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Spontaneous emission

• Fundamental process in the field of light-matter interaction

→ Responsible for most of the light we see around us

Introduction
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Spontaneous emission

• Two-Photon Spontaneous Emission (TPSE): second-order process

→ 8 to 10 orders of magnitude slower than the emission of a single photon [1,2]

→ Responsible of the 2s state lifetime 

→ Continuous spectrum coming from planetary nebulae

→ Promising alternative to SPDC for entangled photon sources [3]

→ 3 orders of magnitude more efficient for equal pump levels, more flexible
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NASA, ESA and the Hubble Heritage (STScI/AURA)-
ESA/Hubble Collaboration

[1] Rivera et al. Science 353, 263-269 (2016)
[2] Rivera et al. PNAS 114(52), 13607-12 (2017)
[3] A. Hayat et al. PRB 76, 035339 (2007)



Photonic environment

• Purcell effect (1946): the spontaneous emission rate of an emitter depends on its environment

• 2D plasmonic nanostructures: ideal to harness two-quanta emission processes [4]

Introduction
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Surface plasmons
→ Collective oscillation of electrons at the interface between a metal and a dielectric
→ The wavelength of the light can be squeezed by two orders of magnitude

[4] Muniz et al. PRL 125(3), 033601 (2020)



Photonic environment

• Purcell effect (1946): the spontaneous emission rate of an emitter depends on its environment

• 2D plasmonic nanostructures: ideal to harness two-quanta emission processes [4]

→ Light confinement at the nanoscale

✓ Light emission enhancement via the Purcell effect by several orders of magnitude [1]

✓ Breakdown of the electric dipole approximation [1] → Forbidden transitions accessible [1], TPSE can dominate [2]

✗ Study of advanced nanostructures hampered by a lack of efficient numerical and theoretical methods

Introduction
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Need for an efficient and general framework which goes beyond the 
electric dipole approximation by considering higher-order multipolar 

contributions to second-order processes

Electric Dipole (ED)
Magnetic Dipole (MD)

Electric Quadrupole (EQ)

[1] Rivera et al. Science 353, 263-269 (2016)
[2] Rivera et al. PNAS 114(52), 13607-12 (2017)
[4] Muniz et al. PRL 125(3), 033601 (2020)
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Fermi’s golden rule approach

• Second-order transition rate given by Fermi’s golden rule

1. Framework
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ED

ED

Plasmonic nanostructure 
of arbitrary shape

Quantum emitter
(atom, molecule, QD, etc.)

Interaction studied up to electric 
quadrupolar order
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EQ

[6] Smeets et al. PRA 107, 063516 (2023)



TPSE rate as a function of Purcell factors

1. Framework

7

Vacuum

Two-photon Purcell effect

Emitter’s position

• Normalized tensors: multipolar second-order 
transition moments

• Depend only on the electronic structure of the 
emitter

• Calculated analytically for a specific transition of 
the emitter

Emitter contribution

Environment contribution

• Tensors expressed as a function of one-photon Purcell factors of 
the two emitted quanta of complementary energy

• Depend only on the photonic environment

• Computed classically with COMSOL Multiphysics® (FEM)

➢ 𝑊𝜑: Power emitted by a classical radiating point source

➢ To calculate for different source orientations (6 for ED/MD, 15 for EQ)

[6] Smeets et al. PRA 107, 063516 (2023)



TPSE rate as a function of Purcell factors

1. Framework
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Environment contribution

Vacuum

Two-photon Purcell effect

Emitter’s position

• Tensors expressed as a function of one-photon Purcell factors of 
the two emitted quanta of complementary energy

• Depend only on the photonic environment

• Computed classically with COMSOL Multiphysics® (FEM)

➢ 𝑊𝜑: Power emitted by a classical radiating point source

➢ To calculate for different source orientations (6 for ED/MD, 15 for EQ)

➢ For interference: calculation of interference between classical 
multipolar sources

[6] Smeets et al. PRA 107, 063516 (2023)



2. Applications
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1) Silver nanodisk

Photon-photon

2D plasmonic silver 
nanodisk

• Purcell factors → Decomposition into radiative (photons) and non-radiative (plasmons) parts → 3 TPSE pathways

𝐷 = 25 nm

photon
𝜔𝑒𝑔- 𝜔

photon
𝜔

plasmon
𝜔

Photon-plasmon Plasmon-plasmon

photon
𝜔𝑒𝑔- 𝜔

plasmon
𝜔𝑒𝑔- 𝜔

plasmon
𝜔

10 nm

ℏ𝜔𝑒𝑔 = 2.64 eV
transition 𝑠 → 𝑠

[6] Smeets et al. PRA 107, 063516 (2023)



1) Silver nanodisk

2. Applications
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• 2ED: agreement with analytical results [4]

• 2EQ: new results [6]

• Off-axis: coupling with higher-order dark 
modes [6]

Bright mode

Dark modes

[4] Muniz et al. PRL 125(3), 033601 (2020) [6] Smeets et al. PRA 107, 063516 (2023)



2) Interference near graphene nanotriangle

• Metric ∈ [−1,1]

2. Applications

11

2 nm

𝐶

2D plasmonic 
graphene nanotriangle

transition 5𝑠 → 3𝑠
ℏ𝜔𝑒𝑔 = 0.967 eV

𝐸𝐹 = 0.31 eV, 𝐶 = 23 nm

photon
𝜔

plasmon
𝜔𝑒𝑔- 𝜔

Important interference effect

[7] Smeets et al. submitted (2024)



3) Nanoantenna for directional emission

2. Applications
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• Goal: emit the two photons from the TPSE in different directions at different frequencies

→ Two designs

2) Exploitation of a dipolar mode on two 
perpendicular silver nanorods of different sizes

1) Exploitation of a dipolar and a quadrupolar 
mode on a single silver nanorod

ℏ𝜔𝑒𝑔 = 2.55 eV 

(𝜆 = 486 nm)

[8] Smeets et al. submitted (2024)



3) Nanoantenna for directional emission

2. Applications
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• 𝑃𝑥 dominates

• The two modes contribute to the same 
TPSE peak (symmetric spectrum)

✓

𝛾ph−ph
2

𝛾0
2 = 5.4 104

✓ High quantum efficiency

𝜂(2) ≔
𝛾ph−ph

2

𝛾 2 = 83%

✓ Different radiation patterns

[8] Smeets et al. submitted (2024)

• Parameters (square section): 

→ 𝑑 = 15 nm

→ 𝐿 = 412 nm, 𝑊 = 39 nm

→ 𝑓1 = 0.34 (𝜆 = 1.43 µm)

→ 𝑓2 = 0.66 (𝜆 = 736 nm)



2. Applications
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• 𝑃𝑥 , 𝑃𝑦, 𝐹𝑥𝑦 dominates

→ 𝐹𝑥𝑦: correction from off-diagonal 

elements of the Green’s function

• The two modes contribute to the same 
TPSE peak (symmetric spectrum)

✓

𝛾ph−ph
2

𝛾0
2 = 7.5 104, 𝜂(2) = 77%

✓ Different radiation patterns

• Parameters (square section): 

→ 𝑑 = 15 nm

→ 𝐿1 = 289 nm, 𝑊1 = 36 nm

→ 𝐿2 = 146 nm, 𝑊2 = 21 nm

→ 𝑓1 = 0.42 (𝜆 = 1.16 µm)

→ 𝑓2 = 0.58 (𝜆 = 838 nm)

[8] Smeets et al. submitted (2024)

3) Nanoantenna for directional emission



Conclusion

• Framework [6,7]

→ Efficiently computes TPSE rate of a quantum emitter near an arbitrary shaped nanostructure
beyond the electric dipole approximation, including interferences

→ Based on the computation of Purcell factors via classical simulations

✓ Allows the study of complex geometries

✓ Allows the separate calculation of the radiative and non-radiative channels

→ Efficient and useful tool for system optimization (emitter and environment)

→ Quantum applications

• Interference [7] between 2ED and 2EQ transitions increase total TPSE rate by 63 %
near a graphene nanotriangle

• Tailoring directionality [8]

→ Two nanoantenna designs to emit TPSE photons in different directions

→ Directivity can be improved with hybrid metal-dielectric nanostructures

15
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[6] Smeets et al. PRA 107, 063516 (2023)
[7] Smeets et al. Submitted (2024)
[8] Smeets et al. Submitted (2024)

Two-photon 
spontaneous emission



Bibliography

• [1] Rivera et al. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263-269 (2016)

• [2] Rivera et al. Making two-photon processes dominate one-photon processes using mid-IR phonon polaritons. 
Proceedings of the National Academy of Sciences 114(52), 13607-12 (2017)

• [3] A. Hayat et al. High-rate entanglement source via two-photon emission from semiconductor quantum wells. Phys. 
Rev. B 76, 035339 (2007)

• [4] Muniz et al. Two-photon spontaneous emission in atomically thin plasmonic nanostructures. Physical Review Letters
125(3), 033601 (2020)

• [5] Muniz et al. Quantum two-photon emission in a photonic cavity. Phys. Rev. A 100, 023818 (2019)

• [6] Smeets et al. General framework for two-photon spontaneous emission near plasmonic nanostructures. Phys. Rev. A 
107, 063516 (2023)

• [7] Smeets et al. Interference between multipolar two-photon transitions in quantum emitters near plasmonic 
nanostructures. Submitted (2024)

• [8] Smeets et al. Tailoring directivity of two-photon spontaneous emission using plasmonic nanoantennas. Submitted
(2024)

16





• Former derivation [4,5]

→ Only for the 2ED contribution

→ Can be applied only for symmetric structures 
with the emitter at specific positions

TPSE rate derivations

1. Framework
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[4] Muniz et al. PRL 125(3), 033601 (2020)
[5] Muniz et al. PRA 100, 023818 (2019)
[6] Smeets et al. PRA 107, 063516 (2023)
[7] Smeets et al. Submitted (2024)

• Our derivation [6,7]

→ 2ED, 2MD, 2EQ contributions + interferences

→ Can be applied for arbitrary shaped nanostructures 
with the emitter at any position



Framework extension

• Including interferences in the total TPSE rate

• Interferences must be considered when the ratio between two multipolar pathways is greater than 
2.5 10−3 since they can lead to a modification greater than 10 % of the total transition rate

• When magnetic transitions are negligible and mixed transitions are forbidden: 3 contributions

• Need to calculate TPSE rates in vacuum → Analytical calculation

1. Framework
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Interference between multipolar 
TPSE channels

Interference between the 
2ED and the 2EQ channels

Ideally of the same order of magnitude 
for greater interference effects



Interference as a function of Purcell factors

• Tensors 𝐹 expressed as a function of one-photon Purcell factors, present for the two emitted quanta 
with complementary energies

→ Can be positive or negative ⇒ Increase or decrease of the total TPSE rate

→ Quantum interference computed via interferences between classical multipolar sources

2. Applications
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Vacuum
Emitter contribution Environment contribution

Purcell relative to the 
superposition of an ED 
along Ԧ𝑒𝑖 + an EQ along 
Ԧ𝑒𝜇 (15 combinations)

Purcell relative to 
an ED along Ԧ𝑒𝑖 (3)

Purcell relative to 
an EQ along Ԧ𝑒𝜇 (5)



2. Interference
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