that a call toOQs(w ⋅ i) with i ∈ 𝐼 automatically adds
the corresponding transition to𝒯, and that a call toWQs(w) automatically calls
OQs(w ⋅ to[𝑗]), for every to[𝑗] deduced from the wait query, modifies updates
accordingly, and adds the new explored states to ℰ𝒯. That is, ℰ𝒯 is exactly the
set of states in which we performed a WQs. Moreover, to ease the writing in
the learning algorithm, we let OQs(𝑞, 𝑖) denote OQs(w ⋅i) andWQs(𝑞) denote
WQs(w) with w such that 𝑞𝒯0

w

−→ 𝑞 ∈ runs(𝒯).

10.4.2. Basis and frontier

Let us now move towards constructing a hypothesis MMTℋ from 𝒯. In short,
we extend the tree such that some conditions are satisfied and we define a
subset of 𝑄𝒯, called the basis, that forms the set of states ofℋ. Similar to 𝐿#

(see Section 3.3), we then “fold” the tree; that is, some transitions 𝑞 −→ 𝑟 must
be redirected to some state 𝑝 of the basis. In order to be able to construct a
sound hypothesis, we impose that every active timer of 𝑟 can be mapped to
an active timer of 𝑝, and vice-versa. That is, we will ensure that 𝑟 is mapped
to a state 𝑝 with the same number of active timers before constructing a
hypothesis. Furthermore, to cover every active timer of the states, we use
maximal matchings (introduced in Section 10.3.2). Let ⟨𝑓, 𝑔⟩ ∶ 𝒯 → ℳ be a
functional simulation.

In this section, we define the aforementioned subset of 𝒯 and state the con-
straints that must be satisfied in order to construct ℋ. The construction is
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Theorem 10.3.14. Let 𝒯 be
an observation tree for an s-
learnable MMT ℳ with the
functional simulation ⟨𝑓, 𝑔⟩,
𝑝, 𝑝′ ∈ 𝑄𝒯, and 𝑚 ∶ 𝑝 ↔ 𝑝′

be a matching. If 𝑝 #𝑚 𝑝′,
then

▶ 𝑓(𝑝) ≠ 𝑓(𝑝′), or
▶ there is 𝑥 ∈ dom(𝑚) such

that 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥)).

given in Section 10.4.3. As is done in 𝐿#, we split the states of 𝒯 into three
subsets:

▶ The basis ℬ𝒯 is a subtree of 𝑄𝒯 such that 𝑞𝒯0 ∈ ℬ𝒯 and 𝑝 #𝑚 𝑝′ for any
𝑝 ≠ 𝑝′ ∈ ℬ𝒯 andmaximal matching 𝑚 ∶ 𝑝 ↔ 𝑝′. By Theorem 10.3.14, we
thus know that 𝑓(𝑝) ≠ 𝑓(𝑝′) or 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥)) for some 𝑥 ∈ dom(𝑚).
As we have this for every maximal 𝑚, we conjecture that 𝑓(𝑝) ≠ 𝑓(𝑝′).
We may be wrong, i.e., 𝑓(𝑝) = 𝑓(𝑝′) but we need a matching we do not
know yet, due to unknown active timers which will be discovered later.

▶ The frontier ℱ𝒯 ⊆ 𝑄𝒯 is the set of immediate non-basis successors of
basis states, i.e.,

ℱ𝒯 = {𝑟 ∈ 𝑄𝒯 ∖ ℬ𝒯 ∣ ∃𝑝 ∈ ℬ𝒯, 𝑖 ∈ 𝐴(𝒯) ∶ 𝑝
𝑖

−→ 𝑟}.

We say that 𝑝 ∈ ℬ𝒯 and 𝑟 ∈ ℱ𝒯 are compatible under a maximal
matching 𝑚 if ¬(𝑝 #𝑚 𝑟), i.e., we cannot conjecture that 𝑓(𝑝) ≠ 𝑓(𝑟).
We write compat𝒯(𝑟) for the set of all such pairs (𝑝, 𝑚):

compat𝒯(𝑟) = {(𝑝, 𝑚) ∣ 𝑝 ∈ ℬ𝒯 ∧ ¬(𝑝 #𝑚 𝑟)}.

▶ The remaining states 𝑄𝒯 ∖ (ℬ𝒯 ∪ ℱ𝒯).

Example 10.4.3.

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑖/𝑜, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑦 ≔ 3

to[𝑥]/𝑜, 𝑥 ≔ 2𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑥]/𝑜
𝑥 ≔ 2

Let the MMT of the teacher be the s-learnable MMTℳ of
Figure 10.2 and 𝒯 be the observation tree of Figure 10.5.

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

Both figures are
repeated in the margin. One can check that 𝑡0, 𝑡1, and 𝑡3 are all pairwise
apart under any maximal matching. We have

𝜀 ⊢ 𝑡0 #∅ 𝑡1 𝜀 ⊢ 𝑡0 #∅ 𝑡3

𝑖 ⊢ 𝑡1 #𝑥1↦𝑥1 𝑡3 𝑖 ⊢ 𝑡1 #𝑥1↦𝑥3 𝑡3.

Hence, 𝑡0, 𝑡1, and 𝑡3 are all pairwise apart under any maximal matching.
We can thus define ℬ𝒯 = {𝑡0, 𝑡1, 𝑡3} and ℱ𝒯 = {𝑡2, 𝑡5, 𝑡6}. Let us compute
compat𝒯(𝑟) for each frontier state 𝑟. We have the following apartness pairs:

𝜀 ⊢ 𝑡0 #∅ 𝑡2 ¬(𝑡1 #𝑥1↦𝑥1 𝑡2)
¬(𝑡3 #𝑥1↦𝑥1 𝑡2) 𝜀 ⊢ 𝑡3 #𝑥3↦𝑥1 𝑡2

𝜀 ⊢ 𝑡0 #∅ 𝑡5 𝜀 ⊢ 𝑡1 #𝑥1↦𝑥1 𝑡5

𝜀 ⊢ 𝑡1 #𝑥1↦𝑥3 𝑡5 𝜀 ⊢ 𝑡3 #𝑥1↦𝑥1,𝑥3↦𝑥3 𝑡5

𝜀 ⊢ 𝑡3 #𝑥1↦𝑥3,𝑥3↦𝑥1 𝑡5 𝜀 ⊢ 𝑡0 #∅ 𝑡6

𝜀 ⊢ 𝑡1 #𝑥1↦𝑥3 𝑡6 𝜀 ⊢ 𝑡1 #𝑥1↦𝑥6 𝑡6

𝜀 ⊢ 𝑡3 #𝑥1↦𝑥3,𝑥3↦𝑥6 𝑡6 𝜀 ⊢ 𝑡3 #𝑥1↦𝑥6,𝑥3↦𝑥3 𝑡6.

Hence, compat𝒯(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1), (𝑡3, 𝑥1 ↦ 𝑥1)} while compat𝒯(𝑡5) =
compat𝒯(𝑡6) = ∅.

Throughout the rest of this section, we explain how to extend 𝒯 such that a
sound and complete MMT can be constructed from𝒯. The following definition
gives the requirements that must be satisfied before being able to construct
this hypothesis.
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12: This is required in Defini-
tion 10.3.6.

13: As 𝑟 ∈ ℰ𝒯, we still satisfy
the requirement Explored of Defi-
nition 10.4.4, and ℬ𝒯 remains tree-
shaped.

Definition 10.4.4 (Requirements for a hypothesis). In order to be able to
construct a hypothesis from the observation tree, we will ensure that the
following requirements are met:

Explored each basis and frontier state is explored, i.e., ℬ𝒯 ∪ ℱ𝒯 ⊆ ℰ𝒯, in
order to discover timers as quickly as possible,

Complete the basis is complete, in the sense that 𝑝
𝑖

−→ is defined for every
𝑖 ∈ 𝐼 ∪ TO[𝜒𝒯

0 (𝑝)], and
Active timers for every 𝑟 ∈ ℱ𝒯, compat𝒯(𝑟) ≠ ∅ and ∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ for

every (𝑝, 𝑚) ∈ compat𝒯(𝑟).

Computing the basis and the frontier

We now explain how to compute ℬ𝒯 and ℱ𝒯 via calls to OQs and WQs.
We initialize the tree to only contain 𝑞𝒯0 , i.e., ℬ𝒯 = {𝑞𝒯0 } and ℱ𝒯 = ∅. As
𝜒ℳ(𝑞ℳ0 ) = ∅, we know that 𝑞𝒯0 must be considered enabled and, so, ℰ𝒯 = {𝑞𝒯0 },
which is then initially tree-shaped.12

If 𝑞
𝑖

−→ is not defined for some 𝑖 ∈ 𝐼 and 𝑞 ∈ ℬ𝒯, (i.e., if ℬ𝒯 is not complete),
we call OQs(𝑞, 𝑖) to create the new state 𝑟, which is added to ℱ𝒯 . As we want
ℱ𝒯 ⊆ ℰ𝒯, we call WQs(𝑟). At some point during learning, we may discover
that a frontier state 𝑟 has an empty compat𝒯(𝑟). That is, 𝑝 #𝑚 𝑟 for every
𝑝 ∈ ℬ𝒯 and maximal matching 𝑚 ∶ 𝑝 ↔ 𝑟. We can thus promote 𝑟 to ℬ𝒯.13

There may again be a missing transition, leading to a OQs, or a successor of 𝑟
is not explored, requiring a WQs. As 𝑟 ∈ ℰ𝒯 and by the wait query performed
to do so (see Section 10.4.1), it follows that 𝛿(𝑟, 𝑖) is already defined for every
𝑖 ∈ TO[𝜒𝒯

0 (𝑟)], i.e., a missing transition must read an input (not a timeout).

Example 10.4.5.

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

Let us continue Example 10.4.3 (again, the tree is repeated in
the margin). As compat𝒯(𝑡6) = ∅, we promote 𝑡6, i.e., ℬ𝒯 = {𝑡0, 𝑡1, 𝑡3, 𝑡6}.
We call WQs(𝑡9) and WQs(𝑡10), which yields 𝜒(𝑡9) = 𝜒0(𝑡9) = {𝑥3} and
𝜒(𝑡10) = ∅. Hence, ℱ𝒯 = {𝑡2, 𝑡5, 𝑡9, 𝑡10}, and

compat𝒯(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1), (𝑡3, 𝑥1 ↦ 𝑥1)}
compat𝒯(𝑡5) = {(𝑡6, 𝑥6 ↦ 𝑥1, 𝑥3 ↦ 𝑥3)}
compat𝒯(𝑡9) = ∅
compat𝒯(𝑡10) = {(𝑡0, ∅)}.

First, the last line holds as 𝜒𝒯
0 (𝑡10) = ∅, 𝑡10 ∈ ℰ𝒯. So, the only possible

compatible state is 𝑡0. As 𝑡10 does not have any outgoing transition, we
cannot obtain 𝑡0 #∅ 𝑡10. Second, compat𝒯(𝑡9) is empty, since the only states
with the same number of enabled timers are 𝑡1 and 𝑡3 (as 𝜒0(𝑡1) = 𝜒0(𝑡3) =
{𝑥1}) but any matching 𝑥1 ↦ 𝑥3 is invalid. So, 𝑡1 #𝑥1↦𝑥3 𝑡9 and 𝑡3 #𝑥1↦𝑥3 𝑡9.
Finally, 𝑡3 #𝑥3↦𝑥3 𝑡9 as 𝑥3 ∉ 𝜒0(𝑡3) but 𝑥3 ∈ 𝜒0(𝑡9).
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𝑡0 𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡7

𝑡8

𝑡9

𝑡10

𝑡11 𝑡12 𝑡13

𝑡14

𝑖/𝑜
𝑥1 ≔ 2 𝑖/𝑜′, 𝑥3 ≔ 3

to[𝑥1]/𝑜, 𝑥1 ≔ 2 to[𝑥1]/𝑜, ⊥

to[𝑥1]/𝑜, 𝑥1 ≔ 2

𝑖/𝑜′, 𝑥6 ≔ 2

to[𝑥3]/𝑜
⊥

to[𝑥6]/𝑜
⊥

to[𝑥1]/𝑜
𝑥1 ≔ 2 to[𝑥11 ]/𝑜, ⊥

to[𝑥1]/𝑜, ⊥

to[𝑥1]/𝑜
⊥

to[𝑥3]/𝑜
⊥

𝑖/𝑜′

𝑥11 ≔ 3

Figure 10.8: Extension of the observation tree of Figure 10.5 obtained by calling replay𝑥1↦𝑥1
𝜋 (𝑡2), where

𝜋 = 𝑡1
𝑖⋅to[𝑥1]⋅to[𝑥3]
−−−−−−−→. New states and transitions are highlight with dashed lines.

Replaying a run

By the previous section, both requirements Explored and Complete of Defini-
tion 10.4.4 are satisfied. It remains the last item Active timers, i.e., to ensure
that ∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ for every 𝑟 ∈ ℱ𝒯 and (𝑝, 𝑚) ∈ compat𝒯(𝑟). To ease the
writing, assume that ∣𝜒𝒯(𝑝)∣ > ∣𝜒𝒯(𝑟)∣. The other case can easily be obtained
with the same approach. There must exist a timer 𝑥 that is active in 𝑝 but not
used in 𝑚 (i.e., 𝑥 ∈ 𝜒𝒯(𝑝) ∖ dom(𝑚)). By definition of 𝒯, there exists a word
𝑤 ending with to[𝑥] such that 𝜋 = 𝑝

𝑤
−→ ∈ runs(𝒯). That is, 𝜋 shows that 𝑥

eventually times out. We want to replay 𝜋 from 𝑟, i.e., add new nodes and
transitions to 𝒯 to replicate the behavior of 𝜋 from 𝑟. As soon as we find a
new timer in 𝑟 or that 𝑝 #𝑚 𝑟, we can stop replaying the run. We introduce
the function replay𝑚

𝜋 via an example. Technical details and a pseudo-code are
given in Section C.12.

Example 10.4.6.

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑖/𝑜, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑦 ≔ 3

to[𝑥]/𝑜, 𝑥 ≔ 2𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑥]/𝑜
𝑥 ≔ 2

Letℳ be the MMT of Figure 10.2 and 𝒯 be the observation
tree of Figure 10.5. Both figures are repeated in the margin. Let

𝜋 = 𝑡1
𝑖/𝑜′

−−→ 𝑡3
to[𝑥1]/𝑜
−−−−→ 𝑡5

to[𝑥3]/𝑜
−−−−→ 𝑡8.

We replay 𝜋 from 𝑡2, using the matching 𝑚 ∶ 𝑡1 ↔ 𝑡2 such that 𝑚 = 𝑥1 ↦ 𝑥1,
i.e., we call replay𝑚

𝜋 (𝑡2). First, we check whether we already have 𝑡1 #𝑚 𝑡2,
in which case it is unnecessary to extend the tree. As it is not the case, we
start processing the run 𝜋 from 𝑡2. We first perform a wait query in 𝑡2, which

has no effect here, as 𝑡2 ∈ ℰ𝒯 (as 𝑡2
to[𝑥1]
−−−→ ∈ runs(𝒯)). The first symbol of

𝜋 is an input, so we call OQs(𝑡2, 𝑖) and define the transition 𝑡2
𝑖/𝑜′

−−→ 𝑡11. As
we did not find a new active timer in 𝑡2 nor 𝑡1 #𝑚 𝑡2, we proceed with the
next symbol.
We reproduce to[𝑥1] from 𝑡11 by first callingWQs(𝑡11), which does not bring
anything new. Observe that 𝑥1 ∈ dom(𝑚) and to[𝑚(𝑥1)] = to[𝑥1] ∈ 𝜒0(𝑡11).
So, we can take the transition 𝑡11

to[𝑥1]
−−−→ 𝑡12 and

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

process the last symbol
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Lemma 10.3.13. Let
𝑝0, 𝑝′

0, 𝑟0 be three states of 𝒯,
𝑚 ∶ 𝑝0 ↔ 𝑝′

0 and 𝜇 ∶ 𝑝0 ↔ 𝑟0
be two matchings such
that dom(𝑚) is a subset of
dom(𝜇), 𝑤 = 𝑖1 ⋯ 𝑖𝑛 be a
witness of the behavioral
apartness 𝑝0 #𝑚 𝑝′

0, and

read𝑚
𝑝0

𝑤
−→𝑝𝑛

(𝑝′
0) = 𝑝′

0
𝑤′

−→ 𝑝′
𝑛.

Moreover, let 𝑤𝑥 be a word
such that 𝑝𝑛−1

𝑖𝑛−→ 𝑝𝑛
𝑤𝑥

−→ is
𝑥-spanning if 𝑝0 #𝑚 𝑝′

0 due
to (constants), or be 𝜀 other-
wise. If read𝜇

𝑝0

𝑤⋅𝑤𝑥
−−−→

(𝑟0) is a

run of 𝒯 with 𝑟𝑛 ∈ ℰ𝒯, then
𝑝0 #𝜇 𝑟0 or 𝑝′

0 #𝜇∘𝑚−1 𝑟0.

to[𝑥3] from 𝑡12. We doWQs(𝑡12) and learn that 𝑡2 −−−−→
(𝑥11,3)

𝑡11 −−−→
(𝑥1,2)

𝑡12. We

still have no new active timer in 𝑡2, nor 𝑡1 #𝑚 𝑡2. Since 𝑥3 ∈ 𝜒0(𝑡5) is a
fresh timer started by the first transition of 𝜋 and 𝑥11 ∈ 𝜒0(𝑡12) is a fresh
timer started on the corresponding transition in the new run, we take the
transition 𝑡12 −→ 𝑡14. As the run 𝜋 is completely replayed, the algorithm
returns DONE. We obtain the tree of Figure 10.8, where the new states and
transitions are drawn with dashed lines.
Had we found a new active timer (resp. 𝑡1 #𝑚 𝑡2), replay

𝑚
𝜋 would have

returned ACTIVE (resp. APART). For instance, starting from Figure 10.5
again, replay𝑚′

𝑡3

𝑖
−→𝑡6

to[𝑥6]
−−−→

(𝑡2) (with 𝑚′ any maximal matching) also adds

𝑡11 and 𝑡12 (due to the output and wait queries) but returns APART (as
|𝜒0(𝑡6)| ≠ |𝜒0(𝑡11)|).

Observe that replay𝑚
𝜋 (𝑞) takes the same transitions as read𝑚

𝜋 (𝑞) (if the run
exists) but also extends the tree. The next proposition (proved in Section C.12)
highlights important properties of this replay algorithm. We conclude that we
can ensure the last requirement of Definition 10.4.4, i.e., that ∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣
for every 𝑟 ∈ ℱ𝒯 and (𝑝, 𝑚) ∈ compat𝒯(𝑟) by applying

▶ replay𝑚
𝑝

𝑤
−→(𝑟) with 𝑤 a word ending in to[𝑥] for a timer 𝑥 ∈ 𝜒𝒯(𝑝) ∖

dom(𝑚), if ∣𝜒𝒯(𝑝)∣ > ∣𝜒𝒯(𝑟)∣, or
▶ replay𝑚−1

𝑟
𝑤
−→(𝑝) with 𝑤 a word ending in to[𝑥] for a timer 𝑥 ∈ 𝜒𝒯(𝑟) ∖

dom(𝑚−1), if ∣𝜒𝒯(𝑝)∣ < ∣𝜒𝒯(𝑟)∣.

The following proposition gives general properties of the replay algorithm (i.e.,
not only for the context of identifying new active timers we studied here).

Proposition 10.4.7. Let 𝑝0, 𝑝′
0 ∈ 𝑄𝒯, 𝑚 ∶ 𝑝0 ↔ 𝑝′

0 be a maximal matching,
and 𝜋 = 𝑝0

𝑤
−→ ∈ runs(𝒯). Then,

▶ if replay𝑚
𝜋 (𝑝′

0) returns DONE, then read𝑚
𝜋 (𝑝′

0) is now a run of 𝒯.
▶ replay𝑚

𝜋 (𝑝′
0) returns APART or ACTIVE if ∣𝜒𝒯(𝑝0)∣ > ∣𝜒𝒯(𝑝′

0)∣ and 𝑤
ends with to[𝑥] for some 𝑥 ∈ 𝜒𝒯(𝑝0) ∖ dom(𝑚).

Minimization of compat𝒯(𝑟)

Intuitively, the hypothesis construction (which is presented in the next section)
will, for every frontier state 𝑟, arbitrarily select a pair (𝑝, 𝑚) in compat𝒯(𝑟) and
“redirect” the transition leading to 𝑟 to go in 𝑝. This is possible as soon as the
requirements of

Definition 10.4.4. In order
to be able to construct a hy-
pothesis from the observa-
tion tree, we will ensure that
the following requirements
are met:

Explored each basis and
frontier state is explored, i. e.,
ℬ𝒯 ∪ ℱ𝒯 ⊆ ℰ𝒯, in order to
discover timers as quickly as
possible,
Complete the basis is com-
plete, in the sense that 𝑝

𝑖
−→

is defined for every 𝑖 ∈ 𝐼 ∪
TO[𝜒𝒯

0 (𝑝)], and
Active timers for every 𝑟 ∈
ℱ𝒯, compat𝒯(𝑟) ≠ ∅ and
∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ for every
(𝑝, 𝑚) ∈ compat𝒯(𝑟).

Definition 10.4.4 are satisfied, in particular, when compat𝒯(𝑟)
is not empty for every frontier state 𝑟. Since these requirements do not impose
that each compatible set contains a single element, there are multiple potential
hypothesis that can be constructed from the tree. If we reduce the size of each
compatible set, we reduce the number of possible hypotheses, which in turn
reduces the overall number of equivalence queries we need. Hence, we now
focus on minimizing each compatible set. More precisely, we extend the tree
in order to apply the weak co-transitivity lemma (see Lemma 10.3.13) as much
as possible.
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Let 𝑟 ∈ ℱ𝒯, and (𝑝, 𝜇) and (𝑝′, 𝜇′) be two pairs in compat𝒯(𝑟) with 𝑝 ≠ 𝑝′

and maximal matchings 𝜇 ∶ 𝑝 ↔ 𝑟 and 𝜇′ ∶ 𝑝′ ↔ 𝑟. These matchings are
necessarily valid by definition of a compatible set. We also assume that

∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ = ∣𝜒𝒯(𝑝′)∣.

This can be obtained by replaying runs, as explained above.

As 𝑝, 𝑝′ ∈ ℬ𝒯, it must be that 𝑝 #𝑚 𝑝′ for any maximal matching 𝑚 ∶ 𝑝 ↔ 𝑝′.
In particular, take 𝑚 ∶ 𝑝 ↔ 𝑝′ such that 𝑚 = 𝜇′−1 ∘ 𝜇. Notice that dom(𝑚) ⊆
dom(𝜇) and 𝜇′ = 𝜇 ∘ 𝑚−1 (see Figure 10.7, which is repeated in the margin,
for a visualization).

𝜒(𝑟0)

𝜒(𝑝0)

𝜒(𝑝′
0)

It always exists and is unique as the three states have the
same number of active timers. There are two cases:

▶ either any witness 𝑤 ⊢ 𝑝 #𝑚 𝑝′ is such that the apartness is structural,
in which case we cannot apply Lemma 10.3.13, or

▶ there is a witness 𝑤 ⊢ 𝑝 #𝑚 𝑝′ where the apartness is behavioral. In that
case, let also 𝑤𝑥 be as described in Lemma 10.3.13. We then replay the

run 𝑝
𝑤⋅𝑤𝑥

−−−→ from 𝑟 using 𝜇. We have three cases:

• replay𝜇

𝑝
𝑤⋅𝑤𝑥

−−−→
(𝑟) = APART, meaning that 𝑝 #𝜇 𝑟. Then, (𝑝, 𝜇) is no

longer in compat𝒯(𝑟).
• replay𝜇

𝑝
𝑤⋅𝑤𝑥

−−−→
(𝑟) = ACTIVE, in which case we discovered a new

active timer in 𝑟. Hence, we now have that ∣𝜒𝒯(𝑝)∣ ≠ ∣𝜒𝒯(𝑟)∣ and
we can again replay some runs, as explained above, to obtain the
equality again, or that 𝑝 and 𝑟 are not compatible anymore.

• replay𝜇

𝑝
𝑤⋅𝑤𝑥

−−−→
(𝑟) = DONE, meaning that we could fully replay

𝑝
𝑤⋅𝑤𝑥

−−−→ and thus did not obtain 𝑝 #𝜇 𝑟. By Lemma 10.3.13, it
follows that 𝑝′ #𝜇′ 𝑟.

Hence, it is sufficient to call replay𝜇

𝑝
𝑤⋅𝑤𝑥

−−−→
(𝑟) when 𝑤 ⊢ 𝑝 #𝜇′−1∘𝜇 𝑝′ is

behavioral.

We highlight that we cannot always obtain that each compatible set contains
a single element, as Lemma 10.3.13 cannot be applied when the considered
apartness pairs are structural.

Example 10.4.8.

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

Let 𝒯 be the observation tree of Figure 10.5, which is re-
peated in the margin. As explained in Example 10.4.3, we have

compat𝒯(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1), (𝑡3, 𝑥1 ↦ 𝑥1)}.

Let us extend the tree in order to apply weak co-transitivity to deduce that
𝑡1 #𝑥1↦𝑥1 𝑡2 or 𝑡1 #𝑥1↦𝑥1 𝑡3. We have that 𝑖 ⊢ 𝑡1 #𝑥1↦𝑥1 𝑡3 due to (constants).
Hence, we replay the run

𝜋 = 𝑡1
𝑖⋅to[𝑥1]⋅to[𝑥3]
−−−−−−−→

from 𝑡2 using the matching 𝑥1 ↦ 𝑥1 (i.e., we have 𝑤𝑥 = to[𝑥1] ⋅ to[𝑥3]). That
is, we call replay𝑥1↦𝑥1

𝜋 (𝑡2). The computations are given in Example 10.4.6
and the resulting tree in Figure 10.8. Recall that the function returnedDONE.
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Definition 10.4.4. In order
to be able to construct a hy-
pothesis from the observa-
tion tree, we will ensure that
the following requirements
are met:

Explored each basis and
frontier state is explored, i. e.,
ℬ𝒯 ∪ ℱ𝒯 ⊆ ℰ𝒯, in order to
discover timers as quickly as
possible,
Complete the basis is com-
plete, in the sense that 𝑝

𝑖
−→

is defined for every 𝑖 ∈ 𝐼 ∪
TO[𝜒𝒯

0 (𝑝)], and
Active timers for every 𝑟 ∈
ℱ𝒯, compat𝒯(𝑟) ≠ ∅ and
∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ for every
(𝑝, 𝑚) ∈ compat𝒯(𝑟).

So, ¬(𝑡1 #𝑚1↦𝑥1 𝑡2). By Lemma 10.3.13, it must be that 𝑡3 #𝑥1↦𝑥1 𝑡2. It is
indeed the case as 𝑖 ⊢ 𝑡3 #𝑥1↦𝑥1 𝑡2 by (constants).

𝑢 = (𝑥, 𝑐)
∧ 𝑢′ = (𝑥′, 𝑐′)
∧ 𝑐 ≠ 𝑐′

(constants)

Hence, we now have

compat𝒯(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1)}.

10.4.3. Constructing a hypothesis

In this section, we explain how to construct a hypothesisℋ from 𝒯 such that
𝑄ℋ = ℬ𝒯. We assume that the observation tree respects the requirements of
Definition 10.4.4. The idea is to pick a (𝑝, 𝑚) ∈ compat𝒯(𝑟) for each frontier

state 𝑟. Then, the unique transition 𝑞
𝑖

−→ 𝑟 in 𝒯 becomes 𝑞
𝑖

−→ 𝑝 inℋ. We also
globally rename the timers according to 𝑚.

Let
𝑋ℬ𝒯 = ⋃

𝑞∈ℬ𝒯

𝜒𝒯(𝑞)

be the set of timers used within the basis, and

𝑋ℱ𝒯 = ⋃
𝑟∈ℱ𝒯

𝜒𝒯(𝑟)

be the set of timers used within the frontier. We construct a (total) function
𝔥 ∶ ℱ𝒯 → ℬ𝒯 that dictates how to fold the frontier states, and an equivalence
relation ≡ ⊆ (𝑋ℬ𝒯 ∪ 𝑋ℱ𝒯) × (𝑋ℬ𝒯 ∪ 𝑋ℱ𝒯) to know how to rename the
timers.

▶ The relation ≡ is initialized with 𝑥 ≡ 𝑥 for each 𝑥 ∈ 𝑋ℬ𝒯 , i.e., ≡ is
reflexive and each timer of the basis has its own class.

▶ Then, we add the timers used in the frontier. For every 𝑟 ∈ ℱ𝒯 , arbitrarily
select a (𝑝, 𝑚) ∈ compat𝒯(𝑟). We then define 𝔥(𝑟) = 𝑝 (i.e., we send 𝑟
to 𝑝) and add 𝑥 ≡ 𝑚(𝑥) for every 𝑥 ∈ dom(𝑚).

▶ We then compute the transitive and symmetric closure of ≡.

Finally, we check whether ≡ satisfies that two apart timers are not put together,
i.e., ∀𝑥 ≠ 𝑦 ∶ 𝑥 ≡ 𝑦 ⇒ ¬(𝑥 𝑡# 𝑦). If it does not hold, ≡ is discarded and we
restart by selecting a different (𝑝, 𝑚) for some frontier state 𝑟.

Let us now define the MMT constructed from 𝔥 and ≡. We denote by J𝑥K≡ the
equivalence class of the timer 𝑥 for the relation ≡. We lift J⋅K≡ to actions 𝑖 and
updates 𝑢:

J𝑖K≡ = {
𝑖 if 𝑖 ∈ 𝐼
to[J𝑥K≡] if 𝑖 = to[𝑥] with 𝑥 ∈ 𝑋ℬ𝒯 ∪ 𝑋ℱ𝒯

and

J𝑢K≡ = {
⊥ if 𝑢 = ⊥
(J𝑥K≡, 𝑐) if 𝑢 = (𝑥, 𝑐) with 𝑥 ∈ 𝑋ℬ𝒯 ∪ 𝑋ℱ𝒯 .

Definition 10.4.9 (MMT hypothesis). Let 𝔥 ∶ ℱ𝒯 → ℬ𝒯 and ≡ ⊆ (𝑋ℬ𝒯 ∪
𝑋ℱ𝒯) × (𝑋ℬ𝒯 ∪ 𝑋ℱ𝒯) be as constructed above. We define an MMT 𝒩 =
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𝑡0𝑡0 𝑡1𝑡1

𝑡2

𝑡3𝑡3

𝑡4

𝑡5

𝑡6𝑡6

𝑡7

𝑡8

𝑡9𝑡9

𝑡10

𝑡11

𝑡12

𝑡13

𝑡14

𝑡15

𝑡16

𝑡17

𝑖/𝑜
𝑥1 ≔ 2 𝑖/𝑜′, 𝑥3 ≔ 3

to[𝑥1]/𝑜, 𝑥1 ≔ 2 to[𝑥1]/𝑜, ⊥

to[𝑥1]/𝑜, 𝑥1 ≔ 2

𝑖/𝑜′, 𝑥6 ≔ 2

to[𝑥3]/𝑜
⊥

to[𝑥6]/𝑜
⊥

to[𝑥3]/𝑜
⊥

to[𝑥3]/𝑜
⊥

to[𝑥3]/𝑜, ⊥
to[𝑥1]/𝑜

⊥

to[𝑥3]/𝑜
⊥

𝑖/𝑜′

𝑥11 ≔ 2

to[𝑥11]/𝑜
⊥

𝑖/𝑜′

⊥

to[𝑥1]/𝑜
⊥

(a) The observation tree.

𝑡0 𝑡1 𝑡3 𝑡6 𝑡9
𝑖/𝑜

𝑦1 ≔ 2
𝑖/𝑜′

𝑦2 ≔ 3

to[𝑦1]/𝑜, 𝑦1 ≔ 2

𝑖/𝑜′, 𝑦1 ≔ 2

to[𝑦1]/𝑜, 𝑦1 ≔ 2
to[𝑦1]/𝑜, ⊥

𝑖/𝑜′, 𝑦1 ≔ 2 𝑖/𝑜′, ⊥

to[𝑦2]/𝑜, ⊥

to[𝑦2]/𝑜, ⊥

(b) The hypothesis.

Figure 10.9: On top, an observation tree from which the hypothesis MMT at the bottom is constructed, with
𝑦1 = J𝑥1K≡ and 𝑦2 = J𝑥3K≡. Basis states are highlighted with a gray background.

(𝐼, 𝑂, 𝑋𝒩, 𝑄𝒩, 𝑞𝒩0 , 𝜒𝒩, 𝛿𝒩) where:

▶ 𝑋𝒩 = ⋃𝑞∈ℬ𝒯 𝜒𝒯(𝑞),
▶ 𝑄𝒩 = ℬ𝒯 with 𝑞𝒩0 = 𝑞𝒯0 ,
▶ 𝜒𝒩(𝑞) = {J𝑥K≡ ∣ 𝑥 ∈ 𝜒𝒯(𝑞)}, and
▶ the transition function 𝛿𝒩 is defined as follows. Let 𝑞

𝑖/𝑜
−−→

𝑢
𝑞′ be a

transition of 𝒯 with 𝑞 ∈ ℬ𝒯. We set

𝛿𝒩(𝑞, J𝑖K≡) = {
(𝑞′, 𝑜, J𝑢K≡) if 𝑞′ ∈ ℬ𝒯

(𝔥(𝑞′), 𝑜, J𝑢K≡) if 𝑞′ ∈ ℱ𝒯.

It is not hard to see that𝒩 is sound and complete.

Example 10.4.10.

𝑞0

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑖/𝑜, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑦 ≔ 3

to[𝑥]/𝑜, 𝑥 ≔ 2𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑥]/𝑜, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

𝑖/𝑜′, 𝑥 ≔ 2

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑦]/𝑜, ⊥

to[𝑥]/𝑜
𝑥 ≔ 2

Let ℳ be the s-learnable MMT of Figure 10.2 (which is
repeated in the margin) and 𝒯 be the observation tree of Figure 10.9a. Basis
states are highlighted with a gray background, i.e., ℬ𝒯 = {𝑡0, 𝑡1, 𝑡3, 𝑡6, 𝑡9}
and ℱ𝒯 = {𝑡2, 𝑡5, 𝑡10, 𝑡11, 𝑡12, 𝑡15}. Moreover, we have the following com-
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Definition 10.4.4. In order
to be able to construct a hy-
pothesis from the observa-
tion tree, we will ensure that
the following requirements
are met:

Explored each basis and
frontier state is explored, i. e.,
ℬ𝒯 ∪ ℱ𝒯 ⊆ ℰ𝒯, in order to
discover timers as quickly as
possible,
Complete the basis is com-
plete, in the sense that 𝑝

𝑖
−→

is defined for every 𝑖 ∈ 𝐼 ∪
TO[𝜒𝒯

0 (𝑝)], and
Active timers for every 𝑟 ∈
ℱ𝒯, compat𝒯(𝑟) ≠ ∅ and
∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ for every
(𝑝, 𝑚) ∈ compat𝒯(𝑟).

patible sets:

compat𝒯(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1)}
compat𝒯(𝑡10) = compat𝒯(𝑡12) = {(𝑡0, ∅)}

compat𝒯(𝑡5) = {(𝑡6, 𝑥6 ↦ 𝑥1, 𝑥3 ↦ 𝑥3)}
compat𝒯(𝑡15) = {(𝑡9, 𝑥3 ↦ 𝑥3)}
compat𝒯(𝑡11) = {(𝑡6, 𝑥6 ↦ 𝑥11, 𝑥3 ↦ 𝑥3)}.

We construct ℋ with 𝑄ℋ = ℬ𝒯. While defining the transitions 𝑞 −→ 𝑞′

is easy when 𝑞, 𝑞′ ∈ ℬ𝒯, we have to redirect the transition to some basis
state when 𝑞′ ∈ ℱ𝒯. To do so, we first define a map 𝔥 ∶ ℱ𝒯 → ℬ𝒯, and
an equivalence relation ≡ over the set of active timers of the basis and the
frontier. For each 𝑟 ∈ ℱ𝒯, we pick (𝑝, 𝑚) ∈ compat𝒯(𝑟), define 𝔥(𝑟) = 𝑝,
and add 𝑥 ≡ 𝑚(𝑥) for every 𝑥 ∈ dom(𝑚) (and compute the symmetric and
transitive closure of ≡). Here, we obtain

𝔥(𝑡2) = 𝑡1 𝔥(𝑡5) = 𝔥(𝑡11) = 𝑡6

𝔥(𝑡10) = 𝔥(𝑡12) = 𝑡0 𝔥(𝑡15) = 𝑡9

and
𝑥1 ≡ 𝑥6 ≡ 𝑥11 𝑥3 ≡ 𝑥3.

We check whether we have 𝑥 ≡ 𝑦 and 𝑥 𝑡# 𝑦, in which case, we restart again
by picking some different (𝑝, 𝑚). Here, this does not hold and we construct
ℋ by copying the transitions starting from a basis state (while folding the
tree when required), except that a timer 𝑥 is replaced by its equivalence
class J𝑥K≡. Figure 10.9b gives the resultingℋ. Observe that 𝑥1, 𝑥6, and 𝑥11
are all renamed into 𝑦1, i.e., the three different timers of 𝒯7 become a single
timer.

We highlight that it is not always possible to construct ≡ such that ¬(𝑥 𝑡# 𝑦)
for every 𝑥 ≡ 𝑦. In that case, we instead construct a generalized MMT, in
which every transition can arbitrarily rename the active timers. The size of
that generalized MMT is also ∣ℬ𝒯∣. From the generalized MMT, a classical
MMT can be constructed of size 𝑛! ⋅ ∣ℬ𝒯∣, with 𝑛 = max𝑝∈ℬ𝒯 ∣𝜒𝒯(𝑝)∣. Details
are given in Section C.13. We observed on practical examples that a valid ≡
can often be constructed. Section C.13 also illustrates a case where a ≡ does
not exist.

10.4.4. Main loop

We now give the main loop of 𝐿#
MMT. We initialize 𝒯 to only contain 𝑡𝒯0 ,

ℬ𝒯 = ℰ𝒯 = {𝑞𝒯0 }, and ℱ𝒯 = ∅. The main loop is split into two parts:

Refinement loop The refinement loop extends the tree to obtain the require-
ments of Definition 10.4.4, by performing the following operations, in
this order, until no more changes are possible:

Seismic If we discover a new active timer in a basis state, then it may
be that ¬(𝑞 #𝑚 𝑞′) for some 𝑞, 𝑞′ ∈ ℬ𝒯 and maximal 𝑚, due to
the new timer. Indeed, if 𝑞 and 𝑞′ have the same number of timers
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Lemma 10.3.13. Let
𝑝0, 𝑝′

0, 𝑟0 be three states of 𝒯,
𝑚 ∶ 𝑝0 ↔ 𝑝′

0 and 𝜇 ∶ 𝑝0 ↔ 𝑟0
be two matchings such
that dom(𝑚) is a subset of
dom(𝜇), 𝑤 = 𝑖1 ⋯ 𝑖𝑛 be a
witness of the behavioral
apartness 𝑝0 #𝑚 𝑝′

0, and

read𝑚
𝑝0

𝑤
−→𝑝𝑛

(𝑝′
0) = 𝑝′

0
𝑤′

−→ 𝑝′
𝑛.

Moreover, let 𝑤𝑥 be a word
such that 𝑝𝑛−1

𝑖𝑛−→ 𝑝𝑛
𝑤𝑥

−→ is
𝑥-spanning if 𝑝0 #𝑚 𝑝′

0 due
to (constants), or be 𝜀 other-
wise. If read𝜇

𝑝0

𝑤⋅𝑤𝑥
−−−→

(𝑟0) is a

run of 𝒯 with 𝑟𝑛 ∈ ℰ𝒯, then
𝑝0 #𝜇 𝑟0 or 𝑝′

0 #𝜇∘𝑚−1 𝑟0.

14: Due to the fact that the tree
satisfies the requirements of Def-
inition 10.4.4.

15: In this case i = to[𝑗] for some
𝑗.

before discovering the new active timers, then there may be some
maximal matchings between the two states for which we do not
have a witness of the apartness yet. To avoid this, we reset the basis
back to {𝑞𝒯0 }, as soon as a new timer is found, without removing
states from 𝒯. Notice that we do not remove any state or transition
from the tree.

Promotion If compat𝒯(𝑟) is empty for some frontier state 𝑟, then we
know that 𝑞 #𝑚 𝑟 for every 𝑞 ∈ ℬ𝒯 and maximal matching 𝑚 ∶
𝑞 ↔ 𝑟. Hence, we promote 𝑟 to the basis.

Completion If an 𝑖-transition is missing from some basis state 𝑝, we
complete the basis with that transition. Recall that it is sufficient
to only check for 𝑖 that are inputs, as every basis state is explored.

Active timers We ensure that 𝑝 and 𝑟 have the same number of active
timers for every (𝑝, ⋅) ∈ compat𝒯(𝑟).

WCT where WCT stands for Weak Co-Transitivity. As explained above,
we minimize each compatible set by extending the tree to leverage
Lemma 10.3.13 as much as possible.

Hypothesis and equivalence Once the refinement loop no longer modifies 𝒯
(i.e., the requirements of Definition 10.4.4 are all satisfied), we can con-
struct a hypothesisℋ from 𝒯 and perform a symbolic equivalence query
EQs(ℋ). If the teacher answers yes, we then return ℋ. Otherwise, a
symbolic counterexample w is provided and can be used to extend 𝒯 (as
we explain in the next section), before refining it again.

A pseudo-code is given in Algorithm 10.1.

10.4.5. Counterexample processing

Let w = i1 ⋯ in be a counterexample returned by a call to EQs(ℋ) (see Defini-
tion 10.2.3). We process w by extending the tree to learn new apartness pair(s)
or active timer(s). We want to obtain that (𝑝, 𝑚) is no longer in compat𝒯(𝑟)
for some 𝑟 ∈ ℱ𝒯 such that (𝑝, 𝑚) was selected to constructℋ, or that a new
timer is found in a basis state.

Observe that if we add 𝑞𝒯0
w

−→ 𝑞 to the tree, then it must be that 𝑞 ∉ ℬ𝒯 ∪ ℱ𝒯,
due to howℋ is constructed. First, by construction, it is impossible to have a
mistake with the transitions that remain within the basis. Second, the selected
(𝑝, 𝑚) ∈ compat𝒯(𝑟) is such that ∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ and ∣𝜒𝒯

0 (𝑝)∣ = ∣𝜒𝒯
0 (𝑟)∣.14

So, the counterexample shows a mistake due to a (potentially missing) transi-

tion 𝑞
𝑖

−→ with 𝑞 ∉ ℬ𝒯 ∪ ℱ𝒯.

As w may be very long, we seek a sufficient prefix, by adding each ik one
by one while performing WQs in each traversed state. A prefix w′ ⋅ i of w is
eventually found such that one of the following cases holds:

▶ a new timer is discovered in ℬ𝒯 ∪ ℱ𝒯,
▶ for some 𝑟 ∈ ℱ𝒯, we obtain 𝑝 #𝑚 𝑟 with (𝑝, 𝑚) the selected pair forℋ,

▶ 𝑞𝒯0
w′

−→ 𝑞
i

−→ ∈ runs(𝒯) and 𝑞ℋ0
w′

−→ 𝑞′ i

−→ ∉ runs(ℋ), or the other
direction,15
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Algorithm 10.1: Overall 𝐿#
MMT algorithm.

1: Initialize 𝒯 with ℬ𝒯 = {𝑞𝒯0 } and ℱ𝒯 = ∅
2: while true do
3: while 𝒯 is changed do ▷ Refinement loop
4: if number of active timers of a basis state has changed then ▷ Seismic
5: ℬ𝒯 ← {𝑞𝒯0 } and ℱ𝒯 ← {𝑟 ∣ ∃𝑞𝒯0

𝑖
−→ 𝑟}

6: else if ∃𝑟 ∈ ℱ𝒯 such that compat𝒯(𝑟) = ∅ then ▷ Promotion
7: ℬ𝒯 ← ℬ𝒯 ∪ {𝑟}
8: ℱ𝒯 ← ℱ𝒯 ∖ {𝑟}
9: for all 𝑟

𝑖
−→ 𝑟′ do

10: WQs(𝑟′) and ℱ𝒯 ← ℱ𝒯 ∪ {𝑟′}
11: else if ∃𝑝 ∈ ℬ𝒯, 𝑖 ∈ 𝐼 such that 𝑝

𝑖
−→ ∉ runs(𝒯) then ▷ Completion

12: OQs(𝑝, 𝑖)
13: Let 𝑟 be such that 𝑝

𝑖
−→ 𝑟

14: WQs(𝑟)
15: ℱ𝒯 ← ℱ𝒯 ∪ {𝑟 ∣ 𝑝

𝑖
−→ 𝑟}

16: else if ∃𝑟 ∈ ℱ𝒯, (𝑝, 𝑚) ∈ compat𝒯(𝑟) such that ∣𝜒𝒯(𝑝)∣ > ∣𝜒𝒯(𝑟)∣ then ▷ Active timers

17: Let 𝑤 be such that 𝑝
𝑤⋅to[𝑥]
−−−−→ for some 𝑥 ∈ 𝜒𝒯(𝑝) ∖ dom(𝑚)

18: replay𝑚

𝑝
𝑤⋅to[𝑥]

−−−−→
(𝑟)

19: else if ∃𝑟 ∈ ℱ𝒯, (𝑝, 𝑚) ∈ compat𝒯(𝑟) such that ∣𝜒𝒯(𝑝)∣ < ∣𝜒𝒯(𝑟)∣ then

20: Let 𝑤 be such that 𝑟
𝑤⋅to[𝑥]
−−−−→ for some 𝑥 ∈ 𝜒𝒯(𝑟) ∖ dom(𝑚−1)

21: replay𝑚−1

𝑟
𝑤⋅to[𝑥]

−−−−→
(𝑝)

22: else if ∃𝑟 ∈ ℱ𝒯, (𝑝, 𝜇), (𝑝′, 𝜇′) ∈ compat𝒯(𝑟), 𝑤 ⊢ 𝑝 #𝜇′−1∘𝜇 𝑝′ is behavioral then ▷ WCT
23: replay𝜇

𝑝
𝑤⋅𝑤𝑥

−−−→
(𝑟) with 𝑤𝑥 as described in Lemma 10.3.13

24: ▷ Hypothesis construction, once ℬ𝒯 and ℱ𝒯 are stabilized
25: ℋ ← ConstructHypothesis
26: 𝑣 ← EQs(ℋ)
27: if 𝑣 = yes then returnℋ else ProcCounterEx(𝑣)

▶ 𝑞𝒯0
w′

−→ 𝑞
i/𝑜
−−→

𝑢
∈ runs(𝒯), 𝑞ℋ0

w′

−→ 𝑞′ i/𝑜′

−−→
𝑢′

∈ runs(ℋ), and 𝑜 ≠ 𝑜′, or
𝑢 = (𝑥, 𝑐), 𝑢′ = (𝑥′, 𝑐′) with 𝑐 ≠ 𝑐′.

In the first two cases, we already obtain our goal and we can stop processing
the counterexample. For the third and four cases, it must be that 𝑞 ∉ ℬ𝒯 ∪ℱ𝒯 ,
as said above. Let v be w′ in the third case, and w′ ⋅ i in the fourth case. We
replay a part of v from some state in 𝒯.

Let 𝑟1 ∈ ℱ𝒯 and 𝑣1, 𝑣′
1 be such that 𝑞𝒯0

𝑣1−→ 𝑟1
𝑣′

1−→ , 𝑣′
1 ≠ 𝜀, and 𝑣1 ⋅ 𝑣′

1 = v.
That is, we split the run of 𝒯 reading v into the part that leads to a frontier
state and its suffix. Moreover, let (𝑝1, 𝑚1) ∈ compat𝒯(𝑟1) be the pair selected
forℋ. In order to try to get a new apartness pair, we replay 𝑣′

1 from 𝑝1 using
𝑚−1

1 as the matching. In other words, we call replay𝑚−1
1

𝑟1

𝑣′
1−→

(𝑝1) which can return

three values:
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𝑡0𝑡0 𝑡1𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑖/𝑜
𝑥1 ≔ 2

𝑖/𝑜′, ⊥

to[𝑥1]/𝑜, 𝑥1 ≔ 2 to[𝑥1]/𝑜
⊥

to[𝑥1]/𝑜
⊥

Figure 10.10: The observation tree 𝒯3. Basis states are highlighted with a gray background.

Proposition 10.4.7. Let
𝑝0, 𝑝′

0 ∈ 𝑄𝒯, 𝑚 ∶ 𝑝0 ↔ 𝑝′
0

be a maximal matching,
and 𝜋 = 𝑝0

𝑤
−→ ∈ runs(𝒯).

Then,

▶ if replay𝑚
𝜋 (𝑝′

0) returns
DONE, then read𝑚

𝜋 (𝑝′
0) is

now a run of 𝒯.
▶ replay𝑚

𝜋 (𝑝′
0) returns

APART or ACTIVE if
∣𝜒𝒯(𝑝0)∣ > ∣𝜒𝒯(𝑝′

0)∣ and
𝑤 endswith to[𝑥] for some
𝑥 ∈ 𝜒𝒯(𝑝0) ∖ dom(𝑚).

▶ APART, meaning 𝑝1 #𝑚1 𝑟1, i.e., (𝑝1, 𝑚1) ∉ compat𝒯(𝑟) and we stop.
▶ ACTIVE, meaning we discovered a new active timer in 𝑝1 ∈ ℬ𝒯 , which

is a seismic event and we stop.

▶ DONE, meaning 𝑝1
𝑣′

1−→ ∈ runs(𝒯) by Proposition 10.4.7. We keep
processing the counterexample by applying the same idea: let 𝑟2 ∈ ℱ𝒯,

𝑣′
1 = 𝑣2 ⋅ 𝑣′

2 be such that 𝑝1
𝑣2−→ 𝑟2

𝑣′
2−→, and (𝑝2, 𝑚2) ∈ compat𝒯(𝑟2), and

call replay𝑚2

𝑟2

𝑣′
2−→

(𝑝2), leading to a similar case distinction.

By the next lemma, we always eventually learn something new by processing a
counterexample. A proof is given in Section C.14 while examples are provided
in the next section.

Proposition 10.4.11. When processing a counterexample, we eventually find
a 𝑗 such that replay

𝑚−1
𝑗

𝑟𝑗

𝑣′
𝑗

−→
(𝑝𝑗) returns APART or ACTIVE.

10.4.6. Complete example

Finally, we perform a complete run of 𝐿#
MMT, using the s-learnable MMT of

Figure 10.2 as the MMT ℳ of the teacher. For the sake of this example, we
numerate each observation tree, obtained by applying some modifications,
starting with 𝒯1. Likewise, we write ℬ𝒯𝑗,ℱ𝒯𝑗, etc.

Initially, we have 𝑄𝒯1 = ℬ𝒯1 = {𝑡0} and ℱ𝒯1 = ∅. We thus need to apply
Completion and perform a symbolic output query to add the transition

𝑡0
𝑖/𝑜
−−→

⊥
𝑡1. Moreover, we do a symbolic wait query and learn that the transition

must start the timer 𝑥1 to the constant 2, i.e., we have 𝑡0
𝑖/𝑜

−−−→
(𝑥1,2)

𝑡1
to[𝑥1]/𝑜
−−−−→

⊥
𝑡2

and ℱ𝒯2 = {𝑡1}. Since the number of enabled timers in 𝑡0 and 𝑡1 are different,
we have compat𝒯2(𝑡1) = ∅, allowing us to apply Promotion and add 𝑡1 to the
basis. We immediately perform a wait query in 𝑡2 and obtain

𝑡1
to[𝑥1]/𝑜
−−−−→

(𝑥1,2)
𝑡2

to[𝑥1]/𝑜
−−−−→

⊥
𝑡4.

Moreover, we apply Completion over 𝑡1 and 𝑖 to obtain

𝑡1
𝑖/𝑜′

−−→
⊥

𝑡3
to[𝑥1]/𝑜
−−−−→

⊥
𝑡5.

The resulting observation tree𝒯3 is given in Figure 10.10. We have the following
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𝑡0 𝑡1
𝑖/𝑜

J𝑥1K≡ ≔ 2
𝑖/𝑜′, ⊥

to[J𝑥1K≡]/𝑜, J𝑥1K≡ ≔ 2

Figure 10.11: The hypothesis MMT constructed from 𝒯3.

𝑡0
𝑡1

𝑡2𝑡3

𝑡4𝑡5𝑡6

𝑡7𝑡8𝑡9𝑡10

𝑖/𝑜,𝑥
1

≔
2

𝑖/𝑜
′,𝑥

3
≔

3

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2
to[𝑥

1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1
≔

2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜,⊥

to[𝑥
6 ]/𝑜,⊥

to[𝑥
1 ]/𝑜,⊥

to[𝑥
3 ]/𝑜,⊥

apartness pairs:

𝜀 ⊢ 𝑡0 #∅ 𝑡1 𝜀 ⊢ 𝑡0 #∅ 𝑡2 𝜀 ⊢ 𝑡0 #∅ 𝑡3.
¬(𝑡1 #𝑥1↦𝑥1 𝑡2) ¬(𝑡1 #𝑥1↦𝑥1 𝑡3).

The pairs of the first line are all due 𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯∧

|𝜒0(𝑝𝑛)| ≠ |𝜒0(𝑝′
𝑛)|

(sizes)to (sizes). Hence, we can define ℬ𝒯 =
{𝑡0, 𝑡1} and ℱ𝒯 = {𝑡2, 𝑡3}. Moreover,

compat𝒯(𝑡2) = compat𝒯(𝑡3) = {(𝑡1, 𝑥1 ↦ 𝑥1)}.

We thus satisfy, for each frontier state 𝑟, that compat𝒯(𝑟) ≠ ∅ and 𝑝 and 𝑟
have the same number of active timers for every (𝑝, ⋅) ∈ compat𝒯(𝑟). One can
check that ℬ𝒯 = {𝑡0, 𝑡1} is the maximal basis of 𝒯. Then, ℱ𝒯 = {𝑡2, 𝑡3} and
we have compat𝒯(𝑡2) = compat𝒯(𝑡3) = {(𝑡1, 𝑥1 ↦ 𝑥1)}. We thus satisfy the
required constraints to construct a hypothesis.

So, we can compute a map 𝔥 ∶ {𝑡2, 𝑡3} → {𝑡0, 𝑡1} and a relation ≡ ⊆ {𝑥1} ×
{𝑥1} such that:

𝔥(𝑡2) = 𝔥(𝑡3) = 𝑡1 and 𝑥1 ≡ 𝑥1.

We then construct the hypothesisℋ1 (given in Figure 10.11) and ask a symbolic
equivalence query which returns 𝑖 ⋅ 𝑖 ⋅ to[1] ⋅ to[2] ⋅ 𝑖 ⋅ 𝑖.

Let us process that counterexample. First, we add w to 𝒯 symbol by symbol.

Observe that 𝑞𝒯0
𝑖⋅𝑖⋅to[1]
−−−−→ 𝑡5 is already a run of 𝒯3 but 𝑡5 is not yet explored. So,

we perform a wait query in 𝑡5 which returns {(2, 3), (3, 2)}, i.e., the transition

𝑡1
𝑖

−→ 𝑡3 starts a fresh timer 𝑥3 at constant 3 and 𝑡3
to[𝑥1]
−−−→ 𝑡5 restarts 𝑥1

at constant 2. We thus obtain that 𝜒0(𝑡2) = {𝑥1} and 𝜒0(𝑡5) = {𝑥1, 𝑥3},
meaning that to[𝑥1] ⊢ 𝑡1 #𝑥1↦𝑥1 𝑡3 by (sizes). That is, we immediately obtain
that (𝑡1, 𝑥1 ↦ 𝑥1) is no longer compatible with 𝑡3. Observe that we only added
𝑖 ⋅ 𝑖 ⋅ to[1] ⋅ to[2] to 𝒯, i.e., a proper prefix of w. Moreover, 𝑡3 can be promoted, as
𝑡1 #𝑥1↦𝑥1 𝑡3 (by (sizes)) and 𝑡1 #𝑥1↦𝑥3 𝑡3 (the matching is invalid). Hence, we
apply Promotion and the subsequent Completion to obtain the observation
tree 𝒯4 given in Figure 10.5 (repeated in the margin), with ℬ𝒯4 = {𝑡0, 𝑡1, 𝑡3}
and ℱ𝒯4 = {𝑡2, 𝑡5, 𝑡6}. We have

compat𝒯4(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1), (𝑡3, 𝑥1 ↦ 𝑥1)}
compat𝒯4(𝑡5) = compat𝒯4(𝑡6) = ∅.

Both 𝑡5 and 𝑡6 can be promoted to the basis. Say that we apply Promotion on

𝑡6, followed by a Completion to add the missing 𝑡6
𝑖

−→ transition. We obtain
the observation tree 𝒯5 drawn with solid and dashed lines in Figure 10.12. We
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𝑡0𝑡0 𝑡1𝑡1

𝑡2

𝑡3𝑡3

𝑡4

𝑡5

𝑡6𝑡6

𝑡7

𝑡8

𝑡9𝑡9

𝑡10

𝑡11

𝑡12

𝑡13

𝑡14

𝑖/𝑜
𝑥1 ≔ 2 𝑖/𝑜′, 𝑥3 ≔ 3

to[𝑥1]/𝑜, 𝑥1 ≔ 2 to[𝑥1]/𝑜, ⊥

to[𝑥1]/𝑜, 𝑥1 ≔ 2

𝑖/𝑜′, 𝑥6 ≔ 2

to[𝑥3]/𝑜
⊥

to[𝑥6]/𝑜
⊥

to[𝑥1]/𝑜
⊥

to[𝑥3]/𝑜
⊥

to[𝑥3]/𝑜
⊥

to[𝑥3]/𝑜
⊥

𝑖/𝑜′

𝑥11 ≔ 2

to[𝑥11]/𝑜
⊥

Figure 10.12: The observation tree 𝒯5. Newly added states and transitions are drawn with dashed lines.

have

compat𝒯5(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1), (𝑡3, 𝑥1 ↦ 𝑥1)}
compat𝒯5(𝑡9) = ∅
compat𝒯5(𝑡5) = {(𝑡6, 𝑥6 ↦ 𝑥1, 𝑥3 ↦ 𝑥3)}
compat𝒯5(𝑡10) = {(𝑡0, ∅)}
compat𝒯5(𝑡11) = {(𝑡6, 𝑥6 ↦ 𝑥11, 𝑥3 ↦ 𝑥3)}.

Hence, we can apply Promotion on 𝑡9 and Completion as needed. The
resulting tree 𝒯6 is shown in Figure 10.13. We have

compat𝒯6(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1), (𝑡3, 𝑥1 ↦ 𝑥1)}
compat𝒯6(𝑡10) = {(𝑡0, ∅)}
compat𝒯6(𝑡5) = {(𝑡6, 𝑥6 ↦ 𝑥1, 𝑥3 ↦ 𝑥3)}
compat𝒯6(𝑡12) = {(𝑡0, ∅)}
compat𝒯6(𝑡11) = {(𝑡6, 𝑥6 ↦ 𝑥11, 𝑥3 ↦ 𝑥3)}
compat𝒯6(𝑡15) = {(𝑡9, 𝑥3 ↦ 𝑥3)}.

This time, we cannot apply Promotion. However, observe that (𝑡3, 𝑥1 ↦
𝑥1) ∈ compat𝒯6(𝑡2) but 𝜒𝒯6(𝑡3) = {𝑥1, 𝑥3} while 𝜒𝒯6(𝑡2) = {𝑥1}. That is, we

can applyActive timers. Let 𝜋 = 𝑡3
to[𝑥1]
−−−→ 𝑡5

to[𝑥3]
−−−→ be a run endingwith to[𝑥3].

We replay 𝜋 from 𝑡2 using 𝑚, i.e., call replay𝑚
𝜋 (𝑡2). That algorithm performs a

wait query in 𝑡4 and discovers that 𝜒𝒯6
0 (𝑡4) = {𝑥1}. Since 𝜒𝒯6

0 (𝑡5) = {𝑥1, 𝑥3},
we immediately obtain that 𝑡3 #𝑥1↦𝑥1 𝑡2 and we do not need to keep replaying
the run. The resulting tree 𝒯7 is given in

𝑡0 𝑡0
𝑡1 𝑡1

𝑡2𝑡3 𝑡3

𝑡4𝑡5𝑡6 𝑡6

𝑡7𝑡8𝑡9 𝑡9𝑡10

𝑡11

𝑡12

𝑡13

𝑡14

𝑡15

𝑡16

𝑡17

𝑖/𝑜
𝑥

1
≔

2
𝑖/𝑜

′,𝑥
3

≔
3

to[𝑥
1 ]/𝑜, 𝑥

1 ≔
2

to[𝑥
1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1 ≔
2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜

⊥
to[𝑥

6 ]/𝑜
⊥

to[𝑥
3 ]/𝑜

⊥

to[𝑥
3 ]/𝑜

⊥

to[𝑥
3 ]/𝑜,⊥

to[𝑥
1 ]/𝑜

⊥

to[𝑥
3 ]/𝑜

⊥
𝑖/𝑜

′

𝑥
11

≔
2

to[𝑥
11 ]/𝑜
⊥ 𝑖/𝑜

′

⊥

to[𝑥
1 ]/𝑜

⊥

Figure 10.9a and is repeated in the
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𝑡0𝑡0 𝑡1𝑡1

𝑡2

𝑡3𝑡3

𝑡4

𝑡5

𝑡6𝑡6

𝑡7

𝑡8

𝑡9𝑡9

𝑡10

𝑡11

𝑡12

𝑡13

𝑡14

𝑡15

𝑡16

𝑖/𝑜
𝑥1 ≔ 2 𝑖/𝑜′, 𝑥3 ≔ 3

to[𝑥1]/𝑜, 𝑥1 ≔ 2 to[𝑥1]/𝑜, ⊥

to[𝑥1]/𝑜, 𝑥1 ≔ 2

𝑖/𝑜′, 𝑥6 ≔ 2

to[𝑥3]/𝑜
⊥

to[𝑥6]/𝑜
⊥

to[𝑥3]/𝑜, ⊥

to[𝑥3]/𝑜
⊥

to[𝑥3]/𝑜
⊥

to[𝑥1]/𝑜
⊥

to[𝑥3]/𝑜
⊥

𝑖/𝑜′

𝑥11 ≔ 2

to[𝑥11]/𝑜
⊥

𝑖/𝑜′

⊥

Figure 10.13: The observation tree 𝒯6. Newly added states and transitions are drawn with dashed lines.

𝑡0

𝑡1

𝑡3

𝑡6

𝑡9

𝑖/𝑜, 𝑦1 ≔ 2

𝑖/𝑜′, 𝑦2 ≔ 3

to[𝑦1]/𝑜, 𝑦1 ≔ 2

𝑖/𝑜′, 𝑦1 ≔ 2 to[𝑦1]/𝑜, 𝑦1 ≔ 2

to[𝑦1]/𝑜, ⊥

𝑖/𝑜′, 𝑦1 ≔ 2

𝑖/𝑜′, ⊥

to[𝑦2]/𝑜, ⊥

to[𝑦2]/𝑜, ⊥

margin. We have

compat𝒯6(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1)}
compat𝒯6(𝑡10) = compat𝒯6(𝑡12) = {(𝑡0, ∅)}

compat𝒯6(𝑡5) = {(𝑡6, 𝑥6 ↦ 𝑥1, 𝑥3 ↦ 𝑥3)}
compat𝒯6(𝑡15) = {(𝑡9, 𝑥3 ↦ 𝑥3)}
compat𝒯6(𝑡11) = {(𝑡6, 𝑥6 ↦ 𝑥11, 𝑥3 ↦ 𝑥3)}.

The refinement loop stops (as none of the operations can be applied). We thus
construct the hypothesis given in Figure 10.9b (repeated in the margin), as
done in Example 10.4.10. By asking a symbolic equivalence query, we obtain
thatℋ2

sym
≈ℳ and returnℋ2.

Observe that ℋ2 is almost isomorphic to ℳ: the states 𝑞4 and 𝑞5 of ℳ are
merged into a single state 𝑡9.

To conclude, we recall Theorem 10.4.1, stating that 𝐿#
MMT eventually finishes

and its complexity. A proof is provided in Section C.15.

Theorem 10.4.1. Let ℳ be an s-learnable MMT and 𝜁 be the length of the
longest counterexample. Then,

▶ the 𝐿#
MMT algorithm eventually terminates and returns an MMT 𝒩 such

that ℳ
time
≈ 𝒩 and whose size is polynomial in ∣𝑄ℳ∣ and factorial in

∣𝑋ℳ∣, and
▶ in time and number of OQs,WQs,EQs polynomial in ∣𝑄ℳ∣, |𝐼|, and 𝜁,

and factorial in ∣𝑋ℳ∣.

10.5. Implementation and experiments

In this section, we discuss our implementation and experimental results. More
details will be available in the PhD Thesis of Bharat Garhewal.
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Idle Idlex

STxySTy ATxy

TT/BS, 𝑦 ≔ SA

to[𝑥]/𝑜, ⊥

TT/BS, 𝑦 ≔ SA

to[𝑥]/𝑜, ⊥ to[𝑦]/ES+BA, 𝑦 ≔ TTRT

to[𝑥]/EA+RT, 𝑥 ≔ 𝑦

EA/RT, 𝑥 ≔ 𝑦to[𝑦]/ES+RT, 𝑥 ≔ TTRT

Figure 10.14: A generalized MMT model of one FDDI station.
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We have implemented the 𝐿#
MMT algorithm as an open-source tool.16 As we do

not yet have a timed conformance testing algorithm for checking symbolic
equivalence between a hypothesis and the teacher’s MMT, we utilize a BFS
algorithm to check for equivalence between the two MMTs.17 We have eval-
uated the performance of our tool on a selection of both real and synthetic
benchmarks. We discuss our selection of benchmarks and metrics, report our
results, and then contextualize the same.

10.5.1. Selected benchmarks

We use the AKM, TCP and Train benchmarks from [VBE21], and the CAS, Light
and PC benchmarks from [APT20]. These benchmark have also been used for
experimental evaluation by [VBE21; Wag23; KKG23] and can be described as
Mealy machines with a single timer (MM1Ts, for short). We introduce two
additional benchmarks with 2 timers: a model of an FDDI station, and theMMT
of Figure 10.1.18 Finally, we learned instances of the Oven and WSN Mealy
machines with local timers (MMLTs, for short) benchmarks from [KKG23].
We have modified the timing parameters to generate smaller MM1Ts.

FDDI protocol

By far the largest benchmark that is learned by Waga [Wag23] is a fragment of
the FDDI communication protocol [Joh87], based on a timed automaton model
described in [Daw+95]. FDDI (Fiber Distributed Data Interface) is a protocol
for a token ring that is composed of 𝑁 identical stations. Figure 10.14 shows
a generalized MMT-translation (i.e., an MMT where timers can be renamed
along the transitions; for instance, 𝑦 becomes 𝑥 when going from ATxy to
Idlex) of the timed automaton model for a single station from [Daw+95].19

In the initial state Idle, the station is waiting for the token. When the token
arrives (TT), the station begins with transmission of synchronous messages
(BS). A timer 𝑦 ensures that synchronous transmission ends (ES) after exactly
SA time units, for some constant SA (= Synchronous Allocation). The station
also maintains a timer 𝑥, that expires exactly TTRT+SA time units after the
previous receipt of the token, for some constant TTRT (= Target Token Rotation
Timer).20

When synchronous transmission ends and timer 𝑥 has not expired yet, the
station has the possibility to begin transmission of asynchronous messages
(BA). Asynchronous transmissionmust end (EA) and the tokenmust be returned

https://gitlab.science.ru.nl/bharat/mmt_lsharp
https://gitlab.science.ru.nl/bharat/mmt_lsharp
https://gitlab.science.ru.nl/bharat/mmt_lsharp
https://zenodo.org/records/10647628
https://zenodo.org/records/10647628
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Model |𝑄| |𝐼| |𝑋| |WQs| |OQs| |EQs| Time[msecs] |MQ| [Wag23] |EQ| [Wag23]
AKM 4 5 1 22 35 2 684 12263 11
CAS 8 4 1 60 89 3 1344 66067 17
Light 4 2 1 10 13 2 302 3057 7
PC 8 9 1 75 183 4 2696 245134 23
TCP 11 8 1 123 366 8 3182 11300 15
Train 6 3 1 32 28 3 1559
MMT of Figure 10.1 3 1 2 11 5 2 1039 - -
FDDI 1-station 9 2 2 32 20 1 1105 118193 8
Oven 12 5 1 907 317 3 9452 - -
WSN 9 4 1 175 108 4 3291 - -

Table 10.1: Experimental Results. The columns give the considered model, followed by its numbers of states,
input symbols, and active timers, as well as the number of queries and the total time needed to
learn a machine. Finally, the last three columns give the number of queries needed for Waga’s
approach.

(RT) at the latest when 𝑥 expires. In location ATxy, timer 𝑥 will expire before
timer 𝑦 (we may formally prove this by computing the zone MMT):

1. The value of 𝑦 in location ATxy is at most TTRT.
2. Hence, the value of 𝑥 in location Idlex is at most TTRT.
3. So 𝑥 is at most TTRT upon arrival in location STxy, and at most TTRT−SA

upon arrival in location ATxy.
4. Thus 𝑥 is smaller than 𝑦 in location ATxy and will expire first.

Upon entering location Idlex, we ensure that timer 𝑥 will expire exactly
TTRT+SA time units after the previous TT event. In a FDDI token ring of
size 𝑁, an RT event of station 𝑖 will instantly trigger a TT event of station
(𝑖 + 1) mod 𝑁. In [Wag23], the instance with two stations, SA = 20, and TTRT
= 100 was considered. We did not include the FDDI two process benchmark
from [Wag23] as its equivalent MMT may (re)start two timers in the same
transition, leaving it out of scope of our setting.

10.5.2. Metrics

For each experiment, we record the number of OQs, WQs, EQs, and the time
taken to finish the experiment. Note that, in practice, a WQs, in addition to
returning the list of timeouts and their constraints, also provides the outputs
of the timeout transitions. This is straightforward, as a WQs must necessarily
trigger the timeouts in order to observe them. Thus, we do not count the OQs

associated with a WQs.

10.5.3. Results

Table 10.1 lists the results of our experiments, and also the number of concrete
membership and equivalence queries used by Waga’s [Wag23]. Comparison of
learning algorithms for timed systems is complicated. First of all, we need to
convert the numbers of symbolic 𝐿#

MMT queries to concrete queries. This can
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Proposition 9.4.5. Let ℳ
and𝒩 be two sound and com-
plete MMTs. Ifℳ

sym
≈𝒩, then

ℳ
time
≈ 𝒩.

be done using the bounds given in Section C.9. For instance, one can compute
that we need at most 1282 concrete queries to do our symbolic wait and output
queries in total, for the FDDI protocol.21 Observe that, for MM1Ts, each
symbolic query can be implemented using a single concrete query (see [VBE21,
Lemma 3]).

Several algorithms presented in the literature learn TAs [Wag23; APT20;
XAZ22; An+20]. Typically, a TA model of some system will have different
numbers of states and transitions than an MMT model. In general, Mealy
machines tend to be more compact than automata. In our timed case, however,
the use of timers may required more states compared to using clocks, in order
to correctly encode the timed function. Therefore we cannot just compare
numbers of queries.

As a final complication, observe that equivalence queries can be implemented
in different ways, which may affect the total number of queries required for
learning. MMLTs [KKG23] can be converted to equivalent MM1Ts [VBE21],
but this may blow up of the number of states. Since 𝐿#

MMT learns the MM1Ts,
it is less efficient than the MMLT learner of [KKG23] which learns the more
compact MMLT representations. However, 𝐿#

MMT can handle a larger class of
models.

10.6. Conclusion

In this chapter, we presented an active learning algorithm for Mealy machines
with timers, using symbolic queries. This algorithm infers a finite tree en-
coding the runs of the teacher’s MMTℳ and from which an MMTℋ can be
constructed such thatℳ

sym
≈ℋ. By Proposition 9.4.5,ℳ andℋ are thus timed

equivalent. The learner requires a number of queries that is polynomial in the
number of states ofℳ, in the number of input symbols, and in the length of
the longest counterexample returned for an equivalence query, and factorial
in the number of timers ofℳ.

There are many possibilities for future work. One could try to extend the
framework to MMTs where multiple timers can be started on a single transi-
tion, or to generalized MMTs where timers can be renamed. Without changing
the target model, there are still some improvements to be done, such as con-
structing an MMT from the observation tree in every case without having
to use generalized MMTs. The way counterexamples are processed may be
improved as well, by trying to apply a binary search, instead of a linear search
as we presented here. Finally, applying the learning algorithm on more com-
plex examples (necessitating many timers) may yield interesting results. In
particular, one could compare the efficiency of model checking algorithm on
the resulting MMTs against timed automata.



[Bru+23]: Bruyère et al. (2023),
“Automata with Timers”
[Bru+24]: Bruyère et al. (2024), “Ac-
tive Learning of Mealy Machines
with Timers”

Technical details and proofs of
Chapters 9 and 10 C.

This chapter, based on [Bru+23; Bru+24], contains the technical details and
proofs that were not given in Chapters 9 and 10. That is, it serves as the
appendix of the previous two chapters.
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C.1. From symbolic words to concrete runs

Let w = i1 … in be a symbolic word over A. Let us explain how to convert w
into a run 𝑞0

𝑤
−→ using concrete timeout symbols such that 𝑤 = w, if such a run

exists inℳ. Assume that wewere able to process i1 ⋯ ik with 𝑘 ∈ {0, … , 𝑛−1}
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and reach the state 𝑞𝑘 such that 𝑞0
𝑖1…𝑖𝑘−−−→ 𝑞𝑘 ∈ runs(ℳ) and 𝑖1 … 𝑖𝑘 = i1 ⋯ ik,

and that we want to convert ik+1.

▶ If ik+1 is an input, we can simply take the transition 𝑞𝑘
𝑖𝑘+1
−−→ 𝑞𝑘+1 of the

complete MMT with 𝑖𝑘+1 = ik+1.
▶ Otherwise, ik+1 = to[𝑗] for some 𝑗 ∈ ℕ>0.

• Suppose first that 𝑗 ≤ 𝑘. We actually want to read the timeout
of the timer (re)started on the transition from 𝑞𝑗−1 to 𝑞𝑗. Let 𝑢 be

its update. On the one hand, if 𝑢 = (𝑥, 𝑐) and 𝑞𝑗−1
𝑖𝑗⋯𝑖𝑘⋅to[𝑥]
−−−−−−→ is

𝑥-spanning, then we actually read to[𝑥], i.e., we take the transition

𝑞𝑘
𝑖𝑘+1
−−→ 𝑞𝑘+1 with 𝑖𝑘+1 = to[𝑥]. On the other hand, if 𝑢 is ⊥ or the

sub-run from 𝑞𝑗−1 is not 𝑥-spanning, then the symbol ik+1 of w

does not make sense and therefore there exists no run 𝑞0
𝑤
−→ such

that 𝑤 = w.
• Suppose now that 𝑗 > 𝑘. Again, the symbol ik+1 does not make
sense and there exists no run 𝑞0

𝑤
−→ such that 𝑤 = w.

We repeat this process in a way to obtain a run 𝑞0
𝑤
−→ 𝑞𝑛 ∈ runs(ℳ) such that

𝑤 = w or concluding that such a run does not exist. In the first case, in an
abuse of notation, we write 𝑞0

w

−→ 𝑞𝑛 for the run reading the symbolic word w,
and we say that it is feasible whenever 𝑞0

𝑤
−→ 𝑞𝑛 is feasible. We also say that

the sub-run 𝑞𝑗−1
ij⋯ik⋅to[𝑗]
−−−−−−→ 𝑞𝑘+1 is spanning whenever 𝑞𝑗−1

𝑖𝑗⋯𝑖𝑘⋅to[𝑥]
−−−−−−→ 𝑞𝑘+1 is

𝑥-spanning.

C.2. Proof of Proposition 9.4.5

We show Proposition 9.4.5, i.e., that symbolic equivalence implies timed equiv-
alence. Moreover, we give a counterexample for the other direction. That is,
we prove that timed equivalence does not imply symbolic equivalence.

Proposition 9.4.5. Letℳ and𝒩 be two sound and complete MMTs. Ifℳ
sym
≈𝒩,

then ℳ
time
≈ 𝒩.

Proof. Towards a contradiction, assume ℳ
sym
≈ 𝒩 but ℳ

time
≉ 𝒩. Then, there

must exist a tiw 𝑤 such that toutputsℳ(𝑤) ≠ toutputs𝒩(𝑤). Without loss of
generality, assume there is a timed run

𝜌 = (𝑞ℳ0 , ∅)
𝑑1−→ (𝑞ℳ0 , ∅)

𝑖1/𝑜1−−−→
𝑢1

⋯
𝑖𝑛/𝑜𝑛−−−→

𝑢𝑛
(𝑞𝑛, 𝜅𝑛)

𝑑𝑛+1
−−−→ (𝑞𝑛, 𝜅𝑛 − 𝑑𝑛+1) ∈ tiwrunsℳ(𝑤)

such that 𝑡𝑜𝑤(𝜌) = 𝑑1 ⋅ 𝑜1 ⋯ 𝑑𝑛 ⋅ 𝑜𝑛 ⋅ 𝑑𝑛+1 and 𝑡𝑜𝑤(𝜌) ∉ toutputs𝒩(𝑤).1 1: Recall that 𝑡𝑜𝑤(𝜌) denotes the
tow produced by the timed run 𝜌.

Let
w = i1 ⋯ in be the symbolic word of 𝑖1 ⋯ 𝑖𝑛.
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Let us consider the longest possible timed run of𝒩

𝜌′ = (𝑞𝒩0 , ∅)
𝑑1−→ (𝑞𝒩0 , ∅)

𝑖′
1/𝑜1−−−→
𝑢′

1

⋯
𝑖′

𝑗/𝑜𝑗
−−−→

𝑢′
𝑗

(𝑞′
𝑗, 𝜅′

𝑗)
𝑑𝑗+1
−−→ (𝑞′

𝑗, 𝜅′
𝑗 − 𝑑𝑗+1)

such that

▶ it reads a prefix of 𝑖1 ⋯ 𝑖𝑛 (up to the names of the timers) with

𝑖′
𝑘 =

⎧{
⎨{⎩

𝑖𝑘 if 𝑖𝑘 ∈ 𝐼
to[𝑥′] for some 𝑥′ ∈ 𝜒𝒩(𝑞′

𝑘−1) if 𝑖𝑘 = to[𝑥] with 𝑥 ∈
𝜒ℳ(𝑞𝑘−1)

for all 𝑘 ∈ {1, … , 𝑗},
▶ the delays 𝑑𝑘, 𝑘 ∈ {1, … , 𝑗 + 1}, and the outputs 𝑜𝑘, 𝑘 ∈ {1, … , 𝑗}, are

the same as in the timed run 𝜌, and
▶ the symbolic word of 𝑖′

1 ⋯ 𝑖′
𝑗 is equal to i1 ⋯ ij.

Such a timed run 𝜌′ exists with 0 ≤ 𝑗 < 𝑛. Towards a contradiction, let us
show that we can extend it.
First, we argue that for any 𝑑 ∈ ℝ≥0

∃𝑥 ∈ 𝜒ℳ(𝑞𝑗) ∶ (𝜅𝑗 − 𝑑)(𝑥) = 0
⇔ ∃𝑥′ ∈ 𝜒𝒩(𝑞′

𝑗) ∶ (𝜅′
𝑗 − 𝑑)(𝑥′) = 0.

(C.2.i)

We show the ⇒ direction. The other direction can be obtained with similar
arguments. Since (𝜅𝑗 − 𝑑)(𝑥) = 0, we have that 𝑥 ∈ 𝜒ℳ

0 (𝑞𝑗). As ℳ is

complete, it follows that 𝑞𝑗
to[𝑥]
−−→ ∈ runs(ℳ) and we can take the transition

(𝑞𝑗, 𝜅𝑗 − 𝑑)
to[𝑥]
−−→. Thus, for some 𝑘 ∈ {1, … , 𝑗 − 1}, the sub-run

𝑞𝑘−1
𝑖𝑘−−−→

(𝑥,𝑐)
⋯

𝑖𝑗
−→ 𝑞𝑗

to[𝑥]
−−→

is 𝑥-spanning. Let i1 ⋯ ij ⋅ i be the symbolic word of 𝑖1 ⋯ 𝑖𝑗 ⋅ to[𝑥]. Asℳ
sym
≈

𝒩, we deduce that there exists some timer 𝑥′ such that the run 𝑞𝒩0
𝑖′

1⋯𝑖′
𝑗⋅to[𝑥′]

−−−−−−→
is feasible with

𝑖′
1 ⋯ 𝑖′

𝑗 ⋅ to[𝑥′] = i1 ⋯ ij ⋅ i,

𝑥′ is enabled in 𝑞′
𝑗, and the sub-run

𝑞′
𝑘−1

𝑖′
𝑘−−−−→

(𝑥′,𝑐′)
⋯

𝑖′
𝑗

−→ 𝑞′
𝑗

to[𝑥′]
−−−→

is 𝑥′-spanning with 𝑐′ = 𝑐. Since the delays in the timed run 𝜌′ are the
same as in 𝜌 and 𝑥, 𝑥′ are both started at the same constant 𝑐 along the 𝑗-th
transition, it naturally follows that (𝜅′

𝑗 − 𝑑)(𝑥′) = 0. That is, (C.2.i) holds.
Let us now move towards the actual contradiction: we argue that we can
replicate the action 𝑖𝑗+1 and the subsequent delay at the end of the timed
run of𝒩, i.e., 𝜌′ is not the longest possible run described above. Consider
thus the action 𝑖𝑗+1. We have two cases:

▶ If 𝑖𝑗+1 ∈ 𝐼, the transition (𝑞′
𝑗, 𝜅′

𝑗 − 𝑑𝑗+1)
𝑖′

𝑗+1
−−→ (𝑞′

𝑗+1, 𝜅′
𝑗+1) with 𝑖′

𝑗+1 =
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𝑞0 𝑞1 𝑞2 𝑞3

𝑞4

𝑞5 𝑞6

𝑞7

𝑖/𝑜
𝑥 ≔ 1

𝑖/𝑜
𝑦 ≔ 1

𝑖/𝑜
𝑧 ≔ 1

to[𝑦
]/𝑜, ⊥

to[𝑧]/𝑜, ⊥

to[𝑧]/𝑜1 , ⊥ to[𝑥]/𝑜
⊥

to[𝑦
]/𝑜2, ⊥

Figure C.1: An MMT with 𝜒(𝑞0) = 𝜒(𝑞6) = ∅, 𝜒(𝑞1) = 𝜒(𝑞5) = {𝑥}, 𝜒(𝑞2) = 𝜒(𝑞7) = {𝑥, 𝑦}, 𝜒(𝑞3) =
{𝑥, 𝑦, 𝑧}, 𝜒(𝑞4) = {𝑥, 𝑧}. Every missing transition 𝑞

𝑖/𝜔
−−→

𝑢
𝑝 to obtain a complete MMT is such that

𝑝 = 𝑞6, 𝜔 = 𝑜, and 𝑢 = ⊥.

𝑖𝑗+1 is defined as𝒩 is complete by hypothesis.
▶ If 𝑖𝑗+1 = to[𝑥] for some 𝑥 ∈ 𝜒ℳ

0 (𝑞𝑗), we have by (C.2.i) that there
exists 𝑥′ ∈ 𝜒𝒩

0 (𝑞′
𝑗) such that (𝜅′

𝑗 − 𝑑𝑗+1)(𝑥′) = 0. As 𝒩 is complete,
we can thus take the transition

(𝑞′
𝑗, 𝜅′

𝑗 − 𝑑𝑗+1)
to[𝑥′]
−−−→ (𝑞′

𝑗+1, 𝜅′
𝑗+1).

By the previous arguments establishing (C.2.i), it follows that 𝑖′
1 ⋯ 𝑖′

𝑗+1 =

i1 ⋯ ij+1. Asℳ
sym
≈𝒩, we get that the output 𝑜′ of 𝑞′

𝑗
𝑖′

𝑗+1/𝑜′

−−−−→ 𝑞′
𝑗+1 is equal to

𝑜𝑗+1.

It remains to prove that the delay transition (𝑞′
𝑗+1, 𝜅′

𝑗+1)
𝑑𝑗+2
−−→ is possible.

Assume the contrary, i.e., there exists a timer 𝑥′ ∈ 𝜒𝒩(𝑞′
𝑗+1) such that

𝜅′
𝑗+1(𝑥′) < 𝑑𝑗+2. Let 𝑑′ = 𝜅′

𝑗+1(𝑥′). We thus have that (𝜅′
𝑗+1 − 𝑑′)(𝑥′) = 0.

By (C.2.i) applied to 𝑞𝑗+1 and 𝑞′
𝑗+1, there must exist a timer 𝑥 such that

(𝜅𝑗+1 − 𝑑′)(𝑥) = 0, i.e., it is not possible to wait 𝑑𝑗+2 units of time in
(𝑞𝑗+1, 𝜅𝑗+1) and we have a contradiction.
We are thus able to extend the timed run 𝜌′ which leads to the contradiction.
We conclude that the symbolic equivalence implies the timed equivalence.

�

C.2.1. Counterexample for timed equivalence implies symbolic
equivalence

Letℳ be the MMT of Figure C.1. We makeℳ complete by adding 𝑞
𝑖/𝑜
−−→

⊥
𝑞6

for every missing transition. Observe that 𝑂 = {𝑜, 𝑜1, 𝑜2} and that 𝑞4
to[𝑧]
−−→

outputs 𝑜1 while 𝑞7
to[𝑦]
−−→ outputs 𝑜2. Moreover, let𝒩 be a copy ofℳ such that

𝑜1 and 𝑜2 are swapped. Let us argue that ℳ
time
≈ 𝒩 but ℳ

sym
≉𝒩, starting with

the latter. We write 𝑞ℳ𝑗 and 𝑞𝒩𝑗 to distinguish the states ofℳ and𝒩.

Let w = 𝑖 ⋅ 𝑖 ⋅ 𝑖 ⋅ to[2] ⋅ to[3] be a symbolic word, inducing the following runs:

𝑞ℳ0
𝑖/𝑜

−−−→
(𝑥,1)

𝑞ℳ1
𝑖/𝑜

−−−→
(𝑦,1)

𝑞ℳ2
𝑖/𝑜

−−→
(𝑧,1)

𝑞ℳ3
to[𝑦]/𝑜
−−−→

⊥
𝑞ℳ4

to[𝑧]/𝑜1−−−−→
⊥

𝑞ℳ5

𝑞𝒩0
𝑖/𝑜

−−−→
(𝑥,1)

𝑞𝒩1
𝑖/𝑜

−−−→
(𝑦,1)

𝑞𝒩2
𝑖/𝑜

−−→
(𝑧,1)

𝑞𝒩3
to[𝑦]/𝑜
−−−→

⊥
𝑞𝒩4

to[𝑧]/𝑜2−−−−→
⊥

𝑞𝒩5 .
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Hence,ℳ
sym
≉𝒩 as the last pair of transitions has different outputs.

So, it remains to show thatℳ
time
≈ 𝒩. Clearly, any tiw induces the same run in

bothℳ and𝒩 (up to the outputs), as they have exactly the same transitions.
That is, any tiw 𝑤 is such that 𝑞ℳ0

𝑤
−→ 𝑞ℳ𝑗 if and only if 𝑞𝒩0

𝑤
−→ 𝑞𝒩𝑗 . Moreover,

outputs are the same inℳ and𝒩, except that 𝑜1 and 𝑜2 are swapped. So, let

us focus on the transitions 𝑞ℳ4
to[𝑧]/𝑜1−−−−→ and 𝑞ℳ7

to[𝑦]/𝑜2−−−−→. It is not hard to see
that the only way these transitions are triggered is to start all timers 𝑥, 𝑦, and
𝑧 without any delay in between, to go through in either (𝑞ℳ4 , 𝑥 = 0, 𝑧 = 0) or
(𝑞ℳ7 , 𝑥 = 0, 𝑦 = 0), and to trigger the to[𝑧] and to[𝑦] transitions, respectively,
i.e., we must take the following two timed runs inℳ:

(𝑞ℳ0 , ∅)
0
−→ (𝑞ℳ0 , ∅)

𝑖/𝑜
−−−→
(𝑥,1)

(𝑞ℳ1 , 𝑥 = 1)
0
−→ (𝑞ℳ1 , 𝑥 = 1)

𝑖/𝑜
−−−→
(𝑦,1)

(𝑞ℳ2 , 𝑥 = 1, 𝑦 = 1)
0
−→ (𝑞ℳ2 , 𝑥 = 1, 𝑦 = 1)

𝑖/𝑜
−−→
(𝑧,1)

(𝑞ℳ3 , 𝑥 = 1, 𝑦 = 1, 𝑧 = 1)
1
−→ (𝑞ℳ3 , 𝑥 = 0, 𝑦 = 0, 𝑧 = 0)
to[𝑦]/𝑜
−−−→

⊥
(𝑞ℳ4 , 𝑥 = 0, 𝑧 = 0)

0
−→ (𝑞ℳ4 , 𝑥 = 0, 𝑧 = 0)

to[𝑧]/𝑜1−−−−→
⊥

(𝑞ℳ5 , 𝑥 = 0)
0
−→ (𝑞ℳ5 , 𝑥 = 0) ∈ truns(ℳ)

and

(𝑞ℳ0 , ∅)
0
−→ (𝑞ℳ0 , ∅)

𝑖/𝑜
−−−→
(𝑥,1)

(𝑞ℳ1 , 𝑥 = 1)
0
−→ (𝑞ℳ1 , 𝑥 = 1)

𝑖/𝑜
−−−→
(𝑦,1)

(𝑞ℳ2 , 𝑥 = 1, 𝑦 = 1)
0
−→ (𝑞ℳ2 , 𝑥 = 1, 𝑦 = 1)

𝑖/𝑜
−−→
(𝑧,1)

(𝑞ℳ3 , 𝑥 = 1, 𝑦 = 1, 𝑧 = 1)
1
−→ (𝑞ℳ3 , 𝑥 = 0, 𝑦 = 0, 𝑧 = 0)
to[𝑧]/𝑜
−−−→

⊥
(𝑞ℳ7 , 𝑥 = 0, 𝑦 = 0)

0
−→ (𝑞ℳ7 , 𝑥 = 0, 𝑦 = 0)

to[𝑦]/𝑜2−−−−→
⊥

(𝑞ℳ5 , 𝑥 = 0)
0
−→ (𝑞ℳ5 , 𝑥 = 0) ∈ truns(ℳ).

We can then obtain similar runs in𝒩, up to a swap of 𝑜1 and 𝑜2:

(𝑞𝒩0 , ∅)
0
−→ (𝑞𝒩0 , ∅)

𝑖/𝑜
−−−→
(𝑥,1)

(𝑞𝒩1 , 𝑥 = 1)
0
−→ (𝑞𝒩1 , 𝑥 = 1)

𝑖/𝑜
−−−→
(𝑦,1)

(𝑞𝒩2 , 𝑥 = 1, 𝑦 = 1)
0
−→ (𝑞𝒩2 , 𝑥 = 1, 𝑦 = 1)

𝑖/𝑜
−−→
(𝑧,1)

(𝑞𝒩3 , 𝑥 = 1, 𝑦 = 1, 𝑧 = 1)
1
−→ (𝑞𝒩3 , 𝑥 = 0, 𝑦 = 0, 𝑧 = 0)
to[𝑦]/𝑜
−−−→

⊥
(𝑞𝒩4 , 𝑥 = 0, 𝑧 = 0)

0
−→ (𝑞𝒩4 , 𝑥 = 0, 𝑧 = 0)

to[𝑧]/𝑜2−−−−→
⊥

(𝑞𝒩5 , 𝑥 = 0)
0
−→ (𝑞𝒩5 , 𝑥 = 0) ∈ truns(𝒩)
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2: That is,ℳ is not race-avoiding,
as is defined in Section 9.6.

[HU79]: Hopcroft et al. (1979), In-
troduction to Automata Theory, Lan-
guages and Computation

and

(𝑞𝒩0 , ∅)
0
−→ (𝑞𝒩0 , ∅)

𝑖/𝑜
−−−→
(𝑥,1)

(𝑞𝒩1 , 𝑥 = 1)
0
−→ (𝑞𝒩1 , 𝑥 = 1)

𝑖/𝑜
−−−→
(𝑦,1)

(𝑞𝒩2 , 𝑥 = 1, 𝑦 = 1)
0
−→ (𝑞𝒩2 , 𝑥 = 1, 𝑦 = 1)

𝑖/𝑜
−−→
(𝑧,1)

(𝑞𝒩3 , 𝑥 = 1, 𝑦 = 1, 𝑧 = 1)
1
−→ (𝑞𝒩3 , 𝑥 = 0, 𝑦 = 0, 𝑧 = 0)
to[𝑧]/𝑜
−−−→

⊥
(𝑞𝒩7 , 𝑥 = 0, 𝑦 = 0)

0
−→ (𝑞𝒩7 , 𝑥 = 0, 𝑦 = 0)

to[𝑦]/𝑜1−−−−→
⊥

(𝑞𝒩5 , 𝑥 = 0)
0
−→ (𝑞𝒩5 , 𝑥 = 0) ∈ truns(𝒩).

Hence, any tiw 𝑤 inducing the first run inℳ necessarily induces the second
run, too (and the runs triggering to[𝑥]). Moreover, 𝑤 also induces the two runs
in𝒩 (and the runs triggering to[𝑥]). We thus conclude that toutputsℳ(𝑤) =
toutputs𝒩(𝑤) for every tiw 𝑤. That is,ℳ

time
≈ 𝒩 andℳ

sym
≉𝒩.

To conclude, we highlight that we needed to consider null delays in the timed

runs.2 It is unknown whetherℳ
time
≈ 𝒩 impliesℳ

sym
≈𝒩 when we can assume

that all delays are positive.

C.3. Proof of PSPACE lower bound of Theorem 9.5.1

Theorem 9.5.1. The reachability problem for MMTs is PSPACE-complete.

A LBTM 𝒜 = (Σ, 𝑄𝒜, 𝑞𝒜0 , 𝐹 𝒜, 𝑇 ) is a nondeterministic Turing machine which
can only use |𝑤| cells of the tape to determine whether an input 𝑤 is accepted.
Formally, Σ is a finite alphabet, 𝑄𝒜 is a finite set of states, 𝑞𝒜0 and 𝐹 𝒜 are the
initial and final states respectively, and

𝑇 ⊆ (𝑄𝒜 × Σ) × (Σ × {𝐿, 𝑅} × 𝑄𝒜)

is the transition relation. A configuration of 𝒜 is a triple (𝑞, 𝑤, 𝑖) ∈ 𝑄𝒜 ×
Σ∗ × ℕ>0 where 𝑞 denotes the current control state, 𝑤 = 𝑤1 … 𝑤𝑛 is the
content of the tape, and 𝑖 is the position of the tape head. We say a transition
(𝑞, 𝛼, 𝛼′, 𝐷, 𝑞′) ∈ 𝑇 is enabled in a configuration (𝑞, 𝑤, 𝑖) if 𝑤𝑖 = 𝛼. In that case,
taking the transition results in the machine reaching the new configuration
(𝑞′, 𝑤′, 𝑖′) with

▶ 𝑤′
𝑖 = 𝛼′,

▶ 𝑤′
𝑗 = 𝑤𝑗 for all 𝑗 ≠ 𝑖, and

▶ 𝑖′ = 𝑖 + 1 if 𝐷 = 𝑅 or 𝑖′ = 𝑖 − 1 otherwise.

A given word 𝑤 is said to be accepted by 𝒜 if there is a sequence of transitions
from (𝑞𝒜0 , 𝑤, 1) to a configuration of the form (𝐹 𝒜, 𝑤′, 𝑖). Deciding whether a
given LBTM accepts a given word is PSPACE-complete [HU79].
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𝐵𝑥

0

𝐵𝑥1
𝐵𝑥2

𝐵𝑥3
… 𝐵𝑥𝑛

Figure C.2: Starting blocks.

Lower bound of Theorem 9.5.1. We show that the acceptance problem for
LBTMs can be reduced in polynomial time to the reachability problem for
MMTs. The proof is inspired by the one presented by Aceto and Laroussinie
for the fact that reachability is PSPACE-hard for timed automata [AL02,
Section 3.1] [AL02]: Aceto et al. (2002), “Is your

model checker on time? On the
complexity of model checking for
timed modal logics”

.
Let 𝒜 = (Σ, 𝑄𝒜, 𝑞𝒜0 , 𝐹 𝒜, 𝑇 ) be an LBTM and let 𝑤 ∈ Σ∗ be an input word
with |𝑤| = 𝑛. From 𝒜 and 𝑤 we are going to build, in polynomial time, an
MMTℳ𝒜,𝑤 such that 𝑤 is accepted by 𝒜 if and only if there exists a timed
run that ends in a specific state 𝑟done ofℳ𝒜,𝑤.3 3: In the following, we rely on the

notion of blocks to pass on the in-
tuition.

Let Σ = {𝑎1, … , 𝑎𝑘}. Then, every 2𝑘 + 2 time units the MMT will simulate
a single step of the LBTM. This is what we call a phase.
Let 𝑇 = {𝑡1, … , 𝑡𝑚} be the set of transitions of 𝒜. Then,ℳ𝒜,𝑤 has inputs
𝐼 = {go} ∪ 𝑇 and timers 𝑋 = {𝑥, 𝑥1, … , 𝑥𝑛}. Now, a state of ℳ𝒜,𝑤 is an
element of {𝑟0, … , 𝑟𝑛, 𝑟done, 𝑟sink} (where 𝑟0 is the initial state) or a tuple
⟨𝑞, 𝑖, symbol, clock⟩, where:

▶ 𝑞 ∈ 𝑄𝒜 records the current state of the LBTM,
▶ 𝑖 ∈ {1, … , 𝑛} records the current position of the tape head,
▶ symbol ∈ {0, … , 𝑘} records the index of the last symbol read from the

tape (0 when no symbol has been read or the last read symbol has
been processed), and

▶ clock ∈ {0, 1, … , 2𝑘 + 1}.

The MMT starts with an initialization phase in which it goes through states
𝑟0 to 𝑟𝑛 to start all the timers via a sequence of go-inputs. Execution begins
with a go-input that starts timer 𝑥: 𝑟0

go
−−−→
(𝑥,1)

𝑟1. In order to reach state 𝑟done ,
all the other timers need to be started before timer 𝑥 times out. We use
timer 𝑥𝑖, for 1 ≤ 𝑖 ≤ 𝑛, to record the value of the 𝑖-th tape cell: if this value
is symbol 𝑎𝑗 ∈ Σ, then timer 𝑥𝑖 will time out when ⌊clock/2⌋ = 𝑗 (it will
become clear later how this is possible). Timer 𝑥𝑖 is started in state 𝑟𝑖 and
set to its appropriate value:

▶ if 𝑖 < 𝑛, we have the transition 𝑟𝑖
go

−−−−→
(𝑥𝑖,2𝑗)

𝑟𝑖+1 that initializes timer 𝑥𝑖

with value 2𝑗,
▶ if 𝑖 = 𝑛, we have the transition 𝑟𝑛

go
−−−−→
(𝑥𝑛,2𝑗)

⟨𝑞𝒜0 , 1, 0, 0⟩ that initializes

timer 𝑥𝑛 with the same value 2𝑗 and starts the computation of the
LBTM.

All timeout transitions from 𝑟𝑖, 1 ≤ 𝑖 ≤ 𝑛, go to 𝑟sink . This ensures that —
in order to reach state 𝑟done— all timers 𝑥𝑖 are initialized. Hence, all timed
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runs inℳ𝒜,𝑤 that reach 𝑟done have the same starting blocks, as depicted in
Figure C.2: an 𝑥-block 𝐵𝑥 and 𝑛 𝑥𝑖-blocks 𝐵𝑥𝑖

.
We use timer 𝑥 to advance the value of clock that runs cyclically from 0 to
2𝑘 + 1: clock > 0 or symbol = 0 implies that

⟨𝑞, 𝑖, symbol, clock⟩
to[𝑥]

−−−→
(𝑥,1)

⟨𝑞, 𝑖, symbol, (clock + 1) mod 2𝑘 + 2⟩. (C.3.i)

(It will become clear later why the condition on this transition is required.)
When timer 𝑥ℓ times out, for some ℓ ≠ 𝑖, then we just restart it so that it
will times out at exactly the same point in the next phase:

⟨𝑞, 𝑖, symbol, clock⟩
to[𝑥ℓ]

−−−−−−→
(𝑥ℓ,2𝑘+2)

⟨𝑞, 𝑖, symbol, clock⟩.

When timer 𝑥𝑖 times out, then we restart it in the same way, but in addition
we store the index of the symbol that it encodes in the state of the MMT:

⟨𝑞, 𝑖, symbol, clock⟩
to[𝑥𝑖]

−−−−−−→
(𝑥𝑖,2𝑘+2)

⟨𝑞, 𝑖, ⌊clock/2⌋, clock⟩.

In order to see why this is true, suppose timer 𝑥𝑖 has been started at time
𝑑 with value 2𝑗. Then, 𝑑 ∈ [0, 1] (see Figure C.2) and 𝑥𝑖 will expire at time
𝑑′ = 𝑑 + 2𝑗, so 𝑑′ ∈ [2𝑗, 2𝑗 + 1]. At this time, the value of clock will be either
2𝑗 or 2𝑗 + 1, and thus 𝑗 = ⌊clock/2⌋.
When the value of clock becomes 0 again (a next phase begins), the LBTM
ℳ has read a symbol from the tape, so symbol > 0, andℳ may (nondeter-
ministically) take a transition. For each transition 𝑡 = (𝑞, 𝛼, 𝛼′, 𝑞′, 𝐿) ofℳ,
with 𝛼 = 𝑎symbol and 𝛼′ = 𝑎𝑗, the MMT has a transition:

⟨𝑞, 𝑖, symbol, 0⟩
𝑡

−−−−→
(𝑥𝑖,2𝑗)

⟨𝑞′, 𝑖 − 1, 0, 0⟩.

TheMMT also has transitions, mutatis mutandis, for each 𝑡 = (𝑞, 𝛼, 𝛼′, 𝑞′, 𝑅)
of the LBTM. In order to ensure that these transitions are taken before timer
𝑥 times out, we add transitions:

symbol > 0 ⇒ ⟨𝑞, 𝑖, symbol, 0⟩
to[𝑥]
−−→ 𝑟sink. (C.3.ii)

The condition clock > 0 or symbol = 0 before (C.3.i) and the condition
symbol > 0 from (C.3.ii) both ensure that we see first action 𝑡 and then
action to[𝑥] in a timed run that reaches 𝑟done .
In Figure C.3, we fix 𝑘 = 2, and, for a timed run 𝜌 that reaches 𝑟done , we
indicate the sequence of phases, with the cyclic value of clock from 0 to
2𝑘 + 1. We also indicate the block 𝐵𝑥 such that timer 𝑥 is restarted each
time it times out along 𝜌. Finally, we indicate two 𝑥𝑖-blocks, 𝐵1

𝑥𝑖
and 𝐵2

𝑥𝑖
,

such that in 𝐵1
𝑥𝑖
, timer 𝑥𝑖 is started in phase 1, restarted during this phase,

and restarted again during phase 2, until it is discarded when clock = 0 in
phase 3; and in 𝐵2

𝑥𝑖
, timer 𝑥𝑖 is started with a new value dictated by the

processed transition of the LBTM. Note that there may be other blocks (for
timers 𝑥𝑗, with 𝑗 ≠ 𝑖) which are not represented in the figure.
As soon as the LBTM reaches 𝐹 𝒜, the MMT may proceed to its final state
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𝐵𝑥
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Phase 1

0 1 2 3 4 5

Phase 2

0 1 2 3 4 5

Phase 3

Initialization
of the timers

Simulation
of a step ofℳ

Simulation
𝐵1

𝑥𝑖
𝐵2

𝑥𝑖

Figure C.3: The beginning of a timed run that reaches the target state with 𝑘 = 2.

𝑟done:
⟨𝑞𝐹, 𝑖, symbol, clock⟩

go
−→ 𝑟done.

For all states of the MMT, outgoing transitions for actions that have not
been specified lead to 𝑟sink .
Finally, we define the active timers in each state of the MMT as follows:

𝜒(𝑟0) = 𝜒(𝑟sink) = 𝜒(𝑟done) = ∅,
∀1 ≤ 𝑖 ≤ 𝑛 ∶ 𝜒(𝑟𝑖) = {𝑥, 𝑥1, 𝑥2, … , 𝑥𝑖−1},

and
𝜒(𝑟) = {𝑥, 𝑥1, 𝑥2, … , 𝑥𝑛}

for all the other states 𝑟.
It is clear thatℳ𝒜,𝑤 can be constructed from 𝒜 and 𝑤 in polynomial time
and that 𝑟done is reachable in the MMT if and only if the LBTM accepts 𝑤. �

C.4. Proof of Proposition 9.6.9

Proposition 9.6.9. Letℳ be an MMT and 𝜌 ∈ ptruns(ℳ) be a padded timed
run with races. Then, 𝜌 can be wiggled if and only if 𝐺𝜌 is acyclic.

Before establishing this result, we prove the following intermediate result.

Lemma C.4.1. Let 𝐺𝜌 be the block graph of 𝜌 ∈ ptruns(𝒜) and 𝐵 be a block
in this graph. It is impossible to wiggle 𝐵 if and only if 𝐵 has at least one
predecessor and at least one successor in 𝐺𝜌.

Proof. We prove the lemma by showing both directions.

Having a successor and a predecessor implies unwigglable. Suppose
that 𝐵 has a block 𝐵′ as predecessor and 𝐵″ as successor, that is, 𝐵′ ≺ 𝐵 and
𝐵 ≺ 𝐵″.4 4: It may be that 𝐵′ = 𝐵″.

Definition 9.6.1. Let 𝐵, 𝐵′

be two blocks of a padded
timed run 𝜌 with timer fates
𝛾 and 𝛾′. We say that 𝐵 and
𝐵′ participate in a race if:

▶ either there exist actions
𝑖 ∈ 𝐵 and 𝑖′ ∈ 𝐵′ such
that the sum of the delays
between 𝑖 and 𝑖′ in 𝜌 is
equal to zero, i.e., no time
elapses between them,

▶ or there exists an action
𝑖 ∈ 𝐵 that is the first ac-
tion along 𝜌 to discard the
timer started by the last
action 𝑖′ ∈ 𝐵′ and 𝛾′ =
, i.e., the timer of 𝐵′

(re)started by 𝑖′ reaches
value zero when 𝑖 discards
it.

We also say that the actions 𝑖
and 𝑖′ participate in this race.

Observe that 𝐵 ≠ 𝐵′ and 𝐵 ≠ 𝐵″ by the definition of races (see
Definition 9.6.1). Let us prove that it is impossible to wiggle 𝐵 by arguing
that it is not feasible to move 𝐵 to the right nor to the left.
Given 𝐵′ ≺ 𝐵, let us prove that we cannot move 𝐵 to the left. We have two
cases for the actions 𝑖 ∈ 𝐵 and 𝑖′ ∈ 𝐵′ that participate in the race:

▶ Action 𝑖′ occurs before action 𝑖 along 𝜌 and the sum of the delays
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between these two actions is zero. Thus, the delay 𝑑 before 𝑖 in 𝜌 is
equal to zero and it is impossible to have 𝑑 + 𝜖 ≥ 0 for any 𝜖 < 0. This
implies that no movement of 𝐵 to the left is possible.

▶ The timer 𝑥 of 𝐵 (re)started by 𝑖 reaches value zero when 𝑖′ discards
it. By moving 𝐵 to the left by some 𝜖 < 0, 𝑥 times out and therefore
an action to[𝑥] occurs, while it does not occur in 𝜌 (as 𝑖′ discards 𝑥).
As we want to keep the same untimed trace as for 𝜌, it is impossible
to move 𝐵 to the left.

With symmetrical arguments, we obtain that we cannot move 𝐵 to the right,
as 𝐵 ≺ 𝐵″. We conclude that we cannot wiggle 𝐵.

Unwigglable implies having a predecessor and a successor. We prove
this direction by contraposition. We first assume that 𝐵 has no predecessor
(however it may have successors 𝐶). We argue that 𝐵 can be wiggled by
moving it to the left. From the definition of a race, we obtain that:

▶ Since 𝜌 is a padded timed run, the first delay 𝑑1 of 𝜌 is non-zero.
▶ For each action 𝑖′ before some action 𝑖 ∈ 𝐵 such that 𝑖′ ∉ 𝐵, the delay

𝑑𝑖′ between 𝑖′ and 𝑖 must be non-zero (as 𝐵 has no predecessor).
▶ The timer fate 𝛾𝐵 of 𝐵 is either ⊥ or ×. Indeed, assume by contradic-

tion that 𝛾𝐵 = . Recall that, by definition of a padded run, timers
cannot have a zero value at the end of a run. Therefore, there must
exist a block 𝐵″ that discards the timer of 𝐵 while its valuation is zero.
Thus, we have that 𝐵″ ≺ 𝐵 which is not possible.

From these observations, we conclude that there is enough room to move 𝐵
to the left. Indeed, it is possible to choose some 𝜖 < 0 with |𝜖| small enough,
such that 𝑑1 + 𝜖 > 0, 𝑑𝑖′ + 𝜖 > 0 for all the delays 𝑑𝑖′ mentioned above, and
in a way that if 𝛾𝐵 = × then the new timer fate of 𝐵 is still equal to ×. In
this way we produce a timed run 𝜌′ such that untime(𝜌) = untime(𝜌′).
It remains to explain that the blocks 𝐶 participating in a race with 𝐵 in 𝜌 no
longer participate in such a race in 𝜌′. Let 𝐶 be one of these blocks, hence
𝐵 ≺ 𝐶. We have again two cases:

▶ There exist 𝑖 ∈ 𝐵 and 𝑖′ ∈ 𝐶 such that 𝑖 occurs before 𝑖′ in 𝜌 and
the total delay between them is zero. In the timed run 𝜌′, this delay
becomes equal to −𝜖 > 0 and 𝐵, 𝐶 no longer participate in a race.

▶ The timer fate 𝛾𝐶 of 𝐶 is equal to and the timer of 𝐶 is discarded by
𝐵 along 𝜌. In 𝜌′, we get that 𝛾𝐶 = × and 𝐵, 𝐶 no longer participate
in a race.

It follows that if 𝐵 has no predecessor, we can wiggle it. With symmetrical
arguments, if 𝐵 has no successor, we can also wiggle it. Hence, the lemma
holds. �

Now, we proceed to proving Proposition 9.6.9, which we restate one more
time.

Proposition 9.6.9. Letℳ be an MMT and 𝜌 ∈ ptruns(ℳ) be a padded timed
run with races. Then, 𝜌 can be wiggled if and only if 𝐺𝜌 is acyclic.
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Proposition 9.6.9. Letℳ be
an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Then, 𝜌 can be wig-
gled if and only if 𝐺𝜌 is
acyclic.

5: In Section 9.6.3, this was done
in the modified region automaton
ℛ(ℳ) ofℳwith the new symbols
di[𝑥] indicating that the timer 𝑥
was discarded when its value was
zero. We here also consider the
case when 𝑥 is discarded with a
non-zero value.

Proof. We prove the equivalence by showing both directions.

Wigglable implies acyclic. We prove this direction by contraposition.
Suppose that 𝐺𝜌 has a cycle that we can assume to be simple, i.e., there are
𝑘 > 1 distinct blocks 𝐵ℓ, 0 ≤ ℓ ≤ 𝑘 − 1 such that 𝐵ℓ ≺ 𝐵ℓ+1 mod 𝑘. As every
block 𝐵ℓ has a predecessor and a successor in this cycle, we cannot wiggle
𝐵ℓ by Lemma C.4.1. Thus, 𝜌 cannot be wiggled as it is impossible to resolve
the races in which the blocks 𝐵ℓ participate.

Acyclic implies wigglable. Assume 𝐺𝜌 is acyclic. Hence, we can compute
a topological sort of 𝐺𝜌 restricted to the blocks participating in the races of 𝜌.
Let 𝐵 be the greatest block with respect to this sort, i.e., 𝐵 has no successor
and it has predecessors. By Lemma C.4.1, we can wiggle 𝐵 by moving it
slightly to the right, thus eliminating the races between 𝐵 and all the other
blocks. We thus obtain a new timed run 𝜌′ such that untime(𝜌) = untime(𝜌′)
and 𝐺𝜌′ has the same vertices as 𝐺𝜌 and strictly less edges (𝐵 becomes an
isolated vertex). We repeat this process until the blocks of the graph are all
isolated, meaning that the resulting timed run has no races and the same
untimed trace as 𝜌. �

C.5. Proof of Theorem 9.6.11

Theorem 9.6.11. An MMT ℳ is race-avoiding

▶ if and only if any padded timed run 𝜌 ∈ ptruns(ℳ) with races can be
wiggled,

▶ if and only if for any padded timed run 𝜌 ∈ ptruns(ℳ), its block graph
𝐺𝜌 is acyclic.

To get more intuition about the proof of Theorem 9.6.11, we recommend
reading Section C.6 first.

For the first equivalence, we only need to prove one implication of this result,
as by definition of wiggling, an MMTℳ is race-avoiding if all its padded timed
runs with races are wigglable. The second equivalence is then a consequence
of Proposition 9.6.9.

For this purpose, we need to introduce some new notions. Given a padded
timed run

𝜌 = (𝑞0, 𝜅0)
𝑑1−→ (𝑞0, 𝜅0 − 𝑑1)

𝑖1−→ (𝑞1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛−→ (𝑞𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑞𝑛, 𝜅𝑛 − 𝑑𝑛+1) ∈ ptruns(ℳ),

we extend it with additional transitions indicating when a timer has been
discarded in the following way.5 Let

(𝑞ℓ−1, 𝜅ℓ−1)
𝑑ℓ−→ (𝑞ℓ−1, 𝜅ℓ−1 − 𝑑ℓ)

𝑖ℓ−→ (𝑞ℓ, 𝜅ℓ)

be a sub-run of 𝜌 such that the set 𝐷 = {𝑦1, … , 𝑦𝑚} of timers discarded by 𝑖ℓ
is not empty. Then, we insert the following transitions before the next delay
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𝐵2

𝐵3
𝐵1

𝑖1

𝑖2

𝑖3

𝑖4

𝑖5

𝑖6

Figure C.4: The extended run of 𝜋 and its block decomposition.

𝑑ℓ+1:

(𝑞ℓ, 𝜅ℓ)
0
−→ (𝑞ℓ, 𝜅ℓ)

𝑗1−→ (𝑞ℓ, 𝜅ℓ)
0
−→ (𝑞ℓ, 𝜅ℓ)

𝑗2−→ ⋯
𝑗𝑚−→ (𝑞ℓ, 𝜅ℓ)

such that

▶ for all 𝑘, 1 ≤ 𝑘 ≤ 𝑚, if 𝑦𝑘 was discarded by 𝑖ℓ when its value was zero,
then 𝑗𝑘 = , otherwise 𝑗𝑘 = ×,

▶ each delay is zero, and
▶ each update is ⊥.

We denote by ext(𝜌) the resulting extended run, such that symbols and ×
are also called actions.

Example C.5.1. Let us come back to the timed run 𝜋 of Example 9.2.7:

𝜋 = (𝑞0, ∅)
0.5
−−→ (𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞1, 𝑥1 = 1)
0
−→ (𝑞1, 𝑥1 = 1)

𝑖/𝑜′

−−−→
(𝑥2,2)

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1)

𝑖/𝑜
−−−→
(𝑥1,1)

(𝑞2, 𝑥1 = 1, 𝑥2 = 1)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 0)

to[𝑥2]/𝑜
−−−−→

⊥
(𝑞1, 𝑥1 = 0)

0
−→ (𝑞1, 𝑥1 = 0)

to[𝑥1]/𝑜
−−−−→

(𝑥1,1)
(𝑞1, 𝑥1 = 1)

0.5
−−→ (𝑞1, 𝑥1 = 0.5).

Its block decomposition is given in Figure 9.2c and is repeated in the margin.

𝐵2

𝐵3
𝐵1

Its transition

(𝑞2, 𝑥1 = 1, 𝑥2 = 2)
1
−→ (𝑞2, 𝑥1 = 0, 𝑥2 = 1)

𝑖
−−−→
(𝑥1,1)

(𝑞2, 𝑥1 = 1, 𝑥2 = 1)

discards timer 𝑥1 when its value is zero. Therefore, in ext(𝜋), we insert

(𝑞2, 𝑥1 = 1, 𝑥2 = 1)
0
−→ (𝑞2, 𝑥1 = 1, 𝑥2 = 1)

−→ (𝑞2, 𝑥1 = 1, 𝑥2 = 1)

This extended run and its block decomposition are depicted in Figure C.4,
such that 𝑖1, 𝑖2, … , 𝑖7 is the sequence of actions along ext(𝜋) with 𝑖4 = .
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Let 𝜌 be a padded timed run and ext(𝜌) be its extended run. Given two
actions 𝑖 and 𝑖′ of ext(𝜌), the relative elapsed time between 𝑖 and 𝑖′, denoted
by reltime𝜌(𝑖, 𝑖′), is defined as follows from the sum 𝑑 of all delays between 𝑖
and 𝑖′ in ext(𝜌):

▶ if 𝑖 occurs before 𝑖′, then reltime𝜌(𝑖, 𝑖′) = 𝑑,
▶ otherwise reltime𝜌(𝑖, 𝑖′) = −𝑑.

Notice that the relative elapsed time is sensitive to the order of the actions along
ext(𝜌), and if 𝑖 and 𝑖′ participate in a race, then reltime𝜌(𝑖, 𝑖′) = reltime𝜌(𝑖′, 𝑖) =
0. We naturally lift this definition to a sequence of actions 𝑖1, 𝑖2, … , 𝑖𝑘 as

reltime𝜌(𝑖1, 𝑖2, … , 𝑖𝑘) =
𝑘−1

∑
ℓ=1

reltime𝜌(𝑖ℓ, 𝑖ℓ+1).

The following lemma is trivial, as the relative elapsed time between two actions
has a sign that depends on the relative position of the actions. It is illustrated
by Example C.5.3 below.

Lemma C.5.2. If the sequence 𝑖1, 𝑖2, … , 𝑖𝑘 is a cycle (i.e., 𝑘 ≥ 3 and 𝑖𝑘 = 𝑖1),
then reltime𝜌(𝑖1, 𝑖2, … , 𝑖𝑘) = 0.

Example C.5.3. We consider again the timed run 𝜋 and its extended run
ext(𝜋). Recall that 𝜋 cannot be wiggled as 𝐺𝜋 is cyclic

𝐵1 𝐵2 𝐵3
(see Figure 9.8b,

which is repeated in the margin). From this cycle and the block decom-
position of ext(𝜋) (see Figure C.4), we extract the following sequence of
actions: 𝑖1, 𝑖2, 𝑖5, 𝑖6, 𝑖3, 𝑖4, 𝑖1. Notice that it is a cycle such that any two
consecutive actions are either in the same block, or participate in a race, and
are enumerated in a way to “follow” the cycle 𝐵1 ≺ 𝐵2 ≺ 𝐵3 ≺ 𝐵1 of 𝐺𝜋.
For instance, the first two actions 𝑖1, 𝑖2 describes the race 𝐵1 ≺ 𝐵2, then
𝑖2, 𝑖5 both belong to 𝐵2, then 𝑖5, 𝑖6 describes the race 𝐵2 ≺ 𝐵3, etc. We have

reltime𝜋(𝑖1, 𝑖2, 𝑖5, 𝑖6, 𝑖3, 𝑖4, 𝑖1) = 0 + 2 + 0 − 1 + 0 − 1 = 0.

We now proceed to the proof of Theorem 9.6.11, which we repeat again.

Theorem 9.6.11. An MMT ℳ is race-avoiding

▶ if and only if any padded timed run 𝜌 ∈ ptruns(ℳ) with races can be
wiggled,

▶ if and only if for any padded timed run 𝜌 ∈ ptruns(ℳ), its block graph
𝐺𝜌 is acyclic.

Proof. Proposition 9.6.9. Letℳ be
an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Then, 𝜌 can be wig-
gled if and only if 𝐺𝜌 is
acyclic.

The second equivalence holds by Proposition 9.6.9. Let us focus
on proving that ℳ is race-avoiding if and only if any padded timed run
𝜌 ∈ ptruns(ℳ) is wigglable. As, by definition, it is obvious thatℳ is race-
avoiding if any padded timed run is wigglable, we show the other direction.
Towards a contradiction, assumeℳ is race-avoiding and there exists 𝜌1 ∈
ptruns(ℳ) with races that is not wigglable. Sinceℳ is race-avoiding, there
exists another padded timed run 𝜌2 without races and such that untime(𝜌1) =
untime(𝜌2). We consider the two extended runs ext(𝜌1) and ext(𝜌2).
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By Proposition 9.6.9, there must exist a cycle 𝒞 in the block graph of 𝜌1.
We assume that 𝒞 is as described in Corollary 9.6.10 and we study it on
ext(𝜌1) (instead of 𝜌1). That is, 𝒞 is composed of 𝑘 > 1 distinct blocks 𝐵ℓ, Corollary 9.6.10. Letℳ be

an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Suppose that 𝐺𝜌 is
cyclic. Then there exists a
cycle 𝒞 in 𝐺𝜌 such that

▶ any block of 𝒞 partici-
pates in exactly two races
described by this cycle,

▶ for any race described by
𝒞, exactly two blocks of 𝒞
participate in the race,

▶ the blocks 𝐵 =
(𝑘1 … 𝑘𝑚, 𝛾) of 𝒞 sat-
isfy either 𝑚 ≥ 2, or
𝑚 = 1 and 𝛾 = .

0 ≤ ℓ ≤ 𝑘 − 1, such that 𝐵ℓ ≺ 𝐵ℓ+1 mod 𝑘, and

▶ any block 𝐵ℓ participates in exactly two races described by 𝒞,
▶ for any race described by 𝒞, exactly two blocks participate in the race,
▶ the blocks of the cycle have at least two actions (of which one can be

).

We thus have the following sequence of actions from ext(𝜌1)

𝒮1 = 𝑖′
0, 𝑖1, 𝑖′

1, … , 𝑖𝑘−1, 𝑖′
𝑘−1, 𝑖0, 𝑖′

0

that is a cycle and such that for all ℓ, 0 ≤ ℓ < 𝑘 (see also Example C.5.3):

▶ 𝑖ℓ and 𝑖′
ℓ are the two symbols of 𝐵ℓ that participate in (different) races

of 𝒞,
▶ 𝑖′

ℓ ∈ 𝐵ℓ and 𝑖ℓ+1 mod 𝑘 ∈ 𝐵ℓ+1 mod 𝑘 participate in a race of 𝒞, i.e.,
reltime𝜌1

(𝑖′
ℓ, 𝑖ℓ+1 mod 𝑘) = 0,

▶ 𝑖′
ℓ occurs before 𝑖ℓ+1 mod 𝑘 in ext(𝜌1) (since 𝐵ℓ ≺ 𝐵ℓ+1 mod 𝑘).

By Lemma C.5.2, we have reltime𝜌1
(𝒮1) = 0. Therefore,

reltime𝜌1
(𝒮1) =

𝑘−1

∑
ℓ=0

reltime𝜌1
(𝑖ℓ, 𝑖′

ℓ) = 0. (C.5.i)

Let us now study ext(𝜌2) knowing that untime(𝜌1) = untime(𝜌2). Both
padded timed runs 𝜌1 and 𝜌2 (and thus ext(𝜌1) and ext(𝜌2)) must have the
same block decomposition. Indeed recall thatℳ is deterministic and we see
the same actions. Hence, it must be that 𝜌1 and 𝜌2 follow the same transitions,
with the same updates alongside both runs. We then have the same sequences
of triggered actions, and therefore the same block decomposition in both
runs.
We can thus consider the blocks of 𝒞 seen as blocks in ext(𝜌2), and the
sequence

𝒮2 = 𝑗′
0, 𝑗1, 𝑗′

1 … , 𝑗𝑘−1, 𝑗′
𝑘−1, 𝑗0, 𝑗′

0

from ext(𝜌2) that corresponds to the sequence 𝒮1 from ext(𝜌1). We have the
following properties for all ℓ, 0 ≤ ℓ < 𝑘:

▶ if 𝑖ℓ ∈ ̂𝐼 (resp. 𝑖′
ℓ ∈ ̂𝐼), then 𝑗ℓ = 𝑖ℓ (𝑗′

ℓ = 𝑖′
ℓ),

▶ if 𝑖ℓ = (resp. 𝑖′
ℓ = ), then 𝑗ℓ = × (𝑗′

ℓ = ×), as 𝜌2 has no races and
untime(𝜌1) = untime(𝜌2),

▶ if 𝑖ℓ, 𝑖′
ℓ ∈ ̂𝐼, then reltime𝜌1

(𝑖ℓ, 𝑖′
ℓ) = reltime𝜌2

(𝑗ℓ, 𝑗′
ℓ), as 𝑖ℓ = 𝑗ℓ, 𝑖′

ℓ = 𝑗′
ℓ

are in the same block in both ext(𝜌1) and ext(𝜌2),
▶ if one among 𝑖ℓ, 𝑖′

ℓ is equal to , then

|reltime𝜌1
(𝑖ℓ, 𝑖′

ℓ)| > |reltime𝜌2
(𝑗ℓ, 𝑗′

ℓ)|

as the corresponding action in ext(𝜌2) is equal to × (the timer has
been discarded earlier in 𝜌2 than in 𝜌1),

▶ we have reltime𝜌2
(𝑗′

ℓ, 𝑗ℓ+1 mod 𝑘) ≠ 0, as 𝜌2 has no races,
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6: Word structures, to be precise

▶ moreover, reltime𝜌2
(𝑗′

ℓ, 𝑗ℓ+1 mod 𝑘) > 0 because 𝑖′
ℓ occurs before

𝑖ℓ+1 mod 𝑘 in ext(𝜌1) and untime(𝜌1) = untime(𝜌2).

Let us first assume that no action ever appears in 𝒮1. Hence, there is no ac-
tion× in 𝒮2. As 𝒮2 is a cycle, by LemmaC.5.2, we have that reltime𝜌2

(𝒮2) = 0.
It follows by (C.5.i) that

0 = reltime𝜌2
(𝒮2) (C.5.ii)

=
𝑘−1

∑
ℓ=0

reltime𝜌2
(𝑗′

ℓ, 𝑗ℓ+1 mod 𝑘) +
𝑘−1

∑
ℓ=0

reltime𝜌2
(𝑗ℓ, 𝑗′

ℓ)

> 0 +
𝑘−1

∑
ℓ=0

reltime𝜌1
(𝑖ℓ, 𝑖′

ℓ) (C.5.iii)

= reltime𝜌1
(𝒮1) = 0.

This leads to a contradiction.
Let us now assume that there exists at least one action in 𝒮1. Consider
any ℓ, 0 ≤ ℓ < 𝑘, such that one action among 𝑖ℓ, 𝑖′

ℓ is equal to . Necessarily,
𝑖ℓ = and 𝑖′

ℓ occurs before 𝑖ℓ in 𝜌1, that is as reltime𝜌1
(𝑖ℓ, 𝑖′

ℓ) < 0. Indeed,
given the two races 𝐵ℓ−1 mod 𝑘 ≺ 𝐵ℓ ≺ 𝐵ℓ+1 mod 𝑘, participates in the first
race and appears at the end of 𝐵ℓ. It follows that

reltime𝜌1
(𝑖ℓ, 𝑖′

ℓ) < reltime𝜌2
(𝑗ℓ, 𝑗′

ℓ) < 0.

Therefore, we get the same inequalities as in (C.5.ii), leading again to a
contradiction. This completes the proof. �

C.6. Proof of Proposition 9.6.13

Proposition 9.6.13. Let ℳ be an MMT and ℛ(ℳ) be its modified region
automaton. We can construct an MSO formula Φ of size linear in Σ and 𝑋
such that a word labeling a run 𝜌 of ℛ(ℳ) satisfies Φ if and only if 𝜌 is a
padded run that cannot be wiggled. Moreover, the formula Φ, in prenex normal
form, has three quantifier alternations.

Before giving the proof, some definitions are in order. Sets of finite words6

over an alphabet Σ can be defined by sentences in MSO with the signature
(<, {𝑄𝑎}𝑎∈Σ). Intuitively, we interpret the formula over the word 𝑤 ∈ Σ∗

with variables being positions that take values in ℕ, that can be ordered with
<, and the predicates 𝑄𝑎(𝑝) indicating whether the 𝑝-th symbol of the word
(structure) is 𝑎. The formulas also use variables 𝑃 being sets of positions, and
𝑃(𝑝) meaning that 𝑝 is a position belonging to 𝑃. We recall that a formula
is in prenex normal form if it can be written as 𝑄1𝑣1𝑄2𝑣2 … 𝑄𝑛𝑣𝑛𝐹 with 𝐹 a
formula without quantifiers, 𝑄𝑖 a quantifier and 𝑣𝑖 a variable for all 1 ≤ 𝑖 ≤
𝑛. We suppose the reader is familiar with the rules to put a formula into a
prenex normal form. By quantifier alternations, we mean alternating blocks of
existential or universal quantifiers, respectively denoted by ∃∗ and ∀∗.
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Lemma 9.5.4. Let ℳ be an
MMT andℛ(ℳ) be its region
automaton. For a timer 𝑥 ∈
𝑋, 𝑐𝑥 denotes the largest con-
stant to which 𝑥 is updated
in ℳ. Let 𝐶 = max𝑥∈𝑋 𝑐𝑥.
Then, the number of states
of ℛ(ℳ) is bounded by

∣𝑄ℳ∣ ⋅ |𝑋|! ⋅ 2|𝑋| ⋅ (𝐶 + 1)|𝑋|.

Moreover, for all 𝑞, 𝑞′ ∈
𝑄ℳ, 𝜅 ∈ Val(𝜒ℳ(𝑞)), 𝜅′ ∈
Val(𝜒ℳ(𝑞′)), there exists a
timed run from (𝑞, 𝜅) to
(𝑞′, 𝜅′) in ℳ if and only
if there exists a run from
J(𝑞, 𝜅)K≅ to J(𝑞′, 𝜅′)K≅ in
ℛ(ℳ).

Proposition 9.6.9. Letℳ be
an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Then, 𝜌 can be wig-
gled if and only if 𝐺𝜌 is
acyclic.

Corollary 9.6.10. Letℳ be
an MMT and 𝜌 ∈ ptruns(ℳ)
be a padded timed run with
races. Suppose that 𝐺𝜌 is
cyclic. Then there exists a
cycle 𝒞 in 𝐺𝜌 such that

▶ any block of 𝒞 partici-
pates in exactly two races
described by this cycle,

▶ for any race described by
𝒞, exactly two blocks of 𝒞
participate in the race,

▶ the blocks 𝐵 =
(𝑘1 … 𝑘𝑚, 𝛾) of 𝒞 sat-
isfy either 𝑚 ≥ 2, or
𝑚 = 1 and 𝛾 = .

Moreover, recall that the modifications applied on the region automaton imply
the following property (see Section 9.6.3). Given a timed run 𝜌 of an MMT, by
Lemma 9.5.4, there exists an equivalent run 𝜌′ in ℛ(ℳ) such that any 𝑥-block
(𝑖𝑘1

… 𝑖𝑘𝑚
, 𝛾) of 𝜌 is translated into the sequence of symbols (𝑖′

𝑘1
, … , 𝑖′

𝑘𝑚
, 𝛾′)

in 𝜌′ with an optional symbol 𝛾′ such that:

▶ 𝑖′
𝑘ℓ

= (𝑖𝑘ℓ
, 𝑥), for 1 ≤ ℓ < 𝑚,

▶ 𝑖′
𝑘𝑚

= (𝑖𝑘𝑚
, ⊥) if 𝛾 = ⊥, and (𝑖𝑘𝑚

, 𝑥) otherwise,
▶ 𝛾′ = di[𝑥] if 𝛾 = , and 𝛾′ does not exist otherwise.

In the sequel, we again call ℛ(ℳ) the modified region automaton.

We are going to describe a formula Φ such that a word labeling a run 𝜌 of
ℛ(ℳ) satisfies Φ if and only if 𝜌 is a padded run that cannot be wiggled. To
define Φ, we use Proposition 9.6.9. Recall that it characterizes an unwigglable
run 𝜌 by a cyclic block graph 𝐺𝜌. We also focus on the particular cycle of
𝐺𝜌 as described in Corollary 9.6.10. Step by step, we create MSO formulas
expressing the following statements about a run 𝜌 of ℛ(ℳ):

1. Two symbols belong to the same block (see the above property about the
translation of 𝑥-blocks in ℛ(ℳ) and the particular case of zero-valued
timers that are discarded).

2. Two blocks participate in a race. Rather, we express that two symbols,
one in each block, participate in a race.

3. The run is a padded run that cannot be wiggled. Rather, we express that
there exists a cycle in 𝐺𝜌 whose form is as in Corollary 9.6.10.

C.6.1. Some useful predicates

We define four predicates to help us write the MSO formulas. The formula
First(𝑝, 𝑃 ) expresses that a position 𝑝 is the first element of a set 𝑃, while
Last(𝑝, 𝑃 ) states that 𝑝 is the last element of 𝑃. Finally, Next(𝑝, 𝑃 , 𝑞) expresses
that 𝑞 is the successor of 𝑝 in 𝑃 with regards to <. More formally,

First(𝑝, 𝑃 ) ≔ 𝑃(𝑝) ∧ ∀𝑞∶ 𝑞 < 𝑝 → ¬𝑃(𝑞) (C.6.i)
Last(𝑝, 𝑃 ) ≔ 𝑃(𝑝) ∧ ∀𝑞∶ 𝑞 > 𝑝 → ¬𝑃(𝑞) (C.6.ii)

Next(𝑝, 𝑃 , 𝑞) ≔ 𝑝 < 𝑞 ∧ 𝑃(𝑝) ∧ 𝑃(𝑞) ∧ ∀𝑟∶ 𝑝<𝑟<𝑞 → ¬𝑃(𝑟). (C.6.iii)

The last useful predicate, Partition(𝑃 , 𝑃1, 𝑃2), states that there exist sets of
positions 𝑃 , 𝑃1, 𝑃2 such that 𝑃 = 𝑃1 ⊎ 𝑃2, the first position of 𝑃 is in 𝑃1, the
last one is in 𝑃2, and the positions of 𝑃 alternate between 𝑃1 and 𝑃2:

Partition(𝑃 , 𝑃1, 𝑃2) ≔ ∀𝑟 ∶ 𝑃 (𝑟) ↔ (𝑃1(𝑟) ∨ 𝑃2(𝑟))
∧ ∃𝑝, 𝑞 ∶ First(𝑝, 𝑃 ) ∧ Last(𝑞, 𝑃 ) ∧ 𝑃1(𝑝) ∧ 𝑃2(𝑞)
∧ ∀𝑟 ∶ 𝑃1(𝑟) ↔ ¬𝑃2(𝑟)
∧ ∀𝑟, 𝑠 ∶ Next(𝑟, 𝑃 , 𝑠) → (𝑃1(𝑟) ↔ 𝑃2(𝑠)).

(C.6.iv)

C.6.2. Two symbols belong to the same block

We give here an MSO formula expressing that two positions 𝑝 < 𝑞 are labeled
by symbols belonging to the same 𝑥-block. Thus, the formula Block𝑥(𝑝, 𝑞, 𝑃 ),
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with 𝑃 a set of positions labeled by consecutive symbols of an 𝑥-block, states
that 𝑃 must respect the following constraints:

▶ We have 𝑝 < 𝑞, with 𝑝, 𝑞 ∈ 𝑃.
▶ The position 𝑝 is labeled by either (𝑖, 𝑥) ∈ Σ (meaning we start an

𝑥-block 𝐵), or (to[𝑥], 𝑥) ∈ Σ (meaning we are in the block 𝐵),
▶ The input at position 𝑞 is either (to[𝑥], 𝑥) (we are in the block 𝐵), or

(to[𝑥], ⊥) (we are at the end of 𝐵 and we do not restart 𝑥), or di[𝑥] (we
finish 𝐵 by discarding its timer while its value is zero),

▶ Every other position 𝑟 ∈ 𝑃 such that 𝑝 < 𝑟 < 𝑞 is labeled by (to[𝑥], 𝑥)
(we restart 𝑥 to keep the block active),

▶ There is no position 𝑟 ∉ 𝑃 between 𝑝 and 𝑞 such that 𝑟 is labeled by
some symbol of Σ among (to[𝑥], ⋅), (⋅, 𝑥), or di[𝑥] (the ⋅ indicates “any
value”). That is, any intermediate position cannot affect 𝑥.

Formally, we have:

Affects𝑥(𝑟) ≔ 𝑄(to[𝑥],𝑥)(𝑟) ∨ 𝑄(to[𝑥],⊥)(𝑟)

∨ ⋁
𝑖∈𝐼

𝑄(𝑖,𝑥)(𝑟) ∨ 𝑄di[𝑥](𝑟) (C.6.v)

Block𝑥(𝑝, 𝑞, 𝑃 ) ≔ 𝑝 < 𝑞 ∧ 𝑃(𝑝) ∧ 𝑃(𝑞)
∧ ( ⋁

𝑖∈𝐼
𝑄(𝑖,𝑥)(𝑝) ∨ 𝑄(to[𝑥],𝑥)(𝑝))

∧ (𝑄(to[𝑥],𝑥)(𝑞) ∨ 𝑄(to[𝑥],⊥)(𝑞) ∨ 𝑄di[𝑥](𝑞))
∧ ∀𝑟∶ (𝑝 < 𝑟 < 𝑞 ∧ 𝑃(𝑟)) → 𝑄(to[𝑥],𝑥)(𝑟)
∧ ∀𝑟∶ (𝑝 < 𝑟 < 𝑞 ∧ ¬𝑃(𝑟)) → ¬Affects𝑥(𝑟).

(C.6.vi)

C.6.3. Two symbols participate in a race

The formula Race(𝑝, 𝑞) states that two positions 𝑝 < 𝑞 are labeled by symbols
that participate in a race, i.e., there is no position labeled by 𝜏 between 𝑝 and
𝑞.

Race(𝑝, 𝑞) ≔ 𝑝 < 𝑞 ∧ ¬(∃𝑟∶ 𝑝 < 𝑟 < 𝑞 ∧ 𝑄𝜏(𝑟)). (C.6.vii)

C.6.4. The run is unwigglable

Finally, we give a formula Φ that expresses that a word is the label of a padded
run 𝜌 that cannot be wiggled, i.e., that highlights a cycle (as in Corollary 9.6.10)
in the block graph of 𝜌. The idea of that formula is as follows. There are
positions 𝑝1 < 𝑞1 < 𝑝2 < 𝑞2 < ⋯ < 𝑝𝑚 < 𝑞𝑚 such that each pair 𝑝𝑘, 𝑞𝑘
participate in a race. Moreover, for any 𝑞𝑘 belonging to a block 𝐵𝑘, there must
exist a 𝑝ℓ that also belongs to 𝐵𝑘. Notice that 𝑝ℓ is not necessarily after 𝑞𝑘. See
Figure 9.9 for an illustration of that scenario with 𝑚 = 5.

The formula Φ states that there exist sets of positions 𝑃 , 𝑃1, 𝑃2 such that:

▶ We have 𝑃1 ⊎ 𝑃2 forming a partition of 𝑃 as described previously,
▶ For any 𝑝 ∈ 𝑃1 and 𝑞 ∈ 𝑃2 such that 𝑞 is the next element after 𝑝 in 𝑃,

we have Race(𝑝, 𝑞).
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7: Recall the way blocks in 𝒜 are
translated into blocks inℛ(ℳ).

▶ For any 𝑞 ∈ 𝑃2, there must exist a 𝑝 in 𝑃1 such that 𝑝 and 𝑞 belong to
the same block. That is, there must exist a timer 𝑥 and a set 𝑃 ′ such that
Block𝑥(𝑝, 𝑞, 𝑃 ′) if 𝑝 < 𝑞 or Block𝑥(𝑞, 𝑝, 𝑃 ′) if 𝑝 > 𝑞.

Finally, in order to describe a padded run 𝜌, the first and last positions of the
word must be labeled with 𝜏 (i.e., a non-zero delay). These positions do not
belong to 𝑃.

InBlock(𝑝, 𝑞, 𝑃 ′) ≔ (𝑝 < 𝑞 ∧ ⋁
𝑥
Block𝑥(𝑝, 𝑞, 𝑃 ′)) (C.6.viii)

∨ (𝑝 > 𝑞 ∧ ⋁
𝑥
Block𝑥(𝑞, 𝑝, 𝑃 ′))

We now have all the pieces needed to give Φ.

Φ ≔ ∃𝑃, 𝑃1, 𝑃2 ∶ (Partition(𝑃 , 𝑃1, 𝑃2) (C.6.ix)

∧ ∀𝑝, 𝑞 ∶ (𝑃1(𝑝) ∧ Next(𝑝, 𝑃 , 𝑞)) → Race(𝑝, 𝑞)

∧ ∀𝑞∶ 𝑃2(𝑞) → (∃𝑝, 𝑃 ′ ∶ 𝑃1(𝑝) ∧ InBlock(𝑝, 𝑞, 𝑃 ′)))

∧ 𝑄𝜏(1) ∧ (∃𝑟∶ 𝑄𝜏(𝑟) ∧ (∀𝑟′ ∶ 𝑟′ < 𝑟)).

C.6.5. Correctness

Now that we have constructed the formula Φ, let us show that it correctly
encodes that the word labeling a run 𝜌 in ℛ(ℳ) satisfies Φ if and only if 𝜌 is a
padded run that is not wigglable.

Run satisfies Φ implies unwigglable/ Assume 𝜌 in ℛ(ℳ) is a padded run
that is not wigglable. Let 𝑤 ∈ Σ∗ be its labeling. By Proposition 9.6.9, we
know that the block graph 𝐺𝜌 is cyclic. Moreover, by Corollary 9.6.10, there
exists a cycle whose blocks satisfy the following properties: exactly two blocks
participate in any race of the cycle, any block participates in exactly two races,
and any block has a size at least equal to two.7 We consider this particular
cycle (𝐵0, … , 𝐵𝑚−1, 𝐵0).

From the races in which the blocks 𝐵𝑘 participate, we define the sets 𝑃1, 𝑃2 of
positions, and, thus, 𝑃 = 𝑃1 ⊎ 𝑃2 as follows. For every 𝐵𝑘 ≺ 𝐵𝑘+1 mod 𝑚 in
the cycle, consider 𝑎 ∈ 𝐵𝑘 and 𝑏 ∈ 𝐵𝑘+1 mod 𝑚 that are the two symbols of 𝑤
participating in a race. We add the position of 𝑎 in 𝑃1 and the position of 𝑏 in
𝑃2 (see Figure 9.9 to get intuition). Thus, the positions in 𝑃 alternate between
𝑃1 and 𝑃2, the first element of 𝑃 is in 𝑃1, and the last is in 𝑃2. Moreover, for
any 𝑝 ∈ 𝑃1 and 𝑞 ∈ 𝑃2 such that 𝑞 is the successor of 𝑝 in 𝑃, it holds that
Race(𝑝, 𝑞). That is, the second line of formula (C.6.ix) about races is satisfied
by 𝑤.

We have to show that the third line of (C.6.ix) is also satisfied by 𝑤, i.e., for
any position 𝑞 in 𝑃2, there exists a position 𝑝 in 𝑃1 such that 𝑝 and 𝑞 belong to
the same block. Let 𝑞 ∈ 𝑃2. By construction, 𝑞 belongs to some block 𝐵𝑘 of
the cycle. By Corollary 9.6.10, 𝐵𝑘 participate in exactly two races of the cycle,
one as described above with Race(𝑝, 𝑞), and another one with Race(𝑝′, 𝑞′) for
some other positions 𝑝′ ∈ 𝑃1 and 𝑞′ ∈ 𝑃2. Necessarily, 𝑝′ is a position of a
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symbol in 𝐵𝑘 (and not 𝑞′ by choice of the cycle), such that either 𝑝′ < 𝑞 or
𝑝′ > 𝑞. Thus, the third line of (C.6.ix) is satisfied by 𝑤.

Finally, since 𝜌 is padded, it must be that its first and last delays are positive,
i.e., the corresponding positions are labeled by 𝜏. Hence, the last line of (C.6.ix)
is satisfied by 𝑤. We conclude that 𝑤 satisfies all conjuncts of (C.6.ix) and then
also the formula Φ.

Unwigglable implies run satisfies Φ. Assume now that the label 𝑤 of a run
𝜌 in ℛ(ℳ) satisfies formula Φ. Since the last line of (C.6.ix) forces the first
and last symbols of 𝑤 to be 𝜏, the formula describes a padded run of ℛ(ℳ).

Let 𝑃 , 𝑃1 = {𝑝1, … , 𝑝𝑚}, and 𝑃2 = {𝑞1, … , 𝑞𝑚} be the sets satisfying the
formula Φ such that Next(𝑝𝑘, 𝑃 , 𝑞𝑘) is satisfied for all 𝑘. Then, by (C.6.vii),
it holds that Race(𝑝𝑘, 𝑞𝑘) is also satisfied, i.e., the symbols of 𝑤 labeling the
positions 𝑝𝑘, 𝑞𝑘 participate in a race. The third line of (C.6.ix) implies that
there are at most 𝑚 blocks involved in these races. Notice that there can be
less than 𝑚 blocks, as for 𝑞, 𝑞′ in 𝑃2 with 𝑞 ≠ 𝑞′, we could have the same
𝑝 ∈ 𝑃1 that makes sub-formula InBlock satisfied in (C.6.ix).

From formula Φ, we are going to construct a part of the block graph 𝐺𝜌 of 𝜌
that is cyclic. We proceed inductively as follows:

▶ Take an arbitrary position 𝑞𝑘0
∈ 𝑃2. There exists 𝑝𝑘1

∈ 𝑃1 such that
Block𝑥1

(𝑞𝑘0
, 𝑝𝑘1

, 𝑃 ′
1) or Block𝑥1

(𝑝𝑘1
, 𝑞𝑘0

, 𝑃 ′
1) is satisfied. Call 𝐵1 the

related 𝑥1-block.
▶ Let 𝑞𝑘1

∈ 𝑃2 (observe that we use the index obtained at the previous
step). Then, there exists a 𝑝𝑘2

∈ 𝑃1 such that Block𝑥2
(𝑞𝑘1

, 𝑝𝑘2
, 𝑃 ′

2) or
Block𝑥2

(𝑝𝑘2
, 𝑞𝑘1

, 𝑃 ′
2) is satisfied. For the related 𝑥2-block 𝐵2, we have

𝐵1 ≺ 𝐵2 as 𝑝𝑘1
, 𝑞𝑘1

participate in a race, and 𝑝𝑘1
∈ 𝐵1, 𝑞𝑘1

∈ 𝐵2.
▶ Let 𝑞𝑘2

∈ 𝑃2 (again, we use the index of the previous step). There
exists a 𝑝𝑘3

∈ 𝑃1 such that Block𝑥3
(𝑞𝑘2

, 𝑝𝑘3
, 𝑃 ′

3) or Block𝑥3
(𝑝𝑘3

, 𝑞𝑘2
, 𝑃 ′

3)
is satisfied. For the related 𝑥3-block 𝐵3, we have 𝐵2 ≺ 𝐵3.

▶ We repeat this process until we obtain a cycle. This situation necessarily
arises as the number of blocks is bounded by 𝑚.

This shows that 𝐺𝜌 is cyclic.

C.6.6. Prenex form of the formula

Finally, let us write the formula under prenex normal form.

Formula Block𝑥(𝑝, 𝑞, 𝐵), see (C.6.vi), can be easily rewritten in prenex normal
form that starts with a block ∀∗ of universal quantifiers. Similarly Race(𝑝, 𝑞),
see (C.6.vii), requires a single universal quantifier. Let us consider the formula
Φ putting aside the quantifiers ∃𝑃 , 𝑃1, 𝑃2, see (C.6.ix). Notice that formulas
(C.6.i) to (C.6.iii) all use a single universal quantifier. The first conjunct of
(C.6.ix) uses Partition(𝑃 , 𝑃1, 𝑃2), see (C.6.iv), that can be rewritten with three
blocks ∀∗∃∗∀∗. The second (resp. last) conjunct can be rewritten with two
blocks ∀∗∃∗ (resp. ∃∗∀∗), and the third one with three blocks ∀∗∃∗∀∗. Hence,
we obtain that the quantifiers of the prenex normal form of Φ are ∃∗∀∗∃∗∀∗,
i.e., with three quantifier alternations, as expected.
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[GTW03]: Grädel et al. (2003), Au-
tomata, logics, and infinite games: a
guide to current research
[Tho97]: Thomas (1997), “Lan-
guages, Automata, and Logic”

Proposition 9.6.13. Let ℳ
be an MMT and ℛ(ℳ) be its
modified region automaton.
We can construct anMSO for-
mula Φ of size linear in Σ
and 𝑋 such that a word la-
beling a run 𝜌 of ℛ(ℳ) sat-
isfies Φ if and only if 𝜌 is a
padded run that cannot be
wiggled. Moreover, the for-
mula Φ, in prenex normal
form, has three quantifier al-
ternations.

Finally, by carefully examining the formulas, we notice that most of them
have constant size, except the formulas Affects𝑥(𝑟) and Block𝑥(𝑝, 𝑞, 𝑃 ) whose
sizes are linear in |𝐼|, and the formulas InBlock(𝑝, 𝑞, 𝑃 ′) and Φ whose sizes
are linear in |𝐼| and |𝑋|.

C.7. Proof of Theorem 9.6.4

Theorem 9.6.4. Deciding whether an MMT is race-avoiding is PSPACE-hard
and in 3EXP. It is in PSPACE if the sets of actions 𝐼 and of timers 𝑋 are fixed.

We begin by proving the upper bound.

C.7.1. Upper bound

We make use of the Büchi-Elgot-Trakhtenbrot theorem: A language is regular
if and only if it can be defined as the set of all words satisfied by an MSO
formula (with effective translations, see [GTW03; Tho97]). First, from the
formula Φ of Proposition 9.6.13, we can construct a finite-state automaton
𝒩 whose language is the set of all words satisfying Φ. Due to the reduction
from non-deterministic to deterministic automaton, each quantifier alternation
induces an exponential blowup in the automaton construction. Hence, the size
of𝒩 is triple-exponential as Φ has three quantifier alternations. Second, we
compute the intersection of𝒩withℛ(ℳ) — itself exponential in size. This can
be done in polynomial time in the sizes of both automata, i.e., in 3EXP. Finally,
the language of the resulting automaton is empty if and only if there is no
padded run of𝒜 that cannot be wiggled, and this can be checked in polynomial
time with respect to the size of the (triple-exponential) automaton.

C.7.2. Lower bound

In this section, we prove that deciding whether all padded timed runs of a
given MMT are wigglable is a PSPACE-hard problem. The idea of the proof
is to leverage the PSPACE-hardness proof for the reachability problem, see
Theorem 9.5.1. We use the same notations as in the proof provided for the
latter result in Section C.3.

Let𝒜 be an LBTM and 𝑤 be an input word. Letℳ𝒜,𝑤 be the MMT constructed
from𝒜 and 𝑤 in the proof of Theorem 9.5.1, such that the state 𝑟done is reachable
in the MMT if and only if the LBTM accepts 𝑤. We are going to slightly modify
the LBTM and the constructedMMT such that any padded timed run 𝜌 ofℳ𝒜,𝑤
has an acyclic block graph 𝐺𝜌. Thanks to Proposition 9.6.9, this is equivalent
to stating that 𝜌 can be wiggled. Then, we give a widget that extends any
padded timed run 𝜌 reaching 𝑟𝑑𝑜𝑛𝑒 into one that is unwigglable. Hence, the
given LBTM accepts 𝑤 if the constructed MMT has some unwigglable padded
timed run.

First, we modify the LBTM 𝒜 and word 𝑤 = 𝑤1 … 𝑤𝑛 to obtain a new LBTM
𝒜′ that accepts 𝑤 if and only if it does so while maintaining the invariant that
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𝐵𝑥

𝐵1
𝑦 𝐵2

𝑦

Figure C.5: Visualization of the forced buffer using timer 𝑦.

8: We use the notations of the
proof of Theorem 9.5.1.

no two cells of the tape of 𝒜′ hold the same symbol. Let Σ be the alphabet of
𝒜. We create a new word 𝑤′ = (𝑤1, 1)(𝑤2, 2) … (𝑤𝑛, 𝑛), and a new LBTM 𝒜′

over the alphabet Σ′ = Σ × {1, … , 𝑛} such that 𝒜′ simulates 𝒜 by discarding
the second component of each symbol of Σ′, except that whenever 𝒜 writes
the symbol 𝑎 at the position 𝑖 on the tape, 𝒜′ writes the symbol (𝑎, 𝑖). This
requires to store the current 𝑖 in the state of𝒜′, inducing a polynomial blowup
in 𝑛 for the number of states of 𝒜′. Thanks to the second component, we
indeed have that every cell contains a symbol that is different from any other
cell.

Second, we modify the construction of the MMTℳ𝒜′,𝑤′ as follows. We add
a new timer 𝑦 which we use to force a block acting as a buffer before and
after each action implying the timer 𝑥 when the value of clock is equal to
zero, as illustrated in Figure C.5. Therefore, any input-action must take place
between these two buffers. In order to have enough room for these buffers, we
multiply by three all the values at which the timers 𝑥, 𝑥1, … , 𝑥𝑛 are updated (in
particular 𝑥 is always (re)startedwith value 3 instead of 1). For the initialization
of the timers 𝑥, 𝑥1, … , 𝑥𝑛 (at the start of phase 1), we add new states ⟨𝑟1, 𝑦𝑘⟩
and ⟨𝑞0, 1, 0, 0, 𝑦𝑘⟩, for 𝑘 = 1, 2, and modify the transitions to force 𝑦 to start
and time out, then we force the initialization part and, finally, force 𝑦 to start
and time out again:

𝑟0
𝑔𝑜

−−−→
(𝑥,3)

⟨𝑟1, 𝑦1⟩
𝑔𝑜

−−−→
(𝑦,1)

⟨𝑟1, 𝑦2⟩
to[𝑦]
−−→

⊥
𝑟1

𝑔𝑜
−→ …

𝑔𝑜
−→ 𝑟𝑛

𝑔𝑜
−−−−→
(𝑥𝑛,6𝑗)

⟨𝑞0, 1, 0, 0, 𝑦1⟩
𝑔𝑜

−−−→
(𝑦,1)

⟨𝑞0, 1, 0, 0, 𝑦2⟩
to[𝑦]
−−→

⊥
⟨𝑞0, 1, 0, 0⟩

with 6𝑗 the value at which 𝑥𝑛 must be set (see the proof of Theorem 9.5.1). We
define

𝜒(⟨𝑟1, 𝑦1⟩) = 𝜒(𝑟1) = {𝑥}
𝜒(⟨𝑟1, 𝑦2⟩) = {𝑥, 𝑦}

𝜒(⟨𝑞0, 1, 0, 0, 𝑦1⟩) = 𝜒(⟨𝑞0, 1, 0, 0⟩) = {𝑥, 𝑥1, … , 𝑥𝑛}
and

𝜒(⟨𝑞0, 1, 0, 0, 𝑦2⟩) = {𝑥, 𝑥1, … , 𝑥𝑛, 𝑦}.

In states where clock = 0 in the other phases, we do likewise in the following
way. For each state ⟨𝑞, 𝑖, symbol, 0⟩ of the MMT with symbol > 0, we add
new states ⟨𝑞, 𝑖, symbol, 0, 𝑦𝑘⟩ and ⟨𝑞′, 𝑗, 0, 0, 𝑦𝑘⟩, for 𝑘 = 1, 2, and modify the
transitions to force 𝑦 to start and time out, then allow a 𝑡-transition,8 and,
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finally, force 𝑦 to start and time out again:

⟨𝑞, 𝑖, symbol, 0, 𝑦1⟩
go

−−−→
(𝑦,1)

⟨𝑞, 𝑖, symbol, 0, 𝑦2⟩

to[𝑦]
−−→

⊥
⟨𝑞, 𝑖, symbol, 0⟩

𝑡
−−−−→
(𝑥𝑖,6𝑗)

⟨𝑞′, 𝑗, 0, 0, 𝑦1⟩
go

−−−→
(𝑦,1)

⟨𝑞′, 𝑗, 0, 0, 𝑦2⟩

to[𝑦]
−−→

⊥
⟨𝑞′, 𝑗, 0, 0⟩.

Any to[𝑥]-transition leading to ⟨𝑞, 𝑖, symbol, 0⟩ is instead redirected to the state
⟨𝑞, 𝑖, symbol, 0, 𝑦1⟩. We then define

𝜒(⟨𝑞, 𝑖, symbol, 0, 𝑦1⟩) = 𝜒(⟨𝑞′, 𝑗, 0, 0, 𝑦1⟩) = {𝑥, 𝑥1, … , 𝑥𝑛}
and

𝜒(⟨𝑞, 𝑖, symbol, 0, 𝑦2⟩) = 𝜒(⟨𝑞′, 𝑗, 0, 0, 𝑦2⟩) = {𝑥, 𝑥1, … , 𝑥𝑛, 𝑦}.

Any other transition leads to 𝑟sink .

Third, letℳ′ be the MMT obtained with this modified construction. We now
argue that any padded timed run 𝜌 ∈ ptruns(ℳ′) can be wiggled. We do so
by proving that the block graph of 𝜌 is acyclic In the sequel, we say that two
block 𝐵, 𝐵′ are incomparable if neither 𝐵 ≺ 𝐵′ nor 𝐵′ ≺ 𝐵.

1. Suppose first that 𝜌 does not contain the state 𝑟sink .
▶ Recall that 𝑥 is never discarded and every transition reading to[𝑥]

restarts it. Thus, there exists a single 𝑥-block; we call it 𝐵𝑥. By
construction, none of the to[𝑦]-transitions update 𝑦. Therefore, we
have strictly more than one 𝑦-block. Call them 𝐵1

𝑦, 𝐵2
𝑦, … , 𝐵𝑚𝑦

𝑦
in the order they are seen alongside 𝜌. For any odd 𝑖, it may be
that 𝐵𝑥 ≺ 𝐵𝑖

𝑦 (if the input-action starting 𝑦 occurs at the same
time 𝑥 times out), 𝐵𝑖

𝑦 ≺ 𝐵𝑖+1
𝑦 (if the sum of the delays between

the timeout of 𝑦 in 𝐵𝑖
𝑦 and the go-transition starting 𝐵𝑖+1

𝑦 is zero),
and 𝐵𝑖+1

𝑦 ≺ 𝐵𝑥. However, it is impossible to have 𝐵𝑥 ≺ 𝐵𝑖
𝑦 ≺

𝐵𝑖+1
𝑦 ≺ 𝐵𝑥, as 𝑥 is (re)started with value 3 and there are exactly

two units of time if 𝐵𝑖
𝑦 ≺ 𝐵𝑖+1

𝑦 (since 𝑦 is always started with value
1). That is, we do not have a cycle. Moreover, since the 𝑦-blocks
only appear when the clock component of the current state is zero,
𝐵𝑗

𝑦 and 𝐵𝑗+1
𝑦 are incomparable for every even 𝑗.

▶ Let us now focus on the timers 𝑥𝑖. Since a 𝑡-action can discard 𝑥𝑖,
we may have multiple 𝑥𝑖-blocks, say 𝐵1

𝑥𝑖
, … , 𝐵𝑚𝑥𝑖𝑥𝑖 (again, in the

order they are seen in 𝜌). Since 𝑥𝑖 is updated such that it cannot
time out while the clock component of the current state is zero
(i.e., the timer fate of the corresponding block is ×) and only one
𝑡-transition can occur per phase of 𝒜′, all of the 𝑥𝑖-blocks are
pairwise incomparable. Moreover, thanks to the 𝑦-buffers, 𝐵𝑥 and
any block 𝐵𝑗

𝑥𝑖 are incomparable. As stated before, it may happen
that a 𝑡-transition of some block 𝐵𝑗

𝑥𝑖 occurs concurrently with
an action of a block 𝐵ℓ

𝑦 (resp. 𝐵ℓ+1
𝑦 ) with ℓ an odd number. By

construction, 𝐵ℓ
𝑦 ≺ 𝐵𝑗

𝑥𝑖 (resp. 𝐵𝑗
𝑥𝑖 ≺ 𝐵ℓ+1

𝑦 ). Note that it is possible
that 𝐵ℓ

𝑦 ≺ 𝐵𝑗
𝑥𝑖 ≺ 𝐵ℓ+1

𝑦 if all blocks participate in the same race.
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▶ We now consider two different timers 𝑥𝑖 and 𝑥𝑘. Since the LBTM𝒜′

is such that no two cells contain the same value, it must be that 𝑥𝑖
and 𝑥𝑘 are always updated to time out in states containing different
clock component in 𝒜′ (as, otherwise, this would imply that the
two cells of 𝒜′ contain identical symbols). That is, it is not possible
for two timers to time out concurrently. However, during the
initialization, it may be that the actions starting 𝐵1

𝑥1
, 𝐵1

𝑥2
, … , 𝐵1

𝑥𝑛

occur at the same time. We thus have 𝐵1
𝑥1

≺ 𝐵1
𝑥2

≺ ⋯ ≺ 𝐵1
𝑥𝑛

and
the blocks 𝐵𝑗

𝑥𝑖 and 𝐵ℓ
𝑥𝑘

are incomparable with 𝑗, ℓ > 1.
Using all these facts over the races and ≺, we deduce that 𝐺𝜌 is acyclic,
i.e., 𝜌 can be wiggled.

2. Suppose now that 𝜌 contains the state 𝑟sink . Recall that 𝜒(𝑟sink) = ∅,
meaning that the update of every transition ending in 𝑟sink is ⊥, every
timer is stopped, and every new block started after reaching 𝑟sink contains
exactly one action. We thus focus on the prefix of the run up to the
transition leading to 𝑟sink . Call this last transition 𝑡∗ with action 𝑖∗. By
construction, it must be this prefix is a run that satisfies the constraints
explained above (i.e., there is no cycle in the block graph induced by the
prefix of the run). Let us show that adding 𝑡∗ after the prefix does not
induce a cycle in the block graph.
Suppose first that 𝑖∗ is an input. As the update of 𝑡∗ is ⊥, it must be that
𝑖∗ is the only action of its block, and this block cannot appear in a cycle.
Suppose now that 𝑖∗ is a timeout-action.

▶ Let us study the initialization or a simulation step (i.e., the start
of a phase). Recall that no timer 𝑥𝑖 can time out, i.e., we only
have to consider the timers 𝑥 and 𝑦. In this case, we must have
𝑖∗ = to[𝑥]. Indeed, this happens when a block 𝐵ℓ

𝑦 is started too
late, in a way that to[𝑥] occurs before 𝑦 times out, or when such
a block is not started at all. The only hope to have a cycle is to
adapt to the current situation the discussion we made above about
𝐵𝑥 ≺ 𝐵ℓ

𝑦 ≺ 𝐵ℓ+1
𝑦 ≺ 𝐵𝑥 with ℓ odd. Here, as 𝑖∗ = to[𝑥] stops the

timer 𝑦 and 𝑥 (resp. 𝑦) is (re)started with value 3 (resp. value 1), we
get 𝐵𝑥 ≺ 𝐵ℓ

𝑦 and 𝐵𝑥 ≺ 𝐵ℓ+1
𝑦 . We thus have no cycle.

▶ Otherwise, we consider a state in which the clock value is not zero
(i.e., this is not the start of a phase). By construction, a to[𝑥]-, or any
to[𝑥𝑖]-transition cannot lead to 𝑟sink , and 𝑦 is never started. Thus,
𝑖∗ cannot be a timeout-action in this case.

Hence, we covered every case and never obtained a cycle, i.e., 𝜌 is
wigglable.

We have thus proved that each timed run 𝜌 ∈ ptruns(ℳ′) can be wiggled.

Finally, we add a widget that forces an unwigglable run after 𝑟done . To do so, we
add new timers 𝑧, 𝑧′ and states 𝑠1 to 𝑠4, and define the following transitions

𝑟done
go

−−→
(𝑧,1)

𝑠1
go

−−−→
(𝑧′,1)

𝑠2
to[𝑧′]
−−−→

⊥
𝑠3

to[𝑧]
−−→

⊥
𝑠4.

We define 𝜒(𝑠1) = 𝜒(𝑠3) = {𝑧}, 𝜒(𝑠2) = {𝑧, 𝑧′}, and 𝜒(𝑠4) = ∅. Given a
padded timed run ending in 𝑟done , the only ways to extend it into a padded
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timed run reaching 𝑠4 are by adding the following sequence of transitions,
with any 𝑑 > 0:

(𝑟done, ∅)
go

−−→
(𝑧,1)

(𝑠1, 𝑧 = 1)
0
−→ (𝑠1, 𝑧 = 1)

go
−−−→
(𝑧′,1)

(𝑠2, 𝑧 = 1, 𝑧′ = 1)
1
−→ (𝑠2, 𝑧 = 0, 𝑧′ = 0)

to[𝑧′]
−−−→

⊥
(𝑠3, 𝑧 = 0)

0
−→ (𝑠3, 𝑧 = 0)

to[𝑧]
−−→

⊥
(𝑠4, ∅)

𝑑
−→ (𝑠4, ∅).

(C.7.i)

The resulting padded timed run is not wigglable, as two blocks 𝐵𝑧 and 𝐵𝑧′

have been added such that 𝐵𝑧 ≺ 𝐵𝑧′ ≺ 𝐵𝑧.

To conclude, it remains to prove that the given 𝒜′ accepts the given 𝑤′ if
and only if there exists an unwigglable padded timed run in the MMT ℳ′

extended with the widget. First, suppose that 𝒜′ accepts 𝑤′. Then by the
proof of Theorem 9.5.1, we know that there exists a timed run 𝜌 ∈ truns(ℳ′)
reaching 𝑟done . As both 𝑟0 and 𝑟done do not have any active timer, the first and
last delays of 𝜌 can be made positive, thus making 𝜌 padded. We then extend 𝜌
with (C.7.i) and obtain an unwigglable run that is still padded. Second, suppose
that there exists a padded timed run 𝜌 that cannot be wiggled. We proved
above that if 𝜌 ends in some state of ℳ′, then 𝜌 is wigglable. Therefore, by
construction of the widget, 𝜌 has to end with 𝑠4, meaning that a prefix of 𝜌
reaches 𝑟done . It follows that 𝑤′ is accepted byℳ′. Thus, deciding whether all
padded timed runs of an MMT can be wiggled is a PSPACE-hard problem.

C.8. Proof of Theorem 9.7.5

Theorem 9.7.5. Let ℳ be a complete and sound MMT, and zone(ℳ) be its
zone MMT. Then,

▶ both MMTs ℳ and zone(ℳ) have the same timed behaviors, i.e., it
holds that for every timed word 𝑤, state 𝑞 ∈ 𝑄ℳ, and valuation 𝜅 ∈
Val(𝜒ℳ(𝑞)),

(𝑞ℳ0 , ∅)
𝑤
−→ (𝑞, 𝜅) ∈ truns(ℳ)

if and only if there exists a zone 𝑍 over 𝜒ℳ(𝑞) such that 𝜅 ∈ 𝑍 and

((𝑞ℳ0 , {∅}), ∅)
𝑤
−→ ((𝑞, 𝑍), 𝜅) ∈ truns(zone(ℳ)).

▶ ℳ and zone(ℳ) have the same feasible runs,
▶ zone(ℳ) is sound and complete,
▶ ℳ and zone(ℳ) are symbolically equivalent, and
▶ any run of zone(ℳ) is feasible.

We prove each statement independently and in the order given in the theo-
rem.
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Lemma C.8.1. Let zone(ℳ) be the zone MMT of some sound and complete
MMT ℳ. Then, for every timed word 𝑤, state 𝑞 ∈ 𝑄ℳ, and valuation 𝜅 ∈
Val(𝜒ℳ(𝑞)),

(𝑞ℳ0 , ∅)
𝑤
−→ (𝑞, 𝜅) ∈ truns(ℳ)

if and only if there exists a zone 𝑍 over 𝜒ℳ(𝑞) such that 𝜅 ∈ 𝑍 and

((𝑞ℳ0 , {∅}), ∅)
𝑤
−→ ((𝑞, 𝑍), 𝜅) ∈ truns(zone(ℳ)).

Proof. We focus on the ⇒ direction. The other direction can be obtained
with similar arguments. Let 𝑞 ∈ 𝑄ℳ, 𝜅 ∈ Val(𝜒ℳ(𝑞)), and 𝑤 be a timed
word such that (𝑞ℳ0 , ∅)

𝑤
−→ (𝑞, 𝜅). We show that there exists a zone 𝑍 over

𝜒ℳ(𝑞) such that 𝜅 ∈ 𝑍 and ((𝑞ℳ0 , {∅}), ∅)
𝑤
−→ ((𝑞, 𝑍), 𝜅). We proceed by

induction over the length of 𝑤.
Base case: |𝑤| = 0, i.e., 𝑤 = 𝑑 with 𝑑 ∈ ℝ≥0. Since no timer is active, it is
clear that we have the runs

(𝑞ℳ0 , ∅)
𝑑
−→ (𝑞ℳ0 , ∅) and ((𝑞ℳ0 , {∅}), ∅)

𝑑
−→ ((𝑞ℳ0 , {∅}), ∅),

and ∅ ∈ {∅}.
Induction step: let 𝑘 ∈ ℕ and assume the implication is true for every
timed word of length 𝑘. Let 𝑤 = 𝑤′ ⋅ 𝑖 ⋅ 𝑑 of length 𝑘 + 1, i.e., |𝑤′| = 𝑘,
𝑖 ∈ 𝐴(ℳ), and 𝑑 ∈ ℝ≥0. Then, we have

(𝑞ℳ0 , ∅)
𝑤′

−→ (𝑝, 𝜆)
𝑖

−→
𝑢

(𝑞, 𝜅)
𝑑
−→ (𝑞, 𝜅 − 𝑑).

This implies that 𝑑 ≤ min𝑦∈𝜒ℳ(𝑞) 𝜅(𝑦).9 9: When 𝜒ℳ(𝑞) is empty, we
assume that min𝑦∈𝜒ℳ(𝑞) 𝜅(𝑦) is
equal to +∞.

By induction hypothesis, we have
that

((𝑞ℳ0 , {∅}), ∅)
𝑤′

−→ ((𝑝, 𝑍𝑝), 𝜆)

such that 𝜆 ∈ 𝑍𝑝. It is then sufficient to show that we have

((𝑝, 𝑍𝑝), 𝜆)
𝑖

−→
𝑢

((𝑞, 𝑍), 𝜅)
𝑑
−→ ((𝑞, 𝑍), 𝜅 − 𝑑)

with 𝜅 − 𝑑 ∈ 𝑍.
By construction of the zone MMT and as 𝑝

𝑖
−→ 𝑞 is defined in ℳ, the 𝑖-

transition from (𝑝, 𝑍𝑝) to (𝑞, 𝑍) is defined if and only if 𝑍 is not empty
and

𝑍 =

⎧{{{
⎨{{{⎩

(𝑍𝑝⌈𝜒ℳ(𝑞))↓ if 𝑖 ∈ 𝐼 and 𝑢 = ⊥
((𝑍𝑝[𝑥 = 𝑐])⌈𝜒ℳ(𝑞))↓ if 𝑖 ∈ 𝐼 and 𝑢 = (𝑥, 𝑐)
((to[𝑍𝑝, 𝑥])⌈𝜒ℳ(𝑞))↓ if 𝑖 = to[𝑥] and 𝑢 = ⊥
(((to[𝑍𝑝, 𝑥])[𝑥 = 𝑐])⌈𝜒ℳ(𝑞))↓ if 𝑖 = to[𝑥] and 𝑢 = (𝑥, 𝑐).

Since 𝑍𝑝 is not empty (as 𝜆 ∈ 𝑍𝑝) and (𝑝, 𝜆)
𝑖

−→ can be triggered (meaning
that 𝜆(𝑥) = 0 if 𝑖 = to[𝑥]), we have that 𝑍 is also not empty. Hence,

((𝑝, 𝑍𝑝), 𝜆)
𝑖

−→ ((𝑞, 𝑍), 𝜅) is well-defined and can be triggered.
Let us show that 𝜅 ∈ 𝑍. By definition of a timed run, 𝜅 ∈ Val(𝜒ℳ(𝑞)).
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Moreover, 𝑍 is a zone over 𝜒ℳ(𝑞). We know that 𝜆 ∈ 𝑍𝑝 and 𝜅 is constructed
from 𝜆 by discarding the values for timers that are stopped by the discrete
transition and, maybe, (re)starting a timer. Since 𝑍 is constructed using the
same operations, it follows that 𝜅 ∈ 𝑍.
Finally, we process the delay 𝑑. We already know that 𝑑 ≤ min𝑦∈𝜒ℳ(𝑞) 𝜅(𝑦).
Hence, it is feasible to wait 𝑑 units of time from ((𝑞, 𝑍), 𝜅). Moreover, as 𝑍
is already its downward closure, we still have that 𝜅 − 𝑑 ∈ 𝑍.
We thus obtain the implication. Again, one can show the other direction
using similar arguments, by definition of zone(ℳ). �

From the previous lemma, we conclude that any feasible run of ℳ can be
reproduced in zone(ℳ) and vice-versa. Recall that 𝐴(ℳ) = 𝐴(zone(ℳ)).

Corollary C.8.2. Let ℳ be a sound and complete MMT and zone(ℳ) be its
zone MMT. Then, for all words 𝑤 ∈ 𝐴(ℳ)∗, 𝑞ℳ0

𝑤
−→ 𝑞 is in runs(ℳ) and is

feasible if and only if there exists a zone 𝑍 such that (𝑞ℳ0 , {∅})
𝑤
−→ (𝑞, 𝑍) is in

runs(zone(ℳ)) and is feasible.

Proof. Let 𝑞ℳ0
𝑤
−→ 𝑞 be a feasible run of ℳ. Then, there exists a timed run

(𝑞ℳ0 , ∅)
𝑣
−→ (𝑞, 𝜅) of ℳ. By Lemma C.8.1, it follows that ((𝑞ℳ0 , {∅}), ∅)

𝑣
−→

((𝑞, 𝑍), 𝜅) is a timed run of zone(ℳ) for some zone 𝑍 such that 𝜅 ∈ 𝑍. As 𝑣
and 𝑤 use the same actions, the run (𝑞ℳ0 , {∅})

𝑤
−→ (𝑞, 𝑍) is a feasible run of

zone(ℳ). The other direction holds with similar arguments. �

From Lemma C.8.1, we also deduce that zone(ℳ) is complete.

Lemma C.8.3. Let ℳ be a sound and complete MMT and zone(ℳ) be its
zone MMT. Then, zone(ℳ) is sound and complete.

Proof. Lemma 9.7.4. Let ℳ be a
sound MMT. Then, zone(ℳ)
has finitely many states and
is sound.

By Lemma 9.7.4, we already know that zone(ℳ) is sound. By hypoth-
esis, ℳ is complete. This means that for every 𝑞 ∈ 𝑄ℳ and 𝑖 ∈ 𝐴(ℳ),
we have 𝑞

𝑖
−→ ∈ runs(ℳ) if and only if 𝑖 ∈ 𝐼 ∪ TO[𝜒ℳ

0 (𝑞)]. Let us
show that zone(ℳ) is complete, i.e., for every (𝑞, 𝑍) ∈ 𝑄zone(ℳ) and

𝑖 ∈ 𝐴(zone(ℳ)) = 𝐴(ℳ), we have (𝑞, 𝑍)
𝑖

−→ ∈ runs(zone(ℳ)) if and
only if 𝑖 ∈ 𝐼 ∪ TO[𝜒zone(ℳ)

0 ((𝑞, 𝑍))].
Let (𝑞, 𝑍) be a (reachable) state of zone(ℳ) and 𝑖 ∈ 𝐴(ℳ). We have the
following cases:

▶ 𝑖 ∈ 𝐼, in which case 𝑞
𝑖

−→ ∈ runs(ℳ) asℳ is complete. By construc-

tion of zone(ℳ), it follows that (𝑞, 𝑍)
𝑖

−→ ∈ runs(zone(ℳ)).
▶ 𝑖 = to[𝑥] for some 𝑥 ∈ 𝑋ℳ = 𝑋zone(ℳ). As ℳ is complete, 𝑞

𝑖
−→ ∈

runs(ℳ) if and only if 𝑖 ∈ TO[𝜒ℳ
0 (𝑞)]. That is, 𝑞

𝑖
−→ ∈ runs(ℳ) if and

only if there exist a valuation 𝜅 and a timed word 𝑤 such that 𝜅(𝑥) = 0
and (𝑞ℳ0 , ∅)

𝑤
−→ (𝑞, 𝜅). Let us consider all such pairs of valuation 𝜅 and

timed word 𝑤. We thus have two cases:

• There exist some pair 𝑤, 𝜅 such that 𝜅 ∈ 𝑍. By Lemma C.8.1, we
obtain that (𝑞zone(ℳ)

0 , ∅)
𝑤
−→ ((𝑞, 𝑍), 𝜅). Hence, to[𝑍, 𝑥] ≠ ∅, the
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to[𝑥]-transition is defined from (𝑞, 𝑍), and 𝑥 is enabled in (𝑞, 𝑍).
• Among all pairs 𝑤, 𝜅, no 𝜅 belongs to 𝑍. Then, we deduce that
any timed run (𝑞zone(ℳ)

0 , ∅)
𝑣
−→ ((𝑞, 𝑍), 𝜆) (recall that (𝑞, 𝑍) is

reachable) is such that 𝜆(𝑥) ≠ 0, again by Lemma C.8.1. So,
to[𝑍, 𝑥] = ∅, the to[𝑥]-transition is not defined, and 𝑥 is not
enabled in (𝑞, 𝑍).

Hence, (𝑞, 𝑍)
to[𝑥]
−−→ ∈ runs(zone(ℳ)) if and only if 𝑥 ∈

𝜒zone(ℳ)
0 ((𝑞, 𝑍)).

We conclude that (𝑞, 𝑍)
𝑖

−→ is a run of zone(ℳ) if and only if 𝑖 ∈ 𝐼 ∪
TO[𝜒zone(ℳ)

0 ((𝑞, 𝑍))], i.e., zone(ℳ) is complete. �

Let us now move towards proving thatℳ
sym
≈ zone(ℳ).

Lemma C.8.4. Let ℳ be a sound and complete MMT. Then, ℳ
sym
≈ zone(ℳ).

Proof. We have to show that for every symbolic word i1 ⋯ in over 𝐼 ∪
TO[ℕ>0]:

▶ 𝑞ℳ0
i1/𝑜1−−−→

𝑢1
𝑞1 ⋯

in/𝑜𝑛−−−→
𝑢𝑛

𝑞𝑛 is a feasible run in ℳ if and only if

𝑞zone(ℳ)
0

i1/𝑜′
1−−−→

𝑢′
1

𝑞′
1 ⋯

in/𝑜′
𝑛−−−→

𝑢′𝑛
𝑞′

𝑛 is a feasible run in zone(ℳ).
▶ Moreover,

• 𝑜𝑗 = 𝑜′
𝑗 for all 𝑗 ∈ {1, … , 𝑛}, and

• 𝑞𝑗
ij

−→ ⋯
ik−→ 𝑞𝑘 is spanning ⇒ 𝑢𝑗 = (𝑥, 𝑐) ∧ 𝑢′

𝑗 = (𝑥′, 𝑐′) ∧ 𝑐 = 𝑐′.

Let w = i1 ⋯ in be a symbolic word such that 𝑞ℳ0
w

−→ 𝑞𝑛 is a feasible run

of ℳ. Hence, there exists 𝑤 = 𝑖1 ⋯ 𝑖𝑛 such that 𝑤 = w and 𝑞ℳ0
𝑖1/𝑜1−−−→

𝑢1

𝑞1 ⋯
𝑖𝑛/𝑜𝑛−−−→

𝑢𝑛
𝑞𝑛 is a feasible run of ℳ. By Corollary C.8.2, it follows that

(𝑞ℳ0 , {∅})
𝑖1/𝑜′

1−−−→
𝑢′

1

(𝑞1, 𝑍1) ⋯
𝑖𝑛/𝑜′

𝑛−−−→
𝑢′𝑛

(𝑞𝑛, 𝑍𝑛) is a feasible run of zone(ℳ). By

construction of zone(ℳ), we immediately have that 𝑜𝑗 = 𝑜′
𝑗 and 𝑢𝑗 = 𝑢′

𝑗 for

every 𝑗. Therefore, 𝑖′
1 ⋯ 𝑖′𝑛 = w and (𝑞ℳ0 , {∅})

w

−→ (𝑞𝑛, 𝑍𝑛) is a feasible run
ofℳ. Hence, the direction fromℳ to zone(ℳ) holds. The other direction
follows with the same arguments. We thus conclude thatℳ

sym
≈ zone(ℳ). �

Finally, we show that any run of zone(ℳ) is feasible.

Lemma C.8.5. Let ℳ be a sound and complete MMT. Then, any run of
zone(ℳ) is feasible.

Proof. As all states of zone(ℳ) are reachable, we can restrict the proof to
runs starting at the initial state of zone(ℳ). To get Lemma C.8.5, let us prove
that for any run 𝜋 = (𝑞ℳ0 , {∅})

𝑤
−→ (𝑞, 𝑍) of zone(ℳ), for any 𝜅 ∈ 𝑍, there
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exists a timed run

𝜌 = ((𝑞ℳ0 , {∅}), ∅)
𝑣
−→ ((𝑞, 𝑍), 𝜅)

such that untime(𝜌) = 𝜋. We prove this property by induction over 𝑛 = |𝑤|.
Base case: 𝑛 = 0, i.e., 𝑤 = 𝜀. Let 𝜋 = (𝑞ℳ0 , {∅})

𝜀
−→ (𝑞ℳ0 , {∅}). It is clear

that there exists 𝜌 = ((𝑞ℳ0 , {∅}), ∅)
𝑑
−→ ((𝑞ℳ0 , {∅}), ∅) and ∅ ∈ {∅} for any

𝑑 ∈ ℝ≥0. And we have untime(𝜌) = 𝜋.
Induction step: Let 𝑘 ∈ ℕ and assume the proposition holds for every
word of length 𝑘. Let 𝑤 of length 𝑘 + 1, i.e., we can decompose 𝑤 = 𝑤′ ⋅ 𝑖
with 𝑖 ∈ 𝐴(ℳ) and |𝑤′| = 𝑘. We show that, if 𝜋 = (𝑞ℳ0 , {∅})

𝑤
−→ (𝑞, 𝑍) is a

run and 𝜅 is a valuation in 𝑍, there exists a timed run 𝜌 = ((𝑞ℳ0 , {∅}), ∅)
𝑣
−→

((𝑞, 𝑍), 𝜅) such that untime(𝜌) = 𝜋.

Assume that 𝜋 is a run of zone(ℳ) and let 𝜋′ = (𝑞ℳ0 , {∅})
𝑤′

−→ (𝑝, 𝑍𝑝). Ob-
serve that 𝜋′ is a sub-run of 𝜋. By the induction hypothesis, we know that

for any 𝜆 ∈ 𝑍𝑝, there exists a timed run 𝜌′ = ((𝑞ℳ0 , {∅}), ∅)
𝑣′

−→ ((𝑝, 𝑍𝑝), 𝜆)
such that untime(𝜌′) = 𝜋′. Hence, let us focus on the last transition

(𝑝, 𝑍𝑝)
𝑖

−→ (𝑞, 𝑍) of 𝜋. By construction of zone(ℳ), given (𝑞, 𝑍) and 𝜅 ∈ 𝑍,
we deduce that there exists 𝑑 ∈ ℝ≥0 and 𝜆 ∈ 𝑍𝑝 such that

((𝑝, 𝑍𝑝), 𝜆)
𝑖

−→ ((𝑞, 𝑍), 𝜅 + 𝑑)
𝑑
−→ ((𝑞, 𝑍), 𝜅).

Thus, by the induction hypothesis with this 𝜆, it follows that we have the
timed run

𝜌 = ((𝑞ℳ0 , {∅}), ∅)
𝑣′

−→ ((𝑝, 𝑍𝑝), 𝜆)
𝑖

−→ ((𝑞, 𝑍), 𝜅 + 𝑑)
𝑑
−→ ((𝑞, 𝑍), 𝜅)

such that untime(𝜌) = 𝜋. �

We thus have shown every piece of Theorem 9.7.5.

C.9. Proof of Proposition 10.2.4

Proposition 10.2.4. For any s-learnable MMTs, the three symbolic queries can
be implemented via a polynomial number of concrete output and equivalence
queries.

In order to prove this lemma, we first explain, given a state 𝑞, how to construct
a tiw ensuring that the unique (by carefully choosing delays and leveraging the
fact that the MMT is race-avoiding) timed run reading the tiw ends in 𝑞. The
idea is to leverage the constraints collected on a run from the initial state to 𝑞,
as introduced in Section 9.2.3. More specifically, we add constraints forcing
every delay to be non-zero, in order to guarantee. Then, in Section C.9.2, we
prove the proposition, query type by query type.
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10: In other words, 𝑗 and 𝑘 belong
to the same block.

C.9.1. Construction of a timed run reaching a state

Let
𝜋 = 𝑝0

𝑖1/𝑜1−−−→
𝑢1

𝑝1
𝑖2/𝑜2−−−→

𝑢2
⋯

𝑖𝑛/𝑜𝑛−−−→
𝑢𝑛

𝑝𝑛 ∈ runs(ℳ)

with 𝑝0 = 𝑞ℳ0 (i.e., we start from the initial state). As ℳ is s-learnable, 𝜋 is
feasible. We explain how to construct a tiw 𝑤 such that there exists a unique
run in ℳ reading 𝑤 and whose untimed projection is 𝜋. We do this in two
steps: we first construct a timed word over 𝐴(ℳ) and then transform it to
remove the timeout symbols.

Since 𝜋 is feasible, there exists a timed run

𝜌 = (𝑝0, ∅)
𝑑1−→ (𝑝0, ∅)

𝑖1/𝑜1−−−→
𝑢1

(𝑝1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛/𝑜𝑛−−−→
𝑢𝑛

(𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1)

such that untime(𝜌) = 𝜋. Moreover, as ℳ is race-avoiding, we can assume
that 𝜌 does not have any race, i.e.,

▶ 𝑑𝑗 > 0 for any 𝑗 ∈ {1, … , 𝑛 + 1},
▶ (𝜅𝑗 − 𝑑𝑗+1)(𝑥) = 0 if and only if 𝑖𝑗+1 = to[𝑥] for all 𝑗 ∈ {1, … , 𝑛 − 1}

and some 𝑥 ∈ 𝜒(𝑝𝑗), and
▶ (𝜅𝑛 − 𝑑𝑛+1)(𝑥) ≠ 0 for all 𝑥 ∈ 𝜒(𝑝𝑛).

We can thus refine the constraints already introduced in Section 9.2.3 in order
to ensure that the timed run which can be computed from a solution to cnstr(𝜋)
satisfies the three above items.

Let 𝑤 = 𝑑1𝑖1 ⋯ 𝑑𝑛𝑖𝑛𝑑𝑛+1 be the timed word over 𝐴(ℳ) composed of the
delays and actions seen along 𝜌. Recall that any timeout can only occur if
the timer was started on a previous transition and enough time elapsed, e.g.,
if 𝑢𝑗 = (𝑥, 𝑐), 𝑖𝑘 = to[𝑥], and 𝑥 is not restarted between 𝑖𝑗+1 and 𝑖𝑘 (i.e., the
run from is 𝑝𝑗−1 to 𝑝𝑘 is 𝑥-spanning10), then the sum of the delays 𝑑𝑗+1 to 𝑑𝑘
must be equal to 𝑐. In a similar manner, if 𝑢𝑗 = (𝑥, 𝑐) but there are no 𝑘 such
that 𝑖𝑘 = to[𝑥], then either 𝑥 was restarted, stopped or the run ended before 𝑥
could reach zero. Hence, 𝑤 must satisfy the following set of constraints:

▶ for all 𝑗 ∈ {1, … , 𝑛 + 1}, 𝑑𝑗 ∈ ℝ>0,

▶ for any 𝑗 and 𝑘 such that 𝑝𝑗−1
𝑖𝑗

−−−→
(𝑥,𝑐)

𝑝𝑗
𝑖𝑗+1
−−→ ⋯

𝑖𝑘=to[𝑥]
−−−−→ 𝑝𝑘 is an 𝑥-

spanning run, the sum of the delays 𝑑𝑗+1 to 𝑑𝑘 must be equal to 𝑐, i.e.,
∑𝑘

ℓ=𝑗+1 𝑑ℓ = 𝑐, and
▶ for any 𝑗 such that 𝑢𝑗 = (𝑥, 𝑐) and there is no 𝑘 > 𝑗 such that 𝑖𝑘 = to[𝑥],

then either 𝑥 is restarted or stopped by some transition, or the last action
𝑖𝑛 is read before 𝑐 units of time elapse.

• In the first case, let 𝑘 > 𝑗 such that 𝑖𝑘 ≠ to[𝑥] and 𝑝𝑘−1
𝑖𝑘−→ restarts

or stops 𝑥. Then, the sum of the delays 𝑑𝑗+1 to 𝑑𝑘 must be strictly
less than 𝑐, i.e., ∑𝑘

ℓ=𝑗+1 𝑑ℓ < 𝑐.
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Lemma 9.2.12. Let ℳ be a
sound and complete MMT
and 𝜋 ∈ runs(ℳ). Then,
cnstr(𝜋) has a solution if and
only if 𝜋 is feasible.

11: Asℳ is race-avoiding, we can
wiggle the blocks. In practice, ratio-
nal numbers are sufficient for these
fractional parts and, thus, can be
perfectly encoded in a computer.

• In the second case (so, 𝑥 ∈ 𝜒(𝑝𝑛) and 𝑥 does not time out after
waiting 𝑑𝑛+1), the sum of the delays 𝑑𝑗+1 to 𝑑𝑛+1 must be strictly
less than 𝑐, i.e., ∑𝑛+1

ℓ=𝑗+1 𝑑ℓ < 𝑐.

The differences with the constraints introduced in Section 9.2.3 are that all
delays must be positive, and that the sum of the delays for the last two cases
is strictly smaller than 𝑐, i.e., we explicitly forbid two events to occur at the
same time.

As in Section 9.2.3, observe that these constraints are all linear. Moreover, if
we consider the delays 𝑑𝑗 as variables, one can still gather the constraints and
use them to find a value for each 𝑑𝑗. We again denote by cnstr(𝜋) the set of
constraints for 𝜋 over the variables representing the delays, and Lemma 9.2.12
still holds.

It remains to explain how to construct a tiw 𝑤′ from the timed word 𝑤 =
𝑑1 ⋅ 𝑖1 ⋯ 𝑑𝑛 ⋅ 𝑖𝑛 ⋅ 𝑑𝑛+1 over 𝐴(ℳ), i.e., how to drop the timeouts while still
inducing the same timed run. If 𝑖𝑗 = to[𝑥] for some timer 𝑥, we remove 𝑖𝑗 and
replace the delay 𝑑𝑗 by 𝑑𝑗 +𝑑𝑗+1. We repeat this until all timeouts are removed
from 𝑤. Observe that 𝑤′ contains at most as many symbols as 𝑤 and the sum
of the delays of 𝑤′ is equal to the sum of the delays of 𝑤. To simplify the rest
of this section, we assume from now on that cnstr(𝜋) provides a tiw satisfying
the constraints. Furthermore, for a state 𝑞, we write cnstr(𝑞) to denote a tiw
returned by cnstr(𝜋) with 𝜋 a feasible run from 𝑞0 to 𝑞 (if one exists).

Now, with partial knowledge

The above construction explains how to construct such a run when ℳ is
known. However, during the learning process,ℳ is unknown. In this section,
we explain how to construct a timed run from the data structure introduced
in Section 10.3, i.e., from an observation tree 𝒯 which only holds partial
knowledge onℳ. This will be useful to argue that the symbolic queries can
be implemented with concrete queries by the learner (i.e., without having to
knowℳ).

In other words, the constructed tiws must come from cnstr𝒯(𝑞) with 𝑞 ∈ 𝑄𝒯.
Observe that 𝒯 is race-avoiding whenℳ is race-avoiding. Moreover, due to
the partial knowledge stored in 𝒯, we may not be aware of a timer that is
started inℳ, i.e., we may have

𝑞
𝑖

−→
⊥

∈ runs(𝒯) and 𝑓(𝑞)
𝑔(𝑖)

−−−→
(𝑥,𝑐)

∈ runs(ℳ).

Hence, the constructed tiw from 𝒯 may still induce multiple runs in ℳ. By
relying on the race-avoiding aspect of both 𝒯 and ℳ, we still have a way
to force determinism. In short, we can change the delays to ensure that the
fractional part of the sum of the delays up to an input is unique.11 Then, the
sum of the delays up to any timeout must have a fractional part that is equal
to the fractional part of the delays up to the input that started the timer for
the first time. In other words, all to[𝑥]-transitions that are induced by an input
starting 𝑥 share the same fractional part.
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Formally, let 𝑤 = 𝑑1𝑖1 ⋯ 𝑖𝑛𝑑𝑛+1 be a tiw that is constructed by cnstr𝒯(𝑞), and
𝜌 ∈ tiwrunsℳ(𝑤) be a timed run ofℳ reading 𝑤, i.e.,

𝜌 = (𝑞0, 𝜅0)
𝑑′

1−→ (𝑞0, 𝜅0 − 𝑑′
1)

𝑖′
1−→ ⋯

𝑖′
𝑚−→ (𝑞𝑚, 𝜅𝑚)

𝑑′
𝑚+1

−−−→ (𝑞𝑚, 𝜅𝑚 − 𝑑′
𝑚+1)

with 𝑞0 = 𝑞ℳ0 , 𝜅0 = ∅ such that timeouts are inserted when needed and delays
𝑑𝑖 are split accordingly. Moreover, let us denote by 𝐷𝑗 the sum of all delays
from 𝑑′

1 to 𝑑′
𝑗, and by frac(𝑐) the fractional part 𝑐 − ⌊𝑐⌋ of 𝑐 ∈ ℝ≥0. Notice

that if

𝑞𝑗−1
𝑖′

𝑗
−−−→
(𝑥,𝑐)

⋯
𝑖′

𝑘=to[𝑥]
−−−−→ 𝑞𝑘

with 𝑖′
𝑗 ∈ 𝐼 is 𝑥-spanning, then frac(𝐷𝑗) = frac(𝐷𝑘) (as 𝑐 ∈ ℕ>0 units of time

must have elapsed between the two actions 𝑖′
𝑗 and 𝑖′

𝑘 belonging to the same
block). Moreover, if

𝑞𝑘−1
to[𝑥]

−−−→
(𝑥,𝑐′)

⋯
𝑖′

ℓ=to[𝑥]
−−−−→ 𝑞ℓ

is again 𝑥-spanning, then frac(𝐷𝑗) = frac(𝐷𝑘) = frac(𝐷ℓ). So, if we carefully
select the delays such that every input 𝑖′

𝑗 induces a unique fractional part for 𝐷𝑗,
we ensure that two actions will never happen with a zero-delay between then.
Indeed, if 𝑖𝛼 = to[𝑥] and 𝑖𝛽 = to[𝑦] with 𝑥 ≠ 𝑦, then frac(𝐷𝛼) ≠ frac(𝐷𝛽) and
some time must elapse between the two actions. Hence, 𝑤 can be constructed
from 𝒯 such that ∣toutputsℳ(𝑤)∣ = 1. From now on, we assume that cnstr𝒯(𝑞)
provides such a word.

C.9.2. Simulating symbolic queries with concrete queries

Let us now show that every symbolic query can be implemented via a finite
number of concrete queries.

Symbolic output query

Let us start with symbolic output queries. We recall the definition. For an
sw (symbolic word) w such that 𝜋 = 𝑞ℳ0

w

−→ ∈ runs(ℳ), OQs(w) returns the
sequence of outputs seen along the run 𝜋. We first give the lemma we prove
here.

Lemma C.9.1. A symbolic output query on a symbolic word of length 𝑛 can
be implemented with at most 𝑛 concrete output queries.

Let w be an sw for which we ask OQs(w). Our goal is to construct a tiw 𝑤 such
that reading 𝑤 inℳ yields the timed run

(𝑞ℳ0 , ∅)
𝑑1−→ (𝑞ℳ0 , ∅ − 𝑑1)

𝑖1/𝑜1−−−→ (𝑞1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛/𝑜𝑛−−−→ (𝑞𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑞𝑛, 𝜅𝑛 − 𝑑𝑛+1)
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12: We explain in Section 10.4.1
how to ensure this.
13: If it is not the case, we can
split the symbolic output query
into multiple queries.

14: This may not respect the defi-
nition of an observation tree. How-
ever, we only ask a OQs(w) when
we want to add new nodes in the
tree. Hence, the transition reading
to[𝑥] will be added after the query
and the tree will be well-formed
again.

15: This means that we have to add
timeout symbols when needed.

such that 𝑖1 ⋅ 𝑖2 ⋯ 𝑖𝑛 = w. The sequence of outputs of the timed run is then
the answer that must be returned by OQs(w). That is, the answer to OQs(w) is
exactly OQ(𝑤), with 𝑤 a well-crafter tiw. Hence, our objective is to construct
such a timed input word, from the knowledge stored in the observation tree
𝒯.

Due to how symbolic queries are used during the learning algorithm, we can
assume that 𝑞ℳ0

w

−→ ∈ runs(ℳ).12 Furthermore, we can assume that all but
the last symbol of w is already in the tree.13 That is, let

𝜋𝒯 = 𝑝0
𝑖1−→ 𝑝1

𝑖2−→ ⋯
𝑖𝑛−1−−→ 𝑝𝑛−1 ∈ runs(𝒯)

such that 𝑝0 = 𝑞𝒯0 and 𝑖1 ⋯ 𝑖𝑛−1 is equal to w without its last symbol. For
now, we assume that, if the last symbol of 𝑤 is to[𝑗], the corresponding update
𝑢𝑗 = (𝑥, 𝑐) for some timer 𝑥 and positive natural 𝑐.14 This update can be
learned by first performing a symbolic wait query before the symbolic output
query. We can thus set 𝑖𝑛 to be either 𝑖 if the last symbol of w is 𝑖, or to[𝑥] if
the last symbol of w is to[𝑗] and 𝑢𝑗 = (𝑥, ⋅). Hence,

𝑖1 ⋯ 𝑖𝑛−1 ⋅ 𝑖𝑛 = w.

That is, we retrieve the unique run going from 𝑞𝒯0 to 𝑞, define the missing
symbol 𝑖𝑛, and convert the actions into a well-formed symbolic word.

Let us now construct a tiw 𝑤 such that reading 𝑤 in 𝒯 goes through the
transitions reading the above word 𝑖1 ⋯ 𝑖𝑛−1 ⋅ 𝑖𝑛. There are two possibilities,
depending on 𝑖𝑛:

▶ If 𝑖𝑛 ∈ 𝐼, let 𝑣 = cnstr𝒯(𝑝𝑛−1) be a tiw. By construction, the last delay
of 𝑣 is positive (see the constraints described in Section C.9.1). Hence,
let 𝑤 = 𝑣 ⋅ 𝑖 ⋅ 0 be a tiw in which all delays (except the last) are positive.

▶ If 𝑖𝑛 = to[𝑥] for some 𝑥 ∈ 𝜒𝒯(𝑝𝑛−1), we have to ensure that 𝑥 can time-
out after reading the timed word. Let 𝑗 be the index of the last transition
such that 𝑢𝑗 = (𝑥, 𝑐). We refine the constraints of cnstr𝒯(𝑝𝑛−1) such
that the sum of the delays 𝑑𝑗+1 to 𝑑𝑛 is exactly 𝑐, i.e. 𝑥 can time out at

the end of the timed run. As we assumed that 𝑞ℳ0
w

−→ is a feasible run of
ℳ, these new constraints have a solution. Let 𝑤 be a tiw constructed
from these refined constraints.

We can thus call OQ(𝑤) to obtain a sequence of outputs. However, this
sequence of outputs may contain unexpected outputs. In order to properly
explain this, let us retrieve the timed runs of 𝒯 andℳ reading the tiw 𝑤:15

𝜌𝒯 = (𝑝0, ∅)
𝑑1−→ (𝑝0, ∅)

𝑖1−→ (𝑝1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛−→ (𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1)

𝜌ℳ = (𝑝′
0, ∅)

𝑑′
1−→ (𝑝′

0, ∅)
𝑖′

1−→ (𝑝′
1, 𝜅′

1)
𝑑′

2−→ ⋯
𝑖′

𝑚−→ (𝑝′
𝑚, 𝜅′

𝑚)
𝑑′

𝑚+1
−−−→ (𝑝′

𝑚, 𝜅′
𝑚 − 𝑑′

𝑚+1),

with 𝑝0 = 𝑞𝒯0 and 𝑝′
0 = 𝑞ℳ0 . We highlight that 𝜌ℳ is the unique timed run of

ℳ reading 𝑤 (by the constraints used to construct if; see Section C.9.1), and
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16: An input-transition can never
be unexpected.

17: The constant 𝑐 can be inferred
from the delays in 𝜌𝒯.

𝜌𝒯 is the unique timed run of 𝒯 reading 𝑤.

Since𝒯 only holds partial knowledge aboutℳ, it is possible that the constraints
to build 𝑤 are not enough, in the sense that we wait for too long in some
configuration of the run inℳ. Then,ℳ has to process a timeout-transition
that is unexpected, i.e., there is no timeout-transition at that specific moment
in the run of 𝒯.16 Let 𝑖′

𝑘 = to[𝑥′] be the first unexpected timeout-transition.
Since any to[𝑥′]-transition implies that 𝑥′ was started before, there must exist
an index 𝑗 ∈ {1, … , 𝑘 − 1} such that

(𝑝′
𝑗−1, 𝜅′

𝑗−1)
𝑑′

𝑗
−→ (𝑝′

𝑗−1, 𝜅′
𝑗−1 − 𝑑′

𝑗)
𝑖′

𝑗
−−−→
(𝑥′,𝑐)

⋯
𝑖′

𝑘=to[𝑥′]
−−−−−→

is 𝑥′-spanning. Moreover, as 𝑖′
𝑘 is the first such unexpected timeout, it must be

that 𝑑′
ℓ = 𝑑ℓ for all ℓ ∈ {1, … , 𝑘 − 1}. Finally, by construction of 𝑤, we deduce

that we have
(𝑝𝑗−1, 𝜅𝑗−1)

𝑑𝑗
−→ (𝑝𝑗−1, 𝜅𝑗−1 − 𝑑𝑗)

𝑖𝑗
−→
⊥

in 𝒯. Indeed, otherwise, we would have an update (𝑥, 𝑐) (with the same 𝑐 by
the fact that 𝒯 is an observation tree forℳ), i.e., 𝑖′

𝑘 would not be unexpected,
as both timed runs use the same delays up to that point.

Then, it means that we discovered a new enabled timer in 𝑝𝑘−1. Moreover, we
know, by the fact that each timeout is associated with a unique fractional part,
that it must be the transition reading 𝑖𝑗 that (re)starts a timer. Let 𝑦 be 𝑥𝑝𝑗

if 𝑖𝑗 ∈ 𝐼, and be 𝑥 if 𝑖𝑗 = to[𝑥]. Then, we can create the transition 𝑝𝑘−1
to[𝑦]
−−→

and change the update of the transition reading 𝑖𝑗 to replace ⊥ by an update
(𝑦, 𝑐).17

Hence, if an unexpected timeout occurs, we can addmore nodes and transitions,
and change some updates, which refines the constraints of cnstr𝒯(𝑝𝑛). After
expanding the tree, we create a new tiw 𝑤 as explained above, until there is
no unexpected timeout, i.e., until OQ(𝑤) gives a “good” word, with regards
to what we want to observe. Notice there can only be at most 𝑛 unexpected
timeouts, with 𝑛 the length of the symbolic word, which proves Lemma C.9.1.

Symbolic wait query

Let us proceed with symbolic output queries. We recall the definition. For an

sw (symbolic word) w inducing a concrete run 𝜋 = 𝑞ℳ0
𝑖1−→ ⋯

𝑖𝑛−→ 𝑞𝑛 ∈ runs(ℳ)
such that 𝑖1 ⋯ 𝑖𝑛 = w, WQs(w) returns the set of all pairs (𝑗, 𝑐) such that

𝑞𝑗−1
𝑖𝑗

−−−→
(𝑥,𝑐)

⋯
𝑖𝑛−→ 𝑞𝑛

to[𝑥]
−−→ is 𝑥-spanning. We first give the lemma we prove

here.

Lemma C.9.2. A symbolic wait query (correct up to our guess of Δ) on a
symbolic word of length 𝑛 can be implemented with at most 𝑛2 concrete output
queries.

Let w be an sw for which we want to call WQs(w). Again, we can assume that
𝑞ℳ0

w

−→ is a feasible run ofℳ. Due to how the queries are used during learning,
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Lemma 9.2.12. Let ℳ be a
sound and complete MMT
and 𝜋 ∈ runs(ℳ). Then,
cnstr(𝜋) has a solution if and
only if 𝜋 is feasible.

we can also assume that 𝜋𝒯 = 𝑞𝒯0
w

−→ 𝑞 is a feasible run of 𝒯. The idea is as
follows: we consider every timer 𝑥 that may time out in 𝑞 (i.e., that is started
somewhere along 𝜋𝒯), refine cnstr𝒯(𝑞) such that the block that may be using
𝑥 is started as soon as possible, and ask a concrete output query to the teacher.
We then analyze the returned sequence of outputs to determine whether 𝑥 is
an enabled timer of 𝑞.

Let 𝑣 = cnstr𝒯(𝑞) be a tiw. Let us assume in the following that there is no
unexpected timeout when performing a concrete output query (otherwise, we
can proceed as explained above). So, we have that (𝑞ℳ0 , ∅)

𝑣
−→ (𝑓(𝑞), 𝜅). Recall

that each input in 𝑣 is such that the fractional part of the delays up to the input
is unique. Hence, it is sufficient to wait “long enough” in (𝑓(𝑞), 𝜅) to identify
one potential enabled timer. For now, assume the learner knows a constant Δ
that is at least as large as the largest constant appearing on any update ofℳ.
That is, if we wait Δ units of time in a configuration and no timeout occurs,
then we are sure that 𝜒ℳ

0 (𝑓(𝑞)) = ∅ (i.e., we add Δ to the last delay of 𝑣). We
discuss below how to deduce Δ during the learning process. Moreover, by
the uniqueness of the fractional parts, it is easy to identify which transition
(re)started the timer that times out.

So, we have to explain how to ensure that we eventually observe every enabled
timer of 𝑓(𝑞). Recall that a timer must be started on a transition before 𝑞 to be
potentially active in 𝑞. Thus, we define a set

Potential(𝑞) = {𝑥𝑝 ∣ 𝑝 is an ancestor of 𝑞}

that contains every timer that can be enabled in 𝑞. Our idea is to check each
timer one by one to determine whether it is enabled.

We select any timer 𝑥 from Potential(𝑞) and refine the constraints of cnstr𝒯(𝑞)
to enforce that the last delay is equal to Δ, and the input that initially starts 𝑥
is triggered as soon as possible while still satisfying the other constraints of
cnstr𝒯(𝑞). It may be that the resulting constraints for that 𝑥 are not satisfiable,
meaning by Lemma 9.2.12 that the run ending with to[𝑥] is not feasible and
𝑥 can not be enabled in 𝑞. If there exists a solution, i.e., a tiw 𝑣, we can ask
OQ(𝑤) to obtain a tow 𝜔. By the uniqueness of the fractional parts, it is thus
easy to check whether 𝑥 times out by waiting in 𝑞. So, we can easily deduce
which transition restarts 𝑥. Moreover, from the delays in 𝜔, the constant of
the update restarting 𝑥 can be computed.

We repeat this procedure for every timer in Potential(𝑞). Once this is done, we
know the enabled timers of 𝑞. Let 𝑛 be the number of states in the path from
𝑞0 to 𝑞, i.e., the length of the symbolic word provided as input to the procedure.
The size of Potential(𝑞) is at most 𝑛, and, for every timer 𝑥 in this set, we
require at most 𝑛 concrete output queries (due to the unexpected outputs).
This proves Lemma C.9.2.

Guessing Δ. Let us quickly explain how the learner can infer Δ during the
learning process. At first, Δ can be assumed to be any integer (preferably small
when interacting with real-world systems). At some point, an update (𝑥, 𝑐)
may be learned by performing a wait query (or processing the counterexample
of an equivalence query) with 𝑐 > Δ. That is, we now know that Δ is not
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Proposition 9.4.5. Let ℳ
and𝒩 be two sound and com-
plete MMTs. Ifℳ

sym
≈𝒩, then

ℳ
time
≈ 𝒩.

the largest constant appearing in ℳ. We thus set Δ to be 𝑐. This implies
that a new wait query must be performed in every explored state, in order to
discover potentially missing enabled timers. That is, throughout the learning
algorithm, the set of enabled timers in 𝒯 may be an under-approximation of
the set of enabled timers of the corresponding state inℳ (cf. seismic events
in Algorithm 10.1 which require rebuilding the tree from the root). However,
we will eventually learn the correct value of Δ (cf. Section C.15 for a bound
relative to the unknown ℳ on how many times seismic events and, more
generally, the discovery of new timers, can occur).

Symbolic equivalence query

Finally, let us explain how to do a symbolic equivalence query using a con-
crete equivalence query and knowledge of the MMT. Letℋ be the sound and
complete hypothesis provided to EQs(ℋ). Notice that we don’t even need to
use a concrete equivalence query. Indeed, we can implement a symbolic equiv-
alence algorithm (similar to the reachability algorithm for MMTs explained in
Section 9.5) which will satisfy the required specification. Below we present an
alternative which does make use of a concrete equivalence query (in case one
is already available).

Importantly, when using the alternative solution below, the implemented sym-
bolic equivalence query will return yes if the hypothesis is timed equivalent
to the hidden MMT (as opposed to when they are symbolically equivalent,
cf. Proposition 9.4.5). If they are not timed equivalent, it will construct a
counterexample of symbolic equivalence from the counterexample of timed
equivalence. This is not exactly the specification of the symbolic equivalence
query as in the rest of the paper, but it suffices for our algorithm Algorithm 10.1
to terminate and return an MMT that is timed equivalent to the hidden one
we are trying to learn.

Alternative solution. First, we call EQ(ℋ). If the teacher answers yes,
we also return yes. Otherwise, we need to construct a counterexample of
symbolic equivalence. Let us give the lemma that we prove in this section.

Lemma C.9.3. We need at most one concrete equivalence query to perform
one symbolic equivalence query.

Assume that the teacher answers a tiw 𝑤 such that toutputsℳ(𝑤) differ from
toutputsℋ(𝑤). Asℳ is race-avoiding, we can assume that ∣toutputsℳ(𝑤)∣ = 1.
We thus need to construct from 𝑤 an sw w = i1 ⋯ in such that

▶ either 𝑞ℋ0
w

−→ ∈ runs(ℋ) ⇔ 𝑞ℳ0
w

−→ ∉ runs(ℳ),
▶ or there exists 𝑗 ∈ {1, … , 𝑛} such that

𝑞ℋ0
i1⋯ij−1

−−−−→ 𝑞
ij/𝑜
−−→

𝑢
∈ runs(ℋ),

𝑞ℳ0
i1⋯ij−1

−−−−→ 𝑞′
ij/𝑜′

−−−→
𝑢′

∈ runs(ℳ),

and
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• 𝑜 ≠ 𝑜′, or

• 𝑢 = (𝑥, 𝑐) and 𝑢′ = (𝑥′, 𝑐′) with 𝑐 ≠ 𝑐′, and 𝑞
ij⋯ik

−−−→ is 𝑥-spanning
for some 𝑘 ∈ {𝑗 + 1, … , 𝑛}.

Let

𝜌𝒯 = (𝑞𝒯0 , ∅)
𝑑1−→ (𝑞𝒯0 , ∅)

𝑖1−→ (𝑝1, 𝜅1)
𝑑2−→ ⋯

𝑖𝑛−→ (𝑝𝑛, 𝜅𝑛)
𝑑𝑛+1
−−−→ (𝑝𝑛, 𝜅𝑛 − 𝑑𝑛+1)

be the run reading 𝑤 in 𝒯 and

𝜌ℳ = (𝑞ℳ0 , ∅)
𝑑′

1−→ (𝑞ℳ0 , ∅)
𝑖′

1−→ (𝑝′
1, 𝜅′

1)
𝑑′

2−→ ⋯
𝑖′

𝑚−→ (𝑝′
𝑚, 𝜅′

𝑚)
𝑑′

𝑚+1
−−−→ (𝑝′

𝑚, 𝜅′
𝑚 − 𝑑′

𝑚+1)

be the run ofℳ reading 𝑤. We have the following cases:

▶ If 𝑛 ≠ 𝑚, then there must exist a timeout in one run that has no
corresponding timeout in the other run. Let 𝑗 ∈ {1, … , 𝑛} be the in-
dex of the first such timeout. Then, let w = 𝑖1 ⋯ 𝑖𝑗. It is clear that

𝑞ℋ0
w

−→ ∈ runs(ℋ) ⇔ 𝑞ℳ0
w

−→ ∉ runs(ℳ). Whether this case holds
can be checked by comparing the number of outputs produced byℋ to
that produced byℳ since (yet unknown) timeouts will result in extra
outputs.

▶ If there exists an index 𝑗 such that the sums of delays up to 𝑖𝑗 and up
to 𝑖′

𝑗 are different (meaning that a timeout is unexpected but does not
change the length of the run — this, we can check based on the delays
between observed outputs of the hypothesis andℳ), we have two cases:

• either 𝑖1 ⋯ 𝑖𝑗 ≠ 𝑖′
1 ⋯ 𝑖′

𝑗, in which case we are in a scenario similar
to the previous case,

• or 𝑖1 ⋯ 𝑖𝑗 = 𝑖′
1 ⋯ 𝑖′

𝑗, meaning that there is an index 𝑘 ≤ 𝑗 such that

𝑝𝑘−1
𝑖𝑘−−−→

(𝑥,𝑐)
∈ runs(ℋ)

and

𝑝′
𝑘−1

𝑖′
𝑘−−−−→

(𝑥′,𝑐′)
∈ runs(ℳ)

with 𝑐 ≠ 𝑐′, 𝑖𝑗 = to[𝑥], and 𝑖′
𝑗 = to[𝑥′]. Thus, let w = 𝑖1 ⋯ 𝑖𝑗.

(Notice the same symbolic counterexample works for both cases so
we do not need to distinguish between them.)

▶ If none of the above cases holds, it must be that there exists a 𝑗 such
that:

𝑝𝑗−1
𝑖𝑗/𝑜
−−→ ∈ runs(ℋ)

and

𝑝′
𝑗−1

𝑖′
𝑗/𝑜′

−−−→ ∈ runs(ℳ)

with 𝑜 ≠ 𝑜′. Thus, let w = 𝑖1 ⋯ 𝑖𝑗.
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Proposition 9.4.5. Let ℳ
and𝒩 be two sound and com-
plete MMTs. Ifℳ

sym
≈𝒩, then

ℳ
time
≈ 𝒩.

18: So, 𝑛 = ℓ whenever 𝑤 ⊢
𝑝0 #𝑚 𝑝′

0 due to a condition that
is not (constants), and 𝑛 < ℓ other-
wise.

The construction above establishes the contrapositive of the implication from
Proposition 9.4.5. We refer the interested reader to the formal proof of that
result to convince themselves all cases above are exhaustive.

Note that we only need at most one concrete equivalence query to implement
the symbolic version of the query. This thus proves Lemma C.9.3.

Conclusion

In conclusion, by Lemmas C.9.1 to C.9.3, each symbolic query can be done via a
polynomial number of concrete queries. Hence, we proved Proposition 10.2.4,
which we repeat again.

Proposition 10.2.4. For any s-learnable MMTs, the three symbolic queries can
be implemented via a polynomial number of concrete output and equivalence
queries.

C.10. Proof of Lemma 10.3.13

Lemma 10.3.13. Let 𝑝0, 𝑝′
0, 𝑟0 ∈ 𝑄𝒯, 𝑚 ∶ 𝑝0 ↔ 𝑝′

0 and 𝜇 ∶ 𝑝0 ↔ 𝑟0 be two
matchings such that dom(𝑚) ⊆ dom(𝜇). Let 𝑤 = 𝑖1 ⋯ 𝑖𝑛 be a witness of the

behavioral apartness 𝑝0 #𝑚 𝑝′
0 and read𝑚

𝑝0

𝑤
−→𝑝𝑛

(𝑝′
0) = 𝑝′

0
𝑤′

−→ 𝑝′
𝑛. Let 𝑤𝑥 be

defined as follows:

▶ if 𝑝0 #𝑚 𝑝′
0 due to (constants), 𝑤𝑥 is a word such that 𝑝𝑛−1

𝑖𝑛−→ 𝑝𝑛
𝑤𝑥

−→
is 𝑥-spanning,

▶ otherwise, 𝑤𝑥 = 𝜀.

If read𝜇

𝑝0

𝑤⋅𝑤𝑥
−−−→

(𝑟0) ∈ runs(𝒯) with 𝑟𝑛 ∈ ℰ𝒯, then 𝑝0 #𝜇 𝑟0 or 𝑝′
0 #𝜇∘𝑚−1 𝑟0.

Let 𝑝0, 𝑝′
0, 𝑟0 ∈ 𝑄𝒯, and 𝑚 ∶ 𝑝0 ↔ 𝑝′

0 and 𝜇 ∶ 𝑝0 ↔ 𝑟0 be two matchings
such that dom(𝑚) ⊆ dom(𝜇). Let 𝑤 ⋅ 𝑤𝑥, 𝑤′, and the runs as described in the
statement, 𝑛 = |𝑤|, and ℓ = |𝑤 ⋅ 𝑤𝑥|. Moreover, let 𝑣 be the word labeling the
run from 𝑝0, i.e., such that

read𝜇

𝑝0

𝑤⋅𝑤𝑥
−−−→

(𝑟0) = 𝑟0
𝑣
−→ 𝑟ℓ

We write 𝑤𝑗 (resp. 𝑤′
𝑗, 𝑣𝑗) for a symbol of 𝑤⋅𝑤𝑥 (resp. 𝑤′, 𝑣).18 We then have

𝑝0
𝑤1−→ 𝑝1

𝑤2−→ ⋯
𝑤𝑛−−→ 𝑝𝑛

𝑤𝑛+1
−−−→ ⋯

𝑤ℓ−→ 𝑝ℓ

read𝑚
𝑝0

𝑤
−→𝑝𝑛

(𝑝′
0) = 𝑝′

0
𝑤′

1−→ 𝑝′
1

𝑤′
2−→ ⋯

𝑤′
𝑛−−→ 𝑝′

𝑛

read𝜇

𝑝0

𝑤⋅𝑤𝑥
−−−→𝑝ℓ

(𝑟0) = 𝑟0
𝑣1−→ 𝑟1

𝑣2−→ ⋯
𝑣𝑛−→ 𝑟𝑛

𝑣𝑛+1
−−−→ ⋯

𝑣ℓ−→ 𝑟ℓ

read𝜇∘𝑚−1

𝑝′
0

𝑤′
−→𝑝′𝑛

(𝑟0) = read𝜇

𝑝0

𝑤
−→𝑝𝑛

(𝑟0) = 𝑟0
𝑣1−→ 𝑟1

𝑣2−→ ⋯
𝑣𝑛−→ 𝑟𝑛



C. Technical details and proofs of Chapters 9 and 10 305

with 𝑟𝑛 ∈ ℰ𝒯 (by hypothesis). Observe that the run from 𝑝′
0 does not read 𝑤𝑥

after 𝑝′
𝑛.

A first possibility is that 𝑝0 #𝜇 𝑟0 or 𝑝′
0 #𝜇∘𝑚−1 𝑟0 due to structural apartness

(with 𝑤 ⋅ 𝑤𝑥 or 𝑤′ as witness). If this does not happen, from 𝑤 being a witness
of the behavioral apartness

𝑜 ≠ 𝑜′ (outputs)𝑝0 #𝑚 𝑝′
0, we have to show that 𝑝0 #𝜇 𝑟0 or

𝑝′
0 #𝜇∘𝑚−1 𝑟0 for one case among (outputs), (constants), (sizes),

𝑢 = (𝑥, 𝑐)
∧ 𝑢′ = (𝑥′, 𝑐′)
∧ 𝑐 ≠ 𝑐′

(constants)

or (enabled).

𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯∧

|𝜒0(𝑝𝑛)| ≠ |𝜒0(𝑝′
𝑛)|

(sizes)

We do it by a case analysis.

𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯∧

∃𝑥 ∈ dom(𝑚𝜋
𝜋′) ∶

𝑥 ∈ 𝜒0(𝑝𝑛)
⇔ 𝑚𝜋

𝜋′(𝑥) ∉ 𝜒0(𝑝′
𝑛)

(enabled)

Let 𝑜, 𝑜′, 𝜔 ∈ 𝑂 such that

𝑝𝑛−1
𝑤𝑛/𝑜
−−−→ 𝑝𝑛,

𝑝′
𝑛−1

𝑤′
𝑛/𝑜′

−−−→ 𝑝′
𝑛,

and

𝑟𝑛−1
𝑣𝑛/𝜔
−−−→ 𝑟𝑛.

▶ If 𝑜 ≠ 𝑜′, then, necessarily, 𝜔 ≠ 𝑜 or 𝜔 ≠ 𝑜′ and we can apply (outputs)
to obtain 𝑝0 #𝜇 𝑟0 or 𝑝′

0 #𝜇∘𝑚−1 𝑟0.
▶ If |𝜒0(𝑝𝑛)| ≠ |𝜒0(𝑝′

𝑛)|, then, necessarily, |𝜒0(𝑟𝑛)| ≠ |𝜒0(𝑝𝑛)| or |𝜒0(𝑟𝑛)| ≠
|𝜒0(𝑝′

𝑛)|. As 𝑝𝑛, 𝑝′
𝑛, 𝑟𝑛 ∈ ℰ𝒯, we can apply (sizes) and get 𝑝0 #𝜇 𝑟0 or

𝑝′
0 #𝜇∘𝑚−1 𝑟0.

▶ Suppose now that 𝑝0 #𝑚 𝑝′
0 is due to (enabled).

• If 𝑥 ∈ dom(𝑚) and 𝑥 ∈ 𝜒0(𝑝𝑛) ⇔ 𝑚(𝑥) ∉ 𝜒0(𝑝′
𝑛), then 𝑥 ∈

dom(𝜇) and, necessarily, depending on whether 𝜇(𝑥) ∈ 𝜒0(𝑟𝑛)
or 𝜇(𝑥) ∉ 𝜒0(𝑟𝑛), we have either 𝑥 ∈ 𝜒0(𝑝𝑛) ⇔ 𝜇(𝑥) ∉ 𝜒0(𝑟𝑛)
or 𝑚(𝑥) ∈ 𝜒0(𝑝′

𝑛) ⇔ 𝜇(𝑚−1(𝑚(𝑥))) = 𝜇(𝑥) ∉ 𝜒0(𝑟𝑛). Hence,
(enabled) applies (as 𝑝𝑛, 𝑝′

𝑛, 𝑟𝑛 ∈ ℰ𝒯).
• If 𝑥𝑝𝑘

∈ 𝜒0(𝑝𝑛) ⇔ 𝑥𝑝′
𝑘

∉ 𝜒0(𝑝′
𝑛) for some 𝑘 ∈ {1, … , 𝑛}, we

conclude with arguments similar to the previous case that (enabled)
is also satisfied.

▶ Finally, if none of the above holds, 𝑝0 #𝑚 𝑝′
0 is due to (constants). We

thus have

𝑝𝑛−1
𝑤𝑛−−−→

(𝑥,𝑐)
𝑝𝑛

𝑤𝑛+1
−−−→ ⋯

𝑤ℓ−→ 𝑝ℓ

𝑝′
𝑛−1

𝑤′
𝑛−−−−→

(𝑥′,𝑐′)
𝑝′

𝑛

𝑟𝑛−1
𝑣𝑛−→
𝑢

𝑟𝑛
𝑣𝑛+1
−−−→ ⋯

𝑣ℓ−→ 𝑟ℓ

with 𝑐 ≠ 𝑐′ and 𝑤ℓ = to[𝑥]. Finally, let

𝑦 = {
𝜇(𝑥) if 𝑥 ∈ dom(𝑚)
𝑥𝑟𝑘

if 𝑥 = 𝑥𝑝𝑘
for some 𝑘 ∈ {1, … , 𝑛}

which means that 𝑣ℓ = to[𝑦], i.e.,

𝑣ℓ = {
to[𝜇(𝑥)] if 𝑥 ∈ dom(𝑚)
to[𝑥𝑟𝑘

] if 𝑥 = 𝑥𝑝𝑘
for some 𝑘 ∈ {1, … , 𝑛}.

We argue that 𝑢 = (𝑦, 𝑑) for some constant 𝑑 that is distinct from either
𝑐 or 𝑐′. Once we have this, (constants) applies and we obtain the desired
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19: Recall that timers that are not
started along 𝜋 or 𝜋′ may appear
in the matching, as we consider all
possible pairs (𝑥𝑝𝑘, 𝑥𝑝′

𝑘
).

result. We have three cases:

• If 𝑤𝑛 ∈ 𝐼, it must be that 𝑥 = 𝑥𝑝𝑛
as an input transition can only

start a fresh timer in 𝒯. Then, 𝑣𝑛 = 𝑤𝑛 as 𝑤𝑛 ∈ 𝐼, 𝑤ℓ = to[𝑥𝑝𝑛
],

and 𝑦 = 𝑥𝑟𝑛
. So, 𝑣ℓ = to[𝑥𝑟𝑛

]. Moreover, as the only transition

that can start 𝑥𝑟𝑛
for the first time is 𝑟𝑛−1

𝑣𝑛−→
𝑢

𝑟𝑛, we conclude that
𝑢 = (𝑦, 𝑑) = (𝑥𝑟𝑛

, 𝑑).
• If 𝑤𝑛 = to[𝑥] with 𝑥 ∈ dom(𝑚), then 𝑥 ∈ dom(𝜇), 𝑤𝑛 = 𝑤ℓ =
to[𝑥], and 𝑣𝑛 = 𝑣ℓ = to[𝑦] = to[𝜇(𝑥)]. Assume 𝑢 = ⊥, i.e., we do
not restart 𝑦 from 𝑟𝑛−1 to 𝑟𝑛. In other words, 𝑦 is not active in 𝑟𝑛.
Recall that, in an observation tree, it is impossible to start again
a timer that was previously active (as, for every timer 𝑧, there is
a unique transition that can start 𝑧 for the first time). So, 𝑦 can
not be active in 𝑟ℓ−1. But, then, 𝑣ℓ can not be to[𝑦], which is a
contradiction. Hence, 𝑢 = (𝑦, 𝑑) = (𝜇(𝑥), 𝑑).

• If 𝑤𝑛 = to[𝑥𝑝𝑘
] with 𝑘 ∈ {1, … , 𝑛 − 1}, then 𝑤𝑛 = 𝑤ℓ = to[𝑥𝑝𝑘

]
and 𝑣𝑛 = 𝑣ℓ = to[𝑥𝑟𝑘

]. With arguments similar to the previous
case, we conclude that 𝑢 = (𝑦, 𝑑) = (𝑥𝑟𝑘

, 𝑑).

C.11. Proof of Theorem 10.3.14

Theorem 10.3.14. Let 𝒯 be an observation tree for an s-learnable MMT ℳ
with the functional simulation ⟨𝑓, 𝑔⟩, 𝑝, 𝑝′ ∈ 𝑄𝒯, and 𝑚 ∶ 𝑝 ↔ 𝑝′ be a
matching. If 𝑝 #𝑚 𝑝′, then

▶ 𝑓(𝑝) ≠ 𝑓(𝑝′), or
▶ there is 𝑥 ∈ dom(𝑚) such that 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥)).

Before showing Theorem 10.3.14, we first prove an intermediate result. Recall
that, given two runs of 𝒯

𝜋 = 𝑝0
𝑖1−→ ⋯

𝑖𝑛−→ 𝑝𝑛 and 𝜋′ = 𝑝′
0

𝑖′
1−→ ⋯

𝑖′
𝑛−→ 𝑝′

𝑛,

𝑚𝜋
𝜋′ ∶ 𝜋 ↔ 𝜋′ denotes the matching such that

𝑚𝜋
𝜋′ = 𝑚 ∪ {(𝑥𝑝𝑗

, 𝑥𝑝′
𝑗
) ∣ 𝑗 ∈ {1, … , 𝑛}}

and 𝑖′
𝑗 = 𝑚𝜋

𝜋′(𝑖𝑗) for all 𝑗 ∈ {1, … , 𝑛}. Given such a matching 𝑚𝜋
𝜋′ ∶ 𝜋 ↔ 𝜋′,

the next lemma states that if

▶ 𝑓(𝑝0) = 𝑓(𝑝′
0), i.e., we start at the same state inℳ, and

▶ 𝑚(𝑥) = 𝑚(𝑔(𝑥)) for every 𝑥 ∈ dom(𝑚), i.e., 𝑚 behaves as 𝑔,

then ⟨𝑓, 𝑔⟩(𝜋) = ⟨𝑓, 𝑔⟩(𝜋′) and 𝑚𝜋
𝜋′(𝑥) = 𝑔(𝑚𝜋

𝜋′(𝑥)) for all started 𝑥 ∈
dom(𝑚𝜋

𝜋′).19

Lemma C.11.1. Let 𝑝0, 𝑝′
0 ∈ 𝑄𝒯 and a matching 𝑚 ∶ 𝑝0 ↔ 𝑝′

0 such that
𝑓(𝑝0) = 𝑓(𝑝′

0) and 𝑔(𝑥) = 𝑔(𝑚(𝑥)) for all 𝑥 ∈ dom(𝑚). Moreover, let
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𝑤 = 𝑖1 ⋯ 𝑖𝑛 be a word such that

𝜋 = 𝑝0
𝑖1−→ 𝑝1

𝑖2−→ ⋯
𝑖𝑛−→ 𝑝𝑛 ∈ runs(𝒯), and

𝜋′ = read𝑚
𝜋 (𝑝′

0) = 𝑝′
0

𝑖′
1−→ 𝑝′

1
𝑖′

2−→ ⋯
𝑖′

𝑛−→ 𝑝′
𝑛 ∈ runs(𝒯).

Then, ⟨𝑓, 𝑔⟩(𝜋) = ⟨𝑓, 𝑔⟩(𝜋′) and 𝑔(𝑥) = 𝑔(𝑚𝜋
𝜋′(𝑥)) for all 𝑥 ∈ dom(𝑚𝜋

𝜋′)
with 𝑥 ∈ dom(𝑚) or 𝑥 = 𝑥𝑝𝑘

, 𝑘 ∈ {1, ⋯ , 𝑛}, such that 𝑥𝑝𝑘
is started along 𝜋

and 𝑥′
𝑝𝑘

is started along 𝜋′.

Proof. We prove the lemma by induction over 𝑛, the length of 𝑤.
Base case: |𝑤| = 0, i.e., 𝑤 = 𝜀. We thus have

𝜋 = 𝑝0
𝜀
−→ 𝑝0 and 𝜋′ = 𝑝′

0
𝜀
−→ 𝑝′

0

which means that we have the following runs inℳ

𝑓(𝑝0)
𝜀
−→ 𝑓(𝑝0) and 𝑓(𝑝′

0)
𝜀
−→ 𝑓(𝑝′

0).

As 𝑓(𝑝0) = 𝑓(𝑝′
0), these runs of ℳ are equal. Moreover, as 𝑚𝜋

𝜋′ = 𝑚, the
second part of the lemma holds.
Induction step: Let ℓ ∈ ℕ and assume the lemma holds for length ℓ. Let
𝑣 = 𝑖1 ⋯ 𝑖ℓ+1 = 𝑤 ⋅ 𝑖ℓ+1 be a word of length ℓ + 1 such that

𝑝0
𝑖1−→ ⋯

𝑖ℓ−→ 𝑝ℓ
𝑖ℓ+1
−−→ 𝑝ℓ+1 ∈ runs(𝒯)

and

read𝑚

𝑝0

𝑤⋅𝑖ℓ+1−−−→𝑝ℓ+1

(𝑝′
0) = 𝑝′

0
𝑖′

1−→ ⋯
𝑖′

ℓ−→ 𝑝′
𝑛

𝑖′
ℓ+1

−−→ 𝑝′
ℓ+1 ∈ runs(𝒯).

Let 𝜋 = 𝑝0
𝑤
−→ 𝑝ℓ and 𝜋′ = read𝑚

𝜋 (𝑝′
0) = 𝑝′

0
𝑤′

−→ 𝑝′
ℓ. By the induction

hypothesis with 𝑤, it holds that

▶ the runs ⟨𝑓, 𝑔⟩(𝜋) and ⟨𝑓, 𝑔⟩(𝜋′) are equal, and
▶ 𝑔(𝑥) = 𝑔(𝑚𝜋

𝜋′(𝑥)) for all started timers 𝑥 ∈ dom(𝑚𝜋
𝜋′).

It is thus sufficient to show that

▶ ⟨𝑓, 𝑔⟩(𝑝ℓ
𝑖

−→ 𝑝ℓ+1) = ⟨𝑓, 𝑔⟩(𝑝′
ℓ

𝑖′

−→ 𝑝′
ℓ+1), and

▶ 𝑔(𝑥𝑝ℓ+1
) = 𝑔(𝑥𝑝′

ℓ+1
) if both 𝑥𝑝ℓ+1

and 𝑥𝑝′
ℓ+1

are started, i.e., if 𝑥𝑝ℓ+1
∈

𝜒(𝑝ℓ+1) and 𝑥𝑝′
ℓ+1

∈ 𝜒(𝑝′
ℓ+1).

By definition of read𝑚

𝑝0

𝑤⋅𝑖ℓ+1−−−→𝑝ℓ+1

(𝑝′
0), we have

𝑖′
ℓ+1 =

⎧{
⎨{⎩

𝑖ℓ+1 if 𝑖ℓ+1 ∈ 𝐼
to[𝑚(𝑥)] if 𝑖ℓ+1 = to[𝑥] with 𝑥 ∈ dom(𝑚)
to[𝑥𝑝′

𝑘
] if 𝑖ℓ+1 = to[𝑥𝑝𝑘

] with 𝑘 ∈ {1, … , ℓ}

We can be more precise for the last case, i.e., when 𝑖ℓ+1 = to[𝑥𝑝𝑘
] with

𝑘 ∈ {1, … , ℓ}. As 𝑝ℓ
to[𝑥𝑝𝑘]
−−−−→ ∈ runs(𝒯), it must be that 𝑥𝑝𝑘

∈ 𝜒(𝑝ℓ).
Hence, by definition of an observation tree, 𝑥𝑝𝑘

∈ 𝜒(𝑝𝑘). Likewise, as
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𝑝′
ℓ

to[𝑥𝑝′
𝑘

]
−−−−→ ∈ runs(𝒯), it follows that 𝑥𝑝′

𝑘
∈ 𝜒(𝑥𝑝′

𝑘
). Hence, 𝑔(𝑥𝑝𝑘

) and
𝑔(𝑥𝑝′

𝑘
) are both defined when the third case holds.

By definition of 𝑔, it holds that

𝑔(𝑖ℓ+1) =
⎧{
⎨{⎩

𝑖ℓ+1 if 𝑖ℓ+1 ∈ 𝐼
to[𝑔(𝑥)] if 𝑖ℓ+1 = to[𝑥] with 𝑥 ∈ dom(𝑚)
to[𝑔(𝑥𝑝𝑘

)] if 𝑖ℓ+1 = to[𝑥𝑝𝑘
] with 𝑘 ∈ {1, … , ℓ}

and

𝑔(𝑖′
ℓ+1) =

⎧{
⎨{⎩

𝑖′
ℓ+1 if 𝑖′

ℓ+1 ∈ 𝐼
to[𝑔(𝑚(𝑥))] if 𝑖′

ℓ+1 = to[𝑚(𝑥)] with 𝑥 ∈ dom(𝑚)
to[𝑔(𝑥𝑝′

𝑘
)] if 𝑖′

ℓ+1 = to[𝑥𝑝′
𝑘
] with 𝑘 ∈ {1, … , ℓ}.

We have

▶ 𝑖′
ℓ+1 = 𝑖ℓ+1 if 𝑖ℓ+1 ∈ 𝐼,

▶ 𝑔(𝑚(𝑥)) = 𝑔(𝑥) for all 𝑥 ∈ dom(𝑚) by the lemma statement, and
▶ by the induction hypothesis, 𝑔(𝑥𝑝′

𝑘
) = 𝑔(𝑥𝑝𝑘

) for all 𝑘 ∈ {1, … , ℓ}
such that 𝑥𝑝𝑘

∈ 𝜒(𝑝𝑘) and 𝑥𝑝′
𝑘

∈ 𝜒(𝑝′
𝑘).

It follows that 𝑔(𝑖′
ℓ+1) = 𝑔(𝑖ℓ+1).

As 𝑓(𝑝ℓ) = 𝑓(𝑝′
ℓ) by induction hypothesis and 𝑔(𝑖ℓ+1) = 𝑔(𝑖′

ℓ+1), it holds by
determinism ofℳ that

⟨𝑓, 𝑔⟩(𝑝ℓ
𝑖

−→ 𝑝ℓ+1) = ⟨𝑓, 𝑔⟩(𝑝′
ℓ

𝑖′

−→ 𝑝′
ℓ+1).

To complete the proof of the lemma, it remains to prove that if 𝑥𝑝ℓ+1
∈

𝜒(𝑝ℓ+1) and 𝑥𝑝′
ℓ+1

∈ 𝜒(𝑝′
ℓ+1), then 𝑔(𝑥𝑝ℓ+1

) = 𝑔(𝑥𝑝′
ℓ+1

). We have 𝑥𝑝ℓ+1
∈

𝜒(𝑝ℓ+1) (resp. 𝑥𝑝′
ℓ+1

∈ 𝜒(𝑝′
ℓ+1)) if the update of the transition 𝑝ℓ

𝑖
−→ 𝑝ℓ+1

(resp. 𝑝′
ℓ

𝑖′

−→ 𝑝′
ℓ+1) is equal to (𝑥𝑝ℓ+1

, 𝑐) for some 𝑐 (resp. (𝑥𝑝′
ℓ+1

, 𝑐′) for some
𝑐′). As

⟨𝑓, 𝑔⟩(𝑝ℓ
𝑖

−→ 𝑝ℓ+1) = ⟨𝑓, 𝑔⟩(𝑝′
ℓ

𝑖′

−→ 𝑝′
ℓ+1)

and ⟨𝑓, 𝑔⟩ is a functional ∀𝑞
𝑖/𝑜

−−−→
(𝑥,𝑐)

𝑞′ ∶

𝑓(𝑞)
𝑔(𝑖)/𝑜

−−−−−→
(𝑔(𝑥),𝑐)

𝑓(𝑞′)
(FS3)

simulation, by (FS3), we get that 𝑔(𝑥𝑝ℓ+1
) = 𝑔(𝑥𝑝′

ℓ+1
)

and 𝑐 = 𝑐′. �

We are now ready to prove Theorem 10.3.14, which we repeat again.

Theorem 10.3.14. Let 𝒯 be an observation tree for an s-learnable MMT ℳ
with the functional simulation ⟨𝑓, 𝑔⟩, 𝑝, 𝑝′ ∈ 𝑄𝒯, and 𝑚 ∶ 𝑝 ↔ 𝑝′ be a
matching. If 𝑝 #𝑚 𝑝′, then

▶ 𝑓(𝑝) ≠ 𝑓(𝑝′), or
▶ there is 𝑥 ∈ dom(𝑚) such that 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥)).

Proof. Towards a contradiction, assume

▶ 𝑤 = 𝑖1 ⋯ 𝑖𝑛 ⊢ 𝑝 #𝑚 𝑝′,
▶ 𝑓(𝑝) = 𝑓(𝑝′), and
▶ ∀𝑥 ∈ dom(𝑚) ∶ 𝑔(𝑥) = 𝑔(𝑚(𝑥)).
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Let

𝜋 = 𝑝0
𝑖1−→ ⋯

𝑖𝑛−→ 𝑝𝑛 ∈ runs(𝒯)
and

𝜋′ = read𝑚
𝜋 (𝑝′

0) = 𝑝′
0

𝑖′
1−→ ⋯

𝑖′
𝑛−→ 𝑝′

𝑛 ∈ runs(𝒯)

with 𝑝0 = 𝑝 and 𝑝′
0 = 𝑝′. Both runs exist in 𝒯 as 𝑤 ⊢ 𝑝0 #𝑚 𝑝′

0.20 20: Moreover, they are the unique
runs reading 𝑖1 ⋯ 𝑖𝑛 and 𝑖′

1 ⋯ 𝑖′
𝑛

from 𝑝0 and 𝑝′
0, respectively.

By
Lemma C.11.1, we thus have

⟨𝑓, 𝑔⟩(𝜋) = ⟨𝑓, 𝑔⟩(𝜋′) (C.11.i)

∀𝑥 ∈ dom(𝑚𝜋
𝜋′) ∶ 𝑥 and 𝑚𝜋

𝜋′(𝑥) are started
⇒ 𝑔(𝑥) = 𝑔(𝑚𝜋

𝜋′(𝑥)).
(C.11.ii)

In particular, (C.11.i) holds for the last transition, i.e.,

𝑓(𝑝𝑛−1)
𝑔(𝑖𝑛)/𝑜
−−−−→

𝑢
𝑓(𝑝𝑛) = 𝑓(𝑝′

𝑛−1)
𝑔(𝑖′

𝑛)/𝑜
−−−−→

𝑢
𝑓(𝑝′

𝑛). (C.11.iii)

Notice the same output and update, by determinism ofℳ.
First, if 𝑤 ⊢ 𝑝0 #𝑚 𝑝′

0 is structural, then there must exist a timer 𝑥 ∈
dom(𝑚𝜋

𝜋′) such that 𝑥 𝑡# 𝑚𝜋
𝜋′(𝑥). By definition of the timer apartness, 𝑥 ≠

𝑚𝜋
𝜋′(𝑥) and there must exist a state 𝑞 such that 𝑥, 𝑚𝜋

𝜋′(𝑥) ∈ 𝜒(𝑞).

∀𝑞 ∈ 𝑄𝒯,𝑥, 𝑦 ∈ 𝜒𝒯(𝑞) ∶
𝑥 ≠ 𝑦 ⇒ 𝑔(𝑥) ≠ 𝑔(𝑦)

(FS2)
By (FS2),

𝑔(𝑥) ≠ 𝑔(𝑚𝜋
𝜋′(𝑥)). Hence, we have a contradiction with (C.11.ii).

Hence, assume 𝑤 ⊢ 𝑝0 #𝑚 𝑝′
0 is behavioral. Let us study the different cases.

▶
𝑜 ≠ 𝑜′ (outputs)Assume (outputs) holds, i.e.,

𝑝𝑛−1
𝑖𝑛/𝑜𝑛−−−→ 𝑝𝑛 and 𝑝′

𝑛−1
𝑖′

𝑛/𝑜′
𝑛−−−→ 𝑝′

𝑛

with 𝑜𝑛 ≠ 𝑜′
𝑛.

∀𝑞
𝑖/𝑜

−−−→
(𝑥,𝑐)

𝑞′ ∶

𝑓(𝑞)
𝑔(𝑖)/𝑜

−−−−−→
(𝑔(𝑥),𝑐)

𝑓(𝑞′)
(FS3)

By (FS3), (FS4), and (C.11.iii),

∀𝑞
𝑖/𝑜
−−→

⊥
𝑞′ ∶

𝑓(𝑞)
𝑔(𝑖)/𝑜
−−−→ 𝑓(𝑞′)

(FS4)

we have 𝑜𝑛 = 𝑜 and
𝑜′

𝑛 = 𝑜, which is a contradiction with (C.11.iii).
▶

𝑢 = (𝑥, 𝑐)
∧ 𝑢′ = (𝑥′, 𝑐′)
∧ 𝑐 ≠ 𝑐′

(constants)

Assume (constants) holds, i.e.,

𝑝𝑛−1
𝑖𝑛−−−→

(𝑥,𝑐)
𝑝𝑛 and 𝑝′

𝑛−1
𝑖′

𝑛−−−−→
(𝑥′,𝑐′)

𝑝′
𝑛

with 𝑐 ≠ 𝑐′. By (FS3),

𝑓(𝑝𝑛−1)
𝑔(𝑖𝑛)

−−−−→
(𝑔(𝑥),𝑐)

𝑓(𝑝𝑛) and 𝑓(𝑝′
𝑛−1)

𝑔(𝑖′
𝑛)

−−−−−→
(𝑔(𝑥′),𝑐′)

𝑓(𝑝′
𝑛).

By (C.11.iii), we get (𝑔(𝑥), 𝑐) = (𝑔(𝑥′), 𝑐′), which is a contradiction
with 𝑐 ≠ 𝑐′.

▶

𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯∧

|𝜒0(𝑝𝑛)| ≠ |𝜒0(𝑝′
𝑛)|

(sizes)

Assume (sizes) holds, i.e., 𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯 and ∣𝜒𝒯

0 (𝑝𝑛)∣ ≠ ∣𝜒𝒯
0 (𝑝′

𝑛)∣.
Definition 10.3.6. Let 𝑞 ∈
𝑄𝒯 and 𝜋 be the unique run
from 𝑞𝒯0 to 𝑞 in 𝒯. We say
that 𝑞 is explored if

∣𝜒𝒯
0 (𝑞)∣ = ∣𝜒ℳ

0 (𝑓(𝑞))∣.

Define ℰ𝒯 as the maximal set
of explored states of 𝒯 that
induces a subtree containing

𝑞𝒯0 , i.e., 𝑝 ∈ ℰ𝒯 for all 𝑝
𝑖

−→ 𝑞
with 𝑞 ∈ ℰ𝒯.

By
the definition of explored states (Definition 10.3.6), we have

∣𝜒𝒯
0 (𝑝𝑛)∣ = ∣𝜒ℳ

0 (𝑓(𝑝𝑛))∣
and

∣𝜒𝒯
0 (𝑝′

𝑛)∣ = ∣𝜒ℳ
0 (𝑓(𝑝′

𝑛))∣.

It follows that
∣𝜒ℳ

0 (𝑓(𝑝𝑛))∣ ≠ ∣𝜒ℳ
0 (𝑓(𝑝′

𝑛))∣,
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which is in contradiction with 𝑓(𝑝𝑛) = 𝑓(𝑝′
𝑛).

▶
𝑝𝑛, 𝑝′

𝑛 ∈ ℰ𝒯∧
∃𝑥 ∈ dom(𝑚𝜋

𝜋′) ∶
𝑥 ∈ 𝜒0(𝑝𝑛)

⇔ 𝑚𝜋
𝜋′(𝑥) ∉ 𝜒0(𝑝′

𝑛)

(enabled)

Assume (enabled) holds, i.e., 𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯 and there exists 𝑥 ∈

dom(𝑚𝜋
𝜋′) such that

𝑥 ∈ 𝜒𝒯
0 (𝑝𝑛) ⇔ 𝑚𝜋

𝜋′(𝑥) ∉ 𝜒𝒯
0 (𝑝′

𝑛).

Without loss of generality, suppose 𝑥 ∈ 𝜒𝒯
0 (𝑝𝑛) and 𝑚𝜋

𝜋′(𝑥) ∉ 𝜒𝒯
0 (𝑝′

𝑛).
∀𝑞 ∈ 𝑄𝒯,𝑥, 𝑦 ∈ 𝜒𝒯(𝑞) ∶

𝑥 ≠ 𝑦 ⇒ 𝑔(𝑥) ≠ 𝑔(𝑦)
(FS2)Recall that, by (FS2)

Corollary 10.3.5. Let 𝒯 be
an observation tree for an
s-learnable ℳ with ⟨𝑓, 𝑔⟩.
Then, for all states 𝑞 ∈ 𝑄𝒯,
we have:

▶ ∣𝜒𝒯(𝑞)∣ ≤ ∣𝜒ℳ(𝑓(𝑞))∣,
and

▶ for all 𝑥 ∈ 𝜒𝒯
0 (𝑞), 𝑔(𝑥) ∈

𝜒ℳ
0 (𝑓(𝑞)).

and the second part of Corollary 10.3.5, we have

𝑦 ∈ 𝜒𝒯
0 (𝑞) ⇔ 𝑔(𝑦) ∈ 𝜒ℳ

0 (𝑓(𝑞))

for all 𝑞 ∈ ℰ𝒯 and 𝑦 ∈ dom(𝑔) (see Definition 10.3.6). In order to
leverage this, we thus need to argue that 𝑚𝜋

𝜋′(𝑥) ∈ dom(𝑔), i.e., the
timer is started at some point. There are two cases:

• If 𝑥 ∈ dom(𝑚), then, by definition, 𝑥 ∈ 𝜒𝒯(𝑝0) and 𝑚𝜋
𝜋′(𝑥) =

𝑚(𝑥) ∈ 𝜒𝒯(𝑝′
0). Hence,

𝑔(𝑥) ∈ 𝜒ℳ
0 (𝑓(𝑝𝑛))

and
𝑔(𝑚𝜋

𝜋′(𝑥)) ∉ 𝜒ℳ
0 (𝑓(𝑝′

𝑛))

As 𝑔(𝑚𝜋
𝜋′(𝑥)) = 𝑔(𝑥) and 𝑓(𝑝𝑛) = 𝑓(𝑝′

𝑛), we deduce 𝑔(𝑥) ∉
𝜒ℳ

0 (𝑓(𝑝𝑛)), which is a contradiction.
• If 𝑥 ∉ dom(𝑚), then it must be that 𝑥 = 𝑥𝑝𝑘

for some 𝑘 ∈
{1, … , 𝑛}. Let 𝑘 be the smallest such index. We can assume that
𝑦 ∈ 𝜒𝒯

0 (𝑝𝑛) ⇔ 𝑚(𝑦) ∈ 𝜒𝒯
0 (𝑝′

𝑛) for each 𝑦 ∈ dom(𝑚). That is, we
have

𝑥𝑝𝑘
∈ 𝜒𝒯

0 (𝑝𝑛) ⇔ 𝑥𝑝′
𝑘

∉ 𝜒𝒯
0 (𝑝′

𝑛).

This means that 𝑥𝑝𝑗
∈ 𝜒𝒯

0 (𝑝𝑛) ⇔ 𝑥𝑝′
𝑗

∈ 𝜒𝒯
0 (𝑝′

𝑛) for every 𝑗 ∈
{1, … , 𝑘 − 1}. Recall that we assumed 𝑥𝑝𝑘

∈ 𝜒𝒯
0 (𝑝𝑛) and 𝑥𝑝′

𝑘
∉

𝜒𝒯
0 (𝑝′

𝑛).

By definition of an observation tree, this means that 𝑝𝑛
to[𝑥𝑝𝑘]
−−−−→

𝑝𝑛+1 ∈ runs(𝒯) for some state 𝑝𝑛+1. Moreover, as 𝑓(𝑝𝑛) = 𝑓(𝑝′
𝑛),

𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯, and ∣𝜒𝒯

0 (𝑝𝑛)∣ = ∣𝜒𝒯
0 (𝑝′

𝑛)∣, there exist 𝑥′ ∈ 𝜒𝒯
0 (𝑝′

𝑛)
and 𝑦 ∈ 𝜒ℳ

0 (𝑓(𝑝𝑛)) such that

𝑔(𝑥′) = 𝑔(𝑥𝑝𝑘
) = 𝑦

𝑝′
𝑛

to[𝑥′]
−−−→ 𝑝′

𝑛+1

and

⟨𝑓, 𝑔⟩(𝑝𝑛
to[𝑥𝑝𝑘]
−−−−→ 𝑝𝑛+1) = ⟨𝑓, 𝑔⟩(𝑝′

𝑛
to[𝑥′]
−−−→ 𝑝′

𝑛+1).
That is,

(𝑓(𝑝𝑛) = 𝑓(𝑝′
𝑛))

to[𝑦]
−−→ (𝑓(𝑝𝑛+1) = 𝑓(𝑝′

𝑛+1)).

Let ℓ ∈ {𝑘, … , 𝑛} be the largest index such that

𝑓(𝑝ℓ−1)
𝑔(𝑖ℓ)
−−→
(𝑦,𝑐)

𝑓(𝑝ℓ),
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i.e., ℓ is the index of the last transition before 𝑓(𝑝𝑛) that (re)starts

𝑦. In other words, ⟨𝑓, 𝑔⟩(𝑝ℓ−1
𝑖ℓ⋯𝑖𝑛⋅to[𝑥𝑝𝑘]
−−−−−−−→ 𝑝𝑛+1) is 𝑦-spanning.21 21: Observe that we may have ℓ =

𝑘.As

⟨𝑓, 𝑔⟩(𝑝ℓ−1
𝑖ℓ⋯𝑖𝑛⋅to[𝑥𝑝𝑘]
−−−−−−−→ 𝑝𝑛+1)

= ⟨𝑓, 𝑔⟩(𝑝′
ℓ−1

𝑖′
ℓ⋯𝑖′

𝑛⋅to[𝑥′]
−−−−−−→ 𝑝′

𝑛+1), ⟨𝑓, 𝑔⟩(𝜋) is 𝑦-spanning ⇒
∃𝑥 ∶ 𝜋 is 𝑥-spanning

∧ 𝑔(𝑥) = 𝑦
(FS5)

it follows by (FS5) and (FS2) that

∀𝑞 ∈ 𝑄𝒯,𝑥, 𝑦 ∈ 𝜒𝒯(𝑞) ∶
𝑥 ≠ 𝑦 ⇒ 𝑔(𝑥) ≠ 𝑔(𝑦)

(FS2)

𝑝′
ℓ−1

𝑖′
ℓ⋯𝑖′

𝑛⋅to[𝑥′]
−−−−−−→ 𝑝′

𝑛+1 is 𝑥′-
spanning, and thus

𝑝′
ℓ−1

𝑖′
ℓ−−−→

(𝑥′,𝑐)
𝑝′

ℓ.

In order to obtain a contradiction, let us argue that 𝑥′ = 𝑥𝑝′
𝑘
.

Once we have this equality, we can deduce that 𝑥𝑝′
𝑘

∈ 𝜒𝒯
0 (𝑝′

𝑛)
(as 𝑥′ ∈ 𝜒𝒯

0 (𝑝′
𝑛)), which is a contradiction with our assumption

that 𝑥𝑝′
𝑘

∉ 𝜒𝒯
0 (𝑝′

𝑛). To do so, we start from the 𝑔(𝑖ℓ)-transition

of the run 𝑓(𝑝𝑘−1)
𝑔(𝑖𝑘⋯𝑖𝑛)⋅to[𝑦]
−−−−−−−−→ 𝑓(𝑝𝑛+1) and backtrack until we

identify the transition that initially starts 𝑦.
When we consider 𝑔(𝑖ℓ), we have two cases:

∗ 𝑔(𝑖ℓ) ∈ 𝐼, meaning that 𝑖ℓ = 𝑖′
ℓ = 𝑔(𝑖ℓ) ∈ 𝐼 and the cor-

responding transitions in 𝒯 start a fresh timer. Hence, by
definition of 𝒯, it must be that

𝑝ℓ−1
𝑖ℓ−−−−→

(𝑥𝑝𝑘,𝑐)
𝑝ℓ

for some 𝑐 ∈ ℕ>0. That is, ℓ = 𝑘. Moreover,

𝑝′
ℓ−1

𝑖′
ℓ−−−→

(𝑥′,𝑐)
𝑝′

ℓ

as the sub-run starting with that transition must be 𝑥′-
spanning. Hence, 𝑥′ = 𝑥𝑝′

𝑘
.

∗ 𝑔(𝑖ℓ) ∉ 𝐼, i.e., 𝑔(𝑖ℓ) = to[𝑦] meaning that 𝑖ℓ = to[𝑧] with
𝑔(𝑧) = 𝑦 = 𝑔(𝑥𝑝𝑘

). Since 𝑥𝑝𝑘
and 𝑧 are both active in 𝑝ℓ and

𝑔(𝑥𝑝𝑘
) = 𝑔(𝑧), it must be that 𝑥𝑝𝑘

= 𝑧 by the contrapositive
of (FS2). Likewise, 𝑖′

ℓ = to[𝑥′]. We can thus seek a new

𝑦-spanning run that ends by the transition
to[𝑦]
−−→ 𝑓(𝑝ℓ). Let

𝑗 ∈ {1, … , ℓ − 1} be the index of the first transition of this
𝑦-spanning run. Observe that 𝑗 ≥ 𝑘. Indeed, if 𝑗 < 𝑘, then it
is not possible for 𝑥𝑝𝑘

to be enabled in 𝑝ℓ (by definition of
an observation tree). That is, 𝑗 ∈ {𝑘, … , ℓ − 1}.
When considering the transitions at indices ℓ and 𝑛, and
those at indices 𝑗 and ℓ − 1, we have similar situations:

· 𝑝ℓ−1
to[𝑥𝑝𝑘]
−−−−→ and 𝑝𝑛

to[𝑥𝑝𝑘]
−−−−→,

· 𝑝′
ℓ−1

to[𝑥′]
−−−→ and 𝑝′

𝑛
to[𝑥′]
−−−→,

· (𝑓(𝑝ℓ−1) = 𝑓(𝑝′
ℓ−1))

to[𝑦]
−−→ and (𝑓(𝑝𝑛) = 𝑓(𝑝′

𝑛))
to[𝑦]
−−→,

and
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· none of the updates between 𝑓(𝑝ℓ) and 𝑓(𝑝𝑛) restarts 𝑦,
and likewise between 𝑓(𝑝𝑗) and 𝑓(𝑝ℓ−1).

Hence, we can repeat the same arguments using 𝑗 and ℓ − 1,
instead of ℓ and 𝑛.

That is, we can keep backtracking in 𝒯 until we find a transi-
tion reading a symbol in 𝐼. As we argued, this transition must
necessarily read 𝑖𝑘 (so, ℓ = 𝑘) and we conclude that 𝑥′ = 𝑥𝑝𝑘

.

In every case, we obtain that 𝑥′ = 𝑥𝑝𝑘
. As said above, this is enough

to deduce a contradiction.

In every case, we obtain a contradiction. So, 𝑓(𝑝) ≠ 𝑓(𝑝′) or 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥))
for some 𝑥 ∈ dom(𝑚). �

C.12. Details on replaying a run

Let us first formalize the replay algorithm. Let 𝑝0, 𝑝′
0 ∈ 𝑄𝒯, 𝑚 ∶ 𝑝0 ↔ 𝑝′

0 be

a matching, and 𝑤 = 𝑖1 ⋯ 𝑖𝑛 be a word such that 𝑝0
𝑖1−→ 𝑝1

𝑖2−→ ⋯
𝑖𝑛−→ 𝑝𝑛 ∈

runs(𝒯). We provide a function replay𝑚
𝑝0

𝑤
−→𝑝𝑛

(𝑝′
0) that extends the tree by

replaying the run 𝑝0
𝑤
−→ 𝑝𝑛 from 𝑝′

0 as much as possible, or we discover a new
apartness pair 𝑝0 #𝑚 𝑝′

0, or we discover a new active timer. Intuitively, we
replay the run transition by transition while performing symbolic wait queries
in every reached state in order to determine the enabled timers (which extends
ℰ𝒯). This may modify the number of active timers of 𝑝′

0, meaning that 𝑚 may
become non-maximal. As we are only interested in maximal matchings, we
stop early. This may also induce a new apartness pair 𝑝0 #𝑚 𝑝′

0, and we also
stop early (notice that this may already hold without adding any state in 𝒯). If
the number of active timers of 𝑝′

0 remains unchanged and no new apartness
pair is discovered, we consider the next symbol 𝑖 of 𝑤 and try to replay it.
Determining the next symbol 𝑖′ to use in the run from 𝑝′

0 follows the same
idea as for read𝑚

𝑝0

𝑤
−→𝑝𝑛

(𝑝′
0). If 𝑖 ∈ 𝐼, then 𝑖′ = 𝑖 (recall that it is always possible

to replay 𝑖 asℳ is complete). If 𝑖 = to[𝑥], we have three cases:

▶ 𝑥 ∈ dom(𝑚), in which case 𝑖′ = to[𝑚(𝑥)];
▶ 𝑥 = 𝑥𝑝𝑘

is a fresh timer, i.e., 𝑝𝑘 appears on the run from 𝑝0, in which
case we consider the timer started on the corresponding transition from
𝑝′

0: 𝑖′ = to[𝑥𝑝′
𝑘
];

▶ none of the previous case holds. So, 𝑥 ∈ 𝜒𝒯(𝑝0) ∖ dom(𝑚) and we can
not replay 𝑖.

To avoid this last case, we consider the longest prefix 𝑣 of 𝑤 where each action
𝑖 of 𝑣 is an input or is such that 𝑚(𝑖) is defined or 𝑖 = to[𝑥𝑝𝑘

] for some state
𝑝𝑘.

Formally, assume that we already replayed 𝑝0
𝑖1−→ 𝑝1

𝑖2−→ ⋯
𝑖𝑗−1
−−→ 𝑝𝑗−1 and

obtained the run 𝑝′
0

𝑖′
1−→ 𝑝′

1
𝑖′

2−→ ⋯
𝑖′

𝑗−1
−−→ 𝑝′

𝑗−1, and we try to replay 𝑖𝑗 from 𝑝′
𝑗−1.

We extend the tree with a symbolic output query when 𝑖𝑗 ∈ 𝐼 and a symbolic
wait query in every case. If the wait query leads to a discovery of new active
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Algorithm C.1: Replaying a run 𝑝0
𝑖1⋯𝑖𝑛−−−→ from 𝑝′

0.
1: if 𝑝0 #𝑚 𝑝′

0 then return APART
2: ▷ Longest prefix
3: ℓ ← 0
4: while ℓ < 𝑛 ∧ ¬(∃𝑥 ∈ 𝜒𝒯(𝑝0) ∖ dom(𝑚) ∶ 𝑖ℓ+1 = to[𝑥]) do
5: ℓ ← ℓ + 1
6: for all 𝑗 ∈ {1, … , ℓ} do ▷ Observe that ℓ ≤ 𝑛
7: ▷ Extension of the tree
8: if 𝑖𝑗 ∈ 𝐼 then OQs(𝑝′

𝑗−1, 𝑖𝑗)
9: WQs(𝑝′

𝑗−1)
10: ▷ Can we stop?
11: if the number of active timers in 𝑝′

0 changed then return ACTIVE
12: if 𝑝0 #𝑚 𝑝′

0 then return APART
13: ▷ Next transition
14: if 𝑖𝑗 ∈ 𝐼 then 𝑖′

𝑗 ← 𝑖𝑗
15: else if 𝑖𝑗 = to[𝑥] with 𝑥 ∈ dom(𝑚) then 𝑖′

𝑗 ← to[𝑚(𝑥)]
16: else if ∃𝑘 ∈ {1, … , 𝑗 − 1} ∶ 𝑖 = to[𝑥𝑝𝑘

] then 𝑖′
𝑗 ← to[𝑥𝑝′

𝑘
]

17: Let 𝑝′
𝑗 be the target state of 𝑝′

𝑗−1
𝑖′

𝑗
−→

18: if ℓ = 𝑛 then return DONE
19: else
20: WQs(𝑝′

ℓ)
21: if 𝑝0 #𝑚 𝑝′

0 then return APART else return ACTIVE

timers of 𝑝′
0, we stop and return ACTIVE. If we can already deduce 𝑝0 #𝑚 𝑝′

0
from the replayed part, we also stop and return APART. Since ¬(𝑝0 #𝑚 𝑝′

0)

and by the output and wait queries, there must exist 𝑝𝑗−1
𝑖′

𝑗
−→ such that

▶ 𝑖′
𝑗 = 𝑖𝑗 if 𝑖𝑗 ∈ 𝐼,

▶ 𝑖′
𝑗 = to[𝑚(𝑥)] if 𝑖𝑗 = to[𝑥] (𝑚(𝑥) is well-defined by the considered prefix

𝑣 of 𝑤), or
▶ 𝑖′

𝑗 = to[𝑥𝑝′
𝑘
].

Indeed, if the timeout-transition is not defined, then we have 𝑝𝑛, 𝑝′
𝑛 ∈ ℰ𝒯∧

∃𝑥 ∈ dom(𝑚𝜋
𝜋′) ∶

𝑥 ∈ 𝜒0(𝑝𝑛)
⇔ 𝑚𝜋

𝜋′(𝑥) ∉ 𝜒0(𝑝′
𝑛)

(enabled)

𝑝0 #𝑚 𝑝′
0 by (en-

abled). Hence, we continue the procedure with the next symbol of 𝑤. If
we completely replayed 𝑤 and did not discover any new timer or apartness
pair, we return DONE. Otherwise, we perform one last wait query and check
whether we obtain apartness (by the following lemma, we return ACTIVE
otherwise). Algorithm C.1 gives the pseudo-code.

We now prove Proposition 10.4.7.

Proposition 10.4.7. Let 𝑝0, 𝑝′
0 ∈ 𝑄𝒯, 𝑚 ∶ 𝑝0 ↔ 𝑝′

0 be a maximal matching,
and 𝜋 = 𝑝0

𝑤
−→ ∈ runs(𝒯). Then,

▶ if replay𝑚
𝜋 (𝑝′

0) returns DONE, then read𝑚
𝜋 (𝑝′

0) is now a run of 𝒯.
▶ replay𝑚

𝜋 (𝑝′
0) returns APART or ACTIVE if ∣𝜒𝒯(𝑝0)∣ > ∣𝜒𝒯(𝑝′

0)∣ and 𝑤
ends with to[𝑥] for some 𝑥 ∈ 𝜒𝒯(𝑝0) ∖ dom(𝑚).
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Proof. Observe that the second item follows immediately from the first,
given the fact that Algorithm C.1 processes a proper prefix of 𝑤 in that case.
That is, it is sufficient to show the first item.
Let 𝑤 = 𝑖1 ⋯ 𝑖𝑛 and 𝜋 = 𝑝0

𝑖1−→ 𝑝1
𝑖2−→ ⋯

𝑖𝑛−→ 𝑝𝑛. Towards a contradiction,
assume that replay𝑚

𝜋 (𝑝′
0) = DONE but read𝑚

𝜋 (𝑝′
0) is not a run of 𝒯. Then,

let ℓ ∈ {1, … , 𝑛 − 1} be the largest index such that

read𝑚

𝑝0

𝑖1⋯𝑖ℓ−−−→
(𝑝′

0) = 𝑝′
0

𝑖′
1−→ 𝑝′

1
𝑖′

2−→ ⋯
𝑖′

ℓ−→ 𝑝′
ℓ ∈ runs(𝒯).

Hence,

𝑝0
𝑖1−→ 𝑝1

𝑖2−→ ⋯
𝑖ℓ−→ 𝑝ℓ

𝑖ℓ+1
−−→ ∈ runs(𝒯)

and

read𝑚

𝑝0

𝑖1⋯𝑖ℓ⋅𝑖ℓ+1−−−−−−→
(𝑝′

0) = 𝑝′
0

𝑖′
1−→ 𝑝′

1
𝑖′

2−→ ⋯
𝑖′

ℓ−→ 𝑝′
ℓ

𝑖′
ℓ+1

−−→ ∉ runs(𝒯).

First, if 𝑖ℓ+1 ∈ 𝐼, then we must have performed a symbolic output query

in 𝑝′
ℓ (see Algorithm C.1), i.e., 𝑝′

ℓ
𝑖′

ℓ+1
−−→ ∈ runs(𝒯). Second, if 𝑖ℓ+1 = to[𝑥𝑝𝑘

]
for some 𝑘 ∈ {1, … , ℓ}, then we have that 𝑝0 #𝑚 𝑝′

0
𝑝𝑛, 𝑝′

𝑛 ∈ ℰ𝒯∧
∃𝑥 ∈ dom(𝑚𝜋

𝜋′) ∶
𝑥 ∈ 𝜒0(𝑝𝑛)

⇔ 𝑚𝜋
𝜋′(𝑥) ∉ 𝜒0(𝑝′

𝑛)

(enabled)

by (enabled). Likewise
when 𝑖ℓ+1 = to[𝑥] with 𝑥 ∈ dom(𝑚).
So, assume 𝑖ℓ+1 is the timeout of some timer in 𝜒𝒯(𝑝0) ∉ dom(𝑚). Since
replay𝑚

𝜋 (𝑝′
0) = DONE, we have that ¬(𝑝0 #𝑚 𝑝′

0) and we did not discover a
new active timer in 𝑝′

0. Hence,

∣𝜒𝒯
0 (𝑝ℓ)∣ = ∣𝜒𝒯

0 (𝑝′
ℓ)∣ (C.12.i)

∀𝑦 ∈ dom(𝑚) ∶ 𝑦 ∈ 𝜒𝒯
0 (𝑝ℓ) ⇔ 𝑚(𝑦) ∈ 𝜒𝒯

0 (𝑝′
ℓ), (C.12.ii)

∀𝑘 ∈ {1, … , ℓ} ∶ 𝑥𝑝𝑘
∈ 𝜒𝒯

0 (𝑝ℓ) ⇔ 𝑥𝑝′
𝑘

∈ 𝜒𝒯
0 (𝑝′

ℓ), (C.12.iii)

As 𝑚 is maximal, we deduce from (C.12.ii) and (C.12.iii) that all enabled
timers in 𝑝′

ℓ have their corresponding enabled timer in 𝑝ℓ. However, 𝑥 is an
enabled timer in 𝑝ℓ that does not appear among those corresponding timers
as 𝑥 ∉ dom(𝑚). This is in contradiction with (C.12.i). We thus conclude
that replay𝑚

𝜋 (𝑝′
0) ≠ DONE. �

C.13. Constructing a generalized hypothesis

In this section, we introduce generalized MMTs, and show that a symbolically
equivalent MMT always exists. This MMT suffers a factorial blowup, in general.
We then give the construction of a generalized MMT from 𝒯.

C.13.1. Generalized MMTs

In short, a generalized MMT is similar to an MMT, except that the update of

a transition 𝑞
𝑖

−→ 𝑞′ is now a function instead of a value in (𝑋 × ℕ>0) ∪ {⊥}.
This function dictates which timer is (re)started and how the other timers are
renamed.
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Definition 9.4.2. Two sound
and complete MMTs ℳ and
𝒩 are timed equivalent , de-
noted by ℳ

time
≈ 𝒩, if

and only if toutputsℳ(𝑤) =
toutputs𝒩(𝑤) for all tiws 𝑤.

We adjust the definition of soundMMT to gMMT by requesting that the domain
of such a function is exactly the set of active timers of 𝑞′. Moreover, its range
must be the set of active timers of 𝑞 or a natural constant. That is, each timer
𝑥′ of 𝑞′ must either come from an active timer 𝑥 of 𝑞 (we rename 𝑥 into 𝑥′), or
be (re)started with a constant. We also require that at most one timer is started
per transition, as in MMTs. Finally, if 𝑖 = to[𝑥], we forbid to rename 𝑥 into
𝑥′, i.e., 𝑥′ cannot be obtained from 𝑥: it must be the renaming of some other
timer or be explicitly started by the transition. An example is given below.

Definition C.13.1 (Generalized Mealy machine with timers). A gener-
alized Mealy machine with timers (gMMT, for short) is a tuple ℳ =
(𝐼, 𝑂, 𝑋, 𝑄, 𝑞0, 𝜒, 𝛿) where:

▶ 𝑋 is a finite set of timers (we assume 𝑋 ∩ ℕ>0 = ∅),
▶ 𝑄 is a finite set of states, with 𝑞0 ∈ 𝑄 the initial state,
▶ 𝜒 ∶ 𝑄 → 𝒫(𝑋) is a total function that assigns a finite set of active

timers to each state, and
▶ 𝛿 ∶ 𝑄 × 𝐴(ℳ) ⇀ 𝑄 × 𝑂 × (𝑋 ⇀ (𝑋 ∪ ℕ>0)) is a partial transition

function that assigns a state-output-update triple to a state-action pair.

As usual, we write 𝑞
𝑖/𝑜
−−→

𝔯
𝑞′ if 𝛿(𝑞, 𝑖) = (𝑞′, 𝑜, 𝔯).

We say thatℳ is sound if it holds that

▶ 𝜒(𝑞0) = ∅,
▶ for all 𝑞 −→

𝔯
𝑞′, all of the following holds:

• 𝔯 is injective,
• dom(𝔯) = 𝜒(𝑞′),
• ran(𝔯) ⊂ 𝜒(𝑞) ∪ ℕ>0, and
• there is at most one 𝑥 ∈ dom(𝔯) with 𝔯(𝑥) ∈ ℕ>0,

and
▶ for all 𝑞

to[𝑥]
−−→

𝔯
𝑞′, 𝑥 ∈ 𝜒(𝑞) and 𝑥 ∉ ran(𝔯).

Observe that anMMT is in fact a gMMTwhere all renamingmaps on transitions
coincide with the identity function (except for those mapping to an integer,
which are regular updates).

We now adapt the timed semantics of the model via the following rules. Again,
they are similar to the rules for MMTs, except that we use 𝔯 to rename and
start timers. Let (𝑞, 𝜅), (𝑞′, 𝜅′) be two configurations of a sound gMMT:

▶ (𝑞, 𝜅)
𝑑
−→ (𝑞, 𝜅 − 𝑑), if 𝜅(𝑥) ≥ 𝑑 for every 𝑥 ∈ 𝜒(𝑞),

▶ (𝑞, 𝜅)
𝑖/𝑜
−−→

𝔯
(𝑞′, 𝜅′), if 𝑞

𝑖/𝑜
−−→

𝔯
𝑞′ ∈ runs(ℳ), and

∀𝑥 ∈ 𝜒(𝑞′) ∶ 𝜅′(𝑥) = {
𝔯(𝑥) if 𝔯(𝑥) ∈ ℕ>0

𝜅(𝔯(𝑥)) otherwise.

Moreover, if 𝑖 = to[𝑥], then 𝜅(𝑥) must be 0.

We immediately obtain the definitions of enabled timers and complete gMMT.
Moreover, it is clear that the definition of timed equivalence (Definition 9.4.2)
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𝑞0 𝑞1

𝑞2

𝑞3 𝑞4
𝑖/𝑜

𝑥 ≔ 2

to[𝑥]/𝑜, 𝑦 ≔ 2

𝑖/𝑜
𝑦 ≔ 1

𝑖/𝑜, 𝑦 ≔ 2 to[𝑦]/𝑜, 𝑦 ≔ 2

𝑖/𝑜, 𝑦 ≔ 𝑥, 𝑥 ≔ 2
to[𝑥]/𝑜, 𝑦 ≔ 1

to[𝑦]/𝑜, 𝑦 ≔ 1

𝑖/𝑜, 𝑦 ≔ 1

to[𝑦]/𝑜, 𝑦 ≔ 1

Figure C.6: A generalized MMT with 𝜒(𝑞0) = ∅, 𝜒(𝑞1) = {𝑥}, 𝜒(𝑞2) = 𝜒(𝑞4) = {𝑦}, and 𝜒(𝑞3) = {𝑥, 𝑦}.

Definition 9.4.4. Two sound
and complete MMTs ℳ and
𝒩 are symbolically equiva-
lent , denoted by ℳ

sym
≈ 𝒩,

if for every symbolic word
w = i1 ⋯ in over A,

𝑞ℳ0
i1/𝑜1−−−→

𝑢1
⋯

in/𝑜𝑛−−−→
𝑢𝑛

𝑞𝑛

is a feasible run inℳ (where
every 𝑞𝑗 is a state ofℳ) if and
only if

𝑞𝒩0
i1/𝑜′

1−−−→
𝑢′

1

⋯
in/𝑜′

𝑛−−−→
𝑢′𝑛

𝑞′
𝑛

is feasible in𝒩 (where every
𝑞′

𝑗 is a state of𝒩). Moreover,

▶ 𝑜𝑗 = 𝑜′
𝑗 for all 𝑗 ∈

{1, … , 𝑛}, and
▶ if 𝑞𝑗−1

ij⋯ik

−−−→ 𝑞𝑘 is
spanning, then 𝑢𝑗 =
(𝑥, 𝑐), 𝑢′

𝑗 = (𝑥′, 𝑐′), and
𝑐 = 𝑐′.

can be applied to two sound and complete gMMTs or a gMMT and an MMT,
both sound and complete.

Example C.13.2. Letℳ be the gMMT of Figure C.6 with timers 𝑋 = {𝑥, 𝑦}.
Update functions are shown along each transition. For instance, 𝑥 is started
to 2 by the transition from 𝑞0 to 𝑞1, while the self-loop over 𝑞3 renames 𝑥
into 𝑦 (i.e., 𝑦 copies the current value of 𝑥) and then restarts 𝑥 to 2. Let us
illustrate this with the following timed run:

𝜌 = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖
−→ (𝑞1, 𝑥 = 2)

0.5
−−→ (𝑞1, 𝑥 = 1.5)

𝑖
−→ (𝑞3, 𝑥 = 1.5, 𝑦 = 1)

1
−→ (𝑞3, 𝑥 = 0.5, 𝑦 = 0)

𝑖
−→ (𝑞3, 𝑥 = 2, 𝑦 = 0.5)

0.5
−−→ (𝑞3, 𝑥 = 1.5, 𝑦 = 0)

to[𝑦]
−−→ (𝑞4, 𝑦 = 1)

0
−→ (𝑞4, 𝑦 = 1).

Observe that 𝑦 takes the value of 𝑥 when taking the 𝑖-loop of 𝑞3.
We also highlight that some of the timeout transitions restart a timer that is
not the one timing out, as illustrated by the timed run

𝜌′ = (𝑞0, ∅)
1
−→ (𝑞0, ∅)

𝑖
−→ (𝑞1, 𝑥 = 2)

2
−→ (𝑞1, 𝑥 = 0)

to[𝑥]
−−→ (𝑞2, 𝑦 = 2)

0
−→ (𝑞2, 𝑦 = 2).

It is not hard to see that we have the following enabled timers per state

𝜒0(𝑞0) = ∅ 𝜒0(𝑞1) = {𝑥}
𝜒0(𝑞2) = 𝜒0(𝑞4) = {𝑦} 𝜒0(𝑞3) = {𝑥, 𝑦}.

From there, we conclude thatℳ is complete.

Let us move towards providing a definition of symbolic equivalence (Defi-
nition 9.4.4) between a gMMT and an MMT. First, we adapt the notion of
𝑥-spanning runs. Recall that a run 𝜋 of an MMT is 𝑥-spanning if

𝜋 = 𝑝0
𝑖1−→
𝑢1

𝑝1
𝑖2−→
𝑢2

⋯
𝑖𝑛−→ 𝑝𝑛

with

▶ 𝑢1 = (𝑥, 𝑐) for some 𝑐 ∈ ℕ>0,
▶ 𝑢𝑗 ≠ (𝑥, 𝑐′) for every 𝑗 ∈ {2, … , 𝑛 − 1} and 𝑐′ ∈ ℕ>0,
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▶ 𝑥 ∈ 𝜒(𝑝𝑗) for all 𝑗 ∈ {2, … , 𝑛 − 1}, and
▶ 𝑖𝑛 = to[𝑥].

The adaptation to gMMTs is straightforward: the first transition must start a
timer 𝑥, each update function renames the timer (in a way, 𝑥 remains active
but under a different name), and the final transition reads the timeout of the
timer corresponding to 𝑥. We say that a run 𝜋 of a sound gMMT is spanning
if

𝜋 = 𝑝0
𝑖1−→
𝔯1

𝑝1
𝑖2−→
𝔯2

⋯
𝑖𝑛−→ 𝑝𝑛

and there exist timers 𝑥1, … , 𝑥𝑛 such that

▶ 𝔯1(𝑥1) = 𝑐 for some 𝑐 ∈ ℕ>0,
▶ 𝔯𝑗(𝑥𝑗) = 𝑥𝑗−1 for every 𝑗 ∈ {2, … , 𝑛 − 1} (this implies that 𝑥𝑗 ∈ 𝜒(𝑝𝑗)),

and
▶ 𝑖𝑛 = to[𝑥𝑛−1].

Observe that the notion of symbolic words (Section 9.4.2) still holds using this
definition of spanning runs.

We can thus obtain a definition of symbolic equivalence between a sound and
complete gMMT and a sound and complete MMT as follows. In short, we
impose the same constraints as in Definition 9.4.4:

▶ a run reading a symbolic word exists in the gMMT if and only if one
exists in the MMT,

▶ if they both exist, we must see the same outputs and for transitions
starting a timer that eventually times out during the run (i.e., the sub-
run is spanning), we must have the same constants.

Definition C.13.3 (Symbolic equivalence between gMMT and MMT). Let
ℳ be a sound and complete gMMT and𝒩 be a sound and complete MMT.
We say thatℳ and𝒩 are symbolically equivalent, also denoted byℳ

sym
≈𝒩,

if for every symbolic word w = i1 ⋯ in over 𝐼 ∪ TO[ℕ>0]:

▶ 𝑞ℳ0
i1/𝑜1−−−→

𝔯1
𝑞1 ⋯

in/𝑜𝑛−−−→
𝔯𝑛

𝑞𝑛 is a feasible run inℳ if and only if 𝑞𝒩0
i1/𝑜′

1−−−→
𝑢′

1

𝑞′
1 ⋯

in/𝑜′
𝑛−−−→

𝑢′𝑛
𝑞′

𝑛 is a feasible run in𝒩.

▶ Moreover,

• 𝑜𝑗 = 𝑜′
𝑗 for all 𝑗 ∈ {1, … , 𝑛}, and

• 𝑞𝑗−1
ij⋯ik

−−−→ 𝑞𝑘 is spanning ⇒ ∃𝑥 ∶ 𝔯𝑗(𝑥) = 𝑐 ∧ 𝑢′
𝑗 = (𝑥′, 𝑐′) ∧ 𝑐 =

𝑐′.

We then obtain thatℳ
sym
≈𝒩 implies thatℳ

time
≈ 𝒩, with arguments similar to

those presented in Section C.2.

C.13.2. Existence of a symbolically equivalent Mealy machine
with timers

Letℳ be a sound and complete gMMT. We give a construction of a sound and
complete MMT𝒩 such thatℳ

sym
≈𝒩. Intuitively, we rename the timers ofℳ,
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on the fly, into the timers of𝒩 and keep track in the states of𝒩 of the current
renaming. Due to the fact that each transition ofℳ can freely rename timers,
it is possible that 𝑥 is mapped to 𝑥𝑗 in a state of 𝒩, but mapped to 𝑥𝑘 (with
𝑘 ≠ 𝑗) in some other state. That is, we sometimes need to split states of ℳ
into multiple states in𝒩, accordingly to the update functions. An example is
given below.

Formally, we define𝒩 = (𝐼, 𝑂, 𝑋𝒩, 𝑄𝒩, 𝑞𝒩0 , 𝜒𝒩, 𝛿𝒩) with

▶ 𝑋𝒩 = {𝑥1, … , 𝑥𝑛} with 𝑛 = max𝑞∈𝑄ℳ ∣𝜒ℳ(𝑞)∣.
▶ 𝑄𝒩 is comprised of all (𝑞, 𝜇) such that

• 𝑞 ∈ 𝑄ℳ,
• 𝜇 ∶ 𝜒ℳ(𝑞) ↔ 𝑋𝒩, and
• |ran(𝜇)| = ∣𝜒ℳ(𝑞)∣.

The idea is that 𝜇 dictates how to rename a timer fromℳ into a timer
of 𝒩, for this specific state. As said above, the renaming may change
transition by transition.

▶ 𝑞𝒩0 = (𝑞ℳ0 , ∅).
▶ 𝜒𝒩((𝑞, 𝜇)) = ran(𝜇) for all (𝑞, 𝜇) ∈ 𝑄𝒩. Then, 𝜒𝒩((𝑞, 𝜇)) and 𝜒ℳ(𝑞)

have the same size.
▶ The function 𝛿𝒩 ∶ 𝑄𝒩 × 𝐴(𝒩) ⇀ 𝑄𝒩 × 𝑂 × 𝑈(𝒩) is defined as follows.

Let 𝑞
𝑖/𝑜
−−→

𝔯
𝑞′ be a run ofℳ and (𝑞, 𝜇) ∈ 𝑄𝒩.

• If 𝑖 ∈ 𝐼, we have two different cases depending on whether 𝔯
(re)starts a fresh timer or does not (re)start anything. That is, we
define

𝛿𝒩((𝑞, 𝜇), 𝑖) = ((𝑞′, 𝜇′), 𝑜, 𝑢)

with 𝑢 and 𝜇′ defined as follows.
∗ If 𝔯(𝑥) ∉ ℕ>0 for any timer 𝑥, i.e., the transition does not
(re)start anything, then, in𝒩, we also do not restart anything.
Hence,

𝑢 = ⊥ and 𝜇′ = 𝜇 ∘ 𝔯.

∗ If 𝔯(𝑥) = 𝑐 ∈ ℕ>0 for a timer 𝑥, i.e., the transition of ℳ
(re)starts a fresh timer, then, in 𝒩, we want to start a timer
that is not already tied to some timer. Let 𝜈 = 𝜇 ∘ (𝔯 ∖ {(𝑥, 𝑐)}),
i.e., the matching telling us how to rename every timer, except
𝑥, after taking the transition. As

∣𝑋𝒩∣ = max
𝑝∈𝑄ℳ

∣𝜒ℳ(𝑞)∣

= max
(𝑝,𝜈)∈𝑄𝒩

∣𝜒𝒩((𝑞, 𝜈))∣,

it follows that ∣𝑋𝒩∣ > |ran(𝜈)|. Hence, there exists a timer
𝑥𝑗 ∈ 𝑋𝒩 such that 𝑥𝑗 ∉ ran(𝜈). We then say that 𝑥 is mapped
to 𝑥𝑗 and follow 𝜈 for the other timers. That is,

𝑢 = (𝑥𝑗, 𝑐) and 𝜇′ = 𝜈 ∪ {(𝑥, 𝑥𝑗)}.

• If 𝑖 = to[𝑥], we have two cases depending on whether the transi-
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(𝑞0, ∅) (𝑞1, {(𝑥, 𝑥1)}) (𝑞2, {(𝑦, 𝑥1)})

(𝑞3, {(𝑥, 𝑥1), (𝑦, 𝑥2)})

(𝑞3, {(𝑥, 𝑥2), (𝑦, 𝑥1)})

(𝑞4, {(𝑦, 𝑥1)}) (𝑞4, {(𝑦, 𝑥2)})

𝑖/𝑜
𝑥1 ≔ 2

to[𝑥1]/𝑜
𝑥1 ≔ 2

𝑖/𝑜, 𝑥2 ≔ 1

𝑖/𝑜, 𝑥1 ≔ 2

to[𝑥1]/𝑜, 𝑥1 ≔ 2

𝑖/𝑜, 𝑥2 ≔ 2

to[𝑥1]/𝑜
𝑥1 ≔ 1

to[𝑥2]/𝑜
𝑥2 ≔ 1

𝑖/𝑜, 𝑥1 ≔ 2
to[𝑥1]/𝑜, 𝑥1 ≔ 1 to[𝑥2]/𝑜, 𝑥2 ≔ 1

𝑖/𝑜, 𝑥1 ≔ 1

to[𝑥1]/𝑜, 𝑥1 ≔ 1

𝑖/𝑜, 𝑥2 ≔ 1

to[𝑥2]/𝑜, 𝑥2 ≔ 1

Figure C.7: The MMT obtained from the gMMT of Figure C.6.

tion start a timer, or not. That is, we define 𝛿𝒩((𝑞, 𝜇), to[𝜇(𝑥)]) =
((𝑞′, 𝜇′), 𝑜, 𝑢) with 𝑢 and 𝜇′ defined as follows.

∗ If 𝔯(𝑦) ∉ ℕ>0 for any timer 𝑦, then, in 𝒩, we do not restart
anything. Hence,

𝑢 = ⊥ and 𝜇′ = 𝜇 ∘ 𝔯.

∗ If 𝔯(𝑦) = 𝑐 ∈ ℕ>0 for some timer 𝑦, then, in 𝒩, we want to
restart 𝑥. That is, we restart the timer that times out. Again,
the remaining timers simply follow 𝔯. Hence,

𝑢 = (𝜇(𝑥), 𝑐)
and

𝜇′ = (𝜇 ∘ (𝔯 ∖ {(𝑦, 𝑐)})) ∪ {(𝑦, 𝜇(𝑥))}.

In order to obtain a deterministic procedure, let us assume that the fresh timer
𝑥𝑗 is picked with the smallest possible 𝑗.

Example C.13.4.

𝑞0
𝑞1𝑞2

𝑞3
𝑞4

𝑖/𝑜
𝑥

≔
2

to[𝑥]/𝑜,𝑦
≔

2

𝑖/𝑜
𝑦

≔
1

𝑖/𝑜,𝑦
≔

2
to[𝑦]/𝑜,𝑦

≔
2

𝑖/𝑜,𝑦
≔

𝑥,𝑥
≔

2
to[𝑥]/𝑜,𝑦

≔
1

to[𝑦]/𝑜,𝑦
≔

1 𝑖/𝑜,𝑦
≔

1

to[𝑦]/𝑜,𝑦
≔

1

Let ℳ be the gMMT of Figure C.6, which is repeated in
the margin. Let us construct the MMT𝒩 according to the above procedure,
using 𝑋𝒩 = {𝑥1, 𝑥2} as the set of timers.
We start with the initial state (𝑞0, ∅) of 𝒩. The only outgoing transition

of 𝑞0 is 𝑞0
𝑖/𝑜

−−−→
(𝑥,2)

𝑞1. That is, this transition starts a fresh timer. Hence, we

define
(𝑞0, ∅)

𝑖/𝑜
−−−→
(𝑥1,2)

(𝑞1, {(𝑥, 𝑥1)}).

Then, we consider the transition 𝑞1
to[𝑥]/𝑜
−−−−→

(𝑦,2)
ofℳ, which yields the transition

(𝑞1, {(𝑥, 𝑥1)})
to[𝑥1]/𝑜
−−−−→

(𝑥1,2)
(𝑞2, {(𝑦, 𝑥1)}).
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Indeed, we use {(𝑥, 𝑥1)} to know that to[𝑥] must become to[𝑥1]. As the
transition inℳ starts a timer 𝑦, the transition in𝒩 must restart 𝑥1 and the
target state remembers that 𝑦 is now mapped to 𝑥1.

The transition 𝑞1
𝑖/𝑜

−−−→
(𝑦,1)

𝑞3 starts a fresh timer. Hence,

(𝑞1, {(𝑥, 𝑥1)})
𝑖/𝑜

−−−→
(𝑥2,1)

(𝑞3, {(𝑥, 𝑥1), (𝑦, 𝑥2)}).

On the contrary, the transition 𝑞3
𝑖/𝑜

−−−−−−→
(𝑦,𝑥),(𝑥,2)

𝑞3 renames 𝑥 into 𝑦 and then

restarts 𝑥 to 2. So, from (𝑞3, {(𝑥, 𝑥1), (𝑦, 𝑥2)}) in𝒩, we must remember that
𝑦 is now mapped to 𝑥1, while 𝑥 is now 𝑥2, as

𝑥2 ∉ ran({(𝑥, 𝑥1), (𝑦, 𝑥2)} ∘ {(𝑦, 𝑥)}) = ran({(𝑦, 𝑥1)}) = {𝑥1}.

That is, we define

(𝑞3, {(𝑥, 𝑥1), (𝑦, 𝑥2)})
𝑖/𝑜

−−−→
(𝑥2,2)

(𝑞3, {(𝑥, 𝑥2), (𝑦, 𝑥1)}).

In other words, the value of 𝑥1 is left unchanged (as 𝑥 is renamed into 𝑦)
while 𝑥2 is overwritten. Moreover, we indeed swap 𝑥 and 𝑦 in the target
state. Then, using similar arguments, the same 𝑖-loop over 𝑞3 induces an
other transition that again swaps 𝑥 and 𝑦:

(𝑞3, {(𝑥, 𝑥2), (𝑦, 𝑥1)})
𝑖/𝑜

−−−→
(𝑥1,2)

(𝑞3, {(𝑥, 𝑥1), (𝑦, 𝑥2)}).

This time, we restart 𝑥1 as

𝑥1 ∉ ran({(𝑥, 𝑥2), (𝑦, 𝑥1)} ∘ {(𝑦, 𝑥)}) = ran({(𝑦, 𝑥2)}) = {𝑥2}.

Finally, we highlight that 𝑞4 is split into (𝑞4, {(𝑦, 𝑥1)}) and (𝑞4, {(𝑦, 𝑥2)})
due to the two timeout-transitions from 𝑞3 to 𝑞4 inℳ.

It should be clear thatℳ is sound and complete since𝒩 is sound and complete
(and one can obtainℳ back from𝒩 as a sort of homomorphic image of𝒩).

Proposition C.13.5. Let ℳ be a sound and complete gMMT and 𝒩 be the
MMT constructed as explained above. Then, 𝒩 is sound, complete, and its
number of states is in 𝒪 (𝑛! ⋅ ∣𝑄ℳ∣) with 𝑛 = max𝑞∈𝑄ℳ ∣𝜒ℳ(𝑞)∣.

The following lemma highlights the relation between a transition ofℳ and a
corresponding transition in𝒩. It holds by construction of𝒩.

Lemma C.13.6. Let (𝑞, 𝜇) ∈ 𝑄𝒩 and 𝑞
𝑖/𝑜
−−→

𝔯
𝑞′ ∈ runs(ℳ). Then, we have

the transition
(𝑞, 𝜇)

𝑖′/𝑜′

−−−→
𝑢

(𝑞′, 𝜇′) ∈ runs(𝒩)

with 𝑜 = 𝑜′, and 𝑖′ and 𝑢 defined as follows.
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▶ If 𝑖 ∈ 𝐼, then 𝑖′ = 𝑖 and

𝑢 =
⎧{
⎨{⎩

(𝑥, 𝑐) with 𝑥 ∉ ran(𝜇 ∘ 𝔯), if there exists 𝑥 such that
𝔯(𝑥) = 𝑐 ∈ ℕ>0

⊥ if ∀𝑥 ∶ 𝔯(𝑥) ∉ ℕ>0.

▶ If 𝑖 = to[𝑥], then 𝑖′ = to[𝜇(𝑥)] and

𝑢 = {
(𝜇(𝑥), 𝑐) if there is a timer 𝑦 such that 𝔯(𝑦) = 𝑐
⊥ if ∀𝑥 ∶ 𝔯(𝑥) ∉ ℕ>0.

Then, by applying this lemma over and over on each transition along a run,
we obtain that we always see the same outputs and the same updates in both
machines.

Corollary C.13.7. For every symbolic word w = i1 ⋯ in, we have

𝑞ℳ0
i1/𝑜1−−−→

𝔯1
𝑞1

i2/𝑜2−−−→
𝔯2

⋯
in/𝑜𝑛−−−→

𝔯𝑛
𝑞𝑛 ∈ runs(ℳ)

⇔ (𝑞ℳ0 , ∅)
i1/𝑜1−−−→

𝑢1
(𝑞1, 𝜇1)

i2/𝑜2−−−→
𝑢2

⋯
in/𝑜𝑛−−−→

𝑢𝑛
(𝑞𝑛, 𝜇𝑛) ∈ runs(𝒩)

with 𝑢𝑗 defined as follows for every 𝑗:

▶ If ij ∈ 𝐼, then

𝑢𝑗 =
⎧{
⎨{⎩

(𝑥𝑘, 𝑐) for some 𝑥𝑘 ∉ ran(𝜇𝑗−1 ∘ 𝔯𝑗), if there exists 𝑥
such that 𝔯𝑗(𝑥) = 𝑐 ∈ ℕ>0

⊥ if ∀𝑥 ∶ 𝔯𝑗(𝑥) ∉ ℕ>0.

▶ If ij = to[𝑘], then

𝑢𝑗 =

⎧{{
⎨{{⎩

(𝑥, 𝑐) if there exists 𝑥 such that 𝔯𝑗(𝑥) = 𝑐 ∈ ℕ>0 and

(𝑞𝑘−1, 𝜇𝑘−1)
𝑖𝑘−−−→

(𝑥,𝑐′)

⊥ if ∀𝑥 ∶ 𝔯𝑗(𝑥) ∉ ℕ>0.

This directly implies that if a run is feasible in ℳ, the corresponding run is
also feasible in𝒩, and vice-versa.

Corollary C.13.8. For any symbolic word w, 𝑞ℳ0
w

−→ ∈ runs(ℳ) is feasible if
and only if 𝑞𝒩0

w

−→ ∈ runs(𝒩) is feasible.

This is enough to obtain the desired result: ℳ
sym
≈ 𝒩, as any run in one can

be reproduced in the other, and we see the same outputs and updates (for
spanning sub-runs) along these runs.

Corollary C.13.9. ℳ
sym
≈𝒩.
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Definition 10.4.4. In order
to be able to construct a hy-
pothesis from the observa-
tion tree, we will ensure that
the following requirements
are met:

Explored each basis and
frontier state is explored, i. e.,
ℬ𝒯 ∪ ℱ𝒯 ⊆ ℰ𝒯, in order to
discover timers as quickly as
possible,
Complete the basis is com-
plete, in the sense that 𝑝

𝑖
−→

is defined for every 𝑖 ∈ 𝐼 ∪
TO[𝜒𝒯

0 (𝑝)], and
Active timers for every 𝑟 ∈
ℱ𝒯, compat𝒯(𝑟) ≠ ∅ and
∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑟)∣ for every
(𝑝, 𝑚) ∈ compat𝒯(𝑟).

C.13.3. Construction of a gMMT hypothesis

Let us now describe how a sound and complete gMMTℋ is constructed from
𝒯. As in Section 10.4.3, we assume that the observation tree satisfies the
requirements of Definition 10.4.4. Observe that for any (𝑝, 𝑚) ∈ compat𝒯(𝑟),
𝑚 is necessarily bijective, for every frontier state 𝑟.

The idea is to use the set of basis states as the states of ℋ, with exactly the
same active timers per state (that is, we do not perform any global renaming).
Then,

▶ for any transition 𝑞
𝑖/𝑜
−−→

𝑢
𝑞′ ∈ runs(𝒯) with 𝑞, 𝑞′ ∈ ℬ𝒯 and 𝑢 = (𝑥, 𝑐),

the update function of the transition ofℋ also (re)starts 𝑥 to 𝑐, and does
not change the other timers, and

▶ for any transition 𝑞
𝑖/𝑜
−−→

𝑢
𝑟 ∈ runs(𝒯) with 𝑟 ∈ ℱ𝒯, we arbitrarily select

a pair (𝑝, 𝑚) ∈ compat𝒯(𝑟) and define a transition 𝑞
𝑖/𝑜
−−→

𝔯
𝑝 where 𝔯

renames every timer according to 𝑚.

In other words, the only functions that actually rename timers come from
folding the tree, i.e., when we exit the basis in 𝒯.

Definition C.13.10 (Generalized MMT hypothesis). Let ℋ =
(𝐼, 𝑂, 𝑋ℋ, 𝑄ℋ, 𝑞ℋ0 , 𝜒ℋ, 𝛿ℋ) be a gMMT where:

▶ 𝑋ℋ = ⋃𝑞∈ℬ𝒯 𝜒𝒯(𝑞),
▶ 𝑄ℋ = ℬ𝒯, with 𝑞ℋ0 = 𝑞𝒯0 ,
▶ 𝜒ℋ(𝑞) = 𝜒𝒯(𝑞) for each 𝑞 ∈ ℬ𝒯, and

▶ 𝛿ℋ is constructed as follows. Let 𝑞
𝑖/𝑜
−−→

𝑢
𝑞′ be a transition in 𝒯 with

𝑞 ∈ ℬ𝒯. We have four cases:

• If 𝑞′ ∈ ℬ𝒯 (i.e., the transition remains within the basis) and
𝑢 = ⊥, then we define 𝛿ℋ(𝑞, 𝑖) = (𝑞′, 𝑜, 𝔯) with

∀𝑥 ∈ 𝜒𝒯(𝑞′) ∶ 𝔯(𝑥) = 𝑥.

• If 𝑞′ ∈ ℬ𝒯 and 𝑢 = (𝑦, 𝑐), then we define 𝛿ℋ(𝑞, 𝑖) = (𝑞′, 𝑜, 𝔯)
with

∀𝑥 ∈ 𝜒𝒯(𝑞′) ∖ {𝑦} ∶ 𝔯(𝑥) = 𝑥 and 𝔯(𝑦) = 𝑐.

• If 𝑞′ ∈ ℱ𝒯 (i.e., the transition leaves the basis) and 𝑢 = ⊥,
then we select an arbitrary (𝑝, 𝑚) ∈ compat𝒯(𝑟) and define
𝛿ℋ(𝑞, 𝑖) = (𝑝, 𝑜, 𝔯) with

∀𝑥 ∈ 𝜒𝒯(𝑞′) ∶ 𝔯(𝑚−1(𝑥)) = 𝑥.

• If 𝑞′ ∈ ℱ𝒯 and 𝑢 = (𝑦, 𝑐), then we select an arbitrary (𝑝, 𝑚) ∈
compat𝒯(𝑟) and define 𝛿ℋ(𝑞, 𝑖) = (𝑝, 𝑜, 𝔯) with

∀𝑥 ∈ 𝜒𝒯(𝑞′) ∶ 𝔯(𝑚−1(𝑥)) = {
𝑐 if 𝑥 = 𝑦
𝑥 otherwise.
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𝑡0 𝑡1 𝑡3 𝑡6 𝑡9
𝑖/𝑜

𝑥1 ≔ 2
𝑖/𝑜′

𝑥1 ≔ 𝑥1,
𝑥3 ≔ 3

to[𝑥1]/𝑜, 𝑥1 ≔ 2

𝑖/𝑜′

𝑥6 ≔ 2, 𝑥3 ≔ 𝑥3

to[𝑥1]/𝑜
𝑥6 ≔ 2,

𝑥3 ≔ 𝑥3
to[𝑥6]/𝑜
𝑥3 ≔ 𝑥3

𝑖/𝑜′, 𝑥6 ≔ 2,
𝑥3 ≔ 𝑥3 𝑖/𝑜′, 𝑥3 ≔ 𝑥3

to[𝑥3]/𝑜, ⊥ to[𝑥3]/𝑜, ⊥

Figure C.8: A gMMT constructed from the observation tree of Figure 10.9.

It is not hard to see thatℋ is sound and complete, as it is constructed from 𝒯.

Indeed, recall that 𝑞
𝑖

−→ ∈ runs(𝒯) is defined for each 𝑞 ∈ ℬ𝒯 if and only if
𝑖 ∈ 𝐼 ∪ TO[𝜒𝒯

0 (𝑞)], i.e., the basis is complete.

Example C.13.11.

𝑡0 𝑡0
𝑡1 𝑡1

𝑡2𝑡3 𝑡3

𝑡4𝑡5𝑡6 𝑡6

𝑡7𝑡8𝑡9 𝑡9𝑡10

𝑡11

𝑡12

𝑡13

𝑡14

𝑡15

𝑡16

𝑡17

𝑖/𝑜
𝑥

1
≔

2
𝑖/𝑜

′,𝑥
3

≔
3

to[𝑥
1 ]/𝑜, 𝑥

1 ≔
2

to[𝑥
1 ]/𝑜,⊥

to[𝑥
1 ]/𝑜, 𝑥

1 ≔
2

𝑖/𝑜
′,𝑥

6
≔

2

to[𝑥
3 ]/𝑜

⊥
to[𝑥

6 ]/𝑜
⊥

to[𝑥
3 ]/𝑜

⊥

to[𝑥
3 ]/𝑜

⊥

to[𝑥
3 ]/𝑜,⊥

to[𝑥
1 ]/𝑜

⊥

to[𝑥
3 ]/𝑜

⊥
𝑖/𝑜

′

𝑥
11

≔
2

to[𝑥
11 ]/𝑜
⊥ 𝑖/𝑜

′

⊥

to[𝑥
1 ]/𝑜

⊥

Let 𝒯 be the observation tree of Figure 10.9. We can
observe that

compat𝒯6(𝑡2) = {(𝑡1, 𝑥1 ↦ 𝑥1)}
compat𝒯6(𝑡10) = {(𝑡0, ∅)}
compat𝒯6(𝑡5) = {(𝑡6, 𝑥6 ↦ 𝑥1, 𝑥3 ↦ 𝑥3)}
compat𝒯6(𝑡12) = {(𝑡0, ∅)}
compat𝒯6(𝑡11) = {(𝑡6, 𝑥6 ↦ 𝑥11, 𝑥3 ↦ 𝑥3)}
compat𝒯6(𝑡15) = {(𝑡9, 𝑥3 ↦ 𝑥3)}.

(See Section 10.4.6 for more details.) We thus construct a gMMT ℋ as
follows.

▶ The states ofℋ are 𝑡0, 𝑡1, 𝑡3, 𝑡6, and 𝑡9.
▶ The 𝑖-transition from 𝑡0 to 𝑡1 ∈ ℬ𝒯 starts the timer 𝑥1 to 2.
▶ Then, the 𝑖-transition from 𝑡1 to 𝑡3 ∈ ℬ𝒯 keeps 𝑥1 as-is and starts a

new timer 𝑥3.
▶ The 𝑖-transition from 𝑡3 to 𝑡6 ∈ ℬ𝒯 stops 𝑥1 and starts 𝑥6. The timer 𝑥3

is unchanged. Observe that, so far, we followed exactly the transitions
defined within the basis of 𝒯.

▶ We consider the to[𝑥1]-transition from 𝑡3 to 𝑡5 in 𝒯. As 𝑡5 ∈ ℱ𝒯,
we select a pair (𝑝, 𝑚) in compat𝒯(𝑡5). Here, the only possibility is
(𝑡6, 𝑥6 ↦ 𝑥1, 𝑥3 ↦ 𝑥3). So, we define the renaming function 𝔯5↦6
such that

𝔯5↦6(𝑥6) = 2 and 𝔯5↦6(𝑥3) = 𝑥3.

Hence, we have the transition 𝑡3
to[𝑥1]/𝑜
−−−−→

𝔯5↦6
𝑡6.

▶ And so on.

The resulting gMMT is given in Figure C.8.
A more complex example is provided in the next section.

Finally, while one can then convert the gMMT hypothesis ℋ into an MMT
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𝑞0 𝑞1 𝑞2 𝑞3

𝑞4

𝑖
𝑥 ≔ 2

𝑗/⊥
to[𝑥]/𝑥 ≔ 2

𝑖
𝑦 ≔ 1

𝑖/⊥
𝑗/⊥

to[𝑥]
𝑥 ≔ 1

to[𝑦], 𝑦 ≔ 1

𝑖/⊥
𝑗/⊥

to[𝑥]/𝑥 ≔ 1

𝑖/⊥
𝑗/⊥

to[𝑦]/𝑦 ≔ 1

𝑗/𝑦 ≔ 1

Figure C.9: The MMTℳ of Section C.13.4, with 𝜒(𝑞0) = ∅, 𝜒(𝑞1) = 𝜒(𝑞3) = {𝑥}, 𝜒(𝑞2) = {𝑥, 𝑦}, 𝜒(𝑞4) = {𝑦}.
For simplicity, the output 𝑜 of each transition is omitted.

hypothesis, it is not required. Indeed, in order to avoid the factorial blowup,
one can simply giveℋ to the teacher who then has to check whetherℋ and
its hidden MMTℳ are symbolically equivalent. For instance, the teacher may
construct the zone gMMT ofℋ and the zone MMT ofℳ and then check the
equivalence between those models. This does not necessitate to construct an
MMT fromℋ.

C.13.4. Example of a case where gMMTs are required

Finally, we give an example of an observation tree from which the construction
of ≡ (as explained in Section 10.4.3) fails. That is, we obtain 𝑥 ≡ 𝑦 but 𝑥 𝑡# 𝑦.
Letℳ be the MMT of Figure C.9. For simplicity, we omit all outputs in this
section.

Observe that replacing the transition 𝑞0
𝑗

−−−→
(𝑦,1)

𝑞4 by 𝑞0
𝑗

−−−→
(𝑥,1)

𝑞3 would yield

an MMT symbolically equivalent toℳ. Indeed, both 𝑞3 and 𝑞4 have the same
behavior, up to a renaming of the timer. So, the 𝑗-transition from 𝑞0 can freely
go to 𝑞3 or 𝑞4, under the condition that it starts respectively 𝑥 or 𝑦. Here, we fix
that it goes to 𝑞4 and starts 𝑦. However, the learning algorithm may construct
a hypothesis where it instead goes to 𝑞3. In short, this uncertainty will lead us
to an invalid ≡.

Let 𝒯 be the observation tree of Figure C.10. One can check that 𝒯 is an
observation tree forℳ, i.e., there exists a functional simulation ⟨𝑓, 𝑔⟩ ∶ 𝒯 → ℳ.
We have the following compatible sets:

compat𝒯(𝑡2) = compat𝒯(𝑡14) = {(𝑡1, 𝑥1 ↦ 𝑥1)}
compat𝒯(𝑡4) = compat𝒯(𝑡5) = compat𝒯(𝑡6) = {(𝑡3, 𝑥2 ↦ 𝑥2)}

compat𝒯(𝑡12) = {(𝑡3, 𝑥2 ↦ 𝑥1)}
compat𝒯(𝑡13) = {(𝑡3, 𝑥2 ↦ 𝑥11)}

compat𝒯(𝑡18) = {(𝑡11, 𝑥1 ↦ 𝑥1, 𝑥11 ↦ 𝑥11)}.

By constructing the equivalence relation ≡ ⊆ {𝑥1, 𝑥2, 𝑥11} × {𝑥1, 𝑥2, 𝑥11},
we obtain that

𝑥1 ≡ 𝑥2 due to (𝑡3, 𝑥2 ↦ 𝑥1) ∈ compat𝒯(𝑡12)



C. Technical details and proofs of Chapters 9 and 10 325

𝑡0𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

𝑡7

𝑡8

𝑡9

𝑡10

𝑡11𝑡12

𝑡13

𝑡14 𝑡15

𝑡16

𝑡17

𝑡18

𝑡19 𝑡20

𝑡21 𝑡22

𝑡23

𝑡24

𝑡25

𝑡26

𝑡27

𝑡28

𝑡29

to[𝑥11]/⊥

𝑖
𝑥1 ≔ 2

𝑗
𝑥3 ≔ 1

𝑖
𝑥11 ≔ 1

𝑖
⊥

to[𝑥1]
𝑥1 ≔ 1

to[𝑥1]
𝑥1 ≔ 2

to[𝑥1]
⊥

to[𝑥1]/𝑥1 ≔ 2

𝑗/⊥

to[𝑥2]/𝑥2 ≔ 1

𝑗/⊥

to[𝑥2]/𝑥2 ≔ 1

to[𝑥2]/𝑥2 ≔ 1

to[𝑥2]/𝑥2 ≔ 1

to[𝑥1]/𝑥1 ≔ 2

to[𝑥1]/𝑥1 ≔ 2

to[𝑥11]/⊥

to[𝑥1]/⊥

𝑗/⊥

to[𝑥11]/𝑥11 ≔ 1

𝑖/⊥

to[𝑥2]/⊥

to[𝑥2]/⊥

to[𝑥2]/⊥

to[𝑥1]/⊥

to[𝑥1]/⊥

to[𝑥1]/⊥

to[𝑥11]/⊥

Figure C.10: The observation tree 𝒯 of Section C.13.4. Basis states are highlighted in gray. Outputs are
omitted.

and
𝑥2 ≡ 𝑥11 due to (𝑡3, 𝑥2 ↦ 𝑥11) ∈ compat𝒯(𝑡13).

So, 𝑥1 ≡ 𝑥11. However, notice that 𝑥1
𝑡# 𝑥11, as both timers are active in 𝑡11.

Since that relation is the only possibility, we conclude that it is not always
possible to construct a relation that does not put together two apart timers.
Finally, Figure C.11 gives the gMMT that is constructed from 𝒯 (observe the
renaming that occurs when going from 𝑡11 to 𝑡3), while Figure C.12 gives the
MMT constructed from that gMMT. Notice that 𝑡3 is split into two states, like
in Figure C.9.
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𝑡0 𝑡1 𝑡11

𝑡3

𝑖/𝑜
𝑥1 ≔ 2

𝑗/𝑥1 ≔ 𝑥1
to[𝑥1]/𝑥1 ≔ 2

𝑖
𝑥1 ≔ 𝑥1, 𝑥11 ≔ 1

𝑖/𝑥1 ≔ 𝑥1, 𝑥11 ≔ 𝑥11
𝑗/𝑥1 ≔ 𝑥1, 𝑥11 ≔ 𝑥11

to[𝑥1]/𝑥3 ≔ 1to[𝑥11]/𝑥3 ≔ 1

𝑖/𝑥3 ≔ 𝑥3
𝑗/𝑥3 ≔ 𝑥3

to[𝑥3]/𝑥3 ≔ 1

𝑗/𝑥3 ≔ 1

Figure C.11: The gMMT constructed from the observation tree of Figure C.10.

(𝑡0, ∅) (𝑡1, {(𝑥1, 𝑦1)})

(𝑡11, {(𝑥1, 𝑦1), (𝑥11, 𝑦2)})

(𝑡3, {(𝑥3, 𝑦1)})

(𝑡3, {(𝑥3, 𝑦2)})

𝑖/𝑜
𝑦1 ≔ 2

𝑗/⊥
to[𝑦1]/𝑦1 ≔ 2

𝑖, 𝑦2 ≔ 1
𝑖/⊥
𝑗/⊥

to[𝑦1]/𝑦1 ≔ 1

to[𝑦2]
𝑦2 ≔ 1

𝑖/⊥
𝑗/⊥

to[𝑦1]/𝑦1 ≔ 1

𝑖/⊥
𝑗/⊥

to[𝑦2]/𝑦2 ≔ 1

𝑗/𝑦1 ≔ 1

Figure C.12: The MMT constructed from the gMMT of Figure C.11.

22: As, otherwise, it is not nec-
essary to apply the procedure de-
scribed in Section 10.4.5.

C.14. Proof of Proposition 10.4.11

Proposition 10.4.11. When processing a counterexample, we eventually find
a 𝑗 such that replay

𝑚−1
𝑗

𝑟𝑗

𝑣′
𝑗

−→
(𝑝𝑗) returns APART or ACTIVE.

Towards a contradiction, assume that each call to the replay algorithm re-
turns DONE. Let w′ ⋅ i be the prefix of the counterexample as computed in
Section 10.4.5. Let us assume that one of the following cases holds:22

1. The symbolic word w′ ⋅ i can be read in 𝒯 but not inℋ, or vice-versa:

𝑞𝒯0
w′⋅i
−−→ ∈ runs(𝒯) if and only if 𝑞ℋ0

w′⋅i
−−→ ∉ runs(ℋ). Asℋ is complete

and we performed a symbolic output query in 𝒯, i cannot be an input.
That is, i = to[𝑗] for some index 𝑗.
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2. The symbolic word w′ ⋅ i can be read in both 𝒯 andℋ but 𝑞𝒯0
w′

−→ 𝑞
i/𝑜
−−→

𝑢
,

𝑞ℋ0
w′

−→ 𝑞′ i/𝑜′

−−→
𝑢′

, and 𝑜 ≠ 𝑜′ or 𝑢 = (𝑥, 𝑐) and 𝑢′ = (𝑥′, 𝑐′) with 𝑐 ≠ 𝑐′.

Let 𝑟1, … , 𝑟𝑛 ∈ ℱ𝒯, and, for every 𝑗, (𝑝𝑗, 𝑚𝑗) be the selected pair to fold
𝑟𝑗 when building ℋ. Moreover, let the words 𝑣1, 𝑣′

1, … , 𝑣𝑛, 𝑣′
𝑛, 𝑣𝑛+1 be as

constructed in Section 10.4.5, i.e.,

▶ 𝑞𝒯0
𝑣1−→ 𝑟1

𝑣′
1−→,

▶ ∀𝑗 ∈ {1, … , 𝑛 − 1} ∶ read𝑚−1
𝑗

𝑟𝑗

𝑣′
𝑗

−→
(𝑝𝑗) = 𝑝𝑗

𝑣𝑗+1
−−→ 𝑟𝑗+1

𝑣′
𝑗+1

−−→, and

▶ read𝑚−1
𝑛

𝑟𝑛

𝑣′𝑛−→
(𝑝𝑛) = 𝑝𝑛

𝑣𝑛+1
−−−→ 𝑝𝑛+1 with 𝑝𝑛+1 ∈ ℬ𝒯 ∪ ℱ𝒯.

As replay
𝑚−1

𝑗

𝑟𝑗

𝑣′
𝑗

−→
(𝑝𝑗) returned DONE for every 𝑗, it must be that ¬(𝑝𝑗 #𝑚𝑗 𝑟𝑗)

and no new active timer was found in 𝑝𝑗. So, (𝑝𝑗, 𝑚𝑗) ∈ compat𝒯(𝑟𝑗).

Let us study every case of the counterexample definition (see Definition 10.2.3).

▶ If we have the run 𝑞𝒯0
w′

−→ 𝑞
i/𝑜
−−→ in 𝒯 and the run 𝑞ℋ0

w′

−→ 𝑞′ i/𝑜′

−−→ in ℋ
with 𝑜 ≠ 𝑜′, we are then in the case 2 above. Since 𝒯 is an observation
tree forℳ, it must be that

𝑞ℳ0
w′

−→ 𝑓(𝑞)
i/𝑜
−−→ ∈ runs(ℳ).

Moreover, we have

𝑞𝒯0
w′

−→ 𝑞
i

−→ = 𝑞𝒯0
𝑣1−→ 𝑟1

𝑣′
1−→

and

read𝑚−1
1

𝑟1

𝑣′
1−→

(𝑝1) = 𝑝1
𝑣2−→ 𝑟2

𝑣′
2−→ .

Hence, the last output of 𝑟1
𝑣′

1−→ is 𝑜. As ¬(𝑝1 #𝑚−1
1 𝑟1), it follows that

the last output of 𝑟2
𝑣′

2−→ is also 𝑜. By applying the same arguments, the

last output of 𝑟3
𝑣′

3−→ must be 𝑜, and so on. We thus conclude that the last
output of 𝑝𝑛

𝑣𝑛+1
−−−→ is 𝑜. Observe that, by construction ofℋ, it must be

that the end of the run 𝑞ℋ0
w′⋅i
−−→ is the run 𝑝𝑛

𝑣𝑛+1
−−−→. Therefore, we have

𝑞′ i/𝑜
−−→ ∈ runs(ℋ), meaning that 𝑜 = 𝑜′ (by determinism ofℋ), which

is a contradiction.
▶ If we have the run 𝑞𝒯0

w′

−→ 𝑞
i

−−−→
(𝑥,𝑐)

in 𝒯 and the run 𝑞ℋ0
w′

−→ 𝑞′ i

−−−−→
(𝑥′,𝑐′)

inℋ

with 𝑐 ≠ 𝑐′, we are then in the case 2 above. Since 𝒯 is an observation

tree for ℳ, it must be that 𝑞ℳ0
w′

−→ 𝑓(𝑞)
i

−−−−→
(𝑔(𝑥),𝑐)

is a run of ℳ. By

applying the same arguments as in the previous case, we deduce that

𝑞′ i

−−−→
(𝑥′,𝑐)

∈ runs(ℋ), meaning that 𝑐 = 𝑐′, which is a contradiction.
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▶ If we have the run 𝑞𝒯0
w′⋅i
−−→ in 𝒯 but 𝑞ℋ0

w′⋅i
−−→ is a not a run ofℋ, it must

be that i = to[𝑗] for some 𝑗 ∈ {1, … , |w|}. Since 𝒯 is an observation tree
forℳ, (and by the part of Section 10.4.5 seeking a prefix of the provided

counterexample), it must be that 𝑞ℳ0
w′⋅i
−−→ ∈ runs(ℳ). We are then in

the case 1 above. By applying the same arguments as in the previous two

cases, we conclude that 𝑞ℋ0
w′⋅i
−−→ ∈ runs(ℋ), which is a contradiction.

▶ The case where 𝑞𝒯0
w′⋅i
−−→ is not a run of 𝒯 and 𝑞ℋ0

w′⋅i
−−→ is a run of ℋ

induces a contradiction with similar arguments.

In every case, we obtain a contradiction and we conclude that there must exist
𝑗 ∈ {1, … , 𝑛} such that 𝑝𝑗 #𝑚𝑗 𝑟𝑗 or a new active timer is discovered in 𝑝𝑗.

C.15. Proof of Theorem 10.4.1

Theorem 10.4.1. Let ℳ be an s-learnable MMT and 𝜁 be the length of the
longest counterexample. Then,

▶ the 𝐿#
MMT algorithm eventually terminates and returns an MMT 𝒩 such

that ℳ
time
≈ 𝒩 and whose size is polynomial in ∣𝑄ℳ∣ and factorial in

∣𝑋ℳ∣, and
▶ in time and number of OQs,WQs,EQs polynomial in ∣𝑄ℳ∣, |𝐼|, and 𝜁,

and factorial in ∣𝑋ℳ∣.

Before showing Theorem 10.4.1, we prove several intermediate results. First,
we argue that the refinement loop of Algorithm 10.1 eventually terminates,
i.e., a hypothesis is eventually constructed. Under the assumption that the
basis is finite, observe that the frontier is then finite (as 𝐼 ∪ TO[∪𝑝∈ℬ𝒯𝜒𝒯(𝑝)]
is finite). Hence, we can apply Completion, Active timers, WCT only a
finite number of times. It is thus sufficient to show that the basis cannot grow
forever, i.e., that Promotion is applied a finite number of times, which implies
that Seismic is also applied a finite number of times. The next lemma states
an upper bound over the number of basis states.

Lemma C.15.1. ∣ℬ𝒯∣ ≤ ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣.

Proof. In order to distinguish the theoretical definition of ℬ𝒯 and its com-
putation, let us denote by 𝐵 the basis as computed in the refinement loop of
Algorithm 10.1. We highlight that 𝐵 may not always satisfy the definition of
ℬ𝒯 during the refinement loop. Indeed, as explained in Section 10.4.4, when
a new active timer is found in a basis state, we may have ¬(𝑝#𝑚 𝑝′) for some
𝑝 ≠ 𝑝′ ∈ ℬ𝒯 and maximal matching 𝑚 ∶ 𝑝 ↔ 𝑝′. We thus need to perform
Seismic and recompute 𝐵. Below, we will establish that 𝐵 ≤ ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣.
The same (or even simpler) arguments yield the bound for ℬ𝒯.
Let us thus assume we already treated the pending Seismic (if there is one),
i.e., that

∀𝑝, 𝑝′ ∈ 𝐵, maximal matchings 𝑚 ∶ 𝑝 ↔ 𝑝′ ∶ 𝑝 ≠ 𝑝′ ⇒ 𝑝 #𝑚 𝑝′. (C.15.i)
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Towards a contradiction, assume |𝐵| > ∣𝑄ℳ∣⋅2∣𝑋ℳ∣. By Pigeonhole principle,
there must exist two states 𝑝 ≠ 𝑝′ ∈ 𝐵 such that

▶ 𝑓(𝑝) = 𝑓(𝑝′), as |𝐵| > ∣𝑄ℳ∣, and
▶ 𝑔(𝜒𝒯(𝑝)) = 𝑔(𝜒𝒯(𝑝′)).

This implies that ∣𝜒𝒯(𝑝)∣ = ∣𝜒𝒯(𝑝′)∣. Let 𝑚𝑔 ∶ 𝑝 ↔ 𝑝′ be the matching such
that 𝑔(𝑥) = 𝑔(𝑚𝑔(𝑥)) for all 𝑥 ∈ dom(𝑚𝑔).23

23: It necessarily exists as
𝑔(𝜒𝒯(𝑝)) = 𝑔(𝜒𝒯(𝑝′)).

Observe that 𝑚𝑔 is maximal.
Hence, we have 𝑝 #𝑚𝑔 𝑝′ by (C.15.i). Theorem 10.3.14. Let 𝒯 be

an observation tree for an s-
learnable MMT ℳ with the
functional simulation ⟨𝑓, 𝑔⟩,
𝑝, 𝑝′ ∈ 𝑄𝒯, and 𝑚 ∶ 𝑝 ↔ 𝑝′

be a matching. If 𝑝 #𝑚 𝑝′,
then

▶ 𝑓(𝑝) ≠ 𝑓(𝑝′), or
▶ there is 𝑥 ∈ dom(𝑚) such

that 𝑔(𝑥) ≠ 𝑔(𝑚(𝑥)).

However, by the contrapositive of
Theorem 10.3.14, it follows that ¬(𝑝 #𝑚𝑔 𝑝′). We thus obtain a contradiction,
meaning that both 𝑝 and 𝑝′ cannot be in 𝐵 at the same time. Hence, |𝐵| ≤
∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣. �

From the lemma, we immediately get bounds on the size of the frontier and the
compatible sets. For the former, note that the number of immediate successors
of each state is bounded by |𝐼| + ∣𝑋ℳ∣ = |𝐴(ℳ)|; for the latter, the number of
maximal matchings is at most ∣𝑋ℳ∣! since the number of active timers in any
state from the observation tree is bounded by the same value from the hidden
MMTℳ.

Corollary C.15.2.

∣ℱ𝒯∣ ≤ ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣ ⋅ (|𝐴(ℳ)|)

max
𝑟∈ℱ𝒯

∣compat𝒯(𝑟)∣ ≤ ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣ ⋅ ∣𝑋ℳ∣! .

Finally, we give an upper bound over the length of the minimal words ending
in to[𝑥] for any 𝑞 ∈ 𝑄𝒯 and 𝑥 ∈ 𝜒𝒯(𝑞). That is, when applying WCT, one can
seek a short run to be replayed (typically, via a BFS).

Lemma C.15.3.

max
𝑞∈𝑄𝒯

max
𝑥∈𝜒𝒯(𝑞)

min
𝑞

𝑤⋅to[𝑥]
−−−−→∈runs(𝒯)

|𝑤 ⋅ to[𝑥]| ≤ ∣𝑄ℳ∣

Proof. Towards a contradiction, assume that

max
𝑞∈𝑄𝒯

max
𝑥∈𝜒𝒯(𝑞)

min
𝑞

𝑤⋅to[𝑥]
−−−−→∈runs(𝒯)

|𝑤 ⋅ to[𝑥]| > ∣𝑄ℳ∣.

Then, there must exist a state 𝑝0 and a timer 𝑥 ∈ 𝜒𝒯(𝑝0) such that the length
of 𝑤 ⋅ to[𝑥] is strictly greater than the number of states of ℳ. That is, we
have a run

𝜋 = 𝑝0
𝑖1−→ ⋯

𝑖ℓ−→ 𝑝ℓ
to[𝑥]
−−→ ∈ runs(𝒯)

with ℓ > ∣𝑄ℳ∣. Observe that 𝑝ℓ ∈ ℰ𝒯, as 𝑝ℓ
to[𝑥]
−−→ is defined. By Pigeonhole

principle, there must exist a 𝑗 ∈ {1, … , ℓ − 1} such that 𝑓(𝑝𝑗) = 𝑓(𝑝ℓ). As
ℰ𝒯 is tree-shaped, it follows that 𝑝𝑗 ∈ ℰ𝒯 (since 𝑗 < ℓ).

We thus need to argue that 𝑝𝑗
to[𝑥]
−−→ ∈ runs(𝒯) to obtain our contradiction.



C. Technical details and proofs of Chapters 9 and 10 330

Since 𝑓(𝑝𝑗) = 𝑓(𝑝ℓ), it directly follows that

𝜒ℳ
0 (𝑓(𝑝𝑗)) = 𝜒ℳ

0 (𝑓(𝑝ℓ)).

Moreover, 𝑥 ∈ 𝜒𝒯(𝑓(𝑝𝑗)), as 𝑥 is active in both 𝑝0 and 𝑝ℓ (and 𝑗 < ℓ). Hence,
𝑔(𝑥) ∈ 𝜒ℳ

0 (𝑓(𝑝𝑗)) as 𝑔(𝑥) ∈ 𝜒ℳ
0 (𝑓(𝑝ℓ)). So, it must be that

𝑝𝑗
to[𝑥]
−−→ ∈ runs(𝒯)

since 𝑝𝑗 ∈ ℰ𝒯. We thus have a contradiction as 𝑗 < ℓ and

𝑝0
𝑖1⋯𝑖𝑗⋅to[𝑥]
−−−−−−→ ∈ runs(𝒯). �

Let us now prove Theorem 10.4.1, which we repeat one last time.

Theorem 10.4.1. Let ℳ be an s-learnable MMT and 𝜁 be the length of the
longest counterexample. Then,

▶ the 𝐿#
MMT algorithm eventually terminates and returns an MMT 𝒩 such

that ℳ
time
≈ 𝒩 and whose size is polynomial in ∣𝑄ℳ∣ and factorial in

∣𝑋ℳ∣, and
▶ in time and number of OQs,WQs,EQs polynomial in ∣𝑄ℳ∣, |𝐼|, and 𝜁,

and factorial in ∣𝑋ℳ∣.

Proof. Let us start with showing that the algorithm eventually terminates.
First, we formally prove that the refinement loop always finishes, i.e., that the
basis and the frontier always stabilize. By LemmaC.15.1 and Corollary C.15.2,
we have Corollary 10.3.5. Let 𝒯 be

an observation tree for an
s-learnable ℳ with ⟨𝑓, 𝑔⟩.
Then, for all states 𝑞 ∈ 𝑄𝒯,
we have:

▶ ∣𝜒𝒯(𝑞)∣ ≤ ∣𝜒ℳ(𝑓(𝑞))∣,
and

▶ for all 𝑥 ∈ 𝜒𝒯
0 (𝑞), 𝑔(𝑥) ∈

𝜒ℳ
0 (𝑓(𝑞)).

∣ℬ𝒯∣ ≤ ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣ (C.15.ii)

∣ℱ𝒯∣ ≤ ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣ ⋅ (|𝐴(ℳ)|) (C.15.iii)

max
𝑟∈ℱ𝒯

∣compat𝒯(𝑟)∣ ≤ ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣ ⋅ ∣𝑋ℳ∣! (C.15.iv)

Furthermore, by the first part of Corollary 10.3.5
max
𝑞∈𝑄𝒯

∣𝜒𝒯(𝑞)∣ ≤ ∣𝜒𝒯(𝑓(𝑞))∣ ≤ ∣𝑋ℳ∣. (C.15.v)

Let us argue that each part of the refinement loop is applied finitely many
times. We write |Seismic| for the number of times Seismic (see Sec-
tion 10.4.4) is applied. We do Likewise for the other steps in the refinement
loop.

▶ The maximal number of applied Seismic per basis state is bounded by
∣𝑋ℳ∣, by (C.15.v). Indeed, each Seismic event is due to the discovery
of a new active timer in a basis state. Hence, by (C.15.ii),

|Seismic| ≤ ∣ℬ𝒯∣ ⋅ ∣𝑋ℳ∣ ≤ ∣𝑄ℳ∣ ⋅ ∣𝑋ℳ∣ ⋅ 2∣𝑋ℳ∣. (C.15.vi)

▶ By (C.15.ii), the number of times Promotion is applied between two
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instances of Seismic is bounded by ∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣. So,

|Promotion| ≤ ∣ℬ𝒯∣ ⋅ |Seismic| ≤ ∣𝑄ℳ∣2 ⋅ ∣𝑋ℳ∣ ⋅ 22∣𝑋ℳ∣. (C.15.vii)

▶ Between two instances of Seismic, the number of Completion is
bounded by |𝐼| ⋅ ∣ℬ𝒯∣, as, in the worst case, each input-transition
is missing from each basis state. In general, we may have multi-
ple frontier states 𝑟1, … , 𝑟𝑛 such that 𝑓(𝑟1) = ⋯ = 𝑓(𝑟𝑛). Thus,
compat𝒯(𝑟1) = ⋯ = compat𝒯(𝑟𝑛), after minimizing each set. Due to
Seismic, Algorithm 10.1 potentially has to choose multiple times one
of those states. So, in the worst case, we select a different 𝑟𝑗 each time.
As each new basis state may not have all of its outgoing transitions,

|Completion| ≤ |𝐼| ⋅ ∣ℬ𝒯∣ ⋅ |Seismic|
= |𝐼| ⋅ |Promotion|

≤ |𝐼| ⋅ ∣𝑄ℳ∣2 ⋅ ∣𝑋ℳ∣ ⋅ 22∣𝑋𝑀∣.
(C.15.viii)

▶ Between two occurrences of Seismic, the number of pairs (𝑝, 𝑚) ∈
compat𝒯(𝑟) such that ∣𝜒𝒯(𝑝)∣ ≠ ∣𝜒𝒯(𝑟)∣ is directly given by (C.15.iv)
for each frontier state 𝑟. So,

|Active timers|≤∣ℱ𝒯∣ ⋅ max
𝑟∈ℱ𝒯

∣compat𝒯(𝑟)∣ ⋅ |Seismic|

≤|𝐴(ℳ)|⋅∣𝑄ℳ∣3 ⋅∣𝑋ℳ∣⋅23∣𝑋ℳ∣ ⋅∣𝑋ℳ∣! .
(C.15.ix)

▶ With similar arguments,

|WCT| ≤ ∣ℱ𝒯∣ ⋅ (max
𝑟∈ℱ𝒯

∣compat𝒯(𝑟)∣)
2

⋅ |Seismic|

≤ |𝐴(ℳ)| ⋅ ∣𝑄ℳ∣4 ⋅ ∣𝑋ℳ∣2 ⋅ 24∣𝑋ℳ∣ ⋅ (∣𝑋ℳ∣!)2.
(C.15.x)

Since each part of the refinement loop can only be applied a finite number
of times, it follows that the loop always terminates. Thus, it remains to
prove that Algorithm 10.1 constructs finitely many hypotheses. Proposition 10.4.11. When

processing a counterexam-
ple, we eventually find a 𝑗
such that replay

𝑚−1
𝑗

𝑟𝑗

𝑣′
𝑗

−→
(𝑝𝑗) re-

turns APART or ACTIVE.

By Proposi-
tion 10.4.11, any counterexample results in a new timer being discovered for
a state in the basis (leading to an occurrence of Seismic), or a compatibility
set decreasing in size (potentially leading to a Promotion). We already
know that |Seismic| and |Promotion| are bounded by a finite constant.
Moreover, by (C.15.iv), each compatible set contains finitely many pairs. So,
there can only be finitely many counterexamples, and, thus, hypotheses.
More precisely, the number of hypotheses is bounded by

|Seismic| ⋅ |Promotion| ⋅ max
𝑟∈ℱ𝒯

∣compat𝒯(𝑟)∣

≤ ∣𝑄ℳ∣4 ⋅ ∣𝑋ℳ∣2 ⋅ 24∣𝑋ℳ∣ ⋅ ∣𝑋ℳ∣! .
(C.15.xi)

To establish that𝒩 is equivalent toℳ, we observe that the last equivalence
query to the teacher confirmed they are symbolically equivalent. Proposition 9.4.5. Let ℳ

and𝒩 be two sound and com-
plete MMTs. Ifℳ

sym
≈𝒩, then

ℳ
time
≈ 𝒩.

Hence,

by Proposition 9.4.5, they are also timed equivalent, i.e.,𝒩
time
≈ ℳ. From our

construction of anMMThypothesis based on an gMMT (see Section C.13), we
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get that the intermediate gMMT has at most ∣𝑄ℳ∣ ⋅ 4∣𝑋ℳ∣ states (by (C.15.ii)).
Hence, the final MMT has at most

∣𝑄ℳ∣ ⋅ 2∣𝑋ℳ∣ ⋅ ∣𝑋ℳ∣!

Proposition C.13.5. Let ℳ
be a sound and complete
gMMT and 𝒩 be the MMT
constructed as explained
above. Then, 𝒩 is sound,
complete, and its number
of states is in 𝒪 (𝑛! ⋅ ∣𝑄ℳ∣)
with 𝑛 = max𝑞∈𝑄ℳ ∣𝜒ℳ(𝑞)∣.

states by Proposition C.13.5, i.e., a number that is polynomial in ∣𝑄ℳ∣ and
factorial in ∣𝑋ℳ∣, as announced.
We now prove the claimed number of symbolic queries. First, we study
the number of queries per step of the refinement loop, and to process a
counterexample.

Seismic Applying Seismic does not require any symbolic queries.
Promotion Let 𝑟 be the state newly added to ℬ𝒯 . We thus need to do a wait

query in each 𝑟′ such that 𝑟
𝑖

−→ 𝑟′ for some 𝑖 ∈ 𝐴(𝒯). By (C.15.v),
there are at most |𝐴(ℳ)| wait queries.

Completion A single application of Completion requires a single symbolic
output query and a single wait query.

Active timers Each occurrence ofActive timers necessitates to replay a run
𝜋 from state 𝑞. Let 𝑛 be the number of transitions in 𝜋. In the worst
case, we have to perform 𝑛 symbolic output queries and 𝑛 symbolic
wait queries (see Algorithm C.1). By Lemma C.15.3, 𝑛 ≤ ∣𝑄ℳ∣, if we
always select a minimal run ending in the timeout of the desired timer.

WCT Likewise, applying WCT requires to replay a run of length 𝑛, i.e., we
do 𝑛 symbolic output queries and 𝑛 wait queries. This time, let us
argue that we can always select a run such that

𝑛 ≤ ∣ℬ𝒯∣ + 1 + ∣𝑄ℳ∣ + 𝜁 + (∣ℬ𝒯∣ + 1) ⋅ |Seismic|.

(Recall that 𝜁 is the length of the longest counterexample.) Let us
decompose the summands appearing on the right piece by piece:

▶ ∣ℬ𝒯∣ + 1 denotes the worst possible depth for a frontier state.
Indeed, it may be that all basis states are on a single branch. So,
the frontier states of the last basis state of that branch are at
depth ∣ℬ𝒯∣ + 1.

▶ ∣𝑄ℳ∣ comes from Lemma C.15.3, as (enabled) requires to see the
timeout of some timer.

▶ 𝜁 comes from the counterexample processing (see next item).
▶ When we previously replayed a witness of apartness due to some

occurrences of WCT, we had to copy runs from a frontier state.
Since the worst possible depth of a frontier state is ∣ℬ𝒯∣ + 1, this
means we added (at most) that length of the copied run when
counted from the root of the observation tree. Since these replays
may have triggered some instances of Seismic, the basis must
have been recomputed each time. As explained above, we may
not obtain the same exact basis, but the bound over the number
of states is still (C.15.ii). So, in the worst case, we add |Seismic|
many times (∣ℬ𝒯∣ + 1) to the longest branch of the tree.

Processing a counterexample First, in the worst case, we have to add
the complete counterexample to observe what is needed (see Sec-
tion 10.4.5), creating a new run in the tree, whose length is thus 𝜁.
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Recall that each iteration of the counterexample processing splits a

run 𝑝
𝑣
−→ with 𝑝 ∈ ℬ𝒯 into 𝑝

𝑣′

−→ 𝑟
𝑣″

−→ such that 𝑣 = 𝑣′ ⋅ 𝑣″ and 𝑟 ∈ ℱ𝒯 .
It may be that every 𝑣′ is of length 1, meaning that we replay runs of
lengths 𝜁, 𝜁 − 1, … , 1. So, we do

𝜁 + 𝜁 − 1 + ⋯ + 1 = 𝜁2 + 𝜁
2

symbolic output queries and the same number of wait queries.

By combiningwith the bounds of (C.15.vi) to (C.15.x), we obtain the following
bounds.

▶ The number of symbolic output queries is bounded by

1 ⋅ |Completion| + ∣𝑄ℳ∣ ⋅ |Active timers|+
(∣ℬ𝒯∣+1+∣𝑄ℳ∣+𝜁+(∣ℬ𝒯∣+1) ⋅ |Seismic|) ⋅ |WCT|.

Clearly, (𝜁+∣ℬ𝒯∣⋅|Seismic|)⋅|WCT| is bigger than the other operands
(observe that 𝜁 is independent from ∣𝑄ℳ∣, |𝐼|, and ∣𝑋ℳ∣). Hence, the
number of symbolic output queries is in

𝒪((𝜁 + ∣𝑄ℳ∣2 ⋅ ∣𝑋ℳ∣ ⋅ 22∣𝑋ℳ∣) ⋅ |𝐴(ℳ)| ⋅ ∣𝑄ℳ∣4⋅

∣𝑋ℳ∣2 ⋅ 24∣𝑋ℳ∣ ⋅ (∣𝑋ℳ∣!)2) .

▶ The number of symbolic wait queries is bounded by

|𝐴(ℳ)| ⋅ |Promotion| + 1 ⋅ |Completion|+
∣𝑄ℳ∣ ⋅ |Active timers|+

(∣ℬ𝒯∣+1+∣𝑄ℳ∣+𝜁+(∣ℬ𝒯∣+1) ⋅ |Seismic|) ⋅ |WCT|.

Again, (𝜁 +∣ℬ𝒯∣ ⋅ |Seismic|) ⋅ |WCT| is bigger than the other operands.
That is, we obtain the same complexity results as for symbolic output
queries.

▶ The number of symbolic equivalence queries is exactly the number of
constructed hypothesis. It is thus bounded by (C.15.xi).

We thus obtain the announced complexity results. �
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Summary and future prospects 11.
To conclude this thesis, we give an overview of the contributions we presented
throughout the document. We then describe some research directions related
to the topic at hand, which we leave for future work.

Chapter contents

11.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
11.2. Future prospects . . . . . . . . . . . . . . . . . . . . . . . . . 336

11.2.1. Learning one-counter automata . . . . . . . . . . . . 336
11.2.2. Validation of JSON documents . . . . . . . . . . . . . 337
11.2.3. Mealy machines with timers . . . . . . . . . . . . . . 338
11.2.4. Other directions . . . . . . . . . . . . . . . . . . . . . 339

11.1. Summary

We studied active learning algorithms for automata. Our main contributions
are two new learning algorithms for realtime one-counter automata and Mealy
machines with timers, and a validation algorithm for JSON documents that
first learns an automaton. In this section, we summarize these contributions.

First, in Part II, based on [BPS22], we studied and drew a hierarchy of multiple
variants of one-counter automata. Importantly, we defined realtime one-counter
automata, which are deterministic finite automata extended with a single
natural counter and showed that its behavior can be represented in finite
memory, despite the fact that the counter is unbounded (in general). To obtain
this representation, we first define an infinite automaton, called the behavior
graph, from a straightforward adaptation of the Myhill-Nerode equivalence
relation. We showed that the behavior graph is isomorphic to the homonymous
concept used in [NL10]. Given the results already proved by Neider and Löding,
we immediately obtain the existence of a finite representation. The learner
hence infers a sufficiently big finite fragment of the infinite automaton such
that a finite representation of the target model can be extracted, and using
a number of queries that is exponential in the number of input symbols, in
the number of states of the teacher’s ROCA, and in the length of the longest
counterexample returned on an equivalence query. We implemented our
algorithm and provided experimental results.

Second, in Part III, based on [BPS23], we provided a streaming validation
algorithm that checks whether a JSON document satisfies some constraints
given as a JSON schema. Our approach is to first construct a visibly pushdown
automaton that accepts a (strict) subset of all valid documents. More precisely,
the VPA assumes a fixed order on the key-value pairs appearing in the objects.
As objects ought to be unordered, our algorithm removes this restriction by
“jumping around” in the VPA to process each pair independently, using a key
graph to know where to jump. Once the object has been fully read, we are
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able to decide whether it satisfied the corresponding constraints. That is, we
accept any permutation of key-value pairs, not only the learned order. We
showed that our algorithm requires an amount of memory that is polynomial
in the number of keys, in the number of states of the VPA, and in the depth
(the number of nested objects and arrays) of the document, and has a time
complexity that is exponential in the number of keys. Finally, our experimental
results indicated that our algorithm usually takes more time than the classical
algorithm (used in many applications) but far less memory, thanks to the fact
that we do not have to hold the whole document in memory.

Finally, in Part IV, based on [Bru+23; Bru+24], we introduced Mealy machines
with timers, which are a restriction of timed Mealy machines that use timers
instead of clocks. We showed the reachability decision problem remains
PSPACE-complete, and adapted the notions of regions and zones that are well-
known tools for timed automata. Furthermore, we focused on the problem
of deciding whether an MMT has an untimed run that can only be observed
via some timed runs in which some delays must be zero, i.e., whether races
cannot be avoided. We showed that this decision problem is PSPACE-hard
and provided an algorithm that is in 3EXP. Finally, we gave an active learning
algorithm for MMTs, that is based on 𝐿#. This algorithm infers a finite tree
and extracts an MMT from it, using a number of queries that is polynomial in
the number of states of the teacher’s MMT, in the number of input symbols,
and in the length of the longest counterexample, and factorial in the number
of timers of the teacher’s MMT.

11.2. Future prospects

Let us conclude by giving several potential research directions that could
extend the contributions presented throughout this document. Note that most
of them were already given in their corresponding chapters.

11.2.1. Learning one-counter automata

Our algorithm for learning realtime one-counter automata, presented in Chap-
ter 5, could be extended in the following ways:

▶ Remove the need of partial equivalence queries. In this direction, perhaps
replacing our use of Neider and Löding’s VOCA algorithm by Isberner’s
TTT algorithm [IHS14b; Isb15] might help, due to the differences in how
the gathered knowledge is stored in both algorithms. The 𝐿# algorithm
of Vaandrager et al. [Vaa+22] is another potential candidate, as it does
not infer an equivalence relation but instead focuses on identifying the
differences in behavior of two states (see Section 3.3).

▶ Even without exploring the previous item, lowering the (query) complex-
ity of our algorithm would help making it applicable to complex systems.
One possible approach would be to change how a counterexample is pro-
cessed. In [RS93], it is proved that adding a single separator after a failed
equivalence query is enough to update the observation table and refine
the knowledge of the learner. This would remove the suffix-closedness
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requirements on the separator sets 𝑆 and ̂𝑆. It is not immediately clear
to us whether the definition of ⊥-consistency presented here holds in
that context. Further optimizations, such as discrimination tree-based
algorithms (such as Kearns and Vazirani’s algorithm [KV94]), also do
not need the separator set to be suffix-closed.

▶ Directly learn the one-counter language instead of an ROCA. Indeed, our
algorithm learns some ROCA that accepts the target language. It would
be desirable to learn some canonical representation of the language (e.g.,
a minimal automaton, for some notion of minimality).

▶ Extend the learning algorithm to more general one-counter automata,
such as deterministic one-counter automata, in which 𝜀-transitions are
allowed.1

Finally, while it is known that deciding whether two ROCAs are equivalent is
NL-complete [BGJ14], there currently exists no concrete algorithms to do so.
It may be an interesting (theoretical) question to tackle.

11.2.2. Validation of JSON documents

We now give some potential future work extending our validation algorithm
for JSON documents, presented in Chapter 7:

▶ So far, our algorithm necessitates to learn a VPA, which takes a long
time. Although this can be done once,2 it may be interesting to directly
construct a VPA from the JSON schema. While this task is easy if the
schema does not contain Boolean operations, it is not yet clear how to
proceed in the general case.

▶ It could be worthwhile to compare our algorithm against an implemen-
tation of a classical algorithm used in the industry. This would require
either to modify the industrial implementations to support abstractions,
or to modify our algorithm to work on unabstracted JSON schemas.

▶ In our validation approach, we decided to use a VPA accepting the JSON
documents satisfying a fixed key order — thus requiring to use the key
graph and its costly computation of a set composed of the valid runs
inside the VPA. It could be interesting to make additional experiments to
compare this approach with one where we instead use a VPA accepting
the JSON documents and all their key permutations — in this case,
reasoning on the key graph would no longer be needed.

▶ Motivated by obtaining efficient querying algorithms on XML trees, the
authors of [SSM08] have introduced the concept of mixed automata in a
way to accept subsets of unranked trees where some nodes have ordered
sons and some other have unordered sons. It would be interesting to
adapt our validation algorithm to different formalisms of documents,
such as the one of mixed automata.

▶ Finally, exploring the possibility of using systems of procedural automata
(SPAs, for short) [FS21], which form an extension of DFAs that can mutu-
ally call each other. The restrictions imposed by Frohme and Steffen for
the learning algorithm (namely, that calls and returns between the differ-
ent DFAs are observable) make the model akin to VPAs. As SPAs have
specific structures (i.e., distinct DFAs with special transitions indicating
how to jump between them) and as the learning algorithm proposed
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in [FS21] has a lower time complexity than TTTVPL, it may be interesting
to adapt the ideas from our validation algorithm to SPAs, potentially
yielding an algorithm with a better time complexity.

11.2.3. Mealy machines with timers

While timed automata are well-known (see Chapter 8) and the idea of using
timers [Dil89] actually predates clocks, many properties of automata (or Mealy
machines) with timers remain to be studied. We already showed in Chap-
ter 9 that the reachability problem remains PSPACE-complete. The following
questions may be worth exploring:

▶ Is the set of automata with timers closed under classical operations
(intersection, union, complementation, and so on)?

▶ We argued in Section 9.3 that there are timed automata that cannot be
converted into an automaton with timers. The question is then: what is
the exact subclass of timed automata for which it is possible?

▶ The MMT that we used in Section C.2 to show that the timed equivalence
does not imply symbolic equivalence is not race-avoiding. Whether
the implication holds when both MMTs are race-avoiding is an open
question.

▶ We studied in Section 9.6 the problem of deciding whether it is possible to
have concurrent actions in the timed runs of an automaton with timers.
We proved that it is PSPACE-hard and provided a 3EXPalgorithm. What
is the exact complexity class of the problem?

Our learning algorithm for Mealy machines with timers, presented in Chap-
ter 10, could be extended in the following ways:

▶ The counterexample processing we described here is based on a linear
search and reproduces parts of the runs until the tree is sufficiently
modified to break the last constructed hypothesis. It may be interesting
to perform a binary search (as is done in [Vaa+22], for instance) instead,
which would reduce the number of required queries.

▶ In order to build a hypothesis MMT, we need to first construct a gen-
eralized MMT, in which timers can be arbitrarily renamed along the
transitions. Hence, it would be worth to investigate whether it is possible
to learn generalized Mealy machines with timers. This would require to
adapt the arguments and tools introduced here.
Another direction would be to provide a hypothesis construction that
directly constructs an MMT, without needing generalized models.

▶ The current implementation always constructs a hypothesis MMT with-
out going through generalized machines. This restricts the set of MMTs
that can be learned. It would thus be interesting to implement the
missing pieces.3

▶ Finally, one could apply the learning algorithm on concrete systems
using more than two timers and performmodel checking on the resulting
MMTs (e.g., by using UPPAAL [Beh+06]).
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11.2.4. Other directions

Finally, we list some other directions that are not (directly) related to the
contributions presented in this thesis:

▶ Providing active learning algorithms for automata extended with other
kinds of resources, such as queue automata [KMW18], or to extend ex-
isting works to more general models, e.g., learning pushdown automata
is currently restricted to the visibly case [IS14; MO22] and may benefit
from more expressive subfamilies.

▶ To help with the previous item, studying compositional learning [FS21;
NS23] where the learner infers the global system piece by piece before
gluing them together may lead to better overall complexities for our
algorithms.

▶ In parallel of timed automata, there exists a theory of timed games.
See [MPS95; AHV93], for instance. It may be interesting to check
whether considering timers instead of clocks could help obtaining better
complexity results in this domain.

▶ The contributions presented in this thesis were mostly theoretical. Ap-
plying the proposed algorithms on concrete examples coming from the
industry and formally verifying the resulting models is an interesting
direction. In particular, this may help us designing tools that can easily
be used to model check real-world systems.
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Notations

Notation Description
𝑤 ⊢ 𝑞 # 𝑝 The states 𝑞 and 𝑝 are apart, with 𝑤 a witness.
𝑓 ∘ 𝑔 The function such that (𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)).
𝜀 The unique word with zero symbol.
≡𝒪 The equivalence relation of the observation table 𝒪.
ℳ ≈ 𝒩 Mealy machinesℳ and𝒩 are equivalent: for every input word, bothℳ and𝒩

produce the same output word.
J⋅K∼ An equivalence class of the relation ∼.
≅ The region relation.
𝐽 ⊧ S The JSON value 𝐽 satisfies the JSON schema given as a non-terminal symbol S

in the extended context-free grammar.
∼𝐿 The Myhill-Nerode congruence for the language 𝐿.
∼𝒜 The refined Myhill-Nerode congruence for a realtime one-counter automaton 𝒜.
≃𝐿 The Myhill-Nerode congruence for visibly pushdown languages.
Σ̃ A pushdown alphabet.
Σ̃JSON The pushdown alphabet used in visibly pushdown automata for JSON schemas..

ℳ
time
≈ 𝒩 Mealy machines with timersℳ and𝒩 are timed equivalent.

𝐴(ℳ) The set of actions of a Mealy machine with timersℳ comprised of all considered
input and timeout symbols.

Approx(𝑣) The approximation set of 𝑣 in 𝐿∗
ROCA.

𝛽(𝑢) The balance of 𝑢, i.e., the number of unmatched call (when the value is greater
than zero) or return (when the value is smaller than zero) symbols in 𝑢.

ℬ𝒯 The basis of the observation tree 𝒯 in 𝐿#.
𝐵𝐺(𝐿) The behavior graph of the visibly one-counter language 𝐿.
𝐵𝐺(𝒜) The behavior graph of the realtime one-counter automaton 𝒜.
𝐵𝐺≤ℓ(𝒜) The bounded behavior graph up to ℓ of the realtime one-counter automaton 𝒜.

compat𝒯(𝑟) The set of all basis states that are compatible with the frontier state 𝑟.
cnstr(𝜋) The constraints accumulated along the (untimed) run 𝜋 of a Mealy machine with

timers.
CP(Σ̃) The context pairs over the pushdown alphabet Σ̃.
cruns(𝒜) The set of counted runs of the one-counter automaton 𝒜.
cv(𝑤) The counter value of a word 𝑤 over a pushdown alphabet.
cv𝒜(𝑤) The counter value of a word 𝑤 for a realtime one-counter automaton 𝒜.
CVQ(𝑤) A counter value query: gets cv𝒜(𝑤), with 𝒜 the teacher’s realtime one-counter

automaton.

dom(𝑓) The domain of a function 𝑓 ∶ 𝐴 ⇀ 𝐵, i.e., the set of values 𝑎 ∈ 𝐴 such that 𝑓(𝑎)
is defined.

EQ(ℋ) An equivalence query: returns yes when ℋ accepts the target language, or a
counterexample otherwise.



Notation Description
EQs(ℋ) A symbolic equivalence query for 𝐿#

MMT: returns yes whenℋ accepts the target
language, or a counterexample otherwise.

ℱ𝒯 The frontier of the observation tree 𝒯 in 𝐿#.

𝒢 The extended context-free grammar for a JSON schema.
𝒢U The universal extended context-free grammar.
G𝒜 The key graph of the 1-SEVPA 𝒜.

height (𝑤) The height of a word 𝑤 over a pushdown alphabet.
height𝒜(𝑤) The height of a word 𝑤 for a realtime one-counter automaton 𝒜.

𝕀𝐴 The identity relation over the set 𝐴, i.e., 𝕀𝒜 = {(𝑎, 𝑎) ∣ 𝑎 ∈ 𝐴}.

ℒ(𝒜) The language of the automaton 𝒜.
𝐿≤ℓ The language of the bounded behavior graph up to ℓ of a visibly or realtime

one-counter automaton.
ℒ≤ℓ(𝒜) The bounded language up to ℓ of the realtime one-counter automaton 𝒜.
ℒ<(𝒢) The subset of ℒ(𝒢) where keys inside objects respect the order <..

𝑚𝜋
𝜋′ The runs 𝜋 and 𝜋′ of a Mealy machine with timers match, according to the

matching 𝑚.
MQ(𝑤) A membership query: check whether 𝑤 belongs to the target language.

𝒪 An observation table for 𝐿∗.
𝒪≤ℓ An observation table up to ℓ for 𝐿∗

VOCA and 𝐿∗
ROCA.

outputℳ(𝑤) The output word obtained by concatenating the output symbols of the run of 𝑤
inℳ.

OQ(𝑤) An output query: gets outputℳ(𝑤), withℳ the Mealy machine of the teacher..
OQs(𝑤) A symbolic output query for 𝐿#

MMT: gets toutputsℳ(𝑤), with 𝑤 a symbolic input
word andℳ the Mealy machine with timers of the teacher..

ptruns(ℳ) The set of padded timed runs of the Mealy machine with timersℳ.
PEQ(ℋ, ℓ) A partial equivalence query: returns yes whenℋ accepts the bounded target

language up to ℓ, or a counterexample otherwise.
Pref (⋅) The set of prefixes of a word or language.

ran(𝑓) The range of a function 𝑓 ∶ 𝐴 ⇀ 𝐵, i.e., the set of values 𝑏 ∈ 𝐵 such that
𝑓(𝑎) = 𝑏 for some 𝑎 ∈ dom(𝑓).

Reach𝒜 The reachability relation of a visibly pushdown automaton.
𝑅 The set of representatives without ⊥-words in 𝐿∗

ROCA.
runs(𝒜) The set of runs of the automaton or Mealy machine 𝒜.

sign(𝑎) The sign (i.e., the counter operation) of a symbol in a pushdown alphabet.
Suff (⋅) The set of suffixes of a word or language.

truns(ℳ) The set of timed runs of the Mealy machine with timersℳ.
TO[𝑋] The set of timeout symbols to[𝑥] for each timer 𝑥 of 𝑋.



Notation Description
𝑡𝑖𝑤(𝜌) The timed input word obtained from the delays and input symbols of the timed

run 𝜌.
tiwruns(𝑤) The set of all timed runs induced by the timed input word 𝑤.
toutputs(𝑤) The set of timed input words obtained from every timed run induced by the

timed input word 𝑤.
𝑡𝑜𝑤(𝜌) The timed output word obtained from the delays and output symbols of the

timed run 𝜌.
𝒯 An observation tree for 𝐿#.

untime(𝜋) The untimed projection of the timed run 𝜋.
𝑈(ℳ) The set of updates ofℳ comprised of ⊥ (no update), and of all pairs (𝑥, 𝑐) with

𝑥 a timer and 𝑐 a natural.

WQs(𝑤) A symbolic wait query for 𝐿#
MMT: gets the set of enabled timers after a run

reading the symbolic input word 𝑤 in the teacher’s Mealy machine with timers..

zone(ℳ) The zone Mealy machine with timers of the Mealy machine with timersℳ.



Abbreviations

Notation Description
1-SEVPA 1-module single entry visibly pushdown automata.

DFA deterministic finite automaton.
DOCA deterministic one-counter automaton.
DOCL deterministic one-counter language.

gMMT generalized Mealy machine with timers.

LBTM Linear-bounded Turing machine.

MM Mealy machine.
MMT Mealy machine with timers.

NFA nondeterministic finite automaton.

OCA one-counter automaton.
OCL one-counter language.

ROCA realtime one-counter automaton.
ROCL realtime one-counter language.

sw symbolic word.

tiw timed input word.
TMM timed Mealy machine.
tow timed output word.

VOCA visibly one-counter automaton.
VOCL visibly one-counter language.
VPA visibly pushdown automaton.
VPL visibly pushdown language.
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