
Université de Mons
Faculté Polytechnique

Multilayer and deep matrix
factorizations

Pierre DE HANDSCHUTTER

A thesis submitted in partial fulfilment of the requirements for the degree
of Docteur en Sciences de l’Ingénieur et Technologies

Dissertation committee:

Prof. Nicolas GILLIS (supervisor)
Prof. Xavier SIEBERT

(co-supervisor)
Prof. Arnaud VANDAELE (chair)

Prof. Fabian LECRON
Prof. Xiao FU

Dr. Jérémy E. COHEN

Université de Mons
Université de Mons

Université de Mons
Université de Mons

Oregon State University
Chercheur CNRS, CREATIS

Abstract

Matrix factorizations (MF) are standard techniques in linear al-
gebra that approximate a data matrix as the product of two smaller
matrices whose inner dimension is called the rank of the factoriza-
tion. A general assumption in MFs is the nonnegativity of the input
matrix which led to the development of nonnegative matrix factor-
ization (NMF) models, where the factors are constrained to be non-
negative as well, motivated by several real-world applications. NMF
allows one to express the columns of the input matrix, which gener-
ally represent data points, as linear combinations of a small number
of latent features.

In the first part of this thesis, we introduce near-convex archety-
pal analysis (NCAA), a flexible extension of archetypal analysis,
a well-known NMF variant, which has an interesting geometric
interpretation and performs competitively with minimum-volume
(minVol) NMF.

In the second part of this thesis, we study deep MF, that is, the
extension of MF to several layers, inspired by the recent advances in
deep learning. We conduct a thorough literature review of multilayer
and deep MF, focusing on the models, the choice of the parameters,
the applications, and the theoretical aspects. We also illustrate the
abilities of deep MF to extract hierarchical features within complex
data sets on three showcase examples, namely the extraction of facial
features, hyperspectral unmixing (HU) and recommender systems.

We then introduce two new loss functions for deep MF together
with a general optimization framework. We show their efficiency to
tackle sparse and minVol deep MF on both synthetic and real-world
data. These loss functions alleviate the drawbacks of the current ap-
proaches both in a theoretical and experimental point of view. We
also design a new greedy initialization algorithm for deep MF and
extend symmetric NMF to the deep case. We apply this latter suc-
cessfully to the extraction of overlapping communities of symptoms
in psychiatric networks, with promising clinical interpretation.

Finally, we sketch perspectives of future works, including the
study of the identifiability of deep MF, the investigation of the
connexions between deep MF and deep neural networks, and the
exploration of new deep MF models.

i

Personal note and acknowledgements

University has three main missions: research, teaching and societal com-
mitment. I tried to involve humbly in all three during this PhD. Undoubt-
edly, this PhD has grown me up from several angles: human, scientific,... But
undoubtedly also, this PhD was all along a path of pain and doubt.
What I will remember the most are the numerous interactions with many
UMONS staff members and students, both for research purposes and "soci-
etal" projects to which I paid a lot of attention. I already apologize for all the
people whose I could have forgotten the names, but I want to thank:

• My promoter Nicolas Gillis for his incredible support, for the team
spirit that he permanently strives to spark, for his outstanding
technical abilities and for his restless advice and encouragement,

• My co-promoter Xavier Siebert for his helpful advice and encourage-
ment,

• All the other members of my jury for their insightful advice: Arnaud
Vandaele, Fabian Lecron, Xiao Fu and Jérémy E. Cohen,

• All the members of the COLORAMAP (and beyond) research team:
Nicolas Nadisic, François Moutier, Tim Marrinan, Maryam Ab-
dolali, Le Thi Khanh Hien, Junjun Pan, Man Shun Ang "Andersen",
Christophe Kervazo, Christos Kolomvakis, Olivier Vu Thanh, Valentin
Leplat, Atharva Awari,

• All the members (former or current) of the "Informatique et Gestion"
department of UMONS with whom I had great collaborations: Sarah
Itani, Boris Edgar Ndjia Njike, Amine Larhmam, Mohammed Benjel-
loun, Philippe Fortemps, Sébastien Bette, Pierre Manneback but also
Maxime Gobert, Guillaume Briffoteaux, Gwendolyn Lacroix, Daniel
Tuyttens, Maxime Manderlier, Landelin Delcoucq, Saïd Mahmoudi,
Sidi Mahmoudi, Olivier Debauche, Adriano Guttadauria, Laurence
Wouters,

• Other people (former or current) from UMONS for the various in-
spiring discussions and collaborations: Christine Renotte, Philippe
Dubois, Marc Labie, Cynthie Marchal, Céline Thillou, Céliane
Jennebauffe, Alexandra Dache, Emilie Genin, Rosabelle Lekemo

ii

Atonfack, Wivine Blekic, Giovanni Briganti, Laurence Ris, Emerance
Delacenserie, Anne-Emilie Declèves, Anne-Emmanuelle Bourgaux,
Maxime Duménil, Nicolas Dupont, Valentine Fays, Julie Walaszczyk,
Thierry Dutoit, Thomas Brihaye, Véronique Vitry, Véronique Van
Renterghem, Erika Wauthia, Pietro Favaro, Francesco Lo Bue, Julien
Lefevere,

• People from outside UMONS who worked with me and/or inspired
me: Luc Marchal, Nathanaël Ackerman, Marylise Ledouble, Joyce Ann
Quinto, Carl Mörch,

• And many, many more...

Of course, I thank my parents for their support along this PhD. I also thank
my old good friend Bastien Lemahieu for the journey at UMONS; all the staff
from the CETIC research center where I did my master internship, especially
Paul Vanabelle and Mohamed Boukhebouze; the FNRS, who funded a part
of my PhD; and finally the direction of Institut Saint-André Ramegnies-Chin,
Sophie Liagre and Pascal Mol for their understanding, and the colleagues,
especially Manon Delhaye, for the advice.
Finally, a special thanks (again) to Nicolas Gillis for proofreading the whole
manuscript and to Arnaud Vandaele and Wivine Blekic for proofreading
some chapters !

iii

iv

CONTENTS

Contents v

List of Figures ix

List of Tables xiii

List of main acronyms xv

1 Introduction and outline 1
1.1 Matrix factorizations, from low-rank to nonnegative 2
1.2 Geometric interpretation of NMF 4
1.3 Real-world applications of NMF 6
1.4 Contributions and outline of the thesis 10

2 Fundamentals 15
2.1 General optimization framework to solve NMF 15
2.2 Initialization of NMF . 18
2.3 Main NMF variants . 20

2.3.1 Orthogonal NMF . 21
2.3.2 Minimum-volume NMF 21

2.4 Experimental set-up . 24
2.4.1 Generation of synthetic data 24
2.4.2 Evaluation metric . 26

I Near-Convex Archetypal Analysis 29

3 Near-Convex Archetypal Analysis 31
3.1 The archetypal analysis framework 31

v

3.2 Near-convex archetypal analysis model 35
3.3 Two-block coordinate descent to solve NCAA 39

3.3.1 Initialization of the factors 39
3.3.2 Gradient step . 40
3.3.3 Projection step . 40
3.3.4 Computational cost . 43

3.4 Possible strategies for NCAA parameters 44
3.4.1 Choice of Y . 44
3.4.2 Choice of ε . 46

3.5 The NCAA algorithm . 50
3.6 NCAA applied to synthetic data 51
3.7 NCAA applied to hyperspectral unmixing 53
3.8 Perspectives of improvement 57
3.9 Take-home messages . 58

II Deep Matrix Factorizations 59

4 A gentle introduction to deep matrix factorizations 61
4.1 Motivations of deep MF . 61
4.2 Deep MF models . 63

4.2.1 A brief history of "deep" factorizations 63
4.2.2 Main deep MF variants 67

4.2.2.1 Deep orthogonal NMF 67
4.2.2.2 Deep sparse MF 68
4.2.2.3 Deep archetypal analysis 68
4.2.2.4 Semi-supervised settings 69

4.3 Algorithms and parameters of deep MF 70
4.3.1 Initializations . 70
4.3.2 Algorithms . 70
4.3.3 Parameters . 71

4.4 Applications of deep MF . 72
4.4.1 Three showcase examples 72

4.4.1.1 Extraction of facial features 72
4.4.1.2 Hyperspectral unmixing 74
4.4.1.3 Recommender systems 75

4.4.2 Other applications in the literature 79
4.4.2.1 Recommender systems 79

vi

4.4.2.2 Multi-view clustering 79
4.4.2.3 Community detection 80
4.4.2.4 Hyperspectral unmixing 80
4.4.2.5 Audio processing 81

4.5 Theoretical considerations . 81
4.5.1 Analogy with neural networks 82
4.5.2 Various theoretical results 84

4.5.2.1 Convergence issues 84
4.5.2.2 Low-rank structure 86

4.6 Perspectives of future research 87
4.7 Take-home messages . 89

5 New loss functions for deep matrix factorizations 91
5.1 New loss functions for deep MF 91

5.1.1 Layer-centric loss function 94
5.1.2 Data-centric loss function 95

5.2 General framework for constrained deep MF 95
5.3 Experiments on synthetic data 97
5.4 Take-home messages . 101

6 New models for deep matrix factorizations 103
6.1 Successive orthogonal decomposition algorithm 103

6.1.1 Deep orthogonal NMF as a hierarchical clustering
technique . 104

6.1.2 Description of the SODA algorithm 105
6.1.2.1 Closed-form solution of ONMF with

r = n −1 . 105
6.1.2.2 A greedy initialization of deep MF 106

6.1.3 Experiments . 108
6.1.3.1 Synthetic data 108
6.1.3.2 Hyperspectral unmixing 112

6.2 Sparse deep matrix factorizations 112
6.2.1 Experiments on synthetic data 114
6.2.2 Extraction of facial features 116

6.3 Minimum-volume deep matrix factorizations 121
6.4 Deep symmetric matrix factorizations 124

6.4.1 An algorithm for DSNMF 126
6.4.2 Experiments on synthetic data 128

vii

6.5 Perspectives of improvement 131
6.6 Take-home messages . 132

7 Application of deep matrix factorizations to psychiatric networks 133
7.1 A short introduction to psychiatric networks 133
7.2 Application of DSNMF to psychiatric networks 135

7.2.1 Post-traumatic stress disorder 136
7.2.2 Resilience scale . 138

7.2.2.1 Spinglass . 140
7.2.2.2 Walktrap . 140
7.2.2.3 Louvain Method 141
7.2.2.4 DSNMF . 142

7.3 Perspectives of improvement 143
7.4 Take-home messages . 144

8 Conclusion 145
8.1 Summary of the main contributions 145
8.2 Perspectives for future works . 147

8.2.1 Tri minVol NMF . 147
8.2.2 Seizure detection with NMF 148
8.2.3 Sparse archetypal analysis 149

Bibliography 153

viii

LIST OF FIGURES

1.1 Geometric interpretation of (a) NMF and (b) SSNMF with m = 3
and r = 3. The data points (blue dots) are (a) in the conical hull
and (b) in the convex hull of the basis vectors (red dots). The
boundary of this convex hull is the green triangle. 5

1.2 Illustration of NMF applied to hyperspectral unmixing. Figure
taken from [55]. 7

1.3 The Urban hyperspectral image and its 6 main constitutive ma-
terials. 7

1.4 Ground-truth spectral signatures of the materials present in the
Urban image for (a) 4 and (b) 6 materials considered. 8

1.5 Ground-truth abundance maps of the Urban image for (a) 4
and (b) 6 materials considered. 9

1.6 Illustration of NMF applied to the extraction of facial features.
Figure taken from [55]. 10

2.1 Illustration of synthetic data generated with a symmetric Dirich-
let distribution in m = 3 dimensions, with r = 3. 25

3.1 Illustration of archetypal analysis for r = 3: the data points are in
blue, their convex hull is in black, the three basis vectors are in
red and their convex hull is the green triangle. The data points
outside the green triangle can not be perfectly represented as
convex combinations of the red points. 32

3.2 Illustration of Lemma 3.1 for d = 6, n = 1000 and ε = 0.05: the
data points (blue dots) are near-convex combinations of the
points yl ’s hence convex combinations of the points zl ’s given
by Eq. (3.5). 38

ix

3.3 Illustration of the function S(µ) used in the projection of the fac-
tor A in NCAA. 42

3.4 Geometric interpretation of NCAA for r = 3, d = 2r = 6, m = 2.
According to Lemma 3.1, the estimated basis vectors are within
the convex hull of the columns of Z , that is, the near-convex hull
of the columns of Y . In this case, Y was set up with SNPA. 45

3.5 Illustration of a data set for which the purities are not identical
across the r = 3 basis vectors. 48

3.6 NCAA applied to synthetic data with non-symmetric purities;
d = 6 and Y obtained with SNPA. The r = 3 basis vectors
retrieved by NCAA are closer to the ground truth when a
fine-tuning is applied (Fig. (b)) than with the sole global tuning
of ε (Fig. (a)). 52

3.7 Comparison of the spectral signatures of the endmembers ex-
tracted by NCAA, minVolNMF and the ground truth in the Ur-
ban image with r = 4. 55

3.8 Abundance maps extracted by (a) NCAA and (b) minVolNMF in
the Urban image with r = 4. From left to right, on top: road,
grass; on bottom: tree, roof. 56

4.1 Comparison of (a) MF, (b) multilayer MF [26] and (c) deep
MF [115]. An arrow means that a matrix multiplication is
performed: H −→

W
X means that H is multiplied by W to

approximate X . 66
4.2 Application of deep NMF to the CBCL faces data set, with L = 3,

r1 = 100, r2 = 50, and r3 = 25. Each image contains the fea-
tures extracted at: (a) first layer W1, (b) second layer W1W2, and
(c) third layer W1W2W3. 73

4.3 Abundance maps hierarchically extracted by deep ONMF on
the Urban image. From top to bottom: first, second, third and
fourth layer. 74

4.4 Comparison between the endmembers extracted by deep
ONMF at the third (r3 = 4) layer and the "ground-truth" end-
members for the Urban hyperspectral image. 75

4.5 Illustration of an artificial neural network. 82
4.6 Illustration of the similarity between (a) deep autoencoders and

(b) deep MF. 85

x

5.1 Setting of the synthetic data considered for the experiments, in
the noiseless case. 98

5.2 Comparison of the MRSA obtained at the first layer with non-
negative MMF, LC-DMF, DC-DMF, and Tri-DMF on synthetic
data in function of the noise level. 99

5.3 Comparison of the MRSA obtained at the second layer with
nonnegative MMF, LC-DMF, DC-DMF, Tri-DMF and MF on
synthetic data in function of the noise level. 100

6.1 Illustration of the synthetic data set used to assess SODA initial-
ization. 110

6.2 Deep ONMF applied to the Urban HI with SODA-based initial-
ization. 113

6.3 Comparison of the MRSA obtained at the first layer with sparse
MMF, LC-DMF, DC-DMF and Tri-DMF on synthetic data in
function of the noise level. 115

6.4 Comparison of the MRSA obtained at the second layer with
sparse MMF, LC-DMF, DC-DMF, Tri-DMF and NMF on syn-
thetic data in function of the noise level. 115

6.5 Layer-centric errors on the CBCL faces data set, with L = 3,
r1 = 100, r2 = 49 and r3 = 25 at the (a) first, (b) second, and (c)
third layer. 117

6.6 Data-centric errors on the CBCL faces data set, with L = 3,
r1 = 100, r2 = 49 and r3 = 25 at the (a) first, (b) second, and (c)
third layer. 118

6.7 Features extracted by MMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the
features extracted at: (a) first layer W1, (b) second layer W2, and
(c) third layer W3. 119

6.8 Features extracted by LC-DMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the
features extracted at: (a) first layer W1, (b) second layer W2, and
(c) third layer W3. 119

6.9 Features extracted by DC-DMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the
features extracted at: (a) first layer W1, (b) second layer W2, and
(c) third layer W3. 120

xi

6.10 Features extracted by Tri-DMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the
features extracted at: (a) first layer W1, (b) second layer W2, and
(c) third layer W3. 120

6.11 Features extracted by single-layer NMF in the CBCL faces data
set, with (a) r = 49, (b) r = 25. 121

6.12 Endmembers extracted by MMF, LC-DMF, DC-DMF and
Tri-DMF in the Urban image at the first layer (r1 = 6), and the
ground truth. 123

6.13 Endmembers extracted by MMF, LC-DMF, DC-DMF, Tri-DMF
and single-layer NMF in the Urban image at the second layer
(r2 = 4), and the ground truth. 123

6.14 Simple graph to illustrate the working of DSNMF, with two levels
of communities. 126

7.1 Communities extracted at the first and second layer by DSNMF
on a PTSD dataset, in green (solid line) and red (dashed line),
respectively. The thickness of the blue edges between two nodes
is proportional to the corresponding (nonnegative) entry of the
adjacency matrix. 137

7.2 Regularized partial correlation resilience network. Blue edges
represent positive connections; the thicker the connection is,
the stronger it is. 139

8.1 Illustration of the frequency pattern of an absence seizure ob-
tained with NMF. 149

xii

LIST OF TABLES

3.1 Comparison of the performances of NCAA, minVolNMF and
SNPA on synthetic data, with n = 1000, m = 10, d = 10r in
function of the purity level, rank and noise level respectively.
The mean and standard deviation of the MRSA over 25 runs
with randomly generated true factors is reported. For each
configuration, the best average MRSA is highlighted in bold
and the number of times each algorithm performs the best is
between parentheses. 54

3.2 MRSA and runtime of minVolNMF and NCAA for the unmixing
of Urban image. 57

5.1 Loss functions minimized at each step of Algorithm 10 for L = 3. . 92
5.2 Number of "winning" runs (over 25) of each method in function

of the noise level at the first layer. 100
5.3 Number of "winning" runs (over 25) of each method in function

of the noise level at the second layer. 101

6.1 Comparison of the clustering accuracies at layer 1 (ACC 1) and
2 (ACC 2) and final relative error (rE) of deep ONMF applied to
synthetic data with several initialization strategies, in function
of the noise levelν. The average and standard deviation (if above
0.01) over 10 data sets are reported. The best method in terms of
accuracy is highlighted in bold for each configuration. 111

6.2 MRSA at the first and second layer of the compared methods on
the Urban hyperspectral image, with in bold the best value of
each column. 124

xiii

6.3 Comparison of the MRSA (average and standard deviation) of
DSNMF, MSNMF and SpecClust on synthetic data over 25 runs
in function of the noise level ν and the configuration of the net-
work at the (a) first (r1 = 4) and (b) second (r2 = 2) layer. The best
average MRSA achieved for each configuration is highlighted in
bold. 130

7.1 Communities extracted by the different algorithms in the
resilience network. 140

xiv

LIST OF MAIN ACRONYMS

AA Archetypal analysis
BCD Block coordinate descent
DSM Diagnostic and Statistical Manual of Mental Disorders
DSNMF Deep symmetric nonnegative matrix factorization
FPGD Fast projected gradient descent
GSP Grouped sparse projection
GT Ground truth
HC Hierarchical clustering
HU Hyperspectral unmixing
LM Louvain method
LRMF Low-rank matrix factorization
MF Matrix factorization
minVolNMF Minimum-volume nonnegative matrix factorization
MRSA Mean-removed spectral angle
NCAA Near-convex archetypal analysis
NMF Nonnegative matrix factorization
NNLS Nonnegative least squares
NSNMF Non-smooth nonnegative matrix factorization
ONMF Orthogonal nonnegative matrix factorization
PGD Projected gradient descent
PTSD Post-traumatic stress disorder
SNPA Successive nonnegative projection algorithm
SODA Successive orthogonal decomposition algorithm
SSNMF Simplex-structured nonnegative matrix factorization
symNMF Symmetric nonnegative matrix factorization

xv

xvi

C
H

A
P

T
E

R

1
INTRODUCTION AND OUTLINE

Modern life has seen an overwhelming explosion of data collection. To
extract meaningful information among them, many computational mod-
els have emerged over the last decades, known as machine learning tech-
niques. In many applications, a careful tradeoff should be considered be-
tween, on one side, accuracy and on the other side, interpretability of the
model.

A particularly interesting class of models, intimately intricated with lin-
ear algebra, are matrix factorizations (MFs). MFs are unsupervised models
in the sense that they do not require labeled training data to be built, con-
trary to supervised learning models such as deep neural networks, see for
example [107] for an overview of the main machine learning models. An ad-
ditional key advantage of MFs is that they are linear methods hence provide
easy interpretation in many cases. Though linearity is often a simplifying
hypothesis as most of real systems are essentially non-linear, it is generally
an acceptable assumption to describe them.

In fact, MFs perform a dimensionality reduction, that is, they give a rep-
resentation of the input data, which are generally high-dimensional, in a
lower dimension. This dimension is generally small compared to that of
the input data, hence these models are referred to as low-rank matrix fac-
torizations (LRMF) [116]. In other words, LRMFs are able to identify a small

1

number of significant features within the dataset and leave away the minor
ones.

With the development of deep learning and the need to deal with
more and more complex datasets, MF’s followed the trend and scaled
up. Therefore, over the last few years, extensions of MF’s referred to as
"Multilayer and deep matrix factorizations" have emerged and constitute
the main topic of interest of this PhD thesis.

The remainder of this chapter aims to present the general context of
this PhD, describe its main motivations and list the key results. In Sec-
tion 1.1, we describe the mathematical setting of LRMFs; their geometric
intuition is discussed in Section 1.2. Then, in Section 1.3, we present the
main real-world applications of LRMFs with a special focus on those which
were actually investigated during the PhD. Finally, Section 1.4 summarizes
the main contributions of this PhD, including scientific publications, and
gives a detailed outline of the remainder of this document.

1.1 Matrix factorizations, from low-rank to
nonnegative

Let us assume that we have a set of n data points, each one represented
by a vector in an m-dimensional space. We build a data matrix X ∈ Rm×n

such that each column of X corresponds to one of the n data points. The
goal of a low-rank matrix factorization is to find two matrices W ∈ Rm×r

and H ∈ Rr×n such that the product W H approximates X as well as possi-
ble, that is, X ≈ W H . We define the inner dimension r as the rank of the
factorization, which is in most cases fixed before solving the problem. As
the factorizations are usually low-rank, to only capture a small number of
features out of the data, r is generally small, that is, r ¿ min(m,n).

Each column of the matrix W corresponds to an m-dimensional vector
called a basis vector. Consequently, the approximation X ≈W H consists in
approaching each column of X , that is, each data point, as a linear combi-
nation of the r columns of W . In other words, we have for all j = 1, . . . ,n

X (:, j) ≈
r∑

k=1
W (:,k)H(k, j), (1.1)

where the coefficients H(k, j)’s are the weights of the linear combination of
basis vectors that approximates the j -th data point X (:, j).

2

To evaluate the quality of the factorization, that is, the approximation
of X by W H , a loss function (also called objective function) needs to be de-
fined to evaluate the "gap" between the original matrix X and its low-rank
approximation W H . One of the most natural loss function, frequently used
in the literature, is the squared Frobenius norm of the residual matrix, equal
to the difference between X and W H . The "best" factor matrices W and H
are those that minimize this loss function, also called the reconstruction
error, which implies to solve an optimization problem. The LRMF problem
with Frobenius norm can therefore be written as:

min
W ∈Rm×r

H∈Rr×n

1

2
‖X −W H‖2

F . (1.2)

In practice, real-world data matrices often correspond to nonnegative mea-
surements hence it makes sense to consider that X ≥ 0, which means that
each entry of X is nonnegative. It makes sense to approximate such a ma-
trix as the product of two matrices W and H that are also element-wise
nonnegative, that is W ≥ 0 and H ≥ 0. The problem of computing such
matrices W and H has been studied a lot since it was introduced in the
seminal papers of Paatero and Tapper [97] and later on, Lee and Seung [75],
and is known as nonnegative matrix factorization (NMF). Hence, NMF with
squared Frobenius norm consists in solving

min
W ∈Rm×r

H∈Rr×n

1

2
‖X −W H‖2

F such that W ≥ 0 and H ≥ 0 (1.3)

where X is assumed to be nonnegative as well.
Since the r basis vectors, that is, the columns of W , are constrained to

be nonnegative, it is generally easy to give them a physical interpretation
in real-world settings. Moreover, due to their nonnegativity, the entries of
H can also be interpreted interestingly. More precisely, in Eq. (1.3), H(k, j)
reflects the proportion with which the k-th basis vector contributes to the
approximation of the j -th data point.

Unfortunately, NMF has two main drawbacks [55]:

1. When the rank r is part of the input, solving Problem (1.3) is NP-hard
in general, meaning that there does not exist any algorithm able to
compute the NMF of a matrix in polynomial time with respect to m,
n and r (unless P = N P). In practice, one usually chooses the value

3

of the rank r a priori, depending on the application, and then applies
an optimization algorithm (typically running in O (mnr) operations)
to solve NMF.

2. NMF does not have a unique solution in most cases. Indeed, let us
suppose that we have computed a solution (W, H) of NMF such that
X = W H . It is easy to see that, given any invertible matrix Q ∈ Rr×r ,
(W Q,Q−1H) is also a solution if W Q ≥ 0 and Q−1H ≥ 0. To alleviate
the non-uniqueness of the NMF solution, additional constraints are
enforced on the factors W and H , such as sparsity, orthogonality and
many more, or a regularization term is added to the loss function of
Eq. (1.3), such as in minimum-volume NMF. We will discuss much
more this concern in the next chapters.

It turns out that NMF has raised a lot of interest among researchers over
the last decades in terms of theoretical study, development of new mod-
els and algorithms and validation on real-world applications. We warmly
encourage the reader to have a look at the comprehensive SIAM book by
Nicolas Gillis [56] for more details on NMF.

1.2 Geometric interpretation of NMF

The nonnegativity of the NMF factors offers an interesting geomet-
ric interpretation. Let us recall that the conical hull of k data points
y1, . . . ,yk is the set of all conical combinations of these points, that is,{

z =
k∑

i=1
αi yi such that αi ≥ 0 for all i

}
. Hence, regarding Problem (1.1),

NMF aims to find r nonnegative basis vectors such that the n data points,
that is, the n columns of X , lie in their conical hull, as shown on Fig. 1.1a
for m = 3 and r = 3.

With the sole nonnegativity constraints on W and H , a scaling ambi-
guity appears in the NMF solution. Indeed, let us assume that (W, H) is a
solution of Problem (1.3). Then, for any k = 1, . . . ,r , multiplying the k-th
column of W by some αk > 0 and the k-th row of H by 1

αk
leads to the same

reconstructed matrix. More precisely, for each k,

W (:,k)H(k, :) = (αkW (:,k))
(H(k, :)

αk

)
,

4

(a) NMF (b) SSNMF

Figure 1.1: Geometric interpretation of (a) NMF and (b) SSNMF with m = 3
and r = 3. The data points (blue dots) are (a) in the conical hull and (b) in
the convex hull of the basis vectors (red dots). The boundary of this convex
hull is the green triangle.

that is, there is a scaling degree of freedom for every rank-one factor of the
decomposition. Hence, to alleviate this degree of freedom, one can, with-
out loss of generality, normalize the columns of X by dividing each entry of
X by the sum of the elements of its column. By doing so, the elements of
each column of X sum to one, that is, X T e = e with e the vector of all ones
of appropriate dimension. The columns of W can also be normalized that
way, without loss of generality, that is, W T e = e. Consequently, e = X T e =
(W H)T e = H T W T e = H T e, that is, the sum of the elements of each column
of H is constrained to be equal to one. Let us recall that the convex hull of k
data points y1, . . . ,yk is the set of all convex combinations of these points,

that is,
{

z =
k∑

i=1
αi yi such that αi ≥ 0 for all i and

k∑
i=1

αi = 1
}

. With this ad-

ditional constraint on H (called column-stochasticity), the data points are
approximated as convex combinations of the basis vectors, that is, as mem-
bers of their convex hull.

Hence, the NMF problem with both the nonnegativity constraints and
column-stochasticity of H , known as simplex-structured nonnegative ma-

5

trix factorization (SSNMF), is stated as

min
W,H

1

2
||X −W H ||2F s.t. W, H ≥ 0,

r∑
k=1

H(k, j) = 1 for all j = 1, ...,n,

(1.4)
and its geometric interpretation is represented on Fig. 1.1b. The feasible
set for each column of H is called, by definition, the r −1 standard simplex.

The column-stochasticity of H corresponds to a willingness of physical
interpretation: the j -th column of H can be seen as the vector indicating
the proportions, or abundances, of each basis vector in the j -th data point,
which is meaningful in many applications; see next section.

1.3 Real-world applications of NMF

Given its linear formulation, NMF has been leveraged in a wide range
of applications, such as recommender systems [84], community detec-
tion [120], topic modeling [7] and many more. Let us already detail two of
them, the ones that have been used the most throughout this thesis:

• Hyperspectral unmixing (HU): In this case, the data matrix X is a
hyperspectral image, that is, a set of n pixels described by their
reflectance (defined as the fraction of the incoming light reflected)
in m wavelength bands, referred to as their spectral signature. The
goal of NMF is to identify the spectral signature of r materials (also
called endmembers) present in the image (the columns of W) and
the proportions in which each material appears in each pixel, called
the abundances (the columns of H), see Fig. 1.2. HU has been widely
studied in the literature from the angle of NMF, see [15] and [47]
among others.

Let us describe a well-known hyperspectral image, frequently used as
a benchmark for our experiments, namely the HYDICE Urban hyper-
spectral image [135]. It is an airborne image of the surroundings of a
Walmart supermarket in Copperas Cove (Texas). The Urban image is
made of 307×307 pixels whose reflectance is measured in 162 wave-
length bands (after denoising). Depending on the versions, the num-
ber of materials commonly considered as being present in the Urban
image varies between 4 and 6. In this last case, the materials are trees,
grass, roof, dirt, metal and road, as depicted on Fig. 1.3 where we have

6

Figure 1.2: Illustration of NMF applied to hyperspectral unmixing. Figure
taken from [55].

highlighted areas of pixels containing mostly a given material. When
only 4 materials are considered, these are trees, grass, roof and road.
On Fig. 1.4, we show the ground-truth spectral signatures of the end-
members (according to [135]) in the cases where 4 and 6 materials are

Figure 1.3: The Urban hyperspectral image and its 6 main constitutive ma-
terials.

7

(a)

(b)

Figure 1.4: Ground-truth spectral signatures of the materials present in the
Urban image for (a) 4 and (b) 6 materials considered.

considered. Similarly, Fig. 1.5 presents the corresponding abundance
maps, that is, the proportions in which each material appears in each
pixel (for a given material, a black pixel indicates the absence of this
material in the pixel).

• Extraction of facial features: In this case, the data matrix X is a set of
n faces, each one made of m grey-scale pixels. The goal of NMF is to

8

(a)

(b)

Figure 1.5: Ground-truth abundance maps of the Urban image for (a) 4
and (b) 6 materials considered.

9

identify r facial features such as mouths, noses, eyes,... (the columns
of W) whose linear combinations allow to generate all the faces of the
original dataset, according to some proportions (the columns of H),
see Fig. 1.6.

Figure 1.6: Illustration of NMF applied to the extraction of facial features.
Figure taken from [55].

1.4 Contributions and outline of the thesis

This PhD investigated several directions of research, which define the
organization of the remainder of this document. Let us first list the publi-
cations and preprints that we released during the PhD:

1. Pierre De Handschutter, Nicolas Gillis, Arnaud Vandaele, and Xavier
Siebert. Near-convex archetypal analysis. IEEE Signal Processing Let-
ters, 27:81–85, 2019 [39],

2. Pierre De Handschutter, Nicolas Gillis, and Xavier Siebert. A survey
on deep matrix factorizations. Computer Science Review, 42:100423,
2021 [38],

3. Pierre De Handschutter and Nicolas Gillis. Deep orthogonal matrix
factorization as a hierarchical clustering technique. In 2021 29th
European Signal Processing Conference (EUSIPCO), pages 1466–1470.
IEEE, 2021 [35],

10

4. Pierre De Handschutter and Nicolas Gillis. A consistent and flexi-
ble framework for deep matrix factorizations. Pattern Recognition,
134:109102, 2023 [36],

5. Pierre De Handschutter, Nicolas Gillis, and Wivine Blekic. Deep
symmetric matrix factorization. 2023. Online available at:
https://www.researchgate.net/publication/368693970_
Deep_Symmetric_Matrix_Factorization [37].

At the time of writing, a new paper was being written. Note that all the pub-
lications contain a link to the corresponding full MATLAB code reproducing
the described experiments. Let us also mention that another publication
not directly linked with the topic of this PhD was finalized and published
during the time of the PhD:

1. Paul Vanabelle, Pierre De Handschutter, Riëm El Tahry, Mohammed
Benjelloun, and Mohamed Boukhebouze. Epileptic seizure detection
using EEG signals and extreme gradient boosting. Journal of Biomed-
ical Research, 34(3):228, 2020 [118].

Let us now describe the organization of the following chapters in view
of the scientific contributions:

• Chapter 2 presents key concepts related to matrix factorizations that
have been extensively used all along the researches. This includes the
description of the optimization framework usually adopted to solve
NMF problems in Section 2.1 as well as a quick overview of the ini-
tialization techniques in Section 2.2. We also briefly present some
important NMF variants in Section 2.3. Finally, in Section 2.4, we dis-
cuss aspects of the experimental set-up of NMF models.

• Chapter 3 describes a new NMF model called near-convex archetypal
analysis (NCAA) [39]. This model is inspired by a well-known NMF
variant, namely archetypal analysis (AA) [32]. Our new model NCAA
is more flexible than AA and compares favourably to state-of-the-art
algorithms on both synthetic data experiments and HU.

• Chapter 4 introduces the history and motivations behind deep matrix
factorizations (deep MF’s), the core topic of this thesis. This chapter
follows closely the structure of our survey paper [38] and illustrates

11

https://www.researchgate.net/publication/368693970_Deep_Symmetric_Matrix_Factorization
https://www.researchgate.net/publication/368693970_Deep_Symmetric_Matrix_Factorization

the recent advances in the deep MF field, in terms of theoretical re-
sults, variants of the main models and applications, among others.
We also provide showcase examples of deep MF. Finally, we list some
interesting challenges and perspectives of research; some of them
have been tackled during this PhD.

• In Chapter 5, we discuss two new loss functions for deep MF
and sketch a flexible and consistent optimization framework for
constrained deep MF [36].

• Chapter 6 reviews the deep MF models and algorithms developed
during this PhD. This includes:

– The successive orthogonal decomposition algorithm (SODA) [35],
which is mostly used as a greedy initialization technique for
deep MF. In fact, SODA leverages the closed form of the
orthogonal NMF of two points, see Section 6.1,

– Sparse deep MF: we successfully apply the generic framework
described in Chapter 5 to sparse deep MF, where a global spar-
sity measure of the factors is used, see Section 6.2,

– Minimum-volume deep MF: we successfully apply the generic
framework described in Chapter 5 to minimum-volume deep
MF, see Section 6.3,

– Deep symmetric NMF (DSNMF) [37]: we consider a symmetric
data matrix X , that is, X = X T , and scale up the standard sym-
metric NMF algorithm, see Section 6.4.

• In Chapter 7, we present an original application of deep MF to psy-
chiatric networks. More precisely, DSNMF is applied to detect hierar-
chical overlapping communities of psychiatric symptoms. This work
was carried out in collaboration with a post-doctoral psychologist,
Wivine Blekic.

• Finally, in Chapter 8, we summarize the main contributions of this
PhD and open potential directions of future research.

For readability, Chapters 4 to 7 are grouped together in a different part than
Chapter 3.

12

A word about the writing style: Our goal in this manuscript is mainly
to report on the main contributions of this PhD. We endeavour to be as
pedagogical as possible and to go along with the reader through the rea-
soning. However, we assume that the reader has minimal prerequisites in
linear algebra and is familiar with vector/matrix notations. Though most
of the content of the publications and preprints aforementioned appears
in this manuscript, some details are skipped on purpose to make reading
easier. Also, some important concepts linked to NMF, such as identifiabil-
ity, that is, the study of the uniqueness of the factors retrieved by a model,
on which we did not focus during this PhD, are put under the rug to avoid
useless scattering 1. On the contrary, we emphasize the open questions and
the take-home messages induced by every developed model through ded-
icated sections at the end of each chapter. Indeed, this seems to us to be
the most important possible track of this document. Hence, we aim more
at efficiency than at comprehensiveness.

1NMF identifiability specialists will maybe see a very unintentional pun in this sen-
tence ,

13

14

C
H

A
P

T
E

R

2
FUNDAMENTALS

This chapter focuses on describing important concepts that are reused
in most of the remaining chapters. More specifically, Section 2.1 sketches
the general optimization framework for NMF, adopted in most of the pa-
pers. In Section 2.2, we briefly present several initialization strategies for
the NMF factors. In Section 2.3, we describe the main NMF variants and
especially focus on orthogonal NMF and minimum-volume NMF. Finally,
Section 2.4 gives a brief word on how to assess the performance of any NMF
model, and on the generation of synthetic data.

2.1 General optimization framework to solve
NMF

Let us consider the following NMF optimization problem,

min
W ∈Rm×r

H∈Rr×n

1

2
‖X −W H‖2

F s.t. W ≥ 0, H ≥ 0. (2.1)

Most works in the literature solve this NMF problem with a two-block co-
ordinate descent (BCD) strategy. This means that Problem (2.1) is solved as
follows. Let us assume that W and H have been initialized somehow (see

15

Section 2.2 for details). First, the sole matrix W is updated, keeping the ma-
trix H unchanged, that is, the problem min

W ≥0

1
2‖X −W H∗‖2

F is solved where

H∗ denotes the current (fixed) value of matrix H . Then, H is updated keep-
ing W fixed, that is, the problem min

H≥0

1
2‖X −W ∗H‖2

F is solved where W ∗

denotes the current (fixed) value of matrix W . This alternated procedure,
that is, update W with H fixed and update H with W fixed is repeated un-
til some stopping criterion is met. This stopping criterion may be a given
number of iterations, a maximal time elapsed, a sufficient decrease of the
loss function, a too small gap between two consecutive iterates of a given
factor, etc.

This 2-BCD is illustrated by Algorithm 1. Given a nonnegative matrix X
of m rows and n columns, and a factorization rank r , the factors W and H
are first initialized somehow. Then, W and H are alternatively optimized
during a certain number of iterations (the superscripts in Algorithm 1 indi-
cate the iterations).

Algorithm 1 Two-block coordinate descent for solving NMF

Input: Nonnegative matrix X ∈Rm×n+ , rank r .
Output: A rank-r NMF of X ≈W H with W, H ≥ 0.

1: Generate some initial matrices W (0) and H (0).
2: for t = 1,2, ... do
3: W (t) = update_W (X , H (t−1),W (t−1))
4: H (t) = update_H(X ,W (t), H (t−1))
5: end for

It turns out that, contrary to the overall NMF Problem (2.1), each sub-
problem with respect to either W or H , that is, lines 3 and 4, is convex and
constitutes a so-called nonnegative least squares (NNLS) problem. Many
techniques have been widely used to solve these subproblems, such as
multiplicative updates, alternating least squares, alternating nonnegative
least squares, hierarchical alternating least squares to cite a few, see [55]
for more details.

Let us consider a more general problem than NNLS where the factor to
update is not necessarily nonnegative but is enforced to belong to some set.
For example, let us consider

min
W ∈W

1

2
‖X −W H∗‖2

F , (2.2)

16

where W is the feasible set for W that encompasses the constraints applied
to W . In the case of NMF, W = Rm×r+ , that is, the set of matrices of m rows
and n columns with nonnegative entries. A similar reasoning can of course
be applied to H .

We will focus on a particular method to solve Problem (2.2), called fast
projected gradient descent (FPGD) with restart, a well-known first-order
optimization technique (that is, using only gradient information). Start-
ing with the estimation W (t−1) of matrix W at iteration t − 1, FPGD com-
putes a new estimate W (t) such that ‖X −W (t)H∗‖2

F ≤ ‖X −W (t−1)H∗‖2
F ,

and W (t) ∈ W .
We will illustrate the working of FPGD on Problem (2.2) through Algo-

rithm 2. Until some stopping criterion is met, the following steps are per-
formed at each inner iteration b:

1. A descent step size sb is chosen according to some appropriate strat-
egy (line 3).

2. A projected gradient step is performed, that is, the current iterate is
moved along the negative gradient direction and then projected on
the feasible set (line 4).

3. An extrapolation step is performed through Nesterov accelera-
tion [90] to induce faster convergence of the iterates (line 5).

4. A restart step is applied if the extrapolation did not lead to a decrease
of the loss function (line 7). Indeed, despite its acceleration effect, the
extrapolation does not guarantee a monotonic decrease of the loss
function, contrary to the classical gradient descent.

Note than in Algorithm 2, we used subscripts for the "inner" loop indices
and superscripts for the BCD loop indices (as in Algorithm 1). When NMF is
considered, the projection operator is PW (x) = max(0, x) where the max is
taken element-wise. In fact, each column is projected on the nonnegative
orthant, that is, the set of nonnegative vectors of appropiate dimension.

FPGD has the advantage to be easy to implement and very flexible. In-
deed, the only stage to modify when various constraints are considered is
the projection on the feasible set at line 4. Hence, we have often used FPGD
to solve the subproblems in the models we developed.

17

Algorithm 2 Fast projected gradient descent to solve constrained least
squares problem

Input: Nonnegative matrix X ∈Rm×n+ ; rank r ; previous iterate W (t−1) of W ;
feasible set W for W ; some given matrix H∗; parameter α1 ∈ [0,1].

Output: An estimate W (t) of W such that L (W (t)) ≤L (W (t−1)) where
L (W) = 1

2‖X −W H∗‖2
F .

1: W(0) =W (t−1); Z(0) =W (t−1)

2: for b = 1, . . . ,B do
3: Choose somehow the descent step size sb

4: W(b) =PW

(
Z(b−1) − sb∇L (Z(b−1))

)
5: Z(b) =W(b) +βb

(
W(b) −W(b−1)

)
with βb = αb (1−αb)

α2
b+αb+1

and

αb+1 = 1
2

(√
α4

b +4α2
b −α2

b

)
6: if L

(
W(b)

)>L
(
W(b−1)

)
then

7: Z(b) =W(b), αb+1 =α1

8: end if
9: end for

10: W (t) =W(B)

2.2 Initialization of NMF

Initialization of the factors of NMF, that is, finding appropriate W (0) and
H (0), can be performed through various techniques:

• Random initialization: The factors are initialized randomly. How-
ever, with this technique, nothing guarantees that the initial
approximation W (0)H (0) is close to X or even of the same order
of magnitude. Hence, a scaling parameter α∗ is also used such

that α∗ = argmin
α

1
2

∥∥X −αW (0)H (0)
∥∥2

F = 〈X ,W (0)H (0)〉
‖W (0)H (0)‖2

F
where 〈·, ·〉 in-

dicates the scalar product of two matrices. The initial factors are
then "scaled" according to the value of α∗: W (0) ← p

α∗W (0) and
H (0) ←p

α∗H (0).

• Successive nonnegative projection algorithm (SNPA) [54]: SNPA is an
algorithm originally used to solve (near) separable NMF. Separable
NMF is a particular NMF variant where the columns of W constitute
a subset of the columns of X . In other words, there exists a subset

18

J ⊂ {1, . . . ,n} of r indices such that W = X (:,J). This also implies
that there is an identity submatrix of size r (up to columns permuta-
tions) within H . Hence, separable NMF is such that each of the n data
points can be expressed as a nonnegative linear (also called conical)
combination of a subset of r data points. SNPA may be a useful way
to initialize the factors of any NMF model; let us detail its working
through Algorithm 3.

Algorithm 3 Successive Nonnegative Projection Algorithm (SNPA) in the
separable case [54]

Input: Separable nonnegative matrix X ∈Rm×n+ , rank r .
Output: Set of r indices J , matrix W ∈Rm×r such that W = X (:,J), matrix

H̃ ∈Rr×n .
1: R = X ; J ,W = {} ; t = 1
2: while R 6= 0 and t ≤ r do
3: p = argmax

j
‖R(:, j)‖2

4: J =J ∪ {p}
5: W = [W, X (:, p)] (that is, W = X (:,J))

6: H̃ = argmin
H

‖X −W H‖2
F s.t. H ≥ 0,

t∑
k=1

H(k, j) ≤ 1 for all

j = 1, ...,n
7: R = X −W H̃
8: t = t +1
9: end while

Given an input data matrix X , SNPA first extracts the column with the
largest `2-norm (line 3), which corresponds to the first basis vector,
that is, column of W . Then, the columns of X are projected onto the
convex hull of the columns of W (at this stage, there is only one) and
the origin. More precisely, the matrix W H̃ , where H̃ is the solution of
the optimization problem at line 6, corresponds to the projection of
the columns of X on this convex hull. Then, at line 7, a residual ma-
trix R is defined as the difference between the input matrix X and the
computed projection. This residual matrix can somehow be inter-
preted as the "portion" of X that still needs to be explained by addi-
tional basis vectors. The previous stages are repeated on the residual
matrix of the previous iteration until r basis vectors are found.

19

Since SNPA is easy to use and gives good initial factors in practice, we
have often used SNPA as an initialization technique for the models
we developed.

• Hierarchical clustering (HC): The NMF factors can also be initialized
through hierarchical clustering methods which aim at splitting the
data in an increasing number of clusters becoming smaller. Let us
focus on a technique based on rank-2 NMF [58] and originally in-
spired by HU to explain how HC can be leveraged for the initializa-
tion of NMF factors. At the first step, all the data points are gathered
in a single cluster. Then, for some iterations, the method splits one
cluster into two smaller clusters such that a particular loss function
is decreased as much as possible. In fact, this loss function aims to
approximate each cluster by a matrix of rank 1 corresponding to a
single basis vector. The splitting procedure consists in an NMF of
rank r = 2 over the points belonging to the initial cluster. Hence, W (0)

can be found by applying this method until r clusters, whose cen-
troids correspond to the initial basis vectors, are identified. The ini-
tial matrix H (0) can then be computed by solving the NNLS problem
min
H≥0

‖X −W (0)H‖2
F for which many algorithms exist such as active set

and gradient descent methods. In the following, we will denote HC
the specific aforementioned algorithm proposed in [58].

To sum up, contrary to SNPA which extracts extreme data points, HC
extracts more central points.

• Other techniques, such as singular value decomposition (SVD) based
initialization [18].

Initialization of NMF factors still remains an open problem. In practice,
multiple initializations can be run, and the one leading to the best perfor-
mance is kept.

2.3 Main NMF variants

NMF has numerous variants depending on the additional constraints
and/or regularizations added to the original model (1.3), or the assump-
tions on the input data matrix X . Let us focus on two particular variants,

20

namely orthogonal NMF (ONMF) in Section 2.3.1 and minimum-volume
NMF (minVolNMF) in Section 2.3.2, which are extensively referred to in the
next chapters.

2.3.1 Orthogonal NMF

ONMF [40] is an NMF variant for which the rows of H are constrained
to be orthogonal to each other, that is, H(k, :)H(l , :)T = 0 for all k 6= l . More-
over, an additional normalization enforces each row of H to have its l2

norm equal to 1, that is, H(k, :)H(k, :)T = 1 for all k = 1, . . . ,r . In other words,
H is such that H ≥ 0 and H H T = Ir where Ir is the identity matrix of di-
mension r . Together with the nonnegativity of H , orthogonality implies
that each column of H has a single entry strictly greater than 0. Overall, the
ONMF model can be written as:

min
W ∈Rm×r+
H∈Rr×n+

‖X −W H‖2
F such that H H T = Ir . (2.3)

ONMF is an interesting model in terms of interpretability: since H has a
single non-zero entry per column, this implies that each data point is only
associated to one basis vector (one column of W), and ONMF is equivalent
to a hard clustering problem (in fact, ONMF is a weighted version of spher-
ical k-means, see [99] for more explanations). In other words, ONMF im-
poses that each data point belongs to a single cluster, which is represented
by a single basis vector corresponding to the cluster’s centroid. Hence, the
ONMF factors can be easily interpreted: the columns of W are cluster cen-
troids, while the columns of H assign each data point to its closest centroid
(up to a scaling factor).

2.3.2 Minimum-volume NMF

MinVolNMF is an NMF variant where the volume delimited by the basis
vectors, that is, the columns of W , is minimized. More precisely, a regular-
ization term is added to the NMF loss function such that the minVolNMF
loss function is given by

L (W, H) = 1

2

(
‖X −W H‖2

F +λvol(W)
)
, (2.4)

21

where λ is a regularization parameter and vol(W) is a function that evalu-
ates the volume of the convex hull of the columns of W . Several choices are
possible for vol(W), see [3]. A popular choice consists in taking vol(W) =
logdet(W T W +δIr), where det(W T W) is the determinant of the square ma-
trix W T W , δ a positive parameter and Ir the identity matrix of order r . The
term δIr is simply added to avoid the risk of computing log(0). The overall
minVolNMF problem is formulated as:

min
W,H

1

2

(
||X −W H ||2F +λ logdet(W T W +δIr)

)
such that W, H ≥ 0,

r∑
k=1

H(k, j) ≤ 1 for all j = 1, ...,n. (2.5)

where the constraints
r∑

k=1
H(k, j) ≤ 1 for all j = 1, . . . ,n, similarly to

SSNMF (see Eq. (1.4)), leverage the scaling degrees of freedom. MinVol-
NMF is generally solved with a 2-BCD as in Algoritm 1.

The subproblem with respect to H is the same as in SSNMF, since
H is not involved in the penalty term. However, the attentive reader
may have noticed that the column-stochasticity of H has been relaxed
into an inequality constraint. In fact, this is mainly application-driven:
for example, if black pixels (that is, with the corresponding column of
X being an all-zeros vector) are present in a hyperspectral image, the
column-stochasticity of H would require the zero vector to be a basis
vector. Hence, the "less or equal to one" constraint is more general and
enables to handle these situations.

The subproblem with respect to W , that is,

min
W

(
L (W) = 1

2

(
||X −W H ||2F +λ logdet(W T W +δIr)

))
s.t. W ≥ 0, (2.6)

is more challenging but has been intensively discussed in the literature.
In fact, Problem (2.6) can be solved with a majorization-minimization

technique: the loss function 1
2

(
||X − W H ||2F + λ logdet(W T W + δIr)

)
is

upper-bounded by a strongly convex function easier to minimize. More
precisely, the iterate W (t+1) at iteration t +1 is found by observing [77, 53]
that

vol(W) = logdet(W T W +δIr) ≤ f (W,W (t)) = Tr(Z (t)W T W)−logdet(Z (t))+K

22

where Tr(·) denotes the trace, that is, the sum of the diagonal elements
of a matrix, K is some constant and Z (t) is a fixed matrix such that
Z (t) = (W (t)T

W (t) +δIr)−1. Hence, the overall loss function L (W) can in
turn be bounded above by

g (W,W (t)) = 1

2

(
||X −W H (t)||2F +λ(Tr(Z (t)W T W)− logdet(Z (t))+K)

)
.

Getting rid of the terms constant with respect to W , this comes to minimiz-
ing the quadratic function

h(W) = 1

2
〈W T W, A(t)〉−〈C (t),W 〉

with A(t) = H (t)H (t)T +λZ (t), C (t) = X H (t)T
. The gradient is easy to compute

(in fact, ∇h(W) = W A −C). A summary of the main steps of FPGD applied
to minVolNMF is presented in Algorithm 4.

Algorithm 4 Minimum-volume NMF with fast projected gradient descent

Input: Nonnegative matrix X ∈Rm×n+ , rank r , parameter δ> 0.
Output: Two matrices W ∈Rm×r , H ∈Rr×n .

1: Compute initial matrices W (0) and H (0), and the regularization param-
eter λ

2: for t = 1,2, . . . do
3: Z (t−1) = (W (t−1)T

W (t−1) +δIr)−1

4: A(t−1) = H (t−1)H (t−1)T +λZ (t−1); C (t−1) = X H (t−1)T

5: W (t)=Update W with FPGD on min
W ≥0

(1
2〈W T W, A(t−1)〉−〈C (t−1),W 〉)

6: H (t)=Update H with FPGD on min
H≥0

1
2‖X −W (t)H‖2

F such that
r∑

k=1
H(k, j) ≤ 1 for all j

7: end for

The parameter δ is of minor importance and is generally fixed to a small
positive value, for example δ = 0.1. In addition, the regularization param-
eter λ balances the importance of the data fitting term, that is, the recon-
struction error, on the one hand, and the volume regularization term on
the other hand. A possible strategy for the choice of λ is to tune an initial
guess after the initialization of the factors. More precisely, the regulariza-
tion parameter is initialized to some value, for example λ̃ = 10−2. Then,

23

given W (0) and H (0), the regularization parameter is adapted such that the
ratio between the two contributions of the loss function is equal to λ̃, that
is, λ̃= λvol(W)

‖X−W H‖2
F

. Hence, the "final" regularization parameter λ is given by:

λ= λ̃‖X −W H‖2
F

vol(W)
. (2.7)

Intuitively, minVolNMF aims at reducing the volume delimited by the basis
vectors while at the same time keeping a low reconstruction error. There-
fore, the basis vectors are likely to be close to the convex hull of the data
points (due to the normalization of the columns of H) hence to be associ-
ated to a meaningful physical interpretation in real-world settings.

Note that other minVol approaches exist, such as Minimum Volume
Simplex Analysis (MVSA) [80] and Minimum Volume Enclosing Simplex
(MVES) [21] which are similar models minimizing the sole volume of the
basis vectors and asking for the data points to lie inside their convex hull,
after dimensionality reduction. These models were specifically developed
for HU. Robust variant of both MVSA and MVES, respectively SISAL [14]
and RMVES [2], allow the data points to lie (slightly) outside the convex
hull of the endmembers. These variants relax the nonnegativity constraint
on H (contrary to minVolNMF described above), which renders these mod-
els more robust to noise. We refer the reader to Bioucas Dias et al. compre-
hensive survey on HU methods [15] for more details.

2.4 Experimental set-up

When a new NMF model is developed, it is important to assess its per-
formance on both synthetic data, that is, data for which the setting is highly
controlled by the experimenter, and real-life applications. In Section 2.4.1,
we explain how we generate synthetic data in most situations. More spe-
cific settings are described in the next chapters, when they are explicitly
used. In Section 2.4.2, we present the evaluation metric the most frequently
adopted along this thesis. Some other metrics will be introduced later.

2.4.1 Generation of synthetic data

Synthetic data allow to test the performance of a model by keeping a
high level of control on the data distribution, the dimension, the noise...

24

Figure 2.1: Illustration of synthetic data generated with a symmetric Dirich-
let distribution in m = 3 dimensions, with r = 3.

In practice, we first create the "true" matrix of basis vectors W̃ and then
generate the columns of the "true" matrix of proportions H̃ according to
some probability distribution. In our experiments, unless specified other-
wise, we generate the n columns of H̃ according to a symmetric Dirichlet
distribution. This is a multivariate distribution depending on a vector of r
parameters all equal to α, which produces r -dimensional samples whose
entries are real numbers in [0,1] summing to 1. If α= 1, this merely degen-
erates to a uniform distribution over the r −1 standard simplex while if α is
close to 0, the distribution will be highly sparse, with only a few non-zero
entries per sample. Let us define the purity level pk associated to the basis
vector W̃ (:,k) as pk = max

1≤ j≤n
H̃(k, j) for any k = 1, . . . ,r , that is, as the max-

imal "proportion" of the kth basis vector in any data point. In practice, it
is also important to control the purity levels in experiments. Hence, if a
column of H̃ sampled with the Dirichlet distribution has an entry exceed-
ing the corresponding expected purity level, we resample it until it is fully
compliant with the purity requirements. Once both W̃ and H̃ have been
generated, the noiseless "true" data matrix is given by X̃ = W̃ H̃ .

For example, Fig. 2.1 shows n = 500 points generated in m = 3 dimen-
sions with r = 3, α= 0.05, and all the pk ’s equal to 0.8.

In general, noise is added to X̃ to test the robustness to noise of the

25

model. When the data is generated as described, it is common to consider
white additive Gaussian noise. Practically, we generate a matrix N ∈ Rm×n

whose elements are drawn from the normal distribution N (0,1) and define
ν as the relative noise level. Then, we build the final data matrix X as

X = X̃ +νN
‖X̃ ‖F

‖N‖F
. (2.8)

This way, ‖X − X̃ ‖F = ν‖X̃ ‖F .

2.4.2 Evaluation metric

It is important to have proper evaluation metrics to assess the quality of
a model and compare it to the state of the art.

Comparing the final values of the loss function is not always the most
practical option since different models may have different loss functions
which are not necessarily meaningfully comparable.

For synthetic data, as well as for many intensively used real-world
datasets, the "true" expected factors W̃ and H̃ that generate the data are
known, either by construction (for synthetic data) or by domain expertise
(for real data). Hence, one can compare the pair of matrices W and H
computed through NMF and the ground-truth factors W̃ and H̃ . However,
there is no guarantee that the basis vectors are retrieved in the same order
as they appear in the ground truth. Therefore, the columns of W (and
analogously, the rows of H) must be reordered according to an affectation
algorithm between the (normalized) columns of W and W̃ (and similarly
with the rows of H). This reordering is performed through the well-known
Hungarian or Munkres combinatorial algorithm, see [89] for details.

Once the columns of W are properly reordered, we can compute the
so-called mean-removed spectral angle (MRSA) between each pair of cor-
responding columns of W and W̃ . The MRSA between two vectors x and y
is defined as

MRSA(x, y) = 100

π
arcos

(〈x −x, y − y〉
‖x −x‖2‖y − y‖2

)
∈ [0,100] , (2.9)

where 〈·, ·〉 indicates the scalar product of two vectors and x is the mean of
vector x, that is, x = mean(x). In fact, the MRSA between two vectors is the
normalized angular distance between the centred version of these vectors.

26

In practice, the metric of interest is the average of the MRSA’s over

the r basis vectors, that is, 1
r

r∑
k=1

MRSA
(
W (:,k),W̃ (:,k)

)
. By convenience,

in the following, we will denote MRSA this average quantity instead of
the column-wise metric. The lower the MRSA is, the better the matching
between the ground truth and the retrieved factors is, hence the better the
underlying algorithm is.

27

28

Part I

Near-Convex Archetypal Analysis

29

30

C
H

A
P

T
E

R

3
NEAR-CONVEX ARCHETYPAL

ANALYSIS

In this chapter, we introduce a model called Near-convex archetypal
analysis (NCAA) [39]. NCAA is a flexible extension of archetypal analysis
(AA), which is in turn a state-of-the-art variant of NMF.

In Section 3.1, we describe the AA model and emphasize its main lim-
itations, which motivated the development of NCAA. Then, we introduce
the mathematical formulation and geometrical interpretation of NCAA in
Section 3.2. Section 3.3 discusses algorithmic aspects of NCAA, including
its computational cost while Section 3.4 proposes some strategies for the
choice of NCAA parameters. We end up with the final NCAA algorithm in
Section 3.5. Section 3.6 and 3.7 discuss the performance of NCAA on syn-
thetic data and hyperspectral unmixing respectively. Section 3.8 lists some
perspectives of improvement, including drafts of alternative models. Fi-
nally, Section 3.9 summarizes the main points of the chapter.

3.1 The archetypal analysis framework

Archetypal analysis (AA) is a model closely related to SSNMF (see Sec-
tion 1.2). However, in AA, an additional major constraint is considered

31

compared to Eq. (1.4). Indeed, the basis vectors, also called in this case
archetypes, are not only points such that all the columns of X are approxi-
mated as convex combinations of them but are also themselves enforced to
be convex combinations of the data points. Fig. 3.1 sketches the geometry
of AA for m = 2 and r = 3.

Figure 3.1: Illustration of archetypal analysis for r = 3: the data points are in
blue, their convex hull is in black, the three basis vectors are in red and their
convex hull is the green triangle. The data points outside the green triangle
can not be perfectly represented as convex combinations of the red points.

More precisely, the basis vectors are given by W = X A where A satisfies
the same conditions as H (that is, nonnegativity and column-stochasticity)
and the goal of AA is therefore to find two matrices A ∈ Rn×r and H ∈ Rr×n

that solve the following constrained optimization problem:

min
A,H

1

2
||X −X AH ||2F

such that A, H ≥ 0,
n∑

j=1
A(j ,k) = 1 for all k = 1, ...,r,

r∑
k=1

H(k, j) = 1 for all j = 1, ...,n.

(3.1)

Note that AA is closely related to convex NMF, introduced by [41], where
the data matrix X is not necessarily nonnegative and the sum-to-one con-
straints are discarded (that is, the convex combinations are replaced by

32

conical combinations). AA has raised a lot of interest in the NMF literature,
see [12], [23] and [88] among others.

An obvious advantage of AA lies in its interpretability: the basis vectors
are combinations of the data points. Moreover, as the basis vectors are in
the convex hull of the columns of X , they are likely to be "not too far" from
most of the data points hence to correspond to some physical reality. How-
ever, in its standard version, AA has two main drawbacks:

1. As the data points are themselves approximated by convex combina-
tions of the archetypes, there is a risk that the reconstruction error
is high. Indeed, on Fig. 3.1, some data points lie outside the convex
hull of the columns of W hence can not be correctly approximated as
convex combinations of the basis vectors through Model (3.1).

In [66], AA and standard NMF are somehow combined through an
objective function that makes a tradeoff between the reconstruction
error and the distance between the archetypes and the convex hull of
X . More precisely, this loss function is given by:

L (W, H) = 1

2
‖X −W H‖2

F +λ
r∑

k=1
D(W (:,k), X)

such that
r∑

k=1
H(k, j) = 1 for all j = 1, ...,n.

where D(W (:,k), X) is the minimal Euclidean distance between
W (:,k), that is, the kth archetype, and any point in the convex hull
of X . In other words, this model can be seen as a relaxed version of
AA, where the archetypes are not hardly constrained to be convex
combinations of the columns of X , but the objective function tries
to minimize their distance from the convex hull of X . Unfortunately,
the factors involved in the optimization problem are W ∈ Rm×r

and H ∈ Rr×n , that is, the standard NMF variables. Consequently,
though the model is close to AA, it does not allow to interpret how
the archetypes are built from the data through a coefficient matrix A
as in Problem (3.1).

In [88], an interesting relaxation of AA handles the case where it is not
possible to find a good solution with archetypes expressed as convex
combinations of the data points. The idea is to allow the sum of the

33

entries of each column of A to be slightly different from 1, more pre-
cisely between 1−δ and 1+δ for some δ> 0. In other words, the re-
laxed model consists in solving the following optimization problem:

min
A,H

1

2
||X −X AH ||2F

such that A, H ≥ 0, 1−δ≤
n∑

j=1
A(j ,k) ≤ 1+δ for all k = 1, ...,r,

r∑
k=1

H(k, j) = 1 for all j = 1, ...,n.

This model adds flexibility to AA but the parameter δ is fixed by hand,
which is difficult to do in practice for real applications.

2. The number of parameters to optimize is higher in AA than in
classical NMF. Indeed, there are nr + nr parameters in AA while
"only" mr +nr in NMF, and in many applications, such as HU,
m < n. Intuitively, it does not make sense to consider that all the n
data points will contribute to all the r basis vectors, that is, A is likely
to be sparse (in other words, A is likely to contain a lot of entries
equal to 0). To tackle this concern, the support of AA (that is, the
points whose the archetypes are effectively convex combinations of)
is discussed in [11]. Instead of using the whole X as in Model (3.1),
they propose to express the basis vectors as convex combinations of
only the vertices of the convex hull of X . Unfortunately, computing
the convex hull of X is itself O (n logn) for m = 2 and worsens as the
dimension increases.

NCAA aims to alleviate these two concerns by allowing more flexibility
to build the archetypes and by reducing the computation cost.

34

3.2 Near-convex archetypal analysis model

The proposed NCAA model is stated as follows:

min
A∈Rd×r

H∈Rr×n

1

2
‖X −Y AH‖2

F

s.t. A(l ,k) ≥−ε for all k, l , ε≥ 0,
d∑

l=1
A(l ,k) = 1 for all k = 1, ...,r,

H ≥ 0,
r∑

k=1
H(k, j) = 1 for all j = 1, ...,n.

(3.2)
Given an input matrix X of n data points in dimension m and a matrix Y
of d points in dimension m, the goal of NCAA is to minimize the squared
Frobenius norm of the difference between the data matrix X and its ap-
proximation Y AH .

The constraints on H are exactly the same as in AA and in SSNMF,
that is, nonnegativity together with column-stochasticity. Indeed, the data
points are expected to be convex combinations of the archetypes.

By contrast, the constraints on A can be seen as a relaxed form of those
that hold in classical AA. Indeed, letting some entries of A be slightly nega-
tive ("slightly" meaning "up to −ε", with ε≥ 0) implies that the archetypes
could lie out of the convex hull of the data points. More precisely, as ε in-
creases, the archetypes W = Y A are allowed to lie further away from the
convex hull of the columns of Y and if ε = 0, NCAA boils down to clas-
sical AA (if Y = X), see Lemma 3.1 afterwards. On the other hand, the
column-stochasticity of A is preserved and guarantees that the archetypes
are in the affine hull (that is, the set of linear combinations whose coeffi-
cients sum to one) of the columns of X . These constraints justify the nam-
ing "near-convex" of Model (3.2). More precisely, regarding the constraints
that apply on A, we say that the columns of W = Y A are near-convex com-
binations of the columns of Y .

Finally, let us observe that the archetypes are not built upon the whole
set of data points (that is, the matrix X) but only upon a subset of d ¿ n
points corresponding to the columns of Y .

In summary, there are two main differences between NCAA and AA: the
constraints on the entries of A and the use of a matrix Y narrower than X
to build the archetypes.

35

At this stage, key questions arise from the model statement and will be
discussed progressively:

• Which geometric interpretation can we give to NCAA ? See hereunder
in this section.

• How to solve Problem (3.2) ? See Section 3.3.

• How to choose the parameters of NCAA, that is, the matrix Y and the
parameter ε ? See Section 3.4.

Let us first focus on the geometrical interpretation of NCAA. In NCAA,
the basis vectors are given by W = Y A where A satisfies the constraints

A(l ,k) ≥−ε for all k, l (with ε≥ 0) and
d∑

l=1
A(l ,k) = 1 for all k = 1, . . . ,r . Each

archetype, that is, each column of W , can be written as:

W (:,k) = Y A(:,k) =
d∑

l=1
Y (:, l)A(l ,k) for all k = 1, . . . ,r. (3.3)

For simplicity, we will call yl the l -th column of Y in the following (notice
the bold writing, to distinguish vectors from scalars), that is, yl = Y (:, l). We
are interested in describing the feasible set of the archetypes, that is, the set
of near-convex combinations of d points yl (l = 1, . . . ,d):

S =
{

w ∈Rm : w =
d∑

l=1
al yl s.t. al ≥−ε for l = 1, . . . ,d , ε≥ 0,

d∑
l=1

al = 1

}
.

(3.4)
This set S has a nice geometrical meaning, as stated in the following
lemma:

Lemma 3.1. The set S of near-convex combinations of points yl (l = 1, . . . ,d),
as defined in Eq. (3.4), is equal to the set of convex combinations of points zl

such that
zl =yl (1+dε)−dεy for l = 1, ...,d (3.5)

where y = 1
d

d∑
l=1

yl is the mean of the yl ’s, that is,

S =
{

w ∈Rm : w =
d∑

l=1
bl zl s.t. bl ≥ 0, for l = 1, . . . ,d ,

d∑
l=1

bl = 1

}
.

(3.6)

36

Proof. Let us consider the set given by Eq. (3.6) where the zl ’s are defined
according to Eq. (3.5). We will show that this set is the same as the set de-
fined by Eq. (3.4).

Each element w of the set of Eq. (3.6) can be written as

w =
d∑

l=1
bl zl =

d∑
l=1

bl (yl (1+dε)−dεy) (3.7)

=
d∑

l=1
bl (1+dε)yl −dεy

d∑
l=1

bl . (3.8)

Since,
d∑

l=1
bl = 1, we have

d∑
l=1

bl zl =
d∑

l=1
bl (1+dε)yl −dεy (3.9)

=
d∑

l=1
bl (1+dε)yl −dε

1

d

d∑
l=1

yl (3.10)

=
d∑

l=1
[bl (1+dε)−ε]yl . (3.11)

Let us call cl = bl (1+dε)− ε for all l . As we know that bl ≥ 0 for all l and
1+dε≥ 1 if ε≥ 0, it appears that cl ≥−ε. Moreover,

d∑
l=1

cl =
d∑

l=1
[bl (1+dε)−ε] (3.12)

=
d∑

l=1
bl +dε

d∑
l=1

bl −dε= 1 (3.13)

as
d∑

l=1
bl = 1. Putting all together, we have w =

d∑
l=1

bl zl =
d∑

l=1
cl yl with cl ≥−ε

for l = 1, . . . ,d and
d∑

l=1
cl = 1 which corresponds exactly to the definition of

any vector of the set S defined in Eq. (3.4).

We illustrate this interesting geometric observation for ε= 0.05 through
the example of Fig. 3.2. Given a set of d = 6 well-chosen points yl with
l = 1, . . . ,6, we generate n = 1000 data points as near-convex combinations

37

Figure 3.2: Illustration of Lemma 3.1 for d = 6, n = 1000 and ε = 0.05: the
data points (blue dots) are near-convex combinations of the points yl ’s
hence convex combinations of the points zl ’s given by Eq. (3.5).

of yl ’s and check that they lie within the convex hull of the d = 6 points
zl ’s given by Eq. (3.5). Let us briefly explain how the n = 1000 data points
were generated in practice for this example. Given Eq. (3.4), we gener-
ate randomly a1. For this purpose, we need to know the lower and up-
per bound of a1. We know that a1 ≥ −ε but what is the upper bound ?
As the al ’s must sum to one, a1 = 1− (a2 + a3 + a4 + a5 + a6). The great-
est value of a1 is obtained when the other al ’s (l = 2, ...,6) are at their lowest
level, that is, −ε. Thus, the upper bound for a1 is 1+5ε. Similarly, for a2,
the lower bound is −ε and the upper bound is deduced by the fact that
a2 = 1− (a1 + a3 + a4 + a5 + a6). As we suppose that a1 has already been
chosen, the upper bound of a2 is 1+4ε−a1.

To generalize, if we want to generate randomly near-convex combina-
tions of d data points according to Eq. (3.4), we need to pick the coefficients
al ’s (for l = 1, . . . ,d) uniformly in the following interval:

al ∈ [−ε;1+ (d − l)ε−
l−1∑
j=1

a j] for all l = 1, . . . ,d −1, (3.14)

38

and ad = 1−
d−1∑
j=1

a j . If we generate 1000 points, we create 1000 sets of coeffi-

cients {a1, ..., ad } according to Eq. (3.14) and then shuffle each set to ensure
a uniform distribution. Indeed, the bounds on the coefficients were built
by supposing that they are picked sequentially (first a1, then a2,...) which
implies that ad is always tighter bounded than ad−1 which is in turn tighter
bounded than ad−2 and so on. The shuffling allows to avoid this bias.

3.3 Two-block coordinate descent to solve NCAA

To solve Problem (3.2), we use a standard two-block coordinate descent
where each subproblem is solved with a fast projected gradient descent
(FPGD) method, exactly as described in Section 2.1. In other words, A and
H are alternatively optimized similarly to Algorithm 1 and the subproblems
with respect to either A or H are solved in a similar way as in Algorithm 2.
In the following, we discuss the initialization of the factors, the step sizes,
the computation of the gradients and the projections.

3.3.1 Initialization of the factors

The initialization of A and H is performed as follows. To initialize A,
we use SNPA (see Algorithm 3). More precisely, SNPA extracts r out of d
columns in Y that stand for the initial archetypes W (0). Of course, this first
requires to set up properly the matrix Y , see Section 3.4. SNPA retrieves a
set T of r indices such that Y (:,T) = Y A(0) = W (0). The initial matrix A(0)

is then set up such that the only non-zero entries are A(0)(T (k),k) = 1 for
k = 1, . . . ,r .
To initialize H , the following optimization problem is solved:

H (0) = argmin
H

1

2
‖X −Y A(0)H‖2

F

such that H ≥ 0,
r∑

k=1
H(k, j) ≤ 1 for all j = 1, ...,n.

(3.15)

As already mentioned in Section 2.3.2, this is a convex optimization prob-
lem which can be solved easily with FPGD, for example through the imple-
mentation described in Appendix A of [54].

39

3.3.2 Gradient step

Once both A(0) and H (0) are set up, the 2-BCD is applied. To solve the
subproblem with respect to A, that is,

min
A

(
L (A) = 1

2
‖X −Y AH‖2

)
such that

A(l ,k) ≥−ε for all k, l ,
d∑

l=1
A(l ,k) = 1 for all k = 1, ...,r,

(3.16)

with a FPGD method, the gradient of L with respect to A needs to be com-
puted:

∇L (A) =−Y T (X −Y AH)H T . (3.17)

The step size of gradient descent is chosen through a backtracking line
search. More precisely, we initialize the step size to 1

L where L is the Lip-
schitz constant of the problem. For the quadratic loss function of Prob-
lem 3.16, it is well-known that the Lipschitz constant can be computed
as the spectral norm of the Hessian matrix of the loss function, that is,
L = ‖∇2L (A)‖2 = ‖Y T Y ⊗ H H T ‖2 = ‖Y T Y ‖2‖H H T ‖2 where ⊗ is the Kro-
necker product. Moreover, it is also known [91] that 1

L is a step size that
guarantees decrease of the loss function at the gradient step. Starting with
an initial step of 1

L , we apply a backtracking line search strategy in order
to find a step size that decreases as much as possible the loss function.
More precisely, at the beginning of each iteration of FPGD applied to Prob-
lem 3.16, the step size is multiplied by 3. If the loss function decreases with
the current step size, we use it. If it is not the case, we keep dividing the step
size by 2 until the loss function L (A) decreases (up to a termination con-
dition). The re-increase of the step size at the beginning of each iteration
avoids a vanishing step size.

3.3.3 Projection step

A more challenging stage is the projection of the iterates on the feasible
set, that is, line 4 of Algorithm 2 applied to Problem 3.16. Let us first notice
that the constraints apply independently on each column of A, that is, we
can perform column-wise projections. Let us call a any column of A satis-
fying the constraints, that is, after the projection on the feasible set and ã
the output of the gradient step before the projection. Given ã, we want to

40

find the vector a as close as possible to ã satisfying the constraints, that is

a(l) ≥−ε for l = 1, . . . ,d and
d∑

l=1
a(l) = 1. This results in a new optimization

problem:

min
a∈Rd

1

2
‖ã −a‖2 s.t. a(l) ≥−ε for all l = 1, . . . ,d ,

d∑
l=1

a(l) = 1. (3.18)

The last constraint can also be rewritten as eT a = 1 where e is a column
vector of all ones. We can build the corresponding dual Lagrangian incor-
porating the equality constraint:

max
µ

min
a≥−ε

1

2
‖ã −a‖2 −µ(1−eT a), (3.19)

where µ is the Lagrangian multiplier and the notation a ≥ −ε means that
each entry of a is greater or equal to −ε. If we suppose that the value µ∗ of
µ at optimality is known, the optimal solution of

min
a≥−ε

1

2
‖ã −a‖2 −µ∗(1−eT a) (3.20)

can be easily computed and is given by

a∗(l) = max(−ε, ã(l)−µ∗) for all l = 1, . . . ,d . (3.21)

However, to find µ∗, we need to express the sum-to-one constraint, that is,
solve the following equation, which is not trivial:

d∑
l=1

max(−ε, ã(l)−µ∗) = 1. (3.22)

First, let us sort the entries of ã in ascending order. Hence, in the remaining
steps, we will assume that ã is sorted such that ã(1) ≤ ã(2) ≤ ·· · ≤ ã(d). To
solve Eq. (3.22), let us consider the function

S(µ) =
d∑

l=1
max(−ε, ã(l)−µ), (3.23)

sketched on Fig. 3.3. It can easily be shown that S(µ) is a monotonically
decreasing piecewise linear function with a softer slope as µ increases. In-
deed, let us observe that if µ has a very negative value, each ã(l)−µ will be

41

Figure 3.3: Illustration of the function S(µ) used in the projection of the
factor A in NCAA.

greater than −ε and

S(µ) =
d∑

l=1

(
ã(l)−µ)= d∑

l=1
ã(l)−dµ, (3.24)

which is independent of ε. In fact, this happens for µ≤ µ1 = ã(1)+ε (let us
recall that ã has been sorted). On the other hand, if µ is very positive, each
ã(l)−µ will be negative and lower than −ε, and S(µ) =−dε. This happens
for µ ≥ µd = ã(d)+ ε. Between these two extremes, a breakpoint, that is, a
change in the slope, arises at µl = ã(l)+ε for any l . Indeed, the value of S(µ)
within the interval

[
µl ;µl+1

]
is given by

S(µ) =−lε+
d∑

i=l+1
(ã(i)−µ) (3.25)

which is a linear decreasing function of slope −(d − l). As l increases, µl

increases and the slope of the corresponding linear piece becomes smaller
in absolute value.

42

Therefore, given the two extreme points (µ1,S(µ1)) and (µd ,S(µd)), we
apply a dichotomy on the indices of ã. If S(µ1) < 1, we solve

S(µ∗) =
d∑

l=1
ã(l)−dµ∗ = 1, (3.26)

and µ∗ is hence given by

µ∗ =

d∑
l=1

ã(l)−1

d
. (3.27)

In any other case, after fixing lmi n = 1 and lmax = d , we compute the
median index l = b lmi n+lmax

2 c, µl = ã(l) + ε and the corresponding value
S(µl). Then, as in a classical dichotomy scheme, we compare S(µl) with 1.
If S(µl) > 1, we fix lmin = l while if S(µl) < 1, we fix lmax = l . The dichotomy
procedure continues until either S(µl) = 1 or S(µl) > 1 > S(µl+1) for some l .
In this last case, the optimal value µ∗ is given by S−1(1) on the interval
]µl ;µl+1[.

Once µ∗ is found with this algorithm, the components of a∗ can be
completely computed through Eq. (3.21) and the projection is achieved for
a given column of A.

The optimization of the second factor in NCAA, namely H , is per-
formed the same way as its initialization (of course, by replacing A(0) and
H (0) by the corresponding factors of the appropriate iteration), that is,
by solving Problem (3.15) with the FPGD implementation of Appendix A
of [54]. Let us mention that the dichotomy procedure described above
could also be applied with ε = 0 for the projection of H on its feasible set
if the column-stochasticity constraint is not relaxed, that is, if we consider

the original constraint
r∑

k=1
H(k, j) = 1 for all j = 1, ...,n.

3.3.4 Computational cost

Let us give a word about the computational cost of BCD with FPGD ap-
plied to NCAA. The optimization of both factors A and H through FPGD
involves two main (from a computational point of view) stages : the com-
putation of the gradient and the projection.

The computation of the gradient requires matrix multiplications (see
Eq. (3.17) for the gradient with respect to A) whose computational cost is

43

O (mnd) operations where d is generally of the order of a small multiple
of r .

The most costly stage in the projection of both A and H is to sort each
column2. The matrix A has r columns of d elements while the matrix H
has n columns of r elements, which requires respectively O (r d logd) and
O (nr logr) operations for the sorting (performed with the "best" possible
algorithm, that is, QuickSort).

Consequently, the cost of a single iteration of BCD is O (mnd) opera-
tions; the computation of the gradient is the most costly step. As long as
d is chosen small enough (typically, as a small multiplicative factor of r),
the computational cost of the algorithm remains linear in the dimensions
of the input matrix (m and n) hence can be applied to large-scale data sets.

3.4 Possible strategies for NCAA parameters

The goal of this section is to discuss the choice of two important pa-
rameters of NCAA, namely the matrix Y in Section 3.4.1 and the number ε
in Section 3.4.2.

3.4.1 Choice of Y

Let us recall that the matrix Y contains d columns, corresponding to the
d points from which the archetypes are built (see Eq. (3.2)). We consider
two main strategies for the design of Y :

1. SNPA: The matrix Y can be initialized by applying SNPA, that is, Algo-
rithm 3, on the initial data matrix X . SNPA returns d extreme points
of the dataset, which should roughly approximate the convex hull of
X . The example on Fig 3.4 illustrates the use of SNPA for the design
of Y in NCAA. More specifically, the d = 6 points of Y are computed
with SNPA and according to Lemma 3.1, the r = 3 basis vectors lie
within the near-convex hull of Y for some ε. However, a drawback of
SNPA is that it can be sensitive to outliers.

2. HC: The matrix Y can also be initialized by applying HC, see Sec-
tion 2.2. In this case, the d columns of Y correspond to points of

2In the worst case, the projection of H in [54] requires to sort the entries of each col-
umn of H , as for A.

44

Figure 3.4: Geometric interpretation of NCAA for r = 3, d = 2r = 6, m = 2.
According to Lemma 3.1, the estimated basis vectors are within the convex
hull of the columns of Z , that is, the near-convex hull of the columns of Y .
In this case, Y was set up with SNPA.

X that are rather central. As we want to allow the archetypes to lie
outside the convex hull of the columns of X , SNPA might seem more
adequate but experiments on real data showed that SNPA sometimes
performs poorly (possibly due to noisy data points), and HC is there-
fore more adapted in these situations.

In addition to the method to build the points of Y , we also need to choose
an appropriate value for d , the number of columns in Y . If d is too high,
the computational load will increase and some points might be useless or
redundant to build the archetypes. If d is too small, the archetypes could
be not well spread and the model inefficient.

For SNPA, we keep adding points in Y as long as the ratio

min
H≥0

H T e≤e

‖X −X (:,J)H‖F

‖X ‖F
(3.28)

where J is the set of indices extracted by SNPA, is above a certain thresh-
old (10−2). In other words, SNPA keeps extracting points until the relative
reconstruction error is sufficiently small.

45

For HC, although there exist some empirical guidelines for the ideal
number of clusters, such as the CH index [19], such methods were not very
successful when applied to our HC-based initialization. Hence, in our ex-
periments, the value of d is fixed a priori, depending on the dataset. A more
proper choice of d is let as a possible direction of future research. However,
let us mention that in most NMF algorithms, the value of the rank r is al-
ready estimated either by trial and error or with experts insight hence, it
does not seem to us that fixing d "by hand" is a major issue.

3.4.2 Choice of ε

The parameter ε intuitively indicates how far the archetypes are allowed
to lie from the convex hull of X . If ε= 0, NCAA boils down to AA (if Y = X)
while if ε has a high positive value, the basis vectors might lie very far from
the convex hull of the data points. In practice, choosing ε equal to a con-
stant value is difficult as it is mostly data-dependent.

For these reasons, the parameter ε is tuned along the algorithm accord-
ing to the following procedure. We first set a lower bound εmi n = 10−3 and
an upper bound εmax = 1 for ε. Let us recall that the initial matrix of ba-
sis vectors W (0) = Y A(0) is created by applying SNPA on Y , for which the
two techniques proposed in Section 3.4.1 provide points located within the
convex hull of the columns of X , where the initial archetypes therefore also
lie. We start by taking ε = εmi n and run some iterations of NCAA with this
value of ε. Then, we evaluate the objective function and update ε in conse-
quence. Let us call:

• init_obj: the value of the loss function obtained with the initializa-
tion, that is, init_obj = 1

2‖X −Y A(0)H (0)‖,

• curr_obj: the value of the loss function at the end of the optimization
process with the current value of ε,

• prev_obj: the value of the loss function at the end of the optimization
process with the previous value of ε (at the first iteration prev_obj =
init_obj).

The value of ε is updated according to Algorithm 5. If the reconstruction
error with the current value of ε is sufficiently decreased compared to the
previous error, ε is doubled (within the εmax upper bound). This situation,

46

which is most likely to happen in the first iterations, means that the algo-
rithm has not achieved to reach stable archetypes yet and it is worth al-
lowing the archetypes to lie further away from the convex hull of the data
points by increasing ε. Moreover, any lower value of εwould lead to a higher
error, as the archetypes would be more constrained, that is why we update
εmin to the current value of ε.

Algorithm 5 Global tuning of ε

1: if
|curr_obj−prev_obj|

init_obj
> tol then

2: εmin = ε
3: ε= min(2ε,εmax)
4: else
5: εmax = ε
6: ε= εmin +εmax

2
7: end if

On the other hand, if the error stagnates, it means that most of the data
points can already be expressed as convex combinations of the archetypes
with the current ε. Increasing ε would be useless, as it would only push
the archetypes further away without a significant improvement of the loss
function, apart from noisy points. Therefore, we update the upper bound
such that εmax = ε. On the contrary, there might exist a smaller value of ε
that does not increase the error by a lot but keeps the archetypes closer
to the data cloud, hence we fix the next value of ε to εmin+εmax

2 . The tuning
stops when εmax −εmin < 10−3 or when a maximum number of iterations is
reached.

This procedure works well for "nice" data configurations, especially
when the data exhibit some degree of symmetry as on Fig. 3.4, but quickly
reaches its limits when the data is less structured. On Fig. 3.4, all the purity
levels pk ’s (see Section 2.4.1) are equal to 0.8. However, let us consider a
situation where the purity levels are unbalanced between the basis vectors,
such as the situation on Fig. 3.5, for r = 3. In this case, the pk ’s are 0.9, 0.8
and 0.75 hence some true archetypes are closer to the data points than
others. It is worth refining the NCAA model as follows: we modify the
constraint A(l ,k) ≥ −ε for all k, l of Model (3.2) into A(l ,k) ≥ −εk where a
different εk ≥ 0 is considered for each column of A. The other constraints
remain unchanged.

47

Figure 3.5: Illustration of a data set for which the purities are not identical
across the r = 3 basis vectors.

The algorithm is modified as follows. The first stage of the algorithm
involves a common ε for all the basis vectors and works the same way as
previously described. Once the stopping criterion of this global tuning has
been reached, a "fine-tuning" stage is performed for each archetype inde-
pendently, as presented in Algorithm 6.

More precisely, starting from the absolute value of the minimum entry
of the kth column of A, εk is progressively decreased by a factor α (fixed
to 0.8 in the implementation) at each iteration until the reconstruction er-
ror becomes too high compared to the value of the error just after the global
tuning. This technique aims at bringing the kth archetype as close as possi-
ble to the data cloud, keeping the others fixed, without degrading too much
the loss function. For a given value of εk , a few iterations of alternated op-
timization of A and H are performed. Finally, as each column of A is tuned
independently from each other, the matrix H needs to be updated once
again at the end of the fine-tuning (line 17).

48

Algorithm 6 Fine tuning of εk ’s

Input: Matrices A and H resulting from the global tuning of ε, err(ε) the
value of the objective function after the global tuning of ε.

Output: Final matrices A and H .
final_A = {}

1: for k = 1 : r do
2: new_A = A
3: εcurr,k =−min(A(:,k))
4: while stop == false do
5: εcurr,k =αεcurr,k

6: for t = 1,2, . . . do
7: Update new_A(:,k) with FPGD on min 1

2‖X −Y new_AH‖2
F

such that new_A(l ,k) ≥−εcurr,k ,
d∑

l=1
new_A(l ,k) = 1

8: Update H with FPGD on min
H≥0

1
2‖X −Y new_AH‖2

F

such that
r∑

k=1
H(k, j) ≤ 1

9: end for

10: if
1
2‖X −Y new_AH‖2

F

err(ε)
> tol or εcurr,k < 10−10 then

11: stop = true
12: end if
13: end while
14: final_A(:,k) = new_A(:,k)
15: end for
16: A = final_A

17: Update H with FPGD on min
H≥0

1
2‖X −Y AH‖2

F s.t.
r∑

k=1
H(k, j) ≤ 1

for all j

49

3.5 The NCAA algorithm

Now that we have detailed all the aspects of NCAA, let us summarize its
whole working through Algorithm 7. After the initialization of both NCAA
factors A and H , some iterations of alternated updates of A and H are per-
formed through FPGD with ε equal to its lower bound. Then, the value of
ε is updated depending on the evolution of the loss function and the al-
ternated optimization scheme is repeated, always ending by an update of
the value of ε. When a stopping criterion is fulfilled, a fine-tuning stage is
applied for each archetype individually.

Algorithm 7 NCAA

Input: Nonnegative matrices X ∈Rm×n+ and Y ∈Rm×d+ , rank r , bounds
0 < εmin < εmax, tolerance tol.

Output: Matrices A ∈Rd×r and H ∈Rr×n that solve Problem (3.2).
1: Compute initial matrices A(0) and H (0), i = 0, ε(1) = εmin

2: err(0) = 1
2 ||X −Y A(0)H (0)||2F

3: for t = 1,2, . . . do
4: for u = 1,2, . . . do
5: i = i +1
6: A(i) = Update A with FPGD on min 1

2‖X −Y AH (i−1)‖2
F

such that A(l ,k) ≥−ε, for all k, l ;
d∑

l=1
A(l ,k) = 1 for all k

7: H (i) = Update H with FPGD on min
H≥0

1
2‖X −Y A(i)H‖2

F

such that
r∑

k=1
H(k, j) ≤ 1 for all j

8: end for
9: err(t) = 1

2 ||X −Y AH ||2F
10: if |err(t)−err(t−1)|

err(0) < tol then

11: εmax = ε(t); ε(t+1) = εmin+εmax
2

12: else
13: εmin = ε(t); ε(t+1) = min(2ε(t),εmax)
14: end if
15: end for
16: Apply the fine-tuning procedure of Algorithm 6

50

3.6 NCAA applied to synthetic data

Let us first illustrate the performance of NCAA on a simple synthetic
dataset. Let us take the configuration presented on Fig. 3.5, that is, a data
matrix X of n = 500 points in dimension m = 3 where the ground-truth
matrix of basis vectors is given by:

W̃ =
0.5 0.5 0

0.5 0 0.5
0 0.5 0.5

 , (3.29)

and H̃ is generated through a Dirichlet distribution, see Section 2.4.1 for
more details. Moreover, the purities pk ’s of the r = 3 archetypes are respec-
tively 0.75, 0.8 and 0.9. We build the matrix Y with SNPA and use d = 6.

Unsurprisingly, the NCAA model applied with only the global tuning
of ε does not provide satisfying results. More precisely, the relative error

on the matrix of basis vectors ‖W −W̃ ‖F

‖W̃ ‖F
= 6.39%. When the fine-tuning is

applied column by column, the matrix W retrieved by NCAA is closer to W̃
and the relative error is only 3.35%. This difference is illustrated on Fig. 3.6.

More systematic tests were also conducted. We generate n = 1000 data
points in dimension m = 10 and compare our NCAA model with minVol-
NMF with the "logdet" penalty term, that is, Eq. (2.5) for which the values
0.01 and 0.1 of the regularization parameter λ̃ are considered. For NCAA,
Y is always set up with SNPA and d = 10r . However, we vary the rank, the
(symmetric) purity level and the relative additive white Gaussian noise level
ν (see Section 2.4.1) as follows:

• The rank r is set to either 3, 7, 12, 20 (note that the two last possibili-
ties correspond to rank-deficient factorizations, that is , m < r),

• The purity level p, equal for all the r archetypes, is set to either 0.7,
0.8, 0.9, 1,

• The relative noise level ν is set to either 0, 0.01, 0.05, 0.1, 0.2.

Given the value of the rank, each entry of the ground-truth matrix W̃ is
drawn uniformly within the interval [0,1]. Then, each column is normal-
ized so that its entries sum to one. The columns of H̃ are drawn from a

51

(a)

(b)

Figure 3.6: NCAA applied to synthetic data with non-symmetric purities;
d = 6 and Y obtained with SNPA. The r = 3 basis vectors retrieved by NCAA
are closer to the ground truth when a fine-tuning is applied (Fig. (b)) than
with the sole global tuning of ε (Fig. (a)).

Dirichlet distribution as previously described. For every possible combina-
tion of the variable parameters r , p and ν, we perform 25 runs (with each
time a new generation of the ground-truth factors W̃ and H̃) of each com-
pared algorithm and compute the mean and the standard deviation of the
corresponding MRSA over the 25 runs. These results are presented in Ta-
ble 3.1 for some interesting configurations, to facilitate the analysis: we fix

52

r = 7, p = 0.8 and ν= 0 and vary one parameter at a time. Moreover, we also
consider SNPA as a compared algorithm. Let us recall that SNPA is origi-
nally dedicated to solve (near) separable NMF (see Section 2.2), hence it is
interesting to compare NCAA and SNPA especially when the purity level is
close to 1. In addition, we also display between parentheses for each con-
figuration the number of times (over the 25 runs) that a given model is "the
best", that is, produces the lowest MRSA. We observe the following:

• The variability of the settings generates in general high standard de-
viations. However, the ranking trend given by the average MRSA is
confirmed by the distribution of the best runs.

• The MRSA of NCAA is in most cases lower than the one of minVol-
NMF, which indicates that there is less error between the estimated
basis vectors and the expected ones in NCAA than in minVolNMF.
Note that minVolNMF with the two values of λ give similar results.
The baseline SNPA is only competitive in separable cases (that is,
when p = 1). NCAA performs particularly well in the difficult sce-
narios, namely when r > m, in presence of heavy noise or in highly
mixed situations (p ¿ 1). As opposed to minVolNMF, NCAA uses the
data points to construct the basis vectors hence is much more robust
in these difficult scenarios.

In summary, NCAA performs very well on synthetic data and is more than
competitive with state-of-the-art approaches such as minVolNMF and
SNPA.

3.7 NCAA applied to hyperspectral unmixing

To evaluate our NCAA model on real-world data, we apply it to the Ur-
ban hyperspectral image (see Fig. 1.3 in Section 1.3) and compare NCAA to
the logdet variant of minVolNMF, that is, the model described by Eq. (2.5),
with the initial regularization parameter λ̃ fixed to 0.1. This value of λ̃ fol-
lows from the recommandations of [77]. We set the rank r = 4 for all mod-
els, that is, we aim to extract 4 materials in the Urban image.

The matrix Y of NCAA is set up with d = 20 points obtained with the
hierarchical clustering technique, as described in Section 3.4. Other values
of d have been tested but lead to poorer results.

53

(p
,r,ν

)
N

C
A

A
m

in
Vo

lN
M

F
(λ=

0.01)
m

in
Vo

lN
M

F
(λ=

0.1)
SN

PA

(0.7,7,0)
1

.13±
2.61

(24)
7.42±

5.22
(0)

6.09±
5.30

(1)
15.04±

2.40
(0)

(0.8,7,0)
0

.37±
0.61

(24)
1.99±

2.27
(0)

1.70±
2.25

(1)
7.40±

1.20
(0)

(0.9,7,0)
0

.21±
0.07

(20)
0.45±

0.23
(0)

0.41±
0.23

(5)
3.13±

0.28
(0)

(1,7,0)
2.12·10 −

3±
4.27·10 −

3
(8)

3.18·10 −
3±

6.56·10 −
3

(0)
3.17·10 −

3±
6.53·10 −

3
(0)

1
.22·10 −

5±
1.40·10 −

5
(17)

(0.8,3,0)
1.88±

1.05
(10)

1.73±
0.90

(1)
1

.47±
0.95

(14)
7.16±

0.80
(0)

(0.8,7,0)
0

.37±
0.61

(24)
1.99±

2.27
(0)

1.70±
2.25

(1)
7.40±

1.20
(0)

(0.8,12,0)
3

.81±
3.97

(23)
5.70±

3.80
(0)

5.44±
3.80

(2)
10.08±

2.53
(0)

(0.8,20,0)
6

.39±
2.41

(22)
7.20±

2.48
(0)

7.09±
2.47

(3)
10.45±

1.79
(0)

(0.8,7,0)
0

.37±
0.61

(24)
1.99±

2.27
(0)

1.70±
2.25

(1)
7.40±

1.20
(0)

(0.8,7,0.01)
2.31±

3.11
(7)

2.44±
3.07

(0)
2

.16±
3.03

(18)
7.85±

1.98
(0)

(0.8,7,0.05)
6.32±

2.20
(6)

6.48±
2.50

(0)
5

.59±
2.39

(19)
10.35±

2.94
(0)

(0.8,7,0.1)
8

.44±
1.73

(14)
11.02±

3.78
(0)

9.43±
3.56

(11)
12.18±

2.16
(0)

(0.8,7,0.2)
13

.87±
3.30

(22)
23.23±

3.90
(0)

21.19±
4.12

(1)
18.79±

2.29
(2)

Tab
le

3.1:
C

o
m

p
ariso

n
o

fth
e

p
erfo

rm
an

ces
o

fN
C

A
A

,m
in

Vo
lN

M
F

an
d

SN
PA

o
n

syn
th

etic
d

ata,w
ith

n=
1000,

m
=

10,
d

=
10r

in
fu

n
ctio

n
o

f
th

e
p

u
rity

level,
ran

k
an

d
n

o
ise

level
resp

ectively.
T

h
e

m
ean

an
d

stan
d

ard
d

eviatio
n

o
f

th
e

M
R

SA
over

25
ru

n
s

w
ith

ran
d

o
m

ly
gen

erated
tru

e
facto

rs
is

rep
o

rted
.

Fo
r

each
co

n
fi

gu
ratio

n
,

th
e

b
est

average
M

R
SA

is
h

igh
ligh

ted
in

b
o

ld
an

d
th

e
n

u
m

b
er

o
f

tim
es

each
algo

rith
m

p
erfo

rm
s

th
e

b
est

is
b

etw
een

p
aren

th
eses.

54

Figure 3.7: Comparison of the spectral signatures of the endmembers ex-
tracted by NCAA, minVolNMF and the ground truth in the Urban image
with r = 4.

To quantify the performances of the models, we compute the MRSA
(see Section 2.4) between the matrix of basis vectors W estimated by each
model (let us recall that for NCAA, W = Y A, see Eq. (3.3)) and the matrix
of ground-truth basis vectors W̃ whose columns correspond to the spectral
signatures of Fig. 1.4a.

On Fig. 3.7, we compare the three sets of spectral signatures, that is,
the ground truth of [135], and the columns of the matrices W ’s obtained
with on the one hand minVolNMF and on the other hand NCAA (with
fine-tuning of εk ’s). It appears that the endmembers extracted by NCAA
have spectral signatures very close to the ground truth. Similarly, the
corresponding abundance maps presented on Fig. 3.8 show that NCAA is
able to retrieve meaningful proportions of each endmember in the pixels
of the initial image, with the same level of quality as minVolNMF.

In Table 3.2, we report the MRSA obtained on the Urban image with
minVolNMF, NCAA with fine-tuning (NCAA-FT) but also NCAA without

55

(a) (b)

Figure 3.8: Abundance maps extracted by (a) NCAA and (b) minVolNMF
in the Urban image with r = 4. From left to right, on top: road, grass; on
bottom: tree, roof.

fine-tuning (NCAA-raw), as well as the corresponding runtime. For a
fair comparison, we run 500 iterations3 for all methods. Note that, as
mentioned in Section 3.4.2, the tuning stages of ε have their own stopping
criteria, which might be more appropriate outside the context of the com-
parison with other methods. The time performance is not a motivation of
the proposed NCAA model and highly depends on the parameters of the
tuning stages (for example the choice of the parameter α in Algorithm 6).
However, NCAA is typically much slower than minVolNMF. On the other
hand, the advantage of the fine-tuning in terms of performance seems
obvious, despite the increase of computational cost. Indeed, NCAA-FT
performs better than minVolNMF in terms of MRSA while NCAA-raw gives
rather poor results although being faster. This is due to the fact that using
a single ε is not sufficient for such a dataset since some endmembers can
be further from the data cloud than others.

3By iteration, we mean one update of all the factors involved.

56

Algorithm MRSA Runtime (s)

minVolNMF 5.72 233.8

NCAA-FT 5.57 2875.5

NCAA-raw 10.0 1286.4

Table 3.2: MRSA and runtime of minVolNMF and NCAA for the unmixing
of Urban image.

3.8 Perspectives of improvement

This section lists some perspectives of improvement for NCAA.
First, let us mention that our model has a drawback: the basis vectors

W = Y A are not necessarily nonnegative. Indeed, although the matrix Y
contains only nonnegative entries if a proper strategy such as SNPA or HC
is used, A can contain slightly negative entries (up to −ε). By consequence,
nothing prevents the columns of W to contain negative entries. However,
this drawback can be more or less alleviated by the tuning strategy of ε. In-
deed, since we start with ε close to 0 and progressively increase it to allow
the archetypes to lie further away from the convex hull of the data, a control
of the nonnegativity of the basis vectors can be done at each incrementa-
tion of ε to allow an "early stopping" if needed (that is, if a basis vector is no
longer nonnegative).

A key aspect that would be particularly interesting to study is the iden-
tifiability of NCAA, that is, the conditions under which the NCAA factors
are unique, up to scaling and permutations. Many recent works have stud-
ied the identifiability of NMF [51, 52], and especially minVolNMF [82]. We
obtained some preliminary results (not published) on very specific settings
but since, more broadly, identifiability is not the core of this PhD, we did
not investigate much these aspects.

We only compared NCAA with the minVolNMF formulation of Eq. (2.5).
However, robust approaches, relaxing some constraints on the factors, exist
(see Section 2.3.2) and may be interesting to compare with NCAA as well;
this is a topic for further research.

Some variants of NCAA, adding a penalty term to the objective func-
tion instead of a constraint on the matrix A, could also be investigated. For
example, it could be interesting to consider a model whose loss function

57

is 1
2‖X −Y AH‖2

F +λ
r∑

k=1
max

l

(−min(0, A(l ,k))
)
. In other words, this penalty

would take into account the sum of the most negative entry (if any) of every
column of A. Of course, a key challenge is to use a proper strategy to set the
value of the hyperparameter λ.

Let us mention a last interesting possibility of improvement, which is
to include some degree of sparsity in the matrix A. Indeed, to enhance
the interpretability of NCAA, we could enforce that each archetype is only
combination of a small number of columns of Y .

3.9 Take-home messages

In this chapter, we introduced a new model called near-convex archety-
pal analysis (NCAA). Let us summarize the main aspects of this model:

• NCAA is a flexible variant of a well-known NMF model, archetypal
analysis (AA), which allows the basis vectors to lie slightly outside the
convex hull of the data points,

• We have developed an optimization framework based on two-block
coordinate descent and fast projected gradient descent to solve
NCAA,

• NCAA performs better than minimum-volume NMF on synthetic
data, especially in "difficult" settings, for example, in the presence
of heavy noise or in rank-deficient factorizations, as well as on the
hyperspectral unmixing task,

• Several perspectives of improvement of NCAA have been identified,
such as the introduction of sparsity in the model.

58

Part II

Deep Matrix Factorizations

59

60

C
H

A
P

T
E

R

4
A GENTLE INTRODUCTION TO DEEP

MATRIX FACTORIZATIONS

Deep matrix factorizations (deep MF) is the core topic of this PhD. In
this chapter, we review the main aspects of deep MF, covered by our sur-
vey paper [38]. In Section 4.1, we describe the main motivations of deep
MF compared to single-layer MF. Then, in Section 4.2, we present the main
models in a historical perspective, as well as important variants. Section 4.3
briefly describes how to solve deep MF problems and choose the parame-
ters. In Section 4.4, we review the main real-world applications of deep
MF and especially illustrate its working on three showcase examples. We
present the main theoretical results in Section 4.5, including the connec-
tions with neural networks, while in Section 4.6, we propose directions of
future research; some of them are explored in the next chapters. Finally,
Section 4.7 gathers the main take-home messages.

4.1 Motivations of deep MF

The interest of low-rank matrix approximations has already been high-
lighted in the previous chapters: it allows to extract relevant information
from large data sets by expressing each data point as a linear combination

61

of a few features. On the other hand, deep neural networks have been ex-
tensively studied over the last decades as deep learning gained success in
many supervised classification tasks and even in generative models. Their
main advantage lies in the ability to combine features in a highly non-linear
way but the inner machinery of deep neural networks can be hard to grasp.

The main motivation of deep MF is to combine both interpretability, as
in classical matrix factorizations, of which it is an extension, and the extrac-
tion of multiple hierarchical features, as in deep neural networks. The goal
of deep MF is to decompose a data matrix X ∈Rm×n as

X ≈W1H1,

H1 ≈W2H2,

...

HL−1 ≈WL HL ,

(4.1)

where L is the number of layers, Wl ∈ Rrl−1×rl with r0 = m, Hl ∈ R+rl×n for
l = 1, . . . ,L.

Each matrix Wl (l = 1, . . . ,L) can be interpreted as the feature matrix of
layer l and each Hl can be interpreted as the representation matrix of layer
l . In other words, successive factorizations of rank rl (1 ≤ l ≤ L) are per-
formed such that various recombinations of the features of the first layers
would appear in the following ones, allowing numerous interpretations of
the semantics hidden in the data set. While standard MFs decompose the
data matrix in only two factors, deep MF is able to extract several layers of
features in a hierarchical way, giving new insights in a broad range of appli-
cations. Overall, the data matrix X is approximated as

X ≈ W1 W2 · · · WL HL . (4.2)

Without any constraint on the factors of deep MF, Eq. (4.2) merely
degenerates into classical matrix factorization. Indeed, in this case, the
product of the matrices Wl ’s could be replaced by a single equivalent
(that is, without additional particular property) matrix whose rank is less
than or equal to the minimum of the rl ’s and the factorization is highly
non-unique. One could simply replace any Wl by WlQ and Wl+1 by
Q−1Wl+1 for any l and any invertible matrix Q ∈Rrl×rl , and obtain another
decomposition of X with the same approximation error but most likely
a different interpretation. Therefore, constraints on the factors such as

62

nonnegativity and sparsity, and/or regularizations should be considered,
which results in various deep MF models. Most deep MF models assume
the nonnegativity of several factors of the decomposition and therefore
extend NMF ideas.

4.2 Deep MF models

In this section, we first present the evolution from the early multilayer
models to the recent deep models in Section 4.2.1. Then, in Section 4.2.2,
we describe the main variants, which are inspired by those of classical ma-
trix factorizations.

4.2.1 A brief history of "deep" factorizations

The first model extending constrained low-rank matrix factoriza-
tions to several levels is multilayer NMF proposed by Cichocki et al. in
2006 [26, 27]. Based on the hierarchical factorizations of a nonnegative
data matrix X ∈Rm×n+ as described in Eq. (4.1), multilayer NMF decom-
poses X in a sequential manner. At the first layer, an NMF of rank r1 of
X is computed through Algorithm 1 such that X ≈ W1H1. At the second
layer, the matrix H1 is factorized as H1 ≈ W2H2, and so on until HL−1 is
decomposed as WL HL ; see Algorithm 8.

Algorithm 8 Early multilayer NMF [26]

Input: Nonnegative data matrix X, number of layers L, inner ranks rl ’s for
l = 1, . . . ,L.

Output: Matrices W1, · · · ,WL and H1, · · · , HL .
1: H0 = X
2: for l = 1, . . . ,L do
3: (Wl , Hl) = Algorithm 1 (Hl−1, rl)
4: end for

However, multilayer NMF does not investigate much the hierarchical
power of deep schemes as the decomposition is purely sequential, that is,
multilayer NMF is equivalent to a succession of single layer NMFs, with
a single forward pass. More precisely, Algorithm 8 consists in sequentially
minimizing the reconstruction errors ‖Hl−1−Wl Hl‖2

F for all l = 1, . . . ,L with

63

H0 = X , but it does not involve a global loss function. In other words, the
error is minimized layer by layer, but there is no retroaction of the last layers
on the first ones.

A key improvement was achieved by the papers of Trigeorgis et al., who
introduced deep MF [114, 115]. The data matrix X still undergoes hierar-
chical factorizations as in Eq. (4.1), but the breakthrough lies in the itera-
tive updates of the factors. As opposed to multilayer MF, deep MF not only
propagates the information from the first, more abstract layer, to the last,
more refined layer, but also propagates the information in the reverse di-
rection. The following error function involving the factors of all layers is
considered:

L (W1,W2, · · · ,WL ; HL) = 1

2
‖X −W1W2 · · ·WL HL‖2

F , (4.3)

and a block-coordinate descent strategy is used to iteratively update all the
factors. The deep MF algorithm [115] is described in Algorithm 9, and il-
lustrated on Fig. 4.1c. In Algorithm 9, arg reduce means that the factor is
updated through some algorithm that (typically) decreases the objective
function, such as FPGD.

Algorithm 9 Deep MF [115]

Input: Data matrix X, number of layers L, inner ranks rl ’s for l = 1, . . . ,L.
Output: Matrices W1, · · · ,WL and H1, · · · , HL .

1: Compute initial matrices W (0)
l and H (0)

l for all l
2: for k = 1, . . . do
3: for l = 1, . . . ,L do
4: A(k)

l =∏
j<l W (k)

j

5: B (k)
l =

{
H (k−1)

L if l = L

W (k−1)
l+1 H (k−1)

l+1 otherwise

6: W (k)
l = argreduce

W

1
2‖X − A(k)

l W B (k)
l ‖2

F

7: H (k)
l = argreduce

H≥0

1
2‖X − A(k)

l W (k)
l H‖2

F

8: end for
9: end for

64

Several comments can be formulated:

• First, the work of Trigeorgis et al. was inspired by semi-nonnegative
matrix factorization (semi-NMF) [41], a variant of NMF where only
one factor, typically H , must contain nonnegative entries while W
is allowed to contain mixed-sign elements. Therefore, this model
should rather be called deep semi-NMF as the Wl ’s are not directly
constrained to be nonnegative, and the matrix X is not required to
have nonnegative entries neither.

In practice however, as most physical systems record nonnegative
data, it often makes sense to impose nonnegativity of the basis vec-
tors as well. In this case, one can easily modify the model by adding
nonnegativity constraints on the Wl ’s through line 7 of Algorithm 9.

• The attentive reader may have noticed that Algorithm 9 does not cor-
respond to applying a BCD method on Eq. (4.3) by optimizing the fac-
tors (W1, · · · ,WL , HL) alternatively. In fact, the nonnegative matrices
Hl for l = 1, . . . ,L −1 are intermediate variables that do not appear in
Eq. (4.3). However, one needs to remember the underlying decompo-
sitions of Eq. (4.1): as Hl ≈Wl+1Hl+1 for l = 1, . . . ,L−1 are constrained
to be nonnegative, they have a dedicated update rule.

• Finally, the choice of the loss function itself is not obvious. Is a
loss function of the type D(X ,W1W2 · · ·WL HL), where D(A,B) is a
distance measure between two matrices A and B , a good choice, as
in Eq. (4.3) ? Or would a loss function that balances the contribution
of each layer, such as

D(X ,W1H1)+λ1D(H1,W2H2)+·· ·+λL−1D(HL−1,WL HL),

be more appropriate ? Moreover, most works in the deep MF liter-
ature have only considered the Frobenius norm. Alternatives such
as the Kullback-Leibler and Itakura-Saito divergences, which have
been shown to be particularly appropriate for specific applications
in the case of standard NMF [49, 78], have not been investigated yet.
More detailed discussions about deep MF loss functions are present
in Chapter 5, where we introduce two new loss functions for deep MF.

65

X

W

H

(a)

D
ire

c
on

 o
f d

ec
om

po
si

on

L

1

L
W

2

W
1

W

X

H

L−1
H

H

H

2

(b)

L

1

L
W

2

W
1

W

X

H

L−1
H

H

H

2

Fo
rw

ar
d

pr
op

ag
a

on

Backw
ard propaga

on

(c)

Figure 4.1: Comparison of (a) MF, (b) multilayer MF [26] and (c) deep
MF [115]. An arrow means that a matrix multiplication is performed:
H −→

W
X means that H is multiplied by W to approximate X .

To sum up, a comparison of one-layer matrix factorization, multilayer
MF [26] and deep MF [115] is illustrated on Fig. 4.1. Multilayer MF on
Fig. 4.1b and deep MF on Fig. 4.1c both perform several levels of decom-
position but the key difference is the iterative nature of the update rules in
deep MF, while the decomposition is only sequential in multilayer MF. Note
that the model is the same for deep and multilayer MF, but the algorithms
used to solve them are different.

66

4.2.2 Main deep MF variants

Beside the standard models presented in Section 4.2.1, some variants
have been studied in the recent literature. These variants consist in adding
constraints on the factors or a regularization term to the loss function. In
this section, we briefly review some of these models. In many of them, non-
negativity is assumed on the factors, and the variants are therefore closely
related to NMF models.

4.2.2.1 Deep orthogonal NMF

The deep version of ONMF (see Section 2.3.1 for the single-layer model)
was introduced in [85] and enriched in [101]. The decomposition is slightly
different than in the multilayer and deep MF described above because
rather than having the activations matrices Hl ’s successively decomposed,
it factorizes the features matrices Wl ’s:

X ≈W1H1,

W1 ≈W2H2,

...

WL−1 ≈WL HL ,

(4.4)

leading to X ≈ WL HL · · ·H1, with each Hl constrained to be nonnegative
and row-wise orthogonal, that is, Hl ≥ 0 and Hl H T

l = Irl for all l . By doing
so, for a given l , each column Hl (:,k) has at most one non-zero entry, say
the j (l)

k th. Consequently, each layer of deep ONMF can be interpreted as a
hard clustering: the rl−1 columns of Wl−1 are spread among rl ≤ rl−1 clus-
ters. More precisely, at layer l , the kth column of Wl−1 is assigned to the
j (l)

k th cluster whose centroid is Wl (:, j (l)
k).

Applying the successive decompositions over the basis matrices Wl ’s
rather than the activations matrices Hl ’s as in [115] seems more natural: it
allows to directly interpret the basis vectors of a given layer as combina-
tions of the basis vectors of the next layer. More insights on deep ONMF
are given in Section 6.1.

ONMF admits a relaxation called approximately orthogonal NMF
(AONMF) [79]. Instead of enforcing orthogonality constraints, a penalty
term of the form

∑
j<k

H(j , :)H(k, :)T is added to the reconstruction error.

67

Similarly, deep AONMF adds a penalty to the objective that minimizes the
inner products Hl (j , :)Hl (k, :)T , for all j 6= k at each layer l .

4.2.2.2 Deep sparse MF

A very common constraint considered in low-rank factorizations is the
sparsity of some factors, that is, limiting the number of non-zero elements
of W and/or H . Many papers have studied the case of one-layer sparse MF,
see for example [63, 43, 68, 29] among others. The goal of sparse MF is to
render the factors more interpretable. In particular, if each column of H
contains only a few non-zero entries, each data point is associated to only
a few basis vectors.

The extension of sparse NMF to the deep setting was proposed in [60].
An `1 norm penalty is considered either on each column of the matrices
Wl ’s and/or on each column of the matrices Hl ’s. Similarly to shallow
sparse MF, the goal of sparse deep MF is to obtain sparse and easily
interpretable factors at each layer. Note that a normalization of the other
factor should be used to avoid a pathological case where the entries of the
factor for which sparsity is promoted tend to zero while those of the other
factor tend to infinity, because of the scaling degree of freedom in such
decompositions (Wl Hl = (αWl)(Hl /α) for any α> 0).

Inspired by deep learning, dropout could also promote sparsity.
Dropout [110] consists in randomly “dropping” some activations during
the learning process to improve generalization. It has recently been
employed for one layer NMF [61], and was shown to be equivalent to a
deterministic low-rank regularizer [20]. It would be interesting to see to
what extent dropout might regularize deep MF as well.

4.2.2.3 Deep archetypal analysis

Archetypal analysis (AA), largely described in Chapter 3, was also ex-
tended to a deep version. To the best of our knowledge, the first proposal
of deep AA was made in [109] for the acoustic scene classification task.
Given a data matrix X composed of n temporal frames characterized by
an m-dimensional features vector, a discriminative representation is learnt

68

through successive AA decompositions performed in a greedy forward way:

X ≈ X A1H1,

H1 ≈ H1 A2H2,

...

HL−1 ≈ HL−1 AL HL .

However, schemes including a "backpropagation" stage do not seem to
have been tested yet.

4.2.2.4 Semi-supervised settings

While the models presented so far were all unsupervised, that is, do not
require any labeled data, some deep MF models are able to cope with avail-
able prior information in a semi-supervised fashion, such as deep weakly-
supervised semi-NMF [115]. To handle side information, a weighted graph
is built at each layer, where the nodes are the data points and two nodes are
connected by an edge if they share the same label. In the simplest case, the
graph weights, denoted by the n ×n symmetric matrix Gl for the l -th layer,
are binary, that is, Gl (i , j) = 1 if X (:, i) and X (:, j) share the same label with
respect to the features extracted at layer l . A smoothness regularization
term is added to the loss function of Eq. (4.3) with the form:

L∑
l=1

λl

n∑
j ,k=1
j 6=k

‖Hl (:, j)−Hl (:,k)‖2
2Gl (j ,k) =

L∑
l=1

λl Tr(Hl Ll H T
l) (4.5)

where Tr(.) denotes the trace of a matrix, that is, the sum of its diagonal ele-
ments, and Ll = Dl −Gl is the Laplacian matrix at layer l with Dl a diagonal

matrix such that Dl (j , j) =
n∑

k=1
Gl (j ,k) for j = 1, . . . ,n. Intuitively, Eq. (4.5)

enforces the hidden representations Hl (:, j) and Hl (:,k) of data points j and
k that share the same label at layer l to be as close as possible.

69

4.3 Algorithms and parameters of deep MF

In this section, we briefly describe the initialization techniques as well
as the algorithms that can be used to solve the subproblems with respect
to either Wl or Hl at lines 6 and 7 of Algorithm 9. As these algorithms
are standard optimization techniques, we refer the reader to previous sur-
veys [28, 55] for more details and references on their applications in matrix
approximations problems. We also discuss the choice of several parame-
ters such as the number of layers L and the inner ranks rl ’s.

4.3.1 Initializations

The most commonly used initialization of deep MF consists in applying
a sequential decomposition of the data matrix X , as in multilayer MF (see
Algorithm 8), but there is no guarantee about the quality of this initializa-
tion. For the initialization of the factors Wl and Hl of each layer l , several
methods exist; see Section 2.2. The study of initialization techniques dedi-
cated to deep MF is still an open direction of research.

4.3.2 Algorithms

Similarly to standard NMF, most algorithms for deep MF consist in al-
ternatively updating each factor while keeping the others fixed as in Algo-
rithm 9. The stopping criterion can be based either on a maximum number
of iterations, a sufficient decrease of the loss function, or a sufficient mod-
ification of the factors between two consecutive iterations.

The subproblems with respect to either Wl or Hl for any l are typi-
cally solved using standard first-order optimization algorithms. Trigeorgis
et al. [115] use a closed-form expression for the Wl ’s (let us recall that they
are not constrained to be nonnegative) and a multiplicative update (MU)
for the Hl ’s. MU is a well-known algorithm to solve NMF [76], and was also
proposed to solve a sequential multilayer MF in [1]. Other techniques such
as projected gradient descent (PGD) [83], possibly combined with an ac-
celeration scheme, such as Nesterov’s one [90] are widely used; see for ex-
ample [60, 129]. Another standard optimization scheme is the alternating
direction method of multipliers (ADMM) which consists in reformulating
the problem by decoupling the variables, and minimizing the augmented

70

Lagrangian. It is standard in the LRMF literature [65], and it has also been
used for constrained deep MF in [134].

4.3.3 Parameters

The choice of the parameters in deep MF models, in particular the
number of layers and the inner ranks, mainly depends on the application.
In most cases, the number of layers used for the results reported in the lit-
erature does not even exceed three. Moreover, the ranks tend to be chosen
in decreasing order as the first layers of the model are expected to capture
features with a larger variance, thus requiring a larger capacity to encode
them, while the last layers capture attributes with a lower variance [115].
This observation is also derived from the analogy with autoencoders: the
inner layer of an autoencoder is generally the one that contains fewer units
as the goal is to obtain a compact representation of the input data; see
Section 4.5.1 for more details. On the other hand, when the decomposition
is performed on the features matrices such as in Eq. (4.4), the ranks should
also be chosen in decreasing order: given W1 ∈ Rm×r1 with r1 columns
in dimension m, it only makes sense to approximate the columns of
W1 ≈ W2H2 as linear combinations of r2 ≤ r1 columns of W2 otherwise
there exists an infinity of solutions unless rather strong constraints apply
on the factors of the decomposition. Besides, how to choose the inner
ranks in deep MF is still an open problem. In the following chapters, we
stick to inner ranks decreasing along the layers, which seems to be the most
natural choice in most applications. Therefore, there is no compromise
over the choice of these parameters and their values mainly depend on the
application at hand.

In some applications however, such as community detection,
state-of-the-art hierarchical clustering algorithms, such as the Louvain
method [16], can be applied on top of deep MF to provide an estimation
of the number of levels of communities to extract, corresponding to the
number of layers L in deep MF, and the corresponding ranks. This also
provides an initialization of the factors at the same time. Unfortunately,
this approach is not spread yet in the literature, but we used it to set up
deep symmetric NMF in a later work, see Section 6.4 for more details.

71

4.4 Applications of deep MF

We now describe several applications for which deep MF has given in-
teresting results. Let us first mention that since very diverse uses of the ter-
minology "deep MF" have been employed in the literature, it is difficult to
circumscribe the scope of deep MF applications. Besides, [6] mentions that
some researchers call their model "deep MF" but actually use it for super-
vised tasks, or introduce a high degree of non-linearity inside it. This is for
example the case of [45] that performs deep non-linear matrix completion,
and [123] where the inner representations are obtained through a highly
non-linear deep MF architecture. Therefore, in this part, we mainly focus
on some important works in the same spirit as Trigeorgis [115], aiming to
extract hierarchical features in a non-supervised fashion.

In Section 4.4.1, we present showcase examples illustrating the ability
of deep MF to extract hierarchical features. Then, Section 4.4.2 lists several
applications for which deep MF has been successfully used in the recent
literature.

4.4.1 Three showcase examples

In this section, we present three showcase examples that we have de-
signed to show the potentialities of deep MF. In particular, we illustrate the
extraction of facial features in Section 4.4.1.1, hyperspectral unmixing (HU)
in Section 4.4.1.2 and recommender systems in Section 4.4.1.3.

4.4.1.1 Extraction of facial features

One of the first applications for which deep MF has proven to be use-
ful is the extraction of facial features, as described in the seminal paper of
Trigeorgis et al. [115]. Given a set of n grey-scale facial images, each one
described by m pixel values, deep MF extracts several layers of features,
each one corresponding to a specific interpretation ranging from low-level
features at the first layer to high-level features at the last layer.

Fig. 4.2 displays the features extracted at each layer by deep NMF (that
is, deep MF with nonnegativity constraints on the factors Wl ’s, l = 1,2, . . . ,L,
and HL) in the CBCL faces data set, originally used for standard NMF by
Lee & Seung [75]. This dataset contains 2429 images of 19×19 pixels, and
we apply deep NMF with L = 3 layers, r1 = 100, r2 = 50 and r3 = 25. At the

72

(a) (b)

(c)

Figure 4.2: Application of deep NMF to the CBCL faces data set, with L = 3,
r1 = 100, r2 = 50, and r3 = 25. Each image contains the features extracted
at: (a) first layer W1, (b) second layer W1W2, and (c) third layer W1W2W3.

first layer, 100 low-level features, very specific and localized, are extracted.
At the second layer, deep MF extracts 50 meaningful parts of the faces, such
as eyebrows, noses, eyes, and mouths. Finally, the last layer exhibits faces
made of several facial features, and is more closely related to the identities
of the persons. Hence, along the layers, deep MF extracts higher-level fea-
tures obtained by combining lower-level features from the previous layers.

In summary, deep MF is able to extract hierarchical facial features cor-

responding to the columns of
l∏

i=1
Wi at the l th layer.

73

4.4.1.2 Hyperspectral unmixing

Applied to HU (see Section 1.3), deep ONMF (see Section 4.2.2.1) is able
to extract the materials in a hierarchical manner, as illustrated on Fig. 4.3
which shows the abundance maps Hl ’s, representing the proportions of
each material in the pixels. This solution was obtained by applying deep
ONMF on the Urban image with L = 4, r1 = 7, r2 = 6, r3 = 4, r4 = 2. The first
layer extracts seven materials, namely two types of grass, trees, road, dirt,
metal and roof. At the next layers, the materials are successively merged by
two within a single cluster. More precisely, at layer 2, the two clusters cor-
responding to road and metal, which have similar spectral signatures, are
merged in a single cluster. At layer 3, the road/metal and dirt are merged
to create a single cluster while the two kinds of grass are also merged in a
single cluster. Finally, at layer 4, the road and roof are merged, while trees
and grass are also merged in a cluster made of only vegetation. This exam-
ple illustrates the ability of deep MF to extract materials in a hierarchical
manner in hyperspectral images. Compared to shallow methods, deep MF
brings an undeniable value in terms of interpretability.

Figure 4.3: Abundance maps hierarchically extracted by deep ONMF on the
Urban image. From top to bottom: first, second, third and fourth layer.

74

In addition, Fig. 4.4 provides a comparison between the extracted spec-
tral signatures at the third (r3 = 4) layer and the ground truth, which are
very similar.

20 40 60 80 100 120 140 160

Wavelength band number

0

0.2

0.4

0.6

0.8

1

R
e
fl
e
c
ta

n
c
e

Road

20 40 60 80 100 120 140 160

Wavelength band number

0

0.2

0.4

0.6

0.8

1

R
e
fl
e
c
ta

n
c
e

Grass

20 40 60 80 100 120 140 160

Wavelength band number

0

0.2

0.4

0.6

0.8

1

R
e
fl
e
c
ta

n
c
e

Tree

20 40 60 80 100 120 140 160

Wavelength band number

0

0.2

0.4

0.6

0.8

1

R
e
fl
e
c
ta

n
c
e

Roof

Ground truth

Deep MF endmembers

Figure 4.4: Comparison between the endmembers extracted by deep
ONMF at the third (r3 = 4) layer and the "ground-truth" endmembers for
the Urban hyperspectral image.

4.4.1.3 Recommender systems

Recommender systems consist in predicting the ratings of users over
unseen items based on historical ratings on seen items. In other words,
given an incomplete rating matrix X ∈Rm×n of n users over m items (such
as movies), the goal is to predict the missing entries.

A standard approach to perform this task is to factorize X as the product
of two matrices W ∈ Rm×r and H ∈ Rr×n where W contains the ratings of r
basis users over the m items and H represents the proportions in which
each user behaves as the r basis users [69]. In the following, we describe
how deep MF is able to extract hierarchical levels of basis users in a recom-
mender system on a simple example.

Let us consider the following synthetic matrix X ∈ R9×15 such that
X (i , j) stands for the rating of user j over movie i , and is between 1 (highly

75

dislike) and 10 (highly like):

X =



7 8 10 8 9 4 1 2 3 2 4 1 3 5 2

8 8 7 8 10 5 1 2 6 1 4 2 2 1 2

9 9 9 9 10 4 1 4 2 1 4 3 1 1 1

3 1 2 1 3 8 8 7 8 10 3 4 1 2 2

2 1 3 2 3 9 10 9 9 8 2 2 2 2 2

1 2 1 1 2 8 8 9 9 8 3 2 3 3 1

4 1 1 2 2 2 5 1 1 5 9 7 8 9 7

2 2 2 1 2 2 6 2 1 3 8 8 8 8 8

1 2 2 1 3 2 4 1 1 4 6 9 8 10 7



.

Let us suppose, for example, that the first three movies (first three rows
of X) are horror movies, the next three are comedies, and the last three are
biopics. We observe that the first five users mostly enjoy horror movies,
the next five ones comedies, and the last five biopics. Note that we do not
consider missing data, as our goal through this example is to interpret the
deep MF decomposition rather than predicting missing entries in itself.

We apply deep ONMF on X with L = 2, r1 = 4, r2 = 3, that is, by comput-
ing the following decomposition:

X ≈W1H1, H1H T
1 = I4, (W1, H1) ≥ 0,

W1 ≈W2H2, H2H T
2 = I3, (W2, H2) ≥ 0.

To render the interpretation of the factors easier, we relax the constraints
by only imposing that Hl H T

l is diagonal, which allows each row of Hl ’s to
have a norm different from 1. In counterpart, we normalize Wl ’s such that
all the elements are between 1 and 10. This allows an easier comparison
between the features extracted at each layer.

Let us interpret such a decomposition, layer by layer. At the first layer,
we have X ≈W1H1, where the matrices W1 and H1 are as follows (the values

76

are rounded to one digit of accuracy):

W1 =



9.1 1.7 3.4 3.8

8.9 1.1 4.9 2.7

10.0 1.1 3.7 2.5

2.2 10.0 8.6 3.0

2.4 10.0 10.0 2.5

1.5 8.9 9.6 3.0

2.2 5.5 1.5 10.0

2.0 5.0 1.8 9.9

2.0 4.4 1.5 10.0



, H1 =



0.88 0 0 0

0.87 0 0 0

0.92 0 0 0

0.87 0 0 0

1.05 0 0 0

0 0 0.92 0

0 0.92 0 0

0 0 0.85 0

0 0 0.92 0

0 0.88 0 0

0 0 0 0.82

0 0 0 0.80

0 0 0 0.79

0 0 0 0.89

0 0 0 0.71



T

.

The columns of W1 are themselves combinations of those of W2, as
W1 ≈W2H2 with

H2 =


1 0 0 0

0 1.02 0.98 0

0 0 0 1

 .

At the second layer, we have X ≈ W2Ĥ2, with Ĥ2 = H2H1. As r2 = 3, we
expect that each column of W2 corresponds to the profile of a basis user

77

liking only one category of movies, which is indeed the case as we obtain

W2 =



9.1 2.7 3.8

8.9 3.3 2.7

10.0 2.6 2.5

2.2 9.1 3.0

2.4 10.0 2.5

1.5 9.3 3.0

2.2 3.2 10.0

2.0 3.1 9.9

2.0 2.7 10.0



, Ĥ T
2 =



0.88 0 0

0.87 0 0

0.92 0 0

0.87 0 0

1.05 0 0

0 0.91 0

0 0.94 0

0 0.84 0

0 0.91 0

0 0.90 0

0 0 0.82

0 0 0.80

0 0 0.79

0 0 0.89

0 0 0.71



.

The first column of W2 corresponds to a basis user liking horror movies, the
second comedies, and the third biopics. The first and fourth columns of W1

are identical to the first and third columns of W2 respectively while the sec-
ond and third column of W1 bring more refined information. Indeed, while
the second column of W2 only exhibits strong ratings for items 4 to 6 and
low ones for the other items, the second and third columns of W1 corre-
spond to two different patterns. They both have high ratings over items 4
to 6, as for the second column of W2, but the other ratings are different: the
second column of W1 has intermediate ratings for biopics (items 7 to 9) but
very poor ones for horror movies (items 1 to 3), and conversely for the third
column. This level of granularity is not caught by the second layer, which
grasps the three main patterns that appear at first sight when looking at X .
This justifies the benefit of using two layers of factorizations. To be more
precise, deep MF first extracts 4 refined basis users and then gathers two of
them at the second layer to model the more global structure of the data.

Let us mention that single layer ONMF applied separately with both val-
ues of the ranks recovers similar factors but, of course, does not exhibit any
hierarchical relation between basis users.

78

4.4.2 Other applications in the literature

In this section, we briefly review the main applications of deep MF
across the recent literature.

4.4.2.1 Recommender systems

We have already shown that deep MF extracts hierarchical information
within recommender systems in Section 4.4.1.3. Several models based on
deep MF have been proposed in the recent literature.

Mongia et al. [87] use a PGD to tackle deep MF with missing entries
in the data matrix X . They refer to their model as deep latent factor model,
and use it to infer missing entries while extracting several layers of explana-
tory factors, with a similar interpretation as in our showcase example.

Deep MF was also used in the context of recommender systems with
implicit feedback, when the ratings are not given as a numerical value but
as a binary feedback (such as "like" or "dislike") [128]. For each user and
each item, a vector containing both a representation of this implicit feed-
back and side information is provided. Then, deep MF is applied sepa-
rately on the users and items to derive meaningful representations H (ui)

L ’s

and H
(v j)
L ’s for all users ui ’s and items v j ’s respectively, where the inner di-

mension rL is the same for both factorizations. The rating ri j of user i over

item j is predicted as ri j = H (ui)T

L H
(v j)
L +Gui +Gv j where Gui and Gv j de-

scribe the specific influence of user and item, respectively. Using deep MF
decreases the error between the predicted and actual ratings compared to
standard MF models on several benchmarks.

4.4.2.2 Multi-view clustering

Another application explored by deep MF researchers is multi-view
clustering. It consists in clustering items for which the information is given
through several views; for example, images described both by their pixels
and textual tags, see [126] for a survey.

In [132] and [31], the data matrix X (v) of each of the V views is deeply
factorized and the last hidden representations H (v)

L ’s are constrained to be
the same for all views. This leads to the following objective function to

79

minimize:

L =
V∑

v=1
‖X (v) −W (v)

1 · · ·W (v)
L HL‖2

F

where X (v) is the data matrix associated to the v-th view, W (v)
l is the fea-

tures matrix at layer l for the v-th view and HL is the shared inner repre-
sentation matrix at the last layer, common to all the views.

Cui et al. [31] incorporate weights, which are also learned, in the loss
function mentioned above. A semi-supervised variant is considered by Xu
et al. [124] with a graph Laplacian penalty aiming to both minimize the gap
between the inner representation HL of instances sharing the same label
and maximize the gap between the inner representation HL of instances
belonging to different classes.

4.4.2.3 Community detection

Community detection consists in identifying communities, that is, sub-
sets of nodes that are highly connected, inside a graph. While NMF is able
to extract overlapping communities [125], deep MF allows to interpret the
dynamics along which the nodes are progressively grouped. More precisely,
taking as input of deep MF an adjacency matrix, that is, a symmetric binary
matrix A such that A(i , j) = 1 if the nodes i and j are connected and 0 other-
wise, leads to the extraction of the membership coefficients of all nodes to
rl communities Hl ∈Rrl×n at layer l with rL ≤ rL−1 ≤ ·· · ≤ r0 = n [127]. Deep
MF allows to extract communities at different scales; smaller communities
at the first layers are merged together in larger communities at the deeper
layers. We refer the reader to Section 6.4 for more details on the application
of deep NMF to community detection.

4.4.2.4 Hyperspectral unmixing

As illustrated in Section 4.4.1.2, deep MF can be used meaningfully for
HU, extracting several layers of materials.

The early sequential multilayer NMF of Cichocki et al. [26] was used,
together with sparsity regularization, by Rajabi and Ghassemian [102].
Though the endmembers are estimated accurately, no additional insight
is given on the interpretability power of the model. Later, Tong et al. [113]
used the deep model of Trigeorgis et al. [115] and show that it is efficient for
the extraction of endmembers, though the interpretation of the successive

80

inner representations is not emphasized neither. A similar approach
takes into account an additional regularization in [46]: on the one hand
a sparsity constraint is considered on the abundance matrix HL while
on the other hand, a spatial regularization is applied through the total
variation minimization (TVM). In a nutshell, TVM [105] is a well-known
regularization which consists in computing the differences between the
abundances of each pair of adjacent pixels and minimizing their sum to
reduce the noise and get a smooth abundance map.

4.4.2.5 Audio processing

The audio source separation problem consists in extracting the fre-
quential spectra of the sources contained in a sound recording as well as
their respective activations over time. NMF is efficient to solve this prob-
lem, when the matrix X is a time-frequency representation of the input
data, for example the spectrogram obtained with a short-time Fourier
transform (STFT); see [48] and the references therein.

Sharma et al. [108] used deep MF for speech recognition: given a matrix
X of n frames, each one corresponding to a sequence of successive words,
described by an m-dimensional vector of cepstral coefficients [34], a deep
MF alternating sparse (l odd) and dense (l even) layers factorizes X . The
authors empirically notice that this framework leads to more discrimina-
tive features, and the features used for the classification of the frames are
the inner representations Hl ’s corresponding to sparse layers.

Thakur et al. [112] used deep AA (see Section 4.2.2.3) to extract sources
based on the spectrograms of bioacoustics signals, with the features learnt
at the first layers corresponding to archetypes on the convex hull of the data
while deeper features being more in the center of the data.

4.5 Theoretical considerations

In this section, we present some theoretical results of deep MF. More
precisely, Section 4.5.1 describes the interesting analogy that exists be-
tween deep MF and deep neural networks while Section 4.5.2 reviews
recent results from the literature.

81

4.5.1 Analogy with neural networks

Several connections can be made between deep MF and deep learn-
ing. However, we restrict ourselves as much as possible to models aim-
ing at extracting features from data in an unsupervised and interpretable
way. Works embedding MF ideas in a neural network architecture, such
as [106, 130, 67, 96] are interesting but are outside the scope of deep MF in
itself.

Deep artificial neural networks [74] have been known for several
decades as one of the best classification paradigms. On Fig. 4.5, we
have represented a standard neural network made of a succession of P
fully-connected layers4. Each layer k, k = 0, . . . ,P − 1, is made of sk units.
Let us consider a data matrix X ∈ Rm×n of n points in dimension m = s0

and a binary label matrix Y ∈ Rc×n indicating the membership of each
data point X (:, j) to each of the c = sP−1 classes, that is, Y (i , j) = 1 if X (:, j)
belongs to the i -th class and 0 otherwise. Given X (:, j) for any j as input,
the network produces as output a c-dimensional vector Ŷ (:, j). Calling

...

...
...

...

X(1, :)

X(2, :)

X(3, :)

X(m, :)

g

g

M1(1, :)

M1(s1, :)

g

g

MP−2(1, :)

MP−2(sP-2, :)

g

g

Ỹ(1, :)

Ỹ(c, :)

Input
layer 0

Z1

Zp−1

Hidden
layer 1

Hidden
layer P −2

Output
layer P −1

. . .

Figure 4.5: Illustration of an artificial neural network.

4We use an unusual naming of the parameters to avoid the confusion with the nota-
tion introduced for deep MF.

82

Zk ∈ Rsk−1×sk , k = 1, . . . ,P − 1, the weights matrix between layer k − 1 and
layer k, the first layer computes a vector M1(:, j) = g (Z1X (:, j)) where g is an
activation function applied element-wise. Then, any layer k, k = 2, . . . ,P−1,
computes Mk (:, j) = g (Zk Mk−1(:, j)), with MP−1(:, j) = Ŷ (:, j). The goal of
the neural network is to classify the data points X (:, j)’s at best, that is,
optimize the Zk ’s such that the prediction Ŷ (:, j) is as close as possible to
the true label vector Y (:, j) for all j . Overall, considering all the data points,
the prediction matrix is given by Ŷ = g (ZP−1g (ZP−2 · · ·g (Z1X))).

Autoencoders [92] are particular neural networks where the output ma-
trix does not correspond to a membership matrix (containing class labels)
but is identical to the input, that is, Y = X . Assuming that the number of
layers P is odd, the purpose of an autoencoder is to extract a compressed
representation MQ of the input data at the central layer Q = P−1

2 through
the encoder, and approximate as well as possible the initial data back af-
ter the decoder layers. Fig. 4.6a provides an illustration when the encoder
and decoder are symmetric, that is, sk = sP−1−k for all k = 0, . . . ,P − 1 and
Zk = Z T

P−k for all k = 1, . . . ,P −1. This leads to the approximation

X ≈ Ỹ = g (Z T
1 g (Z T

2 · · ·g (Z T
Q MQ))).

Let us number the layers in the reverse sense, that is, let us consider
l = P − 1 − k and rl = sP−1−l for l = 0, . . . ,P − 1. Let us also denote
Wl = ZP−l = Z T

l and Hl = MP−1−l for l = 1, . . . ,Q, with L = Q such that the
decoder performs the following decomposition:

X ≈ Ỹ = g (W1g (W2 · · ·g (WL HL))). (4.6)

When the activation function g is the identity, Eq. (4.6) becomes

X ≈ Ỹ =W1 · · ·WL HL , (4.7)

which corresponds to a so-called linear neural network. The decomposi-
tion performed by Eq. (4.7) is the same as deep MF but deep MF usually re-
quires additional constraints, such as the nonnegativity of some factors, to
render the solution meaningful (see Section 4.1 for more details). In other
words, the basis matrices Wl ’s of deep MF are analogous to the weight ma-
trices of the decoder part of an autoencoder while the abundances matrices
Hl ’s are analogous to the output of the decoder’s layers.

A widely used activation function g is the rectified linear unit, that is,
g (x) = ReLu(x) = max(x,0). With this setting, each inner representation

83

matrix Hl−1 = g (Wl Hl) for l = 2, . . . ,L is imposed to be nonnegative, as in
the original deep MF of [115]. Though such a network is very similar to deep
MF, as shown on Fig. 4.6b, the two models are not exactly equivalent since
the representation matrix HL of an autoencoder is learnt in a supervised
way and is given by HL = g (W T

L g (W T
L−1 . . . g (W T

1 X)))). In fact, autoencoders
are mainly used in semi-supervised settings, for example to pre-train net-
works for classification tasks, while deep MF mines unknown hierarchical
features hidden in the data set.

Note that deep MF and deep neural networks have rather different
goals. For example, deep neural networks are known to satisfy the universal
approximation theorem [33], which states that any continuous function
can be approximated, up to some arbitrary precision, with a one-layer
network of a finite (but unknown) number of neurons. This comes from
the use of non-linear activation functions. Since deep MF’s are linear by
essence, they do not offer the same representation abilities but are efficient
at extracting levels of features in an interpretable way, as already described.

Similarly, deep AA (see Section 4.2.2.3) is closely related to neural net-
works. An archetypal regularization based on an autoencoder was pro-
posed by van Dijk et al. in [117]. The inner latent representation H is learnt
through a deep encoder performing a non-linear transformation of the in-
put data and the addition of Gaussian noise to H enforces the basis vec-
tors to be close to the data at the decoding layer. More precisely, the noise
pushes the columns of H outside the unit simplex, which in turn enforces
the columns of W to shrink in order to maintain a low reconstruction error.

4.5.2 Various theoretical results

Although numerous models, algorithms and applications have been
developed for deep MF, theoretical studies remain scarce, apart from
insights from the deep learning community working on linear networks.

4.5.2.1 Convergence issues

The effect of the number of layers on the convergence of first-order op-
timization methods applied to the minimization of the loss function de-
fined by Eq. (4.3) has not been much studied to the best of our knowledge,
but recent results have been obtained on deep linear networks (see Sec-
tion 4.5.1). Some of the theoretical results presented in the following are

84

..
.

..
.

..
.

..
.

..
.

..
.

..
.

X
(1

,:
)

X
(2

,:
)

X
(3

,:
)

X
(m

,:
)

g
g

M
1

(1
,:

)
M

1
(s

1
,:

)

g
g

M
Q
−1

(1
,:

)
M

Q
−1

(s
Q

-1
,:

)

g
g

M
Q

(1
,:

)
M

Q
(s

Q
,:

)

g
g

M
Q
+1

(1
,:

)
M

Q
+1

(s
Q

+1
,:

)

g
g

M
P
−2

(1
,:

)
M

P
−2

(s
P-

2
,:

)

g
g

g
g

Ỹ
(1

,:
)

Ỹ
(2

,:
)

Ỹ
(3

,:
)

Ỹ
(m

,:
)

In
p

u
t

la
ye

r
0

Z
1

Z
T 1

Z
Q

Z
T Q

H
id

d
en

la
ye

r
1

H
id

d
en

la
ye

r
Q
−1

H
id

d
en

la
ye

r
Q

H
id

d
en

la
ye

r
Q
+1

H
id

d
en

la
ye

r
P
−2

O
u

tp
u

t
la

ye
r

P
−1

.

(a
)

..
.

..
.

..
.

..
.

H
L

(1
,:

)
H

L
(r

L
,:

)

H
L
−1

(1
,:

)
H

L
−1

(r
L-

1
,:

)

H
1
(1

,:
)

H
1
(r

1
,:

)

Ỹ
(1

,:
)

Ỹ
(2

,:
)

Ỹ
(3

,:
)

Ỹ
(m

,:
)

W
1

W
L

La
ye

r
L

La
ye

r
L
−1

La
ye

r
1

. . .

(b
)

F
ig

u
re

4.
6:

Il
lu

st
ra

ti
o

n
o

ft
h

e
si

m
ila

ri
ty

b
et

w
ee

n
(a

)
d

ee
p

au
to

en
co

d
er

s
an

d
(b

)
d

ee
p

M
F.

85

not directly related to the deep MF models described so far but rather con-
cern supervised learning. However, we strongly believe that these insights
coming from the deep linear networks community might be helpful to bet-
ter understand deep MF and possibly open directions of future research.
We refer the interested reader to the recent survey [111] for more details.

When the thinnest layer of a deep linear network is either the input or
the output one, Laurent et al. [72] showed that deep linear networks with
arbitrary convex differentiable loss function produce local minima that are
all global. In addition, when the input data is whitened (that is, the covari-
ance matrix is the identity) and a proper initialization of all layers is chosen,
Arora et al. [4] proved the linear convergence of gradient descent to a global
minimum on such a network. This generalizes the results of [10] in which
linear residual networks, where the weights of each layer are initialized to
be the identity matrix and the inner ranks r0 = m, . . . ,rL are the same, are
considered. Indeed, in [4], the network architecture is more general and
softer restrictions on the initialization are required.

When the loss function is the squared error between Y and Ŷ , Arora et
al. [5] provide an interesting result: if the weight matrices Wl ’s are updated

with gradient descent and if the initialization W (0)T

l+1 W (0)
l+1 =W (0)

l W (0)T

l holds
for all l , there exists an equivalent update rule for the end-to-end matrix
W = W1 · · ·WL which can be seen as an acceleration of the gradient de-
scent update as long as the learning step is sufficiently small. As the depth
L grows, the effect is intensified which shows that over-parametrization,
that is, considering several hidden layers, might accelerate the optimiza-
tion process.

In the same spirit, when the network is restricted to be such that each
hidden layer contains the same number r of units, but without considering
specific assumptions on the input data nor the initialization, Du et al. [42]
proved the linear convergence of gradient descent to a global optimum if r
is sufficiently large.

4.5.2.2 Low-rank structure

Arora et al. demonstrate in [6] some advantages of unconstrained deep
MF compared to standard shallow MF [59] in terms of regularization prop-
erties. Indeed, deep MF fosters an implicit tendency towards low-rank so-
lutions. The original problem considered is matrix completion, that is, im-

86

pute missing entries in a given matrix X ∈ Rm×n . When the number of
known entries is sufficiently large, factorizations of any depth admit so-
lutions that tend to minimize the nuclear norm of the end-to-end matrix
W =W1 · · ·WL , that is, the sum of the singular values of W . However, when
there are fewer observed entries, the approximation tends to have a lower
effective rank at the expense of a higher nuclear norm, especially when the
depth increases. More interestingly, the evolution of the singular values of
W obtained with gradient flow, that is, gradient descent with infinitesimally
small step size, reveals that the solutions tend to have a few large singular
values and many small ones, with a gap that intensifies with the depth of
the factorization. This can be seen as an implicit regularization promoting
low-rank solutions.

In summary, the recent literature gives evidence of the advantages of using
a deep factorization, in terms of both speed of convergence of gradient de-
scent to a global minimum and low-rank-ness of the factors. However, the
settings described do not assume specific constraints on the factors of the
decomposition, unlike most deep MF models do.

4.6 Perspectives of future research

In this section, we list some interesting perspectives of future research
related to deep MF, whose some have already been mentioned earlier. Let
us also emphasize that some of these directions have been investigated
later on during this PhD and are discussed in the next chapters:

• Choice of the parameters: The choice of the parameters, namely the
inner ranks rl ’s and the number of layers L, has not been discussed
much as it is mostly application dependent (see Section 4.3.3). This
concern is also mentioned as an important open problem by Chen et
al. in their survey paper on deep MF [22]. Establishing proper guide-
lines to choose these parameters is a crucial issue. Let us note that in
Section 6.4, we propose a way to set up the number of layers and in-
ner ranks based on the Louvain method [16] that is likely to be more
efficient than "handcrafted" choice. More broadly, the initialization
of deep MF models is an open problem. In Section 6.1, we propose a
greedy initialization of deep MF based on orthogonal factorizations.

87

• Identifiability: Identifiability of deep MF has not been investigated
much. This consists in stating the conditions under which a fac-
torization is unique up to trivial permutations and scalings within
the factors. Contrary to the flourishing standard NMF literature,
only a few works have investigated the identifiability of deep MF,
namely [86] where the identifiability conditions are derived for a
very particular setting and are hard to check in practice, and [133]
for sparse multilayer MF, considering a rather specific definition of
a sparse matrix. Establishing more general conditions for deep MF
to be unique could be particularly meaningful in some applications.
Hence, diving into the theoretical aspects of the uniqueness of deep
MF is a promising direction of research.

• Loss function: Very few works have carefully investigated the choice
of the loss function, see the discussion in Section 4.2.1. Besides, this
influences the way the algorithms are designed and how the quality
of the extracted features is assessed. In Chapter 5, we discuss more in
details this issue and propose two new consistent loss functions for
deep MF.

• Links between deep MF and deep learning: Though there exist obvi-
ous connections between deep neural networks and deep MF as de-
scribed in Section 4.5.1, they do not seem to have been fully exploited
yet. It is not clear whether it is possible to integrate advanced deep
learning concepts, such as convolutions or dropout inside deep MF.

• Applications: Deep MF has not been applied yet to several impor-
tant applications such as topic modeling, where it seems obvious
that hierarchical structures appear. For example, for NMF, given a
word-by-document matrix X where the entry X (i , j) is the number
of times that the word i appears in the document j , NMF allows
to automatically extract topics as the columns of the basis matrix
W , while H indicates which document discusses which topic [75].
In this context, deep NMF would be able to extract hierarchies of
topics, from coarser to finer topics. For example, the first layers
would extract general topics while the deeper layers would refine
these topics in sub-topics. A recent work of Wang & Zhang [122]
claims to apply deep NMF for topic modeling but the deepness only
results from a non-linear transformation of the input data to obtain

88

a first guess of the matrix of basis vectors, while the factorization in
itself remains shallow.

Moreover, in the applications described in Section 4.4.2, the interpre-
tation of the features obtained at each layer is not always clear. This
is also an important research issue. In particular, the original data
points are usually clustered by applying k-means on the last repre-
sentation matrix HL . However, more robust techniques taking into
account the information of the previous layers have not been spread
yet, to the best of our knowledge.

Let us also emphasize the lack of ground-truth baselines for deep MF:
since deep MF is an unsupervised model in its essence, it is hard to
guess precisely which features are expected at each layer and how to
compare their quality in a fair way. A proper quantitative assessment
of deep MF outputs is still to be investigated.

4.7 Take-home messages

In this chapter, we introduced deep matrix factorizations. Let us sum-
marize the main points:

• Deep MF is at the intersection of low-rank matrix approximations
and deep learning, and combines the ability to extract hierarchical
features and high interpretability. Many models have been devel-
oped, mostly as extensions of standard MF models to several layers.

• Deep factorizations are used in an increasing number of applica-
tions, from recommender systems and hyperspectral unmixing to
multi-view clustering and community detection.

• Deep MF has close links with neural networks, especially autoen-
coders, but the theoretical insights remain weak.

• Several perspectives of further research have been identified, such as
the study of possible alternative loss functions and a better under-
standing of the contributions of deep MF in various applications.

89

90

C
H

A
P

T
E

R

5
NEW LOSS FUNCTIONS FOR DEEP

MATRIX FACTORIZATIONS

In this chapter, we discuss the choice of the loss function for deep ma-
trix factorization (deep MF). More precisely, we first highlight the draw-
backs of the mainstream deep MF loss function and propose two new loss
functions in Section 5.1. Then, we introduce a general framework to solve
constrained deep MF in Section 5.2. Experiments on synthetic data with
this framework are carried out in Section 5.3 with a simple deep MF model.
More thorough experiments with both more advanced deep MF models
and real-world datasets are presented in Chapter 6. Finally, we summarize
the key points in Section 5.4.

5.1 New loss functions for deep MF

In Chapter 4, we presented two milestone models, namely multilayer
NMF [26] on the one hand and deep MF [115] on the other hand. In both
cases, an input data matrix X is factorized across L layers such that the

91

basis matrices are decomposed5 as:

X ≈W1H1,

W1 ≈W2H2,

...

WL−1 ≈WL HL .

(5.1)

The multilayer MF model optimizes one layer at a time, that is, minimizes
‖Wl−1−Wl Hl‖2

F , with W0 = X successively for each layer l = 1, . . . ,L. On the
other hand, the deep MF model is rather different. The initialization of the
factors is performed through multilayer MF but is followed by iterative up-
dates of the factors. For this purpose, a global loss function was proposed
by Trigeorgis et al. [115], namely

L0(H1, H2, · · · , HL ;WL) = 1

2
‖X −WL HL · · ·H2H1‖2

F . (5.2)

This loss function was reused by most of the papers in the deep MF lit-
erature. According to Trigeorgis et al. [115], the update of the factors is
performed through Algorithm 10, which is simply Algorithm 9 described
in Chapter 4 adapted to a decomposition of the features matrices Wl ’s.

To understand more clearly how Algorithm 10 works, let us consider the
simple case where L = 3. In Table 5.1, we report the loss function minimized
at each stage of the algorithm, regarding the updates of Hl ’s and Wl ’s, with
the updated factor in bold, the others being fixed.

Layer l Update of Hl Update of Wl

1 ‖X −W2H2H1‖2
F ‖X −W1H1‖2

F

2 ‖X −W3H3H2H1‖2
F ‖X −W2H2H1‖2

F

3 ‖X −W3H3H2H1‖2
F ‖X −W3H3H2H1‖2

F

Table 5.1: Loss functions minimized at each step of Algorithm 10 for L = 3.

Table 5.1 shows that Algorithm 10 minimizes three different loss func-
tions depending on which factor matrix is updated. More precisely, only

5From now, we consider the decompositions of the features matrices Wl ’s as described
in Section 4.2.2.1 rather than the decompositions of Hl ’s as mentioned in Section 4.2.1.
Indeed, this facilitates the interpretation in the applications.

92

the updates of the last layer (l = 3) and the one of H2 are performed ac-
cording to the "global" loss function claimed in Eq. (5.2). For L > 3, the
situation would be even worse, hence Algorithm 10 does not appear to be
coherent since different loss functions are minimized along the factors up-
dates. Consequently, convergence guarantees cannot be derived for such
an optimization framework. We illustrate this "failure" through numerical
examples in the next chapter.

Algorithm 10 Deep MF

Input: Data matrix X, number of layers L, inner ranks rl ’s
Output: Matrices W1, · · · ,WL and H1, · · · , HL

1: Compute initial matrices W (0)
l and H (0)

l for all l
2: for k = 1, . . . do
3: for l = 1, . . . ,L do

4: A(k)
l =

{
W (k−1)

L if l = L

W (k−1)
l+1 H (k−1)

l+1 otherwise

5: B (k)
l = H (k)

l−1 · · ·H (k)
1

6: H (k)
l = argreduce

H≥0

1
2‖X − A(k)

l HB (k)
l ‖2

F

7: W (k)
l = argreduce

W

1
2‖X −W H (k)

l B (k)
l ‖2

F

8: end for
9: end for

Let us make the following remark. Assuming that the ranks are decreas-
ing, that is, rl+1 ≤ rl for all l (this is the most reasonable setting; see Sec-
tion 4.3.3), any solution (H1, · · · , HL ;WL) can be transformed into a degen-
erate solution (H (∗)

1 , · · · , H (∗)
L ;W (∗)

L) with the same value of the loss function
in Eq. (5.2), and with the following form

H (∗)
l =

(
IrL 0rL×(rl−1−rL)

0(rl−rL)×rL 0(rl−rL)×(rl−1−rL)

)
for l=2, . . . ,L,

where IrL is the identity matrix of dimension rL , and 0x×y is the x-by-y zero

matrix, H (∗)
1 = HL · · ·H1 and W (∗)

L = WL . The reason is that WL HL · · ·H1 has
rank at most min

l
rl = rL , and with the choice above, we have

W (∗)
1 =W (∗)

L H (∗)
L · · ·H (∗)

2 = [WL 0m×(r1−rL)] ∈Rm×r1

93

such that rank(W (∗)
1) ≤ rL . This means that deep MF would simply reduce

to an overparametrized LRMF.
Most of the recent works only rely on the loss given by Eq. (5.2) and

follow Algorithm 10. However, for the reasons mentioned above, such a
choice is not consistent across layers. In fact, the loss function of Eq. (5.2)
only minimizes the error at the last layer of factorization but does not con-
trol the accuracy of the factorizations of the previous layers, which yet may
be crucial regarding the applications of deep MF. To alleviate this issue, we
propose two new loss functions that are consistent, that is, are guaranteed
to decrease after each factor update and reflect the balance between the
errors due to each layer of decomposition.

Let us note that, as for NMF (see the discussion in Section 1.2), due to
the scaling degree of freedom, normalization of one factor per layer is re-
quired to avoid that one of the factors tends to 0 while the other tends to
infinity and hence "compromises" the remaining layers of decomposition.

5.1.1 Layer-centric loss function

The first loss function proposed consists of a weighted sum of the errors
caused by each layer of decomposition, that is, by the layer-wise factoriza-
tions:

L1(H1, H2, · · · , HL ;W1,W2, · · · ,WL) = 1

2

(
‖X −W1H1‖2

F +λ1‖W1 −W2H2‖2
F

+·· ·+λL−1‖WL−1 −WL HL‖2
F

)
. (5.3)

This loss function is quite intuitive, with each term corresponding to a
layer-wise error as the factorizations unfold. In fact, this can be seen as
a globalization of the model of Cichocki et al. [26]: instead of trying to
minimize the errors of each layer-wise factorization sequentially, all of
them are aggregated within a global weighted loss function.

As l increases and the ranks decrease, the computational cost to evalu-
ate each term in Eq. (5.3) decreases. More precisely, the l-th term requires
mrl rl−1 elementary operations to be computed hence the computational
cost of evaluating Eq. (5.3) is O (Lmnr1).

94

5.1.2 Data-centric loss function

The second loss function considers the errors between X and its suc-
cessive approximations of ranks rl ’s:

L2(H1, H2, · · · , HL ;W1,W2, · · · ,WL) = 1

2

(
‖X −W1H1‖2

F +µ1‖X −W2H2H1‖2
F

+·· ·+µL−1‖X −WL HL · · ·H2H1‖2
F

)
. (5.4)

This loss function is data-centric in the sense that it evaluates the errors
between the data matrix X and its successive low-rank approximations. An
advantage of this loss function is that the parametersµl ’s (l = 1, . . . ,L−1) are
easier to tune since all the terms are likely to have a similar order of magni-
tude. However, since the successive approximations involve an increasing
number of matrix multiplications, this loss function and the associated up-
date rules are slightly more computationally expensive. Indeed, the most
costly term is the last one, which requires m(rLrL−1 +·· ·+ r2r1 + r1n) oper-
ations to be computed, which may become high if the number of layers is
high and the ranks do not decrease rapidly.

5.2 General framework for constrained deep MF

A general algorithm to minimize the two proposed loss functions of
Eq. (5.3) and Eq. (5.4) under general constraints on Wl ’s and Hl ’s is given
in Algorithm 11. We denote W→l the set of matrices {W1, · · · ,Wl−1} for any
l = 1, . . . ,L and Wl→ the set of matrices {Wl+1, · · · ,WL}, and similarly for the
Hl ’s. We also call Wl and H l the feasible set for respectively Wl and Hl

for any l . This feasible set encompasses all the constraints applied to the
concerned factor. Algorithm 11 consists in a BCD over the factors of each
layer. The subproblems in one factor matrix (in bold at lines 4 and 5) can be
solved by various well-known techniques. In particular, when the feasible
set is convex, the corresponding subproblem is convex. This general frame-
work is also very flexible and we illustrate its use in Chapter 6, considering
usual constraints on the factors of each layer.

One possibility to implement the updates of the factors in Algorithm 11,
that is, to solve the arg reduce subproblems, is FPGD, already described in
Algorithm 2. We choose sb = 1

L as the step size, with L the Lipschitz con-
stant, except for the updates of Hl ’s for the second loss function L2. In-

95

deed, in this case, the Lipschitz constant is quite costly to compute hence
we simply compute the step size through a backtracking line search.

Algorithm 11 Framework to solve deep MF with general constraints and
consistent global loss function

Input: Data matrix X, number of layers L, inner ranks rl ’s, feasible sets Wl

and H l for all l , a global loss function L such as L1 in Eq. (5.3) or L2

in Eq. (5.4).
Output: Matrices W1, · · · ,WL and H1, · · · , HL .

1: Compute initial matrices W (0)
l and H (0)

l for all l through a sequential
decomposition of X (such as multilayer MF)

2: for k = 1, . . . do
3: for l = 1, . . . ,L do
4: H (k)

l = argreduce
H∈H l

L
(
W (k)

→l ,W (k−1)
l ,W (k−1)

l→ ; H (k)
→l ,H , H (k−1)

l→
)

5: W (k)
l = argreduce

W ∈Wl

L
(
W (k)

→l ,W ,W (k−1)
l→ ; H (k)

→l , H (k)
l , H (k−1)

l→
)

6: end for
7: end for

Let us compute the gradients with respect to Wl ’s and Hl ’s (l = 1, . . . ,L)
of the loss functions of Eq. (5.3) and Eq. (5.4), by introducing W0 = X ,
λ0 =µ0 = 1. For L1, we have:

∂L1

∂Wl
=λl−1(Wl Hl −Wl−1)H T

l +δlλl (Wl −Wl+1Hl+1) (5.5)

where δl = 0 if l = L and 1 otherwise,

∂L1

∂Hl
=λl−1W T

l (Wl Hl −Wl−1). (5.6)

For L2, let us call for all l , Dl = Hl−1 · · ·H1, H̃l = Hl · · ·H1 = Hl Dl and
C (k)

l =Wk Hk · · ·Hl+1 for all k ≥ l (for k = l , C (l)
l = Wl). Then, the gradients

are given by:
∂L2

∂Wl
=µl−1(Wl H̃l −X)H̃ T

l , (5.7)

∂L2

∂Hl
=

L∑
k=l

µk−1C (k)T

l (C (k)
l Hl Dl −X)DT

l . (5.8)

96

5.3 Experiments on synthetic data

In this section, we apply our two new loss functions described in Sec-
tion 5.1 on synthetic data, together with the optimization framework pre-
sented in Section 5.2, and compare them to the existing algorithms. More
precisely, we compare the following five methods:

• Single-layer NMF of ranks rl , l = 2, . . . ,L.

• The sequential multilayer MF of [26], see Algorithm 8, dubbed MMF.
Note that at the first layer, the solution of MMF corresponds to the
one of single-layer NMF, by construction.

• The deep MF of [115], see Algorithm 10, dubbed Tri-DMF. Although
the factor updates of the original paper are performed with multi-
plicative updates (MU), we decided to solve the subproblems with
FPGD, as our framework also solves the subproblems with FPGD.

• Deep MF with the layer-centric loss function of Eq. (5.3), dubbed
LC-DMF.

• Deep MF with the data-centric loss function of Eq. (5.4), dubbed
DC-DMF.

Hence, for all these methods, the factor updates are performed through
a BCD whose subproblems are solved with FPGD.

Due to the difficulty to handle deep MF settings even for synthetic data,
we consider a 2-layers network (that is, L = 2) in dimension m = 3. The
ranks are set to r1 = 6, r2 = 3, and the "ground-truth" basis matrices W ∗

1
and W ∗

2 are fixed to

W ∗
1 =


0.1 0.1 0.4 0.4 0.5 0.5

0.4 0.5 0.1 0.5 0.1 0.4

0.5 0.4 0.5 0.1 0.4 0.1

=W ∗
2 H∗

2 ,

where W ∗
2 =


1/2 0 1/2

0 1/2 1/2

1/2 1/2 0

 and H∗
2 =


0.2 0 0.8 0 0.8 0.2

0.8 0.8 0.2 0.2 0 0

0 0.2 0 0.8 0.2 0.8

.

97

Figure 5.1: Setting of the synthetic data considered for the experiments, in
the noiseless case.

Each column of the matrix H∗
1 is generated according to a Dirich-

let distribution of parameter α = 0.05. The data matrix X , made of
n = 1000 points, is therefore generated as X = X ∗+N where X ∗ = W ∗

1 H∗
1

and N is additive Gaussian noise, see Section 2.4.1. In the following, we
consider 10 levels of the relative noise level: ν = 10−2, 2.51 10−2, 6.31 10−2,
9.49 10−2, 1.267 10−1, 1.585 10−1, 2.384 10−1, 3.182 10−1, 3.981 10−1, 1.
These noise levels correspond to 6 values logarithmically spaced 6 between
10−2 and 1, and additional levels in the areas of fast evolution of the per-
formances. An example of a data set generated in that way in the noiseless
case (ν= 0) is presented on Fig. 5.1, with the ground-truth basis vectors at
both layers.

For all methods, the initial factors W (0)
l and H (0)

l are obtained by pro-
jecting onto the feasible set the output of SNPA [54] (see Algorithm 3 in
Section 2.2) applied to W (0)

l−1, with W (0)
0 =W0 = X .

To compute the parameters λl ’s, l = 1, ...,L −1 in the first loss function,
that is, Eq. (5.3), we proceed by always considering the first layer of decom-
position as a baseline. More precisely, based on an initial guess λ̃l , we set

λl = λ̃l
er r (0)

1

er r (0)
l+1

, where er r (0)
k denotes the k-th layer error ‖W (0)

k−1 −W (0)
k H (0)

k ‖2
F

after the initialization. By doing so, the ratio between the (l +1)-th and the
first term of Eq. (5.3) is approximately equal to an arbitrary value λ̃l , fixed
by the user. In practice, we used λ̃l = 10 for all l = 1, . . . ,L −1. For the pa-

6In Matlab, this is done through logspace(-2,0,6).

98

0.01 0.025 0.063 0.158 0.398 1

0

5

10

15

20

25

Figure 5.2: Comparison of the MRSA obtained at the first layer with non-
negative MMF, LC-DMF, DC-DMF, and Tri-DMF on synthetic data in func-
tion of the noise level.

rameters µl ’s of the data-centric loss function, that is, Eq. (5.4), we fix µl = 1
for all l since all the reconstruction error terms are expected to be of the
same order of magnitude.

Since the global loss functions of the compared methods are not mean-
ingfully comparable to each other due to, on the one hand, the absence
of global loss function for multilayer MF and, on the other hand, the dif-
ference of magnitude between the terms of layer-centric and data-centric
loss functions, we report the average MRSA (see Section 2.4.2) between the
corresponding expected and computed basis vectors, that is, the columns
of W ∗

l and Wl respectively, at the first and second layer, on Fig. 5.2 and
Fig. 5.3 respectively.

We also report the number of times each method performs the best over
the 25 experiments for each noise level (ranging from 1, lowest to 10, high-
est), at the first and second layer in Table 5.2 and 5.3 respectively. Note
that at the second layer, we only focus on the "deep" methods (single-layer
NMF is discarded).

For both layers, the approaches using our new loss functions, that is,
LC-DMF and DC-DMF, tend to produce the lowest MRSA. On the contrary,
especially at the second layer, MMF produces a higher MRSA than DC-DMF
and LC-DMF. This confirms that a weighted loss function is more efficient

99

0.01 0.025 0.063 0.158 0.398 1

0

5

10

15

20

25

30

35

Figure 5.3: Comparison of the MRSA obtained at the second layer with non-
negative MMF, LC-DMF, DC-DMF, Tri-DMF and MF on synthetic data in
function of the noise level.

than the purely sequential approach of Cichocki et al. On the other side,
the approach of Trigeorgis et al. completely fails to retrieve the correct ba-
sis vectors at the first layer. In practice, we empirically observe that there
are always one or two predicted basis vectors located inside the convex hull
of the others. At the second layer, Tri-DMF is not always the best method
although the corresponding loss function is designed to minimize the re-
construction error at this last layer. Finally, single-layer NMF also performs
slightly worse than our models at the second layer and, of course, does not

Noise levels

1 2 3 4 5 6 7 8 9 10

MMF 0 0 0 2 6 8 4 3 2 7

Tri-DMF 0 0 0 0 0 0 1 0 0 1

LC-DMF 20 25 23 18 12 11 5 8 8 12

DC-DMF 5 0 2 5 7 6 15 14 15 5

Table 5.2: Number of "winning" runs (over 25) of each method in function
of the noise level at the first layer.

100

Noise levels

1 2 3 4 5 6 7 8 9 10

MMF 0 0 1 0 0 0 0 0 1 0

Tri-DMF 17 13 11 12 10 5 8 14 17 7

LC-DMF 8 12 10 10 7 8 2 1 4 8

DC-DMF 0 0 3 3 8 12 15 10 3 10

Table 5.3: Number of "winning" runs (over 25) of each method in function
of the noise level at the second layer.

allow to automatically bind the features of consecutive layers, which is un-
doubtedly the main added value of deep approaches.

When the noise level is low, LC-DMF performs better while when the
noise increases, DC-DMF seems more efficient.

5.4 Take-home messages

In this chapter, we introduced two new loss functions for deep MF. Let
us summarize the main points:

• The mainstream loss function for deep MF suffers from several draw-
backs: it does not allow us to obtain convergence guarantees and
does not reflect well the layers contributions.

• We introduce a data-centric loss function and a layer-centric loss
function which involve the contributions of each layer.

• These loss functions can be leveraged in a generic optimization
framework to solve constrained deep MF.

• Preliminary results on synthetic data with basic constraints on the
factors tend to show that the proposed loss functions are well suited
for deep MF.

101

102

C
H

A
P

T
E

R

6
NEW MODELS FOR DEEP MATRIX

FACTORIZATIONS

In this chapter, we present various deep MF models that we developed
along this PhD. More precisely, Section 6.1 aims at describing a greedy ini-
tialization technique for deep MF based on successive orthogonal factor-
izations [35]. In Sections 6.2 and 6.3, we apply the framework described
in Chapter 5 to sparse and minVol deep MF respectively, with intensive
experiments on both synthetic data and real-world applications [36]. In
Section 6.4, we describe deep symmetric NMF and apply it to community
detection [37]. We discuss perspectives of future research in Section 6.5.
Finally, Section 6.6 summarizes the main results of this chapter.

6.1 Successive orthogonal decomposition
algorithm

The initialization of deep MF factors is a problem that has not raised
much attention in the literature so far. Usually, the factors W (0)

l ’s and H (0)
l ’s

are initialized layer by layer. In this section, we propose a new initialization
for deep MF, based on deep ONMF (see Section 4.2.2.1). First, we briefly re-

103

call the model of deep ONMF and explain why it can be seen as a hierarchi-
cal clustering technique in Section 6.1.1. Then, we present the successive
orthogonal decomposition algorithm (SODA) in Section 6.1.2. Results on
both synthetic data and HU are presented in Section 6.1.3.

6.1.1 Deep orthogonal NMF as a hierarchical clustering
technique

The extension of orthogonal NMF (ONMF) to several layers was already
presented in Section 4.2.2.1 and consists in the following decomposition:

X ≈W1H1 H1 ≥ 0, H1H T
1 = Ir1 ,

W1 ≈W2H2 H2 ≥ 0, H2H T
2 = Ir2 ,

...

WL−1 ≈WL HL HL ≥ 0, HL H T
L = IrL .

(6.1)

Each representation matrix Hl is both nonnegative and row-wise orthogo-
nal. Since two nonnegative and orthogonal vectors have disjoint supports,
this implies that each column of each Hl has at most a single non-zero en-
try. Hence, at each layer, deep ONMF associates each data point to a single
basis vector and performs a hard clustering of the data points.

In deep ONMF, the ranks rl ’s decrease as the factorization unfolds, that
is, rl > rl+1 for all l , otherwise the factorizations are trivial. Under this
assumption, deep ONMF can be interpreted as a hierarchical clustering
(HC) model, as it successively merges the data points by aggregating clus-
ters, which is referred to as bottom-up HC or agglomerative clustering [17].
More precisely, the first layer splits the columns of X into r1 clusters (the
columns of W1), then the second layer splits the centroids W1 into r2 clus-
ters (the columns of W2), and so on. In particular, when the ranks are such
that rl = rl−1−1 for all l , each layer merges two clusters of the previous layer
into a single new cluster while keeping the others unchanged.

Note that other HC techniques are based on NMF ideas. This is for
example the case in [71, 58] where rank-2 NMFs are applied sequentially
to split clusters in two. In contrast to deep ONMF, these techniques are
top-down which means that they start by assigning all the data points to a
single cluster and progressively split them in several clusters, hence leading
to a different interpretation of the semantics of the data than deep ONMF.

104

6.1.2 Description of the SODA algorithm

In this section, we first show that there exists a closed-form solution of
ONMF when r = n−1 in Section 6.1.2.1. Then, we leverage this observation
to design a greedy initialization of deep MF in Section 6.1.2.2.

6.1.2.1 Closed-form solution of ONMF with r = n −1

SODA is a greedy initialization strategy for deep MF that leverages the
fact that there exists an optimal closed-form solution to the ONMF prob-
lem (see Eq. (2.3) in Section 2.3.1) when r = n − 1. Let us consider such
a factorization applied to a data matrix X ∈ Rm×n . Because the model as-
signs n data points to n−1 clusters, only two data points need to be merged
within the same cluster, say X (:, i) and X (:, j). Assuming we know i and j ,
minimizing the reconstruction error requires to find the scalars hi and h j

and the new centroid w ∈Rm such that

e(i , j) = 1

2

(‖X (:, i)−hi w‖2
2 +‖X (:, j)−h j w‖2

2

)
(6.2)

is minimized, with h2
i +h2

j = 1 and (hi ,h j) ≥ 0.
Using the first-order optimality conditions, it is easy to show that, at

optimality,
w = hi X (:, i)+h j X (:, j)

and

hk = X (:,k)T w

‖w‖2
2

for k = i , j . Combining these expressions and the fact that h2
i +h2

j = 1, and
writing everything in terms of α= hi , we obtain

αp
1−α2

= α‖X (:, i)‖2
2 +

p
1−α2X (:, i)T X (:, j)

αX (:, i)T X (:, j)+
p

1−α2‖X (:, j)‖2
2

.

Let us assume without loss of generality that ‖X (:, i)‖2 ≥ ‖X (:, j)‖2. In the

case of equality, α = 1p
2

, otherwise α =
√

L+pL
2L where L = 4K 2 + 1 and

K = X (:,i)T X (:, j)
‖X (:,i)‖2

2 −‖X (:, j)‖2
2

.

105

Finally, the optimal solution of ONMF with r = n−1 will merge the data
points X (:, i) and X (:, j) for which e(i , j) takes the smallest value. After per-
mutation of the data points, let us assume without loss of generality that
i = n −1 and j = n. Then, the optimal ONMF has the form

X ≈
(

X (:,1 : n −2) w
)(

In−2 0 0

0 hi h j

)
.

Algorithm 12 summarizes the ONMF of two data points. Note that,
given the indices (i , j) of the points to "merge", computing α and w re-
quires O (m) operations. Hence ONMF(n −1), that is, orthogonal NMF with
rank equal to n − 1, requires O (mn2) operations to test all pairs (i , j) and
pick the one that leads to the lowest error.

Algorithm 12 Optimal rank-one ONMF of two points

Input: Two data points X (:, i), X (:, j) ∈Rm .
Output: Basis vector w ∈Rm , coefficient α, error e(i , j).

1: perm= 0
2: if ‖X (:, i)‖ < ‖X (:, j)‖ then
3: (X (:, i), X (:, j)) ← (X (:, j), X (:, i)); perm = 1
4: end if
5: if ‖X (:, i)‖ == ‖X (:, j)‖ then
6: α= 1p

2
7: else

8: K = X (:,i)T X (:, j)
‖X (:,i)‖2 −‖X (:, j)‖2 ; L = 4K 2 +1; α=

√
L+pL

2L

9: end if
10: w =αX (:, i)+

p
1−α2X (:, j)

11: e(i , j) = 1
2 (‖X (:, i)−αw‖2 +‖X (:, j)−

p
1−α2w‖2)

12: if perm == 1 then
13: α←

p
1−α2

14: end if

6.1.2.2 A greedy initialization of deep MF

We now exploit Algorithm 12 to initialize deep MF. We call this initial-
ization SODA.

106

Starting from the trivial decomposition X = W1H1, with W1 = X and
H1 = In , that is, the identity matrix of size n, the two data points W1(:, i) and
W1(:, j) that lead to the smallest value of e(i , j) (see Eq. (6.2)) are merged
at layer 2 according to the closed-form solution described in the previous
section. Then, similarly, at each layer, two basis vectors are merged in a new
one according to Algorithm 12. When the current number of basis vectors
is equal to the value of some desired inner rank rl of the deep MF model,
they are used to initialize the corresponding Wl . The working of SODA is
summarized by Algorithm 13.

Algorithm 13 Successive orthogonal decomposition algorithm (SODA)

Input: Nonnegative matrix X ∈ Rm×n , number of layers L, inner ranks rl ’s
for l = 1, . . . ,L .

Output: Initialization of Wl ’s, l = 1, ...,L.
1: U1 = X , V1 = I , l = 1
2: for i = 1, ...,n − rL +1 do
3: best_err =∞
4: di = n − i +1
5: if di = rl for some l then
6: Wl =Ui

7: end if
8: for j = 1, ...,di do
9: for k = j +1, ...,di do

10: [w , α, err] = Algorithm 12(Ui (:, j), Ui (:,k))
11: if err < best_err then
12: best_err = err, best_w = w , best_alpha =α, best_ind = [j ,k]
13: end if
14: end for
15: end for
16: Ui+1 =Ui

17: Ui+1(:,best_ind) = []; Ui+1 = [Ui+1 best_w] % Replace the two data
points by the new basis vector

18: Vi+1 =
(

Idi−2 0 0

0 α
p

1−α2

)
19: end for

Let us analyse the computational cost of SODA. First, the reconstruc-

107

tion errors e(i , j)’s of all pairs of data points i and j are computed, which
requires n(n−1)

2 times O (m) operations. SODA needs n − rL steps to be able
to construct WL ; each of them requires to compute the reconstruction er-
ror of Eq. (6.2) between the remaining basis vectors of the previous layer
and the new one, which takes O (nm) operations. Moreover, assuming an
efficient sorting strategy of the array of errors e(i , j)’s, finding the couple of
indices which generates the smallest e(i , j) is O (n2 log(n2)). Hence, SODA
requires in total Õ (n2m) operations (where˜indicates that we removed log-
arithmic terms), which is not practical for large data sets. However, for ap-
plications such as hyperspectral unmixing, this greedy initialization can be
used as well, up to a slight adaptation. We first compute an ONMF of rank
r ′

1 ≥ r1 with any standard algorithm faster than SODA, and then "unfold"
the remaining r ′

1 clusters through SODA. In practice, we recommend to use
r ′

1 as a small multiple of r1, see the next section.

6.1.3 Experiments

In this section, we apply SODA initialization on both synthetic data in
Section 6.1.3.1 and hyperspectral unmixing (HU) in Section 6.1.3.2.

6.1.3.1 Synthetic data

In this section, we evaluate the performance of several initialization
techniques for deep ONMF on synthetic data. We compare the following
initializations for the features matrices Wl ’s of all layers (given that W0 = X):

• Random initialization (RAND): any Wl , l = 1, ...,L is set up by ran-
domly picking rl < rl−1 columns of Wl−1.

• Successive nonnegative projection algorithm (SNPA): each Wl is ob-
tained by applying SNPA [54] on Wl−1.

• Our proposed greedy algorithm, SODA, that is, Algorithm 13.

• RAND+SODA: Following the remark on the computational cost of
SODA at the end of Section 6.1.2.2, we randomly choose r ′

1 ¿ n
points, and then apply SODA on this subset of r ′

1 points.

108

In all cases, after the initialization, deep ONMF is solved through an
alternating block coordinate descent, inspired by Algorithm 107. The sub-
problems with respect to Wl ’s are easy to solve with FPGD, since the only
constraint is nonnegativity. On the other hand, to optimize a factor Hl for
a given l , we need to solve

min
Hl≥0

Hl H T
l =Irl

1

2
‖X −WL HL · · ·Hl · · ·H1‖2

F . (6.3)

Let us call D = WL HL · · ·Hl+1 (D = WL if l = L) and F = Hl−1 · · ·H1. The
matrix Hl is updated by extending the multiplicative updates proposed for
ONMF by [24], that is

Hl ← Hl ◦
DT X F T

Hl F X T D Hl
. (6.4)

To generate the data, we restrict ourselves to a m = 3-dimensional set-
ting, to facilitate the assessment of the models. We take r1 = 16 and r2 = 4
and generate the ground-truth basis matrices W ∗

1 and W ∗
2 whose columns

have unit `1 norm in such a way that the 16 basis vectors of the first layer
are clustered in 4 groups around the 4 basis vectors of the second layer. As
shown on Fig. 6.1, each column of W ∗

2 is the average of 4 columns of W ∗
1 .

We then pick n = 1000 points such that each data point is equal to
one of the columns of W ∗

1 , up to a scaling factor. Finally, additive white
Gaussian noise is added to the data points, the same way as described
in Section 2.4.1, with 4 different values of the relative noise level ν:
10−4,10−3,10−2,10−1.

To assess the quality of the different initializations, 10 data sets are gen-
erated for each noise level and we report the mean and standard deviation
of the clustering accuracy (ACC) over these 10 runs at both layers. Given K
estimated clusters Ck ’s and K ground-truth clusters C∗

k ’s, the ACC is defined
as

ACC (C ,C∗) = 1

n
max

P∈[1···K]

K∑
k=1

|Ck ∩C∗
P (k)| (6.5)

where P is any permutation of {1,2, . . . ,K }. In this case, at a given layer l ,
the ground-truth clusters C∗

k ’s are the columns of W ∗
l and the estimated

clusters Ck ’s are the columns of the final matrix Wl . The assignment of a

7Note that, at the time of doing this research, we had not worked on the loss functions
of Chapter 5 yet hence still used the loss function of [115].

109

Figure 6.1: Illustration of the synthetic data set used to assess SODA initial-
ization.

data point to a cluster is easy since deep ONMF provides factors Hl ’s with
a single non-zero entry per column. At any layer l , the cluster to which a
given data point belongs to is simply the index of the row containing this
non-zero entry in the corresponding column of Hl .

Table 6.1 reports for all the configurations the final relative reconstruc-
tion error ‖X−W2H2H1‖F

‖X ‖F
, denoted rE, and the accuracy at the first and second

layers, denoted ACC 1 and ACC 2, respectively. In all the experiments, deep
ONMF is applied with the modalities described above (that is, L = 2, r1 = 16,
r2 = 4); only the initialization varies. The metrics reported in Table 6.1 are
the ones computed with the final factors of the whole deep ONMF. Note
that for the hybrid initialization RAND+SODA, r ′

1 = 100.
Clearly, SODA outperforms RAND and SNPA in terms of clustering ac-

curacy. When the noise is small, it always manages to reach a perfect clus-
tering at both layers, contrary to the two other methods. Of course, this
is at the expense of a larger computational cost, from O (mnr) for RAND
and SNPA, to O (mn2) for SODA. However, the hybrid variant RAND+SODA
performs almost as well as SODA at a reduced cost, showing that using the
greedy procedure further in the decomposition is also worthwhile.

110

R
A

N
D

SN
PA

SO
D

A
R

A
N

D
+

SO
D

A

ν
A

C
C

1
A

C
C

2
rE

(%
)

A
C

C
1

A
C

C
2

rE
(%

)
A

C
C

1
A

C
C

2
rE

(%
)

A
C

C
1

A
C

C
2

rE
(%

)

10
−4

0.
54

±0
.1

4
0.

74
±0

.2
1

9.
26

±6
.2

3
0.

21
±0

.0
3

0.
69

±0
.1

7
14

.8
4
±3

.9
1

1
1

7.
49

1
1

7.
50

10
−3

0.
49

±0
.1

7
0.

66
±0

.1
9

9.
41

±6
.1

9
0.

18
±0

.0
2

0.
67

±0
.1

4
15

.4
9
±4

.2
4

1
1

7.
49

1
1

7.
50

10
−2

0.
48

±0
.1

7
0.

76
±0

.1
6

10
.3

1
±6

.5
1

0.
42

±0
.0

9
0.

72
±0

.1
6

10
.8

2
±4

.2
1

0.
97

0.
99

7.
51

0.
97

0.
99

7.
52

10
−1

0.
40

±0
.0

7
0.

70
±0

.1
7

15
.4

6
±4

.5
7

0.
38

±0
.0

7
0.

68
±0

.0
9

14
.2

7
±3

.2
0

0.
69

±0
.0

1
0.

92
±0

.0
1

9.
75

0.
57

±0
.0

7
0.

92
±0

.0
1

10
.0

0
±0

.6
7

Ta
b

le
6.

1:
C

o
m

p
ar

is
o

n
o

ft
h

e
cl

u
st

er
in

g
ac

cu
ra

ci
es

at
la

ye
r

1
(A

C
C

1)
an

d
2

(A
C

C
2)

an
d

fi
n

al
re

la
ti

ve
er

ro
r

(r
E

)
o

f
d

ee
p

O
N

M
F

ap
p

li
ed

to
sy

n
th

et
ic

d
at

a
w

it
h

se
ve

ra
li

n
it

ia
li

za
ti

o
n

st
ra

te
gi

es
,i

n
fu

n
ct

io
n

o
f

th
e

n
o

is
e

le
ve

lν
.

T
h

e
av

er
ag

e
an

d
st

an
d

ar
d

d
ev

ia
ti

o
n

(i
fa

b
ov

e
0.

01
)

ov
er

10
d

at
a

se
ts

ar
e

re
p

o
rt

ed
.

T
h

e
b

es
t

m
et

h
o

d
in

te
rm

s
o

f
ac

cu
ra

cy
is

h
ig

h
li

gh
te

d
in

b
o

ld
fo

r
ea

ch
co

n
fi

gu
ra

ti
o

n
.

111

Note that the accuracy of all algorithms is always a bit higher for the
second layer since there are fewer and better separated clusters. The reason
SNPA underperforms is because some clusters are contained in the conical
hull of the others, while SNPA is designed to identify only the extreme rays
of the cone generated by the columns of X .

6.1.3.2 Hyperspectral unmixing

We have already shown in Section 4.4.1.2 that the hierarchical extrac-
tion of materials within a hyperspectral image could be performed through
deep MF.

The abundance maps extracted by deep ONMF, with L = 5, rl = 7− l for
all l = 1, . . . ,5 are represented on Fig. 6.2.

To initialize the factors, we first apply ONMF with r1 = 6 with HC ini-
tialization, and then apply SODA to initialize the other layers, contrary to
Section 4.4.1.2 where SNPA initialization was applied at all layers. However,
it turns out that the abundance maps are qualitatively similar in both cases.
For conciseness, we gathered the representations of layers 2 and 3 as well
as those of layers 4 and 5 in a single level as distinct clusters were merged
at these layers.

These results show that a hybrid initialization of deep MF combining
a standard method such as HC on top of SODA is efficient to initialize the
factors.

6.2 Sparse deep matrix factorizations

In this section, we apply the framework of Chapter 5 to sparse deep
MF. Our goal is to show experimentally that the new loss functions intro-
duced in Chapter 5 are efficient to tackle deep MF models with various
constraints, such as sparsity in this case. As a reminder, sparse matrix fac-
torization consists in enforcing some factor(s) of the decomposition to be
sparse in order to foster the interpretability. As it will be highlighted in the
experiments, sparse deep MF allows to extract several levels of sparse fea-
tures in a dataset, for example, for the extraction of facial features. In this
case, only a small number of pixels are activated in each feature of each
layer, see Section 6.2.2 for more details.

112

Figure 6.2: Deep ONMF applied to the Urban HI with SODA-based initial-
ization.

Numerous ways of tackling sparsity in MFs have been proposed in
the literature, including targeting a row-wise (or column-wise) l1 norm
for some factors [63], adding an l1 and/or l2 norm penalty [68] to the loss
function, see Section 4.2.2.2 for more references.

Recently, an efficient and fast method, referred to as grouped sparse
projection (GSP) [94], was developed. An advantage of this approach is
that it allows to avoid the tuning of many parameters, unlike most sparse
models. In the context of deep MF, where the number of factors to update
grows linearly with the number of layers, it is more than welcome to limit
the number of hyperparameters coming from the additional constraints or
regularizations.

Given any matrix A ∈Rt×u , GSP aims to solve

min
B∈Rt×u

‖B − A‖2
F such that

1

u

u∑
i=1

sp(B(:, i)) ≥ s (6.6)

113

where s is the target average sparsity level and

sp(B(:, i)) =
p

t − ‖B(:,i)‖1
‖B(:,i)‖2p

t −1
(6.7)

for any i is known as the Hoyer sparsity of the corresponding column of B .
We refer the reader to Algorithm 1 of [94] for the details of the imple-

mentation of the projection onto the feasible set required by Eq. (6.6).
Therefore, it suffices to consider this implementation at the projection step
in the FPGD (see Algorithm 2 in Chapter 2) used to solve the corresponding
subproblem in Algorithm 11.

Hence, for a given factor, GSP aims to reach a target average sparsity
of the whole matrix instead of each row/column separately, which con-
fers much more flexibility to the sparsity pattern compared to standard ap-
proaches, while reducing drastically the number of parameters involved.
Let us remark that since the feasible set of GSP is not convex, the conver-
gence to a stationary point of the underlying framework is not theoretically
guaranteed.

We apply sparse deep MF, where the sparsity is defined as described
above, to both synthetic data, in Section 6.2.1, and the extraction of facial
features in Section 6.2.2. The same five models as described in Section 5.3
are compared in all the experiments, that is, MMF, Tri-DMF, LC-DMF,
DC-DMF and single-layer NMF.

6.2.1 Experiments on synthetic data

The experimental setting considered in this section is exactly the same
as the one of Section 5.3.

Due to the structure of the ground-truth factors, we only consider spar-
sity on the factors of the second layer, fixing the target grouped sparsity of
W2 and H2 to the average Hoyer sparsity of W ∗

2 and H∗
2 respectively.

Fig. 6.3 and 6.4 display the MRSA (mean and standard deviation over 25
runs) of MMF, LC-DMF, DC-DMF, Tri-DMF and single-layer NMF (for the
second layer only) in function of the noise level for the first and second lay-
ers, respectively. At both layers, LC-DMF produces the lowest MRSA. As al-
ready highlighted in Section 5.3, MMF and Tri-DMF show their weaknesses
compared to our approaches. These results on synthetic data tend to show
that LC-DMF is the most efficient method to recover the ground-truth fac-
tors at both layers.

114

0.01 0.025 0.063 0.158 0.398 1

0

5

10

15

20

25

Figure 6.3: Comparison of the MRSA obtained at the first layer with sparse
MMF, LC-DMF, DC-DMF and Tri-DMF on synthetic data in function of the
noise level.

0.01 0.025 0.063 0.158 0.398 1

0

5

10

15

20

25

30

35

Figure 6.4: Comparison of the MRSA obtained at the second layer with
sparse MMF, LC-DMF, DC-DMF, Tri-DMF and NMF on synthetic data in
function of the noise level.

115

6.2.2 Extraction of facial features

We have already shown in Section 4.4.1.1 that deep MF is efficient to
extract facial features hierarchically. The CBCL dataset8 is made of 2429
grey-scale images of 19 × 19 pixels representing faces of different people
exhibiting various expressions.

For this application, we set L = 3, r1 = 100, r2 = 49 and r3 = 25, and
perform the initialisation of the factors with SNPA. We run MMF, LC-DMF,
DC-DMF and Tri-DMF with a grouped sparsity level s (see Eq. (6.6)) of 70%
for W1, 80% for W2 and 85% for W3 (the factors Hl ’s are not constrained
to be sparse)9. The features extracted at all layers by sparse MMF are
displayed on Fig. 6.7. It shows the hierarchical decomposition of the
data set: the larger facial features extracted at the first levels are made
of smaller features extracted at the deeper levels, such as eyes, mouths,
and eyebrows10. Sparsity allows the features, especially at the last layer,
to contain only a few activated pixels. The features extracted by the other
methods, that is, LC-DMF, DC-DMF, Tri-DMF and single-layer NMF are
displayed on Fig. 6.8, 6.9, 6.10 and 6.11, respectively.

To compare quantitatively these methods, we plot the evolution of sev-
eral loss functions. More precisely, Fig. 6.5 shows the evolution of the rela-

tive layer-centric errors
‖Wl−1−Wl Hl‖2

F

‖W (0)
l−1‖2

F

for l = 1,2,3, with W0 = X , for all meth-

ods, along 500 iterations. Similarly, Fig. 6.6 shows the relative data-centric

errors
‖X−Wl Hl ···H1‖2

F

‖X ‖2
F

for l = 1,2,3. Note that the first layer errors are both

equal to
‖X−W1H1‖2

F

‖X ‖2
F

and appear in all global loss functions except Tri-DMF.

Also, looking at the evolution of data-centric errors does not make much
sense for MMF, due to the way the decompositions are performed (the data
matrix is "discarded" after the optimization of the factors of the first layer).

8http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz
9In comparison, the average Hoyer sparsity of W1, W2 and W3 obtained with MMF

without sparsity constraints are respectively 71.97%, 79.46% and 76.64%.
10The reader may be surprised to see an interpretation rather different than the one of

Fig. 4.2 in Section 4.4.1.1. However, let us emphasize that the decompositions are also very
different: on Fig. 4.2, the abundances matrices Hl ’s were successively decomposed while
on Fig. 6.7, these are the features matrices Wl ’s which are decomposed. Hence, this leads
to a reverse interpretation, with features going from the more specific to the more general
ones on Fig. 6.7.

116

http://www.ai.mit.edu/courses/6.899/lectures/faces.tar.gz

0 100 200 300 400 500
10

-3

10
-2

10
-1

(a)

0 100 200 300 400 500
10

-4

10
-2

10
0

(b)

0 100 200 300 400 500
10

-3

10
-1

10
1

(c)

Figure 6.5: Layer-centric errors on the CBCL faces data set, with L = 3,
r1 = 100, r2 = 49 and r3 = 25 at the (a) first, (b) second, and (c) third layer.

117

0 100 200 300 400 500
10

-3

10
-2

10
-1

(a)

0 100 200 300 400 500
0.004

0.01

0.03

(b)

0 100 200 300 400 500
0.01

0.03

(c)

Figure 6.6: Data-centric errors on the CBCL faces data set, with L = 3,
r1 = 100, r2 = 49 and r3 = 25 at the (a) first, (b) second, and (c) third layer.

118

(a) (b) (c)

Figure 6.7: Features extracted by MMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the features ex-
tracted at: (a) first layer W1, (b) second layer W2, and (c) third layer W3.

(a) (b) (c)

Figure 6.8: Features extracted by LC-DMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the features ex-
tracted at: (a) first layer W1, (b) second layer W2, and (c) third layer W3.

This comparison clearly confirms the advantage of DC-DMF and
LC-DMF over MMF and Tri-DMF:

• At the second and third layers, DC-DMF produces the lowest
data-centric errors while LC-DMF produces the lowest layer-centric
errors. Note however that DC-DMF has slightly larger errors than
single-layer NMF at the first two layers, while it has a lower error
at the third layer. This is expected since DC-DMF optimizes all
layers simultaneously while single-layer NMF performs independent
NMFs at all "layers".

119

(a) (b) (c)

Figure 6.9: Features extracted by DC-DMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the features ex-
tracted at: (a) first layer W1, (b) second layer W2, and (c) third layer W3.

(a) (b) (c)

Figure 6.10: Features extracted by Tri-DMF in the CBCL faces data set, with
L = 3, r1 = 100, r2 = 49, and r3 = 25. Each image contains the features ex-
tracted at: (a) first layer W1, (b) second layer W2, and (c) third layer W3.

• MMF has much higher relative errors than LC-DMF at the second
and third layers (MMF is above 10−1 while LC-DMF is below or
about 10−3). This comes from the sequential optimization procedure
of MMF. More precisely, the factors of the first layer, W1 and H1, are
first extracted, then those of the second layer, and so on, without any
possibility of "backpropagation".

• The error of Tri-DMF at the first layer oscillates and does not con-
verge, which is an expected consequence of the different loss func-
tions minimized at each layer; see the discussion of Section 5.1 in
Chapter 5 for more details.

120

(a) (b)

Figure 6.11: Features extracted by single-layer NMF in the CBCL faces data
set, with (a) r = 49, (b) r = 25.

6.3 Minimum-volume deep matrix
factorizations

In this section, we apply the framework of Chapter 5 to minimum-volume
deep MF, the extension of minVolNMF (see Section 2.3.2 in Chapter 2) to
several layers. In other words, the basis vectors of all layers are constrained
to be as close as possible to the data points, through the minimization of
the volume of the columns of each Wl for l = 1, . . . ,L. As for minVolNMF,
this aims at increasing the interpretability of the factors.

To alleviate the degree of freedom inherent to NMF (see Section 1.2),
a usual additional constraint is to impose that all the columns of H sum
to 1. However, in the minVol approach, it turns out that imposing the
column-stochasticity of W instead of H , that is, W T e = e, where e is the
vector of all ones of appropriate dimension, leads to better results in many
applications. When the elements of each column of W sum to one, W
is better conditioned and normalizing the columns of W better balances
their importance in the volume regularization term, see the discussion in
Section 4.3.3 of [56] for more details.

To build minVol deep MF, we simply extend the approach of [53] by in-
corporating a volume contribution at every layer. More precisely, we add
the following quantity11 to the reconstruction error of each layer for both

11See Section 2.3.2 for a more detailed explanation of the minVol regularization.

121

loss functions given by Eq. (5.3) and Eq. (5.4):

κl logdet(W T
l Wl +δIrl) (6.8)

while imposing column-stochasticity on every Wl for l = 1, . . . ,L.
The volume contribution implies an additional term in the gradients of

both L1 and L2 with respect to Wl ’s. More precisely, the term κl Wl Z , mul-
tiplied either by λl−1 or µl−1 is added to Eq. (5.5) and Eq. (5.7) respectively,

with Z = (W (∗)T

l W (∗)
l +δIrl)−1 where W (∗)

l denotes the last iteration of Wl

such that Z is constant during a given update of Wl .
A potential drawback of such an approach is the use of many

regularization parameters, both for the weights of the terms of the
loss functions and the volume penalties at each layer. Indeed, in addition
to the L−1 parameters λl ’s of Eq. (5.3) or µl ’s of Eq. (5.4), the user has to fix
the values of the L parameters κl ’s involved in the volume regularization.
In practice, the κl for a given layer l is set as follows. Given the initial
error er r (0)

l = ‖W (0)
l−1 −W (0)

l H (0)
l ‖2

F (for the layer-centric loss function) or

er r (0)
l = ‖X −W (0)

l H (0)
l · · ·H (0)

1 ‖2
F (for the data-centric loss function) and a

first guess κ̃l , the final value κl is given by κl = κ̃l
er r (0)

l

| logdet(W (0)T

l W (0)
l +δIrl

)|
, such

that both error terms are of the same order of magnitude for a given layer.
We now apply minVol deep MF to the hyperspectral unmixing of the

Urban image.
We consider a 3-layers network, with r1 = 6, r2 = 4 and r3 = 2. To initial-

ize the basis vectors of all layers, we use hierarchical clustering (HC) [58],
see Section 2.2 for more details. Instead of simply initializing the factors of
LC-DMF, DC-DMF and Tri-DMF with HC, we refine the initialization ob-
tained with HC by performing a few iterations of BCD before moving to the
initialization of the next layer. Moreover, after several trials, it turned out
that appropriate values for the minVol hyperparameters κ̃l ’s are 10−2 for
all l . We also run single-layer NMF for r = 4 and r = 2 (at the first layer, it
would coincide with MMF) to evaluate the efficiency of deep approaches
compared to a shallow one.

On Fig. 6.12 and 6.13, we plot the spectral signatures of the materials
extracted by the different methods at the first and second layer respectively,
that is, the columns of W1 and W2, and the ground truth from [135], which is
only available for r = 6 and r = 4 to the best of our knowledge. The MRSA’s

122

Figure 6.12: Endmembers extracted by MMF, LC-DMF, DC-DMF and
Tri-DMF in the Urban image at the first layer (r1 = 6), and the ground truth.

Figure 6.13: Endmembers extracted by MMF, LC-DMF, DC-DMF, Tri-DMF
and single-layer NMF in the Urban image at the second layer (r2 = 4), and
the ground truth.

at both layers are presented in Table 6.2 with the best result at each layer
(that is, the lowest MRSA) in bold.

At both layers, LC-DMF clearly outperforms the other deep methods,
including Tri-DMF and MMF. Especially, Tri-DMF performs the worse.
Moreover, at the second layer, LC-DMF achieves a MRSA very close to
the one of single-layer NMF, which was run independently for both rank
values. Therefore, LC-DMF seems again to be the best loss function to
minimize when tackling deep MF.

123

Method First layer (r1 = 6) Second layer (r2 = 4)

MMF 16.98 12.35

LC-DMF 9.48 8.42

DC-DMF 22.95 14.15

Tri-DMF 26.07 20.07

Single-layer NMF 16.98 7.74

Table 6.2: MRSA at the first and second layer of the compared methods on
the Urban hyperspectral image, with in bold the best value of each column.

The corresponding abundance maps at all layers are available in Ap-
pendix of [35] for all the compared methods. However, since the hierarchy
of materials is similar to what was presented in Sections 4.4.1.2 and 6.1.3.2,
we do not display them here, in order to keep the reading pleasant. Glob-
ally, the hierarchy of materials extracted by LC-DMF is rather sparse, with
each material obtained by a combination of only a few materials of the
previous layer. On the opposite, the decomposition of Tri-DMF is hardly
interpretable since all materials contribute to those of the next layer with
important proportions.

6.4 Deep symmetric matrix factorizations

In this section, we introduce a variant of deep MF where the input ma-
trix is symmetric and nonnegative, dubbed deep symmetric nonnnegative
matrix factorization (DSNMF).

Symmetric NMF (symNMF) [70] requires the data matrix X to be non-
negative and symmetric, that is, X = X T with m = n, and H = W T . Hence,
X is approximated by W W T . SymNMF is appropriate when the entries of
X represent the similarities between different items, for example a word
co-occurrence matrix in topic modeling [64], or when X is the adjacency
matrix of an undirected graph. In this context, symNMF extracts commu-
nities of nodes, possibly overlapping, such that the nodes of a given com-
munity have more connections (that is, edges) with each other than with

124

nodes belonging to other communities.
The goal of DSNMF is to leverage L levels of factorization to give at each

layer l a nonnegative symmetric approximation of rank rl of the original
matrix X ∈ Rn×n . More precisely, at the first layer, X is approximated by
W1W T

1 where W1 ∈Rn×r1+ , as in symNMF. Let X be the symmetric adjacency
matrix of a graph. In this case, each column of W1 can be interpreted as a
community, with W1(i ,k) being the indicator of node i to belong to com-

munity k. In fact, X ≈
r1∑

k=1
W1(:,k)W1(:,k)T means that X is approximated

as the sum of r1 communities which are rank-one nonnegative adjacency
matrices. At the second layer, the matrix W1 is factorized as W1 ≈ W2H2

with W2 ∈ Rn×r2+ and H2 ∈ Rr2×r1+ , and r2 < r1. This gives a new symmet-
ric approximation of X , namely X ≈ W2(H2H T

2)W T
2 . At the second layer,

each column of W2 indicates to what extent the n data points belong to
one of the r2 communities. The square inner matrix H2H T

2 ∈ Rr2×r2 indi-
cates how strongly the r2 communities interact with each other. In fact,
the second layer of DSNMF is a particular case of symmetric nonnegative
tri-factorization, namely X ≈W SW T where S = H2H T

2 [121]. As the factor-
ization unfolds, the rl columns of the matrices Wl ’s identify fewer commu-
nities (as the ranks of the factorization are decreasing) and the inner square
matrices Hl · · ·H2H T

2 · · ·H T
l indicate how the numerous small communities

of the first layers progressively gather in fewer larger communities at the
last layers.

Let us briefly illustrate the idea behind DSNMF with L = 2 on the syn-
thetic graph of Fig. 6.14, made of 14 nodes. DSNMF applied with r1 = 4 and
r2 = 2 splits the nodes in four communities at the first layer, namely con-
taining the nodes {1,2,3,4}, {4,5,6,7}, {8,9,10,11} and {11,12,13,14}. They
correspond to the sets of nodes surrounded by a solid line. Note that nodes
4 and 11 belong with the same proportion to two communities. Then, at
the second layer, only two communities remain (dashed circles), obtained
by merging respectively the first two and the last two communities of the
first layer.

In Section 6.4.1, we present an algorithm to solve DSNMF while in Sec-
tion 6.4.2, we perform experiments on synthetic data. The experiments on
real data are specifically discussed in Chapter 7.

125

Figure 6.14: Simple graph to illustrate the working of DSNMF, with two lev-
els of communities.

6.4.1 An algorithm for DSNMF

Given a nonnegative symmetric matrix X ∈ Rn×n+ , standard symNMF
consists in solving the following optimization problem:

min
W ∈Rn×r+

1

2
‖X −W W T ‖2

F .

However, to avoid dealing with a fourth-order objective function in W , an
alternative formulation was proposed in [70]:

min
W ∈Rn×r+
H∈Rr×n+

1

2

(‖X −W H‖2
F +µ‖W −H T ‖2

F

)
. (6.9)

For µ sufficiently large, it has been shown that W = H T holds for the critical
points of Eq. (6.9) [81]. Extending Eq. (6.9) to L layers requires to define

126

an appropriate loss function. Inspired by those proposed in Chapter 5, we
minimize

LDSN MF = 1

2

(
‖X −W1H1‖2

F +µ1‖W1 −H T
1 ‖2

F+
λ1

(‖W1 −W2H2‖2
F +µ2‖W2 − (H2H1)T ‖2

F

)+·· ·+
λL−1

(‖WL−1 −WL HL‖2
F +µL‖WL − (HL HL−1 · · ·H1)T ‖2

F

))
.

(6.10)

This layer-centric loss function performs a weighted sum of layer-wise
errors, that is, er r (l) = ‖Wl−1 − Wl Hl‖2

F +µl‖Wl − (Hl · · ·H1)T ‖2
F for

l = 1, . . . ,L, with W0 = X and λ0 = 1. Each layer-wise error is in turn the
sum of two contributions. The first one, namely er r1(l) = ‖Wl−1 −Wl Hl‖2

F ,
is the reconstruction error at layer l , that is, the error between Wl−1

and its approximation Wl Hl of rank rl . The second term, namely
er r2(l) =µl‖Wl − (Hl · · ·H1)T ‖2

F , ensures the symmetry of the factorization,
using the same trick as in Eq. (6.9).

To minimize LDSN MF defined in Eq. (6.10), we use the BCD method
presented in Algorithm 11 in Section 5.2, with the blocks of variables Wl ’s
and Hl ’s. Again, the subproblems with respect to a given factor matrix are
solved with FPGD. For this purpose, let us express the gradients of L with
respect to each set of variables. First, let us call for all l , Dl = Hl−1 · · ·H1,
H̃l = Hl · · ·H1 = Hl Dl , C (k)

l = Hk · · ·Hl+1 for k ≥ l (for k = l , C (l)
l is the iden-

tity matrix of appropriate dimension). We have:

∂L

∂Wl
=λl−1

(
(Wl Hl −Wl−1)H T

l +µl (Wl − H̃ T
l)

)+δlλl (Wl −Wl+1Hl+1)

with δl = 0 if l = L and δl = 1 otherwise, and

∂L

∂Hl
=λl−1W T

l (Wl Hl −Wl−1)+
L∑

k=l
λk−1µk (Dl (H̃ T

k −Wk)C (k)
l)T .

A crucial aspect of deep MF models is the choice of the hyperparame-
ters, namely the number of layers L, and the factorization ranks rl ’s. In the
following, we suggest two ways of initializing DSNMF:

• When the depth L and the ranks rl ’s are given by the user, the initial
factors W (0)

l ’s and H (0)
l ’s are initialized with a sequential multilayer

approach, as in [27]. This is the strategy that we chose for experi-
ments on synthetic data since it provides control on the network ar-
chitecture.

127

• When no prior information on the network is provided, we resort to
the well-known Louvain method (LM) [16]. LM is a widely used al-
gorithm that extracts communities of nodes in a graph by trying to
increase the so-called network modularity at each iteration. In a nut-
shell, the modularity is a scalar value that measures the density of
links inside communities as compared to links between communi-
ties. LM starts with each node representing its own community and
then tries to move nodes from one community to another. After each
iteration t , LM provides a split of the graph into rt disjoint communi-
ties, that is, with each node belonging to a single community. In other
words, LM extracts a bottom-up hierarchy of communities inside a
graph, similarly to what the deep MF models (in the broad sense) do,
except that for these lasts, nodes can simultaneously belong to sev-
eral communities, with some proportions. Hence, in the absence of
values provided by the user, we set the number of layers L of DSNMF
to be equal to the number of iterations of LM and the ranks rl ’s are
taken as the number rt ’s of communities successively extracted by
LM. The initial matrices W (0)

l ’s are built for all l such that each col-
umn corresponds to a community extracted by LM at iteration l .

6.4.2 Experiments on synthetic data

In this section, we apply DSNMF to synthetic data. DSNMF can be in-
terpreted as a hierarchical fuzzy clustering approach hence no clear ground
truth is available. More precisely, the features extracted at each factoriza-
tion layer are not known in advance, which renders the quantitative assess-
ment of the model challenging, even on synthetic data.

In the following experiments, we compare three algorithms, namely:

• DSNMF; to set up the parameters λl ’s for l = 1, ...,L − 1 and µl ’s for
l = 1, ...,L in the loss function of Eq. (6.10), we balance the impor-
tance of each layer and proceed as follows. The λl ’s are chosen such
that the initial contributions of all layers to the loss function are the

same, that is, λl = er r (0)(1)
er r (0)(l+1)

. Similarly, the µl ’s are such that for all l ,

er r (0)
1 (l) = er r (0)

2 (l), that is µl = ‖W (0)
l−1−W (0)

l H (0)
l ‖2

F

‖W (0)
l −(H (0)

l ···H (0)
1)T ‖2

F

.

• Multilayer symmetric NMF (MSNMF); this is the symmetric version

128

of the sequential multilayer factorization of Cichocki et al. [26].
In other words, the symmetric factorizations are successively
performed independently layer by layer.

• Spectral clustering (SpecClust) applied at each layer; this is a
well-known clustering algorithm [119] which applies k-means to the
n rows of the matrix whose columns are the first (that is, smallest)
k eigenvectors of the graph Laplacian matrix (see Section 4.2.2.4).
Hence, SpecClust performs a "hard" community detection (that is,
generates disjoint communities), contrary to DSNMF and MSNMF.

We build our dataset in a similar way as the toy example of Fig. 6.14.
More precisely, we set L = 2, r1 = 4 and r2 = 2. The noiseless graph con-
sists of two disjoint sub-graphs of the same size, themselves composed of
two cliques, that is, subsets of vertices that are all connected to each other,
of the same size that have n∗ nodes in common, which is the same for
both sub-graphs. For n = 14 and n∗ = 1, this is exactly the situation repre-
sented on Fig. 6.14 if the edge between nodes 4 and 11 is removed. We add
symmetric white Gaussian noise to the noiseless adjacency matrix X̃ the
same way as described in Section 2.4.1 of Chapter 2. For different relative
noise levels ν and for several combinations of n and n∗, we run the three
methods described above with 25 different randomly generated noise ma-
trices N . Table 6.3 reports the average and standard deviation of the MRSA
between the columns of the ground truth and of the computed factors Wl ’s
over these 25 runs, at both layers.

The interpretation of the results is not easy since no method clearly out-
performs the others.

At the first layer, DSNMF and MSNMF perform comparably, and
outperform spectral clustering, especially in more challenging settings,
when the clusters are more overlapping (that is, when n∗ is larger). It was
expected that MSNMF performs well on the first layer since it optimizes
the first layer independently of the next ones. It is reassuring to see that
DSNMF performs comparably: although it has to take into account the
decomposition at the second layer, the error at the first layer is similar
to that of MSNMF. On the other hand, spectral clustering only extracts
disjoint communities, which is a limitation since the communities at the
first layer are considerably overlapping.

129

(n, n∗,ν) DSNMF MSNMF SpecClust

(14,1,0.01) 0.10±0.01 0.11±0.02 9.54

(14,1,0.05) 0.53±0.08 0.54±0.08 9.54

(14,1,0.1) 1.06±0.16 1.07±0.17 9.54

(14,1,0.5) 5.95±0.71 5.65±0.73 9.54

(100,10,0.01) 0.05±0.00 0.05±0.00 11.17

(100,10,0.05) 0.27±0.01 0.23±0.01 11.17

(100,10,0.1) 0.55±0.02 0.46±0.02 11.17

(100,10,0.5) 3.78±0.15 2.52±0.12 11.33±0.16

(100,30,0.01) 0.07±0.00 0.06±0.00 18.31

(100,30,0.05) 0.34±0.01 0.31±0.01 18.31

(100,30,0.1) 0.72±0.03 0.62±0.03 20.19±5.09

(100,30,0.5) 6.37±0.20 3.40±0.19 18.31

(a)

(n, n∗,ν) DSNMF MSNMF SpecClust

(14,1,0.01) 2.39±7.72 5.09±7.26 0
(14,1,0.05) 2.42±4.90 5.94±6.30 0
(14,1,0.1) 5.41±9.24 19.98±11.84 0
(14,1,0.5) 21.54±12.47 32.05±12.25 14.49±17.04

(100,10,0.01) 0.05±0.00 8.02±5.14 0
(100,10,0.05) 0.29±0.05 1.75±1.18 0
(100,10,0.1) 0.56±0.08 1.64±1.10 0
(100,10,0.5) 3.85±0.85 23.85±7.47 0

(100,30,0.01) 0.04±0.00 19.78±2.45 0
(100,30,0.05) 0.19±0.01 20.72±2.40 0
(100,30,0.1) 0.39±0.02 20.88±2.00 0
(100,30,0.5) 2.10±0.16 21.64±2.02 0

(b)

Table 6.3: Comparison of the MRSA (average and standard deviation) of
DSNMF, MSNMF and SpecClust on synthetic data over 25 runs in func-
tion of the noise level ν and the configuration of the network at the (a) first
(r1 = 4) and (b) second (r2 = 2) layer. The best average MRSA achieved for
each configuration is highlighted in bold.

130

At the second layer, MSNMF completely fails, showing the limitations of
a purely sequential multilayer approach. This behaviour is likely to worsen
when the number of layers increases. Spectral clustering nearly performs
a perfect clustering at the second layer, which is expected since the two
corresponding communities are disjoint (in the noiseless case). In fact,
since SpecClust performs the last clustering stage through k-means, it gen-
erates disjoint communities, that is, binary degrees of membership, unlike
NMF-based models. Hence, for reasonable levels of noise, since there are
only two communities, DSNMF is likely to retrieve the ground-truth factors
perfectly, which explains why the MRSA is equal to 0. It is also important to
keep in mind that SpecClust always works on the original data without the
need to keep a balance between several layers, unlike DSNMF. Since it is by
definition a single-layer method, SpecClust is not able to interpret the links
between successive levels of communities, as opposed to DSNMF.

In summary, DSNMF is the only method able to balance both layers for
the various tested configurations.

6.5 Perspectives of improvement

This section lists some perspectives of improvement related to the deep
MF models proposed in this chapter.

First, concerning the SODA initialization (see Section 6.1), it would be
interesting to test such an initialization on other applications, possibly
combined with a cheaper method on top of it. Also, a thorough study of
the robustness to noise of SODA would be interesting.

Concerning the application of the new loss functions described in
Chapter 5 to various deep MF models, especially sparse deep MF in
Section 6.2 and minVol deep MF in Section 6.3, an important direction of
research is to find clever ways of choosing and tuning the regularization
parameters in the loss functions. Another perspective is to embed deep
MF in a more powerful optimization framework such as TITAN [73] which
has proven to be particularly efficient to tackle non-smooth non-convex
problems, hence would be appropriate to solve grouped sparse deep MF.

Finally, concerning DSNMF (Section 6.4), it would be interesting to ex-
periment other initialization strategies for real data, especially when the
number of layers of factorization is unknown. In our experiments, we used
the Louvain method which extracts a hierarchy of disjoint communities

131

but has the drawback to assign each node to a single community at each
step. Another important axis of research according to us would be to de-
fine proper metrics to assess the quality of a hierarchical fuzzy clustering,
whose deep (symmetric) MF is an example.

6.6 Take-home messages

In this chapter, we introduced various deep MF models. Let us summa-
rize the main points:

• The successive orthogonal decomposition algorithm (SODA) is an in-
teresting initialization algorithm for deep MF that can easily be hybri-
dated with cheaper techniques when applied to real applications.

• The two new loss functions developed in Chapter 5 are particularly
appropriate to solve various deep MF variants and defeat both mul-
tilayer MF and Trigeorgis deep MF on synthetic data and real appli-
cations. In particular, we recommend to use the layer-centric loss
function defined in Eq. (5.3), that is, LC-DMF, to tackle deep MF as it
performs the best on average in our numerical experiments.

• We introduced deep symmetric NMF, able to extract hierarchies
of overlapping communities within networks. With the Louvain
method of community extraction as initialization, it allows to auto-
matically fix the number of layers and inner ranks of the factorization
without user involvement (this will be illustrated in the next chapter).

132

C
H

A
P

T
E

R

7
APPLICATION OF DEEP MATRIX

FACTORIZATIONS TO PSYCHIATRIC

NETWORKS

In this chapter, we apply deep MF, especially DSNMF (see Section 6.4
in Chapter 6) to psychiatric networks, an emerging application, which has
never raised interest among the NMF community before, to the best of our
knowledge. First, in Section 7.1, we give a brief overview of community
detection in psychiatric networks. Then, in Section 7.2, we apply DSNMF
to the extraction of hierarchical communities within psychiatric networks
and emphasize the clinical interpretation of the obtained results. We dis-
cuss perspectives of future research in Section 7.3. Finally, Section 7.4 sum-
marizes the key messages of this chapter.

7.1 A short introduction to psychiatric networks

Psychiatric networks have become an important area of research in re-
cent years to investigate the interconnections between psychiatric symp-
toms and their underlying mechanisms. One key aspect is the identifi-

133

cation of communities of symptoms that are more strongly connected to
each other than to symptoms in other communities. As a consequence, a
novel theoretical framework of mental health disorders has recently been
developed among psychiatric researchers : the network approach [104].
The network approach views mental disorders as complex systems of in-
terconnected symptoms rather than discrete categories.

Let us consider a data matrix Y ∈Rm×n containing the ratings of m sub-
jects on n symptoms (or items) on an ordinal scale. Given Y , the symmet-
ric input matrix X ∈ Rn×n is made of the partial correlations between the
n symptoms, that is, X (i , j) =− K (i , j)p

K (i ,i)K (j , j)
where K = Σ−1 is the precision

matrix, defined as the inverse of the covariance matrix of the columns of
Y [44]. Partial correlation between two variables is measured while control-
ling for the effects of the other variables. In other words, it measures the de-
gree of association between two variables while holding all other variables
constant. Such a model, that is, a network in which the adjacency matrix
is made of the partial correlations between the items, is referred to as a
pairwise Markov random field (PRMF). To sparsify the adjacency matrix of
such network, it is common to first apply LASSO regularization on the pre-
cision matrix K , together with the minimization of the extended Bayesian
information criterion (EBIC) to find the best LASSO regularization param-
eter [62].

Considering the graph whose adjacency matrix is X and where each
node corresponds to a symptom, it is interesting to identify its commu-
nities of nodes. This would allow us, for example, to evaluate the set of
symptoms that will be somehow impacted by an action (such as a medica-
tion) on a particular symptom. Most works in this recent field only extract
one level of disjoint communities, which does not allow to finely grasp all
the possible interactions in the network. Currently, two of the most popular
community detection algorithms in psychiatric networks are:

• The spinglass algorithm [103]: This is a method based on the physical
concept of a spin glass, a material with randomly oriented magnetic
spins. In the context of community detection, the spinglass algo-
rithm models the network as a system of interacting "spins" (nodes)
with a certain energy function that depends on the spin configuration
(the community assignment). The algorithm seeks to find the con-
figuration that minimizes the energy function, which corresponds to

134

the optimal community structure. The communities extracted are
disjoint and the number of communities corresponds to the number
of spin states in the optimal configuration of energy.

• The walktrap algorithm [100]: This is a method that leverages ran-
dom walks over the nodes of the graph. More precisely, the algo-
rithm starts by simulating random walks on the network and then
computes pairwise similarities between nodes based on the number
of common walks they share. This similarity matrix is then used to
gather similar nodes in the same community. In fact, the Walktrap
algorithm can be seen as a bottom-up clustering algorithm which
starts by considering each node as a cluster, merges two clusters in
one at each iteration and ends up with a single cluster containing all
the nodes. Overall, the community assignment output to the user is
the one that maximizes the modularity, which is a scalar value that
measures the density of links inside communities as compared to
links between communities. Hence, Walktrap provides disjoint com-
munities of nodes and the exact number of communities output de-
pends on the iteration for which the modularity is maximal.

While Spinglass and Walktrap have demonstrated their utility in com-
munity detection within psychiatric networks, these methods are only able
to extract a single level of disjoint communities. Note that Christensen &
al. [25] recently performed an exhaustive comparison of community de-
tection algorithms, including Walktrap, Spinglass and LM, and network es-
timation methods in psychometric networks. They already briefly men-
tion that the Louvain method has the advantage to provide a hierarchi-
cal structure of communities. However, their experiments assume that the
ground-truth communities (and their number) are known in advance.

7.2 Application of DSNMF to psychiatric
networks

In this section, we apply DSNMF to several psychiatric networks. First,
in Section 7.2.1, we focus on post-traumatic stress disorder (PTSD). Then,
in Section 7.2.2, we study the Connor-Davidson resilience scale [30].

135

7.2.1 Post-traumatic stress disorder

Post-traumatic stress disorder (PTSD) is a mental health condition that
can develop in individuals who have experienced or witnessed a traumatic
event, such as military combat, sexual assault, or natural disaster. PTSD is
characterized by symptoms such as intrusive thoughts, avoidance behav-
iors, hyperarousal, and negative changes in mood and cognition. These
symptoms can have a significant impact on an individual’s daily life.

In the following, we consider a dataset [95] of 359 women suffering
from PTSD, evaluated through the PTSD Symptom Scale-Self Report
(PSS-SR) [50]. The PSS-SR is an ordinal scale assessing 17 symptoms of
PTSD. It is built on the fourth version of the Diagnostic and Statistical Man-
ual of Mental Disorders (DSM-IV) [8], a standard classification of mental
disorders used by mental health professionals. Note that the current
version of this manual is the fifth one and is denoted DSM-5; see below
for some details. The scale assesses the frequency of some behaviours
considered as characteristic of the pathology. This scale was expected to
have three communities representing symptoms of arousal (for example,
being jumpy), avoidance (for example, avoiding reminders of the trauma)
and re-experiencing (for example, having bad dreams about the trauma).

The network of symptoms is built in R with the EBIC graphical LASSO
regularization and is represented on Fig. 7.1. Note that negative partial cor-
relations were set to 0 in order to apply DSNMF.

We apply DSNMF on this network with the LM initialization. LM
extracts 2 layers of respectively 4 and 3 communities hence we perform
DSNMF with L = 2, r1 = 4, r2 = 3. Fig. 7.1 displays the extracted commu-
nities at the first and second layers in green (solid line) and red (dashed
line), respectively. For convenience, we only plot the main communities
to which each node belongs to. More precisely, at layer l , for a given node,
we first assign it to the community for which it has the largest degree of
membership (that is, largest value in the corresponding row of Wl). Then,
we sequentially assign it to more communities as follows: we assign it to
the next community with the largest degree of membership only if this
degree is at least 60% of the degree of the latest community assigned to this
node. Once this condition is no longer satisfied, the assignment stops.

At the first layer, the 4 extracted communities are:

• {1,3,4,13,14}, which represents symptoms of avoidance and physical

136

Figure 7.1: Communities extracted at the first and second layer by DSNMF
on a PTSD dataset, in green (solid line) and red (dashed line), respectively.
The thickness of the blue edges between two nodes is proportional to the
corresponding (nonnegative) entry of the adjacency matrix.

reaction caused by the lack of avoidance of trauma reminders,

• {5,6,7,8,9,10,11,12}, which is clinically the most homogeneous
community. These symptoms represent a negative mood and corre-
spond to the community added in the new version of the scale (that
is, DSM-5),

• {2,10,12,13,15,16} and {12,13,14,17} gather re-experiencing symp-
toms, attempts to avoid such re-experiences and physical reactions
(arousal) when it fails.

Let us remark that node 10 and 14 belong to two communities and nodes
12 and 13 belong to three communities.

At the second layer, the 3 extracted communities are {1,3,4,14},
{5,6,7,8,9,10,11} and {2,10,12,13,14,15,16,17}. Node 10 and 14 again

137

belong to two communities. Roughly speaking, the second layer merges
the two last communities of the first layer, keeping the two others mostly
unchanged. This clinically makes sense: the third community of the first
layer focuses on re-experiencing symptoms that appear during the sleep
while the fourth one rather concerns avoidance of re-experiencing. Since
these two communities are intimately related, they are merged together at
the second layer.

The analysis of the different communities shows that the algorithm did
not extract the different sub-scales of the PSS-SR, but rather extracted com-
munities representing behaviours that are commonly presented together
among patients. In other words, DSNMF did not extract the different symp-
toms of avoidance, re-experiencing and arousal distinctly, but behaviours
that can be observed together. This could have strong clinical implication
for disorders presenting complex interactions between multiple features,
such as PTSD but also suicide behaviours.

Finally, it is to be noted that the communities extracted by DSNMF rep-
resent well the criticisms raised by the DSM-IV assessment of PTSD. The
joint presentation of symptoms representing a negative mood and cogni-
tion led the research community to modify the assessment of PTSD in the
DSM-5 [9]. Indeed, it was shown that certain items represented a differ-
ent category of symptoms that the one originally conceptualized, and the
formulation of certain items led to inconsistencies [98]. The analysis of
the node shared by the most communities strengthens this interpretation.
That is, node 12 has been largely questioned, re-written in the DSM-5 and
finally added to the new community of symptoms of negative mood and
cognition.

7.2.2 Resilience scale

The Connor-Davidson Resilience Scale (CD-RISC) is a widely used psy-
chological assessment tool designed to measure an individual’s resilience,
or his ability to adapt and cope with stress and adversity [30]. The scale
consists of 25 items, each of which measures a different aspect of resilience,
such as personal competence, positive acceptance of change, and spiri-
tual influences. Each item is rated on a 5-point scale (0 = not true at all
to 4 = true nearly all of the time), yielding a total score between 0 and 100,
with higher scores reflecting a higher level of "resilient behaviours".

138

Figure 7.2: Regularized partial correlation resilience network. Blue edges
represent positive connections; the thicker the connection is, the stronger
it is.

Given a dataset of 408 individuals evaluated on the CD-RISC scale, we
build a network as described in Section 7.1. Then, we apply DSNMF on this
network with LM initialization. Both Spinglass and Walktrap algorithms
are also applied as a comparison. We also compare our results with LM
since on the one hand, it is a well known community detection technique
and on the other hand, it serves as initialization for DSNMF. The network
is represented on Fig 7.2. All the edges have positive weights representing
regularized partial correlations between variables. In the following, we de-
scribe the communities extracted by the different algorithms, along with
their clinical interpretation. A summary of the different communities and
corresponding items is presented in Table 7.1.

139

Communities Spinglass Walktrap LM Layer 1 LM Layer 2 DSNMF Layer 1 DSNMF Layer 2

1 1,4,6,7,8,14,15, 3,9,20 1,4,6,7, 1,4,6,7,8,14, 1,4,7,8,15, 1,4,6,7,8,14, 15,

16,17,18,19 8,14,19 15,17,18,19 16,18,19 16,17,18,19

2 10,11,12,23,24 5,10,11,12,21, 2,13 2,13 2,13 2,13

22,23,24,25

3 5,21,22,25 2,13 3,9,20 3,9,20 3,9,20 3,9,20

4 2,3,9,13,20 1,4,6,7,8,14,15, 5,25 5,21,22,23,24,25 5,21 5,21,22,23,24,25

16,17,18,19

5 10,11,12,16 10,11,12,16 10,11,12,16,24 10,11,12,16,24

6 15,17,18 1,6,7,14,15,17

7 21,22 22,25

8 23,24 23

Table 7.1: Communities extracted by the different algorithms in the re-
silience network.

7.2.2.1 Spinglass

The Spinglass algorithm extracts 4 communities. Community 1 is close
to the factor "Tolerance to negative affects" derived from factor analysis
of the French CD-RISC. Compared to this factor, item 15 (Prefer to take
the lead in problem solving) replaces item 23 (I like challenges). Four out
of five items of the community 2 are present among the second factor of
the French CD-RISC, labelled "tenacity". Community 3 is identical to the
third factor, that refers to forward thinking behaviours/self-confidence to-
ward the future. Finally, community 4 is the most heterogeneous, gathering
items relative to two distinct themes: faith and support seeking behaviours.

The communities extracted by Spinglass seem mirroring to some ex-
tent the classic factor structure, but are less heterogeneous than the latter.
For example, the exclusion of item 23 from the first community improves
the semantic coherence of the community. The same observation can be
made for the second community, which is "sparser" than what factor anal-
ysis reveals (that is, the exclusion of item 13 and 15 that were present in the
second factor of the French CD-RISC and which are semantically different
from the rest). However, the extraction of only four communities leads to
some remaining heterogeneity, as demonstrated by the fourth community.

7.2.2.2 Walktrap

The Walktrap algorithm also isolates 4 communities. Community 1 rep-
resents the reliance on faith or spiritual thinking. Community 2 gathers
tenacity and forward-thinking behaviours. Community 3 represents social

140

support seeking behaviours. Community 4 is identical to the community 1
of the Spinglass and refers to tolerance to negative affects.

Multiple similarities exist between these communities and those ex-
tracted by Spinglass. Two main differences arise. On the one hand, com-
munity 1 and 3 split community 4 of Spinglass, which refers to two seman-
tically distinct constructs. On the other hand, community 2 of Walktrap is
more heterogeneous than what Spinglass provides, gathering items from
two different communities identified in Spinglass that describe two differ-
ent themes (tenacity and forward-thinking behaviours).

7.2.2.3 Louvain Method

At the first layer, LM extracts 8 communities. Community 1 is more re-
stricted than the corresponding communities extracted by Spinglass (com-
munity 1) or Walktrap (community 4). Indeed, items 15, 16, 17 and 18 were
not included in this first community. Community 2 gathers social support
seeking behaviours and community 3 represents the reliance on faith or
spiritual thinking. Community 4 represents confidence and pride given
by past adversities. Community 5 refers to tenacity as a personality trait.
Community 6 is more heterogeneous and represents decision-making be-
haviours when facing adversities (items 15 and 18) as well as believe in one’s
abilities when confronted to a difficult event (items 17). Community 7 rep-
resents sense of control and purpose of one’s life, and community 8 reflects
a goal-oriented mindset, item 23 being I like challenges, and item 24 being
I work to attain my goals.

At the second layer, LM extracts 5 communities. Community 1 com-
bines community 1 and 6 from the first layer. Communities 2, 3 and 5 are
unchanged, and community 4 gathers multiple communities from the first
layer (4, 7, and 8). All items present in the second factor "self-confidence"
of the French CD-RISC are included in this community, in addition with
items 23 and 24, which reflect confidence in one’s abilities to overcome fu-
ture obstacles.

Interestingly, LM provides a different solution than what has been
highlighted by both psychometric exploration of the French version of the
CD-RISC and Spinglass or Walktrap algorithms. The first layer performs a
precise decomposition of specific behaviors, such as within community
4. This leads to an increased number of easily interpretable communities.
Only community 6 is somewhat more heterogeneous. At the second layer,

141

smaller communities are gathered together, showing some similarities
with Spinglass and Walktrap (for example, the two communities repre-
senting reliance on faith or spiritual thinking and social support seeking
behaviours).

7.2.2.4 DSNMF

At the first layer, 8 communities are identified. Out of the 8 items of
community 1, 7 are present in the factor "tolerance to negative affects"
derived from factor analysis of the French CDR. Compared to this factor
analysis, items retained here are less heterogeneous, with the exclusion for
example of the item 23 I like challenges, which is somewhat outside the
scope. Community 2 indicates social support seeking behaviours and com-
munity 3 represents the reliance on faith or spiritual thinking. Commu-
nity 4 represents confidence and purpose given by past adversities. Three
items of the community 5 were gathered in the second factor of the French
CDR "tenacity". Once again, the items retained here are less heteroge-
neous, with the exclusion for example of the item 13 I know where to turn
for help, which is somewhat outside the scope of tenacity. In community 6,
3 items overlap with the first community. There is a nuance in this commu-
nity, which tends to go beyond the general ability to tolerate negative affect,
but targets one’s personal competence to do so (6: I can use humour to face
a situation, 14: Under pressure I can think clearly, 17: I think of myself as
strong person). Community 7 represents the feeling of control of one’s life,
and finally community 8 is isolating the item 23 I like challenges. Let us
remark that nodes 1, 7, 15 and 16 belong to two communities.

At the second layer, 5 communities are extracted. Community 1 gathers
communities 1 and 6 from the first layer, which gives a more general view
of tenacity. Communities 2 and 3 remain unchanged. Community 4 is the
same as LM’s fourth community (at layer 2) and represents self-confidence
in one’s abilities to overcome future obstacles. Community 5 is a commu-
nity close to the French CDR factor "tenacity". Once again, the items are
less heterogeneous, with the exclusion for example of the item 13 I know
where to turn for help.

142

The results derived from the four methods presented above allow us to
highlight some advantages of DSNMF compared to existing methods.

First, both Spinglass and Walktrap tend to produce large communities,
thematically heterogeneous. The increased number of smaller communi-
ties extracted by both LM and DSNMF therefore represents an advantage,
as it improves the clinical interpretability by decreasing the heterogeneity
within communities.

Second, LM and DSNMF incorporate a layered analysis of the com-
munity structure. That is, the first layer captures finer-grained communi-
ties within the network, while the second layer encompasses slightly larger
communities that bring together multiple communities from the first layer.
This layering allows for a more in-depth exploration of the different facets
or dimensions of the disorder.

Third, compared to LM, DSNMF allows each symptom to belong to
more than one community at a time. In other words, the communities are
not necessarily disjoint but instead, some nodes, that is, symptoms, be-
long to several communities at a given layer, with some proportions. This
highlights the fact that symptoms can share features across different com-
munities, illustrating the intricate nature of mental health disorders.

7.3 Perspectives of improvement

Since this chapter was mostly application-oriented, the perspectives
are mainly related to the clinical challenges to such a network approach.
In particular, the choice of the scale on which the network is based, for a
given disorder, can be discussed.

Of course, the DSNMF algorithm itself could be improved along several
aspects. For example, one could add some regularization in the model, en-
forcing specific properties for the extracted communities. One could also
consider a more complex model, involving three factors per layer, which is
referred to as tri-symmetric NMF [131]. This would allow to identify more
clearly how the communities interact with each other at all layers.

143

7.4 Take-home messages

In this chapter, we applied DSNMF to psychiatry networks. Let us sum-
marize the main points:

• A recent trend in psychiatry is to build networks of symptoms and try
to identify meaningful communities.

• DSNMF with LM initialization provides a hierarchical structure of
overlapping communities, with valuable clinical interpretation.

• The communities extracted by DSNMF are less heterogeneous
than those extracted with classical community detection algo-
rithms (Walktrap, Spinglass), allowing a finer understanding of the
symptoms structure.

144

C
H

A
P

T
E

R

8
CONCLUSION

In this chapter, we first summarize the main contributions of this PhD
in Section 8.1 and then list some possible perspectives of future research in
Section 8.2.

8.1 Summary of the main contributions

Let us summarize the main contributions of this PhD, paper by paper:

• Near-convex archetypal analysis [39]; Chapter 3: Inspired by
archetypal analysis (AA), a well-known NMF variant, we developed
near-convex archetypal analysis (NCAA), a more flexible variant of
AA. Indeed, while AA constraints the basis vectors to lie within the
convex hull of the data points, NCAA allows them to lie a bit outside
this convex hull, in a minimum-volume fashion. The experiments on
both synthetic data and hyperspectral unmixing (HU) of the Urban
image tend to support NCAA: it performs favourably compared to
state-of-the-art minVol NMF, while at the same time being associated
with an interesting geometric interpretation.

• A survey on deep matrix factorizations [35]; Chapter 4: In this sur-
vey, we covered the main aspects of deep matrix factorizations, the

145

extension of standard MF to several layers. Starting from an histor-
ical perspective, we reviewed the main models and variants, incor-
porating various constraints or regularizations. We also discussed
the choice of the parameters and the main applications of deep MF.
More specifically, we provided three "homemade" showcase exam-
ples, namely the extraction of facial features, hyperspectral unmix-
ing and recommender systems, to clearly demonstrate the benefits
of deep factorizations. We also tried to make insightful connections
between deep MF and neural networks. Finally, we listed some key
challenges related to deep MF, such as the study of the identifiabil-
ity of the models and a thorough investigation of the links between
deep MF and deep learning. By doing so, we hope to pave the way for
meaningful future researches in the field.

• Deep orthogonal matrix factorization as a hierarchical clustering
technique [35]; Chapter 6, Section 6.1: Based on the closed-form
solution of the orthogonal NMF of two data points, we developed a
greedy initialization for deep MF that merges the data points two by
two to create clusters. This approach was shown to be efficient for
synthetic data, especially when one cluster is within the convex hull
of the others. However, this initialization is untractable on large-scale
problems such as HU, unless it is combined with a cheaper technique
on top of it. Hence, generalizing SODA is still an open problem.

• A consistent and flexible framework for deep matrix factoriza-
tions [36]; Chapters 5 and 6, Sections 6.2 and 6.3: Based on the
observation that the loss function optimized by most of the deep MF
researchers is not consistent, we proposed two new loss functions
which are weighted sums of layer-wise contributions. Together
with a generic framework based on block-coordinate descent and
fast projected gradient descent, we introduced two new deep MF
variants, namely grouped sparse deep MF and minVol deep MF,
that leverage these new loss functions. We empirically showed evi-
dence that our loss functions are the only ones that guarantee good
retrieval of the ground-truth factors in the case of both synthetic
data and real-world applications, for which the layer-centric loss
function appears to be the most appropriate. On the other hand, the
mainstream multilayer MF of [26] and deep MF of [115] showed their

146

limitations, with either high final errors or even non-converging
errors.

• Deep symmetric matrix factorization [37]; Chapters 6, Section 6.4
and 7: We introduced deep symmetric NMF, the extension of
symmetric NMF to several layers, in order to extract hierarchies
of communities within networks. Such a model can benefit from
"clever" initialization strategies, such as the Louvain method [16], to
automatically determine the number of layers and inner ranks. In
particular, we showed promising results on psychiatric networks, a
breakthrough application in computational psychiatry, which had
never been investigated before by NMF practitioners, to the best of
our knowledge. At the time of writing the present manuscript, we
were working on a new paper on this topic.

8.2 Perspectives for future works

Miscellaneous perspectives of improvement have already been evoked
along the chapters (see the corresponding sections) but in this section, we
mainly focus on other ideas, not yet mentioned, which also include some
projects which were initiated but did not come to their end or met hurdles.
Let us also emphasize that deep MF will constitute a core topic of the ERC
consolidator grant eLinoR of Prof. Nicolas Gillis, see [57] for more details.

8.2.1 Tri minVol NMF

Tri minVolNMF would be an extension of tri-NMF where the volume of
one factor is also minimized. Let us first state the standard tri-NMF model.
Given X ∈Rm×n+ , tri-NMF aims at finding the matrices W ∈Rm×r1+ , S ∈Rr1×r2+
and H ∈Rr2×n

+ such that
X ≈W SH .

Tri-NMF is particularly appropriate for several applications such as recom-
mender systems, where the columns of the matrix W represent r1 commu-
nities of users, the rows of the matrix H represent r2 communities of items
and the inner matrix S indicates how these two sets of communities inter-
act with each other.

147

Tri-NMF can be seen as a two-layer factorization but without additional
constraints on the factors, the solution is highly non-unique. A possible
way to alleviate this problem is to minimize the volume of the inner matrix
S, that is, solve:

min
W,H ,S>0

det(ST S) s.t. ‖X −W SH‖ ≤ ε (8.1)

for any ε sufficiently small.
The model described by Eq. (8.1) suffers from scaling ambiguities,

as for minVol NMF (see Section 2.3.2). Since there is one more factor
than in NMF, two normalizations should be applied. This could either be
column-stochasticity of both W and H or "double-stochasticity" of S, that
is, both Se = e and ST e = e with e the vector of all ones of appropriate
dimension. This latter set of "double-stochastic" matrices is referred to as
the Birkhoff polytope.

Preliminary tests with both normalizations were not conclusive, and the
interpretation of such a model remains quite elusive, even for synthetic
data. However, we believe this would still be an interesting direction of
future research, which would possibly build (theoretical) bridges between
single-layer NMF and multilayer/deep MF.

8.2.2 Seizure detection with NMF

Automatic seizure detection is an important challenge in biomedical
machine learning, see for example [118]. During summer 2020, we wel-
comed a Bachelor student to work on this topic from the angle of NMF.
More precisely, the input data consist in a set of EEG recordings contain-
ing several channels corresponding to electrodes spread on the surface of
the head. To start with, we only focused on one channel (located in the
occipital area of the brain) and computed the corresponding spectrogram
through a short-time Fourier transform. Applying NMF on this spectro-
gram with r = 2 allowed to extract the frequential spectrum of the back-
ground on the one hand and of the seizure on the other hand. For exam-
ple, working on the absence seizure, a particular class of seizures encoun-
tered among children, we obtained the frequential spectrum represented
on Fig. 8.1 which exhibits a peak at 3Hz, as expected for such seizures. How-
ever, a lot of possibilities of improvement exist:

148

Figure 8.1: Illustration of the frequency pattern of an absence seizure ob-
tained with NMF.

• The data set used for the experiments, namely the TUH EEG seizure
detection dataset [93] still undergoes major improvements in terms
of artefact removal and, more broadly, denoising, which requires to
apply the models on more recent versions of the dataset.

• We only focused on one channel at a time to extract the frequential
patterns of seizures. However, since most seizures impact several ar-
eas of the brain, it would be interesting to combine multi-channel
information in the model, either through some post-processing after
the factorization stage or through a tensorial approach.

• A basic NMF model was applied, without specific constraints. Incor-
porating sparsity in the columns of either W (the frequential spectra)
or H (the activations of the frequential patterns over time) would be
valuable. Moreover, applying convolutional NMF [13] could also be
promising. In a nutshell, it is an extension of NMF which allows to
extract patterns that repeat (over time) within the signal.

8.2.3 Sparse archetypal analysis

A potential drawback of (near-convex) archetypal analysis (see Chap-
ter 3) is the choice of the support points, that is the points from which the
basis vectors are built. Instead of using the whole data matrix X as the sup-

149

port or choose a matrix Y (see Eq. (3.2)) through some heuristics, one could
introduce more flexibility by asking for the matrix A in Eq. (3.1) to be sparse.

The considered problem would therefore be, for example,

min
A,H≥0

1

2
||X −Y AH ||2F such that A is sparse (8.2)

for some given matrices X and Y (Y can be equal to X as in AA). One possi-
bility is to add a penalty term on the `1-norm of A to the objective function,
that is, λ‖A‖1. Due to its structure, that is, the fact that A is the "inner" ma-
trix (between Y and H), this problem may require to be tackled differently
than standard sparse NMF. Developing efficient algorithms to solve Prob-
lem (8.2) could be valuable for both sparse AA and by extension, sparse
deep MF.

X

150

151

152

BIBLIOGRAPHY

[1] Jong-Hoon Ahn, Seungjin Choi, and Jong-Hoon Oh. A multiplicative
up-propagation algorithm. In Proceedings of the Twenty-first Inter-
national Conference on Machine Learning, page 3, 2004.

[2] ArulMurugan Ambikapathi, Tsung-Han Chan, Wing-Kin Ma, and
Chong-Yung Chi. A robust minimum volume enclosing simplex al-
gorithm for hyperspectral unmixing. In 2010 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pages 1202–1205.
IEEE, 2010.

[3] Andersen Man Shun Ang and Nicolas Gillis. Algorithms and compar-
isons of nonnegative matrix factorizations with volume regulariza-
tion for hyperspectral unmixing. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 12(12):4843–4853,
2019.

[4] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A conver-
gence analysis of gradient descent for deep linear neural networks.
arXiv preprint arXiv:1810.02281, 2018.

[5] Sanjeev Arora, Nadav Cohen, and Elad Hazan. On the optimization of
deep networks: Implicit acceleration by overparameterization. In In-
ternational Conference on Machine Learning, pages 244–253. PMLR,
2018.

[6] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regu-
larization in deep matrix factorization. Advances in Neural Informa-
tion Processing Systems, 32, 2019.

153

[7] Sanjeev Arora, Rong Ge, and Ankur Moitra. Learning topic models–
going beyond SVD. In 2012 IEEE 53rd Annual Symposium on Foun-
dations of Computer Science, pages 1–10. IEEE, 2012.

[8] American Psychiatric Association. Diagnostic and Statistical Manual
of Mental Disorders: DSM-IV-TR (4th ed., text rev.), volume 4. Ameri-
can Psychiatric Association Washington, DC, 2000.

[9] American Psychiatric Association. Diagnostic and Statistical Manual
of Mental Disorders: DSM-5, volume 5. American Psychiatric Associ-
ation Washington, DC, 2013.

[10] Peter Bartlett, Dave Helmbold, and Philip Long. Gradient descent
with identity initialization efficiently learns positive definite linear
transformations by deep residual networks. In International Confer-
ence on Machine Learning, pages 521–530. PMLR, 2018.

[11] Christian Bauckhage. A note on archetypal analysis and the approx-
imation of convex hulls. arXiv preprint arXiv:1410.0642, 2014.

[12] Christian Bauckhage and Christian Thurau. Making archetypal anal-
ysis practical. In Pattern Recognition, pages 272–281, Berlin, Heidel-
berg, 2009. Springer Berlin Heidelberg.

[13] Sven Behnke. Discovering hierarchical speech features using con-
volutional non-negative matrix factorization. In Proceedings of the
International Joint Conference on Neural Networks, 2003., volume 4,
pages 2758–2763. IEEE, 2003.

[14] José M Bioucas-Dias. A variable splitting augmented lagrangian ap-
proach to linear spectral unmixing. In 2009 First Workshop on Hy-
perspectral Image and Signal Processing: Evolution in remote sensing,
pages 1–4. IEEE, 2009.

[15] José M Bioucas-Dias, Antonio Plaza, Nicolas Dobigeon, Mario Par-
ente, Qian Du, Paul Gader, and Jocelyn Chanussot. Hyperspectral
unmixing overview: Geometrical, statistical, and sparse regression-
based approaches. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 5(2):354–379, 2012.

154

[16] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and
Etienne Lefebvre. Fast unfolding of communities in large net-
works. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

[17] Athman Bouguettaya, Qi Yu, Xumin Liu, Xiangmin Zhou, and Andy
Song. Efficient agglomerative hierarchical clustering. Expert Systems
with Applications, 42(5):2785–2797, 2015.

[18] Christos Boutsidis and Efstratios Gallopoulos. SVD based initial-
ization: A head start for nonnegative matrix factorization. Pattern
Recognition, 41(4):1350–1362, 2008.

[19] Tadeusz Caliński and Jerzy Harabasz. A dendrite method for cluster
analysis. Communications in Statistics - Theory and Methods, 3(1):1–
27, 1974.

[20] Jacopo Cavazza, Pietro Morerio, Benjamin Haeffele, Connor Lane,
Vittorio Murino, and Rene Vidal. Dropout as a low-rank regularizer
for matrix factorization. In International Conference on Artificial In-
telligence and Statistics, pages 435–444. PMLR, 2018.

[21] Tsung-Han Chan, Chong-Yung Chi, Yu-Min Huang, and Wing-Kin
Ma. A convex analysis-based minimum-volume enclosing simplex
algorithm for hyperspectral unmixing. IEEE Transactions on Signal
Processing, 57(11):4418–4432, 2009.

[22] Wen-Sheng Chen, Qianwen Zeng, and Binbin Pan. A survey of deep
nonnegative matrix factorization. Neurocomputing, 491:305–320,
2022.

[23] Yuansi Chen, Julien Mairal, and Zaid Harchaoui. Fast and robust
archetypal analysis for representation learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
1478–1485, 2014.

[24] Seungjin Choi. Algorithms for orthogonal nonnegative matrix factor-
ization. In 2008 IEEE International Joint Conference on Neural Net-
works (IEEE World Congress on Computational Intelligence), pages
1828–1832. IEEE, 2008.

155

[25] Alexander P Christensen, Luis Eduardo Garrido, Kiero Guerra-Peña,
and Hudson Golino. Comparing community detection algorithms
in psychometric networks: A monte carlo simulation. Behavior Re-
search Methods, pages 1–21, 2023.

[26] Andrzej Cichocki and Rafał Zdunek. Multilayer nonnegative matrix
factorisation. Electronics Letters, 42:947–948, 2006.

[27] Andrzej Cichocki and Rafal Zdunek. Multilayer nonnegative ma-
trix factorization using projected gradient approaches. International
Journal of Neural Systems, 17(06):431–446, 2007.

[28] Andrzej Cichocki, Rafal Zdunek, Anh Huy Phan, and Shun-ichi
Amari. Nonnegative matrix and tensor factorizations: applications
to exploratory multi-way data analysis and blind source separation.
John Wiley & Sons, 2009.

[29] Jeremy E Cohen and Nicolas Gillis. Nonnegative low-rank sparse
component analysis. In ICASSP 2019-2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages
8226–8230. IEEE, 2019.

[30] Kathryn M Connor and Jonathan RT Davidson. Development of
a new resilience scale: The Connor-Davidson resilience scale (CD-
RISC). Depression and Anxiety, 18(2):76–82, 2003.

[31] Beilei Cui, Hong Yu, Tiantian Zhang, and Siwen Li. Self-weighted
multi-view clustering with deep matrix factorization. In Asian Con-
ference on Machine Learning, pages 567–582. PMLR, 2019.

[32] Adele Cutler and Leo Breiman. Archetypal analysis. Technometrics,
36(4):338–347, 1994.

[33] George Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303–314,
1989.

[34] Steven Davis and Paul Mermelstein. Comparison of parametric rep-
resentations for monosyllabic word recognition in continuously spo-
ken sentences. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 28(4):357–366, 1980.

156

[35] Pierre De Handschutter and Nicolas Gillis. Deep orthogonal matrix
factorization as a hierarchical clustering technique. In 2021 29th Eu-
ropean Signal Processing Conference (EUSIPCO), pages 1466–1470.
IEEE, 2021.

[36] Pierre De Handschutter and Nicolas Gillis. A consistent and flexi-
ble framework for deep matrix factorizations. Pattern Recognition,
134:109102, 2023.

[37] Pierre De Handschutter, Nicolas Gillis, and Wivine Blekic. Deep
symmetric matrix factorization. 2023. Online available at:
https://www.researchgate.net/publication/368693970_
Deep_Symmetric_Matrix_Factorization.

[38] Pierre De Handschutter, Nicolas Gillis, and Xavier Siebert. A survey
on deep matrix factorizations. Computer Science Review, 42:100423,
2021.

[39] Pierre De Handschutter, Nicolas Gillis, Arnaud Vandaele, and Xavier
Siebert. Near-convex archetypal analysis. IEEE Signal Processing Let-
ters, 27:81–85, 2019.

[40] Chris Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonneg-
ative matrix t-factorizations for clustering. In Proceedings of the 12th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 126–135, 2006.

[41] Chris H.Q. Ding, Tao Li, and Michael I. Jordan. Convex and semi-
nonnegative matrix factorizations. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(1):45–55, 2008.

[42] Simon Du and Wei Hu. Width provably matters in optimization for
deep linear neural networks. In International Conference on Machine
Learning, pages 1655–1664. PMLR, 2019.

[43] Julian Eggert and Edgar Korner. Sparse coding and NMF. In 2004
IEEE International Joint Conference on Neural Networks (IEEE Cat.
No. 04CH37541), volume 4, pages 2529–2533. IEEE, 2004.

[44] Sacha Epskamp and Eiko I Fried. A tutorial on regularized partial
correlation networks. Psychological Methods, 23(4):617, 2018.

157

https://www.researchgate.net/publication/368693970_Deep_Symmetric_Matrix_Factorization
https://www.researchgate.net/publication/368693970_Deep_Symmetric_Matrix_Factorization

[45] Jicong Fan and Jieyu Cheng. Matrix completion by deep matrix fac-
torization. Neural Networks, 98:34–41, 2018.

[46] Xin-Ru Feng, Heng-Chao Li, Jun Li, Qian Du, Antonio Plaza, and
William J Emery. Hyperspectral unmixing using sparsity-constrained
deep nonnegative matrix factorization with total variation. IEEE
Transactions on Geoscience and Remote Sensing, 56(10):6245–6257,
2018.

[47] Xin-Ru Feng, Heng-Chao Li, Rui Wang, Qian Du, Xiuping Jia, and An-
tonio J. Plaza. Hyperspectral unmixing based on nonnegative matrix
factorization: A comprehensive review. IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, 2022.

[48] Cédric Févotte, Nancy Bertin, and Jean-Louis Durrieu. Nonnegative
matrix factorization with the Itakura-Saito divergence: With applica-
tion to music analysis. Neural Computation, 21(3):793–830, 2009.

[49] Cédric Févotte and Jérôme Idier. Algorithms for nonnegative ma-
trix factorization with the β-divergence. Neural Computation,
23(9):2421–2456, 2011.

[50] Edna B Foa, David S Riggs, Constance V Dancu, and Barbara O Roth-
baum. Reliability and validity of a brief instrument for assessing
post-traumatic stress disorder. Journal of Traumatic Stress, 6(4):459–
473, 1993.

[51] Xiao Fu, Kejun Huang, and Nicholas D. Sidiropoulos. On identifi-
ability of nonnegative matrix factorization. IEEE Signal Processing
Letters, 25(3):328–332, 2018.

[52] Xiao Fu, Kejun Huang, Nicholas D. Sidiropoulos, and Wing-Kin Ma.
Nonnegative matrix factorization for signal and data analytics: Iden-
tifiability, algorithms, and applications. IEEE Signal Processing Mag-
azine, 36(2):59–80, 2019.

[53] Xiao Fu, Kejun Huang, Bo Yang, Wing-Kin Ma, and Nicholas D.
Sidiropoulos. Robust volume minimization-based matrix factoriza-
tion for remote sensing and document clustering. IEEE Transactions
on Signal Processing, 64(23):6254–6268, 2016.

158

[54] Nicolas Gillis. Successive nonnegative projection algorithm for ro-
bust nonnegative blind source separation. SIAM Journal on Imaging
Sciences, 7(2):1420–1450, 2014.

[55] Nicolas Gillis. The why and how of nonnegative matrix factoriza-
tion. In Regularization, Optimization, Kernels, and Support Vector
Machines, Machine Learning and Pattern Recognition, chapter 12,
pages 257–291. Chapman & Hall/CRC, 2014.

[56] Nicolas Gillis. Nonnegative Matrix Factorization. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2020.

[57] Nicolas Gillis. Description of eLinoR project. https://sites.
google.com/site/nicolasgillis/projects/erc-cons, 2023.
[Online; accessed 13-Apr-2023].

[58] Nicolas Gillis, Da Kuang, and Haesun Park. Hierarchical cluster-
ing of hyperspectral images using rank-two nonnegative matrix fac-
torization. IEEE Transactions on Geoscience and Remote Sensing,
53(4):2066–2078, 2014.

[59] Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli,
Behnam Neyshabur, and Nati Srebro. Implicit regularization in ma-
trix factorization. Advances in Neural Information Processing Sys-
tems, 30, 2017.

[60] Zhenxing Guo and Shihua Zhang. Sparse deep nonnegative matrix
factorization. Big Data Mining and Analytics, 3(1):13–28, 2019.

[61] Zhicheng He, Jie Liu, Caihua Liu, Yuan Wang, Airu Yin, and Yalou
Huang. Dropout non-negative matrix factorization. Knowledge and
Information Systems, 60:781–806, 2019.

[62] David Hevey. Network analysis: a brief overview and tutorial. Health
Psychology and Behavioral Medicine, 6(1):301–328, 2018.

[63] Patrik O Hoyer. Non-negative matrix factorization with sparseness
constraints. The Journal of Machine Learning Research, 5(9), 2004.

[64] Kejun Huang, Xiao Fu, and Nikolaos D Sidiropoulos. Anchor-free
correlated topic modeling: Identifiability and algorithm. Advances
in Neural Information Processing Systems, 29, 2016.

159

https://sites.google.com/site/nicolasgillis/projects/erc-cons
https://sites.google.com/site/nicolasgillis/projects/erc-cons

[65] Kejun Huang, Nicholas D Sidiropoulos, and Athanasios P Liavas. A
flexible and efficient algorithmic framework for constrained matrix
and tensor factorization. IEEE Transactions on Signal Processing,
64(19):5052–5065, 2016.

[66] Hamid Javadi and Andrea Montanari. Nonnegative matrix factoriza-
tion via archetypal analysis. Journal of the American Statistical Asso-
ciation, 115(530):896–907, 2020.

[67] Tae Gyoon Kang, Kisoo Kwon, Jong Won Shin, and Nam Soo Kim.
NMF-based target source separation using deep neural network.
IEEE Signal Processing Letters, 22(2):229–233, 2014.

[68] Jingu Kim and Haesun Park. Sparse nonnegative matrix factoriza-
tion for clustering. Technical report, Georgia Institute of Technology,
2008.

[69] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization
techniques for recommender systems. Computer, 42(8):30–37, 2009.

[70] Da Kuang, Chris Ding, and Haesun Park. Symmetric nonnega-
tive matrix factorization for graph clustering. In Proceedings of the
2012 SIAM International Conference on Data Mining, pages 106–117.
SIAM, 2012.

[71] Da Kuang and Haesun Park. Fast rank-2 nonnegative matrix factor-
ization for hierarchical document clustering. In Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 739–747, 2013.

[72] Thomas Laurent and James Brecht. Deep linear networks with arbi-
trary loss: All local minima are global. In International Conference on
Machine Learning, pages 2902–2907. PMLR, 2018.

[73] Hien Le Thi Khanh, Duy Nhat Phan, and Nicolas Gillis. An inertial
block majorization minimization framework for nonsmooth non-
convex optimization. The Journal of Machine Learning Research,
24:1–41, 2023.

[74] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
Nature, 521(7553):436–444, 2015.

160

[75] Daniel D. Lee and H. Sebastian Seung. Learning the parts of ob-
jects by non-negative matrix factorization. Nature, 401(6755):788–
791, 1999.

[76] Daniel D. Lee and H. Sebastian Seung. Algorithms for non-negative
matrix factorization. Advances in Neural Information Processing Sys-
tems, 13, 2000.

[77] Valentin Leplat, Andersen MS Ang, and Nicolas Gillis. Minimum-
volume rank-deficient nonnegative matrix factorizations. In ICASSP
2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3402–3406. IEEE, 2019.

[78] Valentin Leplat, Nicolas Gillis, and Andersen MS Ang. Blind au-
dio source separation with minimum-volume beta-divergence NMF.
IEEE Transactions on Signal Processing, 68:3400–3410, 2020.

[79] Bo Li, Guoxu Zhou, and Andrzej Cichocki. Two efficient algorithms
for approximately orthogonal nonnegative matrix factorization. IEEE
Signal Processing Letters, 22(7):843–846, 2014.

[80] Jun Li and José M Bioucas-Dias. Minimum volume simplex analysis:
A fast algorithm to unmix hyperspectral data. In IGARSS 2008-2008
IEEE International Geoscience and Remote Sensing Symposium, vol-
ume 3, pages III–250. IEEE, 2008.

[81] Xiao Li, Zhihui Zhu, Qiuwei Li, and Kai Liu. A provable splitting ap-
proach for symmetric nonnegative matrix factorization. IEEE Trans-
actions on Knowledge and Data Engineering, 2021.

[82] Chia-Hsiang Lin, Wing-Kin Ma, Wei-Chiang Li, Chong-Yung Chi, and
ArulMurugan Ambikapathi. Identifiability of the simplex volume
minimization criterion for blind hyperspectral unmixing: The no-
pure-pixel case. IEEE Transactions on Geoscience and Remote Sens-
ing, 53(10):5530–5546, 2015.

[83] Chih-Jen Lin. Projected gradient methods for nonnegative matrix
factorization. Neural Computation, 19(10):2756–2779, 2007.

[84] Xin Luo, Mengchu Zhou, Yunni Xia, and Qingsheng Zhu. An efficient
non-negative matrix-factorization-based approach to collaborative

161

filtering for recommender systems. IEEE Transactions on Industrial
Informatics, 10(2):1273–1284, 2014.

[85] Bensheng Lyu, Kan Xie, and Weijun Sun. A deep orthogonal non-
negative matrix factorization method for learning attribute represen-
tations. In Neural Information Processing: 24th International Confer-
ence, ICONIP 2017, Guangzhou, China, November 14–18, 2017, Pro-
ceedings, Part VI 24, pages 443–452. Springer, 2017.

[86] François Malgouyres and Joseph Landsberg. On the identifiability
and stable recovery of deep/multi-layer structured matrix factoriza-
tion. In 2016 IEEE Information Theory Workshop (ITW), pages 315–
319. IEEE, 2016.

[87] Aanchal Mongia, Neha Jhamb, Emilie Chouzenoux, and Angshul Ma-
jumdar. Deep latent factor model for collaborative filtering. Signal
Processing, 169:107366, 2020.

[88] Morten Mørup and Lars Kai Hansen. Archetypal analysis for machine
learning and data mining. Neurocomputing, 80:54–63, 2012.

[89] James Munkres. Algorithms for the assignment and transportation
problems. Journal of the Society for Industrial and Applied Mathe-
matics, 5(1):32–38, 1957.

[90] Yurii Nesterov. A method of solving a convex programming problem
with convergence rate O (1/kˆ 2). In Doklady Akademii Nauk, volume
269, pages 543–547. Russian Academy of Sciences, 1983.

[91] Yurii Nesterov. Introductory lectures on convex optimization: A basic
course, volume 87. Springer Science & Business Media, 2003.

[92] Andrew Ng et al. Sparse autoencoder. CS294A Lecture notes,
72(2011):1–19, 2011.

[93] Iyad Obeid and Joseph Picone. The Temple University Hospital EEG
Data Corpus. Frontiers in Neuroscience, 10:196, 2016.

[94] Riyasat Ohib, Nicolas Gillis, Niccolò Dalmasso, Sameena Shah,
Vamsi K Potluru, and Sergey Plis. Explicit group sparse projection
with applications to deep learning and NMF. Transactions on Ma-
chine Learning Research, 2019.

162

[95] National Institute on Drug Abuse. National Drug Abuse Treat-
ment Clinical Trials Network (CTN-0015): Women’s Treatment for
Trauma and Substance Use Disorders. https://datashare.nida.
nih.gov/study/nida-ctn-0015, 2014. Accessed on May 8, 2023.

[96] Savas Ozkan, Berk Kaya, and Gozde Bozdagi Akar. Endnet: Sparse
autoencoder network for endmember extraction and hyperspectral
unmixing. IEEE Transactions on Geoscience and Remote Sensing,
57(1):482–496, 2018.

[97] Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-
negative factor model with optimal utilization of error estimates of
data values. Environmetrics, 5(2):111–126, 1994.

[98] Anushka Pai, Alina M Suris, and Carol S North. Posttraumatic stress
disorder in the DSM-5: Controversy, change, and conceptual consid-
erations. Behavioral Sciences, 7(1):7, 2017.

[99] Filippo Pompili, Nicolas Gillis, P-A Absil, and François Glineur. Two
algorithms for orthogonal nonnegative matrix factorization with ap-
plication to clustering. Neurocomputing, 141:15–25, 2014.

[100] Pascal Pons and Matthieu Latapy. Computing communities in
large networks using random walks. In Computer and Information
Sciences-ISCIS 2005: 20th International Symposium, Istanbul, Turkey,
October 26-28, 2005. Proceedings 20, pages 284–293. Springer, 2005.

[101] Yuning Qiu, Guoxu Zhou, and Kan Xie. Deep approximately orthog-
onal nonnegative matrix factorization for clustering. arXiv preprint
arXiv:1711.07437, 2017.

[102] Roozbeh Rajabi and Hassan Ghassemian. Spectral unmixing of hy-
perspectral imagery using multilayer NMF. IEEE Geoscience and Re-
mote Sensing Letters, 12(1):38–42, 2014.

[103] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of com-
munity detection. Physical Review E, 74(1):016110, 2006.

[104] Donald J Robinaugh, Ria HA Hoekstra, Emma R Toner, and Denny
Borsboom. The network approach to psychopathology: a review of

163

https://datashare.nida.nih.gov/study/nida-ctn-0015
https://datashare.nida.nih.gov/study/nida-ctn-0015

the literature 2008–2018 and an agenda for future research. Psycho-
logical medicine, 50(3):353–366, 2020.

[105] Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total
variation based noise removal algorithms. Physica D: Nonlinear Phe-
nomena, 60(1-4):259–268, 1992.

[106] Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and
Bhuvana Ramabhadran. Low-rank matrix factorization for deep neu-
ral network training with high-dimensional output targets. In 2013
IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 6655–6659. IEEE, 2013.

[107] Iqbal H. Sarker. Machine learning: Algorithms, real-world applica-
tions and research directions. SN Computer Science, 2(3):160, 2021.

[108] Pulkit Sharma, Vinayak Abrol, and Anil Kumar Sao. Deep-
sparse-representation-based features for speech recognition.
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
25(11):2162–2175, 2017.

[109] Pulkit Sharma, Vinayak Abrol, and Anshul Thakur. ASe: Acoustic
Scene Embedding using deep archetypal analysis and GMM. In In-
terspeech, pages 3299–3303, 2018.

[110] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. The Journal of Machine Learning Re-
search, 15(1):1929–1958, 2014.

[111] Ruoyu Sun, Dawei Li, Shiyu Liang, Tian Ding, and Rayadurgam
Srikant. The global landscape of neural networks: An overview. IEEE
Signal Processing Magazine, 37(5):95–108, 2020.

[112] Anshul Thakur, Vinayak Abrol, Pulkit Sharma, and Padmanabhan Ra-
jan. Deep convex representations: Feature representations for bioa-
coustics classification. In Interspeech, pages 2127–2131, 2018.

[113] Lei Tong, Jing Yu, Chuangbai Xiao, and Bin Qian. Hyper-
spectral unmixing via deep matrix factorization. International

164

Journal of Wavelets, Multiresolution and Information Processing,
15(06):1750058, 2017.

[114] George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and
Björn W Schuller. A deep semi-NMF model for learning hidden
representations. In International Conference on Machine Learning,
pages 1692–1700. PMLR, 2014.

[115] George Trigeorgis, Konstantinos Bousmalis, Stefanos Zafeiriou, and
Björn W Schuller. A deep matrix factorization method for learning
attribute representations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(3):417–429, 2016.

[116] Madeleine Udell, Corinne Horn, Reza Zadeh, Stephen Boyd, et al.
Generalized low rank models. Foundations and Trends® in Machine
Learning, 9(1):1–118, 2016.

[117] David van Dijk, Daniel B Burkhardt, Matthew Amodio, Alexander
Tong, Guy Wolf, and Smita Krishnaswamy. Finding archetypal spaces
using neural networks. In 2019 IEEE International Conference on Big
Data (Big Data), pages 2634–2643. IEEE, 2019.

[118] Paul Vanabelle, Pierre De Handschutter, Riëm El Tahry, Mohammed
Benjelloun, and Mohamed Boukhebouze. Epileptic seizure detection
using EEG signals and extreme gradient boosting. Journal of Biomed-
ical Research, 34(3):228, 2020.

[119] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17:395–416, 2007.

[120] Fei Wang, Tao Li, Xin Wang, Shenghuo Zhu, and Chris Ding. Commu-
nity discovery using nonnegative matrix factorization. Data Mining
and Knowledge Discovery, 22:493–521, 2011.

[121] Hua Wang, Heng Huang, and Chris Ding. Simultaneous clustering
of multi-type relational data via symmetric nonnegative matrix tri-
factorization. In Proceedings of the 20th ACM International Confer-
ence on Information and Knowledge Management, pages 279–284,
2011.

165

[122] JianYu Wang and Xiao-Lei Zhang. Deep NMF topic modeling. Neu-
rocomputing, 515:157–173, 2023.

[123] Qi Wang, Mengying Sun, Liang Zhan, Paul Thompson, Shuiwang Ji,
and Jiayu Zhou. Multi-modality disease modeling via collective deep
matrix factorization. In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, pages
1155–1164, 2017.

[124] Cai Xu, Ziyu Guan, Wei Zhao, Yunfei Niu, Quan Wang, and Zhiheng
Wang. Deep multi-view concept learning. In International Joint Con-
ference on Artificial Intelligence, pages 2898–2904. Stockholm, 2018.

[125] Jaewon Yang and Jure Leskovec. Overlapping community detection
at scale: a nonnegative matrix factorization approach. In Proceedings
of the Sixth ACM International Conference on Web Search and Data
Mining, pages 587–596, 2013.

[126] Yan Yang and Hao Wang. Multi-view clustering: A survey. Big Data
Mining and Analytics, 1(2):83–107, 2018.

[127] Fanghua Ye, Chuan Chen, and Zibin Zheng. Deep autoencoder-like
nonnegative matrix factorization for community detection. In Pro-
ceedings of the 27th ACM International Conference on Information
and Knowledge Management, pages 1393–1402, 2018.

[128] Baolin Yi, Xiaoxuan Shen, Hai Liu, Zhaoli Zhang, Wei Zhang, San-
nyuya Liu, and Naixue Xiong. Deep matrix factorization with im-
plicit feedback embedding for recommendation system. IEEE Trans-
actions on Industrial Informatics, 15(8):4591–4601, 2019.

[129] Jinshi Yu, Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Learning
the hierarchical parts of objects by deep non-smooth nonnegative
matrix factorization. IEEE Access, 6:58096–58105, 2018.

[130] Yu Zhang, Ekapol Chuangsuwanich, and James Glass. Extract-
ing deep neural network bottleneck features using low-rank matrix
factorization. In 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 185–189. IEEE, 2014.

166

[131] Yu Zhang and Dit-Yan Yeung. Overlapping community detection via
bounded nonnegative matrix tri-factorization. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 606–614, 2012.

[132] Handong Zhao, Zhengming Ding, and Yun Fu. Multi-view clustering
via deep matrix factorization. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31, 2017.

[133] Léon Zheng, Elisa Riccietti, and Rémi Gribonval. Hierarchical iden-
tifiability in multi-layer sparse matrix factorization. arXiv preprint
arXiv:2110.01230, 2021.

[134] Yijia Zhou and Lijun Xu. A deep structure-enforced nonnegative ma-
trix factorization for data representation. In Pattern Recognition and
Computer Vision: First Chinese Conference, PRCV 2018, Guangzhou,
China, November 23-26, 2018, Proceedings, Part III, pages 340–350.
Springer, 2018.

[135] Feiyun Zhu. Spectral unmixing datasets with ground truths. arXiv
preprint arXiv:1708.05125, 2017.

167

	Contents
	List of Figures
	List of Tables
	List of main acronyms
	Introduction and outline
	Matrix factorizations, from low-rank to nonnegative
	Geometric interpretation of NMF
	Real-world applications of nmf
	Contributions and outline of the thesis

	Fundamentals
	General optimization framework to solve NMF
	Initialization of NMF
	Main NMF variants
	Orthogonal NMF
	Minimum-volume NMF

	Experimental set-up
	Generation of synthetic data
	Evaluation metric

	Near-Convex Archetypal Analysis
	Near-Convex Archetypal Analysis
	The archetypal analysis framework
	Near-convex archetypal analysis model
	Two-block coordinate descent to solve NCAA
	Initialization of the factors
	Gradient step
	Projection step
	Computational cost

	Possible strategies for NCAA parameters
	Choice of Y
	Choice of

	The NCAA algorithm
	NCAA applied to synthetic data
	NCAA applied to hyperspectral unmixing
	Perspectives of improvement
	Take-home messages

	Deep Matrix Factorizations
	A gentle introduction to deep matrix factorizations
	Motivations of deep MF
	Deep MF models
	A brief history of "deep" factorizations
	Main deep MF variants
	Deep orthogonal NMF
	Deep sparse MF
	Deep archetypal analysis
	Semi-supervised settings

	Algorithms and parameters of deep MF
	Initializations
	Algorithms
	Parameters

	Applications of deep MF
	Three showcase examples
	Extraction of facial features
	Hyperspectral unmixing
	Recommender systems

	Other applications in the literature
	Recommender systems
	Multi-view clustering
	Community detection
	Hyperspectral unmixing
	Audio processing

	Theoretical considerations
	Analogy with neural networks
	Various theoretical results
	Convergence issues
	Low-rank structure

	Perspectives of future research
	Take-home messages

	New loss functions for deep matrix factorizations
	New loss functions for deep MF
	Layer-centric loss function
	Data-centric loss function

	General framework for constrained deep MF
	Experiments on synthetic data
	Take-home messages

	New models for deep matrix factorizations
	Successive orthogonal decomposition algorithm
	Deep orthogonal NMF as a hierarchical clustering technique
	Description of the SODA algorithm
	Closed-form solution of ONMF with r=n-1
	A greedy initialization of deep MF

	Experiments
	Synthetic data
	Hyperspectral unmixing

	Sparse deep matrix factorizations
	Experiments on synthetic data
	Extraction of facial features

	Minimum-volume deep matrix factorizations
	Deep symmetric matrix factorizations
	An algorithm for DSNMF
	Experiments on synthetic data

	Perspectives of improvement
	Take-home messages

	Application of deep matrix factorizations to psychiatric networks
	A short introduction to psychiatric networks
	Application of DSNMF to psychiatric networks
	Post-traumatic stress disorder
	Resilience scale
	Spinglass
	Walktrap
	Louvain Method
	DSNMF

	Perspectives of improvement
	Take-home messages

	Conclusion
	Summary of the main contributions
	Perspectives for future works
	Tri minVol NMF
	Seizure detection with NMF
	Sparse archetypal analysis

	Bibliography

