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1 Introduction

Since 1939 [1] all particles, be elementary or not, must fall into Wigner’s classification that,
excluding some exotic cases, see e.g. [2, 3], assigns two parameters to every particle in 4d —
spin and mass. The two parameters are associated with unitary irreducible representations
of the Poincaré algebra in 4d and provide us with a list of free elementary systems that are
consistent with quantum mechanics and Poincaré symmetry. A fundamental question is which
multiplets of particles admit consistent classical and, then, maybe quantum theories. Very few
options are available at present with varying degrees of (in)consistency at the quantum level,
e.g. gauge theories, (super)gravities, string theories, massive (bi)gravities [4–7] and a handful
of higher spin gravities [8]. There is also a great disparity between low spin and higher spins.

Facts and reality tell us that there are plenty of massive higher-spin particles that are
non-elementary, e.g. hadrons or nuclei, with many of the latter being stable. Whenever the
gravitational and electromagnetic fields are small enough (which is not hard to arrange) the
particles can effectively be treated as elementary and are known to exhibit electromagnetic
and gravitational interactions. It then comes as a surprise that there does not exist a
simple theoretical gadget to construct such (effective) interactions that maintain the correct
number of degrees of freedom when interactions are introduced, which can be thought of as a
generalized Boulware-Deser problem [9] or not unrelated Velo-Zwanziger one [10].
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Theoretically, massive higher-spin fields can be described by symmetric (gamma)-traceless
(spin)-tensors Φµ1...µs(x), [11–13]. The price for the manifest Lorenz invariance is that Φµ1...µs

contains more components than the number of physical degrees of freedom, 2s + 1. The
redundant components are to be eliminated via the transversality constraint ∂νΦνµ2...µs = 0,
whose Lagrangian implementation requires a host of auxiliary fields [11–13]. It is a challenge
to prevent these unphysical degrees of freedom from propagation when interactions are
turned on, which requires a tedious analysis of Hamiltonian constraints. A more streamlined
approach is to enlarge the field content even more, see e.g. [14–20], as to introduce the
Stueckelberg-like gauge symmetries. Consistent interactions have to be gauge invariant, at
the very least, but certain additional assumptions on the number of derivatives are needed.

The chiral approach has been proposed recently in [21]. The idea is to eliminate the need
for the transversality constraint by introducing a chiral field ΦA1...A2s in (2s+ 1)-dimensional
representation (2s, 0) of the Lorentz algebra sl(2,C). Since there are no redundant components,
interactions are easy to introduce. However, the discrete symmetries, most importantly the
parity, are difficult to implement. Nevertheless, it was demonstrated in [22] that chiral and the
usual (worth calling it symmetric) approaches are equivalent up to spin-two. Other ideas to
introduce interactions include covariant techniques [23–26] and the light-cone gauge [27–29].

One easy-to-formulate open problem is how to make massive higher-spin fields propagate
on electromagnetic and gravitational backgrounds. A subproblem, which we address in the
present paper, is to restrict to the constant electromagnetic background. Massive spin-one
fields interacting with an external electromagnetic field can be obtained via the Brout-
Englert-Higgs mechanism. Therefore, the first nontrivial case is that of the massive spin
three-half. The story of the spin three-half has been quite long and often negative, see
e.g. [10, 18, 30–38] and references therein/thereon. For the case of genuine higher-spin fields
see e.g. [17, 20, 39–43].

For constant electromagnetic backgrounds some results were obtained from string theory,
see e.g. [36–39, 42, 44, 45]. However, the space-time dimension is fixed and cannot be dialed
to 4 easily [42], which is the main case of interest. Instead, one can compactify to 4d to
find that different states mix when interactions are turned on [36–38, 42], which also occurs
before compactification [39, 42]. Therefore, it does not seem possible to use string theory as
a “generator” of consistent higher-spin theories featuring just a single spin-s field.

While the problem of higher spin interactions may seem a bit esoteric, the recent applica-
tions to the gravitational wave physics have contributed to the Renaissance of the topic, see
e.g. [46–51]. Indeed, instead of solving Einstein equations for two compact objects one can ap-
ply the effective field theory approach to model well-separated compact rotating objects (black
holes, neutron stars, etc.) as massive higher-spin particles undergoing specific types of gravita-
tional interactions that cause them to move as if they were in general relativity. Different types
of interactions can correspond to different types of compact objects with black holes argued
to be described by the simplest theory of this kind. Via the classical double-copy construction
one can take the “square root” of the problem to search for electromagnetic/non-abelian gauge
interactions of massive higher-spin fields instead of the gravitational ones, see e.g. [52–55].

In this paper, we reconsider the problem of the massive spin three-half field in a constant
electromagnetic background. We prefer to directly analyze the structure of the covariant
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constraints, which is equivalent to the Stueckelberg approach discussed above. We formulate
the most general ansatz for interactions and derive the algebraic system of equations that
determines consistent interactions. An explicit solution is obtained as well and, in a sense,
our paper is a development of the very important [56] that settled some longstanding issues,
perhaps, for the first time. Lastly, we perform the transformation to the chiral approach as
to reveal the structure of non-minimal couplings needed to restore the parity.

Additional bits of motivation to study the constant electromagnetic background include:
(a) it is inaccessible by the usual amplitude techniques; (b) closed-form expressions for all
orders in the electromagnetic field can be obtained, which then can serve as a starting point
for the derivative expansion.

The outline of the rest of the paper is as follows. We briefly recall the story of the
massive spin three-half field in the Minkowski space. Then, we introduce the minimal gauge
interaction and point out where the first obstruction is coming from and how it can be
cured. Next, we write down the most general ansatz for electromagnetic and Yang-Mills
interactions and analyze the differential consequences of the Lagrangian equations of motion
to make sure that the auxiliary fields vanish on-shell. Afterward, we discuss the space of
solutions and construct a simple exact one, which is nonpolynomial in the field strength
of the background field. Lastly, we perform the transformation to the chiral approach to
the leading order in the field strength.

2 Free massive spin-three-half

Let us start with the 4d Rarita-Schwinger [30] action already in the spinorial language. The
vector-spinor ψµ, which is usually considered in the literature, can be decomposed into (2, 1),
(1, 2), (1, 0) and (0, 1) irreducible representations of the Lorentz algebra sl(2,C):1 ψABA′ and
its conjugate ψ̄AA′B′ ; auxiliary spinor field ξA and its conjugate ξ̄A′ , the latter two being the
γ-trace γµψµ and the former two representing the γ-trace-free part of ψµ.

Fields ψABA′ and ψ̄AA′B′ are the physical fields for which we need to get the Dirac-like
equations. However, there are unphysical longitudinal modes that need to be removed via
the transversality constraints

∂CC
′
ψACC′ = 0 , (2.1a)

∂CC
′
ψ̄CC′A′ = 0 . (2.1b)

Altogether, there are too many equations for the system to be Lagrangian, and auxiliary
fields ξA and ξ̄A

′ help to solve this problem. Indeed, the Lagrangian density of the free
field in the Minkowski spacetime is2

L =
√

2ψ̄AA′B′
∂CA′ψACB′ + 1

2m
(
ψABA

′
ψABA′ − ψ̄AA

′B′
ψ̄AA′B′

)
(2.2)

− 3
√

2ξ̄A′
∂AA′ξA + 3m

(
ξAξA − ξ̄A

′
ξ̄A′

)
+

√
2
(
ψABA

′
∂AA′ξB + ψ̄AA

′B′
∂AA′ ξ̄B′

)
,

1A,B,C, . . . = 1, 2 and A′, B′, C′, . . . = 1, 2 are the indices of the (anti)-fundamental representations of
sl(2,C). They are raised and lowered with the help of ϵAB = −ϵBA as vA = ϵABvB , vB = vAϵAB , idem for
primed indices. Note that the rules also apply to ϵAB itself and ϵA

B = −ϵB
A = δA

B . Round brackets denote
the symmetrization of the indices enclosed.

2Note that the coordinates xAA′
and, hence, the derivative ∂AA′ are chosen to be anti-Hermitian.
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where the coefficients are chosen in order to find the desired constraints: the vanishing of
the auxiliary fields ξA, ξ̄A′ and the transversality constraint (2.1). The equations of motion
obtained from this Lagrangian density read

EψABA′ := mψABA′ +
√

2∂ B′

(A ψ̄B)A′B′ +
√

2∂(A|A′|ξB) = 0 , (2.3a)

Eψ̄AA′B′ := −mψ̄AA′B′ +
√

2∂C(A′ψ|AC|B′) +
√

2∂A(A′ ξ̄B′) = 0 , (2.3b)

EξA := 6mξA − 3
√

2∂AA′ ξ̄A
′ −

√
2∂CC′

ψACC′ = 0 , (2.3c)

E ξ̄A′ := −6mξ̄A′ − 3
√

2∂AA′ξA −
√

2∂CC′
ψ̄CC′A′ = 0 . (2.3d)

The desired constraints can be found by combining the equations of motion and derivatives
thereof. For example, the expression

∂BB
′
EψABB′ +

√
2

2 mEξA + 1
2∂

A′
A E ξ̄A′ ≡ 3

√
2m2ξA (2.4)

gives on-shell the constraint ξA = 0. Equivalently, the following expression

∂BB
′
Eψ̄BB′A′ −

√
2

2 mE ξ̄A′ + 1
2∂

A
A′EξA ≡ 3

√
2m2ξ̄A′ (2.5)

gives the constraint ξ̄A′ = 0. By plugging these constraints back into the equations of motion,
we obtain the two Dirac-like equations of motion for the physical fields

mψABA′ +
√

2∂ B′

(A ψ̄B)A′B′ = 0 , (2.6a)

−mψ̄AA′B′ +
√

2∂C(A′ψ|AC|B′) = 0 , (2.6b)

from (2.3a) and (2.3b), and the transversality constraints (2.1) from (2.3c), (2.3d). The
relative coefficient between the kinetic and the mass terms is chosen to recover the familiar
Klein-Gordon equation of motion (

□−m2)ψABA′ = 0 , (2.7)

where □ := ∂AA′∂AA
′ , which is obtained by solving (2.6b) with respect to ψ̄AA′B′ and

plugging it into (2.6a).

3 Minimal electromagnetic/Yang-Mills interactions

In this section, we attempt to introduce the minimal electromagnetic/Yang-Mills interactions
and show how they modify/destroy the constraints, the problem that can be cured by
introducing higher order/nonminimal interactions. The covariant derivative is defined as

D = d+ A , D = dxµ eAA
′

µ DAA′ , (3.1)

where A ≡ Aµ dx
µ is the electromagnetic/Yang-Mills gauge field. The vierbein eAA

′
µ is a bit

of an exaggeration since we consider the Minkowski spacetime. Given that u(N) ⊂ so(2N)
we consider so(2N) gauging, i.e. the fields are in the vector representation of so(2N), e.g.
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ϕ ≡ ϕi, i, j, k, . . . = 1, . . . , 2N . The gauge field A in the adjoint is Aij = −Aji. Whenever no
ambiguity arises we omit the so(2N)-indices. The commutator of two covariant derivatives

[DAA′ , DBB′ ]• := FABA′B′• ≡ 1
2ϵA

′B′FAB • +1
2ϵABFA

′B′• , (3.2)

defines the field strength. Whenever we write F we mean the full field strength FABA′B′ ,
i.e. both its selfdual FAB and anti-selfdual FA′B′ components, e.g. g(F ) means a function
g(FAB, FA′B′). Whenever two indices of the covariant derivatives are contracted we find

DAA′D A′
B • ≡ 1

2[DAA′ , D A′
B ] • +1

2{DAA′ , D A′
B }• ≡ 1

2FAB • +1
2ϵAB□• , (3.3a)

DAA′DA
B′• ≡ 1

2[DAA′ , DA
B′ ] • +1

2{DAA′ , DA
B′}• ≡ 1

2FA
′B′ • +1

2ϵA
′B′□• , (3.3b)

Now we simply replace all partial derivatives with the covariant ones in Lagrangian (2.2),
which gives

L =
√

2ψ̄AA′B′
DC

A′ψACB′ + 1
2m

(
ψABA

′
ψABA′ − ψ̄AA

′B′
ψ̄AA′B′

)
(3.4)

− 3
√

2ξ̄A′
DAA′ξA + 3m

(
ξAξA − ξ̄A

′
ξ̄A′

)
+
√

2
(
ψABA

′
DAA′ξB + ψ̄AA

′B′
DAA′ ξ̄B′

)
.

The equations of motion change accordingly

EψABA′ := mψABA′ +
√

2D B′

(A ψ̄B)A′B′ +
√

2D(A|A′|ξB) = 0 , (3.5a)

Eψ̄AA′B′ := −mψ̄AA′B′ +
√

2DC
(A′ψ|AC|B′) +

√
2DA(A′ ξ̄B′) = 0 , (3.5b)

EξA := 6mξA − 3
√

2DAA′ ξ̄A
′ −

√
2DCC′

ψACC′ = 0 , (3.5c)

E ξ̄A′ := −6mξ̄A′ − 3
√

2DAA′ξA −
√

2DCC′
ψ̄CC′A′ = 0 . (3.5d)

The constraint in the case of the minimal interaction must have the same form (2.4) but
with covariant derivatives instead of partial ones

DBB′
EψABB′ +

√
2

2 mEξA + 1
2D

A′
A E ξ̄A′ = 0 . (3.6)

It reduces to

3
√

2m2ξA +
√

2FABξB −
√

2
2 FB

′C′
ψ̄AB′C′ = 0 . (3.7)

The first two terms one can rewrite as MA
B ξB where MA

B is close to the unit matrix up to
3
√

2m2 since F is assumed small. It is the last term that prevents us from getting ξA = 0.
Likewise, we do not recover the transversality constraints.3

3Maybe a more detailed analysis can still prove the equations be admissible at least in the sense of describing
the right number of degrees of freedom. Indeed, the last expression seems consistent with the analysis of [18]
based on the Stueckelberg gauge symmetry (to recover the constraint one needs to get the equation for the
Stuckelberg field and set it to zero.
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4 Slightly nonminimal Yang-Mills interactions

As is well-known, the problem found above can partially be solved by adding nonminimal
interactions, i.e. interactions that have F . Since the unwanted term in the constraint (3.7)
is of the first order in F , one expects that it can be canceled by adding nonminimal terms
linear in F into the Lagrangian (3.4) and also, importantly, into the constraint (3.6). For
the Lagrangian we can write

L =
√

2ψ̄AA′B′
DC

A′ψACB′ + 1
2m

(
ψABA

′
ψABA′ − ψ̄AA

′B′
ψ̄AA′B′

)
(4.1)

− 3
√

2ξ̄A′
DAA′ξA + 3m

(
ξAξA − ξ̄A

′
ξ̄A′

)
+

√
2
(
ψABA

′
DAA′ξB + ψ̄AA

′B′
DAA′ ξ̄B′

)
+ b1

(
ξAF

ABξB − ξ̄A′FA
′B′
ξ̄B′

)
+ b2

(
ψABA′FACψ

BCA′ − ψ̄AA′B′FA
′

C′ψ̄
AB′C′)

+ b3
(
ψABA′FA

′

B′ψ
ABB′ − ψ̄AA′B′FABψ̄

BA′B′)+ b4
(
ψABA′FAB ξ̄A

′ − ψ̄AA′B′FA
′B′
ξA
)
.

It gives the following equations of motion

EψABA′ :=mψABA′ +
√

2D B′

(A ψ̄B)A′B′ +
√

2D(A|A′|ξB)

+2b2F
C

(A ψB)CA′ +2b3F
B′

A′ ψABB′ +b4FAB ξ̄A′ =0, (4.2a)

Eψ̄AA′B′ :=−mψ̄AA′B′ +
√

2DC
(A′ψ|AC|B′)+

√
2DA(A′ ξ̄B′)

−2b2F
C′

(A′| ψ̄A|B′)C′−2b3F
B

A ψ̄BA′B′−b4FA′B′ξA=0, (4.2b)

EξA :=6mξA−3
√

2DAA′ ξ̄A
′−

√
2DCC′

ψACC′ +2b1FABξ
B+b4F

A′B′
ψ̄AA′B′ =0, (4.2c)

E ξ̄A′ :=−6mξ̄A′−3
√

2DAA′ξA−
√

2DCC′
ψ̄CC′A′−2b1FA′B′ ξ̄B

′−b4F
ABψABA′ =0. (4.2d)

We also do not forget to add to the constraint all possible terms linear in F , which gives

DBB′
EψABB′ +

√
2

2 mEξA + 1
2D

A′
A E ξ̄A′ + c1F

B
A EξB + c2F

A′B′
Eψ̄AA′B′ = 0 . (4.3)

In order to obtain the desired constraint, the vanishing of the auxiliary field, we need to
cancel all terms with derivatives, which leads to

b1 = − 1
m
, b2 = 0 , b3 = − 1

2m , b4 = 0 , c1 = 0 , c2 = −
√

2
2m . (4.4)

The constraint reduces to

3
√

2m2ξA − 1
m
DBB′

F C′
B′ ψABC′ + 1

m
D A′
A FA′B′ ξ̄B

′ −
√

2
2m2F

A′B′
F B
A ψ̄BA′B′ = 0 . (4.5)

We assume that the background gauge field satisfies its equations of motion, i.e. D B′
A FA′B′ = 0,

DB
A′FAB = 0 (one can add a source as well), which eliminates the 2nd and the 3rd terms.

As a result, we are left with, cf. [56],

3
√

2m2ξA −
√

2
2m2F

A′B′
F B
A ψ̄BA′B′ = 0 . (4.6)

We managed to get rid of the Fψ-term, but are left with the F 2ψ one. If the field strength is
small enough, this term can effectively be set to zero and we recover ξA = 0. By using this in
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the third and fourth equations of motion, we obtain the (covariant) transversality constraints
DCC′

ψACC′ = 0, DCC′
ψCC′A′ = 0. Therefore, the Lagrangian describes the right number of

degrees of freedom if the Yang-Mills field is small enough. The Lagrangian density reads

L=
√

2ψ̄AA′B′
DC

A′ψACB′ + 1
2m

(
ψABA

′
ψABA′ − ψ̄AA′B′

ψ̄AA′B′

)
(4.7)

−3
√

2ξ̄A′
DAA′ξA+3m

(
ξAξA− ξ̄A

′
ξ̄A′

)
+
√

2
(
ψABA

′
DAA′ξB+ ψ̄AA

′B′
DAA′ ξ̄B′

)
− 1
m

(
ξAF

ABξB− ξ̄A′FA
′B′
ξ̄B′

)
− 1

2m
(
ψABA′FA

′

B′ψ
ABB′ − ψ̄AA′B′FABψ̄

BA′B′)+O(F 2) ,

as obtained from (4.1) with (4.4).

5 Consistent Yang-Mills interactions

We found a consistent Lagrangian for massive spin three-half fields interacting with a small
vacuum Yang-Mills field. While for some practical applications the Lagrangian may suffice,
it is interesting to solve the problem without making any truncations. After introducing
the minimal interaction, the undesired term in the constraint is of the form Fψ̄, see (3.7).
By trying to cancel it with the first order nonminimal terms, the undesired term in the
constraint was pushed to F̄F ψ̄, see (4.6). It is clear that in trying to cancel an Fn-order
undesired terms in the constraint by introducing the next order nonminimal terms in the
Lagrangian should give some Fn+1-order undesired terms in the new constraint. Therefore,
let us construct a Lagrangian density with the most general nonminimal interactions, which
are parameterized by a number of functions of F . It reads

L =
√

2ψ̄AA′B′
DC

A′ψACB′ + 1
2m

(
ψABA

′
ψABA′ − ψ̄AA

′B′
ψ̄AA′B′

)
− 3

√
2ξ̄A′

DAA′ξA + 3m
(
ξAξA − ξ̄A

′
ξ̄A′

)
+
√

2
(
ψABA

′
DAA′ξB + ψ̄AA

′B′
DAA′ ξ̄B′

)
+
(
ψABA

′
g1(F )AB|CD;A′|B′ψCDB

′ − ψ̄AA
′B′
g1(F )A|B;A′B′|C′D′ψ̄

BC′D′)
+
(
ξAg2(F )A|BξB − ξ̄A

′
g2(F )A′|B′ ξ̄

B′)
+
(
ψABA

′
g3(F )AB;A′|B′ ξ̄B

′ − ψ̄AA
′B′
g3(F )A|B;A′B′ξ

B
)
, (5.1)

where g1(F )AB|CD;A′|B′ , g2(F )A|B and g3(F )AB;A′|B′ are arbitrary functions of F which vanish
at F = 0. Their index structure is the most general taking into account the index structure of
the fields with which they are contracted. The notation above means that the indices that are
not separated by “|” are symmetrized, and “;” separates primed and unprimed indices. Note
that with FAB, FA′B′ and ϵAB, ϵA′B′ we can only construct tensors with an even number
of indices of each sort. Therefore, we cannot add something like gAB|C;A′(F )ψABA′

ξC to
the action unless derivatives of F are introduced. Let us define two more functions of this
kind in order to generalize the constraint (3.6)

DBB′
EψABB′ +

√
2

2 mEξA+ 1
2D

A′
A E ξ̄A′ +h1(F )A|B;A′B′Eψ̄

BA′B′

+h2(F )A|BEξ
B = 0 . (5.2)

In order to simplify the problem let us restrict to the constant background, i.e. DF = 0.
Also, functions g1,2,3 and h1,2 are not irreducible tensors yet. It is usually a good idea to
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decompose everything into irreducible tensors, which gives

g1(F )AB|CD;A′|B′ = g1(F )ABCDA′B′ + 1
2g1(F )ABCDϵA′B′

+ g1(F )(A|(C|A′B′ϵ|B)|D) + 1
2g1(F )(A|(C|ϵ|B)|D)ϵA′B′

+ 1
3g1(F )A′B′ϵ(A|Cϵ|B)D + 1

6g1(F )ϵ(A|Cϵ|B)DϵA′B′ , (5.3a)

g2(F )A|B = g2(F )AB + 1
2g2(F )ϵAB , (5.3b)

g3(F )AB;A′|B′ = g3(F )ABA′B′ + 1
2g3(F )ABϵA′B′ , (5.3c)

h1(F )A|B;A′B′ = h1(F )ABA′B′ + 1
2h1(F )A′B′ϵAB , (5.3d)

h2(F )A|B = h2(F )AB + 1
2h2(F )ϵAB , (5.3e)

where all new functions on the right are completely symmetric in their indices. Let us also
recall that all the fermions are in the vector representation of so(2N) and, hence, all the
functions have two so(2N) indices, all of which are buried now in our notation. Since it may
lead to some confusion when getting the equations of motion let us give some examples, e.g.

ψABA
′
g1(F )AB|CD;A′|B′ψCDB

′ ≡ ψABA
′

i g1(F )ijAB|CD;A′|B′ψ
CDB′
j

= −ψABA′
i g1(F )jiCD|AB;B′|A′ψ

CDB′
j .

Here we performed the standard manipulations by swapping the two fermions and renaming
the dummy indices. This leads to the following property of the function g1

g1(F )ijAB|CD;A′|B′ = −g1(F )jiCD|AB;B′|A′ . (5.4)

Similarly, the function g2 has the following property

g2(F )ijA|B = −g2(F )jiB|A . (5.5)

These symmetry properties allow one to calculate the following contributions to the equations
of motion

δ

δψABA′

(
ψEFE

′
g1(F )EF |CD;E′|B′ψCDB

′) = 2g1(F )AB|CD;A′|B′ψCDB
′
, (5.6a)

δ

δξA

(
ξCg2(F )C|Bξ

B
)

= 2g2(F )A|BξB . (5.6b)

The function g3 couples ψ and ξ̄ and does not have any additional symmetry properties. The
corresponding contributions to the equations of motion read

δ

δψABA′

(
ψCDC

′
g3(F )CD;C′|B′ ξ̄B

′) = g3(F )AB;A′|B′ ξ̄B
′
, (5.7)

for ψABA
′ and

δ

δξ̄A′

(
ψABC

′
g3(F )AB;C′|B′ ξ̄B

′) ≡ δ

δξ̄A
′

i

(
ψABC

′
j g3(F )jkAB;C′|B′ ξ̄

B′
k

)
= −g3(F )jiAB;C′|A′ψ

ABC′
j ,

(5.8)
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for ξ̄. In order to enjoy the index-free notation again, we need to invoke the transposed of
the matrix g3 with respect to so(2N) indices, denoted gT3 ,

gT3 (F )ijAB;A′|B′ := g3(F )jiAB;A′|B′ . (5.9)

The last term in the equations of motion now becomes
δ

δξ̄A′

(
ψABC

′
g3(F )AB;C′|B′ ξ̄B

′) = −gT3 (F )AB;B′|A′ψABB
′
. (5.10)

Finally, the equations of motion are

EψABA′ := mψABA′ +
√

2D B′

(A ψ̄B)A′B′ +
√

2D(A|A′|ξB) + 2g1(F )ABCDA′B′ψCDB
′

− g1(F )ABCDψCDA′ − 2g1(F )(A|CA′B′ψ
CB′

|B) + g1(F )(A|Cψ
C

|B) A′ (5.11a)

+ 2
3g1(F )A′B′ψ B′

AB − 1
3g1(F )ψABA′ + g3(F )ABA′B′ ξ̄B

′ − 1
2g3(F )AB ξ̄A′ = 0 ,

Eψ̄AA′B′ := −mψ̄AA′B′ +
√

2DC
(A′ψ|AC|B′) +

√
2DA(A′ ξ̄B′) − 2g1(F )ABA′B′C′D′ψ̄

BC′D′

+ g1(F )A′B′C′D′ψ̄
C′D′

A + 2g1(F )ABC′(A′ψ̄
BC′

B′) − g1(F )(A′|C′ψ̄
C′

A|B′) (5.11b)

− 2
3g1(F )ABψ̄

B
A′B′ + 1

3g1(F )ψ̄AA′B′ − g3(F )ABA′B′ξ
B + 1

2g3(F )A′B′ξA = 0 ,

EξA := 6mξA − 3
√

2DAA′ ξ̄A
′ −

√
2DCC′

ψACC′ + 2g2(F )ABξB

− g2(F )ξA + gT3 (F )ABA′B′ψ̄
BA′B′ + 1

2g
T
3 (F )A′B′ψ̄

A′B′
A = 0 , (5.11c)

E ξ̄A′ := −6mξ̄A′ − 3
√

2DAA′ξA −
√

2DCC′
ψ̄CC′A′ − 2g2(F )A′B′ ξ̄

B′

+ g2(F )ξ̄A′ − gT3 (F )ABA′B′ψABB
′ − 1

2g
T
3 (F )ABψABA′ = 0 . (5.11d)

The constraint (5.2) can be unfolded into

DBB′
EψABB′ +

√
2

2 mEξA + 1
2D

A′
A E ξ̄A′ + h1(F )ABA′B′Eψ̄

BA′B′

− 1
2h1(F )A′B′Eψ̄

A′B′

A + h2(F )ABEξ
B − 1

2h2(F )EξA = 0 . (5.12)

Now, we can develop the constraint by using the expressions of the equations of motion,
which leads to a lengthy expression in appendix A. By setting to zero all coefficients in front
of Dξ, ψ and Dψ terms we get the following system of linear equations

g1(F )ABCDA′B′ =0, (5.13a)
g1(F )ABCD=0, (5.13b)

g1(F )ABA′B′ =−1
2g3(F )ABA′B′ , (5.13c)

g1(F )AB=0, (5.13d)

g1(F )A′B′ =−3
2g2(F )A′B′ , (5.13e)

g1(F )= 1
2g2(F ), (5.13f)

gT3 (F )ABA′B′ = g3(F )ABA′B′ , (5.13g)
g3(F )AB = 0 = gT3 (F )AB , (5.13h)

h1(F )ABA′B′ = −
√

2
2 g3(F )ABA′B′ , (5.13i)

h1(F )A′B′ = −
√

2 g2(F )A′B′ , (5.13j)
h2(F )AB = 0 , (5.13k)

h2(F ) =
√

2
6 g2(F ) , (5.13l)

– 9 –



J
H
E
P
0
8
(
2
0
2
4
)
1
7
3

and two quadratic equations

FA′B′ +mg2(F )A′B′ −
1
6g2(F )A′B′g2(F ) (5.13m)

−1
2g3(F )ABA′B′g2(F )AB + 1

2g3(F )ABC′(A′g3(F )ABC
′

B′) = 0 ,

m
(
g3(F )ABA′B′ + g3(F )ABA′B′

)
− 1

6
(
g3(F )ABA′B′g2(F ) + g2(F ) g3(F )ABA′B′

)
−
(
g3(F )(A|CA′B′g2(F )C|B) + g2(F )(B′|C′g3(F ) C′

AB|A′)

)
(5.13n)

+g2(F )A′B′g2(F )AB + g3(F )(A|CC′(A′|g3(F ) C C′

|B) |B′) = 0 .

We have two nonlinear algebraic equations that constrain functions g2(F )AB, g2(F ) and
g3(F )ABA′B′ . Then, all the other functions, g1’s, h1’s, h2 and even gT3 , are determined
by g2(F )AB, g2(F ) and g3(F )ABA′B′ . In particular, note that the relation (5.13g) implies
that g3(F )ABA′B′ is a symmetric matrix. Since all these equations have to be satisfied, the
equations of motion (5.11a), (5.11b), (5.11c) and (5.11d) become

EψABA′ := mψABA′ +
√

2D B′

(A ψ̄B)A′B′ +
√

2D(A|A′|ξB) + g3(F )(A|CA′B′ψ
CB′

|B)

− g2(F )A′B′ψ
B′

AB − 1
6g2(F )ψABA′ + g3(F )ABA′B′ ξ̄B

′ = 0 , (5.14)

Eψ̄AA′B′ := −mψ̄AA′B′ +
√

2DC
(A′ψ|AC|B′) +

√
2DA(A′ ξ̄B′) − g3(F )ABC′(A′ψ̄

BC′

B′)

+ g2(F )ABψ̄BA′B′ + 1
6g2(F )ψ̄AA′B′ − g3(F )ABA′B′ξ

B = 0 , (5.15)

EξA := 6mξA − 3
√

2DAA′ ξ̄A
′ −

√
2DCC′

ψACC′+

+ 2g2(F )ABξB − g2(F )ξA + g3(F )ABA′B′ψ̄
BA′B′ = 0 , (5.16)

E ξ̄A′ := −6mξ̄A′ − 3
√

2DAA′ξA −
√

2DCC′
ψ̄CC′A′ − 2g2(F )A′B′ ξ̄

B′+

+ g2(F )ξ̄A′ − g3(F )ABA′B′ψABB
′ = 0 , (5.17)

The constraint (5.12) reduces to

DBB′
EψABB′ +

√
2

2 mEξA + 1
2D

A′
A E ξ̄A′ −

√
2

2 g3(F )ABA′B′Eψ̄
BA′B′

+
√

2
2 g2(F )A′B′E

ψ̄ A′B′

A −
√

2
12 g2(F )EξA = 0 . (5.18)

Plugging in the equations of motion and taking into account the constraints for g’s gives((
FAB+mg2(F )AB−1

6g2(F )g2(F )AB−1
2g2(F )A′B′g3(F )

A′B′

AB +1
2g3(F )(A|CA′B′g3(F )

CA′B′

|B)

)

+
(
−3m2+1

2mg2(F )−1
2mg2(F )+ 1

12g2(F )g2(F )+1
4g3(F )CDA′B′g3(F )

CDA′B′
)
ϵAB

)
ξB =0,

(5.19)
which is equivalent to the desired vanishing of the auxiliary field ξA = 0, except for some
extreme values of F when the matrix vanishes, but the perturbation theory becomes inadequate
long before that. Let us remark that the first line of this expression looks like the complex
conjugate of the left-hand side of (5.13m), but with a twisted order of the functions in each
term. It means that the first line vanishes for abelian interactions.
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6 Constant electromagnetic field

Let us focus on the constant electromagnetic background. That it is electromagnetic means
that we gauged so(2) and, hence, FAB ≡ FAB

i
j ≡ FABϵ

i
j , idem for FA′B′ . Therefore,

whenever two Lorentz indices are contracted FACFB
C = 1

2ϵABFMNF
MN we get a scalar

F 2 = FMNF
MN , which is not true for a generic Yang-Mills interaction. “Constant” means

DµFAB = ∂µFAB = 0, idem for FA′B′ . Given that we now have only ϵAB and FAB, which
have opposite symmetries, we can constrain the structure functions further

g2(F )AB = − 1
m

(
1 − f1(F 2, F̄ 2)

)
FAB , (6.1a)

g2(F ) = 6mf2(F 2, F̄ 2) , (6.1b)

g3(F )ABA′B′ = − 1
2m3

(
1 + ib+ f3(F 2, F̄ 2)

)
FABFA′B′ , (6.1c)

where f1, f2 and f3 are arbitrary functions of F 2 and F̄ 2. Note that with the normalization
above these functions are dimensionless and the equations are more elegant. With this ansatz,
the algebraic equations (5.13m) and (5.13n) become, respectively,

C1 := F 2

4m4
(
1+ ib

)
− f̄1−f2 + f̄1f2−

F 2

4m4
(
1+ ib

)
f1 + F 2

4m4 f3−
F 2

4m4 f1f3 = 0 , (6.2a)

C2 := 2
(
f1 + f̄1

)
−
(
(1+ ib)f2 +(1− ib)f̄2

)
+
(
f3 + f̄3

)
−2f1f̄1−

(
f2f3 + f̄2f̄3

)
= 0 . (6.2b)

The problem is therefore reduced to these two scalar algebraic equations. The first term of
the first equation implies that f1 = f2 = f3 = 0 is not a solution, showing why the first and
the second order nonminimal interactions are not sufficient. Note also that C2 ≡ C̄2.

In the abelian case, the equations of motion (5.14), (5.15), (5.16) and (5.17) become

EψABA′ :=mψABA′+
√

2D B′

(A ψ̄B)A′B′+
√

2D(A|A′|ξB)−
1

2m3

(
1+ib+f3

)
FA′B′FC(Aψ

CB′

B)

+ 1
m

(
1−f̄1

)
FA′B′ψ B′

AB −mf̄2ψABA′− 1
2m3

(
1+ib+f3

)
FABFA′B′ ξ̄B

′ =0, (6.3)

Eψ̄AA′B′ :=−mψ̄AA′B′+
√

2DC
(A′ψ|AC|B′)+

√
2DA(A′ ξ̄B′)+

1
2m3

(
1−ib+f̄3

)
FABFC′(A′ψ̄BC

′

B′)

− 1
m

(
1−f1

)
FABψ̄

B
A′B′+mf2ψ̄AA′B′+ 1

2m3

(
1−ib+f̄3

)
FABFA′B′ξB=0, (6.4)

EξA :=6mξA−3
√

2DAA′ ξ̄A
′−

√
2DCC′

ψACC′− 2
m

(
1−f1

)
FABξ

B

−6mf2ξA−
1

2m3

(
1−ib+f̄3

)
FABFA′B′ψ̄BA

′B′ =0, (6.5)

E ξ̄A′ :=−6mξ̄A′−3
√

2DAA′ξA−
√

2DCC′
ψ̄CC′A′+ 2

m

(
1−f̄1

)
FA′B′ ξ̄B

′

+6mf̄2ξ̄A′+ 1
2m3

(
1+ib+f3

)
FABFA′B′ψABB

′ =0. (6.6)

The constraint (5.18) reduces to

DBB′
EψABB′ +

√
2

2 mEξA+1
2D

A′
A E ξ̄A′ +

√
2

4m3

(
1 + ib+ f3

)
FABFA′B′Eψ̄

BA′B′

−
√

2
2m

(
1 − f̄1

)
FA′B′Eψ̄

A′B′

A −
√

2
2 mf̄2E

ξ
A = 0 . (6.7)
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With the help of the definitions (6.1) the constraint (5.19) simplifies to(
1−f2 + f̄2−f2f̄2−

F 2F̄ 2

48m8

(
1+b2 +f3 + f̄3 +ibf̄3−ibf3 +f3f̄3

))
ξA−

1
3 C̄1 FABξ

B = 0 , (6.8)

where C1 was defined in (6.2a). The last term vanishes, in fact, which allows us to simplify
it further(

1 − f2 + f̄2 − f2f̄2 −
F 2F̄ 2

48m8

(
1 + b2 + f3 + f̄3 + ibf̄3 − ibf3 + f3f̄3

))
ξA = 0 . (6.9)

The final form of the constraint above ensures that the auxiliary field vanishes, save for
some extreme values of F 2.

6.1 Solution at low orders

It is instructive to see how the solution of the algebraic constraints (6.2a) and (6.2b) look
like at low orders. Below we expand f1, f2 and f3 to the leading order

f1(F 2, F̄ 2) = a10
F 2

4m4 + a01
F̄ 2

4m4 + O(F 4) , (6.10a)

f2(F 2, F̄ 2) = b10
F 2

4m4 + b01
F̄ 2

4m4 + O(F 4) , (6.10b)

f3(F 2, F̄ 2) = c10
F 2

4m4 + c01
F̄ 2

4m4 + O(F 4) . (6.10c)

The equations are therefore satisfied, up to the first order in F 2, if and only if

b10 = 1 + ib− ā01 , (6.11a)
b01 = −ā10 , (6.11b)

c10 =
(
1 + ib

)2 − 3
(
a10 + ā01

)
+ ib

(
a10 − ā01

)
− c̄01 . (6.11c)

The freedom in the interactions is given by a real parameter b and three of the six complex
parameters defining the functions f ’s. By using this first order (in F 2 and F̄ 2) expansion of
functions f ’s, let us write the equations of motion (6.3) and (6.5) up to the third order in F

mψABA′+
√

2D B′

(A ψ̄B)A′B′+
√

2D(A|A′|ξB)+
1
m
FA′B′ψ B′

AB − 1
2m3

(
1+ib

)
F(A|CFA′B′ψ

CB′

|B)

− 1
2m3

(
1+ib

)
FABFA′B′ ξ̄B′

− 1
4m3

((
1+ib)−ā01

)
F 2ψABA′+ 1

4m3 ā10F̄
2ψABA′ (6.12)

− 1
4m5 a10F

2FA′B′ψ B′

AB − 1
4m5 a01F̄

2FA′B′ψ B′

AB =0,

6mξA−3
√

2DAA′ ξ̄A′
−
√

2DCC′
ψACC′− 2

m
FABξ

B− 3
2m3

((
1+ib)−ā01

)
F 2ξA+ 3

2m3 ā10F̄
2ξA (6.13)

− 1
2m3

(
1−ib

)
FABFA′B′ ψ̄BA′B′

+ 1
2m5 a10F

2FABξ
B+ 1

2m5 a01F̄
2FABξ

B =0.

As we knew already, the equations are completely fixed at the first order in F . The ambiguity
pops up at the second order. It seems impossible to redefine the fields so that some free
coefficients are absorbed. Therefore, starting from the second order we observe some nontrivial
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Wilson coefficients. Let us note that starting from the second order the constraint ξA = 0
does not imply the transversality constraint for ψABA′ but

DCC′
ψACC′ = −

√
2

4m3
(
1 − ib+ f̄3

)
FABFA′B′ψ̄BA

′B′
, (6.14)

which is obtained by setting ξA = 0 in the equation of motion (6.5). It is impossible to choose
the coefficients to get the transversality constraint.

6.2 Exact solution

The main system of algebraic equations (6.2a), (6.2b) admits plenty of solutions. In general,
we expect infinitely many free Wilson coefficients that parameterize nonminimal interactions.
There does not seem to exist polynomial solutions. Here, we will construct an exact solution.4

In view of the fact that selfdual fields, i.e. the ones where FAB = 0 or FA′B′ = 0, play an
important role in physics, let us assume that f ’s depend either on F 2 or F̄ 2. Since function
f1 appears as f1 and f̄1 in (6.2a), it may be easier to find such a solution if we assume
f1 = 0. In this case, eq. (6.2a) becomes

F 2

4m4 (1 + ib) − f2 + F 2

4m4 f3 = 0 , (6.15)

which can be rewritten as

f3 = −1
z

(
(1 + ib)z − f2

)
, (6.16)

where we defined z := F 2

4m4 for a more compact notation. By plugging this expression into
eq. (6.2b) with f1 = 0, we obtain

(1 + ib) − 1
z
f2 + 1

z
f2

2 + (1 − ib) − 1
z̄
f̄2 + 1

z̄
f̄2

2 = 0 . (6.17)

If we want that the functions are holomorphic, i.e. depend either on z or z̄, the first and the
second halves of this equation can be solved independently, which leads to

(1 + ib) − 1
z
f2 + 1

z
f2

2 = ia ⇔ (1 + ib̃)z − f2 + f2
2 = 0 , (6.18)

where a and, hence, b̃ := b − a are arbitrary real numbers. The solutions are{
f2 = 1

2
(
1 −

√
1 − 4(1 + ib̃)z

)
, f2 = 1

2
(
1 +

√
1 − 4(1 + ib̃)z

)}
. (6.19)

However, by definition of the functions f ’s, we need to satisfy fk(0, 0) = 0, for k ∈ {1, 2, 3}.
Therefore, only the solution with the minus is physically acceptable here, i.e. we have finally

f1
(
F 2, F̄ 2) = 0 , (6.20a)

f2
(
F 2, F̄ 2) = 1

2

(
1 −

√
1 − (1 + ib̃)F

2

m4

)
, (6.20b)

f3
(
F 2, F̄ 2) = 4m4

F 2

(
1 − (1 + ib̃) F

2

4m4 −

√
1 − (1 + ib̃)F

2

m4

)
. (6.20c)

4This can be thought of as a further development of [56], where a certain system of the algebraic constraints
was formulated to ensure that the auxiliary field decouples.
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Consequently, we have found an exact solution to the algebraic equations that ensure
vanishing of the auxiliary field.

7 Chiralization

As it was already mentioned in the introduction, a very efficient approach to constructing
consistent interactions is the chiral approach. However, there is no efficient way to impose
parity yet. Therefore, it is interesting to explore the relation between the chiral approach
to massive higher-spin fields and the standard one where the physical field is in the (s, s)-
representation of sl(2,C) for bosons and in (s− 1/2, s+ 1/2)⊕ (s+ 1/2, s− 1/2) for fermions.

7.1 Chiralization in the free case

The chiralization of the spin three-half at the free level and on Einstein backgrounds was
discussed in [22]. Therefore, let us briefly recall the free case. Let us begin by considering the
equations of motion (2.3b) and (2.3c), respectively, as a definition of ψ̄AA′B′ and ξA. Then,
we use these definitions in the two other equations of motion ((2.3a) and (2.3d)) in order to
obtain the following second order equations of motion describing ψABA′ and ξ̄A′

mψABA′ −m−1□ψABA′ + 4
3m

−1∂(A|A′|∂
CC′

ψB)CC′ = 0 , (7.1a)

ξ̄A′ = 0 . (7.1b)

The second equation is the “suicide” of the auxiliary field. The first one is a second order
equation describing the main field ψABA′ . In order to obtain the chiral description, we
define a new main field

φABC := m−1∂
A′

(A ψBC)A′ . (7.2)

The definition allows us to rewrite the second order equation of motion as the first order one

mψABA′ + 2∂CA′φABC = 0 . (7.3)

Finally, in order to obtain the chiral description, we swap the roles of the first order
equations (7.3) and the definition (7.2): eq. (7.3) becomes the definition of ψABA′ in terms
of φABC and the definition of φABC becomes the first order equation of motion. In doing
so we obtain the following second order equations of motion(

□−m2)φABC = 0 , (7.4)

which is the desired Klein-Gordon equation describing a massive spin-3/2 field in the chiral
approach. The corresponding Lagrangian density is simply

L = 1
2φ

ABC(□−m2)φABC . (7.5)

In [22] we also checked that the transversality constraint for the old field is automatically
satisfied once it is expressed in terms of the chiral one.
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7.2 Chiralization in a constant electromagnetic field

The Lagrangian density of the massive spin three-half field contains a lot of nonminimal
terms. Therefore, let us apply the procedure of chiralization only at the first order in F . The
Lagrangian density in this case is (4.7), which leads to the following equations of motion

EψABA′ :=mψABA′+
√

2D B′

(A ψ̄B)A′B′+
√

2D(A|A′|ξB)+
1
m
FA′B′ψ B′

AB +O(F 2)=0, (7.6a)

Eψ̄AA′B′ :=−mψ̄AA′B′+
√

2DC
(A′ψ|AC|B′)+

√
2DA(A′ ξ̄B′)−

1
m
FABψ̄

B
A′B′+O(F 2)=0, (7.6b)

EξA :=6mξA−3
√

2DAA′ ξ̄A
′−

√
2DCC′

ψACC′− 2
m
FABξ

B+O(F 2)=0, (7.6c)

E ξ̄A′ :=−6mξ̄A′−3
√

2DAA′ξA−
√

2DCC′
ψ̄CC′A′+ 2

m
FA′B′ ξ̄B

′+O(F 2)=0. (7.6d)

The equations (7.6b) and (7.6c) can respectively be rewritten as

ψ̄AA′B′ =
√

2
m

(
DC

(A′|ψAC|B′) +DA(A′ ξ̄B′)
)

+
√

2
m3

(
F B
A DC

(A′|ψBC|B′) + F B
A DB(A′ ξ̄B′)

)
+ O(F 2) , (7.7a)

ξA =
√

2
2m

(
DAA′ ξ̄A

′ + 1
3D

CC′
ψACC′

)
−

√
2

6m3

(
F B
A DBA′ ξ̄A

′ + 1
3F

B
A DCC′

ψBCC′

)
+ O(F 2) . (7.7b)

By using these equations (7.7a) and (7.7b) as definitions of ψ̄AA′B′ and ξA in terms of ψABA′

and ξ̄ inside eqs. (7.6a) and (7.6d), we obtain the second order equations for ψABA′ and ξ̄

m2ψABA′ −□ψABA′ + 4
3D(A|A′DCC′

ψ|B)CC′

− F
D

(A ψB)DA′ + FA′B′ψ B′
AB − FAB ξ̄A′ − 1

m2F
C

(A □ψB)CA′ (7.8a)

+ 8
9m2F

D
(A DB)A′DCC′

ψDCC′ − 4
3m2F

C
(A DB)A′DCB′ ξ̄B

′ + 1
m2FAB□ξ̄A′ + O(F 2) = 0 ,

ξ̄A′ − 1
6m

(
m2ψABA′ −□ψABA′ + 4

3DAA′DCC′
ψBCC′

)
+ O(F 2) = 0 . (7.8b)

With the help of the first equation of motion, we can rewrite the second one as

ξ̄A′ + O(F 2) = 0 , (7.9)

which is the suicide of the auxiliary field to the required order. By using this last equation
in the first one (7.8a), it becomes

m2ψABA′ −□ψABA′ + 4
3D(A|A′DCC′

ψ|B)CC′ − F
D

(A ψB)DA′ + FA′B′ψ B′
AB (7.10)

− 1
m2F

C
(A □ψB)CA′ + 8

9m2F
D

(A DB)A′DCC′
ψDCC′ + O(F 2) = 0 .

Let us continue the chiralization procedure by defining the following new chiral field

φABC := m−1D
C′

(A ψBC)C′ + 1
3(2a+ 1)m−3F(ABD

DD′
ψC)DD′ − am−3FD(AD

DC′
ψBC)C′ + O(F 2) ,

(7.11)
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where a is an arbitrary complex number. We can then rewrite the equations of motion
for ψABA′ (7.10) as

ψABA′ = −2m−1DC
A′φABC − 2

3am
−3FCDDDA′φABC + 4

3(a− 3)m−3F
C

(A| DD
A′φ|B)CD + O(F 2) .

(7.12)
The final step of chiralization consists in replacing ψABA′ in (7.11) with the help of the
relation (7.12). It gives the equations of motion expressed in terms of the chiral field(

□−m2)φABC + 3F D
(A φBC)D + O(F 2) = 0 . (7.13)

Let us note that even though the parameter a is completely arbitrary, it does not have
any physical effect because it disappears in the equations of motion. In fact, some of the
steps of the chiralization can be simplified since the physical field ψABA′ is transverse to the
required order, which eliminates the last term in (7.10). Also, we can use the free equations
of motion for the F□ψ-term in (7.10). It is then obvious that the wave equation contains
the standard D’Alembert operator and there is no acausal propagation. The final equations
can be obtained from the following Lagrangian density

L = 1
2φ

ABC(□−m2)φABC + 3
2φ

ABCF D
A φBCD + O(F 2) . (7.14)

The Lagrangian coincides with the one in [57] for the so-called root-Kerr theory in the chiral
approach, provided that we remember that ∂µF = 0, and we can use the free equations to
simplify the structure of the cubic terms which collapse into a single one above. One can still
talk about the gyromagnetic ratio g in the chiral approach (in general, it can be split into
left and right and we, obviously, have only one of them). It is clear that g = 2s.

7.2.1 The fate of the constraints

Let us check how the constraints transform during the chiralization procedure. Since the only
sensible equation that the chiral field can satisfy is the Klein-Gordon equation with, possibly,
nonminimal terms, other constraints, e.g. the transversality, must be satisfied automatically
when the old field variables are expressed in terms of the chiral field. The first step of the
chiralization consists in passing from the set of eqs. (7.6a), (7.6b), (7.6c) and (7.6d) describing
the four fields ψABA′ , ψ̄AA′B′ , ξA and ξ̄A′ , to the set (7.9), (7.10) describing the two fields
ψABA′ and ξ̄A′ . The constraints we can extract from the first set are

DCC′
ψACC′ = 0 , (7.15a)

DCC′
ψ̄CC′A′ = 0 , (7.15b)

ξA = 0 , (7.15c)
ξ̄A′ = 0 . (7.15d)

The first and fourth ones are also the constraints we can extract from the new set of equations
of motion. Let us check that the second and third constraints become trivial when expressed
in terms of the fields of the new set of equations of motion. Let us begin with the third
constraint. By using the relation (7.7b), we can rewrite it as
√

2
2m

(
DAA′ ξ̄A

′ + 1
3D

CC′
ψACC′

)
−

√
2

6m3

(
F B
A DBA′ ξ̄A

′ + 1
3F

B
A DCC′

ψBCC′

)
+ O(F 2) = 0 .

(7.16)
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This relation is trivially satisfied because of the constraints that follow from the new set
of equations of motion (i.e. the first and fourth constraints here). Let us check the sec-
ond constraint (the conjugate transversality constraint DCC′

ψ̄CC′A′ = 0). By using the
relation (7.7a), we can rewrite this constraint as

√
2
m

(
DAA′

DC
(A′|ψAC|B′) +DAA′

DA(A′ ξ̄B′)
)

+
√

2
m3

(
F B
A DAA′

DC
(A′|ψBC|B′) + F B

A DAA′
DB(A′ ξ̄B′)

)
+ O(F 2) = 0 ,

⇔ FAB
(
□−m2)ψABB′ + O(F 2) = 0 , (7.17)

where the last line is obtained by applying the constraints on ψABA′ and ξ̄A′ . This expression
is trivially satisfied according to the equations of motion for ψABA′ (7.10). Now, let us
check that the constraints become trivial at the second (and last) step of the chiralization.
In this last step we pass from the set of eqs. (7.9), and (7.10) describing the fields ψABA′

and ξ̄A′ , to the equation of motion (7.13) describing the field φABC . The vanishing of the
auxiliary field ξ̄A′ appears directly as an equation of motion and we do not have to consider
it anymore. The last constraint we need to check is the transversality constraint on the
field ψABA′ . By using the expression (7.12), we can rewrite the transversality constraint
in terms of the new field. We obtain

−2m−1DBA′
DC

A′φABC − 2
3am

−3FCDDBA′
DDA′φABC+

+4
3(a− 3)m−3F

C
(A| DBA′

DD
A′φ|B)CD + O(F 2) = 0 ,

⇔ FBC
(
□−m2)φABC + O(F 2) = 0 , (7.18)

which is trivially satisfied according to the chiral equations of motion (7.13).

8 Conclusions and discussion

In this paper, we have found the system of two algebraic constraints that are equivalent
to the vanishing of the auxiliary fields ξA, ξ̄A′ in the Rarita-Schwinger action coupled to a
constant electromagnetic/Yang-Mills background. For the case of a constant electromagnetic
background we have also found a simple exact solution to the system, which is nonpolynomial.
It is also clear that the transversality constraint gets modified starting from the second
order in F . However, it is not clear if the latter is a sign of any problem. For example,
in [57–59] a theory that couples a massive spin-s field to electromagnetic/Yang-Mills field was
constructed up to the quartic order and for dynamical (nonconstant) electromagnetic/YM
fields and it does not reveal any pathology.

We have not really explored the genuine Yang-Mills interactions in this paper, which
would be interesting to do in the future, in particular, to look for exact solutions. Another
deformation direction to turn on is to allow for non-constant backgrounds. The simplest type
of non-constant backgrounds are self-dual configurations aka instantons. It is likely that the
solution will depend on all derivatives of a self-dual Yang-Mills field, the relations among which
can nicely be encoded by a strong homotopy algebra found in [60]. It would also be important
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to perform the chiralization at all orders, which should teach us how parity in the standard
approach transmutates into a specific set of nonminimal interactions in the chiral approach.
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A The constraint

The constraint (5.12) acquires the following final form (we need to use the Fierz identities
sometimes)((

−3
√

2m2 +
√

2
2 mg2(F )−3mh2(F )+ 1

2h2(F )g2(F )− 1
4h1(F )A′B′g3(F )

A′B′

+h2(F )CDg2(F )CD

−1
2h1(F )CDA′B′g3(F )

CDA′B′
)
ϵAB +

(√
2FAB +

√
2mg2(F )AB +6mh2(F )AB −h2(F )ABg2(F )

−h2(F )g2(F )AB + 1
2h1(F )ABA′B′g3(F )

A′B′

+ 1
2h1(F )A′B′g3(F )

A′B′

AB +2h2(F )C(Ag2(F ) C

B)

−h1(F )(A|CA′B′g3(F )
CA′B′

|B)

))
ξB

+
(√

2h1(F )ABA′B′ +g3(F )ABA′B′

)
DBB′

ξ̄A′
−
(
g2(F )A′B′ +

√
2

2 h1(F )A′B′

)
D A′

A ξ̄B′

+
(

3
√

2h2(F )AB − 1
2g3(F )AB

)
DBB′

ξ̄B′ +
(

3
√

2
2 h2(F )− 1

2g2(F )
)
DAA′ ξ̄A′

+2g1(F )ABCDB′C′DBB′
ψCDC′

−g1(F )ABCDD
BB′

ψCD
B′

+
(√

2
2 h2(F )− 1

3g1(F )
)
DBB′

ψABB′ +
(
g1(F )AB −

√
2h2(F )AB

)
DCC′

ψB
CC′

−
(
g1(F )BCA′B′ + 1

2g
T
3 (F )BCA′B′

)
D A′

A ψBCB′
− 1

2

(
g1(F )BC − 1

2g
T
3 (F )BC

)
DAA′ψBCA′

+
(√

2h1(F )ACA′B′ −2g1(F )ACA′B′

)
DBA′

ψ CB′
B +

(
2
3g1(F )A′B′ −

√
2

2 h1(F )A′B′

)
DBA′

ψ B′
AB

−

(√
2

2 FA′B′ −
√

2
4 mgT

3 (F )A′B′ −
1
2mh1(F )A′B′ + 1

2h1(F )C′D′g1(F )
C′D′

A′B′ −
1
2h1(F )B′C′g1(F )

C′

A′

+1
6h1(F )A′B′g1(F )+ 1

4h2(F )gT
3 (F )A′B′ + 1

2h2(F )ACgT
3 (F )

C

BA′B′ −
1
3h1(F )CDA′B′g1(F )

CD

+h1(F )CDB′C′g1(F )
CDC′

A′ −h1(F )BCC′D′
g1(F )BCA′B′C′D′

)
ψ̄ A′B′

A

+

(√
2

2 mgT
3 (F )ABA′B′ −mh1(F )ABA′B′ − 1

2h2(F )gT
3 (F )ABA′B′ + 1

2h2(F )ABgT
3 (F )A′B′

+1
3h1(F )A′B′g1(F )AB + 1

3h1(F )ABA′B′g1(F )−h1(F )ABB′C′g1(F )
C′

A′ +h1(F )C′D′
g1(F )ABA′B′C′D′
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−h1(F )B′C′g1(F )
C′

ABA′ +h1(F )ABC′D′g1(F )
C′D′

A′B′ +h2(F )C(AgT
3 (F )

C

B) A′B′

−2
3h1(F )(A|CA′B′g1(F )

C

|B) +h1(F )(A|CB′C′g1(F )
C C′

|B) A′ +

+2h1(F ) CC′D′

(A
g1(F )B)CA′B′C′D′

)
ψ̄BA′B′

= 0 . (A.1)
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