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Overview

Goal
We want to understand languages of (in)finite words.
 Connections to logic and automata.

Motivation
Representations for languages of infinite words are not well understood.

Result
Given a language, establish a connection between automata on infinite
words and a game-theoretic property.

Plan:
I. Automata, II. Games, III. Connection between automata and games
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I. Automata
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Automata on infinite words

We want to study languages of infinite words  suitable kind of automata?

Deterministic parity automaton
A deterministic parity automaton is a tuple P = (Q,Σ, qinit, δ, p) where
• Q is a finite set of states,
• Σ is an alphabet,
• qinit ∈ Q is an initial state,
• δ : Q × Σ→ Q is a transition function,
• p : Q × Σ→ {0, . . . , n} associates an integer to transitions.

q1 q2

b | 2

a | 2

a | 1 b | 1
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Acceptance condition

An infinite word is accepted if
the largest integer seen infinitely often is even.

Example, Σ = {a, b}:

q1 q2

b | 2

a | 2

a | 1 b | 1

• Word aabaabaab . . . = (aab)ω  112212212 . . . = 112(212)ω. 4

• Word abaaa . . . = abaω  12211 . . . = 1221ω. 7

• . . .

L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often along w}
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Historical side note #1

Infinite words are structures of the form 〈N, 0, succ, <, (Pa)a∈Σ〉.

a a b a a b a · · ·

0 1 2 3 4 5 6

Connecting automata and logic [Büchi, 1962] [Emerson, Jutla, 1991]

A language L ⊆ Σω is recognized by a deterministic parity automaton
if and only if

it is definable in monadic second-order logic.

Corollary
This monadic second-order theory is decidable.
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Automata representation

ω-regularity
These languages of infinite words are called ω-regular.

Multiple mysteries remain about automata for ω-regular languages.

Open questions

• Characterizing the smallest deterministic automata for a language?
• How to minimize an automaton (complexity)?

However, languages of finite words are well-understood.
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Case of finite words

Let K ⊆ Σ∗ be a language of finite words.

Myhill-Nerode congruence
For x , y ∈ Σ∗, x ∼K y if for all z ∈ Σ∗, xz ∈ K ⇐⇒ yz ∈ K .

I.e., x and y have the same accepting continuations in K .

Myhill-Nerode theorem [Nerode, 1958]

• K is regular iff ∼K has finitely many equivalence classes.
• The equivalence classes of ∼K are the states of the minimal
deterministic automaton for K .

Example:
K = “a at least twice” [ε] [a] [aa]

b b

Σ
a a
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Case of infinite words

Let L ⊆ Σω be a language of infinite words.

(Almost) Myhill-Nerode congruence
For x , y ∈ Σ∗, x ∼L y if for all z ∈ Σω, xz ∈ L⇐⇒ yz ∈ L.

No Myhill-Nerode theorem

• If L is ω-regular, then ∼L has finitely many equivalence classes.
• The converse is false!

L = “a and b ∞ly often”
A single equivalence class! [ε] Σ

Still a “prefix classifier” automaton, but not informative enough to
recognize the language. . .

Omega-Regularity through Strategy Complexity Pierre Vandenhove 9 / 19



II. Games
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Games

Zero-sum turn-based games on graphs

c

bba

a

• Alphabet Σ, arena A = (V1,V2,E ).
• Two players P1 (©) and P2 (�).

Infinite interaction
 infinite word w = babbc . . . ∈ Σω.

• Objective of P1 is a language L ⊆ Σω.
• Zero-sum: objective of P2 is Σω \ L.

Can P1 obtain a word in L, no matter what P2 does?
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Example (1/3)

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

v1 v2

a

c

b
a

b

v3

P1 has a winning strategy from every vertex.

Strategy representation
How to represent the strategy?
In general, strategies may not have a finite representation.
But here, a finite memory with two memory states suffices!
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Example (2/3): two memory states

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

a, cb, c

a

b

m1 m2

a
b

v1 v2

c

v3a

b

There is a winning strategy σ : V1 ×M → E .

Omega-Regularity through Strategy Complexity Pierre Vandenhove 13 / 19



Example (2/3): two memory states

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

a, cb, c

a

b

m1 m2

σ(v1,m1) =
a−→ v2

a
b

v1 v2

c

v3a

b

There is a winning strategy σ : V1 ×M → E .

Omega-Regularity through Strategy Complexity Pierre Vandenhove 13 / 19



Example (2/3): two memory states

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

a, cb, c

a

b

m1 m2

σ(v1,m1) =
a−→ v2

a
b

v1 v2

c

v3a

b

There is a winning strategy σ : V1 ×M → E .

Omega-Regularity through Strategy Complexity Pierre Vandenhove 13 / 19



Example (2/3): two memory states

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

a, cb, c

a

b

m1 m2

σ(v1,m1) =
a−→ v2

σ(v1,m2) =
b−→ v2

a
b

v1 v2

c

v3a

b

There is a winning strategy σ : V1 ×M → E .

Omega-Regularity through Strategy Complexity Pierre Vandenhove 13 / 19



Example (2/3): two memory states

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

a, cb, c

a

b

m1 m2

σ(v1,m1) =
a−→ v2

σ(v1,m2) =
b−→ v2

a
b

v1 v2

c

v3a

b

There is a winning strategy σ : V1 ×M → E .

Omega-Regularity through Strategy Complexity Pierre Vandenhove 13 / 19



Example (2/3): two memory states

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

a, cb, c

a

b

m1 m2

σ(v1,m1) =
a−→ v2

σ(v1,m2) =
b−→ v2

a
b

v1 v2

c

v3a

b

There is a winning strategy σ : V1 ×M → E .

Omega-Regularity through Strategy Complexity Pierre Vandenhove 13 / 19



Example (3/3)

Σ = {a, b, c},
L = {w ∈ Σω | a is seen ∞ly often and b is seen ∞ly often}

More generally, this memory structure suffices in all games with objective L!

a, cb, c

a

b

m1 m2

 We say that L is finite-memory determined.

Omega-Regularity through Strategy Complexity Pierre Vandenhove 14 / 19



Finite-memory determinacy

Finite-memory determinacy

A language is finite-memory determined if
there exists a finite memory structure M such that in all games,
one of the players has a winning strategy that uses memory M.

Theorem [Gurevich, Harrington, 1982]

All ω-regular languages are finite-memory determined.

Historical side note #2 [Rabin, 1969]

Used to show that the MSO theory of the complete binary tree is decidable.
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III. Connection between
automata and games
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Two examples

Defined two objects: prefix classifiers and memory structures.
Let Σ = {a, b}.

Language Prefix classifier SL Sufficient memory

L = “a at least twice”

b b

Σa a Σ

L = “a and b ∞ly often” Σ a |1 b |1
b |2

a |2
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From memory to automaton

Let L ⊆ Σω.

Theorem [Bouyer, Randour, V., 2023]

If L is finite-memory determined with memory structureM,

then L is recognized by a parity automaton (SL ⊗M, p).

In particular,
L is finite-memory determined over all arenas

⇐⇒
L is ω-regular.
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Conclusion

Summary

• Strategic characterization of ω-regular languages.

• “Myhill-Nerode-like” theorem for languages of infinite words.

Remaining questions

• Characterize minimal memory structures for ω-regular objectives?

• Use this characterization to better understand and minimize
deterministic parity automata?

Thanks!
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