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Units and abbreviations

The purpose of this section is to provide an overview of the fundamental con-
stants employed throughout this text, alongside their values in the International
System of Units (SI units). Additionally, the concept of natural units, which is
utilised extensively in this thesis, is explained. A table of abbreviations used in
the text is also provided.

1 SI units and fundamental constants
The SI base units are: the second (s) for time, the metre (m) for length, the
kilogram (kg) for mass, the ampere (A) for electric current, the kelvin (K)
for temperature, the mole (mol) for the amount of substance, and the candela
(cd) for luminous intensity. These seven base units serve as the foundation for
deriving other units by combining powers of the base units. For instance, the
SI unit of electric potential, the volt (V), is expressed as kg m2 s−3 A−1.
The values of the fundamental constants, expressed in SI units, were verified
using the NIST (National Institute of Standards and Technology) database1,
accessed on 16th September 2024. Digits in parentheses indicate the uncertainty
in the value, expressed in concise form2. Throughout this text

• The speed of light in vacuum is denoted c. Its value in SI units is

c = 299 792 458 m s−1.

• Planck’s constant is denoted h. Its value in SI units is

h = 6.626 070 15 × 10−34 m2 kg s−1.

The reduced Planck’s constant ℏ = h/(2π) is often used in calculations.

• The vacuum electric permittivity is denoted ϵ0. Its value in SI units is

ϵ0 = 8.854 187 8188(14) × 10−12 m−3 kg−1 s4 A2.

The vacuum magnetic permeability, denoted µ0, is related to the vacuum
electric permittivity by the relation ϵ0µ0 = 1/c2.

1https://pml.nist.gov/cuu/Constants/
2For example, 2.1969811(22) represents 2.1969811 ± 0.0000022

v
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vi Units and abbreviations

• The elementary charge is denoted e. Its value in SI units is

e = 1.602 176 634 × 10−19 A s.

The fine-structure constant, denoted α, is defined as

α = e2

4πϵ0ℏc
= 7.297 352 5643(11) × 10−3,

which is dimensionless.

With the exception of ϵ0, the other fundamental constants are defined as exact.
This is due to the modern redefinition of SI units, which fixes the values of
certain fundamental constants to exact numbers in order to define the units
themselves. For instance, the metre (m) is defined as the distance light travels
in 1/(299 792 458) seconds3. Similarly, the kilogram (kg) is defined in terms
of Planck’s constant, while the ampere (A) is defined based on the elementary
charge.
The SI unit for energy is the joule (J), defined as 1 J = 1 kg m2 s−2. However,
in particle physics, the electron-volt (eV) is more commonly used as a unit of
energy. The eV is defined as the amount of kinetic energy gained by a single
electron when accelerated through an electric potential difference of one volt
(V) in a vacuum. It is related to SI units by

1 eV = (1 e) × (1 V) = 1.602 176 634 × 10−36 J.

In this thesis, the electron-volt (eV) will be used as the unit of energy instead
of the joule.

1.1 Natural units
In theoretical physics, it is often convenient to use a system of units where
certain fundamental constants are normalised to unity, known as natural units.
In this thesis, natural units are adopted such that

c = ℏ = 1.

This approach simplifies the expression of equations and facilitates the numeri-
cal evaluation of physical quantities. For instance, a particle with a velocity of
74 948 114.5 m s−1 is equal to 1/4 in natural units. The conversion is achieved
by multiplying the velocity in natural units by the value of c in SI units. Sim-
ilarly, the intrinsic spin of an electron is simply given by 1/2 in natural units,
instead of 5 272 858.5 × 10−34 m2 kg s−1 in SI units.
Thanks to natural units, various physical quantities can be expressed in the same
unit. Notably, through Einstein’s relation E = mc2, mass can be expressed as
energy divided by c2. In natural units, where c = 1, mass is directly expressed
in units of energy, such as electron-volts (eV). For example, the masses of the
electron, proton, and neutron are given in natural units as

3The second is defined based on the hyperfine transition frequency of caesium-133, ∆νCs =
9 192 631 770 s−1, which is an exact value.
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me = 0.510 998 950 69(16) MeV,
mp = 938.272 089 43(29) MeV,
mn = 939.565 421 94(48) MeV.

To convert mass from natural units to kilograms, the relationship is

1 eV [natural units] = 1 eV[SI]
c2[SI] = 1.782 661 92 × 10−36 kg.

Similarly, momentum is expressed in units of eV, while length and time are
expressed in units of eV−1.
Additionally, by setting ϵ0 = 1 in natural units, the electric charge can be
expressed in units of

√
ϵ0ℏc, leading to the elementary charge being represented

as

e =
√

4πα = 0.303.

It is important to note that the definition of natural units may vary depending
on the field of study. For example, in atomic physics, natural units are often
defined by setting me = e = ℏ = 4πϵ0 = 1. In this system, the speed of light is
no longer equal to one, but rather c = 1/α. As a result, energy is expressed in
electron volts (eV) by multiplying by meα

2c2 = 27.21 eV.

2 Table of abbreviations
Hereunder, we offer a table of the abbreviations used in the different chapters
of this manuscript.
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Abbreviation Full name

BGS Bosonic Ground State

BM Brody-Moshinsky (coefficients)

CEBAF Continuous Electron Beam Accelerator Facility

CLAS CEBAF Large Acceptance Spectrometer

CM Centre of Mass

DOS Dominantly Orbital State (method)

ET Envelope Theory

EOB Expansion in Oscillator Bases

FGS Fermionic Ground State

FT Fourier Transform

HB Hybrid Baryon

HO Harmonic Oscillator

IET Improved Envelope Theory

LM Lagrange-Mesh (method)

LQCD Lattice Quantum ChromoDynamics

MA Mixed Antisymmetric

MS Mixed Symmetric

NR Non-Relativist

OGE One-Gluon Exchange (process)

OPE One-Photon Exchange (process)

PL Pauli-Lubanski (operator/vector)

QCD Quantum ChromoDynamics

QED Quantum ElectroDynamics

SI Système International d’unités

(International System of Units)

SM Standard Model



Introduction
and state of the art

The study of elementary particles which constitute the universe has often been
a central theme in the history of science. In Antiquity, the Greek philosopher
Democritus proposed that all matter was composed of small, indivisible particles
he termed “atoms”. However, it was not until the 18th and 19th centuries that
modern atomic theory began to emerge, notably through the work of scientists
such as Lavoisier and Dalton.
Fast-forwarding to the first half of the 20th century, it was discovered that
the atom is not an elementary particle. Instead, it consists of a nucleus at its
centre, which is positively charged and contains most of the atom’s mass, and
electrons, which are negatively charged particles that “orbit” around the nucleus
and are bound to it by the electromagnetic force. Electrons were discovered
by Thomson in 1897 through his work on cathode rays, and the nucleus was
identified by Rutherford, Geiger, and Marsden in 1911 by studying the scattering
of α particles1 on gold foil. The nucleus itself is composed of protons, positively
charged particles whose number, called the atomic number, determines the type
of atom (e.g., hydrogen has a single proton, iron has 26, and gold has 79), and
neutrons, neutral particles discovered by Chadwick in 1932, which determine
the isotopes of the nucleus. If only the electromagnetic force were present, the
nucleus would not be stable since the protons would repel each other. The
cohesion of the nucleus is explained by the attraction between the protons and
neutrons due to a new force, the strong (nuclear) interaction, which is stronger
than the electromagnetic one.
Advancing to the present time, the early 21st century, numerous subatomic and
subnuclear particles have been discovered, leading to the emergence of a new
field of physics: particle physics. A comprehensive list of all known elemen-
tary particles and their properties can be found in the Particle Data Group [1].
Our current understanding indicates that protons and neutrons are not elemen-
tary particles; rather, they are composite particles made of quarks, which are
bound together by the strong interaction. Other composite particles made of
quarks exist and are collectively termed hadrons [1]. Their study lies in the

1α particles are positively charged particles of matter that are spontaneously emitted from
certain radioactive elements. From our current knowledge, we understand that these particles
are, in fact, helium-4 nuclei.

ix



x Introduction and state of the art

field of hadronic physics. Hadrons made of three quarks, such as the proton and
neutron, are called baryons, and those composed of a quark-antiquark pair are
called mesons.

The current theoretical framework of particle physics is the Standard Model
(SM), which unifies three of the four fundamental forces: electromagnetism,
strong interaction, and weak interaction, with gravitation notably excluded
from this theory. The strong interaction is specifically explained by the theory
of Quantum Chromodynamics (QCD). QCD describes the strong interaction
between quarks through the exchange of particles known as gluons, which are
themselves elementary particles.

In theory, knowledge of the fundamental principles of QCD should enable us
to explain all phenomena associated with the strong interaction, including the
properties of all possible hadrons. However, in practice, the high complexity of
the QCD equations presents significant challenges to this quest. Despite these
difficulties, QCD is known to be a rich theory, predicting various configurations
of quarks beyond ordinary baryons and mesons. One such configuration is the
hybrid baryon, which can be described as a system consisting of three quarks
(like a baryon) plus a valence gluon, the particle responsible for mediating the
strong interaction. Hybrid baryons have not yet been experimentally observed,
and their discovery would provide further confirmation of the theory of the
strong interaction. The aim of this thesis is to develop a theoretical model of
hybrid baryons to aid experimentalists in their search.

1 State of the art
QCD is an established part of the SM of particle physics, responsible for the con-
finement of quarks and gluons inside hadrons. Despite the comprehensive frame-
work provided by QCD, significant mysteries remain regarding how hadrons are
constructed from quarks and gluons.

A successful method to study the properties of hadrons is the constituent ap-
proach, in which quarks interact via potentials that encapsulate the effects of
the gluonic field. This method involves solving a many-body quantum problem
with interactions deduced or inspired by QCD. Although this approach is theo-
retically justified primarily for heavy quarks, it has also yielded very good results
in the light quark sector, provided constituent quarks are treated as effective
degrees of freedom with semi-relativistic dynamics [2, 3]. Another analytical
scheme to study the phenomenology of hadrons involves starting from the large
number of colours (Nc) limit of QCD [4, 5]. This method has been successfully
applied to the study of the properties of ground state baryons, as well as the
masses and decays of excited baryons. This approach requires experimental in-
puts or predictions from other models when no data is available. These two very
different approaches can be combined to gain new insights into the structure of
hadrons [6, 7, 8, 9].

Besides ordinary hadrons, QCD allows for the existence of states in which the
excitation of the gluonic field plays the role of valence particles, either alone
in a glueball or coupled to quarks in a hybrid. Consequently, hybrid baryons,
composed of three quarks and a gluon, can theoretically exist. These exotic
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Figure 1: The light-quark baryon spectrum predicted in LQCD at a pion mass
of 396 MeV [14]. Grey boxes represent conventional qqq states, and blue boxes
represent states identified as hybrid baryons. Note that both the mass of the
nucleon ground state and the ∆(1232) are shifted by nearly 300 MeV to higher
masses.

hadrons have been studied using various models: the bag model [10], the flux-
tube model [11], QCD sum rules [12], the large-Nc approach [13], and lattice
QCD (LQCD) [14]. Unfortunately, although these models predict the existence
of hybrid baryons, their predictions for the masses and structures differ consid-
erably. For example, recent LQCD calculations for light hybrid baryons predict
the existence of a common energy scale of about 1.3 GeV for the lowest glu-
onic excitations and a low mixing between hybrid and ordinary baryons with
the same spin and parity JP (see Fig. 1). On the other hand, the possible
hybrid baryon nature of the Λ(1405) state is suggested by a recent QCD sum
rules study [12], and the possibility of significant mixing between the ground
states of hybrid and ordinary light baryons is predicted in a detailed large-Nc
calculation [13].
A priori, the LQCD technique, in which the gauge theory is formulated on a
lattice of points in space and time, can be a powerful method to study these
hadrons [14]. Accurate results can be obtained without free parameters, but
they require extremely intensive numerical calculations. There is still a long
way to go in the study of hybrid baryons with this approach. To gain a bet-
ter understanding of these exotic baryons using LQCD will require calculations
at light quark masses, close to their physical values, coupled with large lattice
volumes, which can dramatically increase computational costs. Another issue
with this method is the difficulty of investigating the various physical processes
occurring inside hadrons. Moreover, efforts currently being made using LQCD
and other available approaches (numerical or analytical) focus mainly on hy-
brid mesons, as these methods are usually simpler due to the fewer constituent
particles involved. It is, therefore, worthwhile to explore a method that seems
promising for the study of hybrid baryons.

From the experimental side, there is no clear signal yet regarding the existence
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N∗ or qqqg

Figure 2: Electroproduction process for a KΛ pair on a proton. The four-
momentum squared transferred by the photon is Q2. The dashed line represents
an intermediate state, which could be either an excited nucleon N∗ or a hybrid
baryon qqqg.

of these hybrid baryons. However, current experimental efforts are focused on
searching for hybrid baryons at the CEBAF Large Acceptance Spectrometer
(CLAS12) in the experimental Hall B at Jefferson Laboratory (USA) [15, 16].
Hybrid baryons are anticipated to be produced via electroproduction processes,
where a polarised electron beam is directed at a liquid hydrogen target (denoted
LH2, which serves as a proton target). The beam, generated by the CEBAF
accelerator, reaches energies up to 10 GeV and operates at a maximum lumi-
nosity2 of 1035 s−1cm−2. In the experiment, the electron beam interacts with
the proton target through the exchange of virtual photons, characterised by a
four-momentum squared Q2. The resulting final state includes a scattered elec-
tron and a meson-baryon pair, for example KΛ, produced from the interaction
of the proton and photon. During this process, intermediate states appear as
resonances, which could either be excited nucleons or exotic particles like hybrid
baryons. A schematic of this process is depicted in Fig. 2.
Data will likely become available in the coming years [17]. Identifying hybrid
baryons will be more challenging than identifying hybrid mesons, as the latter
can have exotic quantum numbers forbidden for states containing only con-
stituent quarks. This is not the case for hybrid baryons, which have quantum
numbers also populated by ordinary baryons. Consequently, mixings are pos-
sible between hybrid baryons and excited three-quark states. Hybrid baryons
should then appear as overpopulated states compared to some models of qqq
excitation. Fortunately, the nature of the states produced at CLAS12 can be
explored by investigating the Q2 dependence of the resonance coupling in elec-
troproduction processes [15, 16]. Differences with ordinary baryons are expected
due to the additional gluonic component in the wave function of hybrids. For
the same reason, the decay products of hybrid baryons must differ from those
of ordinary baryons.
The differences between the various models of hybrid baryons and their potential
detection in the near future make a better understanding of these objects crucial

2The luminosity L is defined as the ratio of the number of events detected dN in a certain
period of time dt to the cross-section σ

L =
1
σ

dN

dt
.

It is expressed in s−1b−1 in SI units, where 1 b = 10−28 m2.
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for their correct identification. The purpose of this thesis is to develop a reliable
model of hybrid baryons to guide experimenters, by combining, as has already
been done for ordinary baryons, two different approaches: the large-Nc theory
and a constituent model.

2 Structure of the thesis
This present work is structured in four chapters. We propose here a brief ex-
planation of each of them. At the end of each chapter, a concise conclusion
summarises the key contributions of the research presented.

First, a brief history of the strong interaction and QCD is presented in Chap-
ter 1. This chapter starts from the state of 20th century physics and explores
the emergence of particle physics. In particular, the classification of hadrons
and the hypothesis of quarks as elementary particles are discussed. The in-
troduction of the concept of colour charges is also explained, along with the
evidence supporting it. Following this historical discussion, the main steps in
the construction of QCD, the fundamental theory of the strong interaction, are
outlined, starting from the colour invariance of the interaction. Finally, some
approaches for obtaining information from QCD are proposed, with an emphasis
on the constituent approach, which is the primary approach used in this work.
In particular, models of the strong interaction potential are explored.

Next, the problem of solving the many-body Schrödinger equation, which is a
key component of the constituent approach, is presented in Chapter 2. The
chapter begins with an illustration of a particular many-body system, the har-
monic oscillator. It is shown that this system can be exactly solved for an
arbitrary number of particles and dimensions. Following this, an approximation
method called the envelope theory (ET) is introduced. This method proves use-
ful in the context of large-Nc QCD as in this approach baryons are systems of Nc
quarks. An improvement procedure for the ET is also subsequently discussed.
Finally, some results obtained with the ET and its improvement procedure are
presented. This chapter is accompanied by Appendix A, which discusses the
wavefunction of the many-body harmonic oscillator and its connection to the
ET.

The implications of the masslessness of the gluon are treated in Chapter 3.
Indeed, the masslessness of the gluon implies it has only two projections of
spin, ±1. To correctly couple the spin of the massive quarks with the helicity
of the gluon, the helicity formalism of Jacob and Wick is used. The chapter
begins with an explanation of this formalism and a derivation of the helicity
states for one- and two-body systems. Some properties of the helicity states are
also discussed. Subsequently, the helicity states of a hybrid baryon in a quark
core model, allowing the hybrid baryon to be reduced to a two-body system,
are computed. The chapter is accompanied by Appendix B, which explores the
Poincaré and rotation groups, aiding in the understanding of the definitions and
derivations presented earlier.

Eventually, results for the spectrum of heavy hybrid baryons are presented in
Chapter 4. The interactions between the quarks and the gluon are discussed,
and the quark core model is justified. Following this model, the mass and size of
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the quark core are computed using a suitable method, the expansion in oscillator
bases (EOB). The spectrum of hybrid baryons as quark core-gluon systems is
then computed using another method, the Lagrange-mesh (LM) method. The
inclusion of the helicity states in the model is also discussed. Appendix C
provides additional information about the LM method.
In this first study, only cccg and bbbg systems are studied, for reasons elaborated
upon in the text. Prospects for future research are proposed at the conclusion of
this study. Improvements to the model concerning heavy quarks are presented,
alongside potential extensions to the light quark sector, which holds greater
experimental interest. Additionally, the integration of the large-Nc approach
into the constituent model is examined, with an emphasis on the challenges and
potential solutions. The justification for employing the ET is also provided.
With the context and plan of this thesis established, it is now time to delve into
the vast field of hadronic physics and explore the uncharted territory of hybrid
baryons within a constituent model.
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1Brief history
of the strong interaction

Chapter

Who ordered that ?

Reaction of physicist I.I. Rabi
after the discovery of the muon.

At the beginning of the 20th century, physicists believed the Universe was com-
posed of four elementary particles: the proton p, neutron n, electron e− and
photon γ. In subsequent years, new particles were discovered in cloud chambers
through the study of cosmic radiation, such as the positron e+ (the anti-electron)
by Anderson in 1932 [1], and the muon µ− (the heavy cousin of the electron) by
Anderson and Neddermeyer in 1936 [2]. Advancing to the 1950s, newly devel-
oped particle accelerators enabled the production of new particles like the pions
(π+, π0, π−), the deltas (∆++,∆+,∆0,∆−), and many others, leading to what
became known as the particle zoo. It soon became clear that all these parti-
cles, termed hadrons, could not be elementary particles. The primary objectives
for physicists at the time were to (1) classify these particles and (2) determine
their elementary constituents. Hadrons can be initially classified according to
their spin J and parity P . Integer spin hadrons are called mesons, whereas
half-integer spin hadrons are called baryons.
The study of the hadron spectrum reveals the existence of particle families
sharing the same JP quantum numbers and similar masses. Members of the
same family, called a multiplet, are distinguished by their electric charges. For
instance, the proton and neutron are JP = 1/2+ particles, each with a mass
of around 939 MeV. The pions and deltas are further examples of multiplets,
comprising three and four particles, respectively.
These mass degeneracies are significant because they suggest an underlying
symmetry of the Hamiltonian describing hadronic states. The symmetry trans-
formations form the symmetry group1. For example, the eigenfunctions of a
Hamiltonian invariant under spatial rotations, such as the Hamiltonian of the

1Consider a Hamiltonian H with an eigenvector |ψα⟩ and eigenvalue E. Now consider a
transformation of the eigenstate under a group G, |ψα⟩ → gi |ψα⟩ with gi ∈ G, such that the
set of functions {gi |ψα⟩} is degenerate. Then

Hgi |ψα⟩ = Egi |ψα⟩ = giE |ψα⟩ = giH |ψα⟩ .

1
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hydrogen atom, form a multiplet of 2l + 1 degenerate eigenfunctions, where l
is the orbital angular momentum. In this case, the symmetry group is SO(3).
This degeneracy can be lifted by applying a magnetic field, resulting in the Zee-
man effect. The magnetic field favours a particular direction, often chosen as
the z-axis, thereby breaking the rotational symmetry. The reasoning is similar
for hadrons: the underlying Hamiltonian of strong interaction is invariant under
a certain group G, which we will identify as the group SU(N), leading to mass
degeneracy that is broken by electromagnetic forces.
In this introductory chapter, we propose to review the main concepts surround-
ing the strong interaction. First, in Sec. 1.1, the notions of isospin, flavour, and
colour are introduced. Next, the theory of quantum chromodynamics (QCD)
is presented along with some of its properties in Sec. 1.2. Finally, in Sec. 1.3,
various approaches to QCD are discussed, with particular emphasis on the con-
stituent quark model. Throughout this chapter, natural units are employed,
where ℏ = c = 1.

1.1 Isospin, flavour and colour
In the early 20th century, before the discovery of hadrons, Heisenberg introduced
a new quantum number for describing the proton p and neutron n, known as
isotopic spin or isospin I. Due to the mass degeneracy of these two particles, he
proposed that they are projections of a single particle, the nucleon, with I = 1/2.
The two projections along the third axis, I3 = 1/2 and I3 = −1/2, correspond
to the proton and neutron, respectively, and are degenerate under the strong
interaction. This situation is analogous to the two projections Sz = 1/2 and
Sz = −1/2 of a spin-1/2 particle. This concept can be extended to other
multiplets. For example, pions form an isospin triplet with I = 1, and deltas
form an isospin quadruplet with I = 3/2. Isospin singlets with I = 0 also exist,
such as the lambda Λ.
Mathematically, spin and isospin are described by the group SU(2), the group
of complex 2 × 2 unitary matrices with unit determinant. More generally, the
group SU(N) is defined as

SU(N) = {U ∈ MN×N (C)|U†U = 1 and detU = 1}. (1.1)

The isospin multiplets are associated with the irreducible representations of the
group SU(2). Interested readers can refer to [3] for an introduction to the
SU(N) group and its representations. We recall that a group representation is
a mapping of each element of the group gi to an operator or matrix R(gi) acting
on a vector space V . The dimension of the representation is the dimension of V .
The nucleon doublet (p, n) is associated with the fundamental two-dimensional
representation of the group SU(2). This means that if we take a state |ψ⟩ in a

two-dimensional vector space with the basis vectors |p⟩ =

1

0

 and |n⟩ =

0

1

,

then a transformation under the group SU(2) on the state is given by

Thus, the degeneracy implies [H, gi] = 0, indicating that H is invariant under the action of
the group G.
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|ψ⟩ → exp
(
i

2θ
aσa

)
|ψ⟩ , (1.2)

where θa are the real parameters of the transformation, and σa are the three
2 × 2 Pauli matrices

σ1 =

0 1

1 0

, σ2 =

0 −i

i 0

, σ3 =

1 0

0 −1

, (1.3)

which are the generators of SU(2) and satisfy the commutation relations[σa
2 ,

σb
2

]
= iϵabc

σc
2 , (1.4)

with ϵabc being the completely antisymmetric Levi-Civita tensor. In the above
equations and the following ones, repeated indices are summed.
Other multiplets correspond to higher-dimensional representations of SU(2).
For example, the triplet of pions (π+, π0, π−) is associated with the three-
dimensional representation of SU(2), called the adjoint representation, and the
quadruplet of deltas (∆++,∆+,∆0,∆−) corresponds to the four-dimensional
representation of SU(2). In general, states in the n-dimensional representation
of SU(2) transform similarly to (1.2), but with the Pauli matrices σa replaced
by n × n matrices Sa that respect the SU(2) algebra (1.4). For example, the
generators of the adjoint representation are often chosen as [3]

S1 = 1√
2


0 −1 0

−1 0 1

0 1 0

 , S2 = i√
2


0 1 0

−1 0 −1

0 1 0

 , S3 =


1 0 0

0 0 0

0 0 −1

 . (1.5)

The study of strange hadrons2 reveals they can also form isospin multiplets
with the same spin, parity, and strangeness quantum number S, such as the
kaons (K+,K−) and sigmas (Σ+,Σ0,Σ−), characterised by isospin I = 1/2 and
I = 1, respectively. Some of these strange multiplets have similar masses to
the non-strange ones, making it tempting to merge them into super-multiplets.
The hadrons of a super-multiplet can be arranged in a graph where the x-
axis represents the third projection of isospin I3, and the y-axis represents the
strangeness quantum number S. Such graphs are shown in Fig. 1.1 for the 1/2+

and 3/2+ baryons. Particles on the same diagonal have the same electric charge
Q, yielding the Gell-Mann–Nishijima formula [5, 6]

Q = I3 + 1
2(B + S) (in units of e), (1.6)

where B is the baryon number (equal to 1 for baryons and 0 for mesons). From
these graphs, Gell-Mann [7] and Ne’eman [8] independently discovered in 1961

2Strange hadrons are named this way because of their slower decay rates compared to non-
strange hadrons. For instance, the mean lifetime of kaons is about 10−10 seconds, whereas
deltas have a mean lifetime of around 10−24 seconds [4]. To explain this behaviour, the
concept of the strangeness quantum number was introduced. Strangeness is conserved in
strong interactions but not in weak interactions, which accounts for the slower decay of strange
hadrons via weak interactions, during which their strangeness can change.
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n p
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Figure 1.1: Baryon octet (on the left) and baryon decuplet (on the right).
Particles are placed horizontally according to their third component of isospin I3,
and vertically according to their strangeness S. Particles on the same diagonal
have the same electric charge Q.

Flavour I I3 S Q

Up u 1/2 1/2 0 2/3

Down d 1/2 −1/2 0 −1/3

Strange s 0 0 −1 −1/3

Table 1.1: Properties of the three quark flavours: isospin I, third component
of isospin I3, strangeness S, and electric charge Q in units of e. The charge is
determined via (1.6) assuming B = 1/3 for quarks (see text).

that they can be put into a one-to-one correspondence with the irreducible rep-
resentations of the group SU(3). More precisely, the 1/2+ states are associated
with the octet representation, denoted by its dimension 8, and the 3/2+ states
correspond to the decuplet representation 10. A similar reasoning applies to
mesons, but for simplicity, we will focus on baryons.
This observation led to a classification scheme for hadrons. However, some
questions arise from this conclusion, notably: (1) Why does Nature not use the
fundamental representation 3 ? (2) Why do spin-1/2 hadrons only form an octet,
and spin-3/2 a decuplet ? Gell-Mann [9] and Zweig [10] proposed an answer to
the first question in 1964 by suggesting the fundamental representation 3 exists
and corresponds to a triplet of elementary particles (u, d, s), called quarks. Each
quark state is characterised by a flavour. The properties of each flavour can be
deduced and are summarised in Table 1.1.
Hadrons can then be understood as composite particles made of quarks. For
instance, consider a system composed of three quarks qqq, with q = {u, d, s}.
Mathematically, this system is associated with the tensor products of the fun-
damental representation 3. The decomposition into irreducible representations
of SU(3) leads to [3]

3 ⊗ 3 ⊗ 3 = 10S ⊕ 8MS ⊕ 8MA ⊕ 1A, (1.7)
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where S,MS,MA,A denote symmetric, mixed symmetric3, mixed antisymmet-
ric, and antisymmetric wavefunctions under the exchange of quarks. The baryon
octet and decuplet are then recovered. Thus, baryonic states can be visualised
as systems of three quarks, implying quarks are spin-1/2 particles with a baryon
number B = 1/3. The flavour wavefunctions of hadrons can be computed fol-
lowing the irreducible representations of SU(3). For example, the proton is in
the 8, mixed symmetric, representation. Since the proton has no strangeness
and a positive charge, we conclude its quark content is uud. The complete
expression of the wavefunction is given by [3]

|p⟩MS = 1√
6

[(ud+ du)u− 2uud], (1.8a)

|p⟩MA = 1√
2

(ud− du)u. (1.8b)

These two wavefunctions can be combined to form a completely symmetric or
antisymmetric wavefunction [3]. The ∆+ baryon has the same quark content
as the proton but is in the 10, symmetric, representation. Thus, its flavour
wavefunction is given by∣∣∆+〉 = 1√

3
[uud+ udu+ duu]. (1.9)

Thanks to Gell-Mann’s quark model, the internal structure of hadrons has been
discovered. Notably, the omega baryon Ω−, which has a quark content sss,
was predicted by Gell-Mann in 1961 and discovered in 1964 [11], confirming the
quark model. However, questions remain, such as why spin-1/2 particles form
only an octet and why quarks are not observed directly.
Before addressing these questions, note that if the flavour symmetry SU(3)F
was exact, meaning the strong interaction treats the three flavours (u, d, s) the
same way, the hadrons in a super-multiplet would be degenerate. This is not
the case, as the inclusion of a strange quark adds around 150 MeV of mass.
Thus, the flavour symmetry is only approximate but remains a powerful tool
for classifying hadronic states. On the other hand, the isospin SU(2) symmetry
is better reproduced but still not exact.

1.1.1 Heavy quarks
Following the hypothesis of the quarks u, d and s by Gell-Mann and Zweig
in 1964, which revealed the internal structure of light hadrons, new quark
flavours were predicted and subsequently discovered through advancements in
particle accelerators. These accelerators enabled the production of heavier
hadrons. Currently, six quark flavours are known [4], grouped into three fam-
ilies: (u, d), (c, s) and (t, b), where c represents the charm quark, b the bottom
(or beauty) quark, and t the top (or truth) quark. Since these quarks are more
massive than the light quarks (u, d, s), the (c, b, t) quarks are referred to as heavy
quarks.
Experimentally, the charm quark was discovered in 1974 at Brookhaven Na-
tional Laboratory [12] and at SLAC (Stanford Linear Accelerator Center) [13]

3A mixed symmetric function is one that is symmetric only under the exchange of the first
two particles, and similarly for a mixed antisymmetric wavefunction.
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independently, through the detection of a new particle, the J/ψ meson, which is
interpreted as a cc̄ state. In a manner analogous to the strange quark, a charm
quantum number C is introduced, with C = 1 for charm quarks. This quantum
number is conserved in both electromagnetic and strong interactions, though it
is violated by weak interactions.
The bottom quark was discovered in 1977 at Fermilab [14] through the detection
of a new resonance, the Υ meson, which is interpreted as a bb̄ state. A corre-
sponding bottom quantum number B is assigned, where B = −1 for bottom
quarks.
Finally, the top quark was discovered at Fermilab in 1995 [15, 16]. Due to its
high mass, the top quark decays more rapidly than the other flavours, with a
lifetime on the order of 10−25 s. This is shorter than the timescale for strong
interactions, meaning that the top quark does not form hadrons. For this reason,
the top quark is frequently excluded from studies of hadronic matter.
To incorporate the charm and bottom quarks, the flavour symmetry group must
be extended to SU(4) and SU(5), respectively. However, since the charm and
bottom quarks are significantly heavier than the light quarks (u, d, s), the flavour
symmetry is even more violated than SU(3). Additionally, with the introduction
of the charm and bottom quantum numbers, the Gell-Mann–Nishijima formula
(1.6) is extended to

Q = I3 + Y

2 (in units of e), (1.10)

where Y = B + S + C + B is the hypercharge.

1.1.2 Hypothesis of the colour

The hypothesis of quarks allows the classification of hadronic states in terms of
the irreducible representations of the flavour group SU(3)F . It is interesting to
consider the other degrees of freedom of hadrons, such as space and spin. Since
we are focusing on the lowest energy states, we assume there is no excitation
between the quarks, implying a symmetric spatial wavefunction.
For a system of three spin-1/2 particles, the total spin and symmetry are given
by decomposition into the irreducible representation of SU(2) [3]

1/2 ⊗ 1/2 ⊗ 1/2 = 3/2S ⊕ 1/2MS ⊕ 1/2MA, (1.11)

where the representations are denoted by the corresponding spin. Thus, spin-3/2
states have a symmetric spin wavefunction, and since their flavour wavefunction
is also symmetric, their spatial-spin-flavour wavefunction is totally symmetric.
A similar reasoning applies to the spin-1/2 octet [3].
The problem arises from the fact that quarks are fermions, meaning the total
wavefunction should be antisymmetric under the exchange of quarks. To resolve
this issue, Greenberg [17] introduced a new degree of freedom for the quarks,
known as colour. Assuming quarks can choose from three colours, typically
denoted as (R,B,G), an antisymmetric colour wavefunction can be constructed
using a Slater determinant (up to a normalisation factor)
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µ−

µ+

e−

e+

γ

Figure 1.2: Feynman diagram, at the lowest order, for the e−e+ → µ−µ+

scattering.

∣∣∣∣∣∣∣∣∣
R(1) R(2) R(3)

B(1) B(2) B(3)

G(1) G(2) G(3)

∣∣∣∣∣∣∣∣∣ = R(BG−GB) −B(RG−GR) +G(RB −BR). (1.12)

This makes the total wavefunction of the baryons antisymmetric, as required
for fermions.
By associating the colour degree of freedom with the colour group SU(3)C , sim-
ilar to how we treated flavour, it can be shown that the antisymmetric wave-
function corresponds to a singlet state, which is invariant under the action of
the SU(3) group [3]. Since the colour degree of freedom has never been observed
directly, as evidenced by the absence of isolated quarks, we assume that all ob-
servable hadronic states must be colour singlets. This hypothesis is known as
confinement. Hence, spin-1/2 hadrons can only form a flavour octet, and spin-
3/2 hadrons can only form a flavour decuplet to respect colour confinement.

Proof of the colour

Even though there is no direct proof of colour, its inclusion in the models leads
to good agreement with experiments. One such example is the cross-section
ratio R. Other examples can be found in [18].
Consider the scattering process e−e+ → µ−µ+. At the lowest order in energy,
this process occurs via the annihilation of the initial electron-positron pair into
a virtual photon, which then transforms into a µ−µ+ pair, as shown in Fig. 1.2.
On the other hand, the scattering process e−e+ → hadrons involves an ad-
ditional step, where a quark-antiquark pair qq̄ is produced and subsequently
hadronises into hadrons. This hadronisation process is highly complex, but if
we measure the total cross-section for all possible final hadronic states, we can
assume that the probability for a qq̄ pair to transform into hadrons is unity.
Thus, we can write

σ(e−e+ → hadrons) =
∑
q

σ(e−e+ → qq̄), (1.13)

where the sum runs over all quark pairs qq̄ whose threshold energy 2mq is lower
than the centre of mass energy

√
s of the reaction. At the lowest order, the

cross-section for the production of a fermion-antifermion pair is given by
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Figure 1.3: Cross-section ratio R defined by (1.15) as a function of the centre
of mass energy

√
s [4]. The green dashed lines correspond to the predictions of

the quark model.

σ(e−e+ → ff̄) = 4πα2

3s Q2
f , (1.14)

where α = e2/(4π) is the fine-structure constant, and Qf is the electric charge
of the fermion f in units of e. Hence,

R ≡ σ(e−e+ → hadrons)
σ(e−e+ → µ−µ+) =

∑
q

Q2
q, (1.15)

where Qq is the electric charge of the quark q in units of e.
At the energies where only the u, d and s quarks can be produced, R becomes

R =
(

4
9 + 1

9 + 1
9

)
Nc = 2Nc

3 , (1.16)

where Nc is the number of colours. If the colour assumption is correct, R = 2
instead of R = 2/3. Experimental data [4], shown in Fig. 1.3, are in better
agreement with the value for coloured quarks. For energies above the charm
quark threshold, corresponding to the production of the J/ψ meson, the ratio
R takes the value R = 10/3. Considering the bottom quark, the ratio R becomes
R = 11/3, which is observed for energies above the Υ meson production.

1.2 Quantum chromodynamics
The quark hypothesis and the classification of hadrons according to the (ap-
proximate) flavour symmetry are only the first steps in the study of hadrons. A
complete theoretical study of their spectroscopy should allow computing their
masses starting from the quark interactions. By analogy with electric charge, a
theory of strong interaction is constructed as a theory of colour charges, known
as Quantum Chromodynamics (QCD). This theory is built similarly to Quan-
tum Electrodynamics (QED), that is, as a gauge theory based on the local
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invariance of the colour group SU(3)C , which is supposed to be an exact sym-
metry unlike the flavour group SU(3)F . Before introducing QCD, let us recall
the main ingredients of a gauge theory by reviewing QED.

1.2.1 Quantum electrodynamics
The Lagrangian density of a free spin-1/2 particle of mass m is given by the
Dirac Lagrangian

LD = ψ̄(iγµ∂µ −m)ψ, (1.17)

where ψ = ψ(x) is a four-component Dirac spinor, which is a function of space-
time coordinates x, γµ are the four Dirac matrices

γ0 =

1 0

0 −1

, γi =

 0 σi

−σi 0

, (1.18)

and ψ̄ = ψ†γ0 is the Dirac adjoint. Applying the Euler-Lagrange equation to
LD yields the Dirac equation

(iγµ∂µ −m)ψ = 0. (1.19)

Consider now the transformation ψ → eiθψ, where θ is a real constant. Since
the transformation is the same for every spacetime point, it is referred to as a
global transformation. The set of these transformations for all values of θ forms
the unitary group U(1). It is easy to see that the action of U(1) leaves the Dirac
Lagrangian invariant. According to Noether’s theorem, this invariance leads to
a conserved current ∂µjµ = 0, namely the electromagnetic current

jµ = ψ̄γµψ. (1.20)

From Gauss’s theorem, the current conservation law ∂µj
µ = 0 leads to a con-

served charge

Q =
∫

d3x j0(x), (1.21)

which is the electric charge. Consider now the local transformation

ψ → eieθ(x)ψ, (1.22)

with e being the electric charge of the particle described by the spinor ψ, and
where θ is now a real function of x. The Dirac Lagrangian is no longer invariant
under these local transformations since

∂µψ → ∂µ

(
eieθ(x)ψ

)
= eieθ(x)[i e ∂µθ(x) + ∂µ]ψ ̸= eieθ(x)∂µψ. (1.23)

To restore the invariance, a vector field Aµ, called the gauge field, is introduced
such that its transformation law cancels the ∂µθ(x) term. To this end, the usual
derivative is replaced by the covariant derivative

Dµ ≡ ∂µ − i eAµ, (1.24)
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such that it transforms under the local U(1) transformation as

Dµψ → eieθ(x)Dµψ. (1.25)

Following this constraint, the transformation law of Aµ is deduced

Aµ → Aµ + ∂µθ(x), (1.26)

which is recognised as the gauge transformation of the four-vector potential in
electromagnetism. Thus, the Dirac Lagrangian is invariant under the simulta-
neous local transformations ψ → eieθ(x)ψ and Aµ → Aµ + ∂µθ(x).
The substitution of the usual derivative by the covariant derivative Dµ is equiv-
alent to adding the coupling term eAµψ in the Dirac Lagrangian, which rep-
resents the minimal coupling between a spin-1/2 particle of charge e and the
electromagnetic field. Thus, an interaction term is obtained from the local gauge
invariance principle.
Finally, a term describing the dynamics of the free gauge field must be added.
This term must be Lorentz and gauge invariant, and quadratic in its derivative.
From electromagnetism, the term

Lg = −1
4F

µνFµν , (1.27)

with Fµν = ∂µAν − ∂νAµ being the Faraday tensor, respects these conditions.
The factor −1/4 is added to recover Maxwell’s equations. Hence, we obtain the
Lagrangian of QED

LQED = −1
4F

µνFµν + ψ̄(iγµ∂µ −m)ψ + e ψ̄γµψAµ. (1.28)

Note the Lagrangian contains no term quadratic in Aµ because such terms are
not gauge invariant. Thus, gauge fields are massless.

1.2.2 Non-abelian gauge symmetry
The QED case is particularly simple since the gauge group U(1) is abelian,
meaning its elements commute among themselves. Consider now a transforma-
tion under the colour group SU(3)C

ψ → exp
(
i

2θ
aλa

)
ψ, (1.29)

where ψ =


ψR

ψB

ψG

 is a vector in the three-dimensional colour space (R,B,G),

and λa, with a = {1, . . . , 8}, are the eight Gell-Mann matrices

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,
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λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 , (1.30)

λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 = 1√
3


1 0 0

0 1 0

0 0 −2

 ,

corresponding to the generators of SU(3) and respecting the commutation re-
lations [

λa
2 ,

λb
2

]
= ifabc

λc
2 , (1.31)

where fabc are the structure constants of the group [3]. Since the Gell-Mann
matrices do not commute with each other, it is clear that SU(3) is a non-abelian
group. Suppose now the parameters θa are real constants. Then, the Lagrangian

LD =
∑
j

ψ̄j(iγµ∂µ −mj)ψj , (1.32)

where the sum runs over the flavours j, is invariant under these global SU(3)
transformations. From Noether’s theorem, there are eight conserved currents
for each flavour j

jµji = ψ̄aj γ
µ(λi)abψbj . (1.33)

We move on now to local transformations by promoting the parameters to real
functions of spacetime coordinates θa(x). The above Lagrangian is no longer
invariant under the local transformations. To overcome this problem, and fol-
lowing the steps of QED, the usual derivative is replaced by the covariant one,
which is now a 3 × 3 matrix in the colour space

(Dµ)kl ≡ δkl∂µ − i

2g(λa)klAaµ, (1.34)

where we introduced eight gauge vector fields Aaµ, called the gluon field. By
imposing that the gauge fields transform under SU(3) as

Aaµ → Aaµ − ∂µθ
a + g fcbaθ

cAbµ, (1.35)

where fabc are the structure constants of SU(3), it is possible to show that the
Lagrangian density

L =
∑
j

ψ̄j(iγµDµ −mj)ψj , (1.36)

becomes invariant under the local SU(3) transformation (1.29) and (1.35). If
the quarks transform under the fundamental representation of SU(3), then it
can be shown that the gluons transform under the adjoint, eight-dimensional,
representation of the colour group [19].
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As for QED, the substitution with the covariant derivative corresponds to the
inclusion of an interaction term between the quarks and gluons, which is re-
sponsible for the strong interaction. We still need to add a term describing
the free gluon fields. The situation is more complicated than for QED because
the Faraday tensor F aµν = ∂µA

a
ν − ∂νA

a
µ is not invariant under the local gauge

transformations. We then need to generalise it to

F aµν = ∂µA
a
ν − ∂νA

a
µ + g fabcA

b
µA

c
ν , (1.37)

such that

Lg =
8∑
a=1

F aµνF
aµν , (1.38)

is indeed gauge invariant [19]. The complete expression of the QCD Lagrangian
is then

LQCD = −1
4

8∑
a=1

F aµνF
aµν+

∑
j

ψ̄aj (iδabγµ∂µ+ g

2γ
µ(λi)abAiµ−mjδab)ψbj . (1.39)

As for the photon, the gluons are also massless particles since a mass term would
not be gauge invariant.
Even though the construction of QCD is analogous to that of QED, a major
difference appears: gluons carry colour charge. Since colour plays the same role
in QCD as electric charge does in QED, this implies that gluons can interact
with each other, contrary to photons, which have no electric charge. In addition
to the quark-gluon interaction term, the QCD Lagrangian contains three- and
four-gluon interaction terms corresponding to third- and fourth-order terms in
Aaµ in

∑
a F

a
µνF

aµν .

1.2.3 Hadronic states
Having now a theory of strong interactions, we can deduce the allowed hadronic
states following the confinement hypothesis. Quarks transform under the fun-
damental representation 3 of the colour group SU(3)C , antiquarks transform
under the conjugate representation 3̄, and gluons transform under the adjoint
representation 8, as discussed above. Since gluons are coloured particles, they
can interact with quarks or with themselves. Let us look first at the (anti)quarks
only.
We already know that three quarks can form a hadron, the baryon, since it is
possible to form a colour singlet 1 from three quarks (see (1.7) for instance). Can
two quarks form a hadron? The decomposition into irreducible representations
yields

3 ⊗ 3 = 6 ⊕ 3̄, (1.40)

where there is no colour singlet. Thus, a diquark alone cannot form a hadron.
However, a diquark in the 3̄ representation coupled with a quark can form a
baryon since
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3̄ ⊗ 3 = 1 ⊕ 8. (1.41)

The 3̄ representation corresponds also to the antiquark representation, so a
quark-antiquark pair qq̄ can also form a hadron, called a meson.
Following these principles, we can construct various hadrons. In general, a
system with a quark content

(qq̄)m(qqq)n(q̄q̄q̄)p, (1.42)

with m,n and p integers, can form a colour singlet. In particular, we can find
tetraquarks (m = 2, n = 0) or pentaquarks (m = 1, n = 1).
Consider now systems with a constituent gluon. An important relation, which
can be generalised to SU(N), is

8 ⊗ 8 = 1 ⊕ . . . (1.43)

The 8 representation can correspond to a gluon and in this case, the hadron
associated with this decomposition is a pure gluonic state, known as a glueball.
However, the adjoint representation can also be reached from a qq̄ pair (1.41)
or a baryon (1.7). The corresponding state in this case is a hybrid state.
In the following discussion, baryons and mesons are referred to as ordinary
hadrons, whereas the other hadrons are referred to as exotic hadrons.

1.3 QCD approaches
If QCD is indeed the theory describing strong interactions, it should be possi-
ble to derive all pertinent information about hadrons, such as their spectrum,
widths, and decay channels, starting from the QCD Lagrangian. However, this
task is complex because QCD fundamentally describes quarks and gluons rather
than hadrons, although hadrons are implicitly embedded in the theory.
In quantum field theories, a common approach to studying scattering processes
is the perturbative method. This involves expanding the scattering amplitude in
powers of the coupling constant g and considering only the lowest order terms,
with higher-order terms providing corrections. This method is often illustrated
using Feynman diagrams. It works well for QED because the coupling constant
α = e2/(4π) ≈ 1/127 ≪ 1. However, this is not the case for QCD, particularly
in the context of hadrons.
The evolution of the strong coupling constant αs = g2/(4π) with the energy
scale Q, represented by the β function

β(αs) ≡ ∂αs
∂ lnQ = −

(
11 − 2nf

3

)
α2
s

2π , (1.44)

with nf denoting the number of flavours, shows that the strong coupling con-
stant decreases with increasing energy scale for nf ≤ 16. This property is known
as asymptotic freedom. Experimental data [4] confirms this behaviour, as illus-
trated in Fig. 1.4. Thus, the perturbative approach is valid for high-energy
experiments. However, at the hadronic energy scale (approximately 1 GeV),
the strong coupling constant is around unity, making a perturbative approach
unfeasible for studying hadrons.
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Figure 1.4: Evolution of the QCD running coupling constant αs as a function
of the energy scale Q [4].

To address this challenge, several alternative approaches have been developed
to understand hadron phenomenology. Some notable methods include

• Large-Nc QCD [20, 21, 22], which involves considering a large number of
colours (Nc → ∞) and expanding observables in powers of 1/Nc.

• Lattice QCD [23, 24, 25], which entails discretising spacetime and writing
the QCD Lagrangian on this lattice.

• Effective field theories [26, 27, 28], which derive new Lagrangians from the
QCD Lagrangian, with hadrons as the degrees of freedom.

• Functional methods [29, 30, 31], which start from the Dyson-Schwinger
and Bethe-Salpeter equations, representing the equations of motion in a
quantum field theory.

All these approaches have a common point, they start from the QCD La-
grangian. Another popular approach is the constituent one. The idea is to
consider a hadron as only consisting of valence particles interacting by QCD-
inspired potentials. Then, the hadron is represented as the bound state of a
many-body Schrödinger-like equation. Even though this approach does not start
from the QCD Lagrangian, it allows to obtain results in a simple way and is a
good starting point for the study of ordinary and exotic hadrons. This approach
presents two main problems (1) there is not a unique potential for describing the
strong interaction [32], (2) the resolution of a many-body Schrödinger equation
is not the simplest task.
The solution to the second problem is discussed in more detail in Chapter 2.
For the potential, the Cornell (or funnel) potential is frequently employed. It
has the form
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V (r) = Ar − B

r
, (1.45)

in a meson, where A and B are constants determined from experimental or
lattice QCD results. The derivation of this potential will be outlined briefly,
and its extension to other hadrons.

1.3.1 One-gluon exchange
In a quantum field theory such as QCD, the scattering amplitude A = ⟨f |i⟩
between an initial |i⟩ and final |f⟩ state can be computed. Consider, for example,
the evolution operator

Ŝ = T exp
(
i g

∫
dxLI

)
, (1.46)

where T is the time-ordering operator4 and LI is the interaction Lagrangian
in the interaction picture [19]. The evolution operator describes all possible
outcomes from an initial state. The scattering amplitude is then given by the
S-matrix elements

Sfi = ⟨f | Ŝ |i⟩ . (1.47)
The cross-section, which can be measured experimentally, is proportional to the
square of the scattering amplitude. Since the S-matrix elements contain all the
information about the interaction, it should be possible to deduce an effective
potential from them.
Consider, for example, the scattering of two electrons, e−e− → e−e−. Since
in QED the coupling constant is less than one, it is possible to expand the
exponential in (1.46) in powers of g, which is the fundamental electric charge e.
This is the perturbative approach explained above. The lowest non-vanishing
term in the expansion is given by the Feynman diagram in Fig. 1.5, which
corresponds to the exchange of one photon between the pair, known as the
One-Photon Exchange (OPE) phenomenon. Following the Feynman rules for
QED, the scattering amplitude associated with this diagram can be computed.
Since the sought potential will appear in a Schrödinger equation, which is a non-
relativistic equation, we take the non-relativistic (NR) limit of the scattering
amplitude by expanding it in powers of v2/c2. Finally, since the scattering
amplitude is often written in momentum space and the potential in position
space, a Fourier transform (FT) is applied to the result. This approach for
finding a potential is summarised by the equation

VOPE(r) = FT
{

lim
NR

Sfi

}
. (1.48)

For instance, at the lowest order in v2/c2, the associated potential for the e−e−

interaction is given by [33]
4The time-ordering operator is defined as

T (Â(t1)B̂(t2)) =
{
Â(t1)B̂(t2) if t1 > t2
B̂(t2)Â(t1) if t2 > t1

.
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e− e−

e− e−

γ

Figure 1.5: Feynman diagram, at the lowest order, for the e−e− → e−e− scat-
tering.

VOPE(r) = −α

r
, (1.49)

which is the Coulomb potential, as expected. Relativistic corrections can be
obtained by considering higher-order terms in v2/c2 during the non-relativistic
limit. These terms give rise, for instance, to the Darwin, hyperfine, spin-orbit,
and tensor interactions. The complete expression of the potential, sometimes
called the Fermi-Breit potential, can be found in [3, 33].
Returning to the strong interaction, the quark-quark potential is determined
in a similar fashion. The first Feynman diagram of the qq → qq scattering
involves the exchange of one gluon, known as the One-Gluon Exchange (OGE)
phenomenon. The scattering amplitude of QCD is similar to that of QED
(as QCD was modelled after QED), except for the inclusion of a colour factor
F (1) · F (2), defined by

F (i) · F (j) ≡ 1
4

8∑
a=1

λa(i)λa(j), (1.50)

where λa(i) is the Gell-Mann matrix associated to the ith quark. Hence, the
quark-quark potential is given, at the lowest order in v2/c2, by

VOGE(r) = F (1) · F (2)αs
r
. (1.51)

We now compute the colour factor as given by (1.50), which can be re-expressed
as

F (i) · F (j) = 1
2 [(F (i) + F (j))2 − F (i)2 − F (j)2], (1.52)

with

F (i)2 = 1
4

8∑
a=1

λa(i)λa(i). (1.53)

From a group theory perspective, F 2 is the quadratic Casimir operator of SU(3).
A Casimir operator is a combination of the generators that commutes with all
the other generators. The value of the Casimir operator F 2 is given in Tab.
1.2 for different irreducible representations of SU(3). Since we are dealing with
quarks, we obtain F (i)2 = 4/3. The value of (F (i) +F (j))2 is more subtle since
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3 3̄ 6 8

F 2 4/3 4/3 10/3 3

Table 1.2: Values of the quadratic Casimir operator of SU(3), F 2, defined by
(1.53), for some of the irreducible representations of SU(3) denoted by their
dimension [3].

it corresponds to the Casimir of the quark pair qiqj . For quarks inside a baryon,
each pair must form a 3̄ state so that the baryon can be in a singlet state. Thus,
(F (i) + F (j))2 = 4/3. Consequently, the colour factor for a quark pair (inside
a baryon) is given by F (1) · F (2) = −2/3. Thus, the quark-quark interaction is
attractive.
A similar reasoning can be applied to find the quark-antiquark potential, which
is the potential of a meson, for which the colour factor is given by −4/3. There-
fore, the quark-antiquark interaction is twice as strong as the quark-quark in-
teraction

Vqq̄ = 2Vqq. (1.54)

1.3.2 Confinement
Following the above discussion, the strong interaction would behave identically
to the electromagnetic one, that is with a Coulomb potential, except for the
inclusion of some colour factors. Of course, this is not the case because quarks
must be confined into hadrons. The fault in the previous discussion originates
from the fact we considered only OGE processes, that is the first possible Feyn-
man diagram. However, as explained in the beginning of this section, a pertur-
bative approach cannot be used for hadronic states because the strong coupling
constant is around one. In order to correct this fault, a potential reproducing
confinement is added.
From lattice QCD, it is possible to prove that QCD is indeed a confining theory
thanks to the so-called area law [19], and to show from this result that the
associated potential is linear in the distance between the quarks.

Vc(r) = σr, (1.55)

where σ is some constant that will be explained later. Thus, the combination of
a Coulomb and linear term can reproduce the effect of strong interaction inside
a meson. This form is also compatible with the existence of Regge trajectories
for mesons [34, 35, 36].
Another way to understand the linear confining potential is from the string
model. Consider a system of two point-like particles connected by a relativistic
string. Constructing the Lagrangian of the system and then its Hamiltonian,
it is possible to show [34] that the associated potential is linear in the distance
between the two particles, which is in agreement with the previous paragraph.
The constant σ in the potential is then interpreted as the string tension. More
realistically, we can see the system as two particles generating a colour flux tube
and neutralising to form a colour singlet.



18 Chapter 1 Brief history of the strong interaction

This picture can be extended to baryons: each quarks produce a flux tube that
neutralise in a single point, forming a Y -junction as represented in Fig. 1.6.
The position of the junction is determined by minimising the strings length,
leading to the corresponding potential

VY = σmin
Y

(|r1 − Y | + |r2 − Y | + |r3 − Y |) , (1.56)

with ri the position of the ith quark. As for the mesons, the spectrum of
baryons can be reproduced with this potential [37]. However, the complexity
of the potential (1.56) can be difficult to handle in some models. One way to
simplify the potential would be to replace the linear confinement by a quadratic
one [38, 39, 40, 41]. The minimisation on Y then implies that the connection
occurs at the geometrical centre of the triangle formed by the quarks. The
confinement potential then becomes

Vquad = σ

3
[
(r1 − r2)2 + (r1 − r3)2 + (r2 − r3)2] , (1.57)

which is a sum of two-body potential. If one still wants a linear confining
potential, one can tries

V ∝
√

(r1 − r2)2 + (r1 − r3)2 + (r2 − r3)2, (1.58)

which is a three-body potential [42]. Another possibility to replace the Y -
junction potential (1.56) is to approximate the position of the Y -junction by
the centre of mass of the system. It can be shown that this replacement leads
to a small error when quarks have similar masses [43]. Finally, the potential
(1.56) can also be replaced by half the perimeter of the triangle formed by the
quarks [37]

V∆ = σ

2 (|r1 − r2| + |r1 − r3| + |r2 − r3|) , (1.59)

which is a linear two-body confining potential. It is shown in [37, 43] that
multiplying this potential by a geometrical factor f ≈ 1.086 allows to improve
the agreement between VY and V∆.
In conclusion, this chapter has presented the fundamental concepts related to the
strong interaction, including quark flavours, colours, and the theory of quantum
chromodynamics (QCD), as described by the QCD Lagrangian (1.39), within
a historical context. It was emphasised that observable hadronic states must
form colour singlets to satisfy the principle of confinement. In this framework,
QCD permits the existence of hybrid baryons with a colour octet quark core,
as allowed by relation (1.43). Lastly, the constituent approach to QCD was
introduced, featuring the Cornell potential (1.45) and its extension to systems
involving three quarks.
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q q

q

Y

Figure 1.6: Flux-tube model of a baryon. Black dots represent quarks and the
red dot marks the connection of flux tubes.
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2Many-body systems
and the envelope theory

Chapter

The Schrödinger equation
(

− ℏ2

2m∇2 + V (r)
)
ψ = Eψ is the fundamental sta-

tionary equation of motion describing quantum systems involving one particle
or relative motion. Solving this equation yields the eigenvalues E and eigen-
functions ψ = ψ(r) of the system. Analytical solutions are feasible for certain
potentials V , such as the harmonic oscillator and the Coulomb potential. Tech-
niques like supersymmetric quantum mechanics [1] can be employed to identify
these solvable cases. For other potentials, numerical methods are utilised.
In practice, physical systems often contain more than two particles, making
the resolution of the Schrödinger equation significantly more complex. This
complexity increases with the number of particles, rendering the equation an-
alytically intractable even for systems with as few as three particles. Despite
these challenges, solving the many-body Schrödinger equation is crucial in vari-
ous fields of physics, including condensed matter, atomic and hadronic physics.
This necessity has driven the development of numerous approximation and nu-
merical techniques. These techniques include the expansion in oscillator bases
(EOB) [2], Gaussian expansion [3], hyperspherical harmonics expansion [4], and
Lagrange-mesh (LM) method [5], among others. Each technique offers varying
degrees of accuracy, computational cost, and applicability. For instance, while
the hyperspherical harmonics expansion is easier to extend to systems with more
than three particles, it cannot handle easily semi-relativistic kinematics as the
EOB. Consequently, each method is employed in scenarios where it performs
optimally, balancing the trade-offs between computational efficiency and the
specific requirements of the physical system under study.
The use of the Schrödinger equation in hadronic physics may seem unconven-
tional, given that the theory describing the strong interaction, quantum chro-
modynamics (QCD), is fundamentally based on the Dirac equation, which is a
covariant equation. However, in the context of heavy quarks, relativistic effects
can often be neglected, making the Schrödinger equation a viable approxima-
tion. For light quarks, the Schrödinger equation still provides good results by
substituting the non-relativistic kinematics by a semi-relativistic one [6, 7]. In
this chapter, we introduce an approximation method known as the envelope
theory, which proves to be particularly useful in hadronic physics, especially
within the large-N approach where the number of baryon constituents becomes

23
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very large. The main advantage of this method is that it treats the number of
particles N as a simple parameter.
In Section 2.1, we present the general form of the many-body Schrödinger equa-
tion that we aim to solve. Subsequently, in Section 2.2, we examine the specific
case of the harmonic oscillator, which is the only known solvable many-body
system for arbitrary dimensions. Next, the knowledge of the exact spectrum of
the harmonic oscillator is used to develop the envelope theory and its improved
version in Sections 2.3 and 2.4, respectively. Finally, Sec. 2.5 presents some
results derived from the envelope theory and its improved version.

2.1 Generalities
Consider a D-dimensional system of N particles with kinetic energy Ti and
interacting via a two-body potential Vij . The inclusion of one- and K-body
potentials will be discussed later. The position of the ith particle is denoted
by ri and its conjugate variable, the momentum, by pi, satisfying the commu-
tation relation [rai , pbj ] = iδijδ

ab, where a and b are vector components. While
remaining general, we impose that Ti = Ti(pi), with pi = |pi| (and additional
constraints such as differentiability and positivity [8]), and Vij = Vij(rij), with
rij = |ri − rj |. The corresponding many-body Schrödinger equation is N∑

i=1
Ti(pi) +

N∑
i<j=2

Vij(rij)

ψ = Eψ, (2.1)

where ψ = ψ(r1, . . . , rN ) is the wavefunction and E is the energy of the system.
The expression in parentheses represents the Hamiltonian H of the system.
Although it is not explicitly stated here, computations will be performed in the
centre of mass (CM) frame and natural units ℏ = c = 1 are used.
Few N -body Hamiltonians can be exactly solved, such as the Calogero model in
D = 1 [9] or the harmonic oscillator [10]. In fact, the harmonic oscillator is the
only system known as totally solvable for arbitrary N and D and thus warrants
investigation.

2.2 N-body harmonic oscillator
We specify our Hamiltonian for the harmonic oscillator as follows

Hho =
N∑
i=1

p2
i

2mi
+

N∑
i<j=2

kijr
2
ij − P 2

2M , (2.2)

where mi is the mass of the ith particle. The last term, where M =
∑N
i mi is

the total mass and P =
∑N
i pi is the total momentum, accounts for the removal

of the CM motion. To proceed, we introduce dimensionless parameters αi such
that mi = αim, with m being a reference mass. For notation convenience,
we define α1...j =

∑j
i=1 αi and, in particular, α1...N =

∑N
i=1 αi = M/m. In

order to solve the Schrödinger equation (2.1) with the Hamiltonian (2.2), we
first perform a change of basis.
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2.2.1 Jacobi coordinates
The Jacobi coordinates are defined by

x1 = r1 − r2,

x2 = α1r1 + α2r2

α12
− r3,

...

xj =
∑j
i=1 αiri
α1...j

− rj+1,

...

xN =
∑N
i=1 αiri
α1...N

,

(2.3)

where the last coordinate represents the CM position xN = R in a non-
relativistic frame, which is the conjugate variable of P . Equations (2.3) can
also be expressed as xi =

∑N
j=1 Aijrj , with A being a transformation matrix

given by

Aij =


αj

α1...i
if j ≤ i,

−1 if j = i+ 1,
0 if j > i+ 1.

(2.4)

The Jacobian of the transformation is given by det(A) = 1. The conjugate
variable of xi is defined as

Πi =
N∑
j=1

Bjipj , (2.5)

with B = A−1, ensuring that the commutation relations between ri and pj are
preserved. Although tedious, the computation of B yields

Bij =


αj+1
α1...j+1

if i ≤ j < N,

− α1...j

α1...j+1
if i = j + 1 and j < N,

1 if j = N ∀i,
0 if i > j + 1.

(2.6)

In particular, ΠN = P . We now turn to the computation of Hamiltonian (2.2)
in terms of the Jacobi coordinates (2.3). The following identities will be useful

N∑
j=1

Aij = δiN , (2.7)

N∑
j=1

αjBji = M

m
δiN . (2.8)
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Kinetic operator

The kinetic operator of the harmonic oscillator is written as

Tho =
N∑
i=1

p2
i

2mi
= 1

2m

N∑
i=1

p2
i

αi
= 1

2m

N∑
k,l=1

ΠkΠl

(
N∑
i=1

AkiAli
αi

)

= 1
2m

[
N∑
k=1

Π2
k

(
N∑
i=1

A2
ki

αi

)
+ 2

N∑
k<l=2

ΠkΠl

(
N∑
i=1

AkiAli
αi

)]
,

(2.9)

where, in the second line, the expression is separated in diagonal and non-
diagonal terms. Let us focus on the non-diagonal terms for the moment. Two
cases arise. First, if l = N

N∑
i=1

AkiANi
αi

= m

M

N∑
i=1

Aki = m

M
δkN . (2.10)

The first equality follows from the definition (2.4) and the second from identity
(2.7). However, since k < l = N , this term vanishes. Secondly, if l < N

N∑
i=1

AkiAli
αi

=
k∑
i=1

AkiAli
αi

+ Ak k+1Al k+1

αk+1
+

N∑
i=k+2

AkiAli
αi

. (2.11)

By definition (2.4), the third sum is equal to zero because i > k+1. The second
term is

−Al k+1

αk+1
= − 1

αk+1

αk+1

α1...l
= − 1

α1...l
, (2.12)

and the first term is

k∑
i=1

αi
α1...k

Ali
αi

= 1
α1...k

k∑
i=1

αi
α1...l

= 1
α1...l

. (2.13)

Hence, all non-diagonal terms vanish.
We can now turn our attention to the diagonal terms. Again, two cases arise.
First, if k = N

N∑
i=1

A2
Ni

αi
= m

M
. (2.14)

Secondly, if k < N

N∑
i=1

A2
ki

αi
=

k∑
i=1

A2
ki

αi
+
A2
k k+1
αk+1

+
N∑

i=k+2

A2
ki

αi
= 1
α1...k

+ 1
αk+1

. (2.15)

The kinetic energy (2.9) thus becomes

Tho =
N−1∑
i=1

1
2m

(
1

α1...k
+ 1
αk+1

)
Π2
i + 1

2M P 2, (2.16)

remembering that ΠN = P .
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We notice two important features in the above equation. First, the CM energy
has been isolated and will be cancelled in (2.2). Secondly, the first term is
diagonal, meaning there is no term proportional to ΠiΠj with i ̸= j. The
approach aims to diagonalise our Hamiltonian (2.2) to express it as the sum of
individual solvable Hamiltonians.

Potential operator

Following the above demonstration, we now focus on the transformation of
the two-body potential Vho =

∑N
i<j kijr

2
ij into Jacobi coordinates. Unlike the

kinetic operator, the non-diagonal elements of the potential do not vanish in the
most general case [10, 11]. Therefore, Jacobi coordinates alone are insufficient
to diagonalise the Hamiltonian Hho. Consequently, a new set of coordinates
must be found to achieve our goal.

2.2.2 Diagonalisation procedure

Let λi =
(

α1...i+1
α1...iαi+1

)1/2
and consider a new set of rescaled Jacobi coordinates

yi = xi/λi with their conjugates ρi = λiΠi. Using these new coordinates, it
can be shown that

ri − rj =
N−1∑
k=1

(Bik −Bjk)λkyk, (2.17)

by using BiN = 1 ∀i, and

Vho =
N−1∑
k,l=1

Gklykyl with Gkl = λkλl

N∑
i<j=2

kij(Bik −Bjk)(Bil −Bjl). (2.18)

The square matrix G, of size N − 1, is non-diagonal but symmetric, meaning
it can always be diagonalised with a unitary matrix U so that G = U−1DU ,
where D is a diagonal matrix whose elements are the eigenvalues of G, denoted
di. Thanks to this diagonalisation, a new set of variables is defined by zi =∑N−1
j Uijyj so that the potential now reads

Vho =
N−1∑
i=1

diz
2
i . (2.19)

The conjugate of zi is σi =
∑N−1
j (U−1)jiρj and the kinetic term (2.16), with

the CM energy removed, reads

Tho = 1
2m

N−1∑
i=1

σ2
i . (2.20)

Eventually, our harmonic oscillator Hamiltonian (2.2) takes the form

Hho =
N−1∑
i=1

(
σ2
i

2m + diz
2
i

)
, (2.21)
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which is a sum of N−1 decoupled one-body harmonic oscillators hi = σ2
i

2m+diz2
i .

The eigenvalue of hi is the well-known result [12]

ei =
{
ω̄i
(
2ni + li + D

2
)

if D ≥ 2
ω̄i
(
ni + 1

2
)

if D = 1
with ω̄2

i = 2di
m
, (2.22)

where (ni, li) are the principal and angular quantum numbers associated with
the Jacobi coordinate zi. The eigenfunction of hi is denoted φnili(zi) (the
magnetic quantum numbers are omitted). If the total wavefunction of (2.21) is
written as ψ(z1, . . . ,zN−1) =

∏N−1
i φnili(zi), then the total intrinsic energy of

the system is E =
∑N−1
i ei.

We have just demonstrated that it is always possible to solve the N -body har-
monic oscillator at arbitrary D by diagonalising the matrix G given by (2.18).
The diagonalisation procedure can be easily done numerically, but some cases
remain analytical, as we shall see in the next sections.
Before moving on, let us note there is a hidden condition in (2.22). Indeed,
ω̄2
i > 0 ∀i, thus di > 0, is necessary to take the square root. This is the case if

the potential between all particles is attractive, that is kij > 0 ∀i, j, but a mix
of repulsive and attractive potentials could lead to negative ω̄2

i . Physically, this
means that the repulsive potentials prevent the creation of a bound state.

One-body forces

In addition to two-body forces Vij , one-body forces Ui can also be included in
(2.1). Although they may seem non-physical, one-body forces can be used to
model confinement inside baryons in a string model, where each quark produces
a “colour” string that connects to a single point, forming a Y -junction [13], as
explained in Sec. 1.3. The position of the Y -junction must minimise the string’s
length, and thus the corresponding potential

UY = min
Y

(|r1 − Y | + |r2 − Y | + |r3 − Y |) , (2.23)

is difficult to implement. However, the Y -junction can be approximated by the
CM position R, at the cost of a small error when quarks have similar masses
[14]. We will thus consider one-body potentials of the form Ui = Ui(si), with
si = |ri − R|. For the case of the harmonic oscillator, the term Uho =

∑N
i k̃is

2
i

is added in (2.2).
In a similar fashion to the previous section, the one-body potential can be
written in terms of the Jacobi coordinates yi as

Uho =
N−1∑
k,l=1

Fklykyl with Fkl = λkλl

N∑
i<j=2

k̃iBikBil, (2.24)

where F is a symmetric square matrix. The total potential is then Vtot =
Vho + Uho =

∑N−1
k,l=1 Jklykyl, with the symmetric matrix J given by the sum of

(2.18) and (2.24). It is then possible to diagonalise J , leading to a set of Jacobi
variables zi that diagonalise the Hamiltonian.
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2.2.3 Identical particles
If all particles are identical, then αi = α, k̃i = k̃ ∀i and kij = k ∀i, j. Com-
putation of J shows that non-diagonal matrix elements vanish and all diagonal
elements take the value (Nk + k̃) [10]. This result implies that in the original
Jacobi coordinates (xi,Πi), defined by (2.3), the crossed terms in the potential
operator were equal to zero, greatly simplifying our work. Hamiltonian (2.21)
then reduces to

H id
ho =

N−1∑
i=1

(
i+ 1

2i αmΠ2
i + i α

i+ 1(Nk + k̃)x2
i

)
. (2.25)

We can set, without any loss of generality, α = 1 so that the reference mass m
represents the mass of the identical particles. The intrinsic energy of the system
is then

Eid
ho = Q(N)

√
2
m

(Nk + k̃), (2.26)

where we define the global quantum number

Q(M) =
{∑M−1

i=1
(
2ni + li + D

2
)

if D ≥ 2∑M−1
i=1

(
ni + 1

2
)

if D = 1
, (2.27)

with the quantum numbers ni and li associated with the Jacobi coordinate xi.

Symmetries

The wavefunction of (2.25) is given by ψ =
∏N−1
i φnili(xi), where φnili is a

one-body harmonic oscillator wavefunction (the magnetic quantum numbers are
omitted). For systems with identical particles, the wavefunction must be either
completely symmetric or completely antisymmetric under particle exchange to
satisfy Bose-Einstein or Fermi-Dirac statistics, respectively. This symmetrisa-
tion can be achieved by applying the symmetriser operator Ŝ on ψ. Explicitly,
this operator is defined as

Ŝ± = 1√
N !
∑
P

(±1)σP̂, (2.28)

where the sum runs over all permutations P̂ of signature σ, and ± corresponds
to symmetrisation or antisymmetrisation, respectively. Thus, the appropriate
wavefunction is Ŝψ up to a normalisation factor.
Since the wavefunction ψ is expressed in terms of Jacobi coordinates xi rather
than the individual coordinates ri, applying the symmetriser operator directly
is not straightforward, even for N = 3. Fortunately, it is not necessary at
this stage to explicitly construct the symmetrised wavefunctions; it suffices to
acknowledge their existence. Similarly, calculating the global quantum number
Q(N) is challenging because the quantum numbers are not directly associated
with the individual coordinates ri. Additional details on specific values of Q(N)
and the symmetrisation procedure can be found in Appendix A. Notably, it
is shown that the ground state ni = li = 0 ∀i corresponds to a completely
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symmetric wavefunction. This state is thus the bosonic ground state (BGS)
and the associated global quantum number is

QBGS(N) = (N − 1)D2 . (2.29)

K-body forces

Many-body forces, and especially three-body forces, are sometimes a crucial
ingredient in atomic physics [15], nuclear physics [16], or hadronic physics [17,
18, 19, 20, 21]. The structures of many-body forces depend strongly on the
system considered, and they are generally difficult to uncover and difficult to
implement in numerical codes. The Y -junction presented above is an example
of a three-body potential. That is the reason why effective forms can be used
instead to simulate these complicated many-body contributions, avoiding some
technical difficulties. A common structure used to this end for a K-body force
is the square-root of the sum of two-body variables, given by

N∑
{i1,...,iK }

W
(
r{i1,...,iK}

)
with r2

{i1,...,iK} =
{i1,...,iK }∑
i<j=2

r2
ij , (2.30)

where rij = |ri−rj | and {i1, . . . , iK} is a set of K particles among the N possible
ones, with i1 < · · · < iK . The sum

∑N
{i1,...,iK } runs over the CKN different sets

{i1, . . . , iK}, while the sum
∑{i1,...,iK}
i<j runs over the C2

K different pairs in a
particular set {i1, . . . , iK}, where CBA is a usual binomial coefficient

CBA =
(
B

A

)
= A!
B! (A−B)! . (2.31)

If K = 2, the usual two-body case is recovered. For the harmonic oscillator, the
corresponding K-body potential is

Who = k

N∑
{i1,...,iK}

r2
{i1,...,iK} = k

N∑
{i1,...,iK}

{i1,...,iK}∑
i<j=2

r2
ij

= k CK−2
N−2

N∑
i<j=2

r2
ij .

(2.32)

The binomial factor in the last line accounts for the fact there are C2
N elements

in the last equality opposed to CKN ×C2
K elements in the second equality. In this

particular case, a K-body potential reduces to a 2-body potential by changing
k → k CK−2

N−2 . The intrinsic energy of the system then becomes

Eid
ho = Q(N)

√
2
m
NCK−2

N−2k. (2.33)

If an additional K ′-body potential is included in the system, a new term is
added in the energy expression by following similar calculations.



2.2 N-body harmonic oscillator 31

2.2.4 Sets of identical particles
Consider now a particular system composed of S different sets of Nα identical
particles (where the index α refers to a particular set). The harmonic oscillator
Hamiltonian, with the CM energy removed, can be expressed as

Hho =
S∑
α=1

Nα∑
iα=1

p2
iα

2mα
− P 2

2M +
S∑
α=1

Nα∑
iα=1

k̃α (riα − R)2

+
S∑
α=1

Nα∑
iα<jα=2

kαα r
2
iαjα

+
S∑

α<β=2

Nα∑
iα=1

Nβ∑
jβ=1

kαβ r
2
iαjβ

.

(2.34)

In this context, many-body forces within a given set α of identical particles can
be included by substituting kαα → kααC

K−2
Nα−2. The total number of particles is

N =
∑S
αNα. By defining Mα = Nαmα, so that M =

∑S
αMα, and introducing

the total momenta Pα =
∑Nα

iα
piα and the CM positions Rα = 1

Nα

∑Nα

iα
riα for

a set α, the Hamiltonian (2.34) can be decomposed as [22, 23]

Hho =
S∑
α=1

Hα +HCM with (2.35a)

Hα =
Nα∑
iα=1

p2
iα

2mα
− P 2

α

2Mα
+

Nα∑
iα=1

k̃α (riα − Rα)2

+
Nα∑

iα<jα=2

1
Nα

 S∑
β=1

Nβkαβ

 r2
iαjα

, (2.35b)

HCM =
S∑
α=1

P 2
α

2Mα
− P 2

2M +
S∑
α=1

Nαk̃α (Rα − R)2

+
S∑

α<β=2
NαNβkαβ (Rα − Rβ)2

. (2.35c)

The Hamiltonians Hα and HCM are entirely decoupled since (2.35b) depends
solely on the internal coordinates of their respective set α, and (2.35c) depends
on the relative coordinates between the CM positions of the sets. Therefore,
the energy of the system is the sum of the energies of each sub-Hamiltonian,
E =

∑S
α Eα +ECM. Since Hα is a Hamiltonian composed of identical particles,

its energy can be derived from the previous section results

Eα =

√√√√√ 2
mα

k̃α +
S∑
β=1

Nβkαβ

Q(Nα), (2.36)

where Q(Nα) is the global quantum number of the set α.
The S-body HamiltonianHCM can be solved using the diagonalisation procedure
described previously.
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S = 2

When considering the simplest case of a system with only two sets of particles,
denoted a and b, the CM Hamiltonian HCM becomes a two-body Hamiltonian.
This Hamiltonian can be solved by introducing the relative momentum p =
(MbPa − MaPb)/M and the relative position r = Ra − Rb between the two
sets. Consequently, (2.35c) simplifies to

HS=2
CM = M

MaMb

p2

2 +
[
Na

(
Mb

M

)2
k̃a +Nb

(
Ma

M

)2
k̃b +NaNbkab

]
r2, (2.37)

where its corresponding eigenvalue is

√
2

MaMbM
(NaM2

b k̃a +NbM2
a k̃b +NaNbM2kab)Q(2). (2.38)

Thus, the total energy for a system composed of two sets of Na and Nb particles
is

ENa+Nb

ho =
√

2
ma

(
k̃a +Nakaa +Nbkab

)
Q(Na)

+
√

2
mb

(
k̃b +Nbkbb +Nakab

)
Q(Nb)

+
√

2
MaMbM

(NaM2
b k̃a +NbM2

a k̃b +NaNbM2kab)Q(2).

(2.39)

Special consideration is required when Na and/or Nb = 1. In these cases, the
respective Hamiltonians Ha and/or Hb in (2.35) vanish, and their contributions
to the total energy in (2.39) also vanish. Additionally, the global quantum
number Q(N) is not defined for N = 1 due to its definition (2.27), which
involves a sum from 1 to N − 1.
It is also important to note that when all particles are identical, the result
correctly reduces to the expression given in (2.26). This ensures that the derived
formulae are consistent across different scenarios, whether dealing with identical
particles or distinct sets of particles.

S = 3

To investigate the eigenvalue of the Hamiltonian HCM for a system with S = 3
sets of particles, denoted as a, b and c, we utilise the diagonalisation procedure.
The computation of the symmetric matrix J yields

J = m

J11 J12

J12 J22

 with (2.40a)
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J11 = 1
MaMb(Ma +Mb)

[NbM2
a (k̃b +Nckbc)

+NaM
2
b (k̃a +Nckac) +NaNb(Ma +Mb)2kab]

J12 = 1
Ma +Mb

[Nak̃a +Nbk̃b +NaNckac +NbNckbc]

+ 1
Mc

[Nck̃c +NaNckac +NbNckbc]

− 1
M [Nak̃a +Nbk̃b +Nck̃c]

J22 = − 1
(Ma +Mb))

√
MMaMbMc

[Mc(NbMak̃b −NaMbk̃a)

+MMaNbNckbc −MMbNaNckac]

, (2.40b)

where we recall m is a reference mass. The diagonalization of this matrix leads
to the following expression for the energy [10]

ES=3
CM =

(
1

MMaMbMc

)1/2 (√
s+ δ Q(2) +

√
s− δ Q′(2)

)
, (2.41)

where δ and s are defined as

δ =
√
s2 − 4MMaMbMcr, (2.42a)

r = NaNbk̃ak̃bM
2
c +NaNck̃ak̃bM

2
b +NbNck̃bk̃cM

2
a

+NaNbNcM
2(Nakabkac +Nckackbc +Nbkabkbc)

+NaNbkab[(Nak̃a +Nbk̃b)M2
c +Nck̃c(Ma +Mb)2]

+NaNckac[(Nak̃a +Nck̃c)M2
b +Nbk̃b(Ma +Mc)2]

+NbNckbc[(Nbk̃b +Nck̃c)M2
a +Nak̃a(Mb +Mc)2], (2.42b)

s = Nak̃aMbMc(Mb +Mc) +Nbk̃bMaMc(Ma +Mc)
+Nck̃cMaMb(Ma +Mb)
+M(NaNbkabMc(Ma +Mb) +NaNckacMb(Ma +Mc)
+NbNckbcMa(Mb +Mc)). (2.42c)

This eigenvalue ES=3
CM does not depend on the reference mass and is symmetric

under the exchange of the sets’ labels, ensuring no set is favoured over the
others. Furthermore, it can be verified that the solution correctly reduces to
the expected form in the limit of identical particles.

S > 3

The eigenvalues of HCM can be analytically determined for up to S = 5 sets of
particles. This is because the diagonalisation process involves solving a quar-
tic equation at most, which is always possible to solve analytically. However,
the solutions to these equations can be extremely complex and cumbersome to
express.
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2.3 Envelope theory
We have demonstrated that it is always possible to solve the N -body harmonic
oscillator through a diagonalisation procedure, with some analytical solutions
being attainable for specific configurations. These configurations include N
identical particles (2.26), two and three distinct sets of identical particles (2.39)
and (2.41), respectively. This interesting property will be utilised to develop
an approximation method for determining approximate eigensolutions of the
Schrödinger equation (2.1), known as the envelope theory.

2.3.1 Auxiliary Hamiltonian
Before continuing, let us make a brief mathematical detour. Consider the La-
grangian of a relativistic point particle [24], Lr(x) = −m

√
ẋ2, where xµ(τ) de-

notes the world line of the particle and ẋµ = dxµ

dτ its derivative with respect to the
proper time τ . The equation of motion of the particle is derived from the Euler-
Lagrange equation, and the associated Hamiltonian is obtained via a Legendre
transformation. In both cases, the square root in the Lagrangian complicates
computation compared to the non-relativistic Lagrangian Lnr(x) = ẋ2/(2m).
Now, consider the Lagrangian Laux(x, µ) = ẋ2/(2µ) + m2µ/2, where µ is an
auxiliary field. At first glance, Lagrangians Lr and Laux may not seem related.
However, considering the Euler-Lagrange equation for the field µ, we obtain

∂Laux

∂µ

∣∣∣∣
µ0

= 0 ⇔ µ0 = −
√
ẋ2

m
. (2.43)

Substituting µ0 into Laux, we find Laux(x, µ0) = Lr(x). These two Lagrangians
are actually equivalent, but Laux is simpler to work with due to its similarity to
Lnr. The idea is to perform the computations with the auxiliary Lagrangian and,
ultimately, eliminate the auxiliary fields. This technique can also be applied to
the Nambu-Goto Lagrangian describing a relativistic string [25]. Auxiliary fields
differ from ordinary fields in that their equations of motion are not dynamical
(there is no kinematic term) but lead to algebraic relations that allow them to
be expressed in terms of the other degrees of freedom in the problem.
Returning to our Hamiltonian H in (2.1), and based on the above discussions,
it is replaced with the auxiliary Hamiltonian [26]

H̃ =
N∑
i=1

[
p2
i

2µi
+ Ti(Gi(µi)) − G2

i (µi)
2µi

]

+
N∑

i<j=2

[
ρijr

2
ij + Vij(Jij(ρij)) − ρijJ

2
ij(ρij)

]
,

(2.44)

with the functions Gi and Jij defined such that

T ′
i (Gi(x)) − Gi(x)

x
= 0, (2.45a)

V ′
ij(Jij(x)) − 2xJij(x) = 0, (2.45b)

where A′(y) = dA(y)/dy. The auxiliary Hamiltonian depends on a set of aux-
iliary fields {α} = {{µi}, {ρij}} with i, j = {1, . . . , N}. The definition of the



2.3 Envelope theory 35

functions Gi(x) and Jij(x) arises from the requirement that H̃ must reduce to
the original Hamiltonian H after the auxiliary fields are removed by a similar
procedure as in (2.43). The auxiliary Hamiltonian can also be written as

H̃ =
N∑
i=1

T̃i(pi) +
N∑

i<j=2
Ṽij(rij), (2.46)

where the auxiliary parts T̃i and Ṽij are easily derived from (2.44). So far,
our calculations are exact. We then make an approximation by replacing our
auxiliary fields {α} with auxiliary parameters. The key difference is that fields
depend on the positions and momenta, whereas parameters are merely num-
bers. By doing so, the auxiliary Hamiltonian H̃ becomes a harmonic oscillator
Hamiltonian (2.2)

H̃ = Hho({α}) +B({α}), (2.47)

with

B({α}) =
N∑
i=1

[
Ti(Gi(µi)) − G2

i (µi)
2µi

]

+
N∑

i<j=2

[
Vij(Jij(ρij)) − ρijJ

2
ij(ρij)

]
,

(2.48)

a function that solely depends on the auxiliary parameters and is entirely deter-
mined by the original Hamiltonian via the functions Gi and Jij . The eigenvalue
of H̃ is then

Ẽ = Eho({α}) +B({α}), (2.49)

which depends on the parameters {α}. The auxiliary parameters are eliminated
by finding the set {α0} = {{µi0}, {ρij0}} that extremise the eigenvalue of (2.44)

∂Ẽ

∂µi

∣∣∣∣
α0

= ∂Ẽ

∂ρij

∣∣∣∣
α0

= 0 ∀i, j. (2.50)

The set {α0} depends on the specific state considered. Once eliminated, the
eigenvalue Ẽ0 ≡ Ẽ({α0}) is interpreted as an approximation of the eigenvalue
of the original Hamiltonian H. If one knows an analytic solution of Eho({α}),
such as those presented in the previous section, then equations (2.50) are merely
minimisation equations that can be easily solved numerically, and sometimes
analytically. This procedure forms the basis of the approximation method called
envelope theory (ET), or sometimes the auxiliary field method (the origin of the
name will be explained later).
A difficulty in the method may arise during the computation of the function
B({α}), and thus the functions Gi and Jij , which may not exist. We will
assume this is always the case, except when dealing with quadratic kinematic or
potential terms. Indeed, consider non-relativistic kinematics Ti = p2

i /(2mi). In
this scenario, the function Gi(x) in (2.45) is undefined. We can resolve this by
noting that equation (2.45) is always valid if one sets µi = mi ∀i. By doing so,
the first sum in (2.48) vanishes, which is equivalent to not introducing auxiliary
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fields in the first place. A similar situation occurs if Vij(rij) ∝ r2
ij . When both

Ti and Vij are quadratic in their argument, H is actually a harmonic oscillator
Hamiltonian for which exact solutions are known.

Hellmann-Feynman theorem

The Hellmann-Feynman theorem states that the derivative of an eigenvalue E
of a Hamiltonian H, with respect to a parameter λ, is equal to the mean value of
the derivative of the Hamiltonian, with respect to the same parameter, evaluated
between the corresponding eigenstate |ψ⟩

∂E

∂λ
=
〈
∂H

∂λ

〉
ψ

, (2.51)

where ⟨·⟩ψ is a shorthand notation for ⟨ψ| · |ψ⟩. Denoting an eigenstate of
H̃0 ≡ H̃(α0) as |α0⟩, the application of the Hellmann-Feynman theorem for the
parameter µi yields

0 = ∂Ẽ

∂µi

∣∣∣∣
α0

=
〈
∂H̃0

∂µi

〉
α0

=
〈
G2
i (µi0) − p2

i

2µ2
i0

+G′
i(µi0)

[
T ′
i (Gi(µi0)) − Gi(µi0)

µi0

]〉
α0

= 1
2µ2

i0

(
G2
i (µi0) −

〈
p2
i

〉
α0

)
, (2.52)

where the last line is obtained thanks to the definition (2.45). Similar compu-
tations for the derivatives with respect to ρij ultimately lead to

G2
i (µi0) =

〈
p2
i

〉
α0

≡ p2
i0, (2.53a)

J2
ij(ρij0) =

〈
r2
ij

〉
α0

≡ r2
ij0. (2.53b)

These relations show that the new quantities pi0 and rij0 are defined such that
pi0 is the mean modulus of the momentum for the ith particle, and rij0 the
mean distance between the ith particle and the jth one. All these observables
are directly obtained by determining the set {α0}, and therefore depend on the
quantum numbers of the state considered.
We now turn our attention to the computation of

〈
T̃i(pi)

〉
α0

using (2.53)

〈
T̃i(pi)

〉
α0

=
〈
p2
i

〉
α0

2µi0
+ Ti(Gi(µi0)) − G2

i (µi0)
2µi0

= Ti(pi0). (2.54)

With similar calculations, it is straightforward to show that

Ẽ0 =
〈
H̃0
〉
α0

=
N∑
i=1

Ti(pi0) +
N∑

i<j=2
Vij(rij0). (2.55)

Given the definitions of pi0 and rij0, and the structure of the Hamiltonian H
under study, the interpretation of (2.55) is quite evident: each part of the
Hamiltonian H is evaluated at a mean value of its argument. This provides a
direct estimation of the kinetic and potential contributions.
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Virial theorem

The quantum virial theorem for an N -body Hamiltonian states [27]

N∑
i=1

〈
pi · ∂Ti(pi)

∂pi

〉
ψ

=
N∑

i<j=2

〈
rij · ∂Vij(rij)

∂rij

〉
ψ

. (2.56)

Since the terms in (2.48) are constant, the application of the virial theorem on
H̃0 yields

N∑
i=1

〈
p2
i

〉
α0

µi0
= 2

N∑
i<j=2

ρij0
〈
r2
ij

〉
α0
. (2.57)

The auxiliary fields {α0} can be eliminated using the relations (2.53) and defi-
nitions (2.45)

T ′
i (pi0) = pi0

µi0
, (2.58a)

V ′
ij(rij0) = 2ρij0 rij0. (2.58b)

Equation (2.57) then implies

N∑
i=1

pi0T
′
i (pi0) =

N∑
i<j=2

rij0V
′
ij(rij0). (2.59)

Identical particles

In the most general case, one must determine N parameters µi0 and C2
N param-

eters ρij0 through the minimisation equations (2.50). However, if two particles
numbered i and j are identical, then

p2
i0 =

〈
α0
∣∣p2
i

∣∣α0
〉

=
〈
α0

∣∣∣P̂ †
ij

(
P̂−1
ij p

2
i P̂ij

)
P̂ij

∣∣∣α0

〉
=
〈
α0
∣∣p2
j

∣∣α0
〉

= p2
j0, (2.60)

where the properties of the permutation operator P̂ij1 and the (anti-)symmetry
of the state |α0⟩ under the exchange of the particles i and j have been used.
Relations (2.58) then imply

µi0 = pi0
T ′
i (pi0) = pj0

T ′
j(pj0) = µj0, (2.61)

since Ti = Tj for identical particles. It is then clear that parameters {µi0} are
all equal for a set of identical particles. If {i, j, k, l} number any set of identi-
cal particles in the system and h numbers a different one, similar calculations
show that ρih0 = ρjh0 and ρij0 = ρkl0. Many parameters are equal when the
system contains identical particles, which can drastically reduce the number of
equations (2.50) to solve.
If all particles are identical (Ti = T, Vij = V ), then one is left with only two
parameters {µ0, ρ0} to find. The symmetry of the wavefunction also implies
pi0 = p0 and rij0 = r0 ∀i, j.

1In particular, P̂ij is hermitian P̂ †
ij = P̂ij and unitary P̂ †

ij = P̂−1
ij , implying P̂−1

ij = P̂ij .
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Figure 2.1: Example of envelopes for a three-dimensional and three-body system
with kinematics T (p) = p2/2 and potential V (r) = −2.5/r. In black straight
line, the potential is plotted and in coloured dashed lines, the auxiliary potential
for various values of Q, as defined by (2.27), from 3 to 7.

Equations (2.55) and (2.59) then reduce to

Ẽ0 = NT (p0) + C2
NV (r0), (2.62)

Np0T
′(p0) = C2

Nr0V
′(r0). (2.63)

Possible bounds

According to equations (2.53) and (2.58), the auxiliary kinetic part can be writ-
ten as

T̃i(pi) = Ti(pi0) + T ′
i (pi0)
2pi0

(p2
i − p2

i0). (2.64)

This indicates that

T̃i(pi0) = Ti(pi0) and T̃ ′
i (pi0) = T ′

i (pi0), (2.65)

implying that the auxiliary kinetic parts T̃i are tangent to the original kinetic
parts Ti at pi = pi0, at least. Since the quantity pi0 is determined by the set
{α0}, it depends on the quantum numbers of the system. All the tangent func-
tions T̃i for all possible quantum numbers form an envelope of the kinetic parts
Ti. Similar envelopes can be obtained for the potential Vij through analogous
reasoning. An example of such envelopes is illustrated in Fig. 2.1. This is actu-
ally the procedure first developed to create the envelope theory and the origin
of its name [28, 29].
The primary interest of these envelopes lies in examining the potential varia-
tional character of the method. Define a function bTi such that bTi (x2) = Ti(x).
Then, equation (2.64) can be rewritten as

b̃Ti (p2
i ) = bTi (p2

i0) + bTi
′(p2

i0)(p2
i − p2

i0), (2.66)
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which represents the equation of the tangent to the function bTi . If bTi is a
concave (convex) function over the entire domain of interest, then bTi (p2) = Ti(p)
is less (greater) than its tangent b̃Ti (p2) = T̃i(p) in each point. Similarly, we can
define bVij(x2) = Vij(x). If bVij(x) is a concave (convex) function, then Vij(rij) is
less (greater) than Ṽij(rij) everywhere, respectively.
Assume now that all b functions are all concave simultaneously. In this case,
Ti ≤ T̃i and Vij ≤ Ṽij everywhere. The comparison theorem [30] then states
Ẽ ≤ E, meaning the ET provides a lower bound for the energy. Conversely,
if all b functions are convex, then the result of the ET is an upper bound.
This is a recipe to determine the variational character of the method. If one
of the functions is neither concave nor convex over its entire domain, or the
functions do not share the same concavity simultaneously, it becomes impossible
to determine the bound of the ET.
A special case arises when identifying the bound. If a term in the Hamiltonian
is quadratic in its argument, the associated b function is a constant, neither
concave nor convex. Since this term is identical to that in a harmonic oscillator,
the associated auxiliary field vanishes, and thus this term does not contribute
to the above discussion.

2.3.2 Compact equations for identical particles

The determination of the auxiliary parameters through equations (2.50) can be
cumbersome due to the complexity of computing the functions Gi and Jij in
(2.48). However, for the case of identical particles, we have demonstrated that
the approximated eigenvalue Ẽ0 can be determined by two variables, p0 and
r0, as shown in equation (2.62). While equation (2.63) provides one relation
for these variables, an additional equation is needed. Given the known exact
eigenvalue of the harmonic oscillator Hamiltonian, we compute

⟨Hho(α0)⟩α0
= N

p2
0

2µ0
+ C2

Nρ0r
2
0 =

√
2
µ0
Nρ0 Q(N). (2.67)

Applying the virial theorem on Hho(α0) yields

N
p2

0
µ0

= 2ρ0C
2
Nr

2
0 ⇔ ρ0 = Np2

0
2µ0C2

Nr
2
0
. (2.68)

Inserting this result into the previous equation gives

Np2
0

2µ0
+ C2

N

Np2
0

2µ0C2
Nr

2
0
r2

0 =

√
2
µ0
N

Np2
0

2µ0C2
Nr

2
0
Q(N), (2.69)

which simplifies to the relation between p0 and r0

Q(N) =
√
C2
Np0r0. (2.70)

The resulting set of three equations
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Ẽ0 = NT (p0) + C2
NV (r0), (2.71a)

Np0T
′(p0) = C2

Nr0V
′(r0), (2.71b)

Q(N) =
√
C2
Np0r0, (2.71c)

is equivalent to solving the minimisation equations (2.50) but without the need
to compute the functions (2.45). The variables p0 and r0 also leads to interesting
mean values. Hence, equations (2.71) will be referred to as the compact equations
of the envelope theory. Additionally, these equations exhibit a semi-classical
interpretation, as will be seen in the next section. A simple verification of
these equations can be performed by applying them to the harmonic oscillator
Hamiltonian and confirming that the exact solution (2.26) is recovered.

One-body forces

Consider a one-body potential Ui(si), with si = |ri−R|, in the original Hamilto-
nian H. Since the harmonic oscillator can be solved with such type of potential,
the envelope theory can be adapted. First, a new set of auxiliary parameters
{νi} is introduced and a term [26]

N∑
i=1

Ũi(si) =
N∑
i=1

[νis2
i + Ui(Ii(νi)) − νiI

2
i (νi)], (2.72)

is added to the auxiliary Hamiltonian (2.44). Here, Ii is defined similarly to the
functions in (2.45). The auxiliary parameters are determined by minimising the
energy Ẽ.
Using the Hellmann-Feynman theorem, we define new variables

I2
i (νi0) =

〈
s2
i

〉
α0

≡ s2
i0. (2.73)

When all particles are identical (Ui = U), the symmetry of the state |α0⟩ implies
νi0 = ν0 and si0 = s0 ∀i. It seems now that a new compact equation has to be
determined in order to compute s0. However, it is not necessary as s0 and r0
are related, as we shall see. First, one can show

N∑
i=1

s2
i = 1

N

N∑
i<j=2

(si − sj)2 = 1
N

N∑
i<j=2

(ri − rj)2, (2.74)

where the first equality is obtained from
∑N
i si = 0. Hence,〈

N∑
i=1

s2
i

〉
α0

= N
〈
s2
i

〉
α0

= 1
N

〈
N∑

i<j=2
r2
ij

〉
α0

= C2
N

N

〈
r2
ij

〉
α0
, (2.75)

leading to

2N
〈
s2
i

〉
α0

= (N − 1)
〈
r2
ij

〉
α0
. (2.76)

This shows the variables s0 and r0 are related for identical particles. The com-
pact equations (2.71), with the inclusion of one-body forces, now read
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Ẽ0 = NT (p0) +NU

(√
N − 1

2N r0

)
+ C2

NV (r0), (2.77a)

Np0T
′(p0) =

√
C2
Nr0U

′

(√
N − 1

2N r0

)
+ C2

Nr0V
′(r0), (2.77b)

Q(N) =
√
C2
Np0r0. (2.77c)

Note that the last equation remains unchanged when including one-body forces.
In some references [26, 31], the variable d0 = Ns0 was used so that

〈
s2
i

〉
α0

=
d2

0/N
2.

K-body forces

Instead of two-body forces V , one can consider K-body forces W . In the case
of identical particles, the harmonic oscillator Hamiltonian can be solved with
K-body forces of the form (2.30), so the ET can be adapted. For notation
convenience, we denote the set of K particles among N as {i1, . . . , iK} = {K}
and the variable r{i1,...,iK} = rK . The auxiliary Hamiltonian H̃ is then modified
by introducing a new auxiliary parameter κ in the auxiliary potential [26]∑

{K}

W̃K(rK) =
∑
{K}

[
κ r2

K +W (Y (κ)) − κY 2(κ)
]
, (2.78)

where Y is a function defined similarly to (2.45). The determination of κ0 is
usually done by solving a minimisation equation of the energy. However, this
new auxiliary parameter is related to ρ0. By applying the Hellmann-Feynman
theorem for this new parameter, we find Y 2(κ0) =

〈
r2
K

〉
α0

. From the definition
(2.30), it is straightforward to show

〈
r2
K

〉
α0

= C2
K

〈
r2
ij

〉
α0

= C2
Kr

2
0.

To adapt the compact equations for handling K-body forces, we proceed as
follows

1. Add the term CKNW (
√
C2
Kr0) to the energy expression (2.71a).

2. Add the term CKN
√
C2
Kr0W

′(
√
C2
Kr0) to equation (2.71b).

3. The last compact equation (2.71c) remains unchanged.

Following this procedure allows us to incorporate any number of additional K ′-
body forces.

2.3.3 Compact equations for two sets of identical particles
In the previous section, the spectrum of the many-body harmonic oscillator was
computed for a configuration of two sets, denoted a and b, of identical particles.
This configuration is of particular interest, so the compact equations of the
ET will be developed for such systems. Due to the symmetry of the system,
only five auxiliary parameters need to be determined through (2.50), namely
{µa, µb, ρaa, ρbb, ρab = ρba}. Equations (2.55) and (2.59) remain valid, but new
equations must be determined to compute all auxiliary parameters.
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To determine the compact equations, we rearrange the auxiliary Hamiltonian
by following the decomposition of the harmonic oscillator in (2.35)

Hho({α}) =
Na∑
i=1

p2
i

2µa
− P 2

a

2Naµa
+

Na∑
i<i′=2

(
ρaa + Nb

Na
ρab

)
r2
ii′

+
Nb∑
j=1

p2
j

2µb
− P 2

b

2Nbµb
+

Nb∑
j<j′=2

(
ρbb + Na

Nb
ρab

)
r2
jj′

+ p2

2
Naµa +Nbµb
NaNbµaµb

+NaNbρabr
2,

(2.79)

where indices i refer to the set a and indices j to the set b. We also recall that
p and r are the relative momentum and distance between the CM of each sets,
respectively. To be complete, the function B({α}) is given by

B({α}) = Na

[
Ta(Ga(µa)) − G2

a(µa)
2µa

]
+Nb

[
Tb(Gb(µb)) − G2

b(µb)
2µb

]
+ C2

Na

[
Vaa(Jaa(ρaa)) − ρaaJ

2
aa(ρaa)

]
+ C2

Nb

[
Vbb(Jbb(ρbb)) − ρbbJ

2
bb(ρbb)

]
+NaNb

[
Vab(Jab(ρab)) − ρabJ

2
ab(ρab)

]
.

(2.80)

Applying the Hellmann-Feynman theorem for each auxiliary parameter yields
the following relations [32]

G2
a(µa0) = p′2

a0 + P 2
0

N2
a

and G2
b(µb0) = p′2

b0 + P 2
0

N2
b

, (2.81a)

J2
aa(ρaa0) = r2

aa0 and J2
bb(ρbb0) = r2

bb0, (2.81b)

J2
ab(ρab0) = Na − 1

2Na
r2
aa0 + Nb − 1

2Nb
r2
bb0 +R2

0, (2.81c)

where the six physical quantities are defined by

p′2
a0 ≡

〈
p2
i − P 2

a

N2
a

〉
and p′2

b0 ≡
〈
p2
j − P 2

b

N2
b

〉
, (2.82a)

P 2
0 ≡

〈
p2〉 , (2.82b)

r2
aa0 ≡

〈
r2
ii′
〉

and r2
bb0 ≡

〈
r2
jj′

〉
, (2.82c)

R2
0 ≡

〈
r2〉 , (2.82d)

where the mean values are taken between a symmetrised eigenstate |α0⟩ of the
auxiliary Hamiltonian. Comparison between results (2.81) and (2.53) shows the
following relations

〈
p2
i

〉
= p2

a0 = p′2
a0 + P 2

0
N2
a

and
〈
p2
j

〉
= p2

b0 = p′2
b0 + P 2

0
N2
b

, (2.83a)

〈
r2
ij

〉
= r2

ab0 = Na − 1
2Na

r2
aa0 + Nb − 1

2Nb
r2
bb0 +R2

0, (2.83b)
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which can also be obtained starting from the mean values definitions. In the
following, to lighten the notation, the index 0 will be omitted. Substituting
relations (2.81) into

〈
H̃0
〉

leads to

Ẽ0 = NaTa(pa)+NbTb(pb)+C2
Na
Vaa(raa)+C2

Nb
Vab(rbb)+NaNbVab(rab). (2.84)

Equation (2.55) is retrieved, as expected, but it is important to keep in mind
that the variables pa, pb and rab are given by (2.83). The importance of the
decomposition (2.35) is to write the harmonic oscillator Hamiltonian as a sum
of decoupled Hamiltonians Ha, Hb and HCM. Thanks to this property, the virial
theorem can be applied separately to each line of (2.79), leading to

NaT
′
a(pa)p

′2
a

pa
= C2

Na
V ′
aa(raa)raa + Nb

Na
C2
Na
V ′
ab(rab)

r2
aa

rab
, (2.85a)

NbT
′
b(pb)

p′2
b

pb
= C2

Nb
V ′
bb(rbb)rbb + Na

Nb
C2
Nb
V ′
ab(rab)

r2
bb

rab
, (2.85b)

1
Na

T ′
a(pa)P

2
0
pa

+ 1
Nb

T ′
b(pb)

P 2
0
pb

= NaNbV
′
ab(rab)

R2
0

rab
. (2.85c)

Finally, three equations are obtained by comparing the exact spectrum of the
harmonic oscillator for this system (2.39) to ⟨Hho({α0})⟩. Using the decompo-
sition (2.35), a similar procedure as (2.67) is applied, leading to

Q(Na) =
√
C2
Na
p′
araa, (2.86a)

Q(Nb) =
√
C2
Nb
p′
brbb, (2.86b)

Q(2) = P0R0. (2.86c)

The seven equations (2.84), (2.85), and (2.86), along with relations (2.83), form
the compact equations of the ET for two sets of identical particles [32]. As
in the case of identical particles, these compact equations can be checked to
lead to the correct spectrum of the harmonic oscillator. The compact equations
for identical particles (2.71) are also retrieved when assuming all particles are
identical, with pa = pb and raa = rbb = rab.

Na and/or Nb = 1

The seven compact equations (2.84), (2.85), and (2.86) were derived for a system
comprising Na+Nb particles. It is insightful to examine the scenario where only
a single particle is present in one set, for instance, Nb = 1. In this case, all the
terms in C2

Nb
and Q(Nb) vanish. Consequently, the second equation in (2.86)

becomes trivial, and the second equation of (2.85) results in p′
b = 0. This

outcome further implies pb = P0. Ultimately, only five equations remain
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Ẽ0 = NaTa (pa) + Tb (P0) + C2
Na
Vaa (raa) +NaVab (rab) , (2.87a)

NaT
′
a(pa)p

′2
a

pa
= C2

Na
V ′
aa(raa)raa + Na − 1

2 V ′
ab(rab)

r2
aa

rab
, (2.87b)

1
Na

T ′
a(pa)P

2
0
pa

+ T ′
b(P0)P0 = NaV

′
ab(rab)

R2
0

rab
, (2.87c)

Q(Na) =
√
C2
Na
p′
araa, (2.87d)

Q(2) = P0R0. (2.87e)

The five equations (2.87) can also be derived from scratch using the aforemen-
tioned procedure.
Another notable case occurs when Na = Nb = 1, resulting in a two-body system.
Similar simplifications arise as in the previous case, leading to the compact
equations of the ET for N = 2, which generalise the results obtained in [33, 34]

Ẽ0 = Ta(P0) + Tb(P0) + Vab(R0), (2.88a)
T ′
a(P0)P0 + T ′

b(P0)P0 = V ′
ab(R0)R0, (2.88b)

Q(2) = P0R0. (2.88c)

2.4 Improved envelope theory
As presented in the previous section, the envelope theory (ET) is an approxima-
tion method based on the exact solution of the many-body harmonic oscillator.
The approximate spectrum depends on a characteristic global quantum num-
ber Q, whose common structure given by (2.27) implies a strong degeneracy of
the levels, inherited from the harmonic oscillator. For arbitrary potentials, this
degeneracy is, of course, absent, resulting in less accurate results for the ET.
One potential improvement to the method involves modifying the structure of
Q to (partially) break this degeneracy. Consider the modified global quantum
number

Qϕ = ϕ ν + λ with

ν =
N−1∑
i=1

(
ni + 1

2

)
and λ =

N−1∑
i=1

(
li + D − 2

2

)
,

(2.89)

where ϕ is a parameter that depends on the considered system but not on
the quantum numbers {ni, li}. The choice for this modified quantum number
originates from [35] where an effective quantum number for centrally symmetric
two-body systems was found

q = ϕ(n+ 1/2) + l + (D − 2)/2. (2.90)

Owing to this structure, λ can be interpreted as a purely orbital global quantum
number and is not affected by the parameter ϕ. The goal now is to determine a
procedure for computing ϕ. One approach is to fit the ET result to experimental
data or more accurate results [36]. However, an approach independent of the
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CM

d̃0

p̃0

i = 1 i = 2
i = 3

i = N

· · ·

· · ·

Figure 2.2: Example of a purely orbital motion of N particles, where p̃0 denotes
the mean momentum of the particles and d̃0 the mean distance from the centre
of mass (CM).

existence of accurate solutions is more desirable. Before presenting such an
approach in Sec. 2.4.1, it is important to note that setting ϕ = 2 recovers the
original global quantum number Q and, consequently, the original ET.

2.4.1 Dominantly orbital state method
The dominantly orbital state (DOS) method is an approximation technique for
solving the many-body Schrödinger equation. As its name implies, this method
is based on states with high angular momentum. Initially, the DOS method was
developed for two-body systems [37] and later generalised to N -body systems
in [38]. Below, we briefly outline the main steps involved in constructing the
DOS method.

1. Consider a classical system of N particles in purely symmetrical orbital
motion, as represented in Fig. 2.2. Let p̃0 denotes the mean momentum
of the particles, r̃0 the mean distance between each particle, and d̃0 the
mean distance from the centre of mass (the centre of the circle). The
energy of the system is given by E = NT (p̃0) + C2

NV (r̃0). The total
angular momentum of the system is L = Np̃0 d̃0, which, after geometrical
considerations [34], can be approximated as L ≈

√
C2
N p̃0 r̃0 (for N = 3,

this approximation is exact).
Careful readers will notice that these equations are similar to the com-
pact equations of the ET for identical particles (2.71), but with the global
quantum number Q replaced by the total angular momentum. The second
compact equation (2.71b) can also be derived classically from considera-
tions on the balance of forces [34]. From this discussion, we conclude that
the compact equations of the ET have a semi-classical interpretation and
correspond to the equations of the DOS method for N -body systems
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Ẽ = NT (p̃0) + C2
NV (r̃0), (2.91a)

Np̃0T
′(p̃0) = C2

N r̃0V
′(r̃0), (2.91b)

λ =
√
C2
N p̃0 r̃0. (2.91c)

Here, the total angular momentum has been assimilated to λ, the purely
orbital part of the global quantum number. In the following, the notation
(Ẽ, p̃0, r̃0) will be used to denote the solutions of the compact equations
with Q replaced by λ.

2. A small radial perturbation is introduced by replacing

r̃0 → r̃0 + ∆r and p̃0 →

√
p2
r + λ2

C2
N (r̃0 + ∆r)2 , (2.92)

where pr is the radial momentum, and we assume ∆r ≪ r̃0 and pr ≪ p̃0 to
ensure the motion remains in a dominantly orbital state. Next, a Taylor
expansion in ∆r and pr up to the first non-vanishing order is applied to
(2.91a), leading to the radial contribution of the energy

∆E ≈ 1
2µp

2
r + k

2 ∆r2 with

µ = p̃0

NT ′(p̃0) ,

k = 2N p̃0

r̃2
0

T ′(p̃0) + N p̃2
0

r̃2
0

T ′′(p̃0) + C2
N V

′′(r̃0).

(2.93)

Note that the terms linear in ∆r are cancelled due to equation (2.91b).

3. The system is quantised by interpreting ∆E as a Hamiltonian and assum-
ing pr is the conjugate variable of ∆r. This choice of conjugate variables
is not straightforward since pr and ∆r are effective collective variables,
and one could multiply pr by some constants. This issue will be addressed
later. By quantising the system, ∆E becomes a one-dimensional harmonic
oscillator Hamiltonian whose eigenvalue is

∆E ≈

√
k

µ
(n+ 1/2), (2.94)

where n is an effective radial quantum number for the collective motion.
Equation (2.94) can be tested on the N -body harmonic oscillator, where
T (p) = p2/(2µ) and V (r) = k r/2. The exact solution is retrieved by
imposing √

C2
N (n+ 1/2) = ν, (2.95)

which allows an identification between the effective quantum number n
and the individual quantum numbers {ni} in ν. This identification better
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justifies the choice of the conjugate variable of ∆r. If one considers another
conjugate variable as in [38], the above identification would be different
but the same result is obtained for ∆E. The complete solution for the
DOS method is then Ẽ + ∆E.

2.4.2 Coupling of the ET and the DOS method
The parameter ϕ in the modified global quantum number Qϕ, given by (2.89),
is determined by comparing the modified ET, which has Q replaced by Qϕ,
with the DOS method. For this comparison, the ET equations must be written
under the same conditions as the DOS ones, i.e. for a dominantly orbital state.
Rewriting the modified global quantum number as

Qϕ = λ(1 + ϵ) with ϵ = ϕ ν/λ, (2.96)

the case ϵ = 0 corresponds to a purely orbital state, and the associated solutions
of the ET are (p̃0, r̃0). A radial perturbation is achieved if ϵ ≪ 1, and so a Taylor
expansion of the ET equations up to the first non-vanishing order in ϵ leads to
the radial contribution

∆E ≈ Np̃0T
′(p̃0)ϵ. (2.97)

Since the contribution (2.97) has been computed under the same conditions as
(2.94), both results can be equated, leading to a formula for computing ϕ

ϕ = λ

Np̃0T ′(p̃0)

√
k

C2
N µ

. (2.98)

This value has been determined under specific conditions where the radial mo-
tion has a small contribution to the energy relative to the orbital motion, because
it is computable with the DOS method. However, since the structure of ϕ is
assumed to be valid for any quantum numbers, (2.98) can, in principle, be used
for any state considered.
To summarise, the procedure for using the improved envelope theory (IET) is
as follows

1. Specify the quantum numbers {ni, li} of the system, leading to the value
of λ.

2. Solve the ET equations for a purely orbital motion, that is to say with
Q → λ, leading to the solutions (p̃0, r̃0).

3. Compute the parameter ϕ via (2.98).

4. Solve the ET equations a second time with the modified global quantum
number Q → Qϕ.

2.4.3 Generalisation to different particles
Since the ET has been generalised to systems with different particles, it seems
natural to do the same for the IET. For simplicity, let us focus on systems
consisting of Na identical particles of type a and a single different particle of
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p̃a, r̃aa

CM Na

i = 1 i = 2
i = 3

i = N

· · ·

· · ·

P̃0, R̃0CM

CM Na

b

Figure 2.3: Semi-classical interpretation of the compact equations of the ET
for a system of Na + 1 particles. On the left, an orbital motion of the Na
identical particles, with a mean momentum p̃a and distance r̃aa. On the right,
a decoupled orbital motion between the single particle b and the CM of the Na
particles, with a relative momentum P̃0 and distance R̃0.

type b. The associated compact equations of the ET are given by the five
equations (2.87). First, the two global quantum numbers Q(Na) and Q(2) are
modified by introducing two parameters ϕa and ϕb as follows

Qϕ(Na) = ϕa νa + λa with

νa =
Na−1∑
i=1

(
ni + 1

2

)
and λa =

Na−1∑
i=1

(
li + D − 2

2

)
,

(2.99)

Qϕ(2) = ϕb νb + λb with

νb = nb + 1
2 and λb = lb + D − 2

2 .
(2.100)

Next, the DOS equations for Na+1 particles have to be established in a similar
fashion as for the identical particles case

1. Starting from the compact equations (2.87), one can demonstrate [39] that
they exhibit a semi-classical interpretation when Q(Na) is replaced by λa
and Q(Nb) is replaced by λb. This corresponds to an orbital motion of the
Na identical particles and a decoupled orbital motion between the single
particle b and the CM of the Na particles. This configuration is depicted
in Fig. 2.3. An energy Ẽ is then computed with the associated parameters
(p̃′
a, r̃aa, P̃0, R̃0).

2. Radial motions are introduced as small perturbations by computing the
energy from (2.87a) with the following replacements
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r̃aa → r̃aa + ∆r and p̃′
a →

√
p2
r + λ2

a

C2
Na

(r̃aa + ∆r)2 , (2.101a)

R̃0 → R̃0 + ∆R and P̃0 →

√
P 2
r + λ2

b

(R̃0 + ∆R)2
. (2.101b)

Assuming ∆r ≪ r̃aa, pr ≪ p̃′
a,∆R ≪ R0 and Pr ≪ P0, a power expansion

in these variables is applied to Ẽ, up to the first non-vanishing order,
leading to the radial contribution of the energy [39]

∆E ≈ 1
2

(
1
µa
p2
r + 1

µb
P 2
r + ka ∆r2 + kb ∆R2 + kc ∆r∆R

)
, (2.102)

with

µa = p̃a
NaT ′

a(p̃a) , (2.103a)

µb =
(
T ′
a(p̃a)
Nap̃a

+ T ′
b(P̃0)
P̃0

)−1

, (2.103b)

ka = NaT
′′
a (p̃a)p̃′4

a

r̃2
aap̃

2
a

+ NaT
′
a(p̃a)p̃′2

a

r̃2
aa

(
3
p̃a

− p̃′2
a

p̃ 3
a

)
+ C2

Na
V ′′
aa(r̃aa) + (Na − 1)2r̃2

aa

4Nar̃ 2
ab

V ′′
ab(r̃ab)

+ (Na − 1)
2

(
1
r̃ab

− (Na − 1)r̃2
aa

2Nar̃ 3
ab

)
V ′
ab(r̃ab), (2.103c)

kb = T ′′
a (p̃a)P̃ 4

0
N3
a R̃

2
0p̃

2
a

+ T ′′
b (P̃0)P̃ 2

0
R̃2

0
+ T ′

a(p̃a)P̃ 2
0

NaR̃2
0

(
3
p̃a

− P̃ 2
0

N2
a p̃

3
a

)
+ 2T ′

b(P̃0)P̃0

R̃2
0

+ NaR̃
2
0

r̃ 2
ab

V ′′
ab(r̃ab)

+Na

(
1
r̃ab

− R̃2
0

r̃ 3
ab

)
V ′
ab(r̃ab), (2.103d)

kc = 2p̃′2
a P̃

2
0

Nap̃ 2
a r̃aaR̃0

(
T ′′
a (p̃a) − T ′

a(p̃a)
p̃a

)
+ (Na − 1)r̃aaR̃0

r̃ 2
ab

(
V ′′
ab(r̃ab) − V ′

ab(r̃ab)
r̃ab

)
. (2.103e)

Note there is no terms in ∆r nor in ∆R, but a term ∆r∆R couples the
two radial motions.

3. The energy ∆E is quantised by taking Pr and pr as the conjugate variables
of ∆R and ∆r, respectively. Similar to the previous case, the choice of
conjugate variables is not unique but will be justified later. The energy ∆E
becomes that of two one-dimensional coupled oscillators, whose eigenvalue
is [40]
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∆E ≈

√
A

µ

(
n+ 1

2

)
+

√
B

µ

(
n′ + 1

2

)
with

µ = √
µaµb,

A =
√
µb
µa
ka − kc

2

(
sgn(ϵ)

√
1 + ϵ2 − ϵ

)
, (2.104)

B =
√
µa
µb
kb + kc

2

(
sgn(ϵ)

√
1 + ϵ2 − ϵ

)
and

ϵ = 1
kc

(√
µa
µb
kb −

√
µb
µa
ka

)
,

where sgn(x) is the sign function.

4. Equations (2.104) are tested on the equivalent many-body harmonic oscil-
lator, whose eigenvalues are known, leading to the following identification
of the quantum numbers

√
C2
Na

(
n+ 1

2

)
= νa and

(
n′ + 1

2

)
= νb. (2.105)

Once the DOS equations are known, the ET equations with Q → Qϕ are com-
puted in the same regime. The modified global quantum numbers are written
as

Qϕ(Na) = λa(1 + ϵa) with ϵa = ϕaνa/λa, (2.106a)
Qϕ(2) = λb(1 + ϵb) with ϵb = ϕbνb/λb, (2.106b)

so that the case ϵa = ϵb = 0 corresponds to a purely orbital state and ϵa, ϵb ≪ 1
to a dominantly orbital state. The energy equation (2.87a) is then expanded to
first order in ϵa and ϵb, yielding

∆E ≈ Da
ϕa
λa

Na−1∑
i=1

(
ni + 1

2

)
+Db

ϕb
λb

(
nb + 1

2

)
with

Da = T ′
a(p̃a)Nap̃

′2
a

p̃a
and Db = T ′

a(p̃a) P̃ 2
0

Nap̃a
+ T ′

b(P̃0)P̃0.

(2.107)

The comparison between (2.104) and (2.107) leads to the expressions

ϕa = λa
Da

√
A

C2
Na
µ

and ϕb = λb
Db

√
B

µ
, (2.108)

where the quantities µ,A,B,Da and Db can be computed from the values of the
solution (p̃′

a, r̃aa, P̃0, R̃0) fixed by the choice of the collective orbital quantum
numbers λa and λb.
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2.5 Example of results with the envelope theory
To conclude this chapter, we present some results computed using the ET and
IET for systems with both identical and different particles. This will illustrate
the main advantages and limitations of the method. A more exhaustive list of
results derived with the ET and IET can be found in [31, 36, 38, 39, 41, 42].

2.5.1 Results for identical particles
Consider an N -body system of identical particles with a power-law kinematic
and potential

T (p) = Apα and V (r) = sgn(β)B rβ , (2.109)

where A and B are positive constants, α is also positive to ensure the kinetic
energy remains positive, and β can be either negative or positive. The sign
function sgn(x) ensures the potential is always attractive. This general form
of the kinetic term allows for the treatment of non-relativistic kinematics with
A = 1/(2m) and α = 2, as well as ultra-relativistic kinematics with A = 1 and
α = 1. Similarly, the potential form allows for various interactions such as linear
(β = 1), quadratic (β = 2), or Coulomb (β = −1).
First, the compact equations for identical particles (2.71) are solved. By sub-
stituting (2.71c) into (2.71b), the following equation for r0 is obtained

N
Q(N)√
C2
Nr0

Aα

(
Q(N)√
C2
Nr0

)α−1

= C2
N r0 sgn(β)B β rβ−1

0 , (2.110)

with the solution given by

r0 =
(

N αAQ(N)α

|β|B(
√
C2
N )α+2

)1/(α+β)

. (2.111)

This result is not merely an intermediate step in solving the compact equa-
tions but also provides an approximation for the mean value

〈
r2〉 via (2.53).

Substituting (2.111) back into (2.71a) yields the final approximate spectrum
[39]

E = sgn(β)(β + α)

(N A

|β|

)β (
BC2

N

α

)α(
Q(N)√
C2
N

)αβ1/(α+β)

. (2.112)

As a consistency check, the exact spectrum of the harmonic oscillator (2.26) is
recovered when α = β = 2. This procedure for solving the compact equations
is general and can sometimes yield analytical solutions, as in our example; oth-
erwise, the equations can be solved numerically. A key advantage of the ET is
that its equations and solutions can be computed for an arbitrary number of
particles N , since N is a simple parameter in our equations, which is particularly
useful in the large-N approach to quantum chromodynamics [43, 44].
The variational nature of the method can also be demonstrated. Following the
recipe described in Sec. 2.3, we define two functions
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β Accurate ET IET

−1 −0.26675 −0.12500 [53] −0.28125 [5.4]

−0.5 −0.59173 −0.49139 [17] −0.59977 [1.4]

0.1 1.88019 1.91406 [1.8] 1.87743 [0.15]

0.5 2.91654 3.08203 [5.7] 2.90211 [0.49]

1 3.86309 4.08852 [5.8] 3.84130 [0.56]

2 5.19615 5.19615 [0] 5.19615 [0]

3 6.15591 5.68394 [7.7] 6.22479 [1.1]

Table 2.1: Bosonic ground state energies for the Hamiltonian (2.109) with N =
3, α = 2, and A = B = 0.5, for various values of β (arbitrary units). The
results from the ET and IET with (2.114) are compared with more accurate
ones [45], obtained with an hyperspherical expansion. The relative errors in %
are indicated in square brackets. For β = 2, the ET and IET yield the exact
result, as expected.

bT (p) = Apα/2 and bV (r) = sgn(β)B rβ/2. (2.113)

Analysis of their concavity shows that for α, β < 2, the b functions are concave,
leading to a lower bound. For α, β > 2, the b functions are convex, leading to
an upper bound. If α or β = 2, the function is neither convex nor concave.
Finally, if α < 2 and β > 2 (or vice versa), the variational character of the ET
is indeterminate.
Next, we apply the IET by computing the parameter ϕ via (2.98). The solution
r̃0 of the ET for purely orbital motion is required, corresponding to the solution
(2.111) with Q(N) replaced by λ. Substituting this result into (2.98), and after
some simplification, yields [39]

ϕ =
√
α+ β, (2.114)

which is independent of the quantum numbers of the system. Specifically, α =
β = 2 leads to ϕ = 2, corresponding to the original ET, which provides the
exact solution for the harmonic oscillator. The IET spectrum is then obtained
from (2.112) with Q replaced by Qϕ.
A comparison between the ET, IET, and accurate results from [45] is shown
in Table 2.1. Except for the Coulomb potential (β = −1), the ET already
provides quite accurate results, with a relative error of around 5% or less. How-
ever, the IET significantly improves accuracy, reducing the relative error to less
than 1% for some values of β. The predicted variational nature is also verified
throughout, although it is lost for the IET results.
In addition to the spectrum, the ET can also approximate eigenfunctions and
thus observables. More information about eigenfunction approximation can be
found in Appendix A. Results on the accuracy of the approximation for some
observables are available in [36] for two-body potentials and in [41] for three-
body potentials.
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m = 0.2 m = 5

β Accurate ET IET (ϕa, ϕb) Accurate ET IET (ϕa, ϕb)

−1 −0.1398 −0.0645 [54] −0.1316 [5.9] (1.07,1.14) −0.3848 −0.1797 [53] −0.3029 [21] (1.05,1.64)

0.1 1.9452 1.9804 [1.8] 1.9489 [0.2] (1.55,1.53) 1.8486 1.8820 [1.8] 1.8568 [0.4] (1.48,1.77)

1 4.9392 5.2278 [5.8] 4.9687 [0.6] (1.79,1.77) 3.4379 3.6386 [5.8] 3.4753 [1.1] (1.74,1.88)

2 7.5730 7.5730 [0] 7.5730 [0] (2,2) 4.3729 4.3729 [0] 4.3729 [0] (2,2)

3 9.7389 8.9925 [7.7] 9.6703 [0.7] (2.16,2.20) 5.0166 4.6320 [7.7] 4.9693 [0.9] (2.20,2.15)

Table 2.2: Bosonic ground state energies of Hamiltonian (2.115) for several
values of m and β. The results from the ET [23] (upper bound for β < 2 and
lower bound for β > 2) and the IET [39] with (ϕa, ϕb) are compared with more
accurate ones [45], obtained with an hyperspherical expansion. The relative
errors in % are indicated between square brackets. In the case of β = 2, the
ET and IET give the exact result as expected. Results for m = 1 are given in
Table 2.1.

2.5.2 Results for different particles
The treatment of systems with different particles allows for the inclusion of more
diverse systems. A power-law potential, as previously discussed, can be studied.
Consider the three-body Hamiltonian

H =
2∑
i=1

p2
i

2 + p2
3

2m + 1
2 sgn(β)

3∑
i<j=2

rβij . (2.115)

Solving the compact equations (2.87) does not yield an analytical solution; how-
ever, a numerical solution is always possible. The improvement procedure must
also be applied numerically. The variational character analysis is identical to
the case of identical particles. A comparison between the ET [23], IET [39], and
more accurate results [45] is shown in Tab. 2.2. The conclusions are similar to
the previous case. The accuracy obtained by the ET bounds is better than 8%,
except for the Coulomb case. Except for one instance, the Coulomb interaction
with m = 5, the improvement is again quite significant with the IET, even if its
magnitude is somewhat unpredictable.
Consider now a more physically relevant system. Atoms can be modelled as
systems with Ne electrons of mass me and electric charge e, along with a nucleus
of mass mN and electric charge Ze, with Z being the atomic number. The
atomic Hamiltonian is then given by

H =
Ne∑
i=1

p2
i

2me
+ p2

N

2mN
+

Ne∑
i<j=2

k
e2

rij
−

Ne∑
i=1

k
Ze2

riN
, (2.116)

where k = 1/(4πϵ0) and ϵ0 is the vacuum permittivity. This Hamiltonian (2.116)
includes the main contributions to the binding energy in an atom. Thus, the
approximate results are compared with experimental data on ionisation energies
[46], which are very close to the eigenvalues of (2.116). In natural units, ϵ0 = 1,
such that k = 1/(4π), and the elementary electric charge e is related to the fine-
structure constant α via e =

√
4πα ≈ 0.3. The electron mass is me ≈ 0.511 MeV

and the proton/neutron mass is mp = mn ≈ 938 MeV, making the eigenvalue
of H expressed in units MeV.
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Exp. ET IET (ϕa, ϕb)
4He 79 33 47 (1.21, 1.78)
6Li+ 198 85 123 (1.18, 1.77)
6Li 203 66 95 (1.03, 1.99)

12C4+ 882 386 568 (1.16, 1.77)
12C 1030 321 496 (0.96, 2.10)

16O6+ 1611 707 1047 (1.15, 1.77)
16O 2044 672 1062 (0.94, 2.14)

Table 2.3: Fermionic ground state binding energies (in eV) of Hamiltonian
(2.116) for selected atoms with two or more electrons. Results from the ET
and the IET with (ϕa, ϕb) are compared with the experimental values [46]. Er-
ror on the experimental values are not written since it is considerably lower that
the error of the ET result.

Since electrons are spin-1/2 fermions, they exhibit two-fold degeneracy, which
prevents more than two fermions from occupying identical states. The cal-
culation of the global quantum number Q(N), as defined by (2.27), becomes
increasingly complex. The derivation of the global quantum number for the
fermionic ground state (FGS) is presented in Appendix A, with the final result
provided by (A.22). The computation of the modified global quantum number
Qϕ for the FGS is detailed in Appendix A.4.1. Solving the compact equations
(2.87) does not yield an analytical solution; however, a numerical solution is
always possible. The improvement procedure must also be applied numerically.
Because of the mixing between attractive and repulsive potentials, the varia-
tional character of the method cannot be determined. The comparison with
experimental values is provided in Table 2.3. As expected, the ET results are
not very accurate. This has already been observed in the case of identical par-
ticles with the Coulomb potential. However, unlike the previous case, the IET
does not significantly improve accuracy. From various accuracy tests conducted
in [42], we concluded that

• The presence of a divergence, such as in the Coulomb potential, reduces
the accuracy of the ET.

• The absence of a variational character, caused by the mix of attractive
and repulsive potentials, diminishes the effectiveness of the IET.

These two factors together explain the poor accuracy of the method for atomic
systems.
To conclude this chapter, the challenge of solving the many-body Schrödinger
equation (2.1) was introduced, and various resolution methods for approximat-
ing its eigensolutions were presented. First, the many-body harmonic oscillator
(2.2) was discussed, along with its exact solutions, which rely on a diagonal-
isation procedure. While results for systems of identical particles (2.26) were
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already known, this work extends the analysis to systems with distinct particles,
notably providing the spectra (2.39) and (2.41) for two and three different sets
of identical particles, respectively.
Following this, the ET, an approximation method for solving the many-body
equation (2.1), was introduced. Within the ET, the approximate eigensolutions
are obtained by minimising the energy of an auxiliary Hamiltonian (2.44), which
is a harmonic oscillator Hamiltonian, with respect to auxiliary parameters. For
identical particles, it was previously known that the eigensolutions could be
derived by solving a set of three compact equations (2.71). With the now-
known eigenvalue of the harmonic oscillator for systems of distinct particles,
the ET has been generalised, resulting in a new set of compact equations (2.84),
(2.85), (2.86), which is a novel contribution of this work.
An improvement procedure for the ET, known as the IET, introduces a parame-
ter ϕ that modifies the global quantum number (2.27) according to (2.89). This
parameter is determined by coupling the ET with the DOS method, leading to
the equation (2.98). Similarly to the ET, the IET has now been generalised
to systems with different particles, in particular those with a single distinct
particle, as demonstrated by equations (2.108).
This generalisation of the ET and IET to include systems with different particles
enables the study of a wider range of physical systems. Results for such systems
are presented in Tables 2.2 and 2.3.
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3Helicity formalism
Chapter

A massive particle is often characterised by its mass m, spin s, and projection
along the z-axis µ = {−s,−s + 1, . . . , s − 1, s}. Let us denote the state of the
particle by |s µ⟩ for the moment. The coupling of two spins s1 and s2 yields a
total spin S, determined by the usual rule |s1 −s2| ≤ S ≤ s1 +s2. The two-body
state is expressed as

|SM ; s1s2⟩ =
∑
µ1,µ2

(s1 µ1 s2 µ2|SM) |s1 µ1⟩ ⊗ |s2 µ2⟩ , (3.1)

where (s1 µ1 s2 µ2|SM) is a Clebsch-Gordan coefficient. This approach can be
extended to the coupling of three or more massive particles. The purpose of
this discussion is to remind that the methodology for treating massive particles
is well-established in quantum mechanics.
Consider now a massless particle, such as a photon or, for our interest, a gluon.
Unlike massive particles, massless particles exhibit only two projections of spin,
±s; intermediate projections are not observed. This property can be understood
classically from the two polarisations of light, which is explained by the gauge
symmetry of Maxwell’s equations. The coupling of two massless particles is then
non-trivial and differs from the coupling of two massive particles. Nonetheless,
such couplings are essential in the study of exotic hadrons, such as glueballs
or, in our interest, hybrid baryons. Therefore, it is necessary to develop a
technique for the coupling of angular momenta that is valid for both massive
and massless particles. This endeavour was initiated by Jacob and Wick in their
seminal paper [1], where they developed the helicity formalism, which serves as a
foundation for describing one- and two-body states, both massive and massless.
In Sec. 3.1, the characterisation of particles is discussed, and the helicity formal-
ism is developed for describing one-body states. Subsequently, in Sec. 3.2, the
formalism is extended to two-body states, and the correct coupling of angular
momenta is derived. Finally, the helicity formalism is applied to hybrid baryons
in Sec. 3.3. Natural units c = ℏ = 1 will be used in all equations.

3.1 One-body states
Before diving into the helicity formalism, we must address how to correctly
characterise a particle. Specifically, we require that all inertial observers agree

59
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on the nature of the particle. For instance, velocity is not a suitable quantum
number, as it can be altered by a boost or a spatial rotation. However, the
rest mass is a Lorentz invariant, as every physics student knows, and thus is an
appropriate choice for characterising a particle.
To identify other Lorentz invariants that will be useful for our discussion, it is
necessary to study the Poincaré group, which is the isometry group of Minkowski
spacetime. For a detailed review of the group and its algebra, particularly the
commutation relations of the generators, the interested reader can refer to Ap-
pendix B. In summary, the study of this group reveals that all particles can be
characterised by their mass m, as expected, and momentum p. Moreover, mas-
sive particles can be further characterised by their spin s and projection along
the z-axis µ, whereas massless particles are characterised by a helicity quantum
number λ, which can be interpreted as the projection of angular momentum
along the direction of motion.

3.1.1 Massive particles and canonical states
Saying that a massive particle has all the above characteristics means that the
one-body state describing it, denoted |m; p θ ϕ; s µ⟩c or |m; p; s µ⟩c for short,
must be an eigenstate of the corresponding operators

P 2 |m; p; s µ⟩c = m2 |m; p; s µ⟩c ,
J2 |m; p; s µ⟩c = s(s+ 1) |m; p; s µ⟩c ,

P0 |m; p; s µ⟩c = (p2 +m2)1/2 |m; p; s µ⟩c ,
P1 |m; p; s µ⟩c = p sin θ cosϕ |m; p; s µ⟩c ,
P2 |m; p; s µ⟩c = p sin θ sinϕ |m; p; s µ⟩c ,
P3 |m; p; s µ⟩c = p cos θ |m; p; s µ⟩c ,

J3 |m; p; s µ⟩c = µ |m; p; s µ⟩c ,

(3.2)

where p = |p| and (θ, ϕ) are the polar and azimuthal angles of p. The above op-
erators are defined in more detail in Appendix B, but we recall that Pµ={0,1,2,3}
are the momentum operators, P 2 = PµP

µ is the squared momentum operator,
Ji={1,2,3} are the angular momentum operators, and J2 = JiJ

i is the squared
angular momentum operator. Since the state |m; p; s µ⟩c is an eigenstate of the
J3 operator1, i.e. the projection of the spin along the z-axis, it is referred to as
a canonical state and represents the usual states of (non-relativistic) quantum
mechanics.

Orthonormality and completeness relations

The canonical states |m; p θ ϕ; s µ⟩c are orthonormal

⟨m; p θ ϕ; s µ|m; p′ θ′ ϕ′; s′ µ′⟩c c = 2w(p) δ(p− p′)
× δ(ϕ− ϕ′)δ(cos θ − cos θ′)δµµ′,

(3.3)

1Technically speaking, the canonical state is not an eigenstate of J2 and J3 because it is
not at rest. Rather, it is an eigenstate of the Pauli-Lubanski (PL) operator W 2 and the third
component of the PL vector W3 (see Appendix B). However, since the eigenvalues of W 2 and
W3 are related to s and µ, respectively, we simplify the definition of the canonical states.
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z

|s µ⟩ R(ϕ, θ,−ϕ)−1

z

(θ, ϕ)−1

Lz(χ)

z

pe⃗z R(ϕ, θ,−ϕ)

z

(θ, ϕ)

Figure 3.1: Graphical illustration of the construction (3.6) for massive canonical
states. The double green arrow represents the spin projection, and the red arrow
the particle’s momentum.

and form a complete set for all allowed values of µ and momentum p

s∑
µ=−s

∫ dp

2w(p) |m; p; s µ⟩c c⟨m; p; s µ| = 1. (3.4)

The factors w(p) =
(
p2 +m2)1/2 ensure that the above relations are Lorentz

invariant [2].

Reference state

The canonical state |m; p; s µ⟩c can be constructed from a state |m; p̄; s µ⟩ with
a reference four-momentum p̄, typically taken as the rest state p̄ = (m, 0, 0, 0).
The construction is achieved by means of Lorentz boosts in the z-direction,
denoted Lz(χ) with χ being the rapidity, and rotations, denoted

R(α, β, γ) = exp(−iαJ3) exp(−iβJ2) exp(−iγJ3), (3.5)

with (α, β, γ) representing the Euler angles. Interested readers can refer to Ap-
pendix B.2 for more information about the rotation formalism. More explicitly
[3]

|m; p θ ϕ; s µ⟩c = U(R(ϕ, θ, γ)Lz(χ)R−1(ϕ, θ, γ)) |m; p̄; s µ⟩ . (3.6)

In the above equation, the notation U(·) specifies the representation of the
Poincaré group under which the particle transforms [2, 4], i.e. the value of m
and s, but readers unfamiliar with this notation should not be concerned. A
graphical illustration of the transformation (3.6) is presented in Fig. 3.1.
The transformations are considered active. First, an inverse rotation of angles
(ϕ, θ, γ) is applied on the rest state (the choice for the angle γ will be explained
later). Since the particle is at rest, the rotation does not modify the momentum
but rotates the spin projection axis. Then, a Lorentz boost of rapidity

χ = cosh−1

(√
p2 +m2

m

)
, (3.7)

is applied in the z-direction, giving the particle a momentum magnitude p in this
direction [5]. The spin is not affected by the boost. Finally, a second rotation
with the same angles (ϕ, θ, γ) is applied so that the particle’s momentum has
the polar angles (θ, ϕ). The spin projection axis is reset to the z-axis again.
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Coming back to the angles of the rotation, the last angle γ is arbitrary, but two
conventions are often used: either γ = 0 [5] or γ = −ϕ [1]. In both conventions,
the angle γ is not an independent variable. For canonical states, all conventions
are equivalent. Indeed, since rotations around the z-axis commute with boosts
in the z-direction (see (B.3)), the two rotations of angle γ in (3.6) cancel out.
However, as we shall see, this is not the case for helicity states.

3.1.2 Massless particles and helicity states
Since massless particles cannot be characterised by spin, but rather by helicity
λ, they cannot be described by a canonical state. Instead, they are described
by a state denoted |0; p θ ϕ; s λ⟩ or |0; p; s λ⟩ for short, which is an eigenstate of
the operators

P 2 |0; p; s λ⟩ = 0 |0; p; s λ⟩ ,

P0 |0; p; s λ⟩ = p |0; p; s λ⟩ ,
P1 |0; p; s λ⟩ = p sin θ cosϕ |0; p; s λ⟩ ,
P2 |0; p; s λ⟩ = p sin θ sinϕ |0; p; s λ⟩ ,
P3 |0; p; s λ⟩ = p cos θ |0; p; s λ⟩ ,

Λ |0; p; s λ⟩ = λ |0; p; s λ⟩ ,

(3.8)

where Λ is the helicity operator (B.8). The label s in the state notation is
not the eigenvalue of J2 but the “spin” corresponding to a projection λ. For
gluons or photons, s = 1. These states are referred to as the helicity states since
they are eigenstates of Λ. They follow similar orthogonality and completeness
relations as canonical states, but with µ → λ.

Reference state

As with the canonical state, the helicity state can be constructed from a refer-
ence state |0; p̄; s λ⟩, where the reference four-momentum is typically taken as
p̄ = (κ, 0, 0, κ), where κ is an arbitrary positive energy, say 1 eV [4]. Note that
since the momentum’s direction is chosen as the z-axis, the helicity operator Λ
coincides with J3. In other words, J3 |0; p̄; s λ⟩ = λ |0; p̄; s λ⟩. More explicitly [3]

|0; p θ ϕ; s λ⟩ = U(R(ϕ, θ, γ)Lz(χ)) |0; p̄; s λ⟩ . (3.9)

The construction is similar to (3.6), except that the first (inverse) rotation is
missing. A graphical illustration of the transformation (3.9) is presented in Fig.
3.2. First, a Lorentz boost of rapidity

χ = cosh−1
(
p2 + 1

2p

)
, (3.10)

is applied in the z-direction, giving the particle a momentum magnitude p in
this direction [6]. The helicity is not affected by the boost since it is a Lorentz
invariant for massless particles. Then, a rotation with angles (ϕ, θ, γ) is applied
so that the particle’s momentum has the polar angles (θ, ϕ). The rotation by
angle γ does not affect the system since the motion is along the z-axis. The
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Figure 3.2: Graphical illustration of the construction (3.9) for massless helicity
states. The double green arrow represents the spin projection, and the red arrow
the particle’s momentum.

helicity is also “rotated” so that it remains the projection of angular momentum
along the momentum direction.
We still have an arbitrary choice for the final angle γ. However, the choice
between the conventions 0 and −ϕ will change the state. Indeed, considering
(B.3), it is straightforward to show the relation between the two conventions

|0; p θ ϕ; s λ⟩γ=−ϕ = U(e−iϕJ3e−iθJ2eiϕJ3Lz(χ)) |0; p̄; s λ⟩

= U(e−iϕJ3e−iθJ2Lz(χ))eiϕλ |0; p̄; s λ⟩
= eiϕλ |0; p θ ϕ; s λ⟩γ=0 .

(3.11)

In the following discussion, the convention −ϕ will be used, which is the con-
vention in [1]. It is crucial to remain consistent with the chosen convention
throughout the following derivations.

3.1.3 Massive particles and helicity states

Up to now, massive particles have been described by canonical states, which are
eigenstates of J3, following the construction (3.6). However, the construction
of helicity states (3.9) can also be applied to the reference state for massive
particles

|m; p θ ϕ; s λ⟩ = U(R(ϕ, θ,−ϕ)Lz(χ)) |m; p̄; s λ⟩ . (3.12)

Since the initial rotation is missing, the spin is not projected along the z-axis,
but along the direction of momentum, as depicted in Fig. 3.3. Thus, the one-
body state for massive particles, |m; p; s λ⟩, becomes an eigenstate of the helicity
operator. Consequently, the state |m; p; s λ⟩ is referred to as the helicity state
for massive particles.
Even though helicity is not a Lorentz invariant for massive particles, the helicity
basis permits the treatment of both massive and massless particles within the
same formalism, whereas canonical states are only valid for massive particles.
Furthermore, helicity states exhibit interesting properties compared to canonical
states, as reviewed below. Notably, choosing the direction of motion as the
quantisation axis for spin is less arbitrary than using the conventional z-axis.
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z
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Figure 3.3: Graphical illustration of the construction (3.12) for massive helicity
states. The double green arrow represents the spin projection, and the red arrow
the particle’s momentum.

Invariance under rotation

Consider the action of an arbitrary rotation R(α, β, γ) on the helicity state
|m; p; s λ⟩. Intuitively, the momentum’s angles (θ, ϕ) will be rotated, but the
helicity should remain unchanged. Starting from (3.12)

U(R(α, β, γ)) |m; p θ ϕ; s λ⟩ = U(R(α, β, γ)R(ϕ, θ,−ϕ)Lz(χ)) |m; p̄; s λ⟩

= U(e−iϕ′J3e−iθ′J2e−iγ′J3Lz(χ)) |m; p̄; s λ⟩ ,
(3.13)

where ϕ′, θ′ and γ′ are chosen so that R(ϕ′, θ′, γ′) = R(α, β, γ)R(ϕ, θ,−ϕ) is a
new rotation. Using (B.3), we get

U(R(α, β, γ)) |m; p θ ϕ; s λ⟩ = U(e−iϕ′J3e−iθ′J2Lz(χ))e−iγ′λ |m; p̄; s λ⟩ . (3.14)

Inserting the identity 1 = exp(iϕ′J3) exp(−iϕ′J3) in the above equation yields

U(R(α, β, γ)) |m; p θ ϕ; s λ⟩

= e−iγ′λU(e−iϕ′J3e−iθ′J2eiϕ
′J3e−iϕ′J3Lz(χ)) |m; p̄; s λ⟩

= e−i(γ′+ϕ′)λU(e−iϕ′J3e−iθ′J2eiϕ
′J3Lz(χ)) |m; p̄; s λ⟩

= e−i(γ′+ϕ′)λU(R(ϕ′, θ′,−ϕ′)Lz(χ)) |m; p̄; s λ⟩

= e−i(γ′+ϕ′)λ |m; p θ′ ϕ′; s λ⟩ .

(3.15)

The phase factor e−i(γ′+ϕ′)λ ensures that the state, initially in the −ϕ conven-
tion, stays in the same convention. Since the helicity λ is preserved by the
rotation, the relation (3.15) is often referred to as the helicity rotational invari-
ance.
Note that this result is identical for massless helicity states |0; p θ ϕ; s λ⟩ because
the massless reference state |0; p̄; s λ⟩ is also an eigenstate of J3.

Invariance under Lorentz boost and Wigner rotation

Consider now a Lorentz boost Lp̂ in the direction of the momentum, denoted p̂.
Any boost Lr̂ applied in a direction r̂ with polar angles (β, α) can be decomposed
as [3]
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Lr̂ = R(α, β, γ)LzR−1(α, β, γ), (3.16)

where γ is arbitrary. Intuitively, the momentum magnitude will change but not
the helicity. Starting again from (3.12), and using (3.16), one can show

U(Lp̂(χ′)) |m; p θ ϕ; s λ⟩
= U(Lp̂(χ′))R(ϕ, θ,−ϕ)Lz(χ)) |m; p̄; s λ⟩
= U(R(ϕ, θ,−ϕ)Lz(χ′)R−1(ϕ, θ,−ϕ)R(ϕ, θ,−ϕ)Lz(χ)) |m; p̄; s λ⟩
= U(R(ϕ, θ,−ϕ)Lz(χ′)Lz(χ)) |m; p̄; s λ⟩
= |m; p′ θ ϕ; s λ⟩ ,

(3.17)

with p′ = Lz(χ′)p being the momentum of the particle after the second boost.
Since the helicity is preserved, this property is referred to as the helicity boost
invariance. Note that this property is only valid if the boost does not switch
the sign of p. As for the rotational invariance, this property is also valid for
massless states.
The action of a boost in an arbitrary direction (θ′, ϕ′) can also be studied. It
can be shown that the resultant state is given by a rotation [5, 7]

U(L) |m; p; s λ⟩ =
∑
λ′

Ds
λ′λ(αW , βW , γW ) |m; p′; s λ′⟩ , (3.18)

where (αW , βW , γW ) are the angles of the so-called Wigner rotation, and Ds
λ′λ

are the Wigner D-matrices (B.10). As expected, the helicity for a massive
particle is not invariant under all transformations of the Poincaré group. How-
ever, similar computations for massless particles show that helicity is indeed
conserved by an arbitrary boost [6].

Change of basis

Since canonical and helicity states form a complete basis for describing mas-
sive particles, it should be possible to transform from one basis to the other.
Comparing (3.6) and (3.12), we can derive the change of basis relationship as
follows

|m; p; s λ⟩ = U(R(ϕ, θ,−ϕ)Lz(χ)) |m; p̄; s λ⟩
= U(R(ϕ, θ,−ϕ)Lz(χ)R−1(ϕ, θ,−ϕ)R(ϕ, θ,−ϕ)) |m; p̄; s λ⟩
= U(R(ϕ, θ,−ϕ)Lz(χ)R−1(ϕ, θ,−ϕ))

×
s∑

µ=−s
Ds
µ λ(ϕ, θ,−ϕ) |m; p̄; s µ⟩

=
s∑

µ=−s
Ds
µ λ(ϕ, θ,−ϕ) |m; p; s µ⟩c ,

(3.19)

where we used relation (B.11) in the third line.
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3.1.4 Parity and opposite momentum states
Given the parity P is an element of the Poincaré group and switches the sign
of the spatial coordinates, Pr = −r, parity will switch the sign of momentum
but not of angular momentum, implying the helicity is switched. Let us study
the action of the parity operator P̂ on the helicity states. Useful commutation
relations are [3]

[P,R(α, β, γ)] = 0 and P Lr̂(χ) = L−r̂(χ)P, (3.20)

the last equation meaning that the parity switches the direction r̂ of a boost.

Parity on massive states

We begin the discussion with the simpler massive case. Since the reference state
|m; p̄; s λ⟩ is chosen at rest, it is an eigenstate of the parity operator [4]

P̂ |m; p̄; s λ⟩ = η |m; p̄; s λ⟩ , (3.21)

with η = ±1 being the intrinsic parity of the particle. Conventionally, quarks
have η = 1 and antiquarks have η = −1. Starting from (3.12), the action of the
parity operator is given by

P̂ |m; p θ ϕ; s λ⟩ = P̂ U(R(ϕ, θ,−ϕ)Lz(χ)) |m; p̄; s λ⟩
= η U(R(ϕ, θ,−ϕ)L−z(χ)) |m; p̄; s λ⟩ .

(3.22)

Expressing the boost L−z in terms of Lz via (3.16), and inserting the identity
1 = exp(−2iπJ2) exp(2iπJ2) on the right side, we obtain

P̂ |m; p θ ϕ; s λ⟩
= η U(R(ϕ, θ,−ϕ)e−iπJ2Lz(χ)eiπJ2e−2iπJ2e2iπJ2) |m; p̄; s λ⟩
= η(−1)2sU(R(ϕ, θ,−ϕ)e−iπJ2Lz(χ)e−iπJ2) |m; p̄; s λ⟩
= η(−1)3s−λU(R(ϕ, θ,−ϕ)e−iπJ2Lz(χ)) |m; p̄; s − λ⟩
= η(−1)s+λU(R(ϕ, θ,−ϕ)e−iπJ2Lz(χ)) |m; p̄; s − λ⟩ .

(3.23)

On the second line, the action of the 2π rotation gives rise to a factor (−1)2s.
This factor originates from the fact that for fermions, a complete rotation is
identified to minus the identity. This property is sometimes referred to as the
projective representation of SO(3) [4]. On the third line, the action of a rotation
of angle π around the y-axis is given by (B.11) and (B.20). Finally, the last line
is obtained from the fact that 2(s± λ) is always an even integer.
By defining a helicity state of opposite momentum as

|m; −p; s λ⟩ = (−1)s−λU(R(ϕ, θ,−ϕ)e−iπJ2Lz(χ)) |m; p̄; sλ⟩ , (3.24)

the action of the parity operator becomes

P̂ |m; p; s λ⟩ = η(−1)2s |m; −p; s − λ⟩ . (3.25)

Massive one-body states are not eigenstates of the parity operator, as expected
intuitively. The factor (−1)s−λ in (3.24) is added for convenience. Indeed, in
the limit p → 0, the opposite momentum state reduces to
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|m; −p; s λ⟩ → (−1)s−λU(R(0, π, 0)Lz(0)) |m; p̄; sλ⟩

= (−1)s−λ
∑
λ′

(−1)s+λ′
δ−λλ′ |m; p̄; sλ′⟩

= |m; p̄; s− λ⟩ .

(3.26)

This convention is the same as in [1], but other conventions exist for states with
opposite momentum.

Parity on massless states

The massless case is subtler because the reference state |0; p̄; s λ⟩ is not at rest,
but rather moving along the z-axis. Hence, the action of the parity operator
will switch the sign of the reference four-momentum and helicity [4]

P̂ |0; p̄; s λ⟩ = ηe−iπJ2 |0; p̄; s − λ⟩ , (3.27)
where η is the intrinsic parity. Gluons are characterised by η = −1 [8]. Starting
from (3.9), similar calculations as for the massive case yield

P̂ |0; p θ ϕ; s λ⟩ = η U(R(ϕ, θ,−ϕ)e−iπJ2Lz(χ)) |0; p̄; s − λ⟩ . (3.28)
Hence, the action of the parity operator on massless states seems different from
the one on massive states. However, we know that massless particles only have
two helicities λ = ±s. Thus, the phase factor (−1)s+λ is either equal to 1 for
λ = −s, or (−1)2s for λ = s. For bosons, such as gluons, (−1)2s = 1 and so the
massive formula yields the same result as for massless particles. This feature
will be often present in other derivations: results for massive and massless states
often coincide. The definition for a state with opposite momentum can be reused
for massless particles following similar arguments.

3.2 Two-body states
Let us proceed to the description of two-body systems. Building on the previ-
ous section, two-body states can be expressed in the canonical basis for massive
particles or the helicity basis for both massive and massless particles. As canon-
ical states correspond to the usual states in quantum mechanics, we will first
develop the concepts around two-body helicity states. Given that most results
are valid for both massive and massless states, the notation for a helicity state
is simplified to |p; sλ⟩, and for a reference state to |p̄; s λ⟩.

3.2.1 Two-body helicity states
Consider two particles with masses m1 and m2, spins s1 and s2, helicities λ1
and λ2, and momenta p1 and p2. The two-body helicity state is constructed as
follows

|p1 p2; s1 λ1 s2 λ2⟩ = |p1; s1 λ1⟩ ⊗ |p2; s2 λ2⟩ . (3.29)
The system’s total energy is W = w1(p1)+w2(p2), where wi(pi) = (m2

i +p2
i )1/2.

To describe physical states using the helicity formalism, we boost the state (3.29)
to the centre of mass (CM) frame, where P = p1 + p2 = 0, using (3.24)
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|p; s1 λ1 s2 λ2⟩ = |p; s1 λ1⟩ ⊗ |−p; s2 λ2⟩
= U(R(ϕ, θ,−ϕ))[U(Lz(χ)) |p̄; s1 λ1⟩

⊗ (−1)s2−λ2U(R(0, π, 0)Lz(χ)) |p̄; s2 λ2⟩]
≡ U(R(ϕ, θ,−ϕ)) |pz; s1 λ1 s2 λ2⟩ ,

(3.30)

where p is the relative momentum between the two particles, and |pz; s1 λ1 s2 λ2⟩
is a two-body state with relative motion in the z-direction. The Lorentz-
invariant normalisation of the two-body state (3.30) is given by [2]

⟨p′ θ′ ϕ′; s1 λ
′
1 s2 λ

′
2|p θ ϕ; s1 λ1 s2 λ2⟩

= 4W
p
δ(W −W ′)δ(ϕ− ϕ′)δ(cos θ − cos θ′)δλ1 λ′

1
δλ2 λ′

2
,

= 4w1(p)w2(p)
p2 δ(p− p′)δ(ϕ− ϕ′)δ(cos θ − cos θ′)δλ1 λ′

1
δλ2 λ′

2
,

(3.31)

and forms a complete set for all allowed values of λ1,λ2 and p.

3.2.2 Helicity angular momentum states
The two-body helicity state |p; s1 λ1 s2 λ2⟩ has a well-defined relative momentum
p, making it an eigenstate of the operators Pµ. However, it does not possess a
total angular momentum J or projection M because it is not an eigenstate of
the operators J2 and J3. Since the two-body state is described in the CM frame,
where it is at rest, it should be possible to assign a total angular momentum to
the system. The following state

|p; J M ; s1 λ1 s2 λ2⟩ = CJ

∫
d cos θdϕ

×DJ∗
M λ1−λ2

(ϕ, θ − ϕ) |p θ ϕ; s1 λ1 s2 λ2⟩ ,
(3.32)

where CJ is a normalisation factor (to be specified later), is a two-body helicity
state with total angular momentum J and projection M [1]. Intuitively, this
involves integrating over all angles (θ, ϕ) of the momentum and weighting with
a Wigner D-matrix instead of spherical harmonics.
Instead of proving that the state (3.32) is an eigenstate of J2 and J3, we can
demonstrate that it behaves correctly under rotation, as described by (B.11).
Starting from (3.32) and (3.30), we show that

U(R(α, β, γ)) |p; J M ; s1 λ1 s2 λ2⟩

= CJ

∫
d cos θdϕDJ∗

M λ1−λ2
(ϕ, θ − ϕ)U(R(α, β, γ)

×R(ϕ, θ,−ϕ)) |pz; s1 λ1 s2 λ2⟩

= CJ

∫
d cos θdϕDJ∗

M λ1−λ2
(ϕ, θ − ϕ)U(R(α′, β′, γ′)) |pz; s1 λ1 s2 λ2⟩ ,

(3.33)

where R(α′, β′, γ′) = R(α, β, γ)R(ϕ, θ,−ϕ) is a new rotation. Using the addition
theorem of two Wigner D-matrices (B.13), the transformed state is
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U(R(α, β, γ)) |p; J M ; s1 λ1 s2 λ2⟩

= CJ

∫
d cos θdϕ

∑
M ′

(DJ∗
MM ′(α, β, γ))−1DJ∗

M ′ λ1−λ2
(α′, β′, γ′)

× U(R(α′, β′, γ′)) |pz; s1 λ1 s2 λ2⟩ (3.34)

= CJ

∫
d cos θdϕ

∑
M ′

DJ
M ′ M (α, β, γ)DJ∗

M ′ λ1−λ2
(α′, β′, γ′)

× U(R(α′, β′, γ′)) |pz; s1 λ1 s2 λ2⟩ ,

where we used the unitarity of the Wigner D-matrices (B.14) in the second line.
The integration covers all the domain of the angles (θ, ϕ), corresponding to the
2-sphere. Thus, the measure d cos θdϕ can be changed to d cosβ′dα′, keeping
the integral invariant (the interested reader can look in [9] for more information
about the invariant or Haar measure). Thanks to this change, the definition of
the angular momentum state (3.32) is recovered2, leading to our final result

U(R(α, β, γ)) |p; J M ; s1 λ1 s2 λ2⟩

=
J∑

M ′=−J
DJ
M ′ M (α, β, γ) |p; J M ′; s1 λ1 s2 λ2⟩ ,

(3.35)

which is the correct behaviour (B.11) of a state with angular momentum J .
From the properties of the Wigner D-matrices, the construction (3.32) yields
an important selection rule for the following discussion

J ≥ |λ1 − λ2|. (3.36)

Finally, note that relation (3.32) can be inverted as follows

|p θ ϕ; s1 λ1 s2 λ2⟩ =
∞∑

J=|λ1−λ2|

J∑
M=−J

CJ

×DJ
M λ1−λ2

(ϕ, θ − ϕ) |p; J M ; s1 λ1 s2 λ2⟩ .

(3.37)

This relation can be verified by substituting (3.32) and using the complete-
ness relations of Wigner D-matrices (B.12b). The explicit demonstration is not
shown here, as the above relation will not be needed in our discussion, but can
be found in [2].

Normalisation

The normalisation factor CJ in (3.32) is chosen to ensure that the angluar
momentum state |p; J M ; s1 λ1 s2 λ2⟩ has a standard Lorentz-invariant normal-
isation [2]

2Note that we must ensure the last angle γ′ = −α′ to stay in the −ϕ convention. This
requirement leads to a phase that can be absorbed into the normalisation factor CJ .
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⟨p′; J ′ M ′; s1 λ
′
1 s2 λ

′
2|p; J M ; s1 λ1 s2 λ2⟩

= 4W
p
δ(W −W ′)δJ J ′δMM ′δλ1 λ′

1
δλ2 λ′

2

= 4w1(p)w2(p)
p2 δ(p− p′)δJ J′δMM ′δλ1 λ′

1
δλ2 λ′

2
.

(3.38)

Using the orthonormality relation of Wigner D-matrices (B.12a) and of two-
body helicity states (3.31), the computation yields [1]

CJ =
√

2J + 1
4π . (3.39)

Parity

To compute the action of the parity operator on the state |p; J M ; s1 λ1 s2 λ2⟩,
we start by considering its known action on the state |p; s λ⟩ given by (3.23). We
need to determine its action on the opposite momentum state |−p; s λ⟩. Similar
derivations to (3.23) lead to

P̂ |−p; s λ⟩ = η(−1)2s |p; s − λ⟩ . (3.40)

Then, the action of the parity operator on (3.32) is given by

P̂ |p; J M ; s1 λ1 s2 λ2⟩ = η1η2(−1)2(s1+s2)CJ

∫
d cos θdϕ

×DJ∗
M λ1−λ2

(ϕ, θ,−ϕ) |−p; s1 − λ1⟩ ⊗ |p; s2 − λ2⟩ .
(3.41)

In the above equation, the momenta’s sign in the tensor product are opposite
to the ones in the definition (3.32). After lengthy computations [1, 3], one can
show

P̂ |p; J M ; s1 λ1 s2 λ2⟩ = η1η2(−1)J−s1−s2 |p; J M ; s1 − λ1 s2 − λ2⟩ . (3.42)

We conclude that the two-body helicity state is not an eigenstate of the parity
operator. However, to describe hadronic states within the helicity formalism,
since the strong interaction is invariant under the action of parity, hadronic
states should be eigenstates of P̂ . Using the following linear combination [10]

∣∣H±; JP ;λ1λ2
〉

= 1√
2

[|p; J M ; s1 λ1 s2 λ2⟩ ± |p; J M ; s1 − λ1 s2 − λ2⟩] , (3.43)

the state
∣∣H±; JP ;λ1λ2

〉
becomes an eigenstate of the parity operator with an

eigenvalue

P = ±η1η2(−1)J−s1−s2 . (3.44)

Only the relative sign of λ1 and λ2 is relevant.
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Symmetry

For systems of two identical particles, where m1 = m2 = m and s1 = s2 = s,
the wavefunction must be (anti)symmetric under the exchange of the particles.
The action of the permutation operator P̂12 between the two particles on the
state |p; J M ; s1 λ1 s2 λ2⟩ yields

P̂12 |p; J M ; s λ1 s λ2⟩ = (−1)J−2s |p; J M ; s λ2 s λ1⟩ . (3.45)
A demonstration of the above formula can be found in [1]. To impose the correct
symmetry, the symmetriser operator (up to a normalisation factor)

Ŝ = 1 + (−1)2sP̂12, (3.46)
can be applied on the helicity state |p; J M ; s λ1 s λ2⟩. For bosons (s integer), Ŝ
corresponds to the symmetriser, whereas for fermions (s half integer) Ŝ is the
antisymmetriser. Its action on the angular momentum helicity states is then

Ŝ |p; J M ; s λ1 s λ2⟩ = |p; J M ; s λ1 s λ2⟩ + (−1)J |p; J M ; s λ2 s λ1⟩ . (3.47)

Thus, the two-body states of bosons are characterised by even J , and the two-
body states of fermions are characterised by odd J .

3.2.3 Two-body canonical states
After deriving the two-body helicity states, let us move on to the two-body
canonical states. We recall that only massive particles can be described by
canonical states. The discussion begins by constructing a two-body state in the
CM frame, similar to the helicity states defined earlier

|p; s1 µ1 s2 µ2⟩c = U(R(ϕ, θ,−ϕ)Lz(χ)R−1(ϕ, θ,−ϕ)) |p̄; s1 µ1⟩
⊗ U(R(π + ϕ, π − θ,−(π + ϕ))

× Lz(χ)R−1(π + ϕ, π − θ,−(π + ϕ)) |p̄; s2 µ2⟩ .
(3.48)

Since the set of all canonical basis states forms a complete set for describing
two-body systems, it is possible to transform from one basis to the other using
the following relation

|p; s1 λ1 s2 λ2⟩ =
s1∑

µ1=−s1

s2∑
µ2=−s2

Ds1
µ1 λ1

(ϕ, θ,−ϕ)

×Ds2
µ2 −λ2

(ϕ, θ,−ϕ) |p; s1 µ1 s2 µ2⟩c .
(3.49)

The demonstration is completely analogous to the change of basis between one-
body states (3.19). Then, a total angular momentum J is provided through
intermediate spin and orbital angular momentum [3]

|p; J M ;LS;λ1λ2⟩ =
∑

µl,µS ,µ1,µ2

(LµL S µS |J M)(s1 µ1 s2 µ2|S µS)

×
∫

d cos θdϕY lm(θ, ϕ) |p θ ϕ; s1 µ1 s2 µ2⟩c ,
(3.50)
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where (a b c d|e f) is a Clebsch-Gordan coefficient and Y lm(θ, ϕ) is a spherical
harmonics. Since this construction involves the orbital angular momentum L,
it is often used in non-relativistic treatments.
Since the helicity and canonical bases form complete sets for describing a two-
body system with total angular momentum J , it is possible to transform from
one basis to another by means of the following transformation [1]

|p; J M ; s1 λ1 s2 λ2⟩ =
∑
S

∑
L

√
2L+ 1
2J + 1(s1 λ1 s2 − λ2|S λ1 − λ2)

× (L 0S λ1 − λ2|J λ1 − λ2) |p; J M ;LS;λ1λ2⟩ ,
(3.51)

where the first sum runs over all values |s1 − s2| ≤ S ≤ s1 + s2, and the second
sum over all values |J − S| ≤ L ≤ J + S.

3.3 Application of the helicity formalism
to hybrid baryons

As explained in Chapter 1, a hybrid baryon can be visualised as a four-body
system consisting of three massive quarks and a massless gluon, in a constituent
approach. Although extending the helicity formalism to more than two particles
is possible [7, 11, 12], it presents a significant challenge worthy of a separate
thesis. In order to keep the helicity treatment manageable, the hybrid baryon
is reduced to a two-body system composed of a gluon and a core containing the
three quarks (the quark core model will be explained in more detail in Chapter
4). This simplification allows for the computation of a complete basis of helicity
states describing hybrid baryons. Given that the strong interaction is invariant
under rotations and parity, hadronic states must be described by states with
well-defined JP quantum numbers, namely, helicity states (3.43). Since the two
particles are distinct, there is no need to symmetrise the wavefunction. The
total angular momentum JC of the quark core, composed of massive particles,
can be computed in the usual manner.
Before computing the helicity states, it is beneficial to revisit our main objec-
tive. Our primary challenge is to accurately couple the spin of the quark core
with the helicity of the gluon, which can be achieved using the helicity basis.
However, helicity states are not the states of non-relativistic quantum mechan-
ics, which are the canonical states as previously discussed. Nevertheless, it is
possible to change the basis thanks to relation (3.51). By knowing the action
of the Hamiltonian on canonical states, we can determine the mean value of
the Hamiltonian between helicity states. This procedure has already been ap-
plied in [10] for studying two-gluon glueballs in a constituent approach, where
the helicity formalism is essential. The results for the glueball spectrum in [10]
were comparable to those obtained via lattice QCD [13, 14, 15], validating the
approach. Furthermore, it was demonstrated in [10] that if the gluon is assumed
to have spin rather than helicity, meaning it possesses a third projection λ = 0,
the glueball spectrum is significantly altered. New states emerge that are ab-
sent in the lattice QCD predictions, underscoring the importance of accurately
incorporating the gluon’s helicity in the computations.
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In our initial approach, we assume no excitation among the quarks, i.e. LC = 0.
Consequently, the allowed total angular momenta for the quark core are JC =
1/2 and 3/2. The parity of the core is given by ηC = (−1)LC = 1. Let us now
specify the helicity states describing hybrid baryons for these two values of JC .
Recall that gluons are characterised by λg = ±1 and ηg = −1.

3.3.1 Quark core with JC = 1/2
For a quark core with spin JC = 1/2, the allowed quark core helicities are
λC = ±1/2. Thus, the hybrid baryon is described by a set of four states∣∣H±; JP ;λ1λ2

〉
. Recalling the selection rule on angular momentum (3.36) and

the formula for the parity of a helicity state (3.44), it is possible to compute the
allowed JP quantum numbers for each helicity state

∣∣∣∣H+; JP ; 1
21
〉

with J = k + 1
2 and P = (−1)k ⇒ 1

2
+
,

3
2

−
,

5
2

+
, . . . (3.52a)∣∣∣∣H−; JP ; 1

21
〉

with J = k + 1
2 and P = −(−1)k ⇒ 1

2
−
,

3
2

+
,

5
2

−
, . . . (3.52b)∣∣∣∣H+; JP ; −1

21
〉

with J = k + 3
2 and P = −(−1)k ⇒ 3

2
−
,

5
2

+
, . . . (3.52c)∣∣∣∣H−; JP ; −1

21
〉

with J = k + 3
2 and P = (−1)k ⇒ 3

2
+
,

5
2

−
, . . . (3.52d)

where k is a positive integer. Next, the change of basis (3.51) is applied to the
above helicity states. To simplify the notation, we express a canonical state
using spectroscopic notation

∣∣2S+1LJ
〉

∣∣∣∣H+; JP ; 1
21
〉

=
√

2
3
∣∣2k + 1J

〉
−

√
k + 2

6(2k + 1)
∣∣4k + 1J

〉
+

√
k

2(2k + 1)
∣∣4k − 1J

〉
, (3.53a)

∣∣∣∣H−; JP ; 1
21
〉

=
√

2
3
∣∣2kJ〉+

√
k

6(2k + 3)
∣∣4kJ〉

−

√
k + 2

2(2k + 3)
∣∣4k + 2J

〉
, (3.53b)

∣∣∣∣H+; JP ; −1
21
〉

=

√
3(k + 1)
2(2k + 3)

∣∣4k + 2J
〉

+

√
k + 3

2(2k + 3)
∣∣4kJ〉 , (3.53c)

∣∣∣∣H−; JP ; −1
21
〉

=

√
k + 1

2(2k + 5)
∣∣4k + 3J

〉
+

√
3(k + 3)
2(2k + 5)

∣∣4k + 1J
〉
. (3.53d)

One can verify the orthonormality of the helicity states as a proof check of
the computations. Since canonical states are eigenstates of the squared total
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Q̂ J2 L2 S2 L · S∣∣H+; JP ; 1
2 1
〉

J(J + 1) J(J + 1) + 5/4 7/4 −3/2∣∣H−; JP ; 1
2 1
〉

J(J + 1) J(J + 1) + 5/4 7/4 −3/2∣∣H+; JP ; − 1
2 1
〉

J(J + 1) J(J + 1) − 3/4 15/4 −3/2∣∣H−; JP ; − 1
2 1
〉

J(J + 1) J(J + 1) − 3/4 15/4 −3/2

Table 3.1: Mean values of different operators Q̂ for the helicity states (3.52).

angular momentum operator J2, the squared orbital angular momentum L2,
and the squared total spin S2, it is possible to compute the mean value of these
operators between the helicity states. The results are presented in Table 3.1.
One can check that

〈
J2〉 =

〈
L2〉+

〈
S2〉+ 2 ⟨L · S⟩.

3.3.2 Quark core with JC = 3/2
For a quark core with spin JC = 3/2, the allowed quark core helicities are
λC = ±1/2,±3/2, leading to eight hybrid baryon states

∣∣H±; JP ;λ1λ2
〉
. By

recalling the selection rule on angular momentum (3.36) and the parity formula
for a helicity state (3.44), we can compute the allowed JP quantum numbers
for each helicity state as follows

∣∣∣∣H+; JP ; 1
21
〉

with J = k + 1
2 and P = −(−1)k ⇒ 1

2
−
,

3
2

+
,

5
2

−
, . . . (3.54a)∣∣∣∣H−; JP ; 1

21
〉

with J = k + 1
2 and P = (−1)k ⇒ 1

2
+
,

3
2

−
,

5
2

+
, . . . (3.54b)∣∣∣∣H+; JP ; 3

21
〉

with J = k + 1
2 and P = −(−1)k ⇒ 1

2
−
,

3
2

+
,

5
2

−
, . . . (3.54c)∣∣∣∣H−; JP ; 3

21
〉

with J = k + 1
2 and P = (−1)k ⇒ 1

2
+
,

3
2

−
,

5
2

+
, . . . (3.54d)∣∣∣∣H+; JP ; −1

21
〉

with J = k + 3
2 and P = (−1)k ⇒ 3

2
+
,

5
2

−
, . . . (3.54e)∣∣∣∣H−; JP ; −1

21
〉

with J = k + 3
2 and P = −(−1)k ⇒ 3

2
−
,

5
2

+
, . . . (3.54f)∣∣∣∣H+; JP ; −3

21
〉

with J = k + 5
2 and P = −(−1)k ⇒ 5

2
−
, . . . (3.54g)∣∣∣∣H−; JP ; −3

21
〉

with J = k + 5
2 and P = (−1)k ⇒ 5

2
+
, . . . (3.54h)

where k is a positive integer. Next, we apply the change of basis (3.51) to the
above helicity states

∣∣∣H+; JP ; 1
21
〉

=
√

3(k + 3)(k + 2)
20(2k + 3)(2k + 1)

∣∣6k + 2J

〉
−
√

4(k + 2)
5(2k + 3)

∣∣4k + 2J

〉
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−
√

3k(k + 2)
10(2k + 3)(2k − 1)

∣∣6kJ

〉
+
√

4k

15(2k + 3)
∣∣4kJ

〉
+

√
6

6
∣∣2kJ

〉
+
√

3k(k − 1)
4(2k + 1)(2k − 1)

∣∣6k − 2J

〉
, (3.55a)

∣∣∣H−; JP ; 1
21
〉

=
√

3(k + 3)(k + 2)
4(2k + 5)(2k + 3)

∣∣6k + 3J

〉
−
√

4(k + 2)
15(2k + 1)

∣∣4k + 1J

〉
+
√

4k

5(2k + 1)
∣∣4k − 1J

〉
+
√

3k(k − 1)
20(2k + 3)(2k + 1)

∣∣6k − 1J

〉
+

√
6

6
∣∣2k + 1J

〉
−
√

3k(k + 2)
10(2k + 5)(2k + 1)

∣∣6k + 1J

〉
, (3.55b)

∣∣∣H+; JP ; 3
21
〉

=
√

3(k + 2)
5(2k + 3)

∣∣4k + 2J

〉
+
√

(k + 3)(k + 2)
20(2k + 3)(2k + 1)

∣∣6k + 2J

〉
−
√

k

5(2k + 3)
∣∣4kJ

〉
−
√

k(k + 2)
10(2k + 3)(2k − 1)

∣∣6kJ

〉
+

√
2

2
∣∣2kJ

〉
+
√

k(k − 1)
4(2k + 1)(2k − 1)

∣∣6k − 2J

〉
, (3.55c)

∣∣∣H−; JP ; 3
21
〉

=
√

3k

5(2k + 1)
∣∣4k − 1J

〉
−
√

k(k − 1)
20(2k + 3)(2k + 1)

∣∣6k − 1J

〉
−
√

k + 2
5(2k + 1)

∣∣4k + 1J

〉
−
√

(k + 3)(k + 2)
4(2k + 5)(2k + 3)

∣∣6k + 3J

〉
−

√
2

2
∣∣2k + 1J

〉
+
√

k(k + 2)
10(2k + 5)(2k + 1)

∣∣6k + 1J

〉
, (3.55d)

∣∣∣H+; JP ; −1
21
〉

=
√

k + 1
5(2k + 5)

∣∣4k + 3J

〉
−
√

27(k + 4)(k + 1)
20(2k + 5)(2k + 3)

∣∣6k + 3J

〉
+
√

3(k + 3)
5(2k + 5)

∣∣4k + 1J

〉
+
√

3k(k + 3)
4(2k + 3)(2k + 1)

∣∣6k − 1J

〉
+
√

3
10

k − 2√
(2k + 5)(2k + 1)

∣∣6k + 1J

〉
, (3.55e)

∣∣∣H−; JP ; −1
21
〉

=
√

3(k + 1)
5(2k + 3)

∣∣4k + 2J

〉
−
√

3(k + 4)(k + 1)
4(2k + 7)(2k + 5)

∣∣6k + 4J

〉
−
√

3
10

k + 6√
(2k + 7)(2k + 3)

∣∣6k + 2J

〉
+
√

k + 3
5(2k + 3)

∣∣4kJ

〉
+
√

27k(k + 3)
20(2k + 5)(2k + 3)

∣∣6kJ

〉
, (3.55f)

∣∣∣H+; JP ; −3
21
〉

=
√

5(k + 2)(k + 1)
4(2k + 7)(2k + 5)

∣∣6k + 4J

〉
+
√

5(k + 5)(k + 1)
2(2k + 7)(2k + 3)

∣∣6k + 2J

〉
+
√

(k + 5)(k + 4)
4(2k + 5)(2k + 3)

∣∣6kJ

〉
, (3.55g)
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Q̂ J2 L2 S2 L · S∣∣H+; JP ; 1
2 1
〉

J(J + 1) J(J + 1) + 17/4 19/4 −9/2∣∣H−; JP ; 1
2 1
〉

J(J + 1) J(J + 1) + 17/4 19/4 −9/2∣∣H+; JP ; 3
2 1
〉

J(J + 1) J(J + 1) + 9/4 11/4 −5/2∣∣H−; JP ; 3
2 1
〉

J(J + 1) J(J + 1) + 9/4 11/4 −5/2∣∣H+; JP ; − 1
2 1
〉

J(J + 1) J(J + 1) + 9/4 27/4 −9/2∣∣H−; JP ; − 1
2 1
〉

J(J + 1) J(J + 1) + 9/4 27/4 −9/2∣∣H+; JP ; − 3
2 1
〉

J(J + 1) J(J + 1) − 15/4 35/4 −5/2∣∣H−; JP ; − 3
2 1
〉

J(J + 1) J(J + 1) − 15/4 35/4 −5/2

Table 3.2: Mean values of different operators Q̂ for the helicity states (3.54).

∣∣∣H−; JP ; −3
21
〉

=
√

(k + 1)(k + 2)
4(2k + 7)(2k + 9)

∣∣6k + 5J

〉
+
√

5(k + 1)(k + 5)
2(2k + 5)(2k + 9)

∣∣6k + 3J

〉
+
√

5(k + 4)(k + 5)
4(2k + 5)(2k + 7)

∣∣6k + 1J

〉
. (3.55h)

All the states are orthonormal as expected. Similar to the previous case, the
mean value of the operators J2, L2, and S2 can be computed between the above
eigenstates. The results are presented in Table 3.2.

3.3.3 Physical states

Assuming there is no excitation in the quark core, the sets of helicity states (3.52)
and (3.54) describe a hybrid baryon with total angular momentum J and parity
P in a quark core model. By the symmetry of strong interaction, states with
different JP quantum numbers cannot mix with each other. Similarly, states
with different quark core spin JC cannot mix either (see the orthonormality
relation (3.38)). However, states with the same JP and JC quantum numbers
may mix through the action of the Hamiltonian. In particular, they may mix
through the operator L2, which is hidden in the kinetic term of the Hamiltonian.
In the study of two-gluon glueballs [10], it was shown that there is no such mixing
and the matrix elements of L2 are diagonal. However, nothing guarantees it will
be the same case for hybrid baryons. Thus, let us compute the matrix elements
of L2 for the helicity states giving fixed values of JP .
Before moving on, we simplify the notation by writing a helicity state (3.43) as∣∣JP ; JC ;α

〉
, where α is a set of quantum numbers differentiating the states with

the same value JP and JC . The matrix elements of L2 are noted

wαβ =
〈
JP ; JC ;α

∣∣L2∣∣JP ; JC ;β
〉
. (3.56)

Let us also define an effective orbital angular momentum leff between the quark
core and the gluon, so that the eigenvalues of L2 are written as leff(leff + 1).
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JP = 1
2

+

Only the state (3.52a) can produce a JP = 1/2+ state for JC = 1/2. Obviously,
no mixing occurs since there is a single state and the mean value of L2 is given
by w11 = 2, corresponding to leff = 1. For JC = 3/2, the two states (3.54b) and
(3.54d) intervene. The L2 matrix elements are

wαβ =

 5 −
√

3

−
√

3 3

. (3.57)

Thus, mixing occurs between these two states. The eigenvalues of the above
matrix are equal to 6 and 2, corresponding to leff = 2 and 1 respectively, and
the diagonalised basis, denoted as

∣∣JPC ; JC ; leff
〉
, is given by

∣∣∣∣12 +
; 3

2 ; 2
〉

= −
√

1
2
∣∣21J

〉
+
√

1
10
∣∣41J

〉
−
√

2
5
∣∣63J

〉
, (3.58a)∣∣∣∣12 +

; 3
2 ; 1
〉

= −
√

1
6
∣∣21J

〉
−
√

5
6
∣∣41J

〉
. (3.58b)

Note that the three states giving rise to 1/2+ quantum numbers are charac-
terised by integer leff. This property will also appear in the subsequent cases.
Let us note that this property is not observed for two-gluon glueballs [10].

JP = 1
2

−

Only the state (3.52b) can produce a JP = 1/2− state for JC = 1/2. Obviously,
no mixing occurs since there is a single state and the mean value of L2 is given
by w11 = 2, corresponding to leff = 1. For JC = 3/2, the two states (3.54a)
and (3.54c) intervene. The L2 matrix elements are the same as (3.57). The
diagonalised basis is given by

∣∣∣∣12 −
; 3

2 ; 2
〉

=
√

9
10
∣∣42J

〉
−
√

1
10
∣∣62J

〉
, (3.59a)∣∣∣∣12 −

; 3
2 ; 1
〉

=
√

2
3
∣∣20J

〉
+
√

1
30
∣∣42J

〉
+
√

3
10
∣∣62J

〉
. (3.59b)

JP = 3
2

+

The states (3.52b) and (3.52d) give rise to JP = 3/2+ states for JC = 1/2.
Interestingly, the matrix elements of L2 are the same as the ones for JC = 3/2
states in the previous case (3.57). The diagonalised basis is given by

∣∣∣∣32 +
; 1

2 ; 2
〉

= −
√

1
2
∣∣21J

〉
+
√

1
10
∣∣41J

〉
+
√

2
5
∣∣43J

〉
, (3.60a)∣∣∣∣32 +

; 1
2 ; 1
〉

=
√

1
6
∣∣21J

〉
+
√

5
6
∣∣41J

〉
. (3.60b)
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For the JC = 3/2 states, three states (3.54a), (3.54c) and (3.54e) produce
JP = 3/2+ with

wαβ =


8 −2

√
3 −2

√
3

−2
√

3 6 0

−2
√

3 0 6

 . (3.61)

The eigenvalues are equal to 12, 6 and 2, and the diagonalised basis is given by

∣∣∣∣32 +
; 3

2 ; 3
〉

=
√

4
5
∣∣43J

〉
−
√

1
5
∣∣63J

〉
, (3.62a)∣∣∣∣32 +

; 3
2 ; 2
〉

= −1
2
∣∣21J

〉
+ 2

√
2

5
∣∣41J

〉
−

√
2

5
∣∣43J

〉
−

√
3

10
∣∣61J

〉
− 2

√
2

5
∣∣63J

〉
, (3.62b)

∣∣∣∣32 +
; 3

2 ; 1
〉

=
√

5
12
∣∣21J

〉
+
√

2
15
∣∣41J

〉
−
√

9
20
∣∣61J

〉
. (3.62c)

JP = 3
2

−

The states (3.52a) and (3.52c) give rise to JP = 3/2− states for JC = 1/2. The
L2 matrix elements are the same as (3.57) and the diagonalised basis is given
by

∣∣∣∣32 −
; 1

2 ; 2
〉

= −
√

1
2
∣∣22J

〉
+
√

1
2
∣∣42J

〉
, (3.63a)∣∣∣∣32 −

; 1
2 ; 1
〉

=
√

1
6
∣∣22J

〉
+
√

2
3
∣∣40J

〉
+
√

1
6
∣∣42J

〉
, (3.63b)

For the JC = 3/2 states, three states (3.54b), (3.54d) and (3.54f) produce
JP = 3/2− with the matrix elements of L2 given by (3.61). The diagonalised
basis is given by

∣∣∣∣32 −
; 3

2 ; 3
〉

= −
√

2
5
∣∣22J

〉
+ 2

5
∣∣42J

〉
− 1

5

√
2
7
∣∣62J

〉
−
√

3
7
∣∣64J

〉
, (3.64a)∣∣∣∣32 −

; 3
2 ; 2
〉

= 1
2
∣∣22J

〉
+
√

2
5
∣∣42J

〉
− 1

2

√
7
5
∣∣62J

〉
, (3.64b)∣∣∣∣32 −

; 3
2 ; 1
〉

= − 1
2
√

15
∣∣22J

〉
+
√

2
3
∣∣40J

〉
− 2

5

√
2
3
∣∣42J

〉
−

√
21

10
∣∣62J

〉
. (3.64c)

JP = 5
2

+
, 7

2
−

, . . .

Consider now states with J ≥ 5/2 and alternating parity starting from P = 1.
For JC = 1/2, states (3.52a) and (3.52c) intervene. The L2 matrix elements are
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wαβ =

 k2 + 6k + 10 −
√

(k + 4)(k + 2)

−
√

(k + 4)(k + 2) (k + 4)(k + 2)

, (3.65)

where k is a positive integer. The eigenvalues are (k+2)(k+3) and (k+3)(k+2)
and the diagonalised basis is

∣∣∣∣JP ≥ 5
2

+
; 1

2 ; k + 2
〉

=
√

k + 2
3(k + 3)

∣∣2k + 3J

〉
+
√

(k + 2)(k + 4)
3(k + 3)(2k + 5)

∣∣4k + 3J

〉
+
√

k + 3
2k + 5

∣∣4k + 1J

〉
, (3.66a)

∣∣∣∣JP ≥ 5
2

+
; 1

2 ; k + 3
〉

=
√

2k + 5
3(k + 3)

∣∣4k + 3J

〉
−
√

k + 4
3(k + 3)

∣∣2k + 3J

〉
. (3.66b)

For JC = 3/2, the states (3.54b), (3.54d), (3.54f) and (3.54h) intervene. The
L2 matrix elements are


k2 + 6k + 13 −

√
3(k + 3) −2

√
(k + 4)(k + 2) 0

−
√

3(k + 3) k2 + 6k + 11 0 0

−2
√

(k + 4)(k + 2) 0 k2 + 6k + 11 −
√

3(k + 5)(k + 1)

0 0 −
√

3(k + 5)(k + 1) (k + 5)(k + 1)

 , (3.67)

with the eigenvalues (k+1)(k+2), (k+2)(k+3), (k+3)(k+4) and (k+4)(k+5)
and the diagonalised basis

∣∣∣∣JP ≥ 5
2

+
; 3

2 ; k + 1
〉

=
√

3(k + 1)
5(k + 2)

∣∣4k + 1J

〉
+
√

2k + 7
5(k + 2)

∣∣6k + 1J

〉
, (3.68a)

∣∣∣∣JP ≥ 5
2

+
; 3

2 ; k + 2
〉

= k + 2√
6(2k + 7)(k + 3)

∣∣2k + 3J

〉
−
√

(2k + 7)(k + 3)
5(2k + 5)(k + 2)

∣∣4k + 1J

〉
+ (k + 2)

√
16(k + 4)

15(2k + 7)(2k + 5)(k + 3)
∣∣4k + 3J

〉
+
√

3(k + 3)(k + 1)
5(2k + 5)(k + 2)

∣∣6k + 1J

〉
+
√

3(2k + 9)(k + 4)(k + 2)
10(2k + 7)(2k + 5)(k + 3)

∣∣6k + 3J

〉
, (3.68b)

∣∣∣∣JP ≥ 5
2

+
; 3

2 ; k + 3
〉

= −
√

2k + 5
6(k + 3)

∣∣2k + 3J

〉
− k + 7√

15(k + 4)(k + 3)

∣∣4k + 3J

〉
+
√

3(2k + 9)(k + 2)
10(k + 4)(k + 3)

∣∣6k + 3J

〉
, (3.68c)
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∣∣∣∣JP ≥ 5
2

+
; 3

2 ; k + 4
〉

=
√

k + 5
2(2k + 7)

∣∣2k + 3J

〉
−
√

(2k + 5)(k + 5)
5(2k + 7)(k + 4)

∣∣4k + 3J

〉
+
√

(2k + 5)(k + 5)(k + 2)
10(2k + 9)(2k + 7)(k + 4)

∣∣6k + 3J

〉
+
√

k + 4
2k + 9

∣∣6k + 5J

〉
. (3.68d)

JP = 5
2

−
, 7

2
+

, . . .

Consider now states with J ≥ 5/2 and alternating parity starting from P = −1.
For JC = 1/2, states (3.52b) and (3.52d) intervene. The L2 matrix elements
are the same as (3.65). The eigenvalues are (k + 2)(k + 3) and (k + 3)(k + 4),
where k is a positive integer, and the diagonalised basis is

∣∣∣∣JP ≥ 5
2

−
; 1

2 ; k + 2
〉

=
√

k + 2
3(k + 3)

∣∣2k + 2J

〉
+
√

2k + 7
3(k + 3)

∣∣4k + 2J

〉
, (3.69a)

∣∣∣∣JP ≥ 5
2

−
; 1

2 ; k + 3
〉

= −
√

k + 4
3(k + 3)

∣∣2k + 2J

〉
+
√

k + 3
2k + 7

∣∣4k + 4J

〉
+
√

(k + 4)(k + 2)
3(2k + 7)(k + 3)

∣∣4k + 2J

〉
. (3.69b)

For JC = 3/2, the states (3.54a), (3.54c), (3.54e) and (3.54g) intervene. The L2

matrix elements are the same as (3.67), with the eigenvalues (k+ 1)(k+ 2), (k+
2)(k + 3), (k + 3)(k + 4) and (k + 4)(k + 5) and the diagonalised basis

∣∣∣∣JP ≥ 5
2

−
; 3

2 ; k + 1
〉

=
√

k + 1
2(2k + 5)

∣∣2k + 2J

〉
+
√

k + 2
2k + 3

∣∣6kJ

〉
+
√

(2k + 7)(k + 1)
5(2k + 5)(k + 2)

∣∣4k + 2J

〉
+
√

(2k + 7)(k + 4)(k + 1)
10(2k + 5)(2k + 3)(k + 2)

∣∣6k + 2J

〉
, (3.70a)

∣∣∣∣JP ≥ 5
2

−
; 3

2 ; k + 2
〉

= −
√

2k + 7
6(k + 3)

∣∣2k + 2J

〉
+ k − 1√

15(k + 3)(k + 2)

∣∣4k + 2J

〉
+
√

3(2k + 3)(k + 4)
10(k + 3)(k + 2)

∣∣6k + 2J

〉
, (3.70b)

∣∣∣∣JP ≥ 5
2

−
; 3

2 ; k + 3
〉

= −(k + 4)
√

16(k + 2)
15(2k + 7)(2k + 5)(k + 3)

∣∣4k + 2J

〉
+ k + 4√

6(2k + 5)(k + 3)

∣∣2k + 2J

〉
+
√

(2k + 5)(k + 3)
5(2k + 7)(k + 4)

∣∣4k + 4J

〉
+
√

3(2k + 3)(k + 4)(k + 2)
10(2k + 7)(2k + 5)(k + 3)

∣∣6k + 2J

〉
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+
√

3(k + 5)(k + 3)
5(2k + 7)(k + 4)

∣∣6k + 4J

〉
, (3.70c)

∣∣∣∣JP ≥ 5
2

−
; 3

2 ; k + 4
〉

= −
√

3(k + 5)
5(k + 4)

∣∣4k + 4J

〉
+
√

2k + 5
5(k + 4)

∣∣6k + 4J

〉
. (3.70d)

In all these cases, it is always possible to define an integer value for leff.
To conclude this chapter, the helicity formalism for one- and two-body states
has been reviewed. It was demonstrated that the helicity basis can describe
both massless and massive particles through equations (3.9) and (3.12), respec-
tively. In particular, a two-body helicity state with well-defined total angular
momentum J and parity P was constructed using equations (3.32) and (3.43).
Building on this, the helicity basis for hybrid baryons in a quark core model was
computed. In this model, the hybrid baryon is treated as an effective two-body
system, with a quark core possessing an angular momentum JC = 1/2 or 3/2,
and a gluon with helicity ±1. For JC = 1/2, the hybrid baryon is characterised
by the four helicity states (3.52), while for JC = 3/2, it is described by eight
helicity states (3.54). Each helicity state was then decomposed into canonical
states, corresponding to the familiar quantum mechanical states, using equa-
tion (3.51). The decomposition was performed using the Mathematica software
[16, 17], with the results provided in (3.53) and (3.55) for JC = 1/2 and 3/2,
respectively.
These decompositions enabled the calculation of matrix elements for various
operators, such as L2. Notably, it was observed that the matrix elements of L2

between states with the same JP and JC quantum numbers are non-diagonal.
Consequently, the matrix elements were diagonalised, leading to the identifica-
tion of the physical states presented in Sec. 3.3.3.
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4Hybrid baryons
in a constituent approach

Chapter

As discussed in the Introduction and Chapter 1, Quantum Chromodynamics
(QCD) allows the existence of states beyond ordinary hadrons (baryons and
mesons), such as the hybrid states. In these states, the gluonic field is in an
excited state, and the quark content forms a colour octet state. It has been
demonstrated in [1, 2] that for hybrid mesons, the excited gluonic field can be
equivalently represented as a constituent gluon1. Assuming this equivalence also
holds for hybrid baryons, these can be modelled as a system comprising three
quarks and a constituent gluon. Consequently, in the constituent approach of
QCD, a hybrid baryon is described by the following generic Hamiltonian, where
the natural units ℏ = c = 1 are used

HHB =
3∑
i=1

Tq(pi) + Tg(pg) +
3∑

i<j=2
Vqq(rij) +

3∑
i=1

Vqg(rig), (4.1)

where T (pi) represents the kinetic energy, which depends on the modulus of
the momentum pi = |pi|, and V (rij) denotes the potential, which is a function
of the distance between the particles rij = |ri − rj |. The characteristics of
these potentials are elaborated in subsequent sections. The resolution of the
associated four-body Schrödinger-like equation will also be discussed later.
The adoption of a constituent approach for gluons may appear controversial.
Pioneering research into glueballs, which are purely gluonic states, can be found
in [3, 4]. In these studies, glueballs are treated as bound states of constituent
gluons, but the properties of the gluons (such as mass and spin) vary. In the
approach of the first study [3], gluons are massless particles that acquire a
constituent mass when confined within a hadron. Conversely, in the second
study [4], gluons are inherently massive particles. Although it is clear that a
massless gluon has a helicity degree of freedom, with two spin projections ±1, it
is not clear if it is the same when they are confined within a hadron. A study in
[5] concluded that the spectrum of two-gluon glueballs in a constituent approach
aligns well with lattice QCD results if gluons have a helicity degree of freedom.
This conclusion is confirmed in [6], where an effective potential was derived from

1The term “constituent” is used here to differentiate this gluon from virtual gluons, which
mediate the strong interaction between colour sources.
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the available lattice QCD data and was compatible with the potential used in
[5]. Therefore, this methodology will be applied to our study of hybrid baryons.
Before detailing the model for hybrid baryons, the kinetic energy of all particles
is chosen to be semi-relativistic

Ti(pi) =
√
p2
i +m2

i , (4.2)

where mi is the mass of the particle in the model. This kinematics is essential
for the gluon, as it is massless, and for light quarks (u, d, s), since the constituent
approach yields accurate results with this choice of kinematics [7, 8]. For heavy
quarks (c, b), the non-relativistic kinematics mi + p2/(2mi) could be used, but
we maintain the semi-relativistic form for consistency.
Following the discussion in Chapter 1, the short-range interaction between
quarks and gluons is chosen from one-gluon exchange (OGE) processes, while
the confinement is reproduced by flux tubes. In Sec. 4.1, various configurations
of the flux tubes in hybrid baryons are presented, along with the quark core
model. The interaction within the core is discussed in Sec. 4.2, followed by
the core-gluon interaction in Sec. 4.3. Finally, the spectrum for heavy hybrid
baryons is presented in Sec. 4.4.

4.1 Flux tubes for hybrid baryons
The confinement mechanism inside a baryon was discussed in Sec. 1.3. It was
shown that confinement can be reproduced by the formation of strings, or flux
tubes, by each quark, which are then neutralised at a single point, forming a
Y -junction (see, for instance, Fig. 1.6). Let us extend this concept to hybrid
baryons. Since a gluon is a colour octet particle, a generalisation of the potential
VY , as given by (1.56), to non-fundamental flux tubes is required. A popular
choice is the Casimir scaling hypothesis [9, 10], which posits that a coloured
source produces a flux tube proportional to the value of its SU(3) quadratic
Casimir F 2. The values of the quadratic Casimir for various representations of
SU(3) are listed in Table 1.2.
Following the approach of [11], a possible flux tube configuration for hybrid
baryons is illustrated in Fig. 4.1a. Two quarks, labelled q1 and q2, produce a
fundamental string that connects at a point u. This resulting string can be in
either the 3̄ or the 6 representation of SU(3), and it connects at a point t with
the string of the third quark, labelled q3, to form a vertex neutralised by an
octet 8 string, produced by the gluon. The corresponding potential is given by

V = σ min
u,t

{
4
3 [|r1 − u| + |r2 − u| + |r3 − t|] + F 2|u − t| + 3|t − rg|

}
, (4.3)

with σ being the string tension, and F 2 being the quadratic Casimir of the
intermediate string. This configuration involves several complications

1. The presence of two junctions u(r1, r2, r3, rg) and t(r1, r2, r3, rg) leading
to an over complicated four-body interaction.

2. The intermediate string between u and t can exist in two colour represen-
tations 3̄ or 6, leading to possible couplings.
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q1

q2 q3

g

(3̄,6)
8

u t

(a) Full four-body description

q1 q2

q3

g

C8

8

(b) Quark core model

Figure 4.1: Flux-tube models for a hybrid baryon. Black dots represent quarks,
and the black rectangle represents the gluon. The red dots mark the connection
of flux tubes. Fundamental flux tubes are depicted as simple lines, and other
flux tubes as thick lines with the representation indicated above.

3. There is no reason to assume that only quarks q1 and q2 connect at u,
leading to flip flopping between different configurations.

Therefore, instead of considering the full four-body configuration, we employ a
quark core model. In this model, the three quarks interact first to form a colour
octet core C8, which then interacts with the gluon to neutralise their colour. A
representation of the quark core model is provided in Fig. 4.1b. This model
simplifies the hybrid baryon to an effective two-body system, which is easier to
handle in terms of flux tubes and allows the direct use of the two-body helicity
formalism, in line with [5]. The helicity states for a hybrid baryon in a quark
core model have already been computed in Sec. 3.3. This model is similar to
the quark-diquark description of baryon in which two quarks form a cluster in-
teracting with the third one. This model has a long history but it is still quite
popular nowadays [12, 13, 14]. This description is interesting to study the inter-
nal structure of baryons, but it is also used to compute properties of multiquark
systems as tetraquarks [15] and pentaquarks [16]. The quark-diquark structure
in a baryon is favoured by the presence of two heavy quarks forming a very
tied cluster in its ground state which interacts with a third quark lighter than
the other ones [12, 13]. Recent computations using the envelope theory (see
Chapter 2), an approximation method for solving the many-body Schrödinger
equation, corroborate these conclusions [17]. Therefore, heavy quarks will be
considered initially to favour the formation of the quark core. Only excitation
between the core and the gluon will be considered.
By employing the quark core model, the study of hybrid baryons can be divided
into two parts. The first part involves describing the quark core itself, which is
a three-body system and shares similarities with the structure of baryons. The
second part concerns the coupling between the core and the gluon, which is a
two-body system. Let us first examine the dynamics of the quark core.

4.2 Quark core Hamiltonian
As discussed in Sec. 1.3, a popular choice for the quark-antiquark interaction
is the Cornell potential
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mc 1.320 GeV A 0.203 GeV2

mb 4.731 GeV B 0.437

f 1.086

Table 4.1: Parameters for the Cornell potential (4.4) from [18, 19].

Vqq̄(r) = −A

r
+B r, (4.4)

where we recall that the Coulomb term originates from OGE processes, and the
linear term from the flux tube model. The parameters A = 4

3αs and B = 4
3σ,

which are linked to the strong coupling constant αs and the string tension σ
respectively, are model-dependent. Since we are dealing with heavy quarks, we
propose to use the parameters from the Fulcher model [18], which reproduces the
centre of gravity of heavy mesons for both non-relativistic and semi-relativistic
kinematics. The parameters for semi-relativistic kinematics are presented in
Table 4.1.
A generalisation of this potential to baryons, and three-quark systems in general,
has also been discussed in Sec. 1.3, leading to the three-quark potential

Vqqq = 3
4

3∑
i<j=2

[
A
F (i) · F (j)

rij
+ f

2B F
2(i) rij

]
, (4.5)

where rij = |ri − rj |, F 2(i) is the SU(3) quadratic Casimir associated with the
ith particle, and

F (i) · F (j) = 1
2
[
(F (i) + F (j))2 − F (i)2 − F (j)2] . (4.6)

The constant 3/4 is added so that the potential reduces correctly to (4.4) when
mesons are considered. Finally, the Y -junction potential VY , as given by (1.56),
is replaced by the ∆ potential (1.59), where f ≈ 1.086 is a constant added to
better reproduce the Y -junction [19], as explained in Chapter 1.
Let us now compute the value of the different colour operators in (4.5). First,
since only quarks, that is fundamental colour sources, are present, the quadratic
Casimir takes the value F 2(i) = 4/3 for all three particles. Next, we have to
compute the value of the colour operator (F (i) + F (j))2 in (4.6), which is the
quadratic Casimir associated with the quark pair qiqj . For ordinary baryons,
each quark pair must be in the 3̄ representation, so that the baryon is in a
colour singlet state. Thus, the colour factor (4.6) is equal to −2/3 for every
pair, leading to the baryon Hamiltonian for three quarks with the same mass
mq

HB =
3∑
i=1

√
p2
i +m2

q + 1
2

3∑
i<j=2

[
− A

rij
+ f B rij

]
. (4.7)

The computation of (4.6) for hybrid baryons is subtler. Indeed, the quark core
must be in a colour octet 8 state, implying a quark pair can be in both the
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3̄ and 6 representation. To compute the value of (F (i) + F (j))2, the colour
wavefunction of the quark core must be written explicitly.

4.2.1 Wavefunction of the quark core
Since the quark core is in a colour octet configuration, its colour wavefunction,
denoted |ϕ⟩, has a mixed symmetry under the exchange of quarks. Explicit
expressions of mixed symmetric three-body wavefunctions can be found in [20],
but they are not needed for our computations. We also assume there is no
excitation between the quarks (L = 0), implying its spatial wavefunction |ψ⟩
is symmetric. To determine the spin and flavour symmetry, it is necessary to
further detail the quark content of the quark core.

Three identical quarks

For a quark core made of three identical quarks qqq, with q = {c, b} being
a heavy quark, the flavour wavefunction |ξ⟩ is symmetric. Since quarks are
fermions, the total wavefunction |Ψ⟩ must be completely antisymmetric. Thus,
the spin wavefunction |χ⟩ must have a mixed symmetry so that, when combined
with the mixed symmetry of the colour wavefunction, a completely antisym-
metric spin-colour wavefunction is formed. The mixed symmetry of the colour
wavefunction, and the assumption that the quark core is in its ground state,
imposes that the quark core can only have a spin JC = 1/2. More explicitly [20]

|Ψ⟩qqq = 1√
2
∣∣ψS〉⊗

∣∣ξS〉 (∣∣χMS
〉

⊗
∣∣ϕMA

〉
−
∣∣χMA

〉
⊗
∣∣ϕMS

〉)
. (4.8)

Since the three quarks are identical, the mean value of the colour operator
(F (i)+F (j))2 between the above eigenstate takes the same value for every pair.
It is easier to compute (F (1) + F (2))2 since we know the symmetry between
the first two quarks. For the mixed symmetric (MS) wavefunction, the quark
pair q1q2 is in the 6 representation, whereas it is in the 3̄ representation for the
mixed antisymmetric (MA) wavefunction. Therefore, from the values in Table
1.2, we obtain

(F (1) + F (2))2 |Ψ⟩qqq

= 1√
2
∣∣ψS〉⊗

∣∣ξS〉 (F (1) + F (2))2

×
(∣∣χMS

〉
⊗
∣∣ϕMA

〉
−
∣∣χMA

〉
⊗
∣∣ϕMS

〉)
= 1√

2
∣∣ψS〉⊗

∣∣ξS〉(∣∣χMS
〉

⊗ 4
3
∣∣ϕMA

〉
−
∣∣χMA

〉
⊗ 10

3
∣∣ϕMS

〉)
,

(4.9)

so that

⟨Ψ|(F (i) + F (j))2|Ψ⟩qqq qqq = 7
3 ∀ i, j. (4.10)

Substituting this value in (4.6) leads to

⟨Ψ|(F (i) + F (j))2|Ψ⟩qqq qqq = 1
2

[
7
3 − 4

3 − 4
3

]
= −1

6 ∀ i, j, (4.11)



88 Chapter 4 Hybrid baryons in a constituent approach

implying the OGE interaction between the quarks in a core is attractive but
is four times weaker than the interaction inside a baryon. Since the linear
attraction between the quarks is the same in a baryon and a quark core, we
can expect that the weakening of the Coulomb repulsion leads to the quark core
mass mC being greater than that of a baryon mB .

Two identical quarks

Consider now a quark core made of two identical quarks qqq′, with q, q′ = {c, b}
and q′ ̸= q. Since the total wavefunction must be antisymmetric only with
respect to the first two particles, the symmetries will be determined for these
two particles. The flavour wavefunction is symmetric. The spin wavefunction is
either antisymmetric (Sqq = 0) and must be combined with the mixed symmetric
(MS) colour wavefunction

∣∣ϕMS
〉
, or symmetric (Sqq = 1) and must be combined

with the mixed antisymmetric (MA) colour wavefunction
∣∣ϕMA

〉
. In the first

case, the total spin of the quark core is JC = 1/2, and in the second case it can
be JC = 1/2 or 3/2.
Turning to the colour operator F (i) · F (j), since the third quark is different,
we have ⟨F (1) · F (2)⟩ ̸= ⟨F (1) · F (3)⟩ = ⟨F (2) · F (3)⟩. The mean value of
the operator F (1) · F (2) is easier to compute because it is associated with the
identical particles, for which we know the symmetry. Specifically,

〈
ϕMS

∣∣F (1) · F (2)
∣∣ϕMS

〉
= 1

3 and
〈
ϕMA

∣∣F (1) · F (2)
∣∣ϕMA

〉
= −2

3 . (4.12)

Note that for the MS colour wavefunction, the interaction term is repulsive.
The computation of the mean value of F (2) · F (3) is more challenging because
we do not know the symmetry between the second and third particles. One
approach is to rewrite the colour wavefunction from the (12) coupling to the
(23) coupling. Schematically, we can write

((12)c123)CM =
∑
c23

C C,Mc23
(1(23)c23)CM , (4.13)

where the notation indicates that the quarks (ij) couple to form a colour cij .
The total colour state is C and its projection2 is M . In particular, we consider
only the octet state C = 8. Since the colour operator (4.6) does not depend on
the projection of the colour, we choose to work with the wavefunctions

∣∣ϕMS
〉

= ((12)63)8 = 1√
6

[(RB +BR)R− 2RRB],∣∣ϕMA
〉

= ((12)3̄3)8 = 2√
6

(RB −BR)R.
(4.14)

In the sum in (4.13), only states with the same total colour C and projection
M contribute. Computations show

2By projection, we mean all the possible wavefunctions with a given symmetry associated
to the colour state C.
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∣∣ϕMS
〉

= −1
2(1(23)6)8 −

√
3

2 (1(23)3̄)8,∣∣ϕMA
〉

=
√

3
2 (1(23)6)8 − 1

2(1(23)3̄)8.

(4.15)

Knowing the symmetry of the pair (23), the mean value of F (2) · F (3) can be
computed

〈
ϕMS

∣∣F (2) · F (3)
∣∣ϕMS

〉
= − 5

12 and
〈
ϕMA

∣∣F (2) · F (3)
∣∣ϕMA

〉
= 1

12 . (4.16)

This time, it is the MA wavefunction that provides a repulsive interaction.
These systems will not be considered in the following discussion, but their study
is foreseen in the near future.

4.2.2 Spectrum of the quark core
Thanks to the knowledge of the value of the colour operator in equation (4.6),
the Hamiltonian of a quark core can be expressed. Focusing only on systems
with three identical quarks for simplicity, the Hamiltonian reads

HC =
3∑
i=1

√
p2
i +m2

q + 1
2

3∑
i<j=2

[
− A

4 rij
+ f B rij

]
, (4.17)

where the mass and parameters are given in Table 4.1. The next step is to com-
pute the eigensolutions of the corresponding three-body Schrödinger equation.
Two methods are proposed for this purpose.

Envelope theory

The envelope theory (ET) is an approximation method for solving the N -body
Schrödinger equation, as presented in Chapter 2. Although the method is not
the most accurate, it can provide simple and analytical results for the energy
and wavefunction. More importantly, the method treats the number of particles
N as a parameter, making it well-suited for large-N systems. To illustrate the
method, the spectrum of the Hamiltonian (4.17) for an N -body system, with the
semi-relativistic kinematics replaced by non-relativistic kinematics, is computed.
The resolution of the ET equations (2.71) on the system

T (p) = m+ p2

2m and V (r) = −α

r
+ β r, (4.18)

leads to the approximate spectrum

r0 =
√

α

3βF+(Y ), (4.19a)

MET = N m+ N(N − 1)
2

√
3αβ
2

[
F+(Y ) − 1

F+(Y )

]
with Y = 2Q(N)2

mN(N − 1)2

√
27β
α3 , (4.19b)
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ET OBE

mB mC ∆ r0 mB mC ∆ a

ccc 5.032 5.231 0.199 2.58 4.822 5.119 0.297 2.100

bbb 14.664 14.983 0.319 1.69 14.401 14.894 0.493 1.374

Table 4.2: Eigenvalues of Hamiltonian (4.7), mB , and Hamiltonian (4.17), mC ,
with the mass gap ∆ = mC −mB , computed with the ET and OBE (in GeV).
The OBE mass is computed with Nmax = 16. For (4.17), the ET parameter
r2

0 =
〈
r2〉 and the OBE variational parameter a, computed at Nmax = 0, are

also provided (in GeV−1).

where r0 is an intermediate parameter of the ET linked to the mean value of〈
r2〉 (2.53), Q(N) is a global quantum number given by (2.27), and

F+(Y ) ≡
(
Y +

√
Y 2 + 1

)1/3
−
(
Y +

√
Y 2 + 1

)−1/3
, (4.20)

is the only positive real solution of the cubic equation x3 + 3x − 2Y = 0 [21].
Following the recipe in Sec. 2.3, it can be shown that the approximate spectrum
is an upper bound. For semi-relativistic kinematics, the equations (2.71) yield
no analytical results, but they can be solved numerically. The approximate
spectrum is also an upper bound. In particular, for N = 3, the ground state
energy for heavy quarks is given in Table 4.2. It is also interesting to compute
the gap between the mass of the quark core and the mass of the ordinary baryon
with the same quark content, that is, the eigenvalue of (4.7). The mass gap is
also given in Table 4.2.
Additionally, the ET provides an approximation for the quark core wavefunction.
Following the details in Appendix A, the ground state wavefunction is given by
(A.15)

ψET =
(
λ2

1
π

)3/4

e−λ2
1x

2
1/2
(
λ2

2
π

)3/4

e−λ2
2x

2
2/2, (4.21)

where λi is a parameter given by (A.39), and xi is the Jacobi variable (2.3).
In particular, λi only depends on the parameter r0 which is derived during the
computation of the spectrum and is given in Table 4.2.

Oscillator bases expansion

The oscillator bases expansion (OBE) is an accurate numerical technique for
solving the three-body Schrödinger equation, particularly suited for handling
semi-relativistic kinematics. Interested readers can find more information about
the method in [22, 23, 24, 25]. As the name implies, the method relies on ex-
panding the three-body wavefunction ψ into harmonic oscillator wavefunctions,
denoted φn l. More explicitly,

ψOBE =
∑
N

∑
s

ds(N ) [φn1 l1(λ1x1)φn2 l2(λ2x2)]L , (4.22)
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where [φn1 l1(λ1x1)φn2 l2(λ2x2)]L denotes a three-body oscillator wavefunction
with a given total angular momentum L and symmetry (if applicable). Some
examples of symmetric three-body wavefunctions are given in Appendix A. The
second sum over s runs over all the oscillator states with the same number of
quanta N = 2(n1 + n2) + l1 + l2, and the first sum over N runs, theoretically,
from 0 to infinity. In practice, the first sum is truncated to a certain value
Nmax. The number of quanta is linked to the global quantum number Q, given
by (2.27), by the relation Q(3) = N + 3. The parameters λi are given by

λ1 = 1
a

and λ2 = 2√
3

1
a
, (4.23)

where a is a variational parameter determined by minimising the matrix ele-
ments of the Hamiltonian. The above relation is only valid for three identical
particles [24, 25]. Since the OBE is a variational method, its eigenvalues are
always upper bounds. Results for the Hamiltonians HB and HC are given in
Table 4.2, where the ground state has been computed with Nmax = 16 [26]. The
exactitude of the last digit is guaranteed.
Since both the ET and OBE yield upper bounds, a comparison between the two
methods shows that the OBE is more accurate. Therefore, its results will be
used in the following discussion. Note that the ET remains a useful tool when
the number of particles is large, as for instance in the large-Nc approach of QCD
in which a baryon contains Nc quarks.
Currently, no experimental data exists on triply charmed or bottom baryons
that would enable a direct verification of the accuracy of our model and compu-
tational tools [27]. However, predictions from lattice QCD (LQCD) calculations
[28], non-relativistic quark models [29, 30, 31], and Regge phenomenology [32]
suggest mass ranges of 4700–4800 MeV for ccc baryons and 14000–15000 MeV
for bbb baryons. The baryon masses, mB , calculated in our model fall within
these predicted ranges.

4.3 Core-gluon interaction
The core-gluon interaction is inherently more complex due to the intricate struc-
ture of the system. Nevertheless, according to the Casimir scaling hypothesis
[10], the strong interaction depends solely on the color charge of the sources.
Since the quark core is in a colour octet state, the core-gluon interaction is ex-
pected to be analogous to the gluon-gluon interaction, for which potentials are
available. Specifically, we utilise the potential from [5], which was used in the
study of two-gluon glueballs

Vgg = A′r − B′

r
. (4.24)

The form of this potential is similar to the Fulcher potential (4.4), except that
the parameters A′ and B′ differ. Since

〈
F 2〉 = 3 for a colour octet state, and

⟨F (g) · F (g)⟩ = −3 for a two-gluon glueball, the gluon-gluon potential is linked
to the quark-antiquark potential by Vgg = 9

4Vqq̄. The parameters A′ and B′

from [5] are provided in Table 4.3, as well as the values in Table 4.1 multiplied
by 9/4. As we can see, the set of parameters in [5] is not exactly the same as
in [18]. It might seem strange that different values for the string tension and
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gluon-gluon qq̄

mg 0

A′ 0.416 GeV2 0.457 GeV2

B′ 1.350 0.983

Table 4.3: Parameters for the glueball and hybrid baryon Hamiltonians [5].
Corresponding parameters for the qq̄ systems taken from Table 4.1 are also
indicated.

the strong coupling constant are assigned according to the particles, quarks or
gluons, considered. We preferred to keep different sets of parameters because it
is difficult to find common values that give good results for all systems, taking
into account the simplicity of the models.
However, the quark core is not a point-like particle like the gluon; it has spatial
extension. Consequently, the interaction between two point-like sources must
be convoluted with the density of the extended source as per the formula [13]

Ṽ (R) =
∫

dr ρ(r)V (|R + r|), (4.25)

where ρ(r) represents the normalised3 colour density (i.e., the density of quarks).
A natural definition for a normalised N -body density is [33]

ρ(r) = 1
N

N∑
i=1

∫
· · ·
∫ N∏

i=1
dri |ψ|2δ(r − ri), (4.26)

where ψ = ψ(r1, . . . , rN ) is the N -body wave function. In our approach, the
quark core wavefunction is approximated by (4.22). Although this could lead to
overly complex expressions for the quark density, computations reveal that the
probability of the first component of the expansion (the product of two ground
states of oscillator functions in Jacobi coordinates) accounts for more than 90%
of the wave function for ground state cores. Using a trial state reduced to this
unique component, the masses are reproduced with a relative error of 0.1%.
We thus use this approximation to compute the density of the core, which then
takes the simple form

ρ(r) = λ3

π3/2 e
−λ2r2

with λ =
√

3/a. (4.27)

If the ET was used instead of the OBE, the structure of the quark density would
be identical since the ET also approximates the ground state wavefunction as
the product of two ground states of oscillator functions in Jacobi coordinates
(4.21). The variational parameter a in (4.27) is computed with Nmax = 0, as
reported in Table 4.2.
The computation of the convoluted potential is then analytical [26] and the
core-gluon Hamiltonian, or the hybrid baryon Hamiltonian, reads

3Our choice of normalisation is
∫

dr ρ(r) = 1. The density is sometimes normalised to N .
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HHB =
√
p2 +m2

C +
√
p2 +m2

g

+B′

[
e−λ2r2

√
πλ

+
(
r + 1

2λ2r

)
erf(λr)

]
−A′ erf(λr)

r
,

(4.28)

where mC is the quark core mass given in Table 4.2, and erf(x) denotes the error
function. The next step is to solve the corresponding two-body Schrödinger
equation.

4.4 Spectrum of heavy hybrid baryons
The eigenvalues of the Hamiltonian (4.28) can be computed using the ET
through equations (2.88), but a more accurate method for two-body systems,
the Lagrange-mesh (LM) method, is preferred. For two-body systems, the LM
method is more accurate and easier to use than the OBE. Note that the LM
method has not been generalised to three-body systems with semi-relativistic
kinematics. The LM method, as detailed in [34], is well-suited for handling
semi-relativistic kinematics and systems with spin, as discussed in [35]. Al-
though hybrid baryons must be described by helicity states due to their unique
properties, these helicity states can be expanded into ordinary canonical states
(see Chapter 3).
For a hybrid baryon composed of three identical quarks in their ground states,
the quark core spin is JC = 1/2, as detailed in Sec. 4.2. Thus, the associ-
ated helicity states are given by (3.52). When computing the spectrum, the
matrix elements of L2, the squared orbital angular momentum operator, must
be evaluated. However, as shown in Sec. 3.3.3, the helicity states mix through
this operator. It was noted that all the eigenvalues took the form leff(leff + 1),
where leff is an effective angular momentum between the quark core and the
gluon. The matrix elements can be diagonalised, allowing the LM method to be
used with the diagonalised basis. This diagonalisation process was performed
in Sec. 3.3.3. Alternatively, the LM method can be adapted to account for
coupled channels, as explained in Appendix C. Both approaches to account for
the mixing of states yield the same spectrum.
Similar to the quark core, it is insightful to compute the mass gap between the
hybrid baryon and the corresponding ordinary baryon. The spectrum of heavy
hybrid baryons for the lowest JP states is presented in Table 4.4 [26]. The
exactitude of the last digit is guaranteed.
The main results from Table 4.4 are

• The hierarchy of states is similar for both cccg and bbbg states.

• The common value leff = 1 for 1/2± and 3/2± (see Sec. 3.3.3) states
causes their degeneracy.

• The lowest sates have 1/2± and 3/2±, and have a common mass around
1.8 GeV above the one of the ground state baryon.

• As in the case of gg systems, no states with leff = 0 exist [5].
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JP (n, l) cccg bbbg

1/2± (0,1) 1.842 1.784

3/2± (0,1) 1.842 1.784

1/2− (1,0) 2.131 2.013

3/2± (0,2) 2.350 2.336

1/2+ (1,1) 2.552 2.469

3/2± (1,1) 2.552 2.469

3/2± (1,2) 2.938 2.880

Table 4.4: Mass gap mHB − mB in GeV for the lowest J = 1/2 and J = 3/2
cccg and bbbg hybrid baryons for a gluon with a helicity [26]. The radial and
orbital quantum numbers of the pair are denoted (n, l).

As discussed in the Introduction, hybrid baryon spectra have been computed
using various models in the light quark sector, but comparing our results for
heavy sectors with those from the light sector, which are the targets of future
experiments, remains challenging. For example, the LQCD study [36] with
mπ = 396 MeV only presents positive parity spectra, showing that 1/2+ and
3/2+ hybrid baryons have similar masses, with hybrid-∆ around 1.5 GeV above
the baryon ∆. Some similarities exist, but extending our model to the light sec-
tor is necessary for reliable comparisons. Note that the interactions considered
here are purely central; spin-dependent contributions could lift some degenera-
cies, as seen with light JPB

B = 1/2+ and 3/2+ baryons, which are degenerate
with our Hamiltonian (4.7).
Eventually, similar computations for the hybrid baryon spectrum have been re-
alised for a gluon with a spin degree of freedom, that is, with an additional 0
projection. The structure of the spin-orbital wavefunctions is, of course, differ-
ent, but the value of the parameters in (4.24) also differs, as explained in [5].
The resultant spectrum is given in [26] and is quite different from the one in
Table 4.4, which further emphasises the importance of correctly including the
helicity of the gluon.

To conclude this final chapter, the interaction between quarks and the gluon
in hybrid baryons was discussed. First, the quark core model, in which the
three quarks form a core that interacts with the gluon, was justified. The quark
core spectrum was then computed using a Cornell-inspired potential (4.5) for
three-quark systems. The colour operators in (4.5) were evaluated for both a
baryon, representing a colour singlet state, and a quark core, representing a
colour octet state, leading to the Hamiltonians (4.7) and (4.17) for the baryon
and quark core, respectively. Semi-relativistic kinematics were considered in
these calculations. The eigenvalues of these Hamiltonians were computed using
two distinct methods: the ET and the EOB methods. The results for triply
charmed (ccc) and bottom (bbb) systems are summarised in Table 4.2.
The core-gluon interaction was then examined. Based on the Casimir scaling
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hypothesis, the core-gluon interaction was modelled similarly to the gluon-gluon
interaction (4.24) convoluted with the quark density (4.25) to account for the
spatial extension of the quark core. The resulting Hamiltonian is given by (4.28),
and its eigensolutions were computed using the LM method. The mean values of
the Hamiltonian were evaluated between the helicity states derived in Chapter
3, with the mixing from the L2 operator taken into consideration. Results for
the mass gap between hybrid baryons and their corresponding baryons, with
the same quark content, are presented in Table 4.4.



96 Chapter 4 Hybrid baryons in a constituent approach

Bibliography
[1] Buisseret, F. & Semay, C. Two- and three-body descriptions of hybrid

mesons. Phys. Rev. D 74, 114018 (2006).

[2] Buisseret, F., Semay, C., Mathieu, V. & Silvestre-Brac, B. Excited flux
tube from qq̄g hybrid mesons. Eur. Phys. J. A 32, 123 (2007).

[3] Barnes, T. A transverse gluonium potential model with Breit-fermi hyper-
fine effects. Z. Phys. C - Particles and Fields 10, 275 (1981).

[4] Cornwall, J. M. & Soni, A. Glueballs as bound states of massive gluons.
Phys. Lett. B 120, 431 (1983).

[5] Mathieu, V., Buisseret, F. & Semay, C. Gluons in glueballs: Spin or helic-
ity? Phys. Rev. D 77, 114022 (2008).

[6] Buisseret, F. Effective potential between two transverse gluons from lattice
QCD. Phys. Rev. D 79, 037503 (2009).

[7] Godfrey, S. & Isgur, N. Mesons in a relativized quark model with chromo-
dynamics. Phys. Rev. D 32, 189 (1985).

[8] Capstick, S. & Isgur, N. Baryons in a relativized quark model with chro-
modynamics. Phys. Rev. D 34, 2809 (1986).

[9] Bali, G. S. Casimir scaling of SU(3) static potentials. Phys. Rev. D 62,
114503 (2000).

[10] Semay, C. About the Casimir scaling hypothesis. Eur. Phys. J. A 22, 353
(2004).

[11] Deng, C., Ping, J., Yang, Y. & Wang, F. Baryonia and near-threshold
enhancements. Phys. Rev. D 88, 074007 (2013).

[12] Fleck, S., Silvestre-Brac, B. & Richard, J. M. Search for diquark clustering
in baryons. Phys. Rev. D 38, 1519 (1988).

[13] Giannuzzi, F. Doubly heavy baryons in a Salpeter model with AdS/QCD
inspired potential. Phys. Rev. D 79, 094002 (2009).

[14] Torcato, A., Arriaga, A., Eichmann, G. & Peña, M. T. Heavy baryon
spectroscopy in a quark-diquark approach. Few-Body Syst. 64, 45 (2023).

[15] Carlucci, M. V., Giannuzzi, F., Nardulli, G., Pellicoro, M. & Stramaglia,
S. AdS-QCD quark–antiquark potential, meson spectrum and tetraquarks.
Eur. Phys. J. C 57, 569 (2008).

[16] Giannuzzi, F. Heavy pentaquark spectroscopy in the diquark model. Phys.
Rev. D 99, 094006 (2019).

[17] Tourbez, C., Cimino, L. & Semay, C. Modèle de baryon en structure quark-
diquark (2024). Report of an “Introduction to Scientific Research” project.

[18] Fulcher, L. P. Matrix representation of the nonlocal kinetic energy operator,
the spinless Salpeter equation and the Cornell potential. Phys. Rev. D 50,
447 (1994).



BIBLIOGRAPHY 97

[19] Silvestre-Brac, B., Semay, C., Narodetskii, I. M. & Veselov, A. I. The
baryonic Y-shape confining potential energy and its approximants. Eur.
Phys. J. C 32, 385 (2004).

[20] Close, F. E. An Introduction to Quarks and Partons (Academic Press,
London, 1979).

[21] Silvestre-Brac, B., Semay, C. & Buisseret, F. Semirelativistic hamiltonians
and the auxiliary field method. Int. J. Mod. Phys. A 24, 4695 (2009).

[22] Nunberg, P., Prosperi, D. & Pace, E. An application of a new harmonic-
oscillator basis to the calculation of trinucleon ground-state observables.
Nucl. Phys. A 285, 58 (1977).

[23] Silvestre-Brac, B. Spectrum and static properties of heavy baryons. Few-
Body Syst. 20, 1 (1996).

[24] Silvestre-Brac, B., Bonnaz, R., Semay, C. & Brau, F. Quantum three
body problems using harmonic oscillator bases with different sizes. https:
//arxiv.org/abs/2003.11028 (2000). Internal Report ISN 00.66.

[25] Chevalier, C. & Youcef Khodja, S. Three-body forces in oscillator bases
expansion. Few-Body Syst. 65, 86 (2024).

[26] Cimino, L., Willemyns, C. T. & Semay, C. Quark core-gluon model for
heavy hybrid baryons. Phys. Rev. D 110, 034032 (2024).

[27] Navas, S. et al. Review of particle physics. Phys. Rev. D 110, 030001
(2024).

[28] Brown, Z. S., Detmold, W., Meinel, S. & Orginos, K. Charmed bottom
baryon spectroscopy from lattice QCD. Phys. Rev. D 90, 094507 (2014).

[29] Liu, M.-S., Lü, Q.-F. & Zhong, X.-H. Triply charmed and bottom baryons
in a constituent quark model. Phys. Rev. D 101, 074031 (2020).

[30] Kakadiya, A., Shah, Z. & Rai, A. K. Spectroscopy of Ωccc and Ωbbb baryons.
Int. J. Mod. Phys. A 37, 2250225 (2022).

[31] Ortiz-Pacheco, E. & Bijker, R. Masses and radiative decay widths of S-
and P -wave singly, doubly, and triply heavy charm and bottom baryons.
Phys. Rev. D 108, 054014 (2023).

[32] Wei, K.-W., Chen, B., Liu, N., Wang, Q.-Q. & Guo, X.-H. Spectroscopy of
singly, doubly, and triply bottom baryons. Phys. Rev. D 95, 116005 (2017).

[33] Nazarov, V. U. Time-dependent effective potential and exchange kernel of
homogeneous electron gas. Phys. Rev. B 87, 165125 (2013).

[34] Baye, D. The Lagrange-mesh method. Phys. Rep. 565, 1 (2015).

[35] Semay, C., Baye, D., Hesse, M. & Silvestre-Brac, B. Semirelativistic La-
grange mesh calculations. Phys. Rev. E 64, 016703 (2001).

[36] Dudek, J. J. & Edwards, R. G. Hybrid baryons in QCD. Phys. Rev. D 85,
054016 (2012).

https://arxiv.org/abs/2003.11028
https://arxiv.org/abs/2003.11028


98 Chapter 4 Hybrid baryons in a constituent approach



Conclusions and prospects

This thesis must now draw to a close. Before presenting the main contributions
of this four-year endeavour, as well as some prospects, it is essential to review
the context in which this work was undertaken.
The study of hybrid baryons is part of the broader research into exotic hadrons.
According to the fundamental theory of Quantum Chromodynamics (QCD),
these particles should exist, yet there is scant experimental data available to
confirm their presence [1, 2]. Investigating these exotic states serves as a valuable
probe for testing the properties of QCD beyond ordinary matter and can assist
experimentalists in their identification. Theoretical studies on hybrid hadrons
have utilised various QCD approaches, particularly lattice QCD [3]. However,
only recently have experimental efforts begun to search for hybrid baryons at
the CEBAF Large Acceptance Spectrometer (CLAS12) in Experimental Hall B
at Jefferson Lab [4]. As of 2024, the experiment has been delayed, but the first
data are anticipated to be available in the coming years [5]. Identifying hybrid
baryons is challenging, as ordinary and hybrid baryons can be characterised by
the same JP quantum numbers. Consequently, hybrid baryons are expected to
appear as an overpopulation relative to some models of baryon excitation. Given
their potential detection in the near future, a comprehensive understanding of
these objects is crucial for their accurate identification.
This thesis represents a modest contribution to the understanding of hybrid
baryons. Compared to previous studies, our work is distinguished by its semi-
relativistic potential approach and the proper inclusion of gluon helicity. As
detailed in the preceding chapters, only the spectrum of heavy hybrid baryons
was computed.

1 Contributions of this work
This thesis can be divided into two parts. The first part was devoted to the
study of the many-body Schrödinger equation and the development of an ap-
proximation method, called the envelope theory (ET), as discussed in Chapter
2. Although the Schrödinger equation appeared in the constituent approach of
QCD, the ET was not directly used to compute the spectrum of hybrid baryons.
However, as we shall explain in the prospects, the ET will prove to be a use-
ful tool in the extension of our model. The second part focused on hybrid
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baryons themselves, with the construction of a semi-relativistic potential model
in Chapter 4, supported by the computation of the helicity states in Chapter 3.

The ET was originally developed for systems with identical particles, where the
method’s utility for hadronic physics was demonstrated. For the treatment of
hybrid baryons, the method had to be extended to systems with different par-
ticles. Although some preliminary work with different particles was performed
[6, 7], a correct extension of the method had yet to be achieved. This initial
work began during my Master’s thesis, back in 2019-2020. In this work, the
eigenvalue of the many-body harmonic oscillator (2.2) for a system of Na + 1
and Na + Nb particles was computed, as given by (2.39). The next step was
to extend the compact equations (2.71), but unfortunately, no extensions were
determined. Nonetheless, the approximate spectrum of some systems could be
computed using the minimisation equations (2.50). Some of these results were
presented in Sec. 2.5. The findings of this work are summarised in [8]. This
paper is not the first one I worked on with the ET. Back in 2018-2019, I famil-
iarised myself with ET by working on an extension to a one-dimensional system,
leading to my first paper [9].

Returning to the extension of the ET to systems with different particles, the
discovery of the decomposition (2.35) of the harmonic oscillator Hamiltonian was
a crucial element in determining the compact equations of the ET for a system
of Na+Nb particles. The first year of my thesis was dedicated to deriving these
compact equations, resulting in the set of equations (2.84), (2.85), and (2.86).
The procedure for finding the compact equations for systems with different
particles was presented in [10].

In [8], a preliminary extension of the improved ET (IET), presented in Sec.
2.4, was used by maintaining the same value of the parameter ϕ found for a
system of all identical particles, as given by (2.98). However, this extension
lacked formal justification. With the determination of the compact equations,
an extension of the ET improvement procedure could be realised. The primary
work and computations were conducted by my colleague Cyrille Chevalier during
his Master’s thesis for a system of Na+1 particles only, leading to the equations
(2.108). His work was presented in [11]. Thanks to the efforts detailed in
[8, 10, 11], a proper extension of the ET to systems with Na+1 particles, which
is the system of interest for hybrid baryons, was achieved.

The ET, being a simple and user-friendly method, has facilitated numerous
projects with students. Notably, two projects funded by a Research Initiation
Grant from the University of Mons were realised. The first project, in 2022, fo-
cused on assessing the accuracy of the ET. Indeed, the accuracy of the method
cannot be predicted, except, when it is relevant, its variational character. For
instance, previous computations with identical particles had already indicated
that the spectrum for the Coulomb potential is not accurate. This conclusion
was also confirmed for systems with different particles. However, the IET sig-
nificantly improved the accuracy in the case of identical particles. Nevertheless,
the study of atomic systems revealed that the improvement procedure did not
consistently enhance accuracy. The main objective of the project was to test a
variety of potentials for systems with identical particles to identify qualitative
features that might explain the method’s lack of accuracy. The ET results were
compared to more accurate ones obtained using a numerical method based on
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the expansion in oscillator bases (EOB), developed by Cyrille, to whom I am
still indebted. These features are presented in Sec. 2.5 and led to a publication
[12].

The second project, conducted in 2023, focused on extending the IET to K-
body forces for systems with identical particles. This work was not included
in this thesis as it had no direct implications for hybrid baryons. The project
concluded that, although the IET can be extended to K-body systems, its im-
pact is minimal and sometimes results in less accurate outcomes compared to
the original ET. A limitation of the improvement procedure was thus identi-
fied. Nonetheless, the project extended beyond its initial scope by computing
observables within the ET. Specifically, symmetric three-body states were com-
puted. They are presented in Appendix A. The results of this project led to a
publication [13].

Once the extension of the ET to systems with different particles was achieved,
the study of hybrid baryons could commence. Before explicitly formulating
the Hamiltonian of a hybrid baryon, it was necessary to compute the helicity
states of the exotic state to correctly account for the helicity of the gluon. As
explained in Chapter 4, a quark core model was utilised to directly apply the
well-established two-body helicity formalism.
After familiarising myself with the original paper by Jacob and Wick on the
helicity formalism [14], as well as the study [15] on two-gluon glueballs in a
constituent approach, the helicity states of the hybrid baryons were derived for
a quark core with spin JC = 1/2 and JC = 3/2, leading to equations (3.52) and
(3.54), respectively. The decomposition of these helicity states into canonical
states, given by (3.51), is an essential step for using the helicity states in a
constituent approach, as shown in [15].
This decomposition was performed using the software Mathematica [16] and
resulted in relations (3.53) and (3.55). Thanks to these relations, the matrix el-
ements of various operators, such as the squared orbital angular momentum L2,
could be computed. These computations were also carried out in Mathematica
with the aid of the QUANTUM library [17]. The matrix elements of the opera-
tor L2 were found to be non-diagonal, as detailed in Sec. 3.3.3, indicating that
helicity states mix through this operator. This feature had not been observed
for two-gluon glueballs in [15].

Eventually, the dynamics of hybrid baryons can be specified. Given that the
quark core model shares similarities with the quark-diquark model of baryons,
a preliminary study on this approach was conducted. This study took place
during an “Introduction to Scientific Research” project undertaken by a first-
year Master’s student, Clara Tourbez. The aim of this study was twofold: first,
to better understand the regime in which a diquark, and by extension a quark
core, is formed; and second, to explore potential models for describing three-
quark and quark-diquark systems. This were conducted with a semi-relativistic
kinematics.
The conclusion of the study [18] revealed that the presence of heavy quarks, as
well as the absence of orbital excitation between them, favoured the formation
of a diquark. These results are in good agreement with a non-relativistic kine-
matics [19]. Consequently, the same configuration was adopted for our model
of hybrid baryons. It was also shown that the Cornell potential (4.4), with
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parameters taken from [20], leads to results that align well with those found in
the literature.
Following this preliminary work, the potential between the three quarks is es-
tablished as (4.5). The next step involved computing the values of the different
colour operators for a colour octet quark core. Some preliminary knowledge of
SU(3) group theory was clearly beneficial. The computations were performed
for two configurations: three identical quarks and two identical quarks, although
only the first configuration was used for the spectrum. The results are presented
in Sec. 4.4.
With the quark core Hamiltonian (4.17) known, its eigenvalues could be com-
puted. Thanks to the EOB method, the mass of the quark core and the mass
gap with the corresponding baryons ∆ = mC − mB were computed. These
results are presented in Table 4.2.
The core-gluon interaction then had to be determined. Assuming the universal-
ity of the interaction between two colour octet sources, the core-gluon potential
was chosen to be the same as that for a gluon-gluon potential, as in [15]. The
spatial extension of the quark core was included by convoluting the gluon-gluon
potential with the quark density. This same approach was used for the quark-
diquark potential in [18, 21]. By approximating the wavefunction of the quark
core as a product of Gaussian functions, the convolution could be performed
analytically, leading to the hybrid baryon Hamiltonian (4.28).
Finally, the spectrum of hybrid baryons could be obtained by computing the
eigenvalues of (4.28). The Lagrange-mesh (LM) method was used since it is
an accurate and easy-to-use method for two-body systems. The LM method is
initially developed for particles with spin but, thanks to the relations (3.53) and
(3.55), it can be extended to particles with helicity.
One last problem remained: the mixing of states through the L2 operator. The
first approach to this problem involved diagonalising the matrix elements of L2,
which was performed in Sec. 3.3.3, and then using the diagonalised basis in
the LM method. The second approach involved adapting the LM method to
include coupled channels, as presented in Appendix C. Computations revealed
that both approaches are equivalent. Ultimately, the spectrum of heavy hybrid
baryons in our model was computed and is presented in Table 4.4. All these
results on hybrid baryons are compiled in a final paper [22].

2 Future works
Although this thesis is now completed, research on hybrid baryons continues.
As mentioned at the beginning of this conclusion, this work is just a small part
of the broader study of hybrid baryons and serves as a proof of concept for
future work and extensions.
Firstly, some work remains on the ET. As mentioned, the extension of the
IET was only performed for systems with Na + 1 particles. A generalisation
of the formulae to Na + Nb particles is theoretically possible, although the
computations will be cumbersome. Since the energy of the harmonic oscillator
for three different particles is available (2.41), the compact equations for this
configuration could be determined. These extensions will allow the treatment
of new exotic hadrons or the improvement of existing models. Finally, in line
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with the philosophy of [12], new accuracy tests could be performed, particularly
by including different particles and examining the impact of the mass ratio.
Further tests could help us understand why the improvement procedure for
K-body forces does not work as intended. However, all these extensions, while
interesting in themselves, are not directly useful for the study of hybrid baryons.
Regarding hybrid baryons, our model can be improved in several ways. For
heavy hybrid baryons, we propose the following directions

• Computation of the spectrum for bbcg and ccbg hybrid baryons. The res-
olution of (4.17) would not pose a problem, as the EOB technique can
handle three-body systems with different particles. However, the convolu-
tion step would be more challenging since the quark density has a different
structure.

• Inclusion of spin effects between the quarks and the gluon will help to
break the observed degeneracy in Table 4.4. Since we are using heavy
quarks, it is expected that these effects will not significantly impact the
spectrum, allowing for a perturbative approach. The convolution of the
potential is another difficulty, although preliminary work has already been
performed in [18].

• Study of the impact of radial and orbital excitation within the quark core,
which lead to more complicated quark density ρ(r).

• Study of the impact of using parameters other than those from [15, 20] on
the spectrum.

• Improving the dynamics of the model by studying the quark core in a
quark-diquark approach. Such an extension requires knowledge of three-
body helicity formalism. In this approach, we unfreeze the dynamics be-
tween the gluon and the core, but we also reduce some degrees of freedom
within the quark core.

Obviously, heavy hybrid baryons are not expected to be the first ones detected.
Hence, extending our model to light quarks is a clear priority from an experi-
mental point of view. Two aspects of our model must be improved.

• It is necessary to use a universal potential model that can provide accurate
spectra for both ordinary and exotic hadrons. The seminal works [23, 24]
can serve as a good starting point. The semi-relativistic Hamiltonians
developed in these papers include relativised potentials and sophisticated
spin contributions. An improved version with a screening effect for linear
confinement has been recently proposed [25]. Using Casimir scaling, a
version for glueballs and hybrid hadrons could be tested.

• The formation of a diquark inside a baryon is favoured by a strong mass
asymmetry between the quarks or the presence of high angular momentum
[19]. This suggests that the formation of a compact three-quark cluster
is likely not favoured in the ground states of light hybrid baryons. How-
ever, we believe this difficulty can be overcome by allowing the quark
core to be in a superposition of different states with mixing controlled by
the dynamics of the gluon. The coupling interaction could be computed
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as a perturbation arising from the difference between the full four-body
Hamiltonian and the quark-core gluon one.

An analytic scheme to study the phenomenology of hadrons, with a clear con-
nection to QCD, can be obtained by starting from the large number of colours
(Nc) limit of QCD [26, 27]. This approach is particularly fruitful in the light
baryon sector. It can be combined with potential models to gain new insights
into the structure of hadrons [28, 29, 30, 31]. Therefore, we plan to use a
combined potential and large-Nc approach to study light hybrid baryons. This
will allow us to track the properties of hybrid baryons from large values of Nc
down to 3, the physical value. However, a difficulty arises because the colour
wave function of the quark core has a mixed symmetry of the form [21 . . . 1], in
Young-Yamanouchi notation. This means it is, for instance, symmetrical under
1 ↔ 2 and antisymmetrical under 1 ↔ 3, 4, . . . , Nc. In the ’t Hooft limit, it
is not possible to build a totally antisymmetrical wave function above Nc = 3,
since there are not enough spin-flavour quark states. However, the situation is
different in the Veneziano limit with a large number of flavours (Nf ) [32], where
Nc → ∞, Nf → ∞, and the ratio Nc/Nf remains finite. Another difficulty is
that the quark core then becomes an Nc-body system, and the hybrid baryon
an Nc + 1 one. The corresponding many-body Schrödinger equations can be
solved using the ET, whose main advantage is treating the number of particles
as a simple parameter, making the ET a well-suited method for this project.
Finally, the approach of our model can be used to study other exotic hadrons,
notably hybrid mesons qq̄g. Some computations of the helicity states of hybrid
mesons in a quark core model have already been performed [33].

3 Farewell
Having summarised the culmination of four years of research in just four pages,
I am now at the conclusion of this thesis. Without reiterating what has been
expressed in the Acknowledgements, I wish to extend my heartfelt thanks once
again to everyone who has supported me throughout this journey — my super-
visors, colleagues, friends, and family. Your encouragement and assistance have
been invaluable.
To the diligent reader who has navigated through this manuscript, I extend a
sincere thank you. This thesis marks the end of an intensive period of study
and exploration into the intriguing realm of hadronic physics. Farewell!

Lorenzo Cimino
Mons, Belgium, 23rd September 2024
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AWavefunction
of the N-body
harmonic oscillator

Appendix

In this appendix, information about the wavefunctions of the many-body har-
monic oscillator is provided. In particular, the bosonic and fermionic ground
states are computed. Additionally, three-body states with given symmetry and
angular momentum are explicitly detailed. Natural units ℏ = c = 1 are used.

A.1 One-body oscillator wavefunction
We begin the discussion by reviewing the one-body harmonic oscillator in D
dimensions, described by the Hamiltonian H = p2/(2m) + kr2. Eigensolutions
can be computed in Cartesian coordinates r = (r1, . . . , rD) and (hyper)spherical
coordinates r = (r, r̂). In Cartesian coordinates, the wavefunction is given by

φ{ν}(λr) =
D∏
i=1

φνi
(λri)

with φν(λr) = 1√
2νν!

(
λ2

π

)1/4

e−λ2r2/2Hν(λr),
(A.1)

where λ2 =
√

2mk and where Hn(y) is a Hermite polynomial. The wavefunc-
tion is labelled by D quantum numbers {ν} = {ν1, . . . , νD}, but the eigenvalue
depends only on their sum since E =

√
2k/m

∑D
i (νi + 1/2). This leads to a

degeneracy of the system that will be computed later. For D ≥ 2, the har-
monic oscillator can also be solved in (hyper)spherical coordinates, leading to
the following expression of the wavefunction [1]

φn l {µ}(λr) = λD/2
[

2n!
Γ(n+ l +D/2)

]1/2

× (λr)le−λ2r2/2Ll+D/2−1
n (λ2r2)Y l{µ}(r̂),

(A.2)

where λ2 =
√

2mk, Γ(n) is the Gamma function, Lln(x) is a generalised La-
guerre polynomial and Y l{µ}(x̂) is a hyperspherical harmonic. The wavefunction
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1 2 3 4 511

· · ·

D1

Figure A.1: A particular occupancy of N particles in D boxes. An empty box
correspond to a null quantum number.

is labelled by the principal quantum number n, the angular quantum number l,
and a set of D − 2 magnetic quantum numbers {µ}. However, the energy only
depends on the first two, given by E =

√
2k/m

(
2n+ l + D

2
)
.

A useful result for the following discussion is the expectation value of the ob-
servable r2 [2]

⟨φn l|r2|φn l⟩ =
∫

dr r2|φn l(λr)|2 = 2n+ l +D/2
λ2 . (A.3)

Note that in D = 1, this result is not valid and the observable is instead given
by ⟨φn|r2|φn⟩ = n+1/2

λ2 .

A.1.1 Degeneracy of the harmonic oscillator
In D dimensions, some energy levels of the harmonic oscillator are degenerate.
For simplicity, we will work with the band number N =

∑D
i νi = 2n + l. For

example, in D = 2, the states (ν1, ν2) = (2, 0), (1, 1) and (0, 2) are degenerate
with N = 2. We aim to derive a formula for the degeneracy g(N , D) of a given
level N in D dimensions.
First, ν1 can take any value from 0 to N . Then, ν2 has N − ν1 + 1 possibilities,
ranging from 0 to N − ν1. Next, ν3 has N − ν1 − ν2 + 1 possibilities, ranging
from 0 to N − ν1 − ν2, and so on. Ultimately, the last quantum number is
automatically fixed as νD = N − ν1 − ν2 − · · · − νD−1. The degeneracy of the
level N is given by the sum

N∑
ν1=0

N −ν1∑
ν2=0

N −ν1−ν2∑
ν3=0

· · ·
N −ν1−...νD−3∑

νD−2=0
(N − ν1 − · · · − νD−2 + 1). (A.4)

Rather than computing this sum directly, we can recast the problem as dis-
tributing N indistinguishable balls into D distinct boxes, as illustrated in Fig.
A.1.
Instead of viewing the system as D boxes, consider D − 1 walls separating N
balls. The number of ways to organise the system is (N +D−1)!. Since the per-
mutation of identical balls or identical walls does not change the arrangement,
the degeneracy of the level N is

g(N , D) = (N +D − 1)!
N !(D − 1)! = CN

N +D−1. (A.5)

In particular, if D = 1, the degeneracy is g(N , 1) = 1 as expected.
The degeneracy of the level N can also be determined using spherical coordi-
nates. The energy of the harmonic oscillator depends only on the radial quantum
number n and the orbital quantum number l, but not on the magnetic quantum
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numbers {µ}. First, we calculate the degeneracy associated with a given orbital
quantum number l [3], considering the constraint l ≥ µ1 ≥ µ2 ≥ · · · ≥ |µD−2|,

WD
l ≡ Cll+D−3

2l +D − 2
D − 2 . (A.6)

For instance, we verify that W 3
l = 2l + 1 for D = 3, as expected. For a given

level N , the orbital quantum number l can take any value from 0 to N , and the
radial quantum number n is fixed to 1

2 (N − l) (if N is even (odd), l must also
be even (odd)). The degeneracy of the level N is then given by the sum

N∑
l even or odd

WD
l , (A.7)

which yields the same result as (A.5).

A.2 N-body oscillator wavefunction
In Sec. 2.2, we demonstrated in equation (2.25) that the N -body harmonic
oscillator for identical particles

H =
N∑
i=1

p2
i

2m + k̃

N∑
i=1

(ri − R)2 + k

N∑
i<j=2

(ri − rj)2, (A.8)

can be expressed as a sum of N − 1 decoupled one-body harmonic oscillators in
terms of the Jacobi coordinates (xi,Πi) defined by (2.3). The wavefunction of
the system is then

ψ =
N−1∏
i=1

φnili{µi}(λixi) with λ2
i = i

i+ 1

√
2m(Nk + k̃). (A.9)

This wavefunction can be easily generalised to include K-body forces by sub-
stituting k → k CK−2

N−2 . Note that to be complete, ψ must be multiplied by a
wavefunction φ(R) that depends on the CM position, which has been isolated.
If no external forces act on the system, then φ(R) can be taken as a plane wave.
We also recall from Sec. 2.2 the definition of the global quantum number

Q(N) =
N−1∑
i=1

(2ni + li +D/2), (A.10)

with (ni, li) being the principal and orbital quantum numbers associated with
the Jacobi coordinate xi.

A.2.1 Properties
The N -body wavefunction (A.9) is normalised since each individual wavefunc-
tion φ is normalised. It also possesses the following properties.
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Parity

The parity operator P̂ switches the sign of the spatial coordinates r → −r.
It is known that the wavefunction φn l is an eigenstate of this operator with
eigenvalue P = (−1)l. Thus, the N -body wavefunction has the following parity
eigenvalue

P =
N−1∏
i=1

(−1)li = (−1)
∑N−1

i
li = (−1)

∑N−1
i

(2ni+li)

= (−1)Q(N)−(N−1) D
2 ,

(A.11)

Hence, all linear combinations of states {ψ} with the same value of Q(N) (and
consequently the same value of the energy) have the same parity P .

Angular momentum

For N > 2, the wavefunction (A.9) does not have a well-defined angular mo-
mentum. However, by using the correct coupling coefficients, one can construct
a wavefunction with total angular momentum L and projection ML. We write
this generically as

ψLML
= [[. . . [[l1l2]l12 l3]l123 . . . ]l12...N−2 lN−1]LML

, (A.12)

where [·] denotes the coupling of angular momenta. Note that
∑N−1
i li = Lmax

is the maximum angular momentum L obtained by (A.12). Clearly, L ̸= Lmax
in general, so L does not determine the parity of ψLML

.

Symmetry

The wavefunction ψα, where α denotes the set of quantum numbers {ni, li, {µi}}
with i = {1, . . . , N − 1}, does not exhibit a particular symmetry under the
permutations of particles in general. Nonetheless, by constructing suitable linear
combinations of these functions, potentially including functions of other degrees
of freedom if applicable, one can build a wavefunction with a given symmetry
and angular momentum. Generically, we write this function as

Ψ =
∑
α

cαψαϕα, (A.13)

where ϕα 1 can be a spin, isospin, flavour or colour wavefunction, or may not
exist if the only degree of freedom is spatial. The coefficients cα are such that
Ψ is normalised, has a well-defined angular momentum L and symmetry. Since
Ψ is an eigenstate of H with eigenvalue (2.26) and parity (A.11), all {ψα} have
the same value of Q(N). For a given value of Q(N) and a given symmetry, Ψ
may not exist.

1The functions ϕα are characterised by quantum numbers other than {ni, li, {µi}}. The
index α here signifies that the function ϕ is associated with the function ψα
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A.2.2 Bosonic ground state
We consider the ground state where ni = li = 0 ∀i. According to (A.2),

φ0,0,{0}(λr) = λD/2
[

2
Γ(D/2)

]1/2
e−λ2r2/2L

D/2−1
0 (λ2r2)Y 0

{0}(r̂)

=
(
λ2

π

)D/4

e−λ2r2/2.

(A.14)

The N -body wavefunction (A.9) now reads

ψ =
N−1∏
i=1

(
λ2
i

π

)D/4

e−λ2
ix

2
i /2 = R exp

(
−1

2

N−1∑
i=1

λ2
ix

2
i

)
, (A.15)

with R =
∏N−1
i

(
λ2

i

π

)D/4
. Then, we have

N−1∑
i=1

λ2
ix

2
i =

√
2m(Nk + k̃)

N−1∑
i=1

i

i+ 1x
2
i

=
√

2m(Nk + k̃) 1
N

N∑
i<j

(ri − rj)2,

(A.16)

which is completely symmetric. The last equality is obtained through the trans-
formation laws of Jacobi coordinates. The wavefunction (A.15) is thus the
bosonic ground state and is characterised by positive parity and angular mo-
mentum L = 0. The associated global quantum number is

QBGS = (N − 1)D2 . (A.17)

A.2.3 Fermionic ground state
The fermionic ground state (FGS) is more difficult to compute since two fermions
cannot occupy the same level. Since we are only considering the spatial degree
of freedom, we assume fermions have an intrinsic degeneracy d caused by other
degrees of freedom, such as spin (e.g. electrons have d = 2). The main difficulty
in computing the FGS is that the quantum numbers (ni, li, {µi}) are not asso-
ciated with the individual coordinates but rather with the Jacobi coordinates.
Here, we propose to compute only the global quantum number Q(N) associated
with the FGS.
Before proceeding, we will rearrange the harmonic oscillator Hamiltonian as
follows [4]

Hho =
N∑
i=1

p2
i

2m +
N∑

i<j=2
k(ri − rj)2 − P 2

2Nm

=
N∑
i=1

(
p2
i

2m +Nkr2
i

)
−
(

P 2

2Nm +N2kR2
)

≡
N∑
i=1

Hi +HCM.

(A.18)
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The Hamiltonians Hi and HCM are one-body oscillator Hamiltonians depending
on the individual coordinates ri and the CM coordinate R, respectively. Since
these Hamiltonians commute, the energy of the many-body harmonic oscillator
can be written as

Eho =
√

2
m
Nk

(
N∑
i=1

(2n̄i + l̄i) +N
D

2 − (N + D

2 )
)
, (A.19)

where the quantum numbers (n̄i, l̄i), with i = {1, . . . , N}, are now associated
with the individual coordinates and N with the CM. With these quantum num-
bers, symmetry is easier to impose. Since we want the energy to be distributed
on the internal variables only, we will set N = 0, leading to a new definition of
the global quantum number

Q(N) =
N∑
i=1

(2n̄i + l̄i) + (N − 1)D2 . (A.20)

Although this definition is similar to the previous one (A.10), the sum in the
new definition runs from 1 to N , instead of N − 1, reflecting the fact that the
quantum numbers {n̄i, l̄i} are related to the individual coordinates.
Using the result for the degeneracy of the harmonic oscillator (A.5), we can now
fill the levels according to Fermi-Dirac statistics. Assuming the last occupied
level is labelled by N = 2n̄i + l̄i = b and contains r particles, the total number
of particles is given by

N = d

b−1∑
N =0

CN
N +D−1 + r = dCDb+D−1 + r. (A.21)

The global quantum number for the FGS is then given by

QFGS(N) =
b−1∑

N =0
N dCN

N +D−1 + b r + (N − 1)D2

= dDCD+1
b+D−1 + b r + (N − 1)D2 ,

(A.22)

with b the biggest integer such that r = N − dCDb+D−1 ≥ 0. In particular, in
the one-dimensional case, if d = 1 and r = 0, we obtain Q(N) = (N2 − 1)/2,
which matches the result in [4]. An interesting limit of the above formula is
when N → ∞. Then [5],

QFGS(N → ∞) ≈ D

D + 1
(D!)1/D

d1/D N
D+1

D . (A.23)

A.3 Symmetrised three-body oscillator states
As previously stated, the N -body wavefunction (A.9) does not generally pos-
sess well-defined angular momentum and symmetry. In this section, we aim to
explicitly construct these wavefunctions for N = 3 in three dimensions (D = 3).
Starting from the N -body wavefunction (A.9), for N = 3, we have
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ψ = φn1l1µ1(λ1x1)φn2l2µ2(λ2x2), (A.24)

where λ1 = 1√
2 [2m(k̃+3k)]1/4 and λ2 =

√
2
3 [2m(k̃+3k)]1/4. For convenience, we

define the variables yi = λixi and their conjugates ρi = Πi/λi. The harmonic
oscillator Hamiltonian (2.25) now reads

H = 1
m

Π2
1 + 1

2(k̃ + 3k)x2
1 + 3

4mΠ2
2 + 2

3(k̃ + 3k)x2
2

=

√
k̃ + 3k

2m [(ρ2
1 + ρ2

2) + (y2
1 + y2

2)].
(A.25)

The three-body wavefunction (A.24) can now be endowed with angular momen-
tum L and projection ML

[φn1l1(ρ1)φn2l2(ρ2)]LML
=
∑
µ1,µ2

(l1 µ1 l2 µ2|LML)

× φn1l1µ1(ρ1)φn2l2µ2(ρ2),
(A.26)

where (l1 µ1 l2 µ2|LML) is a Clebsch-Gordan coefficient2. The Hamiltonian
(A.25) is invariant under the rotation of coordinates{

r = C y1 − S y2

s = S y1 + C y2
or
{

y1 = C r + S s

y2 = −S r + C s
, (A.27)

with C = cos (β/2) and S = sin (β/2). Consequently, [φn l(r)φν λ(s)]LML
is also

an eigenstate of (A.25) with the same energy 2n+l+2ν+λ = 2n1 +l1 +2n2 +l2.
Therefore, one can write

[φn1l1(y1)φn2l2(y2)]LML
=
∑
n,l,ν,λ

⟨n l ν λ;L|n1 l1 n1 l2;L⟩β

× [φn l(r)φν λ(s)]LML
.

(A.28)

where ⟨n l ν λ;L|n1 l1 n1 l2;L⟩β are the Brody-Moshinsky (BM) coefficients with
angle β [6]. Note that the sum above is over all quantum numbers (n, l, ν, λ)
consistent with the conservation of energy, the constraint of resultant angular
momentum |l − λ| ≤ L ≤ l + λ, and parity (−1)l1+l2 = (−1)l+λ. These co-
efficients will prove useful for computing the action of the symmetriser Sσ on
(A.26)

Sσ = 1 + σP̂12 + σP̂13 + σP̂23 + P̂13P̂12 + P̂23P̂12, (A.29)

where P̂ij is the permutation operator between particles i and j, and where
σ = 1 corresponds to the symmetriser and σ = −1 to the antisymmetriser.
First, the action of P̂12 is simply given by

P̂12y1 = −y1 and P̂12y2 = y2, (A.30)

leading to
2This construction is only valid for massive particles. For massless particles, the helicity

formalism must be used.
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P̂12[φn1l1(y1)φn2l2(y2)]LML
= (−1)l1 [φn1l1(y1)φn2l2(y2)]LML

. (A.31)

For symmetric states, l1 must be even, and for antisymmetric states, l1 must be
odd. Next, the action of P̂13 is given by

P̂13y1 = 1
2y1 −

√
3

2 y2 and P̂13y2 = −
√

3
2 y1 − 1

2y2. (A.32)

These relations are similar to the rotations (A.27) with β = 5π/3. Thanks to
the properties of the BM coefficients, one can show

P̂13[φn1l1(y1)φn2l2(y2)]LML

= (−1)l1+l2−L
∑
n,l,ν,λ

⟨n l ν λ;L|n1 l1 n1 l2;L⟩ 5π
3

[φνλ(y1)φnl(y2)]LML
.

(A.33)

A similar relation is found for the last permutation P̂23 with β = π/3. The
action of the symmetriser on our state is then given by

Ψ = A
(
σ + (−1)l1

) (
σ [φn1l1(y1)φn2l2(y2)]LML

+ (−1)l1+l2−L

×
∑
n,l,ν,λ

(
⟨n l ν λ;L|n1 l1 n2 l2;L⟩5π/3 + ⟨n l ν λ;L|n1 l1 n2 l2;L⟩π/3

)
× [φνλ(y1)φnl(y2)]LML

)
.

(A.34)
The constant A is added for normalisation. For pedagogical purposes, the first
symmetric wavefunctions

∣∣N , LP
〉
, with N = 2n1 + 2n2 + l1 + l2 the band

number, are explicitly written in terms of |n1, l1, n2, l2;L⟩ [7]

∣∣0, 0+〉 = |0, 0, 0, 0; 0⟩ , (A.35a)∣∣2, 0+〉 = 1√
2

(|1, 0, 0, 0; 0⟩ + |0, 0, 1, 0; 0⟩), (A.35b)∣∣2, 2+〉 = 1√
2

(|0, 2, 0, 0; 2⟩ + |0, 0, 0, 2; 2⟩), (A.35c)

∣∣3, 1−〉 = −1
2 |0, 0, 1, 1; 1⟩ + 1√

3
|0, 2, 0, 1; 1⟩ +

√
5
12 |1, 0, 0, 1; 1⟩ , (A.35d)

∣∣3, 3−〉 = 1
2 |0, 0, 0, 3; 3⟩ −

√
3

2 |0, 2, 0, 1; 3⟩ . (A.35e)

Notably, symmetric states with N = 1, N = 2 and L = 1, N = 3 and L even
are forbidden.

A.4 Wavefunction in the envelope theory
In Sec. 2.3, an auxiliary Hamiltonian
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H̃ =
N∑
i=1

p2
i

2µ0
+ ν0

N∑
i=1

(ri − R)2 + ρ0

N∑
i<j=2

(ri − rj)2 +B(µ0, ν0, ρ0), (A.36)

where B is a constant function of the auxiliary parameters (µ0, ν0, ρ0), was in-
troduced to approximate the Hamiltonian H under study. The auxiliary Hamil-
tonian is a harmonic oscillator Hho, and so are its eigensolutions. Specifically,
the wavefunction is a product of N − 1 one-body harmonic oscillator wavefunc-
tions (A.9) with λ2

i = i
i+1
√

2µ0(Nρ0 + ν0). However, it is more insightful to
compute the wavefunction in terms of the more physical variables p0 and r0
defined by (2.53). In particular

r2
0 ≡

〈
(ri − rj)2〉 = 1

C2
N

〈
N∑

i<j=2
(ri − rj)2

〉

= N

C2
N

N∑
i=1

i

i+ 1 ⟨x2
i ⟩
N

C2
N

N∑
i=1

i

i+ 1
2ni + li +D/2

λ2
i

,

(A.37)

where (ni, li) are the quantum numbers associated with the Jacobi coordinate
xi. The third equality is obtained from the transformation into Jacobi coordi-
nates, and the fourth equality from the result (A.3). This yields

√
2µ0(Nρ0 + ν0) = N

C2
N

Q(N)
r2

0
. (A.38)

Ultimately, one obtains

λi =
√

i

i+ 1
2

N − 1Q(N) 1
r0

=
√

i

i+ 1
N

Q(N)p0, (A.39)

where the last line is derived from (2.71c). Thus, by computing the value of
r0 or p0 using the compact equations (2.71), one can determine the coefficients
λi, which serves as an approximation of the original wavefunction. Thanks to
(A.39), all the aforementioned results and properties of the harmonic oscillator
can be applied within the framework of the envelope theory.

A.4.1 Modified global quantum number
In Sec. 2.4, a modified global quantum number

Qϕ(N) =
N−1∑
i=1

(
ϕni + li + D + ϕ− 2

2

)
, (A.40)

was introduced to enhance the accuracy of the envelope theory. How can we
evaluate the value of Qϕ for the BGS and FGS ? The idea is to consider that
we are still dealing with harmonic oscillators and the levels have to be filled,
but the energy of these levels has been artificially modified. By applying this
procedure for bosons, we obtain
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QϕBGS(N) = (N − 1)D + ϕ− 2
2 . (A.41)

For the FGS, computations are more complex. For ϕ = 1, one can use the same
reasoning as the case ϕ = 2, which corresponds to the usual harmonic oscillator,
and obtain [3]

N = dCD−1
b+D−2

2b+D − 2
D

+ r, (A.42a)

Qϕ=1
FGS = dCDb+D−2

2Db− 2D +D2 + 1
D + 1 + r b+ (N − 1)D − 1

2 . (A.42b)

For other values of ϕ, it does not seem possible to find a closed form solution
as in (A.42). We propose the following procedure

1. Generate all possible quantum numbers {n, l} and compute the occupation
level dWD

l and associated energy ϕn+ l.

2. Order the levels in increasing energy.

3. Fill each level {n, l} with dWD
l particles, until N particles are exhausted.

4. Compute the value of Qϕ by summing, for each occupied pair {n, l}, the
product of ϕn + l with the number of particles occupying this level. At
the end, we add (N − 1)(D + ϕ− 2)/2.

An approximate value of Qϕ for large N can also be obtained [3]

QϕFGS(N → ∞) ≈ D

D + 1

(
ϕD!
2d

)1/D
N

D+1
D . (A.43)

A final problem remains. To use the improvement procedure of the envelope
theory, the angular part of Qϕ(N)

λ =
N−1∑
i=1

li + (N − 1)D − 2
2 , (A.44)

must be computed first. A priori, one could use the above procedure, but by
summing only the quantum numbers l and adding (N − 1)(D− 2)/2 at the end.
However, to start this process, one must know the value of ϕ beforehand, which
is the exact goal of the improvement procedure. For bosons, this is not an issue
since

λBGS = (N − 1)D − 2
2 , (A.45)

which is independent of ϕ. However, this is not the case for fermions because
levels with n ̸= 0 have to be considered, and the arrangement of levels depends
on ϕ. Therefore, the following solution is proposed. Since the wavefunctions
are initially those of harmonic oscillators, the above procedure will be used but
with ϕ = 2, and (N − 1)(D + ϕ − 2)/2 will be added at the end. In case some
levels {n, l} have the same energy, the filling step will begin with the levels with
the lowest l.
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B
Notions
of the Poincaré group
and SO(3)

Appendix

The Poincaré group is the isometry group of Minkowski spacetime, comprising
spacetime coordinate transformations x → x′ that preserve the Minkowski met-
ric ds2 = dt2 − dx2 − dy2 − dz2, in natural units ℏ = c = 1. The elements of
the Poincaré group can be categorised into four families

1. Spacetime translations xµ → xµ + aµ, where aµ is a constant 4-vector.

2. Spatial rotations xi → Rijx
j , where RtR = 1.

3. Lorentz boost xµ → Λµνxν , with ΛtgΛ = 1 and g = diag(1,−1,−1,−1).

4. Discrete transformations as parity xi → −xi and time reversal x0 = t →
−x0.

In this notation, Greek indices run from 0 to 3, while Latin indices run from
1 to 3. The Einstein summation convention is used, implying summation over
repeated indices.
The Poincaré group contains several notable subgroups. Excluding the space-
time translations forms the homogeneous Poincaré group, also known as the
Lorentz group O(1, 3). The spatial rotations and Lorentz boosts form another
subgroup, the proper-orthochronous Lorentz group. Lastly, spatial rotations
alone form the rotation group SO(3).

B.1 Poincaré algebra and generators
The Poincaré algebra, derived from the infinitesimal transformations of the
Poincaré group (excluding parity and time reversal), consists of ten generators
that satisfy specific commutation relations.
The spacetime translations can be expressed as exp (−iPµaµ), where Pµ are the
four translation generators. They commute with each other

[Pµ, Pν ] = 0 ∀µ, ν. (B.1)
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In quantum mechanics, these are interpreted as the four-momentum operators.
Since they commute with each other, it is possible to construct vectors that are
simultaneous eigenstates of the four operators.
Next, the spatial rotations are generated by three generators, denoted Ji, and
follow the commutation relations of SO(3)

[Ji, Jj ] = iϵijkJk, (B.2)

where ϵijk is the completely antisymmetric Levi-Civita tensor. These generators
do not necessarily commute with Pµ (the interested reader can refer to [1] for
further information). In quantum mechanics, Ji are interpreted as the angular
momentum operators.
Finally, the three last generators, denoted Ki, generate the Lorentz boosts along
the three spatial directions. Their commutation relations are not essential for
our discussion (see [1] for further information), but it is noteworthy that

[K3, J3] = 0, (B.3)

indicating that boosts along the z-direction commute with rotations around the
z-axis. Lorentz boost and spatial rotation generators are often grouped under
a single notation Mµν defined by

Ji = 1
2ϵijkM

jk and Ki = Mi0 = M0i, (B.4)

corresponding to the six generators of the Lorentz group.

B.1.1 Casimir operators
A Casimir operator is a combination of the generators that commutes with all
other generators. By their nature, Casimir operators can be used to classify1

the irreducible representation of a group. For example, the Casimir of the group
SO(3) is J2 = JiJ

i, and its eigenvalue is given by j(j+1), where j is an integer
or half-integer. Thus, the irreducible representations of SO(3) are classified by
the angular momentum j.
The Poincaré group possesses two Casimir operators, one quadratic and the
other quartic [2]

P 2 = PµP
µ, (B.5)

W 2 = WµW
µ with Wµ = 1

2ϵµνρσM
νρPσ, (B.6)

where Wµ is the Pauli-Lubanski vector. By definition, the Casimir operator
commutes with all the elements of the group, implying in our case that they are
Lorentz invariant. The first Casimir, (B.5), is the squared momentum, and its
eigenvalue is logically interpreted as the squared mass m2. This reaffirms the
well-known fact that mass is a Lorentz invariant.

1Consider a group G and a representation U with its vector space V . Let |v⟩ ∈ V be a
vector, and denote the eigenvalue of the Casimir operator by c. Acting on |v⟩ with the group’s
elements results in a new vector |w⟩. If the representation is irreducible, then |w⟩ ∈ V . Since
the Casimir operator commutes with any element of the group, the eigenvalue of the Casimir
operator on |w⟩ remains c. Hence, the irreducible representation U can be labelled by c.
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The second Casimir, (B.6), the Pauli-Lubanski operator, is more complicated to
interpret, and we need to distinguish between the massive and massless cases.

Massive particles

For massive particles, m ̸= 0, the Pauli-Lubanski operator can be evaluated for
a particle at rest, implying P i = 0 ∀i and P 0 = m. It is always possible to
find a Lorentz boost such that a massive particle comes to rest. Since boosts
commute with P 2, the eigenvalue of the state remains m2. In this scenario, the
Pauli-Lubanski vector Wi reduces to −mJi and W0 = 0. The Casimir (B.6)
reads

W 2 = −m2J2, (B.7)
where J2 is the squared angular momentum operator, which is the Casimir
operator of SO(3). Since the particle is at rest, the angular momentum is
associated with the spin. Thus, the spin is a Lorentz invariant for massive
particles.

Massless particles

For massless particles, m = 0, the Pauli-Lubanski operator does not yield addi-
tional information, as W 2 = 0. However, another combination of the generators
proves to be Lorentz invariant in the massless case [2]

Λ = J1P1 + J2P2 + J3P3√
P 2

1 + P 2
2 + P 2

3
= J · P√

P 2
. (B.8)

This operator, called the helicity operator, is interpreted as the angular mo-
mentum projection along the momentum direction. Even though helicity is a
Lorentz invariant only for massless particles, eigenstates of this operator can be
constructed for massive particles (see Sec. 3.1).

B.1.2 Classification of particles
Following the discussion in Sec. 3.1,we aim to describe a particle by a Lorentz in-
variant. Thus, we decide to characterise them by the eigenvalues of the Poincaré
Casimir operators. Formally, we associate a particle with an irreducible repre-
sentation of the Poincaré group. To construct a one-particle state, we choose it
to be an eigenstate of a set of commutative operators. Firstly, it is an eigenstate
of P 2, whose eigenvalue is related to the mass m, and of W 2, whose eigenvalue
is related to the spin s for massive particles. Moreover, we choose the state to
be an eigenstate of all four-momentum operators Pµ, since they commute with
each other, ensuring that the one-body state has a well-defined four-momentum.
Finally, for massive particles, the one-body state is also an eigenstate of W3,
since [Pµ,W3] = 0 ∀µ, with the eigenvalue related to the z-projection of the spin.
Therefore, massive particles are characterised by 2s+ 1 degrees of freedom.
For massless particles, the one-body state is chosen as an eigenstate of Λ, the
helicity operator. A priori, massless particles have only one degree of freedom.
However, it is evident from (B.8) that the action of the parity operator will
switch the sign of the helicity eigenvalue. Hence, massless particles have two
degrees of freedom. This is why it is often said that photons are spin-1 particles:
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they are described by a vector state but have only two projections, ±1, of the
spin. The explicit expressions of the one-body states are given in Chapter 3.

B.2 Little group and SO(3)
The rotation group SO(3) plays an important role in the Poincaré group. In-
deed, it corresponds to the so-called little group for massive particles. Consider
a particle in the irreducible representation P 2 = m2 of the Poincaré group.
By applying Lorentz boosts, all four-momenta p̄ satisfying p̄2 = m2 can be
reached, forming the orbit of the particle. Since all these states remain in the
same irreducible representation, a reference four-momentum can be chosen to
describe all states in the orbit. For massive particles, it is convenient to choose
the rest state p̄ = (m,0). The set of transformations that leave the reference
four-momentum invariant is called the little group, which, for massive particles,
corresponds to SO(3) [1]. This is another way to understand why a massive
particle is characterised by spin.
A similar reasoning can be applied to massless particles, for which the reference
four-momentum is chosen as p̄ = (1, 0, 0, 1). The corresponding little group is
ISO(2), the isometry group of two-dimensional Euclidean space [1]. Starting
from ISO(2), one can derive the notion of the helicity operator.
Returning to SO(3), since rotations frequently appear in the helicity formalism
presented in Chapter 3, a review of SO(3) is helpful.

B.2.1 Wigner-D matrices
As explained above, the generators of SO(3) are the three angular momentum
operators Ji. In the formalism of the Euler angles (α, β, γ), an arbitrary rotation
R can be expressed as [3]

R(α, β, γ) = exp(−iαJ3) exp(−iβJ2) exp(−iγJ3). (B.9)

Other rotation formalisms exist, such as the axis-angle representation, but the
Euler angles prove to be more practical for our purposes. The matrix elements
of a rotation operator R(α, β, γ) between eigenstates of angular momentum j
are defined as

⟨j m′|U(R(α, β, γ))|j m⟩ ≡ Dj
m′ m(α, β, γ), (B.10)

where Dj
m′ m are the Wigner D-matrices [3]. In (B.10), the notation U(·) speci-

fies the representation j. For instance, if j = 1/2, the generators Ji are expressed
in terms of the Pauli matrices. Thus, the action of a rotation operator on a state
|j m⟩ can be expressed as

U(R(α, β, γ)) |j m⟩ =
j∑

m′=−j
Dj
m′ m(α, β, γ) |j m′⟩ . (B.11)

Properties

The Wigner D-matrices exhibit many interesting properties (for further details,
see [3]). Here are some that will be useful in the derivations in Chapter 3
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1. Orthogonality and completeness relations

∫ 2π

0
dα
∫ π

0
dβ sin β

∫ 2π

0
dγ Dj∗

mµ(α, β, γ)Dj′

m′ µ′(α, β, γ)

= 8π2

2j + 1δj j
′δmm′δµµ′ , (B.12a)

∞∑
j=0, 1

2 ,1,...

j∑
m=−j

j∑
m′=−j

2j + 1
16π2 Dj∗

mm′(α1, β1, γ1)Dj
mm′(α2, β2, γ2)

= δ(α1 − α2)δ(cosβ1 − cosβ2)δ(γ1 − γ2). (B.12b)

2. Addition of two D-matrices

j∑
m′′=−j

Dj
mm′′(α2, β2, γ2)Dj

m′′ m′(α1, β1, γ1) = Dj
mm′(α, β, γ), (B.13)

where (α, β, γ) are the Euler angles obtained after successive rotations of
angles (α1, β1, γ1) and (α2, β2, γ2).

3. Unitarity

(Dj
mm′(α, β, γ))−1 = Dj∗

m′ m(α, β, γ). (B.14)

4. Symmetry

Dj∗
mm′(α, β, γ) = (−1)m−m′

Dj
−m−m′(α, β, γ). (B.15)

5. Expansion in Clebsch-Gordan coefficients

Dj
mµD

j′

m′ µ′ =
∑
J

(j m j′ m′|J M)(j µ j′ µ′|J N)Dj
M N , (B.16)

where |j − j′| ≤ J ≤ j + j′, M = m+m′ and N = µ+ µ′

6. Relation to spherical harmonics

Dl
m0(α, β, γ) =

√
4π

2l + 1Y
l∗
m (β, α). (B.17)

Wigner d-matrices

Substituting (B.9) into (B.10), and noting that J3 |j m⟩ = m |j m⟩, one finds

Dj
mm′(α, β, γ) = exp(−imα)djmm′(β) exp(−im′γ), (B.18)

where djmm′(β) = Dj
mm′(0, β, 0) = ⟨j m′|exp(−iβJ2)|j m⟩ are the Wigner d-

matrices. They are real and have the following orthogonality and completeness
relations
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∫ π

0
dβ sin β djmµ(β)dj

′

m′ µ′(β) = 2
2j + 1δj j

′δmm′δµµ′ , (B.19a)
∞∑

j=0, 1
2 ,1,...

2j + 1
2 Dj

mm′(β1)Dj
mm′(β2) = δ(cosβ1 − cosβ2). (B.19b)

A specific value of the d-matrices that will be frequently used is

djmm′(π) = (−1)j+mδm−m′ = (−1)j−m
′
δ−mm′ . (B.20)
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CLagrange mesh method
Appendix

The Lagrange-mesh (LM) method, which is both highly accurate and user-
friendly, is employed to solve the two-body system of the quark core-gluon in-
teraction in Chapter 4. For systems involving particles with spin, the method
has been described in detail in [1, 2]. In the context of the quark core-gluon
system, the general wave function is approximated by the expansion

|ψLM⟩ =
Nh∑
α=1

NLM∑
i=1

Ciα
∣∣fi; JP ; JC ;α

〉
, (C.1)

where the basis {
∣∣fi; JP ; JC ;α

〉
} = {|fi⟩ ⊗

∣∣JP ; JC ;α
〉
} is used, and〈

JP ; JC ;β
∣∣JP ; JC ;α

〉
= δβα. (C.2)

The summation runs over Nh helicity channels {
∣∣JP ; JC ;α

〉
} defining the state,

and NLM Lagrange radial functions {fi} such that〈
r
∣∣fi; JP ; JC ;α

〉
= 1√

hr
fi

( r
h

) ∣∣JP ; JC ;α
〉
. (C.3)

These functions are associated with NLM dimensionless mesh points {xi}, are
orthonormal (at the Gauss approximation), and vanish at all mesh points but
one. The coefficients Ciα are computed by diagonalising the Hamiltonian ma-
trix with elements

〈
fj ; JP ; JC ;β

∣∣H ∣∣fi; JP ; JC ;α
〉
, and h is the sole non-linear

parameter that sets the system’s scale (the method is not highly sensitive to the
value of this parameter).
When only one channel is present, the computation of the matrix elements
is described in [1]. The primary difference is replacing the mean values l(l +
1) =

〈
L2〉 with their helicity counterparts

〈
JP ; JC ;α

∣∣L2
∣∣JP ; JC ;α

〉
= wαα

(see Sec. 3.3.3). Let us note that the computation of
〈√

p2 +m2
〉

first involves
calculating the eigenvalues of the operator p2 + m2 in the basis, which is easy
to perform [1].
For some JP quantum numbers, multiple channels must be considered. In
equation (C.1), the same number of mesh points and the same value of the scale
parameter are chosen for all helicity channels. This uniform choice simplifies the
computation of non-diagonal matrix elements due to the orthogonality condition
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on the functions {fi}. Since the interaction is purely central, the coupling of
helicity channels arises only from the operator L2 in p2. For β ̸= α, it can be
shown that [3] 〈

fj ; JP ; JC ;β
∣∣p2 +m2 ∣∣fi; JP ; JC ;α

〉
= wβα
h2x2

i

δji, (C.4)〈
fj ; JP ; JC ;β

∣∣V (r)
∣∣fi; JP ; JC ;α

〉
= 0. (C.5)
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