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Overview

Goal

We want to understand languages of (in)finite words.
~> Connections to logic and automata.

Motivation

Representations for languages of infinite words are not well understood.

Result

Given a language, establish a connection between automata on infinite
words and a game-theoretic property.

Plan:
l. Automata, Il. Games, Ill. Connection between automata and games
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|. Automata
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Automata on infinite words

We want to study languages of infinite words ~~ suitable kind of automata?

Deterministic parity automaton

A deterministic parity automaton is a tuple P = (Q, X, Ginit, 0, p) Where
® (Qis a finite set of states,

® 3 is an alphabet,

® ginit € Q is an initial state,
® §: Q@ XX — Qis a transition function,
[ ]

p: Q x X — {0,...,n} associates an integer to transitions.
| b2
i on
al2
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Acceptance condition

An infinite word is accepted if
the largest integer seen infinitely often is even.

Example, ¥ = {a, b}:
| pl2
a|1b|1
al2

® Word aabaabaab ... = (aab)¥ ~» 112212212... =112(212)¥. v
® Word abaaa... = aba®” ~» 12211...=1221¥. X

L={w e X¥| ais seen ccly often and b is seen ocly often along w}
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Historical side note #1

Infinite words are structures of the form (N, 0, succ, <, (P,)aex)-

(o)) )—2)
NGV AN AN Y AN
0 1 2 3

N

5
Connecting automata and logic [Biichi, 1962] [Emerson, Jutla, 1991]
A language L C >* is recognized by a deterministic parity automaton

if and only if
it is definable in monadic second-order logic.

Corollary

This monadic second-order theory is decidable.
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Automata representation

w-regularity

These languages of infinite words are called w-regular.

Multiple mysteries remain about automata for w-regular languages.
Open questions

® Characterizing the smallest deterministic automata for a language?

® How to minimize an automaton (complexity)?

However, languages of finite words are well-understood.
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Case of finite words &)

Let K C ¥* be a language of finite words.
Myhill-Nerode congruence
For x,y e X* x~g yifforall ze ¥* xz € K < yz € K.

l.e., x and y have the same accepting continuations in K.

Myhill-Nerode theorem [Nerode, 1958]

® K is regular iff ~ has finitely many equivalence classes.

® The equivalence classes of ~ are the states of the minimal
deterministic automaton for K.

b

b
Example:
K = “a at least twice” — 2 @ 2 ¥
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Case of infinite words ()

Let L C Y% be a language of infinite words.

(Almost) Myhill-Nerode congruence

For x,y e X*, x~y yifforallze ¥¥ xze L < yz e L.

No Myhill-Nerode theorem @

® |f L is w-regular, then ~; has finitely many equivalence classes.

® The converse is false!

L ="aand b xly often”
. . — >
A single equivalence class!

Still a “prefix classifier” automaton, but not informative enough to
recognize the language. ..
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Il. Games
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Games

Zero-sum turn-based games on graphs

¢ Alphabet ¥, arena A = (Vi, \», E).
c * Two players P; (O) and P, ().

3 ® Objective of P; is a language L C ¥“.

e Zero-sum: objective of Py is X\ L.

Can Py obtain a word in L, no matter what P, does?
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Example (1/3)

Y ={a,b,c},

L={w e X¥| ais seen ccly often and b is seen ocly often}

d a
b /\
: 6 Vo V3
V\_/
¢ b

P1 has a winning strategy from every vertex.

Strategy representation

How to represent the strategy?
In general, strategies may not have a finite representation.
But here, a finite memory with two memory states suffices!
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Example (2/3): two memory states

Y ={a,b,c},

L={w e X¥|ais seen ocly often and b is seen ooly often}

Vi a Vo a V3
/\
b
\_/
C b

There is a winning strategy o: Vi x M — E.
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o
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Example (3/3)

Y ={a, b, c},
L={w € X% | ais seen ocly often and b is seen ocly often}

More generally, this memory structure suffices in all games with objective L!

a

b

~> We say that L is finite-memory determined.
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Finite-memory determinacy

Finite-memory determinacy
A language is finite-memory determined if

there exists a finite memory structure M such that in all games,
one of the players has a winning strategy that uses memory M.

Theorem [Gurevich, Harrington, 1982]

All w-regular languages are finite-memory determined.

Historical side note #2 [Rabin, 1969]

Used to show that the MSO theory of the complete binary tree is decidable.
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ll1l. Connection between
automata and games
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Two examples

Defined two objects: prefix classifiers and memory structures.

Let ¥ = {a, b}.

Language Prefix classifier S; Sufficient memory
b b
L = “a at least twice” . g % a @i@ 5 »<>_) pu
| b|2
L ="aand b cly often” 4<>®Z a‘l%b“
al2
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From memory to automaton

Let L C ¥“.
Theorem [Bouyer, Randour, V., 2023]
If L is finite-memory determined with memory structure M,

then L is recognized by a parity automaton (S; ® M, p).

In particular,

L is finite-memory determined over all arenas
<~
L is w-regular.
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Conclusion

Summary
e Strategic characterization of w-regular languages.

® “Mpyhill-Nerode-like” theorem for languages of infinite words.

Remaining questions
® Characterize minimal memory structures for w-regular objectives?

® Use this characterization to better understand and minimize
deterministic parity automata?

Thanks!
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