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Abstract

In many fields, such as linear algebra, computational geometry, combinatorial optimization, analyti-
cal chemistry and geoscience, nonnegativity of the solution is required, which is either due to the fact
that the data is physically nonnegative, or that the mathematical modeling of the problem requires
nonnegativity. Image and audio processing are two examples for which the data are physically non-
negative. Probability and graph theory are examples for which the mathematical modeling requires
nonnegativity.
This thesis is about the nonnegative factorization of matrices and tensors: namely nonnegative

matrix factorization (NMF) and nonnegative tensor factorization (NTF). NMF problems arise in a
wide range of scenarios such as the aforementioned fields, and NTF problems arise as a generalization
of NMF. As the title suggests, the contributions of this thesis are centered on NMF and NTF over
three aspects: modeling, algorithms and applications.
On the modeling aspect, we study two specific classes of NMF problems, namely the Minimum-

volume NMF (minvol NMF) and the Nonnegative Unimodal Matrix Factorization (NuMF). Minvol
NMF generalizes other classes of NMF problems and it can be shown that it leads to identifiability
under some mild conditions, that is, the solution of minvol NMF is unique. On the NuMF, we provide
an efficient algorithm for solving the problem. Both minvol NMF and NuMF are then applied on
real-world datasets to demonstrate their effectiveness on solving some real-world machine learning
tasks, namely hyperspectral imaging, audio blind source separation and analytical chemistry.
On the algorithmic side, we improve existing algorithms for solving NMF and NTF problems by

introducing an acceleration framework, namely the Heuristic Extrapolation with Restarts (HER).
Being a general acceleration framework, HER can be used to accelerate various Block Coordinate
Descent (BCD) methods for solving NMF and NTF problems. The effectiveness of HER on acceler-
ating the convergence of various BCDs is illustrated by experiments on synthetic and real datasets
under different experimental settings.
On the application side, we used minvol NMF on hyperspectral imaging and audio source sepa-

ration problems, and NuMF on chemistry data to demonstrate that NMF can produce meaningful
decomposition of nonnegative data.
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CHAPTER 1. INTRODUCTION 1

1 Introduction
In mathematics you don’t understand things. You just get used to them.

John von Neumann

This thesis is about the nonnegative factorization of matrices and tensors: the Nonnegative Matrix
Factorization (NMF) and the Nonnegative Tensor Factorization (NTF). NMF problems arise in a
wide range of scenarios, such as linear algebra, computational geometry, combinatorial optimiza-
tion, analytical chemistry and geoscience, while NTF arises as a generalization of NMF. In many
applications of the aforementioned fields, the nonnegativity of solution is required, which is either
due to the fact that (i) the data is physically nonnegative, or (ii) the mathematical modeling of
the problem requires nonnegativity. Image and audio processing are examples for which the data
are physically nonnegative. Probability and graph theory are examples for which the mathematical
modeling requires nonnegativity.

1.1 A short introduction to NMF and NTF

As factorization problems, both NMF and NTF share the same goal: given a dataset (a matrix or a
tensor), find a set of factors fulfilling the nonnegative constraints whose product fits the data. Given
a matrix M, the goal of NMF is to find two nonnegative factor matrices W and H such that their
product equals to, or approximates, M. In general, the matrices M can be complex-valued or even
quaternion-valued [37], but in this thesis, we focus on real matrices. NTF generalizes the notion of
NMF from matrix to tensors, and the problem in NTF is similar to NMF: given a tensor T , find
nonnegative factor matrices such that their product equals to T .
NMF and NTF problems do not have closed-form solution in general. In fact, NMF and NTF

are computationally intractable, that is (i.e.), they are NP-Hard problems [27, 59, 106]. As it
is not expected to find a polynomial-time method to solve exactly general NMF/NTF problems,
practitioners usually look for computationally efficient heuristics to solve approximately NMF/NTF.
These heuristics, instead of finding factors that give an exact decomposition of the input data, find
factors that give a good approximation of the data, where the quality of the approximation, or
in other words the quality of fit, is quantified by some particular choice of distance measures. In
general, non-metric distance such as divergence functions can be used to quantify the quality of
the approximation. In this thesis, we focus mostly on the Euclidean distance, i.e., the Frobenius
norm, which corresponds to the maximum likelihood estimator in the presence of independent and
identically distributed (i.i.d.) Gaussian noise. However, note that Gaussian noise becomes less
appropriate when the nonnegative data is becoming sparser. In this thesis, we deal mostly with
dense data and therefore Gaussian noise is a reasonable assumption.
Two main concerns with NMF and NTF:

• The first is to make the problem identifiable by modifying it. Identifiability refers to the
uniqueness of the solution when solving the problem. A way to make the problem identifiable
is to impose additional conditions or constraints on top of the original models. In this thesis,
we discuss two of such particular conditions on NMF, namely the minimum-volume and the
unimodal conditions. We will study how these conditions affect NMF. In particular, how these
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additional conditions help in obtaining identifiability results.

• An identifiable problem can be very difficult to solve. In fact, NMF problem itself is NP-hard.
Hence, the second issue here is to design heuristics to solve the problem. A heuristic is not
guaranteed to find the optimal solution, but it can find good solutions efficiently and is therefore
useful. In this thesis, we introduce a generic framework called “HER” for accelerating various
algorithms that are used to solve NMF/NTF problems. The framework is an extrapolation-
based scheme that can speed up empirically various algorithms solving NMF and NTF problem
in various settings, while the framework has a low extra computational overhead compared to
the original algorithm.

A more technical and in-depth introduction to NMF and NTF will be given in §1.4 and §6,
respectively. Now we discuss about the thesis itself. We begin by summing up the contributions of
this thesis in the following section.

1.2 Contribution and thesis organization

As the name suggests, the contributions of this thesis are centered on NMF and NTF over three
areas: modeling, algorithms and application aspects, as detailed below.

1. Modeling aspect: minvol NMF and NuMF

• We study a specific class of NMF problem called Minimum-Volume NMF (minvol NMF).
This class of NMF problem generalizes another class of NMF called Separable NMF. We
perform comparison studies on the choice of volume function in minvol NMF, and provide
an identifiability theorem on one particular minvol NMF model that uses determinant
volume, and we argue that such a minvol NMF model is superior than other existing
minvol NMF approaches; see §2.

• We study a specific class of NMF problem called Nonnegative Unimodal Matrix Factor-
ization (NuMF). We provide an efficient algorithm for solving NuMF, using a series of
techniques: multi-grid, efficient algorithm design, and acceleration. We also three prelim-
inary results on the identifiability of NuMF under three special cases. See §5.

• The papers related to this aspect are [6, 4, 71, 72, 73] .

2. Algorithm aspect: HER acceleration framework

• We provide efficient algorithms for solving minvol NMF (see §2.2) and NuMF (see §5.1.7
and §5.2).

• We introduce a generic framework, named Heuristic Extrapolation with Restarts (HER),
for accelerating block coordinate descent type of algorithms solving NMF and NTF prob-
lems. We provide empirical evidence that HER can significantly improve the convergence
of various existing BCD algorithms for the problems in various scenarios. See §7.

• The papers related to this aspect are [1, 5, 3, 2] .

3. Application aspect: Hyperspectral unmixing, audio source separation and analyt-
ical chemistry
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• We demonstrate the usefulness of NMF models in two applications: hyperspectral imaging
(see §3) and audio source separation (see §4).

• We demonstrate the usefulness of NuMF in analytical chemistry application: for decom-
posing chemical spectral data for identifying the chemical component presented in the
data. See §5.

• The papers related to this aspect are [6, 4, 71, 72, 73] .

This thesis is the ensemble of the following research efforts made by the author and his coauthors:
three journal papers [6, 72, 5], five conference papers [4, 71, 73, 1, 2], one journal preprint [3] under
review and one working paper on the content of §5. Many parts of the thesis material appear in
these papers.

Thesis organization

• Chapter 1 Introduction We introduce the whole thesis, give a preview on the contributions
and structure of the thesis. This chapter also serves as the technical backbone for Chapter 2 to
Chapter 5 by presenting the basics on NMF. We lay-down some basic knowledge on NMF in
§1.4. Then we go to a specific model called Separable NMF in §1.5 as an introductory material
to the next chapter.

• Chapter 2 NMF with minimum volume We pay our attention to a generalization of
Separable NMF called minimum-volume NMF (minvol NMF) in §2.1, where we discuss about
the modeling issues and provide an identifiability theorem on minvol NMF. In §2.2, we briefly
discuss how to solve minvol NMF. Finally, we conclude this chapter in §2.3, where we list some
open problems related to minvol NMF. The material of this chapter appears in [6, 4, 71, 72,
73].

• Chapter 3 Minvol NMF on hyperspectral unmixing We discuss NMF applied to
hyperspectral unmixing. We first give a brief introduction about hyperspectral unmixing in
§3.1, then in §3.2 we discuss how algorithms are compared. Finally in §3.3 we present the
numerical results on comparing NMF models presented in §2 with some other algorithms. The
material of this chapter appears in [6, 4, 71, 72, 73].

• Chapter 4 Minvol NMF on audio source separation We discuss NMF on the appli-
cation of audio Blind Source Separation (BSS). We treat NMF as a black box and we do not
focus too deep on the details on the algorithm design here, rather, we focus on how NMF can
be used to solve audio BSS problems. For the details on the NMF algorithms design, see [72,
73]. We first give a brief introduction about audio BSS in §4.1, then we look at how NMF can
be used to solve audio BSS problem in §4.2, where we provide a few examples on decomposing
piano recording. The material of this chapter appear in [72, 73].

• Chapter 5 NMF with unimodality: NuMF We pay attention to another specific NMF
models, namely NuMF. We introduce NuMF and lay-down the foundation in §5.1, where we
characterize the unimodal property and show that NuMF is a Mixed-Integer Programming
(MIP) problem that is nonconvex and also block-nonconvex. To solve such MIP, we propose a
simple but naive brute-force heuristics strategy, which is then improved by using the multi-grid
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method as a dimension reduction step in §5.2, where we also show that the restriction operator
preserves the unimodality. Then we present three preliminary results regarding the identifi-
ability of NuMF in §5.3 under three special cases. We present empirical results concerning
the algorithms and the theories on NuMF in §5.4 on synthetic and real datasets. Finally, we
summarize this chapter in §5.5 and present some open problems.

• Chapter 6 Tensor factorization We discusses tensor factorization and the solution ap-
proach to it. We first give a review on the formalism of tensor for the purpose of this thesis in
§6.1. We show that NMF is a special case of NTF in §6.2. Then we discuss the general solution
approach to the NTF, CPD and NMF problems in §6.3. The material of this chapter appears
in [1, 5, 3, 2].

• Chapter 7 Heuristic extrapolation with restarts We introduce an acceleration frame-
work, namely HER, for accelerating the algorithms solving NTF. First we give the idea of
acceleration through extrapolation in §7.1. Then, in §7.2, we present the original form of HER
for NMF algorithms. Next, we present HER framework for general tensor problems in §7.3.
After that, we present the numerical results of HER compared with other algorithms on NMF,
NTF and CPD problems in §7.4, §7.5,§7.6, respectively. Finally, we summarize this chapter in
§7.7, where we also present some open problems. The material of this chapter appears in [1, 5,
3, 2].

• Chapter 8 Conclusion Here we conclude the thesis by summarizing the findings of the
previous chapters. We also restate the open problems related to the research conducted in the
thesis.

1.3 Miscellaneous items concerning the thesis

In this section we list some remarks concerning the convention and setting used in the thesis.

Setting on numerical experiments The experiments presented in the papers by the author, as well
as the experiments presented in this thesis, are mostly performed on MATLAB (v.2015a) under a single
thread environment on a laptop computer with 2.4GHz CPU and 16GB RAM. Some of the codes
are available at https://angms.science/research.html.

Notations and glossary As the thesis is a ensemble of multiple works by the author, the notations
may not be consistent, especially for some figures appeared in the experimental sections. Efforts have
been made on standardizing the notations. In general, we denote M (and sometimes X) as the data
matrix. Given a matrix A, we let A(i, :) or ai to denote the ith row of A, and we let A(:, i) or ai to
denote the ith column of A. We will introduce the notations for NMF in the remaining part in this
chapter, and we introduce the notations for tensor in §6. At the end of the thesis, we attached a list
of notation and glossary for quick referencing.

Figure, table, and convention Efforts have been made on making the figures in this thesis more
visualizable, and all figures are best viewed in color. When listing the result in table form, the best
results are bolded, and the worst results are denoted in red color.

https://angms.science/research.html
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The section symbol We abuse the symbol § to denote both the section number and the chapter
number.

Convention on writing optimization problems In this thesis, we heavily abuse the notation in
writing optimization problems. For example, for the problem of minimizing the function f(x) that
has the expression 1

2‖Ax− b‖2, i.e.,

minimize f(x) with respect to x where f(x) = 1
2‖Ax− b‖2,

will be written as
minimize

x
f(x) := 1

2‖Ax− b‖2,

or compactly as
min

x
f(x) = 1

2‖Ax− b‖2.

The prerequisites for reading this thesis To read this thesis smoothly, it is expected that the reader
should be at least familiar with linear algebra and optimization. Experience in matrix factorization
is not a must but it would be an advantage. It is also assumed the reader do not have knowledge in
the application fields of NMF or NTF.

1.4 Technical introduction to NMF

Now, in the remaining parts of this chapter, we focus on NMF.

NMF is a popular research topic As stated in the beginning of this chapter, NMF problems arise in
a wide range of scenarios. A simple search on Google Scholar with the key words “nonnegative matrix
factorization” gives about 83400 results, while using the words “non-negative matrix factorization”
gives about 110000 results. The research on NMF is huge and therefore the vast background of NMF
makes it impossible to review all aspects of it. Furthermore, a simple search on Google Scholar with
the key words “nonnegative matrix factorization + survey” gives more than 10 reviews or survey
papers on NMF, for examples [99, 11, 30, 108, 98, 113, 44, 40, 75, 102, 57, 79, 111, 13] . There is a
complete volume on such subject [21] . All these works show that NMF is a popular research topic,
and justify doing research on NMF.
In this section, we give a more in-depth introduction to NMF, which is then used as the backbone

for the next few chapters. However, we only focus on the background material of NMF that are the
minimum necessity for the purpose of this thesis. For a comprehensive treatment of NMF, see the
up-coming book [45] , or the surveys mentioned above.

Organization In this section, we first discuss the technical details related to NMF in §1.4.1 .
Then we briefly introduce how NMF is used in application in §1.4.2 . Next we talk about
how NMF problems are solved in §1.4.3 . We then give a few words on the uniqueness of the
solution of NMF in §1.4.4, followed by the geometric interpretation of the solution in §1.4.5 .
As NMF is in fact NP-hard problems (§1.4.6), a twist is often made on the model to make it
tractable. We move on to such a specific NMF model called the Separable NMF in §1.5 .
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1.4.1 NMF

Nonnegative Matrix Factorization (NMF) is a linear algebra problem: given a nonnegative matrix
M and a factorization rank r ∈ N, find two nonnegative matrices W and H such that M = WH.
This is called the exact-NMF. If exactness is not required and we seek for an approximate in the
decomposition, then the problem is approximate-NMF : given M, find the pair (W,H) such that
M u WH. While currently there is no exact method to solve a general NMF problem, we consider
solving NMF using numerical optimization approaches by casting NMF problem as the following
nonconvex optimization problem:

NMF : minimize
W,H

1
2‖M−WH‖2F subject to W ≥ 0,H ≥ 0, (1.1)

where M ∈ Rm×n+ is the input matrix , W ∈ Rm×r+ and H ∈ Rr×n+ are the optimization variables,
and the inequalities W ≥ 0 and H ≥ 0 mean that W and H are elementwise nonnegative.

In problem (1.1) , the hidden parameter r is called the factorization rank, which is in general an
unknown parameter in NMF. It represents the embedding dimension of M in the column space of
W, or to be precise, the dimension of the conical hull of (the columns of) W. In fact, this value is
closely related to the nonnegative rank of the matrix M, defined as

rank+(M) = min
{
k
∣∣∣ ∑k

i=1 Ai = M, rank (A1) = · · · = rank (Ak) = 1,

A1 ≥ 0,A2 ≥ 0, . . . ,Ak ≥ 0
}
,

which is NP-hard to compute [106]. Therefore determining the accurate value of r such that M has
an exact NMF remains open. In fact, such a problem, called Model Order Selection in application
domains, is a research topics on its own, and hence in this thesis we made the following (strong)
assumption:

We assume the value of r is given when solving an NMF problem. (1.2)

Lastly, we mention that this assumption does not greatly deteriorate the value of using NMF on
real-world applications due to the following reasons.

• In applications, most of the time we have some information on the range of values of r based
on prior domain knowledge.

• In some cases, NMF algorithms can perform automatic model order selection. For example,
when applying minvol NMF on the audio data, it is observed that when the value r is over-
estimated, these extra components in the final solution will be set to zero. We discuss minvol
NMF further in §2.1 , and the automatic model order selection phenomenon in §2.1.3 . We give
experimental verification of this phenomenon in §4.2 .

• As the last resort, we can always brute force on r: try several different values of r on NMF on
the data, and pick the one with the best fit as the correct value.

For the recent progress on estimating the value of r (the nonnegative rank) in NMF, see [45, 31].
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1.4.2 How NMF is used in applications

Being practically useful is one of the driving factor that motivates the study of NMF as NMF
finds applications in many areas [73, 44, 81]. We illustrate two examples: unmixing applications in
hyperspectral imaging and audio blind source separation; see Fig.1.1 .
Here we briefly talk about how NMF can be used in applications, using Fig.1.1 as examples. We

begin with the data matrix M ∈ Rm×n+ .

Data matrix As matrices are tabular data representation, a data matrix M can capture two data
modalities in the columns and in the rows. The two modalities together give specific information
about the data. In the first example in Fig.1.1 , the matrix M is a nonnegative spatial-wavelength
matrix with two modalities: 1) the spatial coordinates that represent the actual location of the pixel
in the image, and 2) the wavelength modality that presents the spectral signature of the pixel. In
the second example in the figure, the matrix M is a nonnegative time-frequency matrix with two
modalities: frequency and time. The two coordinates together indicate the distribution of the energy
of the audio signal across time and frequency. We give more details on these datasets in §3 and §4 .

The factors W and H The interpretation of the factors W and H are associated to the column-
modality and the row-modality of the data matrix M, respectively. The common names for the
interpretation of W, if data points are represented as columns, are “basis”, “dictionary”, “atom”
that more or less mean the “principle factor” that generates the data, and the common names for
the interpretation of H are “coefficient”, “weight”, “activation”, “abundance”, which all mean the
“amount of existence” of the basis in the data. For example, in the second example of Fig.1.1 , the
columns in W are the frequency profile of the note extracted from the audio data, while the rows in
H are the time activation profile of these notes in the audio data.

Fig.1.2 gives a pictorial description on how NMF is used in application, demonstrated using hyper-
spectral imaging as an example, where w1 denotes the first column of W and h3 denotes the third
row of H. We give some common interpretations about the vectors wi,hi,hi in Table 1.1 .

Table 1.1: Common interpretations about the vectors mi,wi,hi and hi.
Symbol Meaning Size Interpretation
mi ith column of M m-by-1 The ith data point.
wi ith column of W m-by-1 The ith basis.
hi ith row of H 1-by-n The activation of the ith basis in the whole dataset.
hi ith column of H r-by-1 The amount of composition of w1, . . . ,wr in the ith

data point.

1.4.3 How NMF problems are solved, BCD and HALS

Most algorithms for solving NMF problem (1.1) use a two-block coordinate descent (BCD) scheme
by optimizing alternatively over W for H fixed and vice versa; see Algorithm 1 .
By symmetry, since ‖M−WH‖F = ‖M>−H>W>‖F , the updates of W and H are usually based

on the same strategy. The subproblem for H is a Nonnegative Least Squares (NNLS) problem:

min
H≥0

‖M−WH‖2F (1.3)
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Algorithm 1 Framework for most NMF algorithms
1: Input: A matrix M ∈ Rm×n and a factorization rank r.
2: Output: An approximate solution (W,H) to NMF (1.1).
3: Initialization: W ∈ Rm×r+ , H ∈ Rm×r+ .
4: for k = 1, . . . until some criteria is satisfied do
5: W← argmin

W≥0
‖M−WH‖2F . % Update W by solving a NNLS subproblem.

6: H← argmin
H≥0

‖M−WH‖2F . % Update H by solving a NNLS subproblem.

7: end for

that needs to be solved exactly or approximately.
We now review the common approaches in the NMF community to solve Problem (1.3), they are

• The multiplicative updates, first proposed in [26] and rediscovered in [67].

• The active-set methods; see [61] and the reference therein. These methods solve Problem (1.3)
exactly, and the algorithm using active-set is named Alternating Nonnegative Least Squares
(ANLS).

• The projected gradient method [78]. Such method solves Problem (1.3) using projected gradient
steps. Recently, this line of research regains its popularity due to the advances in first-order
optimization [10], and the method has been extended to block projected gradient methods; see
[109, 54].

• The exact block coordinate descent (BCD) methods called Hierarchical Alternating Least
Squares (HALS); proposed in [15, pp.161-170] and rediscovered in [20]. We discuss more on
HALS below.

For details and comparisons between these methods, see [46]. Among these approaches, we emphasize
that the popular multiplicative update is slow for the NMF problem (1.1), while HALS schemes have
been shown to be very effective in many situations [46]. For this reason, we focus on HALS in this
thesis, and we explain HALS below.
Consider the update of a single row of H, denoted as hj , while the others rows are fixed. The

minimization problem admits a simple closed-form solution: for all j,

argmin
hj≥0

‖M−WH‖2F =

[
w>j Mj

]
+

‖wj‖22
=

[
(W>Mj)(j, :)

]
+

(W>W)(j, j) , (1.4)

where [ · ]+ = max( · , 0 ) is taken elementwise, wj denotes the jth column of W, and Mj is the
residue matrix of M subtracting the approximation WH except the rank-1 component wjhj , that
is,

Mj = M−
∑
i 6=j

wihi = M−WH + wjhj . (1.5)

Note that such update is optimal, that is, no other update can performs better.
The algorithm using the update (1.5) is named HALS, and the algorithm updates the rows of H

and the columns of W in a sequential way. By symmetry, the update of the jth column of W is

argmin
wj≥0

‖M−WH‖2F =

[
Mjhj

>]
+

‖hj‖22
=

[
(MjH>)(:, j)

]
+

(HH>)(j, j) . (1.6)
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That is, by replacing line 5 and line 6 in Algorithm 1 by Equation (1.6) and Equation (1.4) respec-
tively, we obtain the HALS algorithm.
HALS has been improved in several ways.

• Acceleration by using computed components It is good to update the rows of H
several times before updating W (and similarly for the columns of W) as the computation of
W>W (which stores ‖wj‖22) and W>M (which stores w>j M as the jth column) can be reused.
Reusing computed terms reduce the computational load and allows for a significant acceleration
of HALS [46]. This variant is referred to as accelerated HALS (AHALS). In §7 , we discuss an
acceleration framework that speeds up AHALS (and also other NMF algorithms) significantly.

• Stability improvement on preventing zero vector It is possible that the HALS
updates generate a zero vector [61], which may not be desirable if we do not want the rank of
W to decrease. For example, the update (1.4) will give a zero vector if hj> ∈ Null(Mj), or
Mjhj

> ≤ 0. A numerical solution to prevent zero vector is to replace [ · ]+ as max( · , ε ) with
ε > 0 as a small constant.

We will also improve (A)-HALS further by extrapolation; see §7 .

1.4.4 Solution space of NMF

Given a matrix M, a factorization rank r, we now discuss the uniqueness of the solution of NMF.
Let (W#,H#) be an exact NMF solution of M with factorization rank r, i.e., M = W#H#, where
W# ∈ Rm×r+ , H# ∈ Rr×n+ , and rank (W#) = r. We call the solution (W#,H#) essentially unique
if for any other (exact) NMF solution of the same size, denoted as (W∗,H∗) with W∗ ∈ Rm×r+ and
H∗ ∈ Rr×n+ , there exist a permutation and a positive diagonal scaling matrix such that

W∗ = W#ΛΠr, H∗ = Π−1
r Λ−1H#, (1.7)

where Πr is an order-r permutation matrix and Λ is a diagonal matrix with positive diagonal. This
equation implies all NMF solutions intrinsically contain two ambiguities: permutation and scaling,
or sometimes called rotation and norm indeterminacy. This is illustrated as follows, for any λj > 0
and a permutation π : [r]→ [r], then

W∗H∗ =
r∑
j=1

W∗( :, j
)
H∗
(
j, :
)

=
r∑
j=1

λjW∗( :, π(j)
)︸ ︷︷ ︸

W#(:,j)

1
λj

H∗
(
π(j), :

)
︸ ︷︷ ︸

H#(j,:)

= W#H#. (1.8)

Equation (1.8) means that the solution space of NMF is unbounded, and if a matrix M has an NMF
solution, there are infinitely many other solutions. In optimization terms, problem (1.1) has many
global minima.
The issue of the identifiability of NMF is to ask the question: “what conditions on the NMF model

will guarantee that, when solving such NMF problem, the solution is essentially unique?” In §2.1.5 ,
we give an identifiability theorem of a particular NMF model, where the main strategy in the proof
is to make use of Equation (1.7) to derive a contradiction.

1.4.5 Geometry of NMF

We now give a geometric interpretation of NMF. Because of the nonnegativity, NMF is describing
a cone sitting in the nonnegative orthant in Rm, where the columns of M, denoted as mj , are a
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collection of points in this space; see Fig.1.3 for an illustration. Such “data cone” (the cone built by
the collections of the blue rays in Fig.1.3) is contained inside a polyhedral cone with extreme rays
as the columns of W (the cone in red in Fig.1.3), which in turns is contained inside the nonnegative
orthant (the green cone in Fig.1.3). Mathematically, cone(M) ⊆ cone(W) ⊆ Rm+ . Under such
geometric interpretation, NMF is a Nested Polytope Problem [45]: given a set of (nonnegative)
points, find a polyhedral cone C in between two polyhedral cones, the first one is the data cone, and
the second one is the nonnegative orthant. Here, the base of C is a polyhedral cone with r extreme
rays, where r is exactly the factorization rank of M.

1.4.6 NMF is NP-hard

The aforementioned NMF problems (the exact-NMF, the approximate-NMF, and the nonconvex
program (1.1)) are all NP-hard, where the NP-hardness comes from the nonnegativity constraint.
To be precise, here NP-hardness means that there does not exist an algorithm that solves NMF in
polynomial time in the parameters (m,n, r). The NP-hard result was first shown in [59] implicitly,
and later the result was shown explicitly in the seminal work of Vavasis [106]. Recently Yaroslav
Shitov gave a short proof that NMF remains NP-hard when restricted to Boolean matrices [94]. We
refer to the works [96, 95] by Shitov for more recent discussions on this topic.
Many new NMF models are proposed with additional assumptions to form a problem that is “less

hard” to solve, is “easier to computer” or “has unique solution”. The additional constraints in these
models shrink the solution space of the problem, and possibly also lead to identifiability. One of such
NMF models that achieved great success is the Separable NMF.

1.5 Separable NMF

Separable NMF (SNMF) adds on top of NMF an extra condition on the matrix M: the columns of
W are copies of certain columns of M. Mathematically,

SNMF : M = M(:,K)︸ ︷︷ ︸
W

[Ir H′]Πn︸ ︷︷ ︸
H

, (1.9)

where M(:,K) is the submatrix of M with columns labeled by the set K, which contains r indices,
H′ ∈ Rr×(n−r)

+ and Πn is a n-by-n permutation matrix. Without loss of generality, we assume no
permutation so K = [r], where [r] := {1, 2, . . . , r}. In this case SNMF (1.9) gives W = M( :,K)Λ−1 =
M( :, [r])Λ−1, where Λ−1 = Diag(d−1

jj ) is a positive diagonal matrix. We have wj = d−1
jj mj for all

j ∈ [r], meaning that the jth column of W is a scaled version of the jth column of M. This means
that the columns of W are “copies” of the data.

For the remaining data M( :, r + 1 : n), all columns are represented by these r columns in W
(which are the first r columns of M), so M( :, r + 1 : n) = M( :, 1 : r)Λ−1H′, we can see that SNMF
is a “self-dictionary” model: the basis that explains the data is contained within the data.

Geometry of SNMF The “self-expressiveness” in SNMF means that the polyhedral cone described
by W, which encapsulates all the data points M, has r extreme rays passing through r points in the
data; see Fig.1.3 for an illustration. Furthermore, on top of SNMF, if the columns of H, denoted as
hj , fulfill the condition h>j 1r = 1, that is, sum to 1, then the aforementioned conical hull geometry
reduces to a convex hull geometry in the (m− 1)-dimensional space. In the example of Fig.1.3, such
convex hull is indicated as the red triangle.
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The state of the art SNMF problem can be solved in polynomial time and it is identifiable, i.e.,
SNMF recovers the ground truth matrices; provided that the data is generated in the form of (1.9) and
that we know the correct factorization rank r, which can also be estimated. The main task in SNMF
is to identify the set K in Equation (1.9), by which there are many (polynomial-time) algorithms
available to solve this task. An example is the Successive Projection Algorithm (SPA) [7], which is
essentially a modified Gram-Schmidt procedure, to be described below in §1.5.1 . Furthermore, SPA

is provably robust to bounded additive noise [47]. A modified SPA called SNPA has been proposed
to deal with rank-deficient problems [43]. SPA is one of the best algorithm for solving SNMF [47]
because: (i) it is far more practical than other algorithms in terms of computational cost, (ii) it has
no parameter to tune, (iii) it works even when the data is not separable. For other SNMF algorithms,
see [47] and the references therein.

Relaxing the separability condition The success of SNMF algorithms relies on the separability
assumption in the SNMF model (1.9). Relaxing this condition motives the study of a more general
NMF model called Minimum volume NMF (minvol NMF), which is the focus of the next chapter.

1.5.1 Successive Projection Algorithm

Before we move to minvol NMF, we briefly describe SPA; see Algorithm 2. This thesis makes heavy
uses of SPA in various experiments, hence it is better to have a basic understanding of it. For a detail
discussion on SPA such as the convergence, computational complexity, robustness to additive noise,
we refer to the works [47, 43] and the references therein.

In a nutshell, SPA is a greedy algorithm able to identify the set K in Equation (1.9). Given an
input matrix M ∈ Rm×n and a factorization rank r, SPA first picks the column in M with the largest
L2-norm as the first index for the set K. Then, it removes the contribution of such column, by
projecting the remaining data columns of M to the orthogonal complement of the extracted column.
Such extraction-projection procedure is repeated r times, and therefore giving r column indices for
the set K.

Algorithm 2 SPA: Successive Projection Algorithm [7]
1: Input: M (a a matrix suppose to be generated as the SNMF model (1.9)), r (number of indices

to be extracted)
2: Output: a set K with r indices
3: Initialization: K = [·], R = M.
4: for k = 1, . . . r do
5: p = argmax

j
‖R(:, j)‖2 % Index selection

6: K = K ∪ {p}

7: R =
(

I− R(:, p)R(:, p)>

‖R(:, p)‖22

)
R % Projection

8: end for

Lastly we briefly mention how to use SPA to solve SNMF. After obtaining the set K, we put
W = M(:,K), then we can find H by solving a NNLS, i.e., Problem (1.3).
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Fig. 1.1. Applications of NMF: in hyperspectral imaging and audio source separation.
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2 NMF with minimum volume: minvol NMF
The more you know the more you realize you don’t know.

Aristotle

In this chapter, we discuss a specific class of NMF model named minvol NMF.

Chapter organization We first talk about a generalization of the Separable NMF called
minimum-volume NMF (minvol NMF) in §2.1 , where we discuss about the modeling issues
and provide an identifiability theorem on minvol NMF. In §2.2, we briefly discuss how to solve
minvol NMF. Finally, we conclude this chapter in §2.3, where we list some open problems
related to minvol NMF.
Highlights of contributions Contributions start at §2.1 when we introduce minvol NMF
with the nuclear norm used as a regularization term. For the minvol NMF with spectral
function regularizers such as determinant and log-determinant, they they have already been
investigated in the literature, but we give further and new discussions. We discuss their
properties and how to tune parameters, where in the experiments we show that the minvol
NMF with log-determinant regularizer with our parameter tuning strategy performs better
than existing approach. Then in §2.1.5 we give an new identifiability theorem on a particular
minvol NMF model, where the proof is modified from existing techniques. We then compare
our minvol NMF model to other similar models and argue that our model better suited for
applications. In §2.2 , we derive algorithm for solving minvol NMF problems, by improving
some existing techniques. We also propose a new heuristic to solve minvol NMF with nuclear
norm regularization.

2.1 Minimum-volume NMF

In this section, we focus on minimum-volume NMF (minvolNMF). We first present the formulation
of minvol NMF in §2.1.1 , then we focus on the regularizer in §2.1.2 and §2.1.3 . Finally we discuss a
special minvol NMF model that is provably identifiable in §2.1.5 , i.e., solving minvol NMF recovers
the ground truth matrices that generate the data, under some conditions.

2.1.1 Formulation of minvol NMF

Minvol NMF is the following linear algebra problem: given M, find the pair (W,H) such that
M u WH subject to the condition that the “volume” of W is minimized. Refer to the NMF
example in Fig.1.3, it means that we try to find the smallest red cone to encapsulate all the blue
points. Note that in the SNMF example, the red cone is already the smallest cone that captures all
the blue points.
Minvol NMF can be cast as the following nonconvex optimization problems:

(H model) : minimize
W≥0,H≥0

1
2‖M−WH‖2F + λV(W) subject to H>1r ≤ 1n, (2.1a)

(W model) : minimize
W≥0,H≥0

1
2‖M−WH‖2F + λV(W) subject to W>1m = 1r, (2.1b)
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where V : Rm×r → R is a “volume” function that quantifies the volume of W, the constant λ ≥ 0 is
the regularization parameter, and 1r denotes vector of ones in Rr. The difference between the two
models (2.1a) and (2.1b) is the normalization. The constraint H>1r ≤ 1n is the normalization of
columns of H, i.e., h>j 1r ≤ 1 for each columns hj ; and the constraint W>1m = 1r is the normalization
of column of W, i.e., wj

>1m = 1 for each columns wj .
Both normalizations are applied to the columns of H or the columns of W, which is to regulate

the behavior of these column vector, refer back to Table 1.1 for the physical meaning of the column
vectors. The normalization serves multiple purposes.

• First, it removes scaling ambiguity (see Equation (1.8)).

– The constraint H>1r ≤ 1n implies H ≤ 1r×n since H ≥ 0. It means that W cannot go to
zero in the optimization process, otherwise it will cause the matrix product WH to also
go zero.

– For the constraint W>1m = 1r, it implies W ≤ 1m×r since W ≥ 0.

• For the constraint H>1r ≤ 1n, it is application driven. The constraint means that h>j 1r ≤ 1 for
each columns hj , i.e., the entries of hj sum-to-at-most-1. In many applications, this corresponds
to conservation law of the physical object NMF is modeling. In §3 , we will discuss using NMF on
hyperspectral imaging applications, where the model makes uses of the constraint H>1r ≤ 1n.

• For the constraint W>1m = 1r, it is algorithmic driven. The constraint means that all columns
of W have the same L1-norm, which prevents the condition number of W>W to be too large.
A good condition number of W>W facilitates the update of both W and H in the algorithm
proposed to solve the minvol NMF. In short, the constraint makes the algorithm numerically
more stable. We will discuss this issue in details in §2.2 .

Notice that the normalization constraint in minvol NMF problem (2.1a) is defined using the inequality
instead of equality:

H(:, j) ∈ ∆r :=
{

x ∈ R+
∣∣ r∑
i=1

xi ≤ 1.
}
. (2.2)

In this thesis, we simply call (2.2) as the Simplex constraint.

Other motivations of minvol NMF Apart from the aforementioned fact that minvol NMF gener-
alizes SNMF, there are two more factors that motivate the study of minvol NMF.

• The first one is theory-driven. The study of minvol NMF is closely related to the identifiability
of NMF. As discussed in §1 on the geometric interpretation of NMF and SNMF, geometrically
minvol NMF finds the smallest cone that captures the data points, in which the vertices of the
cone(W) recover the ground truth generating vertices of the data points. See the discussions
on geometry in §1.4 and §1.5 on Fig.1.3. Furthermore, in §2.1.5 , we will give an identifiability
result for the minvol NMF model (2.1b).

• The second reason is that minvol NMF is application-driven. For example, in the remote
sensing community, the minvol criterion is called “Craig’s belief”[25] in some literature [81].
In §3 and §4 , we will demonstrate the effectiveness of minvol NMF models on two real-world
applications, namely the hyperspectral imaging and audio source separation.
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2.1.2 Volume regularizers as singular value regularizer

The key ingredient in minvol NMF is the function V(W) that measures the “volume” of the matrix
W. Recall that for a square matrix W that has full rank, the (signed) volume of the parallelepiped
generated by the columns of W is given by det(W). In real-world applications, in general W
is rectangular so determinant function cannot be used, unless a linear transform such as Principal
component analysis (PCA) is applied on W to make it square [84]. However, such dimension reduction
destroys the nonnegativity of W.
To keep the nonnegativity, in this thesis, we focus on the Gram matrix W>W. In fact, by

considering the Gram matrix, we immediately have our first volume function:

Lemma 2.1.1. For W ∈ Rm×r, m ≥ r that is full rank, then√
det(W>W) (2.3)

is the volume of the convex hull of the columns of W and the origin, i.e., the volume of conv([0,W]),
in the column space of W, subject to a proportion constant.

Sketch of the proof Below we give the proof of the lemma. For the proportion constant, see [101].
First, we recall the fact that determinant is the volume of parallelepiped in any dimensions. This

can be shown using Gram-Schmidt orthogonalization. Given a set of vectors {u1, . . . ,un}, Gram-
Schmidt orthogonalization on this set of vectors gives

v1 = u1

v2 = c12u1 + u⊥2
v3 = c13u1 + c23u⊥2 + u⊥3

...

where u⊥2 is orthogonal to v1; u⊥3 is orthogonal to span(v1,v2), and so on. Then

| det(v1, . . . ,vn)| = det(u1, c12u1 + u⊥2 , c13u1 + c23u⊥2 + u⊥3 , . . . )
= det(u1,u⊥2 ,u⊥3 , . . . ,u⊥n )
= volume(u1,u⊥2 ,u⊥3 , . . . ,u⊥n ),

(2.4)

where the first equality comes from the Gram-Schmidt orthogonalization, the second equality comes
from the property of determinant, and the last equality is due to the fact that the vectors u1,u⊥2 , . . . ,u⊥n
are orthogonal to each other. Such equation means that the volume of the parallelepiped generated
by a set of orthogonal vectors can be computed using determinant on the orthogonal basis vectors of
that set of vectors.
Now, consider the volume of the parallelepiped of [0,W]. It is related to the column space of W,

in which we can use SVD to get the orthogonal basis. As W has rank r, let the rank-r truncated
SVD of W be UΣV>. As U is an orthogonal basis of W, the orthogonal vectors representing W in
the basis U are the vectors σ1v1, . . . , σrvr, where vi is the ith column of V and σi is the ith largest
singular value. Using the determinant volume formula (2.4), the volume of the conv([0,W]) in the
column space of W is proportional to

| det(σ1v1, . . . , σrvr)| = | det(ΣV>)| = |det(Σ)| =
√

det(W>W).

The sketch of the proof is now completed.



CHAPTER 2. NMF WITH MINIMUM VOLUME: MINVOL NMF 18

It is crucial to note that the notion of “volume” is the volume of conv([0,W]) in the column space
of W. Also, note that W has to be full rank, a rank-deficient W corresponds to a “flat” cone with
volume zero.

Note that if H is normalized as in minvol NMF problem (2.1a), the conical hull geometry described
in §1.4 , §1.5 and Fig.1.3 is changed to convex hull geometry, as shown as the triangles in Fig.1.3.

Table 2.1 shows some examples of possible volume regularizers. Intuitively, as the “volume” of a
matrix is related to its singular values, we can see that these examples are all functions of singular
values, and therefore, we can interpret minvol NMF as a constrained matrix recovery problem of the
form

min
W≥0,H≥0

g ◦ σ(W) + 1
2‖WH−M‖2F , (2.5)

where V(W) = g ◦ σ(W) is a composite function, the symbol ◦ denotes the composition operator,
the function g : Rr → R and the symbol σ(W) denotes the vector of singular values of W. Note
that in (2.5), we do not show explicitly the normalization constraint.

Table 2.1: Some examples of V(W).

Name Definition In g ◦ σ(W)

Determinant (det) [6, 4] Vdet(W) = det
(
W>W

) r∏
i=1

σ2
i

log-determinant (logdet) [6, 4] Vlogdet(W) = logdet
(
W>W + δIr

) r∑
i=1

log
(
σ2
i + δ

)
Frobenius norm squared VF(W) = ‖W‖2F

r∑
i=1

σ2
i

Nuclear norm [6] V∗(W) = ‖W‖∗
r∑
i=1

σi

Smooth Schatten-p norm [33] Vp,δ(W) = Tr
(
W>W + δIr

) p
2

r∑
i=1

(σ2
i + δ)

p
2

Discussion on the volume regularizers Before we move to the next subsection, we give some specific
remarks on the volume regularizers listed in Table 2.1.

• On Vdet. The use of Vdet is motivated by removing the square root in the expression (2.3) for
the ease of computing it, explained as follows. In fact Vdet(wj) is nonconvex in W but convex
in one column of W: the function Vdet(wj) is a quadratic form γjwjQiwj where γj ≥ 0 is a
constant and Qi is a symmetric matrix that is positive definite if W is full rank. This is a
standard result in linear algebra. For completeness, we show the derivation here. Let W−j be
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W without the column wj , then W = [wj ,W−j ]Π, and Vdet(W) = det(W>W) becomes

det(W>W) = det

Π>


w>j

W>
−j


[
wj W−j

]
Π



= det




w>j wj w>j W−j

W>
−jW−j W>

−jW−j

 ΠΠ>︸ ︷︷ ︸
=I


= det

(
W>
−jW−j

)︸ ︷︷ ︸
=γj

det
(

w>j wj −w>j W−j
(
W>
−jW−j

)−1W>
−jwj

)

= γj det
(

w>j
(
Im −W−j

(
W>
−jW−j

)−1W>
−j

)
wj

)

= γjw>j
(
Im −W−j

(
W>
−jW−j

)−1W>
−j

)
︸ ︷︷ ︸

=Qj

wj := Vdet(wj),

(2.6)

where the third equality comes from the Schur complement. The computational cost of mini-
mizing Vdet comes from computing Qj . When m is large, the computational cost of minimizing
minvol NMF with Vdet becomes high. We will discuss this issue further in §2.2.2 .

It is important to note that the matrix Qj is in fact the projector onto the complement of the
column space of W−j , that is, mathematically Qj is the projector on span(W−j)⊥ = ker W>

−j .
In this sense, Vdet(wj) is proportional to the squared-distance between wj and span(W−j).
Knowing this fact, the function det(W>W) can be expressed as a product of L2 norm-squared

as follows: given a vector a, let P⊥a = I− aa>
‖a‖22

be the projection onto the complement of the

column space of a, then based on Equation (2.4), we have

Vdet(wj) = ‖w1‖22 ·
∥∥∥P⊥1 w2

∥∥∥2

2

∥∥∥P⊥1,2w3
∥∥∥2

2
. . .
∥∥∥P⊥1,...,r−1wr

∥∥∥2

2
, (2.7)

where
P⊥1 = P⊥a1 , a1 = w1

P⊥1,2 = P⊥1 P⊥a2 , a2 = P⊥1 w2

P⊥1,2,3 = P⊥1,2P⊥a3 , a3 = P⊥1,2w3
...

...
P⊥1,...,r−1 = P⊥1,2,...,r−2P⊥ar−1 , ar−1 = P⊥1,2,...,r−2wr−1,

see also [18, Lemma 3] .

• On Vlogdet. The use of Vlogdet is motivated by the fact that the log operator can weight down
dominant singular values as in Vdet. It is nonconvex in W but concave in W>W, which is to
be discuss in Lemma 2.2.1. The δI term with δ ≥ 0 act as a lower bound of the function. The
tuning of δ is important. When δ is small, it is possible that Vlogdet(W) gives a negative value,
and in particular, if δ = 0, the function approaches to −∞ as W approaches to a rank deficient
matrix. We discuss the issue on choosing δ in §2.1.3 .
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• On VF and V∗. Both are convex in W. The use of these functions are motivated by the fact
that Vdet and Vlogdet are both increasing function in singular values.

• On Vp,δ. Here p ≥ 0, δ ≥ 0. This function is convex in W if p ≥ 1, and nonconvex if p < 1.
This function generalizes Vlogdet, VF and V∗.

• On the dispersion norm. Some works (for example [90]) considered a function called disper-
sion norm Vd(W) := Tr

(
W>(Ir − 1

r
1r1>r

)
W
)
, which is closely related to the functions listed

in Table 2.1. This convex function can be interpreted as a measure of the dispersion of the
columns of W around their centroid [90], however it is unclear whether the dispersion norm is
a function of singular values.

• Relations between the Vs. The volume regularizers in Table 2.1 are all increasing function
in singular value of W, showing that these functions are somehow related:

– On Vp,δ and VF: V2,0 = VF.

– On Vp,δ and V∗: V1,0 = V∗.

– On Vp,δ and Vlogdet. As illustrated in [87],

lim
p→0

Vp,δ(W)− r
p

= 1
2Vlogdet(W).

– As a side note, we also have

lim
p→0
δ→0

Vp,δ(W) = lim
p→0
δ→0

∑
i

(σ2
i + δ)

p
2 = lim

p→0

∑
i

(σ2
i )

p
2 = lim

p→0

∑
i

σpi = ‖σ(W)‖0 = rank (W).

In the remaining parts in this chapter, we mainly focus on Vdet,Vlogdet and V∗.

2.1.3 More discussion on det and logdet volume: on the rank deficiency and
parameter tuning

We now compare Vdet and Vlogdet. In general we consider Vlogdet a better volume regularizer than
Vdet, due to the following three reasons.

• det volume has high computational cost for the quadratic form (2.6). In the works
[4, 6], the approach used to solve solving minvol NMF with Vdet is based on the quadratic form
(2.6), which has a high computational cost if the dimension m is large. The high cost is mainly
due to the computation of the matrix Qi in (2.6). We will discuss this issue further in §2.2.2 .

• logdet function is concave. In terms of optimization, the function logdet(X) is concave
in X and leads to a nice majorizer; see Lemma (2.2.1).

• logdet volume is a more balanced measure on the singular spectrum of the matrix
W. Refer to the last column in Table 2.1, Vdet is sensitive to the dominant singular values,
while the log term in Vlogdet allows to weight down dominant singular values, and makes it
a more balanced measure on the singular spectrum of the matrix W, provided that the δ
parameter is properly chosen. It has been observed that Vlogdet works better in practice in the
hyperspectral imagining application [6], to be discussed in §3 .
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• logdet volume can be used in rank deficient situations. Another advantage of
Vlogdet over Vdet is that the former can detect rank deficiency. When W is rank deficient (i.e.,
rank (W) < r), some singular values of W equal to zero so det(W>W) = 0. Hence Vdet
cannot distinguish between different rank deficient solutions. If one adds a perturbation and
consider Vdet = det(W>W + δIr), then δ has to be tuned extremely precise as the function
det(W>W + δIr) =

∏
i(σ2

i + δ) is very sensitive to δ. Meanwhile, Vlogdet(W) =
∑
i log

(
σ2
i + δ

)
so if W has one (or more) zero singular value, this measure still makes sense: among two rank-
deficient solutions belonging to the same low-dimensional subspace, minimizing Vlogdet will
favor a solution whose convex hull has a smaller volume within that subspace since decreasing
the non-zero singular values of (W>W + δI) decreases Vlogdet. Mathematically, let W ∈ Rm×r

belong to a k-dimensional subspace with k < r so that W = US where U ∈ Rm×k is an
orthogonal basis of that subspace and S ∈ Rk×r are the coordinates of the columns of W in
that subspace. Then Vlogdet(W) = logdet(W>W + δI) becomes

Vlogdet(W) = log det(S>S + δI) = log
k∏
i=1

(
σ2
i (S) + δ

)
δr−k =

k∑
i=1

log
(
σ2
i (S) + δ

)
+ (r− k) log δ .

The minvol criterion Vlogdet with δ > 0 is therefore meaningful even when W does not have
rank r. This has been observed in [71] on rank deficient cases. An application is that this
automatically performs model order selection, by setting redundant components to zero. This
has been observed in audio source separation where the factorization rank r is overestimated;
for example, see [72], and §4.2 . We will go back to this issue in §4.2 where we discuss the use
of minvol NMF to solve audio source separation problems.

As Vlogdet is a better volume function, we discuss further on the parameter tuning of Vlogdet.

The choice of δ in Vlogdet(W) The function Vlogdet(W) can be viewed as a nonconvex surrogate
for the rank function of W, i.e., the L0-norm of σ(W), up to constant factors [33, 32]. Expressed
as function of singular value, the function Vlogdet(W) with a sufficiently small δ is much closer to
the L0-norm of σ(W) than the L1-norm of σ(W); see Fig.2.1 . Hence, if one wants to promote
rank-deficient solutions, δ should not be chosen too large, say δ ≤ 1. Moreover, δ should not be
chosen too small, otherwise:

• it could make W>W + δI badly conditioned which makes the optimization problem harder to
solve, this will be explained more in §2.2 .

• it could give too much importance to zero singular values which might not be desirable. In
fact, for σi = 0, it gives log

(
σ2
i + δ

)
= log δ < 0 for δ < 1, which contributes to negative values

in Vlogdet.

In practice, we recommend to use a value of δ ∈ [10−3, 0.1] for the model with normalized W, i.e.,
model (2.1b). For model (2.1a) with H normalized, δ can selected in the same range [10−3, 0.1], scaled
with the spectrum of M, say σ2

1(M). As a remark, in some works in the literature, δ was chosen
too small such as 10−8 (without considering the scaling issue) suggested by [41] which, as explained
above, is not a desirable choice, at least in the rank-deficient cases. Even in the full-rank case, we
argue that choosing δ too small is also not desirable since it promotes rank-deficient solutions.
As the rule of δ ∈ [10−3, 0.1] is practically useful enough, we do not go further on the issue on

tuning δ. Note that some works in the matrix completion community consider the use of the same
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logdet term as a low-rank promoting regularizer, and there are some automatic tuning strategies for
δ, see [87] for example. However, automatically tuning this parameter in the context of minvol NMF
is a topic for further research.

x
0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1
l0

l1

log (/ = 10!1)

log (/ = 10!3)

log (/ = 10!6)

Fig. 2.1. Function log(x2 + δ)− log δ
log(1 + δ)− log δ for different values of δ, L1 norm (= |x|) and L0 norm (=0 for

x = 0, = 1 otherwise). The function log(x2 + δ)− log δ
log(1 + δ)− log δ is the scaled and shifted version

of the function log(x2 + δ), which is the singular value function of the logdet regularizer,
see Table 2.1.

The choice of λ For Vlogdet, the choice of δ will influence the choice of λ. In fact, the smaller δ,
the larger in magnitude of logdet(δ), so to balance the two terms in the objective of minvol NMF
problem (2.1a) for V = Vlogdet, the parameter λ should be small. In applications, for rank-deficient
cases, W(0),H(0) can be initialized using SNPA which can deal with rank-deficient SNMF problem.
The value λ can then be set to

λ = λ̃
‖M−W(0)H(0)‖2F
|Vlogdet(W(0))|

,

where λ̃ is chosen in [10−3, 1] depending on the noise level (the noisier the input matrix, the larger λ
should be). This expression means we pick λ that balanced the data fitting term ‖M−W(0)H(0)‖2F
and the regularizer |Vlogdet(W(0))| by the λ̃ amount. In §3.3 we illustrate a simple but effective
bisection search to tune λ in applying minvol NMF on imaging applications.

2.1.4 Preliminary material for the identifiability theorem

In the following two subsections, we present a new identifiability result on a minvol NMF model. To
be specific, we consider the “W model” (2.1b) with Vdet with the following twists:

• We removed the nonnegativity on W, as the identifiability result does not require W to be
nonnegative.

• Instead of regularization form as shown in (2.1b), the problem is now expressed in constrained
form:

argmin
W,H

Vdet(W) = det(W>W) subject to M = WH, H ≥ 0, W>1m = 1r. (2.8)

We now explain more on the differences between Model (2.8) and the original minvol NMF Models
(2.1a) and (2.1b).

• In Models (2.1a) and (2.1b), we consider various V; while in Model (2.8), we only focus on
V(W) = det(W>W).
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• Model (2.8) has a hard constraint M = WH. Such equality constraint implies that here we
assume the data M is noiseless and it has an exact NMF factorization. In Models (2.1a) and
(2.1b), we relaxed such hard constraint to a distance function in the form of ‖M −WH‖2F ,
which allows the presence of noise.

• Models (2.1a) and (2.1b) require W ≥ 0; Model (2.8) does not.

• From the optimization point of view, the hard constraint M = WH in Model (2.8) makes the
model difficult to solve efficiently.

In conclusion, Models (2.1a) and (2.1b) are more for practical purpose, and Model (2.8) is more
theoretical and it gives insights on explaining why the Models (2.1a) and (2.1b) are useful in prac-
tice. When the data in Model (2.1a) satisfies the assumptions of Model (2.8), we can then use the
identifiability result on Model (2.8) to explain the effectiveness of Model (2.1a).

Now we are at the position to study the identifiability of Model (2.8). That is, we ask the question:
“What properties of (W,H) ensure that (W,H) is the unique minimizer of Problem (2.8)? Theorem
2.1.1 is the answer of this question, but before that, we present the background material for the
theorem.

Technical background material for the identifiability theorem To study the identifiability of this
model, we first give some useful definitions and lemmas for the purpose of the proof. As minvol NMF
enjoys the nice geometrical interpretation of finding the smallest cone to capture the data (see §1.4.5
and §1.5), many of the definitions and lemmas below are related to the geometry of convex cones.
For details of these definitions, see [9].
We begin with the definition of the cone of a matrix.

Definition 2.1.1. (Cone and dual cone of W) The cone generated by the columns of a matrix
W ∈ Rm×r is defined as

cone(W) =
{

x ∈ Rm | x = Wh, h ≥ 0
}
.

The dual of cone(W), denoted as cone∗(W), is defined as

cone∗(W) =
{

y ∈ Rm | 〈x,y〉 ≥ 0,x ∈ cone(W)
}
.

To characterize the the dual of cone(W), we need the following lemma.

Lemma 2.1.2. (Nonnegative inner product of nonnegative vectors) Given a vector x, then
x is nonnegative if and only if 〈x,h〉 ≥ 0 for any h ≥ 0.

Using Lemma (2.1.2) we can characterize the dual of cone(W).

Lemma 2.1.3. (Dual of cone of W) cone∗(W) = {y | W>y ≥ 0}.

Proof. We have

cone∗(W) =
{

y | 〈x,y〉 ≥ 0,x ∈ cone(W)
}

by Definition 2.1.1
=

{
y | 〈Wh,y〉 ≥ 0,h ≥ 0

}
by Definition 2.1.1

=
{

y | 〈h,W>y〉 ≥ 0,h ≥ 0
}

=
{

y | W>y ≥ 0
}
. by Lemma (2.1.2)
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Next, we give the definition of a standard second-order cone.

Definition 2.1.2. (Second-order cone) The second-order cone in Rr, denoted as Cr2, is defined
as Cr2 =

{
x ∈ Rr+ | 〈1r,x〉 ≥

√
r − 1‖x‖2

}
.

The following lemma characterizes the dual of the second-order cone.

Lemma 2.1.4. (Dual of second-order cone) [45] The dual of Cr2, denoted as Cr2∗ is the set{
x ∈ Rr | 〈1r,x〉 ≥ ‖x‖2

}
.

We need three more lemmas for the proof of the identifiability. Based on the duality of cone, we
first have the following characterization of the nonnegativity of matrix product.

Lemma 2.1.5. (Conic characterization of nonnegativity of matrix product) Given two
matrices A ∈ Rm×r and B ∈ Rr×n. Then AB ≥ 0 if cone(A>) ⊆ cone∗(B).

Proof. Starting from AB ≥ 0 ⇐⇒ B>A> ≥ 0, then

B>A> ≥ 0 ⇐⇒ the vector B>A(i, :)> ≥ 0, ∀i ∈ [r]
⇐⇒ A(i, :)> ∈

{
y | B>y ≥ 0

}
, ∀i ∈ [r]

⇐⇒ A(i, :)> ∈ cone∗(B), ∀i ∈ [r] by definition of dual cone of B
⇐⇒ cone(A>) ⊆ cone∗(B). by definition of cone of A

The following lemma is about the cone of a orthogonal matrix.

Lemma 2.1.6. (Cone of orthogonal matrix is self-dual) If matrix Q is orthogonal, then
cone∗(Q>) = cone(Q>).

Proof. Note that Q> = Q−1. We have

cone∗(Q>) =
{

y | (Q>)>y ≥ 0
}

by Lemma (2.1.3)
=

{
y | Qy ≥ 0

}
=

{
Q−1x | Q(Q−1x) ≥ 0

}
let y = Q−1x

=
{

Q>x | x ≥ 0
}

QQ−1 = I and Q> = Q−1

= cone(Q>). by Definition (2.1.1)

The following is a standard duality result on cone inclusion.

Lemma 2.1.7. (Duality of cone inclusion) [9, Proposition 6.24] Given two convex cones
C and D. If D ⊆ C then C∗ ⊆ D∗.

Lastly, we define the Sufficiently Scattered Condition (SSC) introduced by [77, 42] :

Definition 2.1.3. (Sufficiently scattered condition). A matrix H ∈ Rr×n+ fulfills SSC if

• (SSC1) cone(H) is widespread such that it contains Cr2. Mathematically, Cr2 ⊆ cone(H), and

• (SSC2) There does not exist any orthogonal matrix Q such that cone(H) ⊆ cone(Q), except
for Q being a permutation matrix.
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Understanding the SSC condition Geometrically, the SSC condition means that

• SSC1 : the columns of H are “wide spread enough” in the nonnegative orthant.

• SSC2 : cone(H) is not “too small” to be contained inside some cone(Q) where Q is any
orthogonal matrix that is not a permutation. That is, cone(H) is “big enough” that it cannot
be contained inside cone(Q).

This translate to the data points in M, which is generated as WH, are sufficiently wide spread in
cone(W), see Fig.2.2 for an illustration.
As illustrated in Fig.2.2 , the key of SSC condition is that the data cone is widespread so that it

contains the second-order cone C2. This translates to a specific sparsity pattern on H. Considering
the outermost data points of M in the data cone in Fig.2.2 , the matrix H that generates this data
has the following structure:

HSSC =


c+ ε 1− c− ε c+ ε 1− c− ε 0 0

1− c− ε c+ ε 0 0 c+ ε 1− c− ε
0 0 1− c− ε c+ ε 1− c− ε c+ ε

 , (2.9)

where c = 1√
2
and ε > 0 such that HSSC ≥ 0. That is, in the case r = 3, if H has these six columns

in HSSC, then the data M generated by such an H is widespread so that fitting a minimum-volume
polytope on the data will recover the ground truth vertices that generate the data. In other words,
the SSC condition implies some specific sparsity structure in H (see Equation (2.9) as an example),
and once H satisfies such sparsity structure, together with some other conditions, the minvol NMF
problem is identifiable.

Checking the SSC condition A natural question concerning the SSC condition is that: “how to
know if the data fulfill the SSC condition?”. Unfortunately, it is NP-hard to check whether the data
satisfy the SSC condition [56] .

2.1.5 Identifiability of minvol NMF using determinant volume

With the geometric intuition of SSC, we now present the identifiability of solving the minvol NMF
problem (2.8). This is one of the theoretical contribution of the thesis. The following material
appeared in [72].

Theorem 2.1.1. Let M = WH where H ∈ Rr×n+ satisfies the SSC, W ∈ Rm×r satisfies W>1m = 1r
and rank (M) = r. Then the (exact) solution of the minvol NMF problem (2.8) is unique.

Proof. By contradiction. Let (W̄, H̄) be a feasible (exact) solution of the minvol NMF problem (2.8)
with V = Vdet, suppose for the purpose of contradiction, there exists another pair of feasible solution
(W#,H#).
The first step is to link W̄ and W#. By M = W̄H̄ = W#H# and rank (M) = r, so

r = rank (M) ≤ min{rank (W̄), rank (H̄)},

so rank (W̄) is at least r. As W̄ has r columns, so W̄ is full rank. The same conclusion holds for
W#. Hence there exists an r-by-r invertible matrix Q such that

W̄ = W#Q−1, H̄ = QH#. (2.10)
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Fig. 2.2. A 3-dimensional example to illustrate SSC. Here r = 3. The unit simplex ∆3 is the green
triangle, and the second-order cone C3

2 is indicated in blue. Top row: illustration of ∆3

and C3
2 and the boundary of the disk Cr2 ∩∆r (which is the intersection of the second-order

cone Cr2 and the simplex ∆r, where the boundary of this disc is illustrated as the yellow
circle in the figure).
Bottom row: example of data that do not and do satisfy the SSC. For data to satisfy SSC,
the data has to be widespread so that the convex hull of these points (the red polygon)
contains the disk Cr2 ∩∆r.
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Then
V(W̄) = det(W̄>W̄)

(2.10)
= | det(Q)|−2 det(W#>W#) = |det(Q)|−2V(W#).

In the remaining of the proof, we show | det(Q)| < 1, which leads to V(W̄) 6= V(W#), hence a
contradiction on the optimality of the solutions W̄ and W#, and thereby the solution of the minvol
NMF problem (2.8) is unique.
From the assumption,

W̄>1m = W#>1m = 1r. (2.11)

Then,
1r

(2.11)
= W̄>1m

(2.10)
= Q−>W#>1m

(2.11)
= Q−>1r,

which gives
Q>1r = 1r. (2.12)

The equality (2.12) gives us some information on Q, based on the assumptions on W̄ and W#.
Now we derive another piece of information on Q using the assumptions on H̄ and H#. First
H̄

(2.10)
= QH# ≥ 0, by Lemma 2.1.5,

cone(Q>) ⊆ cone∗(H#). (2.13)

Now, as H# satisfies SSC, so Cr2 ⊆ cone(H#), then by duality of inclusion (Lemma (2.1.7))

cone∗(H#) ⊆ Cr2∗. (2.14)

Put (2.14) into (2.13) gives cone(Q>) ⊆ Cr2∗. Using Lemma 2.1.4 to characterize Cr2∗ gives

〈1r,Q(i, :)〉 ≥ ‖Q(i, :)‖2. (2.15)

Now we are at the position to show | det(Q)| < 1.

| det(Q)| = | det(Q>)|
≤

∏r
i=1 ‖Q(i, :)‖2 Hardmard inequality [50]

≤
∏r
i=1〈1r,Q(i, :)〉 by Inequality (2.15)

≤
(∑r

i=1〈1r,Q(i, :)〉
r

)r
Inequality of arithmetic and geometric means

=
(〈1r,Q1r〉

r

)r
= 1. by Equation (2.12)

Hence | det(Q)| ≤ 1, which gives two cases, |det(Q)| < 1 or | det(Q)| = 1. If we are in the first case,
the proof is completed.
Now we consider the second case and show Q = Π as follows. First the equality in | det(Q)| = 1

gives ‖Q(i, :)‖2 = 〈1r,Q(i, :)〉 for all i, and also the Hadamard’s inequality is now achieved as
|det(Q)| =

∏r
i=1 ‖Q(i, :)‖2. By the fact that Hadamard’s inequality is achieved if the vectors are

orthogonal, so Q is orthogonal.
From (2.13), applying duality of inclusion (Lemma (2.1.7)) gives cone(H#) ⊆ cone∗(Q>). Then by

Lemma (2.1.6) we get cone(H#) ⊆ cone(Q>). As H# satisfies SSC (Definition 2.1.3), so Q = Π.

Let’s us discuss more on Theorem 2.1.1.
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• The theorem assumes noiseless condition and exact NMF. When the data is noisy, we go back to
the minvol NMF formulation (2.1a), where the regularization parameter λ is chosen depending
on the noise level (see the discussion right before §2.1.5).

• The theorem is slightly more general than standard NMF setting. The constraint on W in the
theorem contains only normalization W>1m = 1r, there is no nonnegativity constraint on W.
For NMF without the nonnegativity constraint on W, the model is called Semi-NMF, which is
useful in a variety of other applications, but it is not the focus of this thesis. Note that if W
is nonnegative, we assume without loss of generality that W>1m = 1r, as W is full rank and
we can absorb the scaling constants in H.

• The theorem is new, although the constraint W>1m = 1r in minvol NMF was historically first
considered in [114], but they did not provide any identifiability result. Furthermore, Theorem
2.1.1 is different from existing theorems (see below) with similar proof structure, where the
difference is that Theorem 2.1.1 considers normalization on W while existing theorems consider
normalization on H.

• Comparing the normalization of the columns of W in Theorem 2.1.1 with other modes of
normalization in minvol NMF: H>1r = 1n (where the identifiability result is provided by [77,
42]), H1n = 1r (where identifiability result is provided by [39]), all the minvol NMF models
with these normalization lead to the same identifiability result in the absence of noise, but in
practice the normalization of the columns of W is better:

– It balances better the relative importance of each columns of W in the volume regular-
ization term since now all the norm of these columns are bounded.

– It provides W that are better conditioned and hence leads to more stable numerical al-
gorithms. This is observed on many numerical examples. Empirically we observed that
the normalization W>1m = 1r is much less sensitive to noise and returns much better
solutions. The reasons are:
(i) Using the normalization H1n = 1r amounts to multiply W by a diagonal matrix
whose entries are the L1 norms of the rows of H. So, the columns of W that correspond
to dominating (resp. dominated) component (the rank-1 factor wihi), will have much
higher (resp. lower) norm. Therefore, the term W>W (and thereby both Vdet(W) and
Vlogdet(W)) is much more influenced by the dominating component and will have difficul-
ties to penalize the dominated components in terms of both the algorithm and the model.
In other words, the use of Vdet(W) and the normalization H1n = 1r implicitly requires
that the rank-1 factors wihi for i ∈ [r] are all well balanced, i.e., have similar norms. This
is not the case for many real data.
(ii) In §2.1.3 , on the choice of δ, we discussed that the numerical stability of updating W
is related to the condition number of W>W. Based on the normalization on W, we can
bound the condition number as follows

κ(W>W + δIr) = σmax(W>W + δIr)
σmin(W>W + δIr)

=

(
σmax(W)

)2
+ δ(

σmin(W)
)2 + δ

≤

(√
rmax

j
‖W(:, j)‖2

)2 + δ

δ
≤ 1 + r

δ
,
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where the first inequality comes from the following standard norm inequality:

σmax(W) = ‖W‖2 ≤ ‖W‖F =
( r∑
j=1
‖W(:, j)‖22

) 1
2
≤
(
rmax

j
‖W(:, j)‖22

) 1
2
.

On the other hand, the normalization H1n = 1r may lead to arbitrarily large values for
the condition number of W>W + δIr, which it has been observed numerically on several
examples.

2.2 Solving minvol NMF

Here we focus how to numerically solve problem (2.1a) , which is the model used for hyperspectral
imaging application in the next chapter. We will discuss how to numerically solve problem (2.1b),
which is the model used for analytical chemistry application in §5.1.3 .
We restate problem (2.1a) here for convenience: given M ∈ Rm×n+ and a factorization rank r ∈ N,

find W ∈ Rm×r+ and H ∈ Rr×n+ by solving

minimize 1
2‖M−WH‖2F + λV(W) subject to W ≥ 0,H ≥ 0,H>1r ≤ 1n.

The basic approach to solve this problem is Alternating Minimization, similar to Algorithm 1 , we
solve the subproblem on H while fixing W, then solve the subproblem on W while fixing H. When
fixing a variable, the latest version of that variable is used. In the following we discuss how to solve
the two subproblems.

2.2.1 Solving subproblem on H

Splitting H in problem (2.1a) into columns yields n independent subproblems: for all j ∈ [n], solve

argmin
hj

1
2‖Whj −mj‖22 s.t. hj ∈ ∆r := {hj ∈ Rr+ | h>j 1r ≤ 1}, (2.16)

where hj is the jth column of H and mj denotes the jth column of M . Let rank (W) = r, which
is a standard assumption, this least squares problem over the unit simplex is a convex problem with
strongly convex cost function. Solving it using Accelerated Projected Gradient (AccProjG) with
Nesterov’s acceleration [89] takes O

(√
κ log 1

ε

)
iterations to reach an ε-accurate solution, where κ is

the condition number of W>W, which is the Hessian of the cost function in problem (2.16). The
convergence rate of AccProjG is optimal as no other 1st-order method can have a faster convergence
rate [89].
The key operation in AccProjG is the projection onto the set ∆r, which is a convex set and therefore

the projection solution exists and is unique. Below we give the solution to this projection; we move
the technical details here to §5.1.7 , where we consider the projection onto irregular simplex. The
projection onto ∆r is

P∆r (hj) = [hj − τ1r]+, (2.17)

where τ is a Lagrangian multiplier associated to the inequality constraint h>j 1r ≤ 1. We can see that,
P∆r (hj) is basically a thresholding operation, where the main difficulty here is to find the correct
value of τ . In the paper [6, 4], we use the implementation from [43], which is a sorting-based method
to compute τ , and the overall complexity is O(r log r) operations. As mentioned by [24], this is in
fact suboptimal, and the optimal method introduced in [24] has the complexity O(r). In practice,
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r is usually small (say r ≤ 20), and therefore the suboptimal method is numerically as good as the
optimal one.

Remark 1. Lastly, we give two remarks on solving problem (2.16).

• Problem (2.16) involves the variables (W,hj ,mj), where hj is independent of other columns
in H (and similarly for mj), this problem is separable and can be solved in parallel.

• The convergence rate of AccProjG is O
(√

κ log 1
ε

)
, which is strongly dependent on the condition

number of W>W.

– As mentioned in §2.1.3 , a poor choice of parameter (such as δ in Vlogdet) that leads to
a poor condition of W>W, can seriously slow down the optimization of H. In fact, this
is one of the reason why the method RVolMin [41], a state-of-the-art minvol model that
closely related to minvol NMF, was reported in [6] that it performs weaker than minvol
NMF. We will report the experiment section of [6] in §3.3 .

– In rank-deficient situation κ(W>W) = ∞, using AccProjG to solve problem (2.16) will
have much slower convergence, it will be sublinear as O( 1

k2 ), where k is the iteration
number.

• We will discuss a generalizations of the Problem (2.16) later in §3.3.3 , where we consider the
problem with additional sparsity regularizer. In §5.1.7 , we consider the projection onto irregular
simplex.

• It is possible to solve Problem (2.16) using other methods, for example the interior point method,
but in this thesis we will stick with the first-order method AccProjG.

2.2.2 Solving subproblem on W

The subproblem on W has the form

argmin
W

1
2‖M−WH‖2F + λV(W) s.t. W ≥ 0. (2.18)

Recall the V(W) in Table 2.1 can be expressed as V(W) = g ◦σ(W), which immediately delivers us
a systematic approach to solve subproblem (2.18) using subgradient methods. We now give a short
review on this approach below.

Subgradient approach First, we recall subgradient and subdifferential, see [10] for more details.

Definition 2.2.1. (Subgradient and Subdifferential) Let f(x) : Rn →]−∞,+∞] be a proper
function and let x ∈domf . A vector g ∈ Rn is called a subgradient of f at x if

f(y) ≥ f(x) + 〈g,y− x〉 for all y ∈ Rn.

The subdifferential is the set of all subgradients of f at x.

To use subgradient to solve the subproblem, the update is a projected subgradient step:

Wk+1 =
[
Wk − αGV(W)

]
+

(2.19)
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where α > 0 is a stepsize, GV(W) is a subgradient of V(W) at the point W, and [ · ]+ = max{0, ·}
is the projection. For the V function listed in Table 2.1 , the subgradient can be computed using the
following formula [74, Theorem 7.1]:

∂WV(W) = UDiag
{
∂σ
(
g ◦ σ(W)

)}
V>,

where UΣV> is the SVD of W and Σ = Diag{σ}.
For example, for the Frobenius norm-squared VF = ‖W‖2F ,

∂WVF(W) = UDiag
{
∂σ

(∑
i

σ2
i

)}
V> = 2UDiag{σ}V> = 2UΣV> = 2W,

which agrees with the fact that ∂W‖W‖2F = 2W. For Vlogdet,

∂WVlogdet(W) = UDiag
{
∂σ

(∑
i

log(σ2
i + δ)

)}
V>,= 2UDiag

{
σi

σ2
i + δ

}
V>,

in which there is no a closed-form expression in terms of matrix W.
We now have a systematic approach for solving all the minvol NMF problems for V in Table 2.1 .

However, such approach has several drawbacks: 1) it is well known that subgradient methods are
slow. 2) Some cost functions in these subproblems are nonconvex, in which subgradient methods
may not exist. Thus, to solve the subproblems on W, in the following we consider different methods
that are specific to each V.

On Vdet: using quadratic form We follow the approach used in [114] to solve the subproblem on
W. Using the quadratic form (2.6), we split W in problem (2.18) into r columns, and minimize with
respect to each column one-by-one. First

‖M−WH‖2F = ‖hi‖22‖w‖22 − 2〈Mihi
>
,wi〉+ c, (2.20)

where Mi = M−
∑
j 6=i wjhj and c is a constant independent of wi. Using equality (2.20) together

with the quadratic form (2.6), we rewrite Problem (2.18) as the following constrained Quadratic
Programming (QP) problem

argmin
wj≥0

1
2w>i

(
‖hi‖22Im + det(W>

−iW−i)(Im −W−i(W>
−iW−i)−1W>

−i)
)
wi − 〈Mihi

>
,wi〉. (2.21)

Unlike the problem on h, here the objective function in wi depends on the other columns in W
so problem (2.21) is not separable (i.e., they cannot be solved in parallel directly). This QP can
then be solved by any QP solver, or using AccProjG. Here the major computational cost comes from
computing the coefficient of the QP, especially the term:

Θi = ‖hi‖22Im + det(W>
−iW−i)(Im −W−i(W>

−iW−i)−1W>
−i).

The diagonal matrix ‖hi‖22Im is not expensive to compute, but what matters is the second part in
Θi. When the dimension m is not large, Θi can be computed as shown directly, which costs about
O(3m3) in terms of time complexity. When m is large, Θi can be computed using Singular Value
Decomposition (SVD) as follows [114]

1. Run SVD to obtain the left singular vectors of W−i. i.e., U← SVD (W−i).
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2. Take only the last m− r columns in U, i.e., U(:, r, r + 1, . . . ,m).

3. Compute the matrix Θi as

Θi = ‖hi‖22Im + det(W>
−iW−i)U(:, r, r + 1, . . . ,m)U(:, r, r + 1, . . . ,m)>.

The computational cost is slightly better as it runs in O(3m3 − m2r). When m is huge, both
approaches essentially share the same complexity in O(m3), but the SVD approach is numerically
more robust.

On Vlogdet(W): by majorization minimization To solve this subproblem, we use Majorization
Minimization (MM) as in [6, 4]. The idea of MM is that, at iteration k, instead of minimizing f(x),
we build a tight upper bound called majorizer gk(x; θk) of f , where θk denotes some parameters.
We minimize gk at the iteration k, and then we update the parameter θk. As gk is always an upper
bound of f , thus we are indirectly minimizing f in MM. Such approach is guaranteed to converge,
even in block-variable setting; see [93].
First we derive the following inequality

Lemma 2.2.1. (Majorizer of logdet of Gram matrix) Given a matrix W ∈ Rm×n, a constant
δ ≥ 0, then for any matrix Z ∈ Rm×n, the following inequality holds

logdet(W>W + δIn) ≤ logdet(Z>Z + δIn) + Tr
((

Z>Z + δIn
)−1W>W

)
+

n∑
i=1

δ

σ2
i (Z) + δ

− n,

and the equality holds if Z = W.

Proof. Let f(X) = logdet(X). It is a concave function in X, and we can upper bound it by its
first-order Taylor approximation as f(X) ≤ f(Y) + 〈∇f(Y),X− Y 〉, where ∇f(X) = X−>, so

f(X) ≤ f(Y) + 〈Y−>,X−Y〉 = f(Y) + Tr
(
Y−1X

)
− n.

Now substitute X = W>W + δIn and Y = Z>Z + δIn gives

logdet
(
W>W + δIn

)
≤ logdet

(
Z>Z + δIn

)
+ Tr

((
Z>Z + δIn

)−1(
W>W + δIn

))
− n

= logdet
(
Z>Z + δIn

)
+ Tr

((
Z>Z + δIn

)−1
W>W

)
+ δTr

(
Z>Z + δIn

)−1
− n.

Note that Z = W gives X = Y and the equality is established. Our remaining task is to show that

Tr
(
Z>Z + δIn

)−1
=

n∑
i=1

1
σ2
i (Z) + δ

.

Let UΣV be the SVD of Z,

Tr
(
Z>Z + δIn

)−1
= Tr

(
VΣ2V> + δVInV>

)−1
= Tr

(
Σ2 + δIn

)−1
=

n∑
i=1

1
σ2
i (Z) + δ

.



CHAPTER 2. NMF WITH MINIMUM VOLUME: MINVOL NMF 33

Using the above lemma on the regularizer in the minvol NMF,

logdet(W>W + δIr) ≤ Tr
((

Z>Z + δIr
)−1W>W

)
+ c,

where c denotes the constant independent of W. We can see that the trace term in the inequality is
a weighted Frobenius norm with (Z>Z + δIr)−1 � 0 for any matrix Z, δ > 0, where A � 0 means
the matrix A is positive-definite. In MM, at each iteration in the algorithm, we solve the following
problem

W = argmin
W≥0

1
2〈W

>W,HH>〉 − 〈MH>,W〉+ λ

2Tr
((

Z>Z + δIr
)−1W>W

)
= argmin

W≥0

1
2Tr

((
HH> + λ

(
Z>Z + δIr

)−1)W>W
)
− 〈MH>,W〉

(2.22)

where we set Z as W in the previous iteration. Such problem is also a QP, it can be solved by
AccProjG, in which the convergence now is related to the condition number of the matrix HH> +
λ
(
Z>Z + δIr

)−1, where poorly chosen parameters λ, δ can lead to a bad condition for this matrix,
and slow down the AccProjG.
Finally we mention two ways to accelerate the update of W. First, the HER acceleration frame-

work, which will be discussed in §7 , can be employed. Second, we can make use of the idea from
[46] : notice that several terms in the subproblem are independent of W, in particular HH> and
MH>, which form the main computational cost of the update. Hence we can (i) pre-computing these
terms independent of W outside the update to avoid repeated computation of the same terms, and
(ii) perform the update on W multiple times to reuse these precomputed terms (in most standard
NMF algorithms, W is only updated once before the update of H).

On V∗(W): a heuristic The nuclear norm regularized minvol NMF problem on W is

argmin
W≥0

1
2〈W

>W,HH>〉 − 〈MH>,W〉+ λ‖W‖∗, (2.23)

We solve it using the following heuristics. Ignoring for now the nonnegativity constraints, we solve
the resulting problem by proximal gradient that updates W as follows. At iteration k,

Wk+ 1
3

= Wk − α∇Wf(Wk), Wk+ 2
3

= proxλ‖·‖∗
{
Wk+ 1

3
}
,

where α is the step size and ∇f is the gradient of 1
2〈W

>W,HH>〉 − 〈MH>,W〉 with respect to
W. For the step size, we follows the standard in 1st-order optimization by using α = 1/L where
L = ‖HH>‖2 is the Lipschitz constant of the gradient ∇f . The proximal operator of Nuclear norm
has a closed-form expression given by the Singular Value Thresholding (SVT) operator [17]

Wk+ 2
3

= SVTλ
{
Wk+ 1

3

}
:= U[Σ− λI]+V>, (2.24)

where UΣV> is the SVD of Wk+ 1
3
. Finally, to take the nonnegativity constraint into account, we

simply put a nonnegative projection after SVT step (2.24) and set

Wk+1 =
[
Wk+ 2

3

]
+
.

Note that the method is a heuristic. This heuristic works in practice (see §3.3 ). For designing
algorithm with theoretical guarantee for minvol NMF with V∗(W) will be future work.
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About computational cost As discussed in previous paragraphs:

• For minvol NMF with Vdet, we use BCD on the columns of W, and the computational bottleneck
is on computing the matrix Qi; see (2.6) . The cost per iteration can be high if m is large.

• For minvol NMF with Vlogdet, we use a global majorization minimization framework which is
much cheaper per iteration.

• For minvol NMF with V∗, the heuristic proposed involves the use of the SVT operator, which
requires the SVD of W. The update can be expensive if m is large.

2.2.3 About convergence

We now discuss the convergence of the sequences {f(Wk,Hk)}k∈N and {Wk,Hk}k∈N produced by
the algorithms described in the previous subsections.

Informal discussion First we give an informal but simple and quick discussion on the convergence. In
each iteration of the algorithm, we update the block variable W or H by solving a particular optimiza-
tion subproblem. For these optimization subproblems, they are QPs with strongly convex objective
(assuming W and H are full rank), which means that the solution to these subproblems exists and
is unique. Furthermore, the cost sequence monotonically decrease as f(Wk,Hk) ≤ f(Wk−1,Hk−1),
where k denotes the iteration counter and f denotes the cost function of the minvol NMF problem.
As f is bounded below, the sequence {f(Wk,Hk)}k∈N converges.

Formal analysis using BSUM For the algorithms using the procedure mentioned in the previous
subsections on Vdet and Vlogdet, theoretical convergence can be guaranteed by the unified framework
called Block Successive Minimization (BSUM) [93, Theorem 2].
The algorithm for solving minvol NMF with Vdet is just a BCD, hence the convergence of this

algorithm is covered by the theory of BCD, which is generalized by BSUM. Therefore, here we only
focus on the convergence theory of BSUM, and in particular we focus on applying BSUM on the
majorization-minimization algorithm of solving minvol NMF with Vlogdet.
We first state the conclusion of the theory. The theory of BSUM guarantees a sub-sequence of
{Wk,Hk}k∈N converges to a stationary point, under a set of assumptions listed in Table 2.2 , in
which we explain the notation used in that table in the following paragraphs. Note that, to avoid
making this subsection unnecessarily long, the assumptions in the table is not written as precise as
they should be in the original form. The purpose here is to highlight the core idea of the theory of
BSUM and to use it for explaining the convergence of minvol NMF; for a detailed treatment of these
assumptions, see [93] .
We now briefly describe the framework of BSUM, and describe how the algorithm for solving

minvol NMF with Vlogdet mentioned in §2.2.2 fits into this framework. The problem we want to solve
is to minimize, with respect to the variable x, the function f(x), subject to the constraint x ∈ X ,
where the set X can be expressed as the Cartesian product of n closed convex sets as X = X1×· · · Xn.
The variable x is split into n blocks of variable x1, . . . , xn, where each block variable xi carries the
constraint xi ∈ Xi. This setting is satisfied in minvol NMF, where we have the block as W and H,
and here the sets Xi are just the nonnegative orthant.
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In BSUM, we update only a single block in each iteration. Say, at iteration k, the variable block
xi is computed by solving the subproblem

min
xi

ui(xi, x−i) s.t. xi ∈ Xi, (2.25)

where ui(·, ·) is an upper bound function of the cost function f , and x−i denotes the variable discarding
the block xi. This update corresponds to the update (2.22) in the majorization-minimization used
in minvol NMF with Vlogdet: we do not minimize the cost function directly, instead we minimize an
upper bound.

The key ingredient of BSUM is the function ui(·, ·), which is a function of two arguments. Let y
to be an arbitrary variable, then in order for the iterates of BSUM to converges, the function ui(·, ·)
has to satisfy all the assumptions listed in Table 2.2 , which we are going to explain one by one.

Table 2.2: The assumptions in the theory of BSUM [93, Theorem 2].
(A1) ui(xi, y) is quasi-convex in xi.
(A2) ui(yi, y) = f(y).
(A3) u′i(xi, y, di)|xi=yi = f ′(y, di).
(A4) ui(xi, y) ≥ f(xi, y−i).
(A5) ui(xi, y) is continuous in (xi, y).
(A6) The subproblem (2.25) has an unique solution.

Assumption (A1) is a standard assumption in the convergence analysis of BCD-type method [103],
where the quasi-convexity is used to limit the number of minimum. Precisely, if ui is quasi-convex,
then ui has at most one minimum in xi. This assumption is satisfied for the majorizer of logdet
presented in Lemma (2.2.1).

For assumptions (A2) to (A4), they mean ui is the global majorizer of f (A4), and ui has to “touch”
the original cost function f at the point y (A2 and A3), meaning that the first-order behavior of ui is
the same as f locally. Together assumptions (A2) and (A4) also mean that ui is a tight upper bound
of f . These two assumptions are needed as they “connect” the minimization of f and minimization
of u. These assumptions are satisfied for the majorizer of logdet presented in Lemma (2.2.1).

Assumptions (A5) and (A6) are again standard assumptions in the convergence analysis of BCD-
type method. These assumptions are satisfied for the majorizer of logdet presented in Lemma (2.2.1).

After we explained Table 2.2 , we restate again the conclusion of the theory of BSUM: when
the assumptions (A1)-(A6) are satisfied, then the theory of BSUM guarantees the sub-sequence of
{xik}k∈N converges to a stationary point. As the majorizer of logdet presented in Lemma (2.2.1)
satisfies these assumptions, hence the theory of BSUM applies to the algorithm for the minvol NMF
with Vlogdet.

On algorithm for Minvol NMF with Nuclear norm volume The approach for solving subproblem
on W with V∗ is a heuristic, and there is no theoretical convergence guarantee. However, it is observed
that the sequence converges empirically in the hyperspectral imaging application to be presented in
the next chapter.
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2.3 Chapter summary and perspectives

Chapter summary We introduced the minvol NMF. We investigated minvol NMF models with dif-
ferent volume regularizations were investigated, in which we talked about the uses of different volume
regularizers, the relationships between these regularizers and some comparisons in the practical set-
ting such as noisy cases and rank deficient cases. We provide an identifiability result on a particular
minvol NMF model, namely minvol NMF using determinant volume, and show that the solution is
provably unique when the SSC assumption is satisfied. Finally, we briefly discuss how to solve the
minvol NMF problems.

Open problems We now state the opening problems concerning the minvol NMF.

• Automatic tuning for δ for Vlogdet In §2.1.3 we discussed the issue of selecting the
parameter δ for the minvol NMF model using regularizer Vlogdet. Adapting the automatic
tuning strategy for δ in the context of matrix completion to the context of minvol NMF will
be a interesting topic of further research.

• Robustness of minvol NMF for the Vdet and Vlogdet Unlike SNMF in which there are
some robustness results, currently there is no theoretical robustness analysis on minvol NMF
model (2.1a). This is a promising but difficult direction of further research.

• Identifiability of minvol NMF using Vlogdet, V∗ and Vp,δ The identifiability result
developed so far (say, Theorem 2.1.1, and those in [77, 42, 39]) are all based on using the SSC
condition (Definition (2.1.3)). Such proof technique only works for the det regularizers, but not
for the logdet function, Nuclear norm, Frobenius norm and the smooth Schatten p-norm. How
to generalize the identifiability result to minvol models with other regularizers remains open.

• Theoretical analysis of the automatic model order selection functionality of logdet
volume As we stated in §2.1.3 that, logdet regularizer works even in rank deficient case, and
it has the ability of automatic model order selection, which will be shown in §4.2 when using
minvol NMF on audio data. Developing the theoretical understanding of this behavior of the
logdet regularizer is an interesting research problem.

• Effective computation for solving minvol NMF with Vdet and V∗ When solving
the subproblem on W for minvol NMF with Vdet, the solution approach relies on solving
the QP subproblem (2.18), in which the coefficients in the QP can be expensive to compute.
This makes the iterative algorithm for solving minvol NMF with Vdet expensive. Therefore,
it is helpful to develop more efficient algorithms for solving such minvol NMF problem. For
the approach to solve minvol NMF with V∗, the current method is just a heuristic with no
theoretical convergence guarantee, so an algorithm with theoretical support is a direction of
future research.
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3 Minvol NMF on hyperspectral unmixing
Colour as perceived by us is a function of three independent variables.

James Clerk Maxwell

In this chapter, we discuss NMF applied to hyperspectral unmixing.

Chapter organization We first give a brief introduction about Hyperspectral Unmixing (HU)
in §3.1 , we discuss the data format and the goals of HU. Then in §3.2 we discuss how the
algorithms are compared. Finally in §3.3 we present the numerical results on comparing NMF
algorithms presented in §2 with some other algorithms.
Highlights of contributions This chapter is to showcase the effectiveness of minvol NMF on
the HU application. Here the contribution is the empirical results listed in §3.3 on using minvol
NMF to solve HU problems. The experimental results showed that minvol NMF algorithms
are superior to other algorithms in HU problems on both synthetic and real datasets. In
particular, the minvol NMF algorithms outperform both the state-of-the-art separable NMF
algorithm SPA, and two volume-based methods, namely MVC-NMF and RVolMin.

3.1 Hyperspectral unmixing

We now give a brief introduction to Hyperspectral Unmixing (HU); see [81, 12] and the references
therein for more discussions.

Hyperspectral image The goal of (blind) HU is to study the composition and the distribution
of materials in a given scene being imaged. A scene usually consists of a few fundamental types of
materials called endmembers. In HU, the goal is to get the information of these endmembers from the
observed Hyper-Spectral Image (HSI), which is captured by sensors over different wavelengths in the
electromagnetic spectrum. These images form a 3rd-order data tensor of size m×col×row, with m is
the number of spectral bands, “col” and “row” are the dimensions of the images. With n = col×row,
the m-by-n data matrix M is obtained by stacking the m-dimensional spectral signature of the pixels
as the rows of M. See Fig.1.2 and Fig. 3.1 for illustrations.

Example: the Jasper Ridge image Fig. 3.1 shows a HSI scene of the Upper Crystal Springs
Reservoir1 of the Jasper Ridge data and the Google Maps satellite image (not taken in the same date
as the HSI data). The scene consists mostly of four basic endmembers: water, vegetation (tree and
grass), dirt (soil) and road.

The HU problem Table 3.1 lists the typical goals of blind HU on a HSI data. The first problem is
model order selection, recall that model order selection is a topic of research on its own, therefore,
we follow what we stated in §1.4 , we assume r is given. The main focus of HU here is the second
problem. In fact, assuming (2) in Table 3.1 is solved, then (3) in Table 3.1 can be tackled by solving
a NNLS.

1Located in California, United States. Google Maps coordinate: @37.4950658,-122.3303297,4733m.
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Fig. 3.1. The hyperspectral image of Jasper Ridge and the spectral profiles of the four endmembers.
Top: The hyperspectral image of Jasper Ridge and the image in Google Maps. Bottom:
The spectral profiles of the four endmembers.

Linear spectral unmixing We now explain the correspondence between HU and NMF in Table 3.1.
A widely used model for HU is the (low-rank) linear mixing model:

M = WtrueHtrue + N,

where the data M is generated by Wtrue (the basis, where each column of Wtrue is the spectral
signature of an endmember), weighted by the matrix Htrue plus noise N. The matrix H in HU is
called the abundance matrix and encodes how much each endmember (columns of Wtrue) is presented
in each pixel of the image: Hk,j is the abundance of the kth endmember in the jth pixel. There
are three physical constraints in HU: the nonnegativity constraints W ≥ 0 (spectral signatures
are nonnegative), H ≥ 0 (abundances are nonnegative) and the sum-to-one constraint H>1r = 1n
(abundances in each pixel sum to one). We consider a more general constraint for H, namely using
H>1r ≤ 1n, that allows to take into account different intensities of illumination among the pixels
of the image. So in terms of computational point of view, we should also consider the constraint
H>1r ≤ 1n. Now we see NMF (in particular, the minvol NMF model (2.1a)) is the right model to
perform blind HU under the linear mixing model, i.e., to learn the endmember matrix W and the
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Table 3.1: Three typical goals in HU.
HU objective Task in NMF

(1) Identify the number of endmembers. Find r.
(2) Obtain the spectral profile of the endmembers. Find W.
(3) Identify which pixel contains which endmember and in

which proportion.
Find H.

abundance matrix H from the data. We recall that a pictorial description on how NMF is used in
HU is given in Fig.1.2 in §1.4.2 .

About the endmember Endmembers are the macroscopically pure components that are assumed
to be homogeneously distributed in a pixel. For example, in Fig. 3.1 , we assume different pixels
containing “water” are identical, and, we do not consider differentiating different type of water (e.g.
deep water vs shallow water). Another example is the vegetation. Part from tree and grass are
different type of vegetation, the amount of chlorophyll and the amount of dry matters in the trees
can be different, all of these results in a phenomenon known as Spectral Variability on the endmember
spectrum. That is, the real spectral profile of different trees are not completely identical, but in the
macroscopic endmember model, they are assumed to be the same.

Nonlinear unmixing It is possible to use nonlinear mixing model for HU, which can uncover the
microscopically pure components in the data. For example, we can follows the idea of Kernel Trick
and take the model as M = Φ(Wtrue)Htrue+N, where Φ is a nonlinear mapping. Or, we can consider
quadratic mixing model as M = WtrueHtrue

1 + (Wtrue ◦Wtrue)Htrue
2 + N for ◦ denoting second order

interactions between columns of Wtrue. These models are out of the scope of the thesis.

Separability in HU: the pure-pixel assumption Recall that we discussed Separable NMF (SNMF)
and the separability condition in §1.5 . In fact, SNMF solves blind HU problems when the data
satisfy the separability condition, which is also known as the pure-pixel assumption in HU. It means
that the data contain at least r pure pixels where each pure pixel contains only one endmember,
and there is a one-to-one correspondence between the r pure pixels and the r endmembers. In the
example of Fig. 3.1 , there are regions in the image containing pure components, it appears that the
dataset is likely to satisfy separability.
As discussed in §1.5 that SNMF is geometrically a vertex identification problem: given a noiseless

M, locate the extreme points W = M(:,A) which will be exactly Wtrue if the separability condition
holds. Many algorithms exist to perform this task (referred to as pure-pixel search algorithms in
HU), such as the SPA (§1.5.1). For other algorithms, see [45].
We now illustrate the use of NMF in HU. Now the data has no water region, it contains 3 end-

members: vegetation, dirt and road. So we run SPA on this part of the data with r = 3, the result is
shown in Fig.3.2 .

Quantifying the violation of separability When the separability condition does not hold, as illus-
trated in the example in Fig.3.2 , pure-pixel search algorithms fail and we need to switch to minvol
algorithms. We quantify how much separability is violated by introducing the non-separability pa-



CHAPTER 3. MINVOL NMF ON HYPERSPECTRAL UNMIXING 40

Fig. 3.2. The result from SPA on part of the Jasper Ridge data: the right-half part of the image
data in in Fig. 3.1 . Here W are close to the one in Fig. 3.1 , the y-axis of W in this
figure is different from that in Fig. 3.1 due to scaling ambiguity. Three abundance maps,
obtained by reshaping rows of H back to “col” × “row”, are plotted. These abundance
maps correspond to the distribution of the material as shown in Fig. 3.1 . We also plotted
the coordinates of H, we can see that the points in H are wide spread in component 2 and
3 but not for component 1, therefore this data is in fact not fully separable.

rameter p, which is a r-dimensional vector in [0, 1]r. First, note that separability holds if each row of
H contains at least one entry equal to one, that is, ‖hj‖∞ = 1 for j ∈ [r]. So, to break separability,
we need ‖hj‖∞ ≤ pj < 1 for some j. Fig. 3.3 gives an example with r = 4. Hence, having ‖hj‖∞ ≤ pj
means that the maximum abundance of the jth endmember in all pixels is at most pj , which sets a
minimal amount of separation between the data points (the black dots in Fig. 3.3) to the vertex wj

(the black stars). In other words, pj controls the gap between {xi}i∈[n] and wj , where xi is the ith
data point (ith column of X). Note that the entries of p can be different, which gives asymmetric
non-separability. For example, in Fig. 3.3 , data points are closer to vertex 1 than vertex 4.

minvol NMF in HU In Fig. 3.3, the reconstructions given by SPA (green vertices) and RVolMin [41]
(a state-of-the-art minimum-volume algorithm using Vlogdet; deep blue vertices) are far away from the
ground truth, and minvol NMF with Vdet (cyan vertices) produced perfect recovery (black vertices).
This is supported by Theorem 2.1.1, which is the theoretical ground of using minvol NMF for solving
HU problems. Recall that, in the absence of pure pixels, Theorem 2.1.1 guaranteed the recovery of
the endmember when solving minvol NMF, subject to the SSC condition.

3.2 Common performance metrics for ranking algorithms

In this section we discuss the common setting in comparing the performance of NMF algorithms.

The structure of a generic algorithm A general (iterative) algorithm A is in the form

solution← A(input data, parameters, termination criterion).

For NMF, the input is the data matrix M. For parameters, the typical inputs are the factorization
rank r and the regularization weights, if there is a regularization. Sometimes there are additional
model-specific parameters, e.g., in the minvol NMF using Vlogdet, there is a δ parameter in the logdet
term. For the termination criterion, an algorithm is stopped when it reached (i) a certain predefined
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Fig. 3.3. A toy example of minvol NMF on synthetic data. The plot shows the projection of data
points (black dots) onto a two-dimensional plane using PCA. This data set was generated
with p = [0.9, 0.8, 0.7, 0.6], meaning the maximum abundance of each ground truth vertex
(Wtrue, black stars) in any pixel is at most 90% for vertex 1, 80% for vertex 2, 70% for
vertex 3, and 60% for vertex 4. In the legend, “Det” refers to minvol NMF with Vdet.
Figure copied from [6].

precision, or (ii) the maximum number of allowed iterations, or (iii) the maximum allowed runtime.
In this thesis, we mostly focus on the last two termination criterion.
Finally, outputs are in general the factor matrices W and H. Using these matrices we can define

performance measures for comparing different algorithms. These performance measures are often
quantified by the size of the error. Three commonly used error measures are discussed below.

Data fitting error This is the most simple type of error, which is defined as

Data fitting error := ‖M−WH‖F . (3.1)

We also define relative data fitting error as

Relative Data fitting error := ‖M−WH‖F
‖M‖F

. (3.2)

Factor fitting error When the ground truth factor is available, we can rank the algorithms by
measuring how close the solution they produced to the ground truth factor. For example, on Wtrue,
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the factor fitting error is defined as

Factor fitting error := ‖ΛWΠ−Wtrue‖F , (3.3)

where Π is a permutation matrix to match the columns between W and Wtrue, and Λ is positive
diagonal matrices to properly scale the size of the columns in W to match that of Wtrue. These are
necessarily corrections for handling the permutation and scaling ambiguity (1.8), as direct subtraction
W −Wtrue often produces wrong result. The matrix Λ can be computed easily using any specific
normalization. The computation of Π is much more difficult. In fact, usually Π it obtained by
solving an Assignment Problem:

minimize
xij ,i∈[n],j∈[m]

∑
i,j

cijxij subject to
n∑
i=1

xij = 1,
m∑
j=1

xij = 1 and xij ∈ {0, 1},

where cij := −
∣∣∣∣∣ 〈wi,wtrue

j 〉
‖wi‖2‖wtrue

j ‖2

∣∣∣∣∣ is the cost of assigning column wi to column wtrue
j . This combina-

torial optimization problem can be solved efficiently by using the Munkres algorithm (also known as
the Hungarian algorithm), or as a linear programming problem.

Mean Removed Spectral Angle Mean Removed Spectral Angle (MRSA) is another way to measure
the factor fitting quality. MRSA between two vectors x,y ∈ Rm+ is defined as

MRSA(x,y) := 100
π

cos−1
( 〈x− x̄,y− ȳ〉
‖x− x̄‖2‖y− ȳ‖2

)
∈ [0, 100]. (3.4)

where x̄ denotes the mean of entries of x. In other words, MRSA is the cosine-distance between x
and y, after removing the effects of shifting and scaling. A low MRSA value means a good matching
between x and y.
For MRSA between {wi}i∈[r] and {wtrue

i }i∈[r], it can be defined as the mean of MRSA between
each vector pair {wi,wtrue

i }, after we matched the columns {wi}i∈[r] and {wtrue
i }i∈[r] by solving the

assignment problem mentioned above. Mathematically,

MRSA(W,Wtrue) := 100
πr

r∑
i=1

cos−1
(
〈wi − w̄i,wtrue

i − w̄true
i 〉

‖wi − w̄i‖2‖wtrue
i − w̄true

i ‖2

)
∈ [0, 100]. (3.5)

Comparing factor fitting error and MRSA Both factor fitting error (3.3) and MRSA (3.5) quantify
how close W is to Wtrue. In HU application, MRSA gives a better measurement than factor fitting
error since it purely depends on the “shapes” of the vectors.

3.3 Experiments on using NMF to solve HU problems

In this section we present the numerical results on using minvol NMF to solve HU problems. This
section is organized as follows. First we describe the experiment setup, then we report the results
on semi-synthetic data on the task of recovering the ground truth Wtrue under different asymmetric
non-separability and noise levels. Finally, we present results on two real-world datasets.

3.3.1 Experimental set up

Data generation In the (semi-)synthetic experiments, we generate the observed data matrix as
X = [Xclean + N]+ with white Gaussian noise N ∈ Rm×n with zero mean and variance σ ≥ 0, where
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[·]+ denotes nonnegative projection. Here Xclean = WtrueHtrue, where Wtrue comes from datasets
from [115]2, see Fig. 3.1 and Fig. 3.4. We generate each column of H ∈ Rr×n+ with n = 1000 using
the Dirichlet distribution of parameter 0.1, which is a reasonable choice for HU data.
Now we talk about the non-separability parameter p. If p = 1r, i.e., separability condition holds,

we take H as Htrue. Otherwise, we remove those columns of H, denoted as h# where h#(j) > pj ,
and re-sample again until H satisfies the condition ‖hj‖∞ ≤ pj for all j. We use pj ∈ (0.5, 0.99] for
all j.
For experiments on real data, we use the datasets in Fig.3.1 and Fig.3.4 untouched, that is, with

no preprocessing. We emphasize that the goal here is to demonstrate NMF can be used to solve HU
problem. It is important to note that, preprocessing itself plays a very important role in data analysis,
which can greatly influence the result. In HU, preprocessing includes cloud removal, fog removal,
intensity correction, denoising and outlier removal. In our experiment, we perform no dimension
reduction and no preprocessing.
Finally, we set the maximum number of iterations to 300.

Fig. 3.4. HSI datasets. From left to right: “Samson” (m, r) = (156, 3), “Urban” (m, r) = (162, 6),
and “Cuprite” (m, r) = (224, 12). Figure modified from [6]. See [6] for the endmembers of
the datasets.

Parameters of the algorithms First, we name the algorithm solving the minvol NMF using the
name of the volume regularizer used in the model. e.g., we name the algorithm solving minvol NMF
using Vdet as Det. Similarly, we have logdet for minvol NMF with Vlogdet and Nuclear for minvol
NMF with V∗. For how to solve minvol NMF problems, see §2.2 . We compare logdet, det and
Nuclear with SPA and RVolMin [41], a state-of-the-art volume-regularized method. For RVolMin, we
use the same data fitting term (namely, the Frobenius norm), the same number of iterations, the
same regularization parameter search scheme and the same initialization as for the minvol NMF,
however, we follows [41] on using δ = 10−8 for RVolMin that uses Vlogdet.
Given an observed data matrix, all minvol NMF algorithms have two main parameters: r and λ,

they also require an initialization (Wini,Hini). As stated in §1.4 that we assume r is known, we just
use the r values as shown in Fig.3.1 and Fig.3.4 . Next, we generate Wini from data using SPA, and
generate Hini using the method stated in §2.2.1 .

Tuning of regularization parameter For the regularization parameter λ, as discussed in §2.1.3, it
should usually be chosen small. In fact, a large λ forces the vertices of the convex hull of W to

2http://lesun.weebly.com/hyperspectral-data-set.html

http://lesun.weebly.com/hyperspectral-data-set.html
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be very close to each other, making W ill-conditioned or rank-deficient. In particular, for minvol
NMF with V∗, the SVT operator set singular values smaller than λ to zero, so a large λ makes W
rank-deficient, see §2.2.2 for details.
The following describes how we tune λ. The goal here is to tune λ so that each algorithm performs

as best as possible for the considered problems. Here we use the ground truth Wtrue to show case
the effectiveness of the bisection. We set λ = λ̃f(Wini,Hini)

|V(Wini)| , where the initialization pair (Wini,Hini)
is provided by SPA, and λ̃ is a tuning variable within the search interval I0 = [10−6, 0.5]. We run
greedy bisection search to tune λ̃:

• (step-1) Take λ̃a = 10−6, λ̃b = 0.5 initially.

• (step 2) Run the algorithm with λ̃a, λ̃b and λ̃c where λ̃c = (λ̃a+ λ̃b)/2. Denote the performance
of the solution W produced under a specific λ̃ as MRSA(λ̃), see §3.2 for the definition of MRSA.

• (step-3) Split the search interval I0 = [λ̃a,λ̃b] into two intervals I1
0 = [λ̃a, λ̃c] and I2

0 = [λ̃c, λ̃b].
For each interval there are two MRSA values, we let the MRSA value of an interval be the sum
of these values.

• (step-4) We repeat step-1 to step-3 on the interval with the lowest MRSA value. i.e., at iteration
k, we shrink the search interval by half by defining the new search interval Ik+1 as

Ik+1 ← min
I

{
MRSA(I1

k),MRSA(I2
k)
}
.

• If a draw happens in step-4, we perform two bisections on each of the interval I1
k and I2

k and
set the next interval to be the one with the smallest MRSA.

• We repeat this process (step-1 to step-4) at most 20 times, or if the improvement from one
iteration to the next is negligible, namely∣∣∣MRSA

(
λ̃k+1

)
−MRSA

(
λ̃k
)∣∣∣ ≤ 10−4.

Note that

• Such greedy bisection search does not guarantee λ̃k to converge to the best value, i.e., the value
that corresponds to the lowest MRSA.

• In real application we often do not have access to the ground truth Wtrue. However we can still
perform the bisection to tune λ based on inspecting the solution (say, judging on how well the
data is, or how the abundance map fit to the actual scene, and how the spectrum looks like).

Extensive numerical experiments showed the effectiveness of this scheme, which will be illustrated in
the next paragraph.

Effectiveness of the bisection search on tuning regularization parameter Here we illustrate the
effectiveness of the tuning strategy for λ. We perform experiments on the synthetic dataset where
Wtrue comes from the Samson dataset with r = 3 as follows. We consider 6 different values of
the symmetric non-separability vector p = [p1, p2, p3] where p1 = p2 = p3 are selected from the set
{0.93, 0.89, 0.86, 0.83, 0.79, 0.76}. We solve the minvol NMF with Vdet with two parameters tuning
schemes:
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1. the bisection search mentioned in 3.3.1 , and

2. a brute-force grid search: we solve the minvol NMF with all 100 equally spaced steps values of
λ̃ in the interval I0 = [10−6, 0.5].

For each value of p, 10 datasets are generated randomly. We denote λbi the value of λ obtained by
the bisection search and λgrid by the grid search. Table 3.2 shows the results between comparing
the bisection search and the grid search displayed as

(
MRSA(λbi) −MRSA(λgrid)

)
/|MRSA(λgrid)

∣∣
in the format of (mean±std) and the average number of iterations performed by the bisection search
to reach λbi.

Table 3.2: Comparison of MRSA values of the bisection and the grid search to obtain λbi and λgrid,
respectively. The second column is the number of iterations needed for the bisection search
to terminate. The negative values in the first column indicate the bisection search performs
better than the grid search.

p
(
MRSA(λbi)−MRSA(λgrid)

)
/|MRSA(λgrid)

∣∣ #iterations

0.93 -0.0016±0.0002 2±0.00
0.89 -0.0143±0.0023 6.4±0.52
0.86 -0.0235±0.0029 7.9±0.32
0.83 -0.0429±0.0032 9±0.00
0.79 -0.0815±0.0089 11.1±0.32
0.76 -0.0419±0.0032 10.5±0.53

From Table 3.2 , we make the following two interesting observations:

1. As the purity goes down, more bisections are need to identify the best λ. This was expected
since, for a high purity, the initialization (SPA) provides a good initial solution.

2. In all 50 cases, the value of λbi lead to a slightly smaller MRSA value than λgrid while requiring
less computations. This illustrates the fact that the bisection is able to identify the right value
of λ and to refine the search around that value with more precision than an expensive exhaustive
search. In fact, by comparing to the 100 search iterations in the brute-force approach, we can
see a reduction in the number of search in the bisection approach.

3.3.2 Numerical results on HU

Preliminary experiments on comparing with MVC-NMF MVC-NMF is one of the first minvol NMF
type of algorithm3 [84]. We run a small experiment to showcase MVC-NMF does not compete with min-
vol NMF algorithms and RVolMin [41]. Similarly as in the previous section, we use synthetic datasets
where Wtrue comes from the Samson dataset with r = 3. However we test in a more difficult scenarios
where the non-separability vectors p = [p1, p2, p3] has p1 selected from {0.95, 0.9, 0.85, 0.8, 0.75} with
p2 = 0.79 and p3 = 0.69. For each value of p, 10 datasets are generated randomly. All algorithms take
the same initialization (SPA), the same number of iterations (100) and the regularization parameter
λ is tuned using the bisection search.

3Code available at https://github.com/aicip/MVCNMF

https://github.com/aicip/MVCNMF
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Fig. 3.5 shows that MVC-NMF produces significantly worse results than others, it will not be con-
sidered in the experiments in the subsequent comparisons. It is difficult to pinpoint the reasons of
the poor results of MVC-NMF; we see at least two of them: 1) MVC-NMF uses another regularizer which
is the squared volume of the convex hull of the columns of W without the origin. 2) MVC-NMF does
not make use of advanced optimal optimization method. For example it does not make use of any
acceleration technique and the convergence can be slow.

Fig. 3.5. MRSA curves of minvol NMF with different V, RVolMin and MVC across different values of
p1 (p2 = 0.79, p3 = 0.69) on synthetic Samson datasets.

Now we run more comprehensive experiments on the synthetic datasets.

On Samson dataset with r = 3 Here we run 10 × 10 × 10 = 1000 experiments where the data in
each experiment are generated using the non-separability vector p = [p1, p2, p3], where pi is selected
from the set

IP = {0.99, 0.96, 0.93, 0.89, 0.86, 0.83, 0.79, 0.76, 0.73, 0.69}.

Fig. 3.7 shows the results in form of MRSA cubes for the algorithms SPA, Det, logdet, Nuclear and
RVolMin, where each pixel in the cube is the result (in MRSA) over one trial. We then construct the
recovery curves by counting the number of cases (pixels) in the cube that the MRSA value is less
than a threshold; see Fig. 3.6. In general, the results in Fig. 3.7 and 3.6 show that

• All minvol NMF algorithms perform better than the state-of-the-art SNMF algorithm SPA, as
the MRSA cubes of minvol NMF have a wider blue region (lower MRSA) and their recovery
curves in Fig. 3.6 dominates that of SPA.

• When the data is highly non-separable (low pi’s), minvol NMF algorithms perform worse than
SPA. In fact, the region of the cube corresponding to highly non-separable data in SPA is not as
red as for the minvol NMF approaches. The reason is that SPA always extract points from the
data hence these points are never too far from the vertices. However, when the data is highly
non-separable, minvol NMF may generate points further away than the vertices.

• Compared with RVolMin, logdet and Nuclear are consistently better, while Det performs
similarly.

• logdet performs better than Det and Nuclear for highly non-separable data, as its red region
is much more concentrated around the highly non-separable corner of the cube.
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In terms of computational time, in seconds, Det takes 2.1±0.2, logdet takes 1.2±0.1, Nuclear

takes 1.3±0.2, and RVolMin takes 2.1±0.0. It is expected Det to take longer run time than other
algorithms as the computation of the coefficients of the QP in Det is expensive, see QP (2.21) and
the discussion therein.

Fig. 3.6. Curves of recovery. Left: Corresponds to Fig. 3.7 for the synthetic Samson datasets with
r = 3. Right: Corresponds for the dataset Jasper with r = 4, with the same experimental
set up as the one in Fig. 3.7 , where p4 fixed at 0.75.

Using the Jasper dataset with r = 4 In Fig. 3.6 , we run the same experiment on the dataset Jasper
with r = 4, where we fix p4 = 0.75. Furthermore, Table 3.3 shows the result in MRSA on the dataset
Jasper across three sets of predefined p values (highly separable with phigh = [0.9, 0.8, 0.7, 0.6], less
separable with pmid = [0.8, 0.7, 0.6, 0.51], and even less separable with plow = [0.7, 0.65, 0.55, 0.51])
and three noise levels (σ = 0.001, 0.005 and 0.01). Each item in the table (in mean±std) is the
average over 20 trails. We observe the following

• Fig. 3.6 shows that minvol NMF algorithms are competitive with the state-of-the-art minimum
volume based method RVolMin, where Det performs slightly better than RVolMin while logdet

is significantly better.

• Tables 3.3 shows that all the methods improve the fitting accuracy of SPA, with Det has the
best performance in all cases and RVolMin has the worst performances in all cases. In the table,
the best results are bolded, and the red color denotes the worst result (excluding SPA as it is
used for initialization). The same table convention will be used in the whole thesis.

In terms of computational time, in seconds, Det takes 6.62±0.5, logdet takes 2.22±0.2, Nuclear

takes 1.45±0.0 and RVolMin takes 2.7±0.0. For the same reasons as stated in the previous experiment,
Det is slower.

Using the Urban dataset with r = 6 Table 3.3 shows the result of the same experiment performed
on the Urban dataset. Here phigh =[0.9,0.75,0.7,0.65,0.8,0.85], pmid = [0.8,0.7,0.65,0.6,0.75,0.8], and
plow = [0.7,0.6,0.55,0.51,0.65,0.7]. The noise levels are σ = 0.001, 0.005 and 0.01. The results show
that
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Fig. 3.7. MRSA cubes for different algorithms on synthetic Samson dataset, viewed from two angles.
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• All the methods improve the fitting accuracy of SPA.

• Det has the best performance in most cases, with logdet as the first-runner up.

• Det performs well for phigh and pmid. With plow, it is not as good as logdet.

• Nuclear and RVolMin have the worst performances in all cases.

• The computational times: Det 7.5±0.2, logdet 1.8±0.1, Nuclear 1.5±0.0 and RVolMin 2.3±0.0,
respectively.

On the Cuprite dataset with r = 12 Table 3.3 shows the result on the same experiments conducted
on Cuprite dataset. Here we concatenate the p vector used in Urban two times to form the p vector
with length 12 for the data Cuprite. e.g., for pCuprite

high , we use pCuprite
high = [pUrban

high pUrban
high ]. The results

from the tables show that

• All the methods improve the fitting accuracy of SPA.

• logdet has the best performance in all situations, with Det and Nuclear as the first-runner
ups.

• RVolMin has the worst performances in most cases.

• The computational time: Det takes 28.1±0.9, logdet takes 3.8±1.1, Nuclear takes 3.4±0.1,
and RVolMin takes 3.2±0.0. As expected, when r increase, Det takes much more time to run
due to more QP’s has to be computed, and therefore it is not recommended to be used for large
r.

In general, the results show that the minvol NMF algorithms with Det and logdet perform well,
better than RVolMin and Nuclear in terms of fitting accuracy. As RVolMin consistently produces
inferior results, we exclude it in the subsequent sections.

Why RVolMin consistently performs poorer than minvol NMF? Here we give a short explanation
why RVolMin consistently produces inferior results in almost all the experiments, even if the model
formulation of RVolMin is similar to minvol NMF with Vlogdet. The key is about the choice of param-
eter δ: it leads to bad model and bad conditioning of the matrix that slow down the convergence. As
discussed in §2.1.3 and §2.2.1 , the parameter δ should not be chosen too small: 1) a small δ greatly
affects the convergence on solving the subproblem on H as the matrix W>W + δI now can be badly
conditioned, and 2) a small δ gives too much importance to zero singular values of W which might
not be desirable, c.f. Fig.2.1 . And in fact δ was chosen too small in RVolMin: 10−8 in [41] which, as
explained in §2.1.3 and §2.2.1 , is not a desirable choice. The extensive experimental results in this
section illustrated one important fact that, parameter tuning is one of the most critical aspect when
applying machine learning algorithm in practice, and parameters should not be chosen arbitrarily.

3.3.3 On image segmentation on real HSI data and adding sparsity constraints on H

Now we perform decomposition on the real HU data Samson and Jasper, to showcase the ability of
minvol NMF to provide meaningful decomposition on HSI data. Here we give improved result over
[6] on the algorithms Det, logdet and Nuclear on real HU data Samson and Jasper. We refer the
reader to the last experiment in [6] for preliminary results.



CHAPTER 3. MINVOL NMF ON HYPERSPECTRAL UNMIXING 50

Table 3.3: MRSA values for the three datasets.
On Jasper dataset with r = 4

Across different p (σ = 0.001) Across different noise levels (p = phigh)
Method phigh pmid plow σ = 0.001 σ = 0.01 σ = 0.05

SPA 5.40±0.60 12.62±0.18 20.76±0.23 5.40±0.60 7.29±0.51 24.59±1.43
Det 0.41±0.08 0.40±0.06 10.99±1.68 0.41±0.08 0.74±0.06 4.90±3.27

logdet 0.48±0.54 3.03±0.28 12.57±1.49 0.48±0.54 1.40±0.08 9.00±3.88
Nuclear 0.64±0.07 2.12±0.13 19.90±1.40 0.64±0.07 1.23±0.06 6.78±5.78
RVolMin 1.04±0.38 4.99±0.22 13.67±2.99 1.04±0.38 2.31±0.28 10.23±2.05

On Urban dataset with r = 6
Across different p (σ = 0.001) Across different noise levels (p = phigh)

Method phigh pmid plow σ = 0.001 σ = 0.005 σ = 0.01
SPA 7.83±0.93 10.32±1.53 16.22±2.00 7.83±0.93 8.56±0.86 15.95±3.57
Det 0.54±0.11 2.45±1.25 10.08±5.71 0.54±0.11 1.25±0.48 6.85±3.47

logdet 1.27±0.68 3.09±2.04 8.78±2.58 1.27±0.68 4.41±0.93 9.85±3.36
Nuclear 3.79±0.62 6.39±1.54 13.48±4.53 3.79±0.62 4.58±0.95 11.75±3.35
RVolMin 3.03±0.90 5.64±1.29 13.05±4.28 3.03±0.9 4.95±1.01 15.32±9.35

On Cuprite dataset with r = 12
Across different p (σ = 0.001) Across different noise levels (p = phigh)

Method phigh pmid plow σ = 0.001 σ = 0.005 σ = 0.01
SPA 6.59±0.98 8.87±1.42 11.53±1.39 6.59±0.98 7.24±1.07 11.53±1.39
Det 2.59±0.74 4.40±1.51 9.71±2.43 2.59±0.74 4.34±1.74 9.71±2.43

logdet 2.51±0.59 3.85±0.96 8.41±2.04 2.51±0.59 4.01±1.22 8.41±2.04
Nuclear 2.55±0.70 4.33±1.56 10.07±2.73 2.55±0.70 4.38±1.72 10.07±2.73
RVolMin 3.72±2.41 5.39±2.29 10.82±3.31 3.72±2.41 4.66±1.73 10.82±3.31

Adding sparsity constraint on columns of H As pointed out in [6], adding sparsity condition on
the decomposition may help to obtain a cleaner abundance map. For example, it is expected that
the pixels of watery region (such as river, pool or sea) contain just water. Therefore, the part of H
corresponding to these components should be sparse.
Taking sparsity on H into account in the decomposition, we modify the minvol NMF model (2.1a)

as follows. We add the L1 norm of columns of H to the cost function of the minvol NMF (2.1a).
This regularization promotes sparsity to all the columns of H. Now focus on the jth column of H,
i.e., hj , for simplicity we hide the subscript j, this optimization subproblem can be expressed as

argmin
h

φ(h) = 1
2‖Wh−m‖22 + λ‖h‖1 s.t. h ≥ 0, h>1r ≤ 1, (3.6)

where λ ≥ 0 is the regularization constant. Compared with the subproblem (2.16), here the cost
function φ(hj) contains an extra regularizer term.

How to solve the new problem: iterative soft thresholding We now discuss the idea how to solve
(3.6) . Ignoring the nonnegative constraint for a moment, the partial Lagrangian associated with the
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normalization constraint is

L(h, ν) = 1
2‖Wh−m‖22 + λ‖h‖1 + ν(h>1r − 1),

where ν ∈ R is the Lagrangian multiplier. The solution to Problem (3.6) is given by solving the
saddle-point problem

min
h≥0

max
µ

L(h, ν).

We solve such problem by alternating optimization: solve the subproblem on h while fixing ν, and
then solve the subproblem on ν while fixing h, and repeat the whole process until converge. The
subproblem on µ is easy to solve, so we focus on solving the subproblem on h:

argmin
h≥0

L(h) = 1
2‖Wh−m‖22 + λ‖h‖1 + ν(h>1r − 1). (3.7)

Problem (3.7) can be solved by accelerated proximal gradient. The idea is to first apply gradient
update on the smooth part of L(h) to obtain a temporary variable h∗, then apply the proximal
operator on the point h∗ with respect to the nonsmooth part λ‖h‖1. It can be shown that the
proximal gradient update of such problem has closed-form expression [10], which is a soft-thresholding
step.

Hard constraint on columns of H and hard thresholding Inspired by iterative soft thresholding
update for solving subproblem (3.6), we also consider an heuristic that use hard thresholding on the
column of H. That is, each time after the subproblem (3.7) is solved, we perform a N -sparse hard
thresholding step: we keep the largest N entries in the vector untouched, and set all the rest to zero.

Result We now discuss the result the minvol NMF with and without the sparsity on H on the HU
application. Fig. 3.8 and Fig. 3.9 show the decompositions. The reference result is provided by [115],
in which the data are preprocessed, and the minimization model employed a sparsity regularization
on H to make the abundance map cleaner. As the goal here is to showcase the ability of minvol
NMF to provide meaningful decomposition, so, as stated in section 3.3.1 , when we solve minvol
NMF problems on the data, we use the raw data directly as it is, no pre-processing is performed.
Furthermore, we do not perform detailed parameter tuning in this example. The result illustrated
the ability of minvol NMF to provide a meaningful decomposition, and adding additional modeling
constraint helps to get a better result.

3.3.4 On handling spectral variability

As mentioned in §3.1 , endmembers are defined as macroscopically pure components in the image,
while in real-world data, such assumption may fail due to Spectral Variability, which is, “the shallow
water and deep water are different”. In this subsection we give an empirical evidence that minvol
NMF can handle such issue by simply using a larger factorization rank r in the decomposition.
We use the Samson dataset for illustration. Refer to Fig.3.4 , the dataset has three components:
water, vegetation and dirt, hence r should be 3. However we decompose the data using minvol NMF
(with 2-sparse constraint on columns of H) with the factorization rank r = 6. The decomposition
result contains two type of trees, and two type of water, see 3.10 . We can see that the “Sea shore”
component is extracted, which consist of the mixture of water spectra and tree spectra. Lastly, we
recombine components “Deep water” and “Shallow water” into “Water”, and “Tree type 1” with
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Fig. 3.8. The abundance map of the decomposition of the dataset Samson. The 2-sparse model has
a cleaner abundance map for the component “water’. Furthermore, we can see that the
sea shore components in all minvol NMF models are clearer than the reference one.
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Fig. 3.9. The abundance map of the decomposition of the dataset Jasper. The 2-sparse model has
a cleaner abundance map for the component “water’. Furthermore, we can see that the
sea shore components in all minvol NMF models are clearer than the reference one.
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“Tree type 2” into “Tree”. The resulting abundance maps have a clearer boundary than those in the
reference.

3.4 Chapter summary and perspectives

Chapter summary We introduced Hyperspectral Unmixing (HU) as one of the application of NMF.
The experimental results showed that minvol NMF algorithms are superior to other algorithms in HU
problems on both synthetic and real datasets. In particular, the minvol NMF algorithms outperform
both the state-of-the-art separable NMF algorithm SPA, and two volume-based methods such as
MVC-NMF [84] and RVolMin [41]. The minvol NMF with determinant volume and log-determinant
(logdet) volume are the top two methods among all the tested methods, where the logdet-based one
is better than the det-based one.

Open problems We now state the opening problems concerning the minvol NMF on HU.
On handling spectral variability In §3.3.4 , we illustrated the ability of minvol NMF on

handling spectral variability, the approach is to use over-estimated r in the factorization, followed by
recombination of the components. The result so far is only preliminary, two questions remain open:
How to choose an appropriate overestimated rank r? How to recombine the components? Answering
these questions will greatly enhance the effectiveness of applying minvol NMF in HU applications.
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4 Minvol NMF on audio source separation
All models are wrong; but some are useful.

George E. P. Box

In this chapter, we discuss NMF on the application of audio Blind Source Separation (BSS). We
treat NMF as a black box and we do not focus too deep on the details on the algorithm design here,
rather, we focus on how NMF can be used to solve audio BSS problems. For the details on the NMF
algorithms design, see [72, 73].

Chapter organization We first give a brief introduction about audio BSS in §4.1 , then we
look at how NMF can be used to solve audio BSS problem in §4.2 , where we provide a few
examples on decomposing piano recording.
Highlights of contributions The main purpose of this section is to showcase the effectiveness
of NMF-based models on BSS problem, which is another application domain where NMF
shines. After giving the preliminary material on introducing audio BSS problem in §4.1 , we
apply minvol NMF model (2.1b) for the audio BSS problem. To be more suitable for audio
data, we changed the data fitting term from Frobenius norm to the β-divergence, where we
focus on the case β = 1, where we name the model minvol KL-NMF. We then present numerical
result in §4.2 , illustrating the effectiveness of minvol KL-NMF on audio BSS problem. Notice
that the papers [72, 73] are collaborative work of the author and his coauthors, we do not
present every material from [72, 73].

4.1 Single channel audio BSS

The task of audio BSS is similar to the goal of HU discussed in §3.1 . In audio BSS, the goal is
to extract unknown signals called sources from the data, which is in the format of audio recording.
Here, we consider a single channel recording, i.e., the audio signal is captured by a single microphone.
The data here is a vector x ∈ RT , where T denotes the duration of time points.
As audio BSS problems are similar to HU problems, we use Table 4.1 , which is similar to Table

3.1 , to list the typical goals in audio BSS. We do not repeat the problem description on Table 4.1
for audio BSS. Furthermore, as stated in §1.4.3 , we assume r is given, so our focus is mainly tasks
(2) and (3) in Table 4.1 .

Table 4.1: Three typical goals in audio BSS.
Audio BSS objective Corresponding task in NMF

(1) Identify the number of sources. Find r.
(2) Obtain the spectral profile of the sources. Find W.
(3) Identify the amount of activation of each sources. Find H.

To understand how and why NMF can be used to solve audio BSS problems, we first discuss what
is the flow of a BSS process; see Fig.4.1 . We will explain each step in the figure in the following
paragraphs.
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Fig. 4.1. The flow diagram of BSS of audio data using NMF.

4.1.1 The spectrogram

Given an audio recording x ∈ RT in time domain, a spectrogram that represents x in the time-
frequency domains, is obtained by performing a Time-Frequency Transform (TFT) on x. Examples
of TFT are (Discrete) Short Time Fourier Transform (STFT) and Discrete Wavelet Transform
(DWT) [83]. We denote a TFT operator as Ψ, and in this thesis, for simplicity, all TFT operators
are STFT. For more discussion of STFT, see for example [70, 104] .

The TFT operator Ψ converts the vector x ∈ RT into a matrix X ∈ CF×T ′ where F is the number
of frequency bins and T ′ is the number of time points in X. The value T ′ is affected by the use of
smoothing window in the TFT operator. For example, for a window that uses 50% of the data point
in x, i.e., a window with 50% overlapping, F × T ′ u 2T .

Properties of the spectrogram: sparse and low-rank The time-frequency representation X of a
signal x is a matrix that is low-rank [104]. Such matrix has two fundamental properties that makes
it low-rank: sparsity and redundancy. Redundancy comes from the fact that the frequency patterns
of the signal repeats itself over time, while sparsity comes from two facts: many real-world audio
signals are “banded”, i.e., the energy of the signal only concentrates within a small frequency band;
and many frequency bands in the whole spectrum are not active most of the time. For example, in
a piano music, in each time frame, many piano keys are not pressed, i.e., the notes these unpressed
keys represent are not active in that selected time frame. And for a single piano note, it consists of
the fundamental harmonics and overtones, where most of the energy of the note is concentrated at
the fundamental harmonics and the low overtones.

Mathematically, these two facts imply that the spectrogram of an audio is well approximated with
a low-rank sparse matrix, in which NMF can be used to extract meaningful component in the audio
data.
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4.1.2 A simple linear mixing model and assumptions

Suppose the recording x is a mixture of r sources signals si ∈ RT , i ∈ [r], a goal in BSS is to estimate
si from x. Let the estimator of si be yi, then the BSS is perfect if ‖si − yi‖2 = 0 for all i.
To estimate si, we assume both the acquisition process and the mixing process are well modeled

by a linear instantaneous mixing model:

x =
r∑
i=1

si. (4.1)

That is, we assume:

• Instantaneous mixing. When time delay is present, the mixing can be modeled as x(t) =∑
i

si(t− τi) where τi is the delay time. Here we assume all τi = 0.

• No reflection and reverberation, and thereby no non-linearity effect in the model. Similar
to §3.1 where we discussed the hyperspectral unmixing problem, it is possible that there is
non-linearity in the mixing process, but that is out of the scope of this thesis.

Note that we also implicitly assumed balanced source: the audio volume of the sources are equally
the same, no source is particularly louder than others. If a source is too loud, it may become difficult
to extract the weaker sources, and the recording can become clipped due to microphone saturation.

4.1.3 Time-frequency transform and decomposition

Now, let Ψ be a TFT operator (such as STFT). Applying Ψ on x gives the spectrogram

X = Ψ(x)
(4.1)
=

r∑
i=1

Ψ(si) =
r∑
i=1

Si, where Si := Ψ(si),

which is a matrix of complex numbers. Recall that a complex number c = a+ ib can be expressed in
the polar form as c = r exp(iθ). The matrix X can also be expressed in polar form as:

X(f, t) = V(f, t) exp
(
iΦ(f, t)

)
∈ CF×T

′
, for all f ∈ [0, F ] and t ∈ [0, T ]. (4.2)

From X we define the amplitude spectrogram V ∈ RF×T
′

+ as

V = |X|, where V(f, t) = |X(f, t)| for all f ∈ [0, F ] and t ∈ [0, T ].

The part exp
(
iΦ
)
in X is called the phase. Fig.4.2 shows an example of spectrogram.

To identify the sources, we decompose X using NMF, then we apply the inverse TFT on it to get
y. For a good BSS, y should be very close to s. Precisely, as shown in Fig.4.1, we do not apply NMF
directly on X, but we apply NMF on V.
When performing NMF on V, in fact we assume

• Additive mixture. There is no sound cancellation between the sources. Mathematically,
V =

∑r
i=1 |Si|. This is true in many signals, and

• Source is rank-1. The source spectrograms |Si| are well approximated by nonnegative rank-1
matrices, and hence a rank-r NMF corresponds to unmixing r sources. Note that this is a
strong assumption and it makes sense only for simple audio such as a pure musical note shown
in Fig.4.2. This assumption may fail for complicated signal such as human speech, in which a
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Fig. 4.2. The time series and the spectrograms of the audio recording of “Mary had a little lamb”.
See §4.2 for description of the data.

source can be made of several rank-1 factors. In this case we need a post-processing step to
recombine them a posteriori (e.g., looking at the correspondence in the activation of the sources
over time), or we can consider the grouped NMF. We discuss this issue further in §4.2.2 when
we perform an experiment on a tabular bell audio.

With this setup, we present the NMF model in the next subsection.

Remark 2. We give a few remarks on the above modeling.

• Let Ψ† be the conjugate transpose of Ψ, then Ψ†Ψ = F I [70, Section 1.2.2], meaning that Ψ†

is the inverse operator of Ψ. Note that here the notion of “inverse” is not in the mathematical
sense, since in general Ψ is not a surjective mapping from RT to CF×T ′, i.e., it is possible
that some spectrograms do not correspond to any TFT of a real signal. This issue is called
consistency in time frequency analysis [65]. We discuss this further in §4.1.5 .

• Here we focus on the NMF stage of the BSS process on factorizing the amplitude spectrogram V
into the source amplitude spectrograms. For the phases reconstruction, which is a highly non-
trivial problem, we consider a naive reconstruction procedure consisting in keeping the same
phase as the input mixture for each source. We come back to this issue in §4.1.6 .

4.1.4 KL-NMF for audio source separation

Given a nonnegative spectrogram matrix V ∈ RF×T
′

+ and the factorization rank r (the number of
sources), we solve the audio BSS problem by solving the corresponding NMF problem, which produces
W and H such that V u WH. For V representing the amplitude spectrogram of an audio signal, the
matrix W is called the dictionary and each column corresponds to the spectral content of a source,
and H is the activation matrix specifying if a source is active at a certain time frame and in which
intensity. That is, each rank-one factor W(:, i)H(i, :) corresponds to a source. To compute W and
H, we solve the following NMF

min
W,H

D (V|WH) =
∑
f,t

d
(
Vft|[WH]ft

)
s.t. W ≥ 0,H ≥ 0, (4.3)
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where d(x|y) is the discrete β-divergence:

d(x|y) =


1

β(β−1)

(
xβ + (β − 1) yβ − βxyβ−1

)
if β 6= 0, 1,

x log x
y − x+ y if β = 1,

x
y − log x

y − 1 if β = 0.

(4.4)

About the β-divergence This function generalizes the Frobenius norm, which is a special case
when β = 2. For β = 1 and β = 0, the β-divergence corresponds to the Kullback-Leibler (KL)
divergence and the Itakura-Saito (IS) divergence, respectively. The β-divergence is homogeneous in
β: i.e., d(λx|λy) = λβd(x|y). It implies that factorizations obtained with β > 0 will rely more heavily
on the largest data values and less precision is to be expected in the estimation of the low-power
components. The IS divergence (β = 0) is scale-invariant, i.e., dIS(λx|λy) = dIS(x|y) [36]. The
IS divergence is the only one in the β-divergences family to possess this property. It implies that
time-frequency areas of low power are as important in the divergence computation as the areas of
high power. This property is interesting in audio BSS as low-power frequency bands can perceptually
contribute as much as high-power frequency bands. Note that both KL and IS divergences are more
adapted to audio BSS than Frobenius norm as it is built on logarithmic scale as human perception
[36]. Moreover, the β-divergence is only convex with respect to W (or H) if β ≥ 1. Otherwise,
the objective function is nonconvex. This implies that, for β < 1, even the problem of inferring H
with W fixed is non-convex. For more details on β-divergences; see [21, Section 2.6] or [36] . For
simplicity, we focus on the KL-divergence from now on.

Why KL-divergence but not the Frobenius norm Frobenius norm is less suitable for audio BSS.
First we recall two facts:

1. the (squared-)Frobenius norm emphasizes more on the large component in a matrix, and

2. spectrogram consists of many harmonics (see see Fig.4.2 for an example), and it is when all the
harmonics are activated together that they form the characteristic sound of the note.

Hence, the (squared-)Frobenius norm focuses more on the large components in the harmonics while
ignoring other weak components, which is undesirable for audio data. Due to such reason, in audio
signal processing, the data fidelity term is usually expressed using, KL-divergence (or IS-divergence),
as it takes into account on the small components in the audio spectrogram due to the log expression;
see Equation (4.4).

minvol KL-NMF for audio BSS To solve audio BSS: we consider minvol KL-NMF model (2.1b)
where the data fitting term is replaced by the KL-divergence:

minimize D(V|WH) + λlogdet(W>W + δIr) s.t. W>1m = 1r,W ≥ 0,H ≥ 0.

In this model, W is normalized, meaning that the spectral profile of the source are of similar volume,
which is a sensible assumption in application.
We use BCD to solve this optimization problem: we solve the subproblem on W while fixing

H, and then solve the subproblem on H while fixing W. The key issue here is the minimization
subproblem on W, in which we use majorization minimization (MM) to solve it; see [72] for details
of the derivation of the majorizer and the whole algorithm.
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Fig. 4.3. A pictorial illustration of Lemma 4.1.2. A vector x in the time domain is mapped to a
point X in C, and a point Y in C is mapped back to a point y in RT by the inverse
operator Ψ−1. Note that the set C is only a proper subset of CF×T ′ .

4.1.5 About consistency in time-frequency analysis

We now discuss an issue that can be very important in time-frequency analysis, called Consistency.
To discuss such issue we first review two properties of the STFT operator Ψ.

Lemma 4.1.1. (Ψ is injective) Given x1,x2 ∈ RT , let X1 = Ψ(x1) and X2 = Ψ(x2). If X1 = X2,
then x1 = x2.

Proof. As Ψ−1 is linear, x1 − x2 = Ψ−1X1 −Ψ−1X2 = Ψ−1(X1 −X2
)

= Ψ−10 = 0.

Lemma 4.1.2. (Image of Ψ is a proper subset of CF×T ′) Let the set of all time-frequency matrices
produced by Ψ be C, defined as C :=

{
X ∈ CF×T ′

∣∣ X = Ψ(x),x ∈ RT
}
. Then C ( CF×T ′. In other

words, Ψ is not surjective.

Sketch of the proof By contradiction. Suppose C ⊆ CF×T ′ and Ψ : RT → CF×T ′ is onto. By
Lemma 4.1.1, Ψ is injective, then by open mapping theorem [38, Section 5.10], Ψ is an bounded
bijective linear map and it has a bounded inverse. But Ψ−1 is not bounded, contradiction.
Lemma 4.1.2 means that, the set of matrices that correspond to a vector in RT is only a subset of

CF×T ′ , see Fig.4.3 .
Now, consider we perform NMF on a matrix X, which is always in C. Using Equation (4.2), let

X = V exp(iΦ), then we perform NMF on V. From here, there are two possibilities.

• (Case 1) Suppose NMF gives V = W1H1 and let Y := W1H1 exp(iΦ). Assume Y ∈ C, then
this decomposition is called consistent as Y corresponds to a y ∈ RT .

• (Case 2) Suppose NMF gives V = W2H2 and let Z := W2H2 exp(iΦ). Assume Z /∈ C, then
this decomposition is called inconsistent, as Z do not corresponds to any y ∈ RT . From here, if
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Fig. 4.4. Illustrating the consistency issue of decomposing a time-frequency matrix. The figure
follows the same setup as Fig.4.3 . Here the NMF result W1H1 is consistent as the matrix
Y while the result W2H2 is not.

we perform inverse TFT on Z, we still get a vector z ∈ RT , and in this case it is highly possible
that z contains artifacts, where the artifacts are due to the non-surjectiveness of Ψ.

We illustrate the discussion above in Fig.4.4 .
Now we can say that, there is always an implicit assumption in applying NMF on time-frequency

matrix, the assumption is that the spectrogram WH exp
(
iΦ
)
has to be consistent. If this assumption

is violated, then it is highly possible that the reconstructed vector in the time domain is contaminated
by artifacts. Artifacts can seriously downgrade the quality of the solution, if the Signal-to-Artifact
Ratio (SAR) is low. SAR is defined as follows. Let v,x,a denote the observed vector, the true signal
and the artifact, respectively, and consider the model v = x + a, then SAR := ‖x‖22/‖a‖22.
I is very important to consider NMF under consistency constraint when SAR is low, and many

research works on using NMF to decompose time-frequency matrices ignore this important issue,
especially in those works on electroencephalogram analysis (see for examples [68, 69, 21]), where the
power of the signal is well known to be very low.
In this thesis, we assume NMF provides consistent decompositions for the audio BSS problem,

based on the fact that the data we study are relative clean and thus high SAR is expected. For NMF
with consistency constraint, which is out of the scope of this thesis, we refer to the line of works by
J. Le Roux [65, 64, 66].

4.1.6 About assumptions and violations

Table 4.2 summarizes all the assumptions we made so far in the BSS process. Violation of these
assumptions may downgrade the effectiveness of applying NMF on audio BSS. We now briefly discuss
about these assumption below.
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Table 4.2: The summary of assumptions on using NMF for audio BSS.
A1 τi = 0.
A2 Linear mixing model.
A3 Sources are balanced.
A4 V =

∑
i |Si|.

A5 |Si| are well approximated by nonnegative rank-1 matrices.
A6 Reconstructed components are consistent.
A7 The data has no outlier.

• A1 means the mixing is instantaneous. If there is time delay, a way to deal with it is to extend
the NMF to Convolutive NMF [21, 28] which deal with time-correlated components.

• A2 means there is no nonlinear effect caused by reflection or reverberation. If it is violated, we
can consider NMF model with non-linearity as discussed in §3.1.

• A3 means there is no clipping nor microphone saturation. If there is clipping or saturation, the
unmixing task can be difficult, and we may need to try statistical approach which is out of the
scope here.

• A4 means there is no sound cancellation between the sources. Violating this assumption basi-
cally rejects the use of NMF as NMF assumes the interaction between sources is additive. We
can consider semi-NMF that only requires one factor (say W) to be nonnegative.

• A5 refers to the cases that the audio is “sufficiently simple” such that the source spectrogram can
be well approximated by nonnegative rank-1 matrices. This assumption can be violated when
the audio is complicated. In this case we can consider the grouped NMF: instead of imposing
each rank-1 component to be nonnegative, we impose the sub-patterns to be nonnegative.
Mathematically, V = WH =

∑
i wihi =

∑
k Ak where Ak =

∑
i wihi is nonnegative for some

group indices i ∈ gk. Notice that here it is Ak nonnegative but not W nor H. To solve this
problem, the technique from bounded matrix factorization [60] can be used.

• A6 is the consistency assumption discussed in §4.1.5 .

• If A7 is violated, we can consider robust NMF using robust norms.

All the above extensions of NMF are out of the scope of the thesis, but they are interesting directions
to investigate.

4.2 Using minvol KL-NMF to solve single channel audio BSS problems

In this section we showcase the usefulness of minvol KL-NMF on audio BSS. For detail numerical
comparisons on the general minvol β-NMF to other models, see [72].
Here we apply minvol KL-NMF on the spectrogram of two monophonic piano sequences. For the

two monophonic piano sequences, the audio signals are true life signals with standard quality. Note
that the sequences are made of pure piano notes, the number r should therefore correspond to the
number of notes present into the mixed signals. The comparative study is performed for several values
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of r with a focus on the case where the factorization rank r is overestimated. For all simulations,
random initializations are used for W and H. In all cases, we use a Hamming window of size F=1024,
and 50% overlap between two frames. The MATLAB code is available from bit.ly/minvolKLNMF.

4.2.1 Mary had a little lamb

The first audio sample is the beginning of the piece “Mary had a little lamb”, see Fig.4.5 , and also
Fig.4.2 for the spectrograms. The sequence is composed of 3 notes; E4, D4 and C4. The recorded
signal is 4.7 seconds long and down-sampled to fs = 16000Hz yielding T=75200 samples. STFT of
the input signal x yields a temporal resolution of 16ms and a frequency resolution of 31.25Hz, so that
the amplitude spectrogram V has T ′=294 frames and F=257 frequency bins. In the same figure, we
also present the decomposition results on the amplitude spectrogram using minvol KL-NMF with
different values of r. We observed the following.

• In the case r = 3, all the simulations give a nice separation with similar results for W and H.
The activations are coherent with the sequences of the notes.

• In the case r = 4, we can see that minvol KL-NMF captured an component that corresponds
to the noise within the piano just before triggering a specific note (in particular, the hammer
noise). This observation is confirmed by the fact that the amplitude is proportional to the
natural strength of the fingers playing the notes.

• In the case r = 5, it corresponds to the situation where the factorization rank is overestimated.
We observe that minvol KL-NMF is able to extract the 3 notes correctly and set automatically
to the redundant source estimates (more precisely, the corresponding row of H is set to zero,
while the corresponding column of W have entries equal to one another as ||W(:, i)||1 = 1). It
is interesting to note that, here factorization rank is overestimated, while minvol KL-NMF can
set the extra components to zero, and thus providing the ability to automatically select the
model order. In fact, this phenomenon was first observed in the conference work [71], and then
the work [72]. In [72], we tried the same experiments with r = 7, which is a factorization rank
that is even more overestimated, and the same observation was made: the minvol KL-NMF
can set the extra components to zero.

4.2.2 On a simple tubular bell music and the effectiveness of rank-1 approximation of
each individual source

We now perform a similar experiment as the previous one on a Belgian hymn called “El Doudou",
which is the music of the Doudou Festival of Mons, Belgium. Here the data is an synthesized audio
of music played by tubular bells, and the audio is simulating the tabular bells inside a clock tower
(called “belfry” in architecture). The note produced by the bell sustains much longer than that of
piano, hence the spectrogram is more complicated as the notes are interrupted by previous notes.
The music consists of 6 type of notes: F4, A4, Bb4, C5, D5, Eb5, and we uses minvol KL-NMF with
overestimated rank r = 8 for the decomposition. We obtain a result similar to that of the previous
experiment: with r = 8, minvol KL-NMF decomposes the audio into components that correspond
to each of the music note, captures the hammer noise, and finds that one component is redundant.
The experiment result is available at https://www.youtube.com/watch?v=1BrpxvpghKQ.

bit.ly/minvolKLNMF
https://www.youtube.com/watch?v=1BrpxvpghKQ
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(a) Musical score of “Mary had a little lamb".
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Fig. 4.5. Minvol KL-NMF applied to “Mary had a little lamb” amplitude spectrogram with var-
ious r. When r = 3, the decomposition extracted three components in the audio that
correspond exactly to the three notes in the score. When r ≥ 4, an additional component
that corresponds to the “hammer noise” is extracted. When r = 5, we see there is an
component that is redundant, where the 5th row of H (the purple line) is zero, this case
illustrated the ability of KL-minvol NMF to automatically setting redundant component
to zero when r is overestimated.
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Further inspection on the spectrogram of the audio shows that assumption A5 in Table 4.2 is
violated. Refer to Fig.4.6 , each temporal block (between two hammer time) is in fact not rank-1.
However, using a rank-1 nonnegative component here gives an estimate that is good enough. This
observation motives the design of grouped NMF as discussed in §4.1.6 .
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Fig. 4.6. The score and the amplitude spectrogram of the music “El Doudou”. Top: the music
score. Bottom: the amplitude spectrograms, plotted in linear scale and in log scale. Here
we do not specify the exact values of the axes and just express them as index. In the
second column, we show a temporal block of the amplitude spectrogram (correspond to
the C5 note in the score) with x-axis zoomed between indices 244 and 410. The log-plot
show that the block is not exactly rank-1, hence assumption A5 in Table 4.2 is violated.
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4.2.3 Simple chord

We now apply minvol KL-NMF on a simple chord audio, see Fig.4.7. Three notes are chosen: C4, E4

and G4, they are played together in different time instances with different dynamics (loudness): f
(forte, meaning “strong”) and p (piano, meaning “soft”). As the notes are played together, the
harmonics are completely overlapped with each other and hence the spectrogram are much more
complicated compared with the previous two experiments. Minvol KL-NMF with r = 3 is able to
extract the 3 notes correctly, and the rows of H corresponds to the dynamics in the music score.
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Fig. 4.7. Minvol KL-NMF applied to a chord amplitude spectrogram. Top: the music score (with
notes written together and separately). Bottom: the columns of W and the rows of H.



CHAPTER 4. MINVOL NMF ON AUDIO SOURCE SEPARATION 68

4.2.4 Prelude of Bach

We now apply minvol KL-NMF on a more complicated audio. We use the first 30 seconds of “Prelude
and Fugue No.1 in C major" from J. S. Bach played by Glenn Gould1, see Fig. 4.8 for the score. The
audio sample is a sequence of 13 notes: B3, C4, D4, E4, F#

4 , G4, A4, C5, D5, E5, F5, G5, A5. No
preprocessing such as noise removal is applied on the sample. The recorded signal is down-sampled to
fs = 11025Hz yielding T=330750 samples. STFT of the input signal x yields a temporal resolution
of 46ms and a frequency resolution of 10.76Hz, so that the amplitude spectrogram V has T ′=647
frames and F=513 frequency bins.
Fig. 4.9 present the decomposition results on the amplitude spectrogram using minvol KL-NMF

with r = 16, which is overestimated. We observe that minvol KL-NMF successfully detected the
13 source estimates corresponding to each of the note, obtained one component (the 8th) which
corresponds to the hammer noise, and automatically sets 2 components to zero (6th and 13th). The
analysis of the fundamentals (maximum peak frequency) of the 13 source estimates correspond to the
theoretical fundamentals of the 13 notes mentioned earlier. Additionally, the activations are coherent
with the sequences of the notes. Figure 4.10 shows (on a limited time interval) that the estimate
sequence follows the sequence in the score. Note that a threshold and permutations on rows of H is
used to improve visibility.
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Fig. 4.8. Musical score of the sample “Prelude and Fugue No.1 in C major".

4.2.5 Towards automatic music transcription based on NMF technology

As a side note, Fig.4.10 only shows the activation timing of the note played on the piano. To further
extract the duration and the decay of each note, we can make use of NuMF to be presented in §5 .
The idea is to apply NuMF on the matrices H to obtain the activation and decay profile of each
note; see Fig.5.10 for example. With the duration of the note identified, it is possible to build an
automatic music transcription system on converting audio files into sheet music, fully based on NMF
technology.

4.3 Chapter summary and perspective

We reviewed the audio BSS problem, and discussed how NMF can be used to tackle it. By solving
a β-divergence NMF model, we demonstrated NMF can be used to decompose a single channel
recording of a musical sequence, into components that represent each musical note.

Open problem 1: theoretical analysis of the model order selection In the experiments, we see
that the minvol KL-NMF automatically set the overestimated components to zero. The theoretical

1https://www.youtube.com/watch?v=ZlbK5r5mBH4

https://www.youtube.com/watch?v=ZlbK5r5mBH4
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Fig. 4.9. Components W and H obtained with minvol KL-NMF with factorization rank r = 16 on
the sample “Prelude and Fugue No.1 in C major".
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Fig. 4.10. Validation of the estimate sequence obtained with minvol KL-NMF with factorization

rank r = 16 on the sample “Prelude and Fugue No.1 in C major". Top: The labeled music
score of the first two measures of the music. Bottom: The corresponding activation
(matrix H shown in Fig.4.9) after thresholding and permutation according to the pitch
of the notes, determined by identifying the peak frequency location of the columns of
matrix W shown in Fig.4.9. The result shows a perfect match between the score and the
decomposition.

analysis of such phenomenon remains open.

Open problem 2: NMF extensions We can consider extending the NMF model to handle the
violation of the assumptions listed in Table 4.2 . For example, as discussed in the experiment on the
bell music, we can see that we can relax the assumption that each source (the temporal block) can be
well-approximated by a rank-1 component. This leads to the study of Grouped NMF which consider
the sub-patterns instead of the rank-1 components to be nonnegative.

Open problem 3: automatic music transcription fully based on NMF technology It will be
interesting to combine minvol KL-NMF with NuMF to build an automatic music transcription system
that can capture both the activation and the duration profile of each music note. Such system can
be used to convert audio files into sheet music, and it is fully based on NMF technology.
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5 NMF with unimodality: NuMF
Nothing takes place in the world whose meaning is not that of some maximum or
minimum.

Leonhard Euler

In this chapter we introduce a new NMF model, namely, the Nonnegative Unimodal Matrix Fac-
torization (NuMF). NuMF adds on top of NMF the unimodal condition on the factor matrix W.
This model finds application on nonnegative unmixing where the data exhibits unimodal structure.

Chapter organization We first give an introduction to NuMF and lay-down the foundation in
§5.1 , where we characterize the unimodal property and show that NuMF is a nonconvex and
block-nonconvex (on variable W) problem. We then propose a simple but naive brute-force
heuristics strategy to solve NuMF, which the strategy is then improved by accelerated gradient
descent and multi-grid method. The multi-grid method acts as a dimension reduction step to
reduce the dimension of the problem, and we show that the restriction operator preserves the
unimodality in §5.2 . Then we present three preliminary results regarding the identifiability of
NuMF in §5.3 under three special cases. We present empirical results concerning the algorithms
and the theories on NuMF in §5.4 on synthetic and real datasets. Finally, we summarize this
chapter in §5.5 and present some open problems.
Highlights of contributions We provide an efficient yet simple numeric algorithm to solve
NuMF, based on the combination of multi-grid method and brute-force search. We justify the
use of multi-grid method by proving that the restriction operator preserves the nonnegative
unimodality of the vectors (Theorem 5.2.1) . We provide three preliminary results regarding
the identifiability of NuMF in §5.3 under three special cases (Theorems 5.3.1, 5.3.2 and 5.3.3),
and we give some insights on arriving the general identifiability of NuMF.

5.1 NuMF

NuMF adds on top of NMF a condition that the columns of W are unimodal.

Definition 5.1.1. (Monotonicity) A vector x ∈ Rm is called monotonic (also known as isotonic
[88]) if x1 ≤ x2 ≤ · · · ≤ xm or x1 ≥ x2 ≥ · · · ≥ xm. We call it strictly monotonic if the inequalities
are all strict.

Definition 5.1.2. (Unimodality and Nonnegative unimodality) A vector x ∈ Rm is called
unimodal if there exists an integer p ∈ [m] such that the tonicity of x changes at p from increasing
to decreasing, i.e., x1 ≤ x2 ≤ · · · ≤ xp and xp ≥ xp+1 ≥ · · · ≥ xm. We let Um be the set of unimodal
vectors in Rm, and let Um,p be the set of vectors in Um with tonicity change at p. A vector x ∈ Um

is called nonnegative unimodal (Nu) if it is elementwise nonnegative, i.e.,

0 ≤ x1 ≤ x2 ≤ · · · ≤ xp and xp ≥ xp+1 ≥ · · · ≥ xm ≥ 0, for some p ∈ [m]. (5.1)

We let Um+ be the set of Nu vectors in Rm, and let Um,p+ be the set of Nu vectors in Um+ with tonicity
change at p. A matrix X ∈ Rm×n is Nu if all its columns are Nu, i.e., xi ∈ Um,pi

+ for some pi for all
i. .
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Fig. 5.1. Examples of vectors fulfilling Equation (5.1). The red dots in x-axis indicate the location
of p’s.

There are several remarks regarding the definitions.

• Equation (5.1) means the plot of vector x has a “single peak” on the top of the curve.

• In case of the equalities in (5.1), x may contain plateaus, and for such a Nu vector, the value
of p is non-unique, see Fig.5.1 .

• The value of p is within [m], for the last example in Fig.5.1, it has p = 1.

• Nu generalizes the notion of log-concavity [100]: a vector x ∈ Rm+ is log-concave if

x2
j ≥ xj−1xj+1, for all j ∈ [2,m− 1]. (5.2)

The condition (5.2) is called “log”-concave because applying a log-transform on (5.2) gives
2 log xj ≥ log xj−1 + log xj+1, and the relation aj−1 + aj+1

2 ≤ aj for all j ∈ [2,m − 1] in a
sequence {ai} is called concave. We only focus on Nu in this thesis as log-concavity is only a
special case of Nu.

We now define NuMF.

Definition 5.1.3. (NuMF) Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find two
matrices W ∈ Rm×r, H ∈ Rr×n by solving the optimization problem

min
W,H

1
2‖M−WH‖2F + λg(W)

subject to wj ∈ Um+ for all j ∈ [r],
w>j 1m = 1 for all j ∈ [r],
hi ≥ 0 for all i ∈ [r],

(5.3)

where g(W) : Rm×r → R is a regularizer. We call (5.3) fully-unimodal if all rows of H are unimodal.
We now discuss Problem (5.3).

• The normalization constraint w>j 1m = 1 balances the size of the columns of W, and such
instrumental constraint is for the purpose of handling the scaling ambiguity of the solution, see
the discussion on Equation (1.7) in §1.4.4 . Similarly, we can put the constraint on H instead
of W to achieve the same purpose. Here we put the normalization on columns W as the focus
of NuMF is on the matrix W.

• For NuMF, due to the property of Nu, the rank parameter r can be larger than n (the number
of columns in M), which is different from NMF, SNMF and minvol NMF. We come back to
this issue in Theorems 5.3.1, 5.3.2, and we give an example illustrating this phenomenon in
§5.4.
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5.1.1 Motivations and applications of NuMF

Similar to minvol NMF, NuMF finds application in nonnegative unmixing problem. Here the specialty
of NuMF is that it fits the data that exhibits unimodal structure, typically appeared in analytical
chemistry such as the curve resolution problem, chromatography and flow injection analysis [16], and
dynamics of infectious diseases [49].

GCMS Nu constraints is typical in the analysis of gas chromatography - mass spectrum (GCMS)
data. The goal of GCMS is chemical unmixing and identification: given a chemical sample (data),
identify the different substances presented in the sample; see Table 5.1 . We can see that the goals
in Table 5.1 are highly similar to that in Table 3.1 on HU and in Table 4.1 on audio BSS.

Table 5.1: Three typical goals in GCMS.
GCMS objective Task in NuMF

(1) Identify the number of substances. Find r.
(2) Obtain the spectral profile of the substances. Find W.
(3) Identify the abundance of the substances. Find H.

We now briefly introduce the (simplified) mechanism of GCMS. Note that the purpose here is to
introduce the minimum background on GCMS for the purpose of this thesis. We refer to the book
[58] for a comprehensive treatment of GCMS.
Fig.5.2 shows the simplest setup of a CGMS system called headspace technique [58]. Consider the

chemical sample containing two chemicals A and B in liquid state. The sample is heated up and the
chemicals change from liquid to gas, the gas will leave the bottle and enter a very long tube called
the analytical column. Due to the physical properties of the chemicals, A and B will have a different
movement speed in the tube, and hence they will arrive at the sensor at different time. The sensors
then produces two type of data: gas chromatography (GC) data and mass spectrometery (MS) data,
according to the machinery setup. In GC data, the x-axis is the arrival time of the gas and the
y-axis is the sensor respond. In MS data, the x-axis is the mass-to-charge ratio and the y-axis is
the intensity. We stress that here the axes are not the main concern, the key idea here is the curves
in the data correspond to individual chemicals, and we can identify the chemical presented in the
sample by analyzing the data. As the axes are not important for the purpose of this thesis, from
now on we do not explicitly label the axes, we just plot the axes as index of the vector.
Refer to Fig.5.2 , the GCMS data are typically formed as some conic combinations of Nu vectors,

so it is justifiable to use NuMF for decomposition. In Fig.5.3 , we shows an example of real GCMS
data on Belgian beers.
To learn the underlying vectors that generate the data, Nu constraints are added to the data model,

which can be formulated as NuMF. As unimodal-shaped GCMS data often corresponds to a specific
chemical, the Nu property helps to identify the chemicals presented in the sample. Without the
unimodality, NMF alone may not be able to identify the chemicals as the decomposition may contain
multiple peaks, we come back to this issue when we present the experimental result on CGMS data
in §5.4 .

Dynamics of infectious diseases Another motivation of NuMF is that it can be used to model the
dynamics of Nu time series, such as the dynamics of infectious diseases. Fig. 5.4 shows an example
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Fig. 5.2. The simplest setup of a CGMS system called headspace technique. Figure is modified
from Fig. 2.16 of [58].

Fig. 5.3. A subset of CGMS data on Belgian beers [105], showing it is Nu.

on Measles incidence in London, the time curves are obviously Nu.

Fig. 5.4. Measles incidence in 2-week periods (in hundreds) in London from 1944 to 1965, showing
it is Nu. Here x-axis is time (in week) and the y-axis is the number of incidence. Figure
is reproduced from [49]

5.1.2 A characterization of the set of nonnegative unimodal vectors

The set Um,p+ (Definition 5.1.2) is convex: x,y ∈ Um,p+ implies (1− λ)x + λy ∈ Um,p+ for all λ ∈ [0, 1],
but the set Um+ is nonconvex for m ≥ 3. For example, let ei be the standard basis vector, then both
ei and ej are unimodal, but the vector (1 − λ)ej + λej with λ ∈ [0, 1] is not, if |j − i| ≥ 2. This
example explains why the set Um+ is nonconvex: the sets Um,i+ with different i are disjoint, and the
set Um+ =

⋃
i U

m,i
+ which is the union of disjoint convex sets, is nonconvex for m ≥ 3.

When m ≥ 3, the subproblem of solving W in NuMF (5.3), while fixing H, is nonconvex, and
hence NuMF problem is nonconvex and block-nonconvex.
In order to solve the nonconvex the subproblem on W in NuMF, we make use of the following
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convex characterization of the Nu set. Consider the union of two Nu sets: Um,p+ ∪ Um,q+ , such set is
describing the union of two systems of monic inequalities, and this union is a convex set if |p− q| ≤ 1
(see Equation (5.4a) below). This motivates to work with the set Um,p+ ∪Um,p+1

+ (where p is known),
instead of the general nonconvex set Um+ (where p is unknown). The set Um,p+ ∪ Um,p+1

+ admits a
linear (and thereby convex) characterization:

x ∈ Um+︸ ︷︷ ︸
“x is unimodal”

⇐⇒ ∃p s.t. x ∈ Um,p+ ∪ Um,p+1
+︸ ︷︷ ︸

a convex set

(5.1)⇐⇒



0 ≤ x1

x1 ≤ x2
...

xp−1 ≤ xp

xp+1 ≥ xp+2
...

xm−1 ≥ xm

xm ≥ 0︸ ︷︷ ︸
Union of two systems
of monic inequalities.

⇐⇒ Upx ≥ 0, (5.4a)

so we have a matrix-form compact representation of the Nu membership of x, where

Up =




1
−1 1

. . . . . .
−1 1


p×p︸ ︷︷ ︸

D

0p×(m−p)

0(m−p)×p


1 −1

. . . . . .
1 −1

1


(m−p)×(m−p)︸ ︷︷ ︸

D



∈ {−1, 0, 1}m×m, (5.4b)

is a matrix built by two first-order difference operators D. By construction, the matrix Up is block
tri-diagonal and full rank. Being block tri-diagonal, the inverse of Up is a block tridiagonal positive
matrix. Such property becomes useful in solving NuMF, we comeback on this issue in §5.1.7 .
The index p plays a critical role in NuMF, as knowing p makes NuMF easier to solve, which is the

main focus in the next subsection. Note that it is most likely that NuMF is a NP-hard problem.

5.1.3 Solving NuMF when p is known

NuMF essentially asks for searching r vectors in the set Um+ to be the matrix W. If the value of p
of these columns in W are all known, NuMF Problem (5.3) can be solved by utilizing the convex
characterization of the Nu set, i.e., Equation (5.4), to transform NuMF Problem (5.3) to the following
problem

min
W,H

1
2‖M−WH‖2F + λg(W) s.t. Upj wj ≥ 0, w>j 1m = 1, hi ≥ 0 for all i, j ∈ [r]. (5.5)

where pj is the (known) index of the tonicity change of the optimal solution vector w∗j . The difference
between Problems (5.5) and (5.3) is that the constraints on W in (5.5) are convex. Hence, if the
regularizer g is a convex function in W, the subproblem on W of Problem (5.5) is convex.
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HALS discussed in §1.4.3 can be adopted to solve Problem (5.5). We can update wi and hi by
solving the following two minimization subproblems

argmin
hi

Q(hi) = ‖wi‖22
2 ‖hi‖22 − 〈M>

i wi,hi〉 s.t. hi ≥ 0, (5.6a)

argmin
wi

Q(wi) = ‖h
i‖22
2 ‖wi‖22 − 〈Mi(hi)>,wi〉+ g(wi) s.t. Upiwi ≥ 0, w>i 1m = 1. (5.6b)

Subproblem (5.6a) has closed-form solution given by the HALS Equation (1.4):

h =
[
M>

i wi

]
+

/
‖wi‖22.

For subproblem (5.6b) , if g(wi) is a quadratic function of wi, say g(W) = det(W>W), then the sub-
problem is a Linearly Constrained QP (LCQP). For example, g(W) = det(W>W), using Equation
(2.6) ,

Q(wi) = 1
2w>i

(
‖hi‖22Im + λγi(Im −W−i(W>

−iW−i)>W>
−i)
)
wi − 〈Mihi

>
,wi〉+ c.

where γi = det(W>
−iW−i) and W−i denotes matrix W without wi. With such Q(wi), subproblem

(5.6b) has the form

argmin
x

Q(x) = 1
2〈Θx,x〉 − 〈θ,x〉 s.t. Ax ≥ 0, x>1 = 1, (5.7a)

where

Θ = ‖hi‖22Im + λ det(W>
−iW−i)(Im −W−i(W>

−iW−i)>W>
−i), (5.7b)

θ = Mihi
>
, (5.7c)

A = Upi , (5.7d)

Problem (5.7) can be solved by Interior Point Method (IPM). However IPM is slow when the dimen-
sion m is large, and for practicality, we propose to solve Problem (5.7) by the Accelerated Projected
Gradient (AccProjG) method, where we put the details in §5.1.7 .

5.1.4 Brute force approach to NuMF

Solving Problem (5.5) gives solution to Problem (5.3) when the values of pj in the convex charac-
terization (5.4) for all wj are known. In general they are unknown and should be optimized. In this
sense, NuMF is a problem with r integer variables p1, . . . , pr.

Definition 5.1.4. (NuMF) Given a matrix M ∈ Rm×n+ and a factorization rank r ∈ N, find
two matrices W ∈ Rm×r, H ∈ Rr×n, and the indices p1, . . . , pr ∈ [m], by solving the nonconvex
optimization problem

min
W,H
p1,...,pj

1
2‖M−WH‖2F + λg(W) s.t. Upj wj ≥ 0, w>j 1m = 1 hi ≥ 0 for all i, j ∈ [r]. (5.8)

As Problem (5.8) involves integer variables, it can be cast as a Mixed-Integer Programming (MIP)
problem by introducing another set of binary variables that “turn on or off” of the structure Upi .
We propose to solve this problem using brute-force.
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How to find p naively We now discuss a simple but naive way to find those p’s, in which we will
improve it in §5.2 using multi-grid. Consider the problem of finding p for a column in W. A naive
way to find p is brute force: solve Problem (5.7) for all possible values of p, and pick the one with
the best fit, i.e., we solve

min
p∈JmK

{
argmin

w

{
Q(w) s.t. Upw ≥ 0,w>1m = 1

}}
, (5.9)

where JmK denotes the set of odd integers in [m]. Note that the search space of p is JmK instead of [m]
due to the constraint Upx ≥ 0 is representing the inclusion x ∈ Um,p+ ∪Um,p+1

+ in the characterization
(5.4).
Note that, the solution p of Problem (5.9) can be non-unique, see the discussion after Definition

(5.1.2).
The complete algorithm is shown in Algorithm 3.

Algorithm 3 A simple but naive algorithm to solve NuMF
1: Input: A matrix M ∈ Rm×n+ , parameters hp ∈ {1, 2, 3} (extrapolation/projection option of H).
2: Output: matrices W,H that approximately solve (5.8).
3: Initialize W,H
4: for k = 1, . . . until some criteria is satisfied do
5: for i ∈ [r] do
6: Update hi by the HALS Equation (1.4): h =

[
M>

i wi

]
+

/
‖wi‖22.

7: if pi is known then
8: Update wi by solving (5.7), using any LCQP solver or AccProjG (see §5.1.7)
9: else

10: Update wi by solving (5.9), using any LCQP solver, or AccProjG (see §5.1.7)
11: end if
12: end for
13: end for

This algorithm works but is not practical for large m, as solving (5.9) requires to search for p
among the odd integers in the set JmK with bm2 c number of elements, which is expensive unless bm2 c
is sufficiently small. In fact, updating W in one iteration in Algorithm 3 if p′s are unknown requires

O
(
r × bm2 c × t

)
complexity, where t is the complexity of solving Problem (5.7a) to update one column of W.

5.1.5 Practical ways to improve the brute force strategy

The brute force approach works efficiently when bm2 c is small. When bm2 c is large, there are two
practical ways to improve the efficiency of the brute force strategy: guessing the peak position and
dimension reduction. Both the two methods aim to reduce the size of the search space for p, and we
discuss them below.

Guessing the peak position The first way to improve the brute force approach is to try to guess
the value of p from the data, say using peak detection algorithm [34]. Fig.5.5 shows an example of
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Fig. 5.5. Example of using peak detection on a data vector. Here m = 947 and the vector comes
from a real GCMS data. Using the built-in peak detection findpeaks in MATLAB, 15
peaks are located. Using all the peak locations as the initial guess for p, the peak detection
reduces the search space of p from b947

2 c = 473 to 15.

using the built-in function in MATLAB to detect the peak location of a data vector, which reduces
the search space for p from b947

2 c to 15.
Fig.5.5 shows the result on applying peak detection on a single vector, this trick can be used on

a dataset (i.e., with many vectors). In this case, each data point (vector) in the dataset has its own
set of peaks detected. We can cluster these peaks to get a rough estimate on the peak locations. See
Fig.5.6 for an illustrative example.
It is important to note that, the effectiveness of the peak detection depends heavily on the quality

of the data. Data properties such the peak intensity, peak shapes, degree of peak overlapping and
amount of noise all affect the performance of peak detection.

Dimension reduction step Another way to improve the brute force approach is to use Dimension
Reduction (DR) that reduces m to m′, where m′ � m. There are many DR techniques such as PCA
and sampling, however both PCA and sampling do not preserve Nu, and thus they are not suitable
for NuMF. The DR step we use is multi-grid, which preserves Nu (Theorem 5.2.1). We discuss the
details of multi-grid in the next section.
In the remaining of this section, we 1) review some previous approaches on how to solve the NuMF,

and 2) discus how to solve Problem (5.7a) efficiently with accelerated projected gradient.

5.1.6 Previous approaches on solving NuMF

We now review two approaches on solving Problem (5.9), i.e. the problem on solving on one single
vector in W.
Using dynamic programming To improve the efficiency of brute force approach to solve the

Problem (5.9), an early attempt [16] used dynamic programming. It uses quantization of the entries
of x to the closest value within a set {d1, . . . , dR}, and then performs a brute force search. For
x ∈ Rm, the overall cost of such algorithm is O(R2m), where R is the number of elements of the set
{d1, . . . , dR}. Note that for high accuracy of such approach, R has to be sufficiently large. Therefore,
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Fig. 5.6. Example of using peak detection on a dataset. Here we use the first 100 data points
from the data presented in Fig.5.3, and here the matrix M is a 250-by-100 matrix. Left:
we apply the peak detection on each data column M(:, j), and plot the data with the
labeled peaks. Right: the peak locations plotted against the column index j. From the
distribution of the points, we see 5 clusters. Using k-mean we get the estimate of the 5
peak locations plotted in red line. In this example, the peak detection reduces the search
space of p from b250

2 c = 122 to 5.

this approach can be inefficient when high accuracy is needed. Using such method to update W in
one iteration has the complexity of O(rmc ×R2m).

Projected gradient based on two-branched isotonic projection Another approach is the
projected gradient approach [19, section VI. B]. It is based on the isotonic projection algorithm [88]
with a complexity in O(m). The idea is that, a Nu vector contains an increasing and a decreasing
branch, and each branch is a monotonic sequence. Hence projection on to the Nu set Um+ is equivalent
to two projections onto two monotonic sequence, assuming p is known. Since in general p is not known,
hence the same kind of brute force search discussed in §5.1.4 is required, and it takes O(r×bm2 c×m)
of complexity for this method to update W in one iteration.

The two approaches both have the same overall complexityO(rm2) for updating W in one iteration.

5.1.7 Solving Problem (5.7) using Accelerated Projected Gradient

We now present a method to solve Problem (5.7) using accelerated projected gradient (AccProjG).
As a remark, this subsection is linked with §2.2.1 where we discussed how to solve minvol NMF
subproblem (2.16) on a column of H, here we solve an generalization of that problem.

First we restate Problem (5.7) :

(P) : argmin
x

Q(x) = 1
2〈Θx,x〉 − 〈θ,x〉 s.t. Ax ≥ 0, x>1 = 1.

Directly applying AccProjG on Problem (P) is inefficient as the constraint set {x | Ax ≥ 0,x>1 = 1}
in (P) is difficult to project. Hence, instead of solving (P) using AccProjG directly, we transform (P)
to a problem that is easier to perform the projection. By design, the matrix A in (P) is non-singular,
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so a change of variable y = Ax gives

argmin
y

Q(y) = 1
2〈Qy,y〉 − 〈p,y〉 s.t. y ≥ 0, y>b = 1, (5.10a)

where Q = A−>ΘA−1, p = A−1θ, b = A−11, (5.10b)

where A−> is the inverse of A>. We solve Problem (5.10) by AccProjG (see Algorithm 4), the
solution y∗ is then converted back to x∗ that solves Problem (5.7) by using the relation y = Ax.

Algorithm 4 Accelerated Projected Gradient (AccProjG) that solves Problem (5.10)
1: Input: Q ∈ Rm×m, p, b
2: Output: Vector y that approximately solves (5.10).
3: Initialize ŷ0 = y0 ∈ Rm

4: for k = 1, . . . until some criteria is satisfied do
5: yk = P

(
ŷk−1 − Qŷk−1−p

‖Q‖2

)
% Projected Gradient Step

6: ŷk = yk + k−1
k+2(yk − yk−1) % Extrapolation step

7: end for

The key in Algorithm 4 is the projection operator P . Given a vector z, P (z) is defined as

P (z) = argmin
x

1
2‖x− z‖22 s.t. x ≥ 0, x>b = 1. (5.11)

This problem is the projection onto an irregular simplex described by the vector b. By design,
b (5.10b)= A−11 (5.7d)= U−11. As U is built by two first-order difference operator (see Equation (5.4b)),
then U is block tri-diagonal and the inverse U−1 is a positive block tri-diagonal matrix, hence b > 0
and Problem (5.11) satisfies the Slater’s condition, i.e., the feasible region has a non-empty relative
interior. The solution to Problem (5.11) can be derived by using the partial Lagrangian associated
with the equality constraint:

L(x, ν) = 1
2‖x− z‖22 + ν(x>b− 1),

where the optimal x, denoted as x∗, can be obtained as

x∗ = argmin
x≥0

L(x,ν) = argmin
x≥0

1
2‖x− z‖22 + νx>b

= argmin
x≥0

m∑
i

(1
2(xi − zi)2 + νbixi

)
.

The terms 1
2(xi − zi)2 + νbixi is minimized for xi ≥ 0 when xi = [zi − νbi]+. Therefore, solution to

Problem (5.11) reduces to the following hard-thresholding operator

x = [z− νb]+, (5.12)

where the Lagrangian multiplier ν is the root of the following piece-wise linear equation
m∑
i=1

max{0, zi − νbi}bi − 1 = 0, (5.13)

with zi
bi

(i ∈ [m]) as the break points. Assume there are K ≤ m nonzero break points, Equation
(5.13) can be solved in O(m + K logm) based on sorting the break points. The over complexity of
the projection step is hence in between O(m) and O(m logm), based on the value K.
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5.2 Multi-grid algorithms for solving NuMF

In this section, we use multi-grid method to speed up Algorithm 3. The idea is to form a problem
in a coarse grid, then search p by solving Problem (5.9) in the coarse grid by brute force, after that
we interpolate the solution on the coarse grid back to the fine grid, and use it as the initialization
for solving the original NuMF Problem. In particular, The problem in a coarse grid is obtained by
performing a restriction on the data. When the size of the problem in coarse grid is sufficiently
small, we use the brute force approach to solve Problem (5.9) to find p. Then we use the p to solve
the original NuMF problem; see Algorithm 5. In the subsequent sections, we discuss the details on
each step in Algorithm 5. Then in the second half of this section, we give the justification of why
multi-grid is used for NuMF: it preserves NU properties of the vectors, (Theorem 5.2.1).

Algorithm 5 Multi-grid NuMF
1: Input: M ∈ Rm×n+ (data matrix), r (factorization rank)
2: Output: Matrices W,H that approximately solve (5.8).
3: Initialize W0 ∈ Rm×r+ ,H0 ∈ Rr×n+

4: Perform restriction: M[N ] = RN . . .R1M, W[N ]
0 = RN . . .R1W0.

5: Solve problem in coarse grid: [W[N ],H′,p[N ]] =NuMF(M[N ],W[N ]
0 ,H0) by Algorithm 3.

6: Perform interpolation: [W0,p0] =Interpolation(W[N ],p[N ]).
7: Solve original problem [W,H] =NuMF(M,W0,H′,p0) by Algorithm 3.

5.2.1 The restriction operator preserves Nu property

In this subsection we propose a restriction operator that preserves the Nu property.

Restriction To make the optimization problem small, instead of solving the origin problem (denoted
by P0) in the original row-dimension m, we solve a new problem (denoted by P1) in the new row-
dimension m1. In the problem P1, instead of dealing with the objective function ‖M −WH‖2F ,
we deal with the objective function ‖M[1] −W[1]H‖2F , where M[1] = RM and W[1] = RW have
row-dimension m1 with m1 < m and R is the restriction operator defined as follows.

Definition 5.2.1. Restriction operator R : Rm+ → Rm1
+ is defined as x � Rx, where R ∈ Rm×m1

+

with m1 < m has the form of (5.14). If the input is a matrix, the operator is defined column-wise,
i.e., for a matrix X with n columns, RX := [Rx1 . . .Rxn].

There are many choices to construct R, for simplicity, we stick with the following

R(a, b) =



a b

b a b

. . . . . . . . .

b a b

b a


, a ≥ 0, b ≥ 0, a+ 2b = 1. (5.14)
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For example

R
(1

2 ,
1
4

)
=



1
2

1
4
1
4

1
2

1
4

. . . . . . . . .
1
4

1
2

1
4
1
4

1
2


.

With R applied on the data, the problem P1 has a smaller size than problem P0, the cost of performing
brute force search is reduced, from searching the odd integers in JmK to the odd integers in Jm1K.

What we have discussed is the 1-layer grid method. In case m1 is still large, we can repeat the
whole process to obtain a new problem with smaller row-dimension. In the general N -level grid
method, we have a problem PN with a N -level restricted objective function ‖R[N ]M−R[N ]WH‖2F
where R[N ] = RNRN−1 . . .R1. The search space on p of problem PN is now JmN K with mN � m,
where mN is the row-dimension of RN

Remark 3. In the above multi-grid process, we only consider the dimension reduction on the row-
dimension, the column dimension is untouched.

Multi-grid preserves Nu An important property that makes multi-grid applies to NuMF is that
the restriction operators in the form of (5.14) preserve the Nu property. Fig.5.7 gives some exam-
ples showing that multi-grid approximation preserves unimodality. Formally, we have the following
theorem.

Theorem 5.2.1. Let x ∈ Um,p+ and R ∈ Rm×m1 with the structure defined in (5.14). Then y =

Rx ∈ Um1,py

+ with py ∈
{
p

2 − 1, p2 ,
p

2 + 1
}
.

Proof. The matrix R in the form of (5.14) can be decomposed as the sum of three matrices R(1),R(2),R(3)
that:

• R(1) only contains the elements a in R.

• R(2) only contains the elements b on the right of a in R, i.e., the upper triangular part of R

• R(3) only contains the elements b on the left of a in R, i.e., the lower triangular part of R

For the ease of understanding, below we give a simple illustrative example with m = 5 and m1 = 3.

R =


a b

b a b

b a

 = a


1 0

0 1 0
0 1


︸ ︷︷ ︸

R(1)

+ b


0 1

0 0 1
0 0


︸ ︷︷ ︸

R(2)

+ b


0 0

1 0 0
1 0


︸ ︷︷ ︸

R(3)

,

The matrices R(i), i = 1, 2, 3 are sampling operators multiplied by a constant. These sampling
operators are either picking the odd or even indices of x in the product R(i)x. As a sub-vector of a
Nu vector is Nu, so the vectors R(i)x are all Nu. The remaining task in the proof is to show the sum∑3
i=1 R(i)x is Nu by using the characterization of Nu set in Equation (5.4): we show that p values

of the vectors R(i)x are integers that are at most 1 distance away from each other.
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Without loss of generality, we assume p of x is even1 , so for R(2) and R(3), which are sampling
the even entries of the vector x, the products R(2)x and R(3)x have p value equal to p

2 , and their
sum is hence Nu since they share the same p.

For R(1), it is easy to see that the product R(1)x is a Nu vector with p value either p2 − 1, p2 or
p

2 + 1. These values are all at most 1 distance away from p

2 .

We give an illustration of Theorem 5.2.1 in Fig.5.7 , where we showed the plots of restriction
operator applied on three Nu vectors.
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Fig. 5.7. Three Nu vectors and their multi-grid restrictions across 4 levels. All the vectors in this
figure are Nu.

5.2.2 Interpolating the solution on coarse grid to fine grid

After the restriction has been applied on the data, we solve the problem on the coarse grid, and the
solution is then interpolated back to the original fine grid by the interpolation operator.
Mathematically, after we solve the problem PN , we get (W[N ],H,p[N ]). For the matrix H, as we

do not perform restriction on the column-dimension, hence H obtained by solving problem PN has
the size r × n, which can be used directly as initialization for solving problem P0. For the matrix
W[N ], we can use the interpolation to obtain a matrix in the original dimension in the fine grid,
which is then used as the initialization for solving problem P0. Finally, the vector p[N ] obtained by
solving problem PN correspond to the peak locations in RmN , we interpolate p values to back to
Rm, denote as p0. Such p0 is then used to solve NuMF in Algorithm 3 , where now we have the
information of pi and hence no brute-force search is needed. That is, we do not enter step 10 in
Algorithm 3 , which saves lot of computational resources.

1If p is odd, we can consider the vector [x(1) x], i.e., concatenate x(1) to x. Such concatenation does not change
anything
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Remark 4. We give a remark concerning the implementation. It is important to note that, due
to errors introduced by the restriction and interpolation processes, the vector p0 obtained from p[N ]

may not be precisely accurate for solving NuMF in the original dimension. Hence, as a safeguard,
we still perform a brute-force search for p values of NuMF in the original dimension, but we only
search it in a small neighborhood of p0. The size of this neighborhood depends on the interpolation
and restriction operators. Say, for R defined in Equation (5.14), we search ±5 of the values in p0.

5.3 Preliminary identifiability results of NuMF

In this section we present the preliminary results on the identifiability of NuMF, i.e., when does
solving NuMF gives a unique solution. We start by introducing the necessary terminologies, and
then we present the lemmas and the identifiability results.
First we give the notation about the support of Nu vectors. The support of a vector x ∈ Um+ is

denoted as supp(x), defined as

supp(x) = { i | xi 6= 0, i ∈ [m] }.

The support of any Nu vector contains only a single close interval, hence we denote supp(x) = [a, b].
That is, xi = 0 for i < a or i > b, and xi > 0 for a ≤ i ≤ b. With the notion of support, we define
the notion of disjoint between supports as follows.

Definition 5.3.1. (Disjoint, adjacent and strictly disjoint) Consider two vectors x,y ∈ Um+
with supp(x) = [ax, bx] and supp(y) = [ay, by]. The two vectors are called disjoint if supp(x) ∩
supp(y) = ∅. Next, on top of disjoint, we call the two vectors adjacent, if supp(x), supp(y) are
adjacent to each other, i.e., ay = bx + 1. Finally, on top of disjoint, we call the two vectors strictly
disjoint if supp(x) and supp(y) are not adjacent to each other.

Intuitively, two vectors that are strictly disjoint means that there is at least one zero in between
their supports. This property in the strictly disjoint case becomes handy for proving the identifiability
of NuMF as the conic combination of strictly disjoint vectors can not be Nu.
The opposite to disjoint is overlap. In short, there are two possibilities on overlap of supports:

complete overlap and partial overlap. Concerning the preliminary identifiability result on NuMF, we
do not go deep into the overlap cases.

5.3.1 When does conic combination preserves Nu?

To study the identifiability issue of NuMF, we have to first understand how conic combinations of Nu
vectors behave. We now introduce a feasibility problem: given two linearly independent Nu vectors
x,y ∈ Um+ , find α ∈ R++ and β ∈ R++ such that the vector z := αx + βy is Nu. This feasibility
problem can be simplified as follows: as α, β are positive, we can set one of them as 1, and the
simplified problem now reads

Given two linearly independent Nu vectors x,y ∈ Um+ ,
Find α ∈ R++ such that z := αx + y is Nu.

(5.15)

Regarding this feasibility problem, the results are as follows. If the support of x,y are strictly
disjoint, then Problem (5.15) has no solution, see Lemma 5.3.1 . If the support of x,y are adjacent
to each other, then feasibility of Problem (5.15) depends on the structure of the vectors, see lemmas
5.3.2 and 5.3.3 . We now discuss these lemmas.
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Lemma 5.3.1. If x,y are strictly disjoint, then problem (5.15) has no solution.

Proof. It is trivial based on definitions.

For the adjacent case, without loss of generality let x,y ∈ Um+ with supp(x) = [a, b], supp(y) =
[c, d], a ≤ b < c ≤ d and c = b + 1. An observation is that, if x is monotonically increasing within
its support, then there exists a sufficiently small α > 0 such that z = αx + y is Nu, regardless of the
toncity of y. See Fig.5.8 for an example.

Fig. 5.8. Illustrative example of sum of two Nu vectors with adjacent support is Nu. Here supp(x)
is the first half of [m] and supp(y) is the second half of [m]. Note that x is unimodal in
[m] but monotonic in supp(x).

The intuition here is that x is forming a “left hand sized tail” in z. The same conclusion can be
drawn on y on forming a “right hand sized tail” in z. Such observation leads to Lemma 5.3.2 and
5.3.3 .

Lemma 5.3.2. Let x,y ∈ Um+ with supp(x) = [a, b], supp(y) = [c, d], a ≤ b < c ≤ d and c = b + 1.

Then if x is monotonically increasing in supp(x), then y(c)
x(b)x + y solves problem (5.15).

Proof. On the first case, we have supp(z) = supp(x) ∪ supp(y) = [a, d] that z(i) = αx(i) if i ∈ [a, b],
and z(i) = y(i) if i ∈ [c, d]. As x is monotonically increasing for i ∈ [1, b], the sub-vector z(1 : b) is
monotonically increasing. Regardless of the tonicity of y, the vector z is Nu as long as z(b) ≤ z(c),
or equivalently αx(b) ≤ y(c). As x(b) > 0, we have α ≤ y(c)

x(b) . The vector y(c)
x(b)x + y solves problem

(5.15).

Lemma 5.3.3. Let x,y ∈ Um+ with supp(x) = [a, b], supp(y) = [c, d], a ≤ b < c ≤ d and c = b + 1.
Problem (5.15) has no solution

• if x is monotonically decreasing in supp(x), and there exists j ∈ [c, d − 1] such that y(j) <
y(j + 1).

• if y is monotonically increasing in supp(y), and there exists i ∈ [a+1, b] such that x(i−1) > x(i).

• if both x, y are not monotonic in their support.

Proof. The three cases means that there exists i ∈ [a+1, b] such that x(i−1) > x(i) and j ∈ [c, d−1]
such that y(j) < y(j + 1). For all α > 0 we have z(i− 1) > z(i) and z(j) < z(j + 1) for j > i. This
violates Definition 5.1.2, so z is not Nu.

We now discuss more about these lemmas. For Lemma 5.3.2 , if y is monotonically decreasing in
supp(y), then by symmetry x + y(c)

x(b)y solves problem (5.15). For Lemma 5.3.3 , intuitively it means

that there is a sub-vector z(i− 1, i, j, j + 1) in z containing a “V”-shape, so z is not unimodal.
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5.3.2 Preliminary results on identifiability of NuMF

Here we give the preliminary identifiability result of NuMF on three special cases:

1. The strictly disjoint case for any value of r; see Theorem 5.3.1 .

2. The adjacent case for any value of r; see Theorem 5.3.2 .

3. On demixing two non-fully overlapped Nu vectors; see Theorem 5.3.3 .

Theorem 5.3.1. (Identifiability of NuMF: strictly disjoint case) Let (W̄, H̄) be the matrices
generating the data. Solving (5.3) recovers (W̄, H̄) if the followings are satisfied:

1. W̄ is Nu and all the columns have strictly disjoint support. Q

2. H̄ ∈ Rr×n+ has n ≥ 1, ‖h̄i‖∞ > 0 for i ∈ [r].

Proof. The proof is trivial, we include it here for completeness. Assume there is another solution
(W#,H#) that solves the NuMF. The columns w̄j contribute in M a series of disjoint unimodal
components. For the solution W∗H∗ to fit M, each column of W∗ has to fit each of these disjoint
component in M, and hence W∗ recovers W̄, subject to permutation and scaling. Thereby, we have
H∗ recovers H̄.

Note that the first assumption in Theorem 5.3.1 seems very strong, but in fact many CGMS data
fulfill this assumption: when the physical properties of the chemicals in the sample are very distinct,
say their movement speeds in the gas phase are highly different, then there will be a huge gap between
their Nu curves. Furthermore, note that the theorem holds even for any n even for n = 1 or r ≥ n,
which is not common in other NMF models (e.g. SNMF, minvol NMF) that assume r � min{m,n}.
Now we move to the adjacent case.

Theorem 5.3.2. (Identifiability of NuMF: adjacent case) Let (W̄, H̄) be the matrices
generating the data. Solving (5.3) recovers (W̄, H̄) if the followings are satisfied:

1. W̄ is Nu and adjacent.

2. H̄ ∈ Rr×n+ has n ≥ 1, ‖h̄i‖∞ > 0 for i ∈ [r].

3. Independent sensing: for each index pair (j1, j2), j1, j2 ∈ [r], j1 6= j2 such that the vectors
w̄j1 , w̄j2 satisfy the condition of the vectors x,y in Lemma 5.3.2 , the j1, j2 rows of H contains
a positive diagonal block D̄.

Proof. By assumption 3 in the theorem, those w̄j1 , w̄j2 satisfying Lemma 5.3.2 will have to appear
separately in the data. So for W∗ will have to recover them to for fitting the data M. Thereby,
we have H∗ recovers H̄. Note that the fitting is subject to permutation and scaling, which does not
change anything.
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Remark 5. We give a toy example to illustrate the importance of assumption 3 in Theorem 5.3.2 .
Let m = 6 and r = 3 and we have W̄ as follows with a few additional matrices:

W̄ =



1
1

1
1

1
1


, E1 = 1.5



1
1

1
1

1
1


, B1 =



1
1
1

1
1

1


,

C1 =


1.5
1.5
1.5

 , C2 =


1.5 1.5
1.5 1.5
1.5 1.5

 , C3 =


1.5

1.5
1.5

 ,
where an empty slot represents zero.
Here the pairs (w̄1, w̄2), (w̄2, w̄3) satisfy Lemma 5.3.2 . If assumption 3 is not satisfied, say H̄

has the form of C1 or C2, then M contains copies of the vector [1 1 1 1 1 1]> (multiplied by 1.5). In
this case, the problem is not identifiable as B1 is a feasible solution for W∗. Note that there does
not exists a full rank matrix Q ∈ R3×3 such that W̄ = B1Q.
If assumption 3 is satisfied, say H̄ has the form C3, then the data M has the form of E1. In this

case, the problem is identifiable as W∗ can only have the form of W̄ (subject to permutation and
scaling).

We now present the last preliminary result on general identifiability for NuMF with W limited to
only two columns. This result is general in the sense that it includes the overlapped vectors which
is not addressed in the two previous theorems. This result is preliminary in the sense that r = 2,
unlike the two previous theorems that work for any r.

Theorem 5.3.3. (On demixing two non-fully overlapped Nu vectors) Given two Nu vectors
x,y in Um+ that supp(x) * supp(y) and supp(x) + supp(y). Suppose x,y can be generated by two
non-zero Nu vectors u, v as

x = au + bv and y = cu + dv (5.16)

with nonnegative coefficients a, b, c, d. Then the only possibilities for (5.16) are either u = x, v = y
or u = y, v = x.

Proof. First without loss of generality we assume u 6= v otherwise it is trivial. Let X = UQ, where

X := [x,y], U := [u,v] and Q :=

a c

b d

. As a, b, c, d are all nonnegative hence Q ≥ 0.

The conditions that x,y are Nu with supp(x) * supp(y) and supp(x) + supp(y) imply that
x 6= 0,y 6= 0, x 6= y and

supp(x) + supp(y) =⇒ ∃i∗ ∈ [m] s.t. xi∗ > 0, yi∗ = 0, (5.17a)

supp(y) + supp(x) =⇒ ∃j∗ ∈ [m] s.t. yj∗ > 0, xj∗ = 0. (5.17b)

Then x 6= y and u 6= v imply X,U,Q are all rank-2, hence

U = XQ−1 = X

 d −c
−b a

 1
ad− bc

, ad− bc 6= 0. (5.18)
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Put the indices i∗, j∗ in (5.17a),(5.17b) into (5.18), together with the fact that x,y,u,v are nonneg-
ative give Q−1 ≥ 0.
Lastly both Q ≥ 0 and Q−1 ≥ 0 imply Q is a permutation of a positive diagonal matrix [29],

where here the diagonal matrix here is the identity matrix.

It is trivial that, by making use of Theorem 5.3.3 , we immediately arrive at the identifiability of
NuMF, for the case r = 2, under the conditions that the columns of W are Nu, and H is nonnegative.
Notice that here we do not have condition on the interactions between the supports of the columns
of W. In general, generalizing Theorem 5.3.3 to any value of r gives the general identifiability of
NuMF. However, no result is obtained so far.
The three theorems presented so far are addressing the identifiability of NuMF from two angles:

1) the number of columns in W, 2) how the supports of these columns interact with each other.
Neither of the three theorems is complete. A complete theorem on identifiability of NuMF should
address all possible interaction between supports of the columns in W for any value of r, and this is
a topic of further research.

5.4 Preliminary experimental results of NuMF

In this section, we present numerical experiments of NuMF on two synthetic datasets. We set λ = 0
(no regularization) unless it is specified. Note that in real world application, because of the present
of noise, real world data is not exactly Nu, but it will be close enough if the noise is small.

Simple toy example 1: three overlapped Nu vectors We consider a toy example to illustrate how
Nu property helps to recover the ground truth solution, and how multi-grid improves convergence.
Let (m,n, r) = (100, 6, 3). We construct a Nu matrix W such that the second component overlap
with the other two components. Let c = 1√

2
and ε = 0.001, the matrix H is constructed as

H =


c+ ε 1− c− ε c+ ε 1− c− ε 0 0

1− c− ε c+ ε 0 0 c+ ε 1− c− ε
0 0 1− c− ε c+ ε 1− c− ε c+ ε

 .
which is the Equation (2.9) that fulfills the SSC condition described in §2.1.5 .
Using the W and H we construct the data matrix M = WH. The NuMF problem with r = 3 is

then solved with multi-grid method with 1 and 2 layers. For comparisons, we also solve the problem
with no grid. The result is shown in Fig.5.9 , indicating that multi-grid approach can significantly
speed up the convergence of the algorithm. We do not compare the result with other algorithms
mentioned in §5.1.6 as they have similar complexities with the method with no grid in Fig.5.9 .

Simple toy example 2: with r > n In this example, we illustrate a special property of NuMF that
it is possible for r > n. Here the data M is a 295-by-1 matrix. Such matrix is in fact a column of
the H matrix obtained by decomposing an audio spectrogram of “Mary had a little lamb”, discussed
in §4 . We will discuss the application of this specific NuMF in §4 . In this M, we have n = 1 and
r = 2. NuMF is able to decompose the data M into two Nu vectors, as shown in Fig.5.10 . Notice
that here r = 2 > 1 = n, which is not possible for NMF, SNMF and minvol NMF. This example
showed that, under the Nu property, it is possible for r > n, as long as these r components can be
distributed within the interval [1, 2, . . . ,m].
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Fig. 5.9. Results of NuMF on the toy example 1: three overlapped Nu vectors. Top row: The
matrix Wtrue and M. Mid row: results of the algorithms plotted against time. All
algorithms run 100 iterations with SNPA initialization. For algorithms with multi-grid,
the computational time taken on the coarse grid are also taken into account, as reflected
by the time gap between time zero and the first dot of the curves. The result show that
multi-grid can significantly improve the convergence speed of the method. Bottom rows:
The plot of W (scaled), where red curve denotes the ground truth and the blue curve
denotes the estimate. The result show that NuMF can identify the solution correctly
while SNMF (obtained by SNPA) cannot.

On real dataset: GCMS data of Belgian beer We now apply NuMF on the Gas chromatogra-
phy–mass spectrometry (GCMS) data of Belgian beers of Fig.5.3 , the result is shown in Fig.5.11. For
comparisons, we also plot the results obtained from NMF and SNMF model. As expected, NuMF
can decompose the data into individual Nu components, while NMF and SNMF cannot, as some of
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Fig. 5.10. Results of NuMF on the toy example 2: with r = 2 > 1 = n. Here NuMF can be used to
decompose a vector into Nu components. This example also empirically verifies Theorem
5.3.1 , illustrated by the small residue of M −H(i) ∗W (:, i) in the support supp(W (:, i)).

their components are highly mixed with multiple peaks.

Fig. 5.11. Decomposing GCMS data of Belgian beer with r = 7. The plots are columns of W
obtained by three methods. The three methods have similar relative data fitting error
(about 10%). All the vector are scaled so that the largest entry has size 1. The solution
provided by NuMF has the best performance for identifying the chemicals.

5.5 Chapter summary and perspectives

In this chapter, we introduced a new model of NMF, namely Nonnegative Unimodal Matrix Factor-
ization (NuMF). We gave a characterization of the NU set, and proposed a brute-force heuristic to
solve it, in which the heuristic is accelerated made by a dimension reduction step based on multi-grid
method that is shown to preserves unimodality. We gave three preliminary results on the identifi-
ability of NuMF under three special cases, and we present numerical experiments on synthetic and
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real datasets to illustrate the effectiveness of multi-grid and as well as giving empirical evidences to
support the findings.
As the result on NuMF are preliminary, there are many open problems.

• Restriction operators preserve NU and nonuniform grid Currently we only show a
special restriction operator preserves NU. Showing a class restriction operators preserve NU is
still open. Furthermore, currently the restriction R performs a uniform grid on scaling down
the problem. It will be interesting to investigate the use of nonuniform grid which is more
adapted to the data structure on searching p.

• General identifiability Identifiability of NuMF in general remains open.
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6 Tensor algebra and factorization
You can’t learn too much linear algebra.

Benedict Gross

In this chapter we discuss tensor factorization and the solution approach to it.

Chapter organization We first give a review on the formalism of tensor for the purpose of
this thesis in §6.1, where we give the notation and terminology of tensor algebra. Then, we
focus on the tensor model named Canonical Polyadic Decomposition (CPD) in §6.2, where we
showed that NMF and NTF problems are all constrained CPD problems. Finally, in §6.3 we
discuss a general solution approach on solving CPD, namely the Block Coordinate Descent
(BCD) algorithm framework.

6.1 A short review on the formalism of tensors

In this chapter, we review the formalism for tensors and present several concepts and notations in
tensor decomposition. As stated in §1 , tensor problems arise as a generalization of matrix problems,
the vast background of tensors makes it impossible to review all aspects. Hence here we only give
the minimum necessary background on tensor for the purpose of this thesis. For a detail treatment
of tensor, see for examples [62, 23, 97].
A N -way array or N -th order tensor T is a multidimensional array in the product RI1 × · · · ×RIN

of the vector spaces RIi for i ∈ [N ], where [N ] denotes the integer set {1, 2, . . . , N}. A vector x ∈ RI1
+

is a 1st-order tensor, and a matrix M ∈ RI1×I2
+ is a 2nd-order tensor. The data cubes shown in

Fig.3.1 and Fig.3.4 are examples of 3rd-order tensors.
The Frobenius norm of a tensor T is defined as ‖T ‖F =

√∑
j1,...,jN T

2
j1,...,jN

, where the subscript
notation Tj1...,jN denotes the (j1, . . . , jN )−th element of T .

Products The tensor product
⊗

over N real vector spaces RI1 , . . . ,RIN is defined as[
N⊗
i=1

a(i)
p

]
j1,...,jN

:=
N∏
i=1

a(i)
p (ji), where a(i)

p ∈ RIi for all i ∈ [N ] and p ∈ [r]. (6.1)

The Kronecker product [14] of two matrices A ∈ RI1×J1 and B ∈ RI2×J2 is defined as

A�B =


A(1, 1)B . . . A(1, J1)B

... . . . ...
A(I1, 1)B . . . A(I1, J1)B

 ∈ RI1I2×J1J2 . (6.2)

Moreover, the Kronecker product of several matrices can be deduced from the Kronecker product
(6.2) by associativity. The Khatri-Rao product A�B is the column-wise Kronecker product. Setting
A = [a1, . . . ,aJ1 ] and B = [b1, . . . ,bJ1 ],

A�B =
[
a1 � b1 , · · · , aJ1 � bJ1

]
. (6.3)



CHAPTER 6. TENSOR ALGEBRA AND FACTORIZATION 93

a1

1

1

XXX a

a

+ … +
ar

ar

ar

(1)

(2)

(3)

(1)

(3)

(2)

=

Fig. 6.1. Illustration of Equation (6.4a) with N = 3.

Compact notations of tensor decomposition There are several complementary notations to pa-
rameterize a low-rank tensor. In particular, grouping components a(i)

p as columns of factor matrices
A(i) = [a(i)

1 , . . . ,a(i)
r ], the following notations are equivalent:

X =
r∑
p=1

N⊗
i=1

a(i)
p (6.4a)

= JA(1), . . . ,A(N)K (6.4b)

= Ir ×1 A(1) ×2 . . .×N A(N) (6.4c)

:=
(

N⊗
a

i=1
A(i)

)
Ir, (6.4d)

where Ir denotes the identity tensor, which the off-super-diagonal entries are 0s and the super-
diagonal entries are 1s, ×p is the p-mode product (see [62]) and

⊗
a is a tensor product of linear

maps induced by the tensor product (6.1).
Fig. 6.1 illustrates an example of Equation (6.4a) for N = 3. Equation (6.4b) is the called Kruskal

notation, equation (6.4c) makes use of the n-mode product, and equation (6.4d) uses the fact that
linear applications on tensor spaces of finite dimensions also form a tensor space with tensor product

(A⊗a B) (x⊗ y) := Ax⊗By.

Since equation(6.4d) exhibits this tensor product structure, we stick with this formulation rather
than the others.

Canonical Polyadic Decomposition and tensor rank The tensor decomposition listed above are
called Canonical Polyadic Decomposition (CPD). Other kinds of tensor decomposition exist, for
example, when Ir in equation (6.4d) is replaced by a general tensor G, the model is called Tucker
Decomposition:

T =
(

N⊗
a

i=1
A(i)

)
G.

In this thesis, we mainly focus on CPD. However, we consider Tucker decomposition as a tool for
compression for handling big data in §7.5.4.
In CPD, the rank of a tensor X is defined as the smallest r in equation (6.4a), i.e., X is the sum

of r rank-1 tensors in the form
N⊗
i=1

a(i)
p . The problem of determining the rank of a tensor is called

Model Order Selection which is a research topics on its own. Therefore, similar to the case on NMF
described in §1.4.1 , in this thesis, we made the following (strong) assumption:
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We assume the value of rank is given when solving an tensor decomposition problem.

Tensor unfoldings and useful formula To derive partial derivatives of a tensor function with re-
spect to factors matrices, it is convenient to switch from a tensor formulation to the equivalent
matrix description of the problem. More precisely, for tensor having a CPD structure, the following
relationship holds:

X =
(

N⊗
a

i=1
A(i)

)
Ir ≡ ∀i ∈ [N ], X[i] = A(i)

 1⊙
l 6=i
l=N

A(l)


>

, (6.5)

where
1⊙
l 6=i
l=N

A(l) = A(N)A(N−1) . . .A(i+1)A(i−1) . . .A(1),

and X[i] denotes the unfolding of a rank-one tensor X , and it is defined as

X[i] := a(i) ⊗

 1
�
l 6=i
l=N

a(l)

 ∈ Rd, d = Ii ×
∏
l 6=i

Il. (6.6)

Unfolding of a general tensor are obtained by linearity of the unfolding maps.
Finally, note that several non-equivalent definitions are used in the tensor signal processing com-

munity [62, 97, 22].

6.2 NMF and NTF problems as constrained CPD

In this section, we show that NMF and Nonnegative Tensor Factorization (NTF) problems are
nonconvex optimization problems that are special cases of the following general CPD problem:

minimize
a(i)

p

i∈[N ]
p∈[r]

∥∥∥∥∥∥T −
r∑
p=1

N⊗
i=1

a(i)
p

∥∥∥∥∥∥
2

F

+
∑
i,p

gi,p
(
a(i)
p

)
, (6.7)

where gi,p are functions used to model regularizers and constraints. For example, for nonnegativity
constraint, the function gi,p can be represented by the indicator function of the nonnegative orthant

i+(x) =

 0 if x ≥ 0
∞ else

.

For g = i+(·), if N = 2 problem (6.7) reduces to NMF problem (1.1), where

• m = I1, n = I2 and the tensor T is the matrix M,

• the components a(1)
1 ,a(1)

2 , . . . ,a(1)
r are collectively grouped as the matrix W,

• the components a(2)
1 ,a(2)

2 , . . . ,a(2)
r are collectively grouped as the matrix H,

• the g functions correspond to the nonnegative constraints W ≥ 0 and H ≥ 0.
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Note that problem (6.7) also includes the NMF models presented in §2 and §5 as special cases.
Recall in §1.4.3 we mentioned that NMF problem (1.1) can be solved by the two-block coordinate

descent (BCD) scheme (Algorithm 1). Similarly, one approach to solve problem (6.7) is to use the
same BCD scheme: we solve the subproblem with respect to one block of variables at a time while
fixing the other variables. We will discuss more about BCD schemes in §6.3 .

6.2.1 The unconstrained CPD problem: an ill-posed problem

When there is no constraint in problem (6.7), we obtained the CPD problem, which is a difficult
problem to solve, due to the following reasons.

• Non-existence of solution and CP-degeneracy. For CPD problem, a solution might not even
exist, as the set of rank r tensors is not closed as soon as r > 1 and p > 2 [27]. When an optimal
CPD solution does not exist, then any sequence of CPD factors that monotonically decreases
the cost function value will exhibit the so-called CP-degeneracy [63]. The term CP-degeneracy
refers to that the estimates of each block A(j) = [a(j)

1 , . . . ,a(j)
r ], (j ∈ [p]) have some columns

growing to infinity while canceling each other [63, 27, 85, 92, 23].

• Swamps. Swamp is a word coined by R. Harshman and others that describes the behavior of
the decrease of the cost function value [92]. A swamp is when a group of vectors in {a(i)

p } are
nearly linearly dependent, which has been observed to result in slow convergence of algorithms
[48]. Note that the existence of swamps when solving CPD problem is well documented [85, 92,
23, 48], and it has been observed that CP-degeneracies cause swamps, however, the mechanism
of what causes the swamp, is still not fully understood [48]. We refer to the papers [85, 92, 23,
48] for more discussions on this issue.

In this thesis, we use the term “swamps” in a more general fashion, we simply refer to the periods
of slow convergence as swamps. Many figures in §7.6 show the existence of swamps.
Hence, in general CPD is a hard problem. Note that the nonnegative CPD (i.e. NTF), is NP-hard

because it is a generalization of NMF which is NP-hard (see §1.4.6). In general, computing CPD and
NTF are challenging tasks.

Remark 6. We give a minor remark on the non-existence of optimal solution. Note that it can pose
problems in practice in minimizing the cost function, as mentioned above, but the non-existence of
optimal solution can actually also be seen as an advantage: we may simply use it to tell whether a
tensor is CPD-factorizable or not. Note that this is not possible for the matrix case.

6.3 Block-Coordinate Descent algorithms

As discussed in the last section, the nonconvex problem (6.7) is in general NP-hard and no closed-
form solution is known to solve it, therefore there has been a large amount of works dedicated on
approximately solving NTF using various optimization heuristics. While it is impossible to review all
the heuristics, we focus on a class of algorithms, namely the Block-Coordinate Descent (BCD). For a
short review on other types of algorithms on solving problem (6.7), such as second order method and
randomized methods, see [2, Section 2]. From now on, the functions g in problem (6.7) are indicator
function of nonnegative orthant.
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Cost function and gradient with respect to a block, and the MTTKRP First we give one impor-
tant expression related to problem (6.7): the derivative with respect to one block. On problem (6.7),
using the equivalence between expressions (6.4a) and (6.4d), and expressing nonnegativity constraint
explicitly, we can express the Nonnegative Tensor Factorization (NTF) problem using a block-form
expression for the cost function as follows

min
A(i)≥0,i∈[N ]

F (A(1), . . . ,A(N)) := 1
2

∥∥∥∥∥T −
(

N⊗
a

i=1
A(i)

)
Ir

∥∥∥∥∥
2

F

. (6.8)

To derive the gradient of F with respect to the single block A(i), we make use of the Khatri-Rao
product (6.5). First, let

B(i) := A(N) � · · · �A(i+1) �A(i−1) � · · · �A(1), (6.9)

then the gradient of F w.r.t. the single block A(i) is given by

∇A(i)F =
(
A(i)(B(i))> − T[i]

)
B(i). (6.10)

This expression contains the bottleneck operation in many tensor algorithms: the Matricized Tensor
Times Khatri-Rao Product (MTTKRP). As we can see that, to compute ∇A(i)F , we need to mul-
tiply the matricized tensor T[i] with the Khatri-Rao product B(i). Such operation is expensive but
unavoidable. In fact, the number of MTTKRP operations in an algorithm can often be used as a
criterion to judge how computationally expensive it is to run that algorithm.

BCD methods BCD has become a standard and efficient scheme for solving NTF, mainly because

1. it essentially has cheap computation cost in each block update (BCD fixes all blocks except for
one),

2. BCD can make use of recent developments in convex constrained optimization to efficiently
solve NTF with respect to each block,

3. under some suitable assumptions, many 1st-order BCDs and their accelerated versions have
convergence guarantee in the context of general block-separable nonconvex composite optimiza-
tion problem that subsumes NTF as a special case [109, 54].

Below, we review several BCD methods for solving NTF. In §6.3.1 , we review AO-AS [61] , AO-
ADMM [55] , AO-Nesterov [110] and (AO)-A-HALS [46] . In §6.3.2 , we review APG [109] and iBPG
[54] .

6.3.1 Alternating optimization framework

When solving NTF using BCDs, the blocks of variables that are alternatively updated must be
chosen. The cost function F in NTF problem (6.8) is a quadratic function with respect to each
matrix A(i), so the optimization subproblem

min
A(i)≥0

F (A(1), . . . ,A(N))

is a linearly constrained QP known as the Nonnegative Least Squares (NNLS). In particular, it
is strictly convex if B(p) (see definition (6.9)) is full column-rank. Therefore, it is quite natural
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to consider A(i) as the blocks in a BCD. The Alternating optimization (AO) framework, which is a
standard procedure to solve NTF, alternatively (exactly/inexactly) solves subproblem for each block.
We describe the AO framework in Algorithm 6 . Note that the objective function of AO methods
decreases after each block update. Depending on how the matrix-form NNLS problem (6.11) is
solved, various implementations of AO algorithms can be obtained. Some of them are very efficient
for solving NTF, they are surveyed below.

Algorithm 6 Alternating optimization framework
1: Input: a nonnegative N -way tensor
2: Output: nonnegative factors A(1),A(2), . . . ,A(N).
3: Initialization:

(
A(1)

0 , . . . ,A(N)
0
)
.

4: for k = 1, . . . until some criteria is satisfied do
5: for i = 1, . . . , N do
6: Update A(i)

k as an exact/inexact solution of

min
A(i)≥0

F
(
A(1)
k , . . . ,A(i−1)

k ,A(i),A(i+1)
k−1 , . . . ,A(N)

k−1

)
. (6.11)

(A(i)
k−1 can be used as the initial point for the algorithm used to solve (6.11).)

7: end for
8: end for

AO-AS – solving NNLS with Active Set When A(i)
k is updated by an exact solution of the NNLS

subproblem (6.11), we obtain an alternating NNLS algorithm, usually referred to as ANLS in the
literature. To solve exactly the NNLS subproblem (6.11), active set (AS) methods are usually
rather effective and popular [61]. We will refer to AO-AS as the ANLS algorithm where the NNLS
subproblems are solved with AS.

AO-ADMM – solving NNLS with ADMM Designed to tackle a wide range of constrained tensor
decomposition problems and various loss functions, AO-ADMM [55] applied to NTF boils down
to using several steps of a primal-dual algorithm, the Alternating Direction Method of Multipliers
(ADMM), to solve the cascaded NNLS problems. Therefore, AO-ADMM for NTF problem (6.7) is
a variant of the AO framework that solves NNLS subproblem (6.11) inexactly.

AO-Nesterov When Nesterov’s accelerated gradient method is applied to solve the NNLS subprob-
lem (6.11), we obtain AO-Nesterov [110, 51] . An example is the AccProjG presented in §2.2.1 on
solving NMF subproblem on block H.

A-HALS While we introduced HALS in §1.4.3, here we re-introduce it again in the language of
NTF. The Hierarchical Alternating Least Square (HALS) algorithm was introduced for solving NMF
problem, and has been widely used for solving NMF as it performs extremely well in practice [44,
21].
HALS cyclically updates each column of the factor matrix A(i) by solving an NNLS problem with

respect to that column while fixing the others. The optimal solution of this NNLS subproblem can
be written in closed form. A-HALS, which is short for accelerated HALS, was proposed in [46] to
accelerate HALS. A-HALS repeats updating each factor matrix several times before updating the
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other ones. Hence A-HALS can be considered as a variant of the AO framework where each NNLS
is inexactly solved itself by a BCD with closed-form updates. Let us briefly describe A-HALS for
solving NTF. The NNLS subproblem (6.11) of A-HALS is inexactly solved by repeating cyclically
updating the columns of A(i)

k−1. In particular, based on the relationship (6.5)

M = T[i], W = A(i)
k−1, H =

 1⊙
l 6=i
l=N

A(l)


>

=
(
A(N)
k−1 � . . .A

(i+1)
k−1 �A(i−1)

k . . .�A(1)
k

)>
,

then the j-th column of A(i)
k−1, which is now denoted as W(:, j) is updated by

W(:, j) =

[
MH(j, :)> −

∑
l 6=j W(:, l)H(l, :)H(j, :)>

]
+

‖H(j, :)‖22
.

It is worth noting that, under some mild conditions, A-HALS for NTF has sub-sequential convergence
guarantee (i.e., every limit point is a stationary point of the objective function); see [93, Section 7].

6.3.2 Block proximal gradient type methods

The NNLS subproblem (6.11) does not have a closed-form solution. From the gradient expression
(6.10), the function F restricted to A(i), is a L(i)-smooth function, that is, the gradient ∇A(i)F is
Lipschitz continuous with the constant L(i) = ‖

(
B(i))>B(i)‖, where B(i) is defined in definition (6.9).

This property can be employed to replace the objective function in the NNLS subproblem (6.11) by its
quadratic majorization function, that leads to a new minimization problem which has a closed-form
solution. This minimization-majorization approach, in the literature of block-separable composite
optimization problem with the block-wise L-smooth property, is known as proximal gradient block
coordinate descent method [54]. Considering the NTF problem, the closed-form solution of minimiz-
ing the majorization function is a projected gradient step. Applying Nesterov-type acceleration for
the proximal gradient step improves the convergence of the BCD algorithm. Below we review the
two recent accelerated proximal gradient BCD methods that were proposed for solving the general
composite optimization problem.

APG – An Alternating Proximal Gradient method for solving NTF APG was proposed in [109];
see the Appendix of [3] and [109, Section 3.2] for the algorithm pseudocode. APG cyclically updates
each block A(i) by calculating an extrapolation point Â(i)

k−1 = A(i)
k−1 + w

(i)
k−1

(
A(i)
k−1 − A(i)

k−2

)
(here

w
(i)
k−1 is some extrapolation parameter) and embedding this point in a projected gradient step

A(i)
k =

Â(i)
k−1 −

1
L

(i)
k−1

(
Â(i)
k−1

(
B(i)
k−1

)> − T[i]
)
B(i)
k−1


+

.

After all blocks are updated, APG needs a restarting step, that is, if the objective function has
increased then the projected gradient step would be re-done by using the previous values of all blocks
instead of using the extrapolation points.

iBPG – An inertial Block Proximal Gradient Method Proposed in [54], iBPG computes two
different extrapolation points Â(i,1)

k−1 and Â(i,2)
k−1 : one is for evaluating the gradient and the other one



CHAPTER 6. TENSOR ALGEBRA AND FACTORIZATION 99

for adding inertial force. iBPG updates one matrix factor using a projected gradient step

A(i)
k =

Â(i,2)
k−1 −

1
L

(i)
k−1

(
Â(i,1)
k−1

(
B(i)
k−1

)> − T[i]
)
B(i)
k−1


+

,

see the Appendix of [3] for the algorithm pseudocode. Furthermore, similarly to A-HALS, iBPG
allows updating each matrix factor some times before updating another one – this feature would
help save some computational costs since some common expressions can be re-used when repeating
updating the same block. iBPG does not require a restarting step which make it suitable for solving
large-scale NTF problems where evaluating the objective functions is costly.

Difference between APG, iBPG and AO-Nesterov APG, iBPG and AO-Nesterov are all gradient-
based methods, however they are different in the following aspects:

• In AO-Nesterov, each subproblem is solved using a Nesterov-type accelerated gradient method,
i.e., we perform gradient update on the same block several times, before switching to other
block. This is different from APG and iBPG that they update on one block using a gradient
step, then move to another block immediately. Furthermore, under the theory of iBPG, the
gradient update on the same block in iBPG method can be repeated multiple times, and this
is not covered nor considered in the theory in APG.

• The ways of computing extrapolation coefficient between AO-Nesterov, APG and iBPG are
slightly different.

Chapter summary

We discussed the formalism of tensors, the CPD formulation, and reviewed some algorithms that
solve CPD problems under the BCD framework.
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7 Heuristic extrapolation with restarts
It is possible to invent a single machine which can be used to compute any
computable sequence.

Alan Turing

In this chapter we introduce an acceleration framework, namely Heuristic extrapolation with
restarts (HER), for accelerating the algorithms for solving NMF and NTF. HER was first proposed
to solve NMF problem in [5], and the HER framework was only applied on A-HALS and Active Set
method in [5] (also see §1.4.3), then extended to tensor problems in [1, 3, 2]. HER was inspired
from the method of parallel tangents which is closely related to the conjugate gradient method [80,
p. 293], and the accelerated gradient methods by [89], which has now become the standard technology
in various optimization scenarios [10].

Chapter organization This chapter is organized as follows. First we give the idea of acceler-
ation through extrapolation in §7.1 . Then, in §7.2, we present the original form of HER for
NMF algorithms. Next, we present HER framework for general tensor problems in §7.3 . After
that, we present the numerical results of HER compared with other algorithms on NMF, NTF
and CPD problems in §7.4 , §7.5,§7.6 , respectively. Finally, we summarize this chapter in
§7.7 , where we also present some open problems. As this chapter is a long, we give a diagram
to illustrate the relationships between the sections of this chapter, see Fig.7.1 .
Highlights of contributions The whole chapter contains the contribution. We introduce the
HER framework, presented in the original form for NMF in §7.2 , and in the form for NTF
and CPD in §7.3 . In the remaining parts of the chapter, we present the comparative study
on the effectiveness of HER.

§7.1 Idea of extrapolation

§7.2 HER on NMF §7.3 HER on NTF

§7.4 Exp. on NMF §7.5 Exp. on NTF

§7.4.4 
Exp on minvolNMF

§7.6 Exp. on
unconstrained CPD

§7.7 Conclusion

Same but in 
tensor language

Fig. 7.1. Structure of chapter 7.
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7.1 The idea of acceleration through extrapolation

In this section we lay-down the idea of extrapolation for the purpose of accelerating algorithms.
Assume we have an optimization scheme that computes the next iterate only based on the previous

iterate1 (e.g., gradient descent or a coordinate descent), i.e., it updates the kth iterate xk as xk+1 =
update(xk), for some function update that depends on the objective function and the feasible set.

For 1st-order methods, if the landscape of the objective function is elliptic, the updates will have
a zigzagging behavior. In particular, gradient descent with exact line search leads to orthogonal
search directions [80] while search direction of (block) coordinate descent methods are orthogonal
by construction. Fig.7.2 below illustrate the zigzagging behavior of the gradient descent update in
solving a simple quadratic function.
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Fig. 7.2. Illustration of the zigzagging behavior of the gradient descent update in solving a simple
quadratic function. Here the problem is to minimize the quadratic form 1

2〈x,Qx〉 with
four different Q, using gradient descent with the same starting point. From left right,
the condition number of Q is increasing, and the landscape of the objective function
(represented by the labeled contour curves) is changing from circular to more and more
elliptic. We can see that, when the landscape of the objective function is elliptic, gradient
updates will have a strong zigzagging behavior, and the zigzagging behavior slows down
the convergence of the sequence.

The use of extrapolation is to reduces the zigzagging for the purpose of acceleration. The idea is
to define a second sequence of iterates, namely, yk with y0 = x0, and modify the update scheme as

xk+1 = update(yk), yk+1 = xk+1 + βk(xk+1 − xk),

for some βk ≥ 0. Note that there are other possibilities for choosing yk+1 based on a linear combi-
nations of previous iterates, and note that the iterates yk’s do not necessarily belong to the feasible
set.

Pictorial illustration Fig. 7.3 illustrates the extrapolation scheme, and allows us to get some intu-
ition: the direction (xk+1 − xk) will be in-between zigzagging directions obtained with the original
update applied to yk’s and will allow to accelerate convergence. For example, we observe on Fig. 7.3
that the direction xk+2 − xk+1 is between the directions xk+1 − yk and xk+2 − yk+1.

Extrapolation in convex optimization In the case of gradient descent and convex optimization, the
βk’s can be chosen a priori for obtaining the theoretical acceleration, and the above scheme allows to

1Although this assumption is not strictly necessary, it makes more sense otherwise there might be a counter effect if
the update already takes into account the previous iterates.
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Fig. 7.3. Illustration of the idea of extrapolation to accelerate optimization schemes.

accelerate convergence of the function values from O(1/k) to O(1/k2), and from linear convergence
with rate 1−µ/L to rate 1−

√
µ/L for strongly convex function with parameter µ and whose gradient

has Lipschitz constant L [89]. In nonsmooth convex optimization, similar results can be obtained by
using the proximal operator and the accelerated proximal gradient methods [10].

Extrapolation in nonconvex optimization In the nonconvex case, the scheme has also been used for
BCD, and most works focus on the case where the blocks of variables are updated using a gradient
or proximal gradient step; e.g., [109, 54]. However, from a practical point of view, the acceleration
depends on the choice of the βk’s which is highly non-trivial. In fact, even in the convex case, the
best choice for the βk’s is difficult in practice; see, e.g., [91] for a discussion about this issue. As far as
we know, extrapolation has not been used in combination with exact BCD methods. Both works in
[109, 54] used extrapolation in the context of an inexact BCD method where the blocks of variables
are updated using a projected gradient method. Their approach is different from HER as it can be
used with exact BCD. Note that we will compare HER with [109, 54] applied to NMF, NTF and
CPD problems in the subsequent sections in this chapter.
In the method of parallel tangents, the steps βk are computed using line-search [80, p. 293]. This

allows the acceleration scheme to be at least as good as the initial scheme. However, as we will
see, this is not a good strategy in our case as the optimal βk’s will be close to zero (because we use
coordinate descent). In any case, the choice of the βk’s is highly non-trivial and, as we will see, the
acceleration depends on the choice of these parameters. Note that choosing βk = 0 for all k gives
back the original algorithm (no extrapolation), and βk close to one is a very aggressive strategy.

7.2 Extrapolation for NMF algorithms

In this section, we present the original form of HER used to accelerate algorithms that solves NMF
problem (1.1). This section serves two purposes, (i) it let us understand the intuition behind the
design of the HER framework, and (ii) it acts as an introductory phase for the HER algorithm for
solving NTF and CPD.

The (three) algorithm(s) We adapt extrapolation to the two-BCD strategies of NMF algorithms
described in Algorithm 1. Algorithm 7 describes the proposed extrapolation scheme applied to NMF
problem (1.1). Depending on the choice of the parameter hp ∈ {1, 2, 3}, (h stands for H, p for
projection), Algorithm 7 corresponds to three different variants of the proposed extrapolation. This
is described below through two important questions. For ease of understanding, Fig.7.4 shows the
flow of line 4 to line 16 of Algorithm 7 for the parameter hp ∈ {1, 2, 3}.
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Algorithm 7 Acceleration of Algorithm 1 using extrapolation (The original form of HER)
1: Input: A matrix M ∈ Rm×n, parameters hp ∈ {1, 2, 3} (extrapolation/projection option of H).

Parameters 1 < γ̄ < γ < η, β1 ∈ (0, 1).
2: Output: An approximate solution (W,H) to NMF (1.1).
3: Initialization: W ∈ Rm×r+ , H ∈ Rm×r+ , Ŵ = W; Ĥ = H; ê(0) = ‖M−WH‖F . Set β̄ = 1.
4: for k = 1, . . . until some criteria is satisfied do
5: Compute Hnew using a NNLS algorithm to solve argmin

H≥0
||M−ŴH||2F using Ĥ as the initial

iterate.
6: if hp ≥ 2 then
7: Ĥ = Hnew + βk(Hnew −H). % Extrapolation
8: end if
9: if hp = 3 then

10: Ĥ = [Ĥ]+. % Projection
11: end if
12: Compute Wnew using a NNLS algorithm to solve argmin

W≥0
||M −WĤ||2F with W ≥ 0 using

Ŵ as the initial iterate.
13: Ŵ = Wnew + βk(Wnew −W). % Extrapolation
14: if hp = 1 then
15: Ĥ = Hnew + βk(Hnew −H). % Extrapolation
16: end if
17: Compute error: ê(k) = ||M−WnewĤ||F . % See Remark 7.
18: if ê(k) > ê(k − 1) then
19: Ĥ = H; Ŵ = W. % Restart
20: βk+1 = βk/η. % Decrease the value of β.
21: β̄ = βk−1.
22: else
23: H = Hnew; W = Wnew.
24: βk+1 = min(β̄, γβk). % Increase the value of β
25: β̄ = min

(
1, γ̄β̄

)
.

26: end if
27: end for

When should we perform the extrapolation? In NMF (and in general for BCD methods), it makes
sense to perform the extrapolation scheme after the update of each block of variables so that when
we update the next block of variables, the algorithm takes into account the already extrapolated
variables; see, e.g., [35]. However, as we will see in the experiments, this does not necessarily performs
best in all cases. This is the first reason why we added a parameter hp ∈ {1, 2, 3}: For hp = 1, H is
extrapolated after the update of W, otherwise it is extrapolated directly after it has been updated.
Note that in the former case, the extrapolated matrix Ĥ is only used as a warm start for the next
NNLS update of H. For ANLS (algorithms using active-set method to solve the NNLS, see §1.4.3),
it will therefore not play a crucial role as ANLS solves the NNLS subproblem exactly.
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k-1 k
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Up W

Ex W
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Ex H

Pr H

Up W
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Pr W

hp = 1 hp = 2 hp = 3

Fig. 7.4. The flow of line 4 to line 16 of Algorithm 7 for the parameter hp ∈ {1, 2, 3}. In the figure,
k is the iteration number, “Up" refers to “update”, “Ex" refers to “extrapolate” and “Pr”
refers to “project”.

Can we guarantee convergence? Currently there is no theory to guaranteed Algorithm 7 converges
to stationary points. In Algorithm 7, because Ŵ and Ĥ are not necessarily nonnegative, the objective
function is not guaranteed to decrease at each step. In fact, step 18 of Algorithm 7 only checks the
decrease of ||M−WnewĤ||F where (Wnew, Ĥ) is not necessarily feasible for hp ≥ 2. The reason for
computing ||M−WnewĤ||F and not ||M−WnewHnew||F is threefold:

• Wnew was updated according to Ĥ (line 12 in Algorithm 7 ).

• It gives the algorithm some degrees of freedom to possibly increase the objective function in
the hope to be able to decrease it significantly later on: in fact, we observed in experiments
that this choice allows a faster convergence than when restarting the algorithm based on the
error ‖M−WnewHnew‖F ,

• It is computationally cheaper because computing ‖M −WnewHnew‖F would require O(mnr)
operations instead of O(mr2) (see Remark 7). This point becomes much more important when
we generalize this algorithm framework from NMF to the tensor cases in §7.3.

To guarantee the objective function to decrease, one way is to require Ĥ to be nonnegative by
projecting it to the nonnegative orthant: this variant corresponds to hp = 3. In that case, the
solution (Wnew, Ĥ) is a feasible solution for which the objective function is guaranteed to decrease at
least every second step. In fact, when the error increases, Algorithm 7 re-initializes the extrapolation
sequence (Ŵ, Ĥ) using (W,H) (step 19 of Algorithm 7) and the next step is a standard NNLS
update. So, since the objective function is bounded below, there exists a converging subsequence
of the iterates. Proving convergence to a stationary points is an open problem, and an important
direction for further research. We believe it would be interesting to investigate the convergence of
the extrapolation scheme applied on BCD in the nonconvex case.
To summarize, using the extrapolation of H after the update of W (hp = 1) or using the projection

of Ĥ onto the feasible set (hp = 3) is more conservative but guarantees the objective function to
decrease (at least every second step). As we will see in the experiments, these two variants perform
in general better than with hp = 2.
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Remark 7 (Computation of the error). To compute the error ê = ‖M −WnewĤ‖2F in step 17 of
Algorithm 7, it is important to take advantage of previous computations and not compute WnewĤ
explicitly (which would be impractical for large sparse matrices). For simplicity, let us denote W =
Wnew and H = Ĥ, then

‖M−WH‖2F = ‖M‖2F − 2〈W,MH>〉+ 〈W>W,HH>〉.

The term ‖M‖2F can be computed once, the term 〈W,MH>〉 can be computed in O(mr) operations
since MH> is computed within the NNLS update of W, and the term 〈W>W,HH>〉 requires O(mr2)
since HH> is also computed within the NNLS update of W . In fact, all algorithms for NNLS we
know need to compute MH> and HH> when solving for W, because the gradient of ||M −WH||2F
with respect to W is 2(WHH> −MHT ).

Remark 8 (Other NMF variants). Although here we focus on the standard NMF(1.1), the accelera-
tion scheme described in Algorithm 7 can be directly applied to any NMF model, such as the minvol
NMF presented in §2.1, and the NuMF in §5 .

7.2.1 Choice of the extrapolation parameters βk’s

Here, we propose a strategy to choose the βk’s. First, we explain why it does not work well to use
line search. Let us focus on the update of W (a similar argument holds for H), then

Ŵ = Ŵ(β) = Wnew + β(Wnew −W),

where Wnew is an approximate solution of min
W≥0

||M−WĤ||F (in the case of ANLS, it is an optimal

solution). Note that if β = −1, it gives Ŵ = W and if β = 0, it gives Ŵ = Wnew.
The optimal β can be computed in closed-form as follows

β∗ = argmin
β
||M− Ŵ(β)Ĥ||2F = 〈M−WnewĤ, (Wnew −W)Ĥ〉

||(Wnew −W)Ĥ||2F
.

We see the followings.

• Computing β∗ is expensive for large matrices.

• The β∗ are mostly zero. Empirically, for most steps of Algorithm 7 , we observed that β∗

is close to zero2, especially when the algorithm has performed several iterations and reached
the neighborhood of a stationary point. The reason is that Wnew was optimized to minimize
the objective function.

To summarize, the line search approach is empirically not providing much push forces on the iterates,
while being practically expensive to compute.

Strategy for updating the βk’s In the following, we propose another strategy to tune βk’s. It will
increase the objective function in most cases (i.e., ||M − Ŵ(β)Ĥ||2F > ||M − Ŵ(0)Ĥ||2F ) but will
allow a larger decrease of the objective function at the next step. Note that this is the reason why we
check whether the error has decreased only after the update of H because otherwise the acceleration
would not be possible (only a small β would be allowed in that case).

2β∗ is not always close to zero–even when using ANLS–as Ŵ is not necessarily nonnegative.
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Note that, as we are applying the extrapolation scheme to a nonconvex problem using BCD, there
is, as far as we know, no a priori theoretically sound choice for the βk’s. For this reason, we consider
a simple scheme described by lines 20,21,24,25 in Algorithm 7 . It works as follows. Assume there
exists a hidden optimal value for the βk’s, like in the strongly convex case where βk should ideally be
equal to 1−

√
µ/L

1+
√
µ/L

[89], where µ is the strong convexity parameter of the objective function and L is
the Lipschitz constant of its gradient. It starts with an initial value of β0 ∈ [0, 1], and an upper bound
β̄ = 1. Note that initially, the algorithm can take a rather large steps since usually the initialization
(W,H) is far from being locally optimal, hence it makes sense for β0 to be chosen in [0, 1]. As long
as the error decreases, the scheme increases the value of βk+1 by a factor γ taking into account the
upper bound (line 24). It also increases the upper bound by a factor γ̄ < γ if it is smaller than 1
(line 25). The usefulness of β̄ is to keep in memory the last value of βk that allowed decrease of the
objective function which is used as an upper bound for βk. However, because the landscape of the
objective function may change, β̄ is slightly increased by a factor γ̄ < γ at each step, as long as the
error decreases. When the error increases, βk+1 is reduced by a factor η > γ and the upper bound β̄
is set to the previous value of β that allowed decrease, i.e., βk−1 (line 21). We explain this strategy
for updating the βk again in §7.3 .

Remark 9. We tried to mimic the choice of the βk’s from convex optimization [89] but it did in
general perform worse than the simple choice presented here.

7.3 Heuristic Extrapolation with Restarts (HER)

In this section, we generalize the acceleration method introduced in §7.2 to BCD on solving NTF
problems. The content in this section is highly similar to that presented in §7.2 , but expressed in
the language of tensors, and the algorithm presented here is in fact slightly different from the one
introduced in §7.2 .
As reviewed in §6.3.2 , we have seen that APG and iBPG accelerate block proximal gradient

methods by using extrapolation points in the projected gradient step to update each factor matrix.
In another line of works, AO (Algorithm 6) was accelerated by using extrapolation between each
block update (rather than inside the block update as in APG and iBPG); in other words, each
factor matrix is updated by the extrapolation between previous updated factors. In the literature of
tensor decomposition, the second type of extrapolation has been used to accelerate alternating least
squares algorithms for solving CPD. Those works will be reviewed in §7.3.2 . In the following, we
introduce HER - a novel extrapolation scheme that can be categorized into the class of accelerated
AO algorithms using extrapolation between block update.

Informal description of the algorithm To achieve this empirical speedup in convergence speed, an
extrapolation scheme “à la Nesterov” is used every time a block has been optimized, before switching
to another block. The proposed Heuristic Extrapolation with Restarts (HER) algorithm consists of
the following steps:

1. Initialize A(i) = [a(i)
1 , . . . ,a(i)

r ] and pairing (auxiliary) variables Â(i) for i ∈ [N ].

2. Loop over the blocks A(i) (i ∈ [N ]):

a) Update A(i) by minimizing the NNLS subproblem (6.11), where the other blocks are fixed
and take the value of the pairing variables Â(j) (j 6= i). For example, one can take a
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gradient step (see §6.3.1 for more sophisticated strategies). Keep the previous value of
A(i) in memory as A(i)

old.

b) Update the pairing variable using extrapolation. For example, for the scheme with hp = 3
in §7.2 ,

Â(i) =
[
A(i) + β

(
A(i) −A(i)

old

)]
+
.

3. If the restart criterion is true (the reconstruction error has increased), reject the extrapolation
and reset pairing variables Â(i) = A(i) for i ∈ [N ]; otherwise, update A(i) = Â(i) for i ∈ [N ].
See §7.3.1 for the details of the restart mechanism.

4. Update the parameter β; see §7.3.1 .

5. If convergence criterion is not met, go back to 2.

This approach has been scarcely studied [5, 15, 86], while extrapolation is a rather well understood
method to accelerate both convex and nonconvex single-block descent algorithms. The main novelty
of HER is to tackle a nonconvex optimization problem using BCD with extrapolation between the
block update, as opposed to inside each block update such as in [76] or after each outer loop as
in [86]. This in-between extrapolation comes at almost no additional computational cost.

Remark 10. We now give some further remarks on a key idea in HER.

• As the algorithm illustrates, HER uses the combination of extrapolation with a restart mech-
anism. When extrapolation is pointing the variable to the right direction, which is where the
cost value goes down faster, or where the variable escape the “swamp” (see §6.2.1), we gain
acceleration. When the extrapolation is pointing the variable to the wrong direction, which is
where the cost value increases, the restart is to safe guard the wrong extrapolation.

• The restart criterion has to be computed in all iterations, which is expensive to do so if we use
the cost function F as the restart criterion, which basically requires to recompute the function
F after the blocks are updated. However, this is only true for other restart mechanisms but not
for HER. A key point in HER is that, by design, the restart criterion is cheap to compute as it
is partially computed when updating the block variables.

7.3.1 Details of HER

The pseudo-code of HER is given in Algorithm 8, which is highly similar to Algorithm 7 with hp = 3,
the only difference it that the last block is also projected. For ease of understanding, Fig.7.5 shows
the flow of line 4 to line 8 of Algorithm 8.
In the following, we elaborate on HER.

Update step – line 6 It is clear that Algorithm 8 has the form of an alternating optimization frame-
work in which the key optimization subproblem (7.1) is a NNLS. As reviewed in §6.3.1 , some efficient
algorithms for the NNLS subproblem (7.1) include AS, ADMM, Nesterov’s accelerated gradient, or
A-HALS. The main difference between AO and HER is that HER does not use the latest values of
the other blocks A(j) (j 6= i) but employs the latest values of their extrapolation Â(j) (j 6= i). For
convenience, we refer to

{
Â(i)
k , i ∈ [N ]

}
k≥0

as the extrapolation sequence.
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Algorithm 8 HER
1: Input: a nonnegative N -way tensor
2: Output: nonnegative factors A(1),A(2), . . . ,A(N).
3: Initialization: Choose β0 ∈ (0, 1), η ≥ γ̄ ≥ γ ≥ 1 and 2 sets of initial factor matrices(

A(1)
0 , . . . ,A(N)

0
)
and

(
Â(1)

0 , . . . , Â(N)
0
)
. Set β̄0 = 1 and k = 1.

4: for k = 1, . . . until some criteria is satisfied do
5: for i = 1, . . . , N do
6: Update step Let A(i)

k be an exact/inexact solution of

min
A(i)≥0

F
(
Â(1)
k , . . . , Â(i−1)

k ,A(i), Â(i+1)
k−1 , . . . , Â(N)

k−1

)
. (7.1)

7: Extrapolation step

Â(i)
k =

[
A(i)
k + βk−1(A(i)

k −A(i)
k−1)

]
+
. (7.2)

8: end for
9: Compute F̂k := F

(
Â(1)
k , Â(2)

k , . . . , Â(N−1)
k ,A(N)

k

)
.

10: if F̂k > F̂k−1 then
11: Set Â(i)

k = A(i)
k , ∀i ∈ [N ] % abandon the sequence Â(i)

k

12: Set β̄k = βk−1, βk = βk−1/η. % Update β̄, decrease β
13: else
14: Set A(i)

k = Â(i)
k , ∀i ∈ [N ]. % keep the sequence Â(i)

k

15: Set β̄k = min{1, β̄k−1γ̄}, βk = min{β̄k−1, βk−1γ}. % Increase β̄ and β
16: end if
17: end for

k-1

Up A1

Ex A1

Pr A1

Up A2

Ex A2

Pr A2

Up AN

Ex AN

Pr AN

. . .

k

Fig. 7.5. The flow of line 4 to line 8 of Algorithm 8. In the figure, k is the iteration number, “Up"
refers to “update”, “Ex" refers to “extrapolate” and “Pr” refers to “project”.

Extrapolation step – line 7 After the update of A(i)
k , the same block of the extrapolation sequence

Â(i)
k is updated by extrapolating A(i)

k along the direction A(i)
k − A(i)

k−1, see the extrapolation step
(7.2). Note that Â(i)

k produced by the extrapolation step (7.2) is always feasible. This extrapolation
step corresponds to the case hp = 3 in Algorithm 7. It is possible to remove the projection in the
extrapolation step (7.2) (i.e. which corresponds to hp = 2), but we do not focus on this direction
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for NTF3. On feasibility, A(i)
k produced by line 6 of Algorithm 8 is always feasible regardless of the

feasibility of Â(i)
k .

The restart mechanism – lines 9-16 After the update-extrapolate process on all the blocks, a
restart procedure is carried out to decide whether or not we replace A(i) (i ∈ [N ]) with the extrapo-
lation sequence. Line 14 of Algorithm 8 has the same spirit with the updates (7.6b) and (7.7) where
the factor matrices are updated by the extrapolation between block update.
It may raise a question why F

(
A(1)
k−1, . . . ,A

(N)
k−1

)
does not appear in the restarting condition – line

10. The answer is due to the practicality of the algorithm. As stated in [5], using F as the restart
criterion is computationally much more expensive than using the approximate F̂ . When computing
F̂ , no explicit computation is required; instead, one may reuse already computed components from
the updates of A(N) and Â(N). This creates an important reduction of computational complexity.
e.g., consider an order-N NTF problem with factor matrices

{
A(i)}

i=1,2,...,N with size I1 × r, I2 × r,
. . . up to IN × r. Reusing already computed components (such as gradient) in the update of the
last block (A(N), Â(N)), we can compute F̂ (Â1, . . . , ÂN−1, AN ) under INrN−1 flops. However, if we
compute F (A1, . . . ,AN ), it takes

∏N
i=1 Ii flops. If rN �

∏
i Ii, then such reduction in complexity

from
∏N
i=1 Ii to INrN−1 is significant even when N is low. Furthermore, we can always rotate the

tensor such that IN is the mode with the smallest size among all the modes. In fact, computing
the cost function naively can be as costly as one block update, and thus using F̂ instead of F as
the restart criterion is important, since restart using F requires computing the cost function at each
iteration, while restart using F̂ is much cheaper.
Moreover, note that if the iterates sequence is converging, then the extrapolated sequence also

converges to the same limit point. Therefore, since F is a continuous map, if convergence of the
iterates is observed then the surrogate cost F̂ will asymptotically converge to the same final value as
F . Although we did not characterize how fast this convergence happens, this justifies to use F̂ as a
surrogate at least near a stationary point.

The extrapolation parameters in lines 9-16 The extrapolation weight βk is computed within the
restart mechanism of lines 9-16 of Algorithm 8 , and it is updated using four parameters; see Table 7.1 .
In the initialization stage, we set β̄0 = 1, pick β0 ∈]0, 1[, and select η, γ and γ̄ such that 1 < γ̄ ≤ γ ≤ η.
The parameter β̄ is called the upper bound parameter for β. This parameter is used to limit the
growth of β; see below for more details. The parameter γ is called the (multiplicative) growth rate
of β: when the error decreases, β is updated with γβ. Similarly γ̄ is the (multiplicative) growth rate
of β̄. Finally, η is called the decay rate of β. This value is used to update β with β/η when the error
increases. The parameters γ, γ̄, η are fixed constants, while β and β̄ are updated depending on the
restart condition.

The update of β HER updates βk as

βk+1 =

 βk/η if F̂k+1 > F̂k

min{γβk, β̄k} if F̂k+1 ≤ F̂k
, (7.3)

which is explained as follows:
3In fact, when using the same algorithm for solving CPD, without the nonnegativity constraint, we remove the
projection as it is not required.x
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Table 7.1: Parameters in the HER scheme
Symbol Name Setting Range Requires tuning?
βk Extrapolation weight update as (7.3) [0, 1] Yes for β0

γ Growth rate of β constant [γ̄, η] Yes
η Decay rate of β constant [γ,∞[ Yes
γ̄ Growth rate of β̄ constant [1, γ] Yes
β̄k Upper bound for β update as (7.4) [βk, 1] No, β̄0 = 1

• If restart occurs, i.e., F̂k+1 > F̂k, we assume it is caused by an over-sized βk (recall that, for
βk = 0, decrease is guaranteed by the update in line 6) and we shrink the value of β for the
next iteration using the decay parameter η as in the update (7.3).

• Otherwise, F̂k+1 ≤ F̂k, we assume βk can safely be increased. We grow β for the next iteration
as γβ. To prevent β to grow indefinitely, we use an upper bound β̄ as in the update (7.3).

The update of β̄ HER updates β̄k as follows

β̄k+1 =

 βk if F̂k+1 > F̂k

min{γ̄β̄k, 1} if F̂k+1 ≤ F̂k
, (7.4)

which is explained as follows:

• If there is no restart, i.e., F̂k+1 ≤ F̂k, then β̄ is increased if β̄ is smaller than 1.

• Otherwise F̂k+1 > F̂k and β̄k+1 is set to βk to prevent βk+1 growing larger than βk too fast in
the future. In fact, βk indicates a too large value for β since the error has increased.

Remark 11. Let us make a few remarks.

• The relationships between the parameters in HER are:

0 < βk ≤ β̄k ≤ 1 < γ̄ ≤ γ ≤ η < +∞. (7.5)

By construction, βk ≤ β̄k ≤ 1, while γ̄ ≤ γ ensures that β̄ increases slower than β, while γ ≤ η
ensures that β is decreased faster.

• We observed that HER is more effective if the NNLS subproblems (7.1) are solved with relatively
high precision. Empirically Fig. 7.17 suggested to use HER with repeated projected gradient
steps rather than just a single step. The suffix 50 after the algorithms’ name in Fig. 7.17
means that we run 50 iterations for the algorithms to solve the NNLS subproblem (7.1).

• A drawback of the HER approach is the parameter tuning. There are 4 parameters to tune:
β0, γ, γ̄, η. However HER is not too sensitive for reasonable values of the parameters; see
Fig. 7.6 for an illustration. So, normally no parameter tuning is needed, even in difficult
cases when data are ill-conditioned or rank is high; namely we will use β0 = 0.5, γ = 1.05,
γ̄ = 1.01 and η = 1.5, these values are used in [3].

• In the implementation, we initialize Â(i)
0 = A(i)

0 , i = 1, . . . , N .
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Fig. 7.6. Comparison of HER with different parameters on the same NTF problems: a rank-10
factorization on noiseless tensors generated by random with size 50 × 50 × 50. For each
set of parameters, the decomposition is repeated 10 times over 10 different data tensors
and initializations; the top plots representing f display the error of the approximation,
and the bottom plots representing e display the distance to the ground truth factors; see
§7.5 for details. The default set of parameters are [β0 = 0.5, γ = 1.05, γ̄ = 1.01, η = 1.5].
The results here show that HER is not sensitive to its parameters as all the curves are not
deviating away from each other, except for the case η = 1.1, suggesting that η should not
be too small. Figure copied from [3].

7.3.2 Related works to HER

Here we present two extrapolation schemes similar in spirit with HER, namely Bro, GR and LS.

Extrapolated AO algorithms with Harshman-Bro’s sequence Extrapolated AO algorithms can be
traced back to the seminal work of Harshman in the 70s [53]. Extrapolation was then seen as a way to
speed up the convergence of Alternating Least Squares (ALS). The proposed heuristic by Harshman
was later revisited and optimized by Bro [15] with convincing empirical speed-ups for computing
CPD (i.e., without the nonnegativity constraint). The scheme of Bro is the following heuristic:

Update: A(i)
k+ 1

2
by solving NNLS subproblem (6.11), (7.6a)

Extrapolate: A(i)
k+1 = A(i)

k+ 1
2

+
(
k

1
h(k) − 1

)(
A(i)
k+ 1

2
−A(i)

k

)
, (7.6b)

where k is the current iteration index and h(k) is a recursive function so that h(k + 1) = h(k) if the
error has not increased for more than 4 iterations, h(k+ 1) = 1 +h(k) otherwise, and h(1) = 3. Note
that, before moving to the extrapolation step (7.6b), the update step (7.6a) is carried out across all
block i. Moreover, no extrapolation is performed in the first few (4 in this paper) iterations because
of stability issues.
There is however no particular modification of the Bro’s scheme for the nonnegative CPD (i.e.

NTF) case. Furthermore, empirically, Bro’s accelerated BCD diverges when factorization rank is
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high. In [3], Bro-AHALS, Bro-ADMM and Bro-Nesterov – the 3 versions of Bro’s accelerated methods
were implemented, in which we respectively use the same strategy using AHALS (see §6.3.1), ADMM
and Nesterov’s accelerated gradient method for solving the NNLS subproblem (6.11) inexactly.

Extrapolated AO algorithms with gradient ratio and line search Recently, [86] have considered
two heuristic approaches similar to the approach of Bro [15]. The two heuristic approaches follow a
two-step framework. In the first step, an update on a variable xk is performed, where xk is obtained
by stacking all the block A(i)

k into one single vector, and hence it is a “all-at-once” approach. In the
second step, the extrapolation coefficient ωk is computed in two different ways (see below). After ωk
is computed, extrapolation is performed on xk as xk+1 = xk + ωk(xk − xk−1). There is no auxiliary
sequence in the two approaches.
To compute ωk, the first approaches, referred to as Gradient Ratio (GR), uses ωk = ∇xFk

∇xFk−1
, where

∇xFk is the gradient of F with respect to x at iteration k. The second approach, namely Line Search
(LS), computes ωk by minimizing F (xk + ω(xk − xk−1)) with with respect to ω.
In the experiments conducted in [3], these three approaches (Bro, GR and LS) were compared

to HER. However, following modifications were made so that the Bro, GR and LS have the same
algorithmic structure as HER. First, the update of xk is performed block wise, that is, one A(i) at
a time. Next, a main modification on the extrapolation step in GR and LS was made as follows.
Note that the expression xk+1 = xk + ωk(xk − xk−1) in the original GR and LS means all the block
variables are extrapolated with the same “global” extrapolation coefficient. i.e., the extrapolation
coefficients for all block A(i) are the same. Here, the global extrapolation coefficient is “split”into
block-specific extrapolation coefficient. i.e., in GR, the extrapolation is performed for all i as

A(i)
k+1 = A(i)

k+ 1
2

+ ‖∇A(i)Fk‖
‖∇A(i)Fk−1‖

(A(i)
k+ 1

2
−A(i)

k ), (7.7)

where ∇A(i)Fk is the gradient of F w.r.t. block A(i) at iteration k, and A(i)
k+ 1

2
is the block A(i) at

iteration k just after the update. That is, we extrapolate the block right after the update, as in Bro’s
approach and in HER. Moreover, the extrapolation step (7.7) uses the ratio between the norm of the
gradient of the current block A and the norm of the gradient of the same block in the last iteration.

The same thing is done on splitting the global extrapolation coefficient into block-specific ex-
trapolation coefficient in LS. i.e., the

(
k

1
h(k) − 1

)
in the extrapolation step (7.6b) is replaced by

the extrapolation weight parameter ωk, which is computed by solving a minimization subproblem.
Consider the update of the ith block at iteration k, then

ωk = argmin
ω

F
(
A(1)
k , . . . ,A(i−1)

k ,A(i)
k + ω(A(i)

k −A(i)
k−1),A(i+1)

k−1 , . . . ,A(N)
k−1

)
. (7.8)

By expanding F in terms of ω, the function F in the problem (7.8) can be expressed as a 2nd-order
polynomial in ω, and hence a closed-form solution for ω exists: by forming matrix B in the form of
(6.9) as in (6.5),

ωk = argmin
ω

∥∥∥T[i] −
(
A(i)
k + ω(A(i)

k −A(i)
k−1)

)
B(i)>

∥∥∥2

F

= argmin
ω

∥∥∥T[i] −A(i)
k B(i)>︸ ︷︷ ︸

T̂[i]

+ω (A(i)
k −A(i)

k−1)B(i)>︸ ︷︷ ︸
∆

∥∥∥2

F

= argmin
ω

‖∆‖2F︸ ︷︷ ︸
a

ω2 + 2〈T̂[i],∆〉︸ ︷︷ ︸
b

ω +
∥∥∥T̂[i]

∥∥∥2

F︸ ︷︷ ︸
c

= argmin
ω

aω2 + bω + c.
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Then, we solve for the real roots of this quadratic equation, put the roots into F (ω) and pick the
one that gives the smallest value, we obtain ωk.

Remark 12. There are a few remarks on GR and LS.

• As stated, the implementations of GR and LS in this paper are different from the original one
proposed in [86] where GR and LS use a vectorized format. They solve ωk in LS approximately
using cubic line search in the Poblano toolbox. Here we perform the extrapolation in matrix
format as Bro, and solve the problem (7.8) exactly. By splitting of the extrapolation coefficient
into block extrapolation coefficients, the original GR and LS are improved as the ωk in the new
GR and LS are more adapted to each block variable. As for Bro’s accelerated algorithms,
we implement in this paper GR-AHALS, GR-ADMM, GR-Nesterov, LS-AHALS, LS-ADMM
and LS-Nesterov where we correspondingly use the same strategy as for AHALS (see §6.3.1),
ADMM and Nesterov’s accelerated gradient method for solving the NNLS subproblem (6.11).

• The per-iteration cost in both GR and LS schemes is larger than that of Bro. Both Bro, GR
and LS have restart, but Bro’s extrapolation scheme (7.6b) is basically a constant manipulation,
while GR has multiple matrix-matrix multiplications and LS even has to solve a minimization
subproblem. In general, the per-iteration cost of the extrapolation step in GR and LS is about
one ALS, while Bro’s extrapolation cost is negligible.

• GR and LS are designed for CPD (no nonnegativity constraint) but not NTF (with nonnegativity
constraint), and similar to Bro’s approach [15], there is no modification of the GR and LS
scheme for the nonnegative decomposition case. These mean there is no guarantee on feasibility
of iterates produced by these methods for NTF.

• As originally designed for CPD, in [2] several tests were conducted to compare HER accelerated
ALS with Bro’s accelerated ALS, GR-accelerated ALS and LS-accelerated ALS on CPD prob-
lems without the nonnegativity constraint. Results showed that HER is still capable to provide
acceleration, and the convergence is faster than the other methods.

7.3.3 Extension to CPD

The HER framework can also be used to solve unconstrained CPD problems (i.e., NTF without non-
negativity constraint). To do so, we use Algorithm 8 directly with the following small modifications:

• Line 6: We replace the update (7.1) by Alternating Least Squares (ALS) update, which has a
closed-form expression as

A(i) = T[i]B(i)†,

where B(i) is defined in definition (6.9).

• Line 7: As CPD has no nonnegativity constraint, we remove the projection in the extrapolation
step (7.2).

7.4 Experiments on NMF

In this section we show the efficiency of the extrapolation scheme, i.e., Algorithm 7, to accelerate
the NMF algorithms ANLS (solving the NNLS subproblems using Active-set methods) and AHALS
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(solving the NNLS subproblems using AHALS). Following the original naming used in [5], we name
the HER accelerated variant of these two methods by adding a prefix “E-” on the name of the
algorithm. i.e., E-ANLS and E-A-HALS. All the figures in this section come from [5].

7.4.1 Datasets and Experimental setup

Datasets Datasets that are widely used in NMF literature are used, see Tables 7.2. The image
datasets are dense matrices that represent facial images, and the document datasets are sparse
matrices.

Table 7.2: Image datasets [5] and text mining datasets [112]. For image datasets, r = 40 in all
experiments. For text datasets, r = 20 in all experiments, nnz is the number of nonzeros,
and sparsity is given in %: 100 ∗#zero/(mn)).

Image datasets
Name # pixels m n

ORL 112× 92 10304 400
Umist 112× 92 10304 575
CBCL 19× 19 361 2429
Frey 28× 20 560 1965

Text mining datasets
Name m n nnz sparsity
classic 7094 41681 223839 99.92
sports 8580 14870 1091723 99.14
reviews 4069 18483 758635 98.99
hitech 2301 10080 331373 98.57
ohscal 11162 11465 674365 99.47
la1 3204 31472 484024 99.52

We also consider two types of synthetic datasets:

• Low-rank synthetic datasets: we generate each entry of W,H using the uniform distribution in
[0, 1] and compute X = WH. For each experiment, we generate 10 such matrices and report
the average results.

• Full-rank synthetic datasets: we generate each entry of X uniformly at random in [0,1] so that
X is a full rank matrix.

In both cases, we use m = n = 200 and r = 20.

Experimental setup In all cases, we report the average error over 10 random initializations, where
the entries of the initial matrices W,H are chosen uniformly at random in the interval [0, 1]. To
compare the solutions generated by the different algorithms, we report the relative data fitting error
(3.2) to which we subtract the lowest relative error obtained by any algorithm with any initialization
(denoted emin). Mathematically, given the data X and the solution (W(k),H(k)) obtained at iteration
k, we report

E(k) = ||X−W(k)H(k)||F
||X||F

− emin. (7.9)

For the low-rank synthetic datasets, we use emin = 0.
Using E(k) instead of ||X−W(k)H(k)||F has several advantages: (i) it allows to take meaningfully

the average results over several datasets, and (ii) it provides a better visualization both in terms
of initial convergence and in terms of the quality of the final solutions computed by the different
algorithms. The reason is that E(k) converges to 0 for the algorithm that was able to compute the
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best solution which allows us to use a logarithmic scale. Also, when comparing NMF algorithms that
may converge to different local minima, comparing the values of E(k) especially makes sense when
looking at the speed of convergence.

Tuning parameters: preliminary experiments Before we compare the two NMF algorithms (ANLS
and AHALS) and their extrapolated variants, we run some preliminary experiments to choose rea-
sonable values for the parameter of Algorithm 7 (hp) and the parameters to update βk.
As we will see, the extrapolation scheme performs rather differently for ANLS (that computes an

optimal solution of the subproblems) and AHALS (that computes an approximate solution using a
few steps of coordinate descent). It will also perform rather differently depending on the value of
hp, while it will less sensitive to the values of β0, γ, γ̄ and η as long as these values are chosen in a
reasonable range.
In the next section, we run the different variants with the following parameters: β0 = 0.25, 0.5, 0.75,

η = 1.5, 2, 3, (γ, γ̄) = (1.01, 1.005), (1.05, 1.01), (1.1, 1.05). For each experiment, we will not be able
to display the curve for each extrapolated variants (there would be too many, 82 in total: 34 and
the original algorithm). So, for each value of hp, we only display the variant corresponding to the
parameters that obtained the smallest final average error (best) and the largest final average error
(worst). This will be interesting to observe the sensitivity of Algorithm 7 to the way βk is updated.

Extrapolated ANLS (E-ANLS) The top two plots of Fig. 7.7 show the evolution of the average of
the relative data fitting error (7.9) for the low-rank and full-rank synthetic datasets.
We observe the following:

• For all the values of the parameters, E-ANLS outperforms ANLS.

• For the low-rank synthetic datasets, E-ANLS with hp = 1 and well-chosen parameters for
the update of βk (e.g., β0 = 0.5, η = 1.5, γ = 1.1) performs extremely well and is able to
identify solutions with very small relative error (≈ 10−8 in average). In fact, the original ANLS
algorithm would not be able to compute such solutions even within several thousand iterations.

• For the full-rank synthetic datasets, E-ANLS variants with hp equal to 1, 2 or 3 perform
similarly although choosing hp = 1 allows a slightly faster initial convergence.

• The best value for γ is either 1.05 or 1.10. The best value for η is either 1.5 or 2 (3 being always
the worst). The algorithm is not too sensitive to the initial β as it is quickly modified within
the iterations but β0 = 0.25 clearly provides the worst performance in most cases.

We now perform the same experiment on image and document datasets except with fewer param-
eters (we do not use γ = 1.01, η = 3, β0 = 0.25) in order to reduce the computational load. The
bottom two plots of Fig. 7.7 show the evolution of the average of the relative data fitting error (7.9)
for the image and document datasets.
We observe the following:

• As for synthetic datasets, E-ANLS outperforms ANLS for all the values of the parameters.

• Since we removed the values of the parameters performing worst, the gap between the best and
worst variants of E-ANLS is reduced.
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Fig. 7.7. Extrapolation scheme applied to ANLS on synthetic and real datasets. For each value
of hp, we display the corresponding best and worst performing variant. The curves are
the average value of relative data fitting error (7.9) among the different datasets and
initializations.

• For the image datasets, the variant with hp = 1 performs best although the variants with
hp = 2, 3 do not perform much worse.

• For the document datasets, the variants with hp = 2, 3 perform best (in terms of final error).
This can be explained by the fact that NMF problems for sparse matrices are more difficult
as there are more local minima with rather different objective function values (see paragraph
Sparse document datasets for more experiments). So the final error reports the algorithm
that found the best solution in most of the 60 cases (6 datasets, 10 initializations per dataset).
In terms of speed of convergence, most E-ANLS variants behave similarly (converging within
80 iterations, while ANLS has not converged within 100 iterations).

In the final experiments, we use β0 = 0.5, η = 1.5 and (γ, γ̄) = (1.1, 1.05) for E-ANLS. We will
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keep both variants hp = 1, 3.

Extrapolated AHALS (E-AHALS) The top two plots of Fig. 7.8 show the evolution of the average
of the relative data fitting error (7.9) for the low-rank and full-rank synthetic datasets. For these
experiments, we also tested the value (γ, γ̄) = (1.005, 1.001) (as we will see that smaller value of
these parameters perform better).
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Fig. 7.8. Extrapolation scheme applied to AHALS on synthetic and real datasets. For each value
of hp, we display the corresponding best and worst performing variant.

We observe the following:

• For the low-rank synthetic data, with hp = 2, 3 and well-chosen parameters for the update of
β (e.g., β0 = 0.50, η = 1.5, γ = 1.01), E-AHALS performs much better than AHALS. (Note
however that it is not able to find solutions with error as small as E-ANLS within 500 iterations.)

• For the full-rank synthetic data, the variant with hp = 1 performs slightly better although the
final solutions of the three extrapolated variants have similar error.
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• The best value for γ is either 1.01 or 1.05, smaller than for E-ANLS. This can be explained
by the fact that AHALS does not solve the NNLS subproblems exactly and the extrapolation
should not be as aggressive as for ANLS. As for E-ANLS, E-HALS is not too sensitive to the
parameters η and β0.

We now perform the same experiment on image and document datasets except with fewer param-
eters (we do not test γ = 1.005, 1.1, η = 3, β0 = 0.25). The bottom two plots of Fig. 7.8 show the
evolution of the relative data fitting error (7.9) for the image and document datasets.
We observe the following:

• For the image datasets, the variant hp = 1 performs worse than hp = 2, 3 which perform
similarly (in terms of speed of convergence).

• For the document datasets, we observe a similar behavior as for ANLS: all extrapolated variants
converge much faster than HALS, but converge to different solutions (being in average less than
0.1% away from the lowest relative error).

In the final experiments, we use β0 = 0.5, η = 1.5 and (γ, γ̄) = (1.01, 1.005) for E-AHALS. We will
keep both variants hp = 1, 3.

7.4.2 Extensive experiments and comparison of E-ANLS and E-AHALS

We now compare ANLS, AHALS and their extrapolated variants on the same datasets. We also
compare these algorithms with the extrapolated alternating projected gradient method for NMF
proposed by [109] and referred to as APG-MF.

Synthetic datasets Fig. 7.9 displays the evolution of the average error for the low-rank and full
rank synthetic datasets, where the NMF algorithms were run for 20 seconds.
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Fig. 7.9. Comparing ANLS, AHALS and their extrapolated variants with APG-MF on synthetic
datasets: Average value of the relative data fitting error (7.9).

Tables 7.3 (resp. 7.4) reports the average error, standard deviation and a ranking among the final
solutions obtained by the different algorithms for the low-rank (resp. full-rank) synthetic datasets.
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Table 7.3: Comparison of the final relative error obtained by the NMF algorithms on the low-rank
synthetic datasets: Average error, standard deviation and rankings among the 100 runs
(100 datasets). The ith entry of the vector indicates the number of times the algorithm
generated the ith best solution. (Observe that all algorithms are able to compute the best
solution at least a few times: this happens when they compute an exact solution with
X = WH.)

Algorithm mean ± std ranking
ANLS 5.612 10−5 ± 7.414 10−5 ( 0, 0, 0, 3, 7, 40, 50)

E-ANLS (hp = 1) 2.618 10−8 ± 3.657 10−8 (96, 4, 0, 0, 0, 0, 0)
E-ANLS (hp = 3) 1.207 10−6 ± 1.162 10−5 (67, 24, 7, 1, 1, 0, 0)

AHALS 4.547 10−5 ± 6.299 10−5 ( 1, 0, 0, 4, 10, 41, 44)
E-AHALS (hp = 1) 7.825 10−6 ± 1.531 10−5 ( 3, 0, 6, 31, 41, 13, 6)
E-AHALS (hp = 3) 1.181 10−7 ± 3.679 10−7 (48, 8, 37, 7, 0, 0, 0)

APG-MF 2.032 10−6 ± 5.770 10−6 ( 0, 0, 3, 50, 41, 6, 0)

Table 7.4: Comparison of the final relative error obtained by the NMF algorithms on the full-rank
synthetic datasets: Average error, standard deviation and rankings among the 100 runs
(10 datasets, 10 initializations each). The ith entry of the vector indicates the number of
times the algorithm generated the ith best solution.

Algorithm mean ± std ranking
ANLS 0.423858± 1.183 10−3 ( 4, 9, 9, 12, 22, 21, 23)

E-ANLS (hp = 1) 0.423795± 1.161 10−3 (16, 18, 18, 9, 15, 10, 14)
E-ANLS (hp = 3) 0.423787± 1.158 10−3 (18, 11, 17, 21, 16, 9, 8)

AHALS 0.423815± 1.171 10−3 (18, 12, 11, 18, 13, 13, 15)
E-AHALS (hp = 1) 0.423790± 1.162 10−3 (17, 17, 16, 17, 15, 10, 8)
E-AHALS (hp = 3) 0.423817± 1.184 10−3 (12, 14, 16, 11, 11, 22, 14)

APG-MF 0.423808± 1.183 10−3 (16, 18, 13, 12, 8, 15, 18)

For low-rank synthetic datasets, these results confirm what we observed previously: E-ANLS
(hp = 1) is able to significantly accelerate ANLS and obtain solutions with small error extremely fast
(in less than 4 seconds). The acceleration of HALS is not as important but it is significant. E-ANLS
(hp = 1) is able to obtain the best solutions in 96 out of the 100 runs while being always among
the two best, while ANLS and AHALS are among the worst ones in most cases. APG-MF never
generates the best nor the second best solution.

For full-rank synthetic datasets, we observe that all algorithms obtain a similar final relative error
(see Table 7.4), all of them being in average around 0.01% away from the best solution, and there
is no clear winner between the extrapolated variants. In fact, there is a priori no reason to believe
that an algorithm will converge to a better solution in general since NMF is a difficult nonconvex
optimization problem [106]. In terms of speed of convergence, E-AHALS variants converge the
fastest (about 3 seconds), followed by APG-MF (about 4 seconds) and the E-ANLS variants (about
8 seconds), while AHALS and ANLS require more than 20 seconds.
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Dense image datasets We now run the algorithms for 200 seconds on the 4 image datasets; see
Fig. 7.10 which displays the evolution of the average of the relative data fitting error (7.9) for each
dataset, and Table 7.2 which compares the final errors obtained by the different algorithms.
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Fig. 7.10. Comparing ANLS, AHALS and their extrapolated variants with APG on image datasets.
Average value of the relative data fitting error (7.9) of ANLS, AHALS and their extrap-
olated variants applied on the 4 image datasets.

We observe the following:

• E-AHALS (hp = 3) has the fastest initial convergence speed, followed by E-ANLS variants and
APG-MF. As in the preliminary experiments, E-AHALS (hp = 1) is able to accelerate AHALS
but not as much as E-AHALS (hp = 3).

• In terms of final error, there is no clear winner between the extrapolated variants (similarly as
for the full-rank synthetic datasets), while ANLS clearly performs the worst.

To conclude, we see that the extrapolation scheme is particularly beneficial to ANLS that is signif-
icantly accelerated and even able to outperform E-AHALS in some cases (while AHALS performs
in general much better than ANLS, as already pointed out in [46]). Although APG-MF outper-
forms ANLS (as already observed by [109]) and AHALS, it is in general outperformed by the other
extrapolated variants.
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Table 7.5: Comparison of the final relative error obtained by the NMF algorithms on the image
datasets: Average error, standard deviation and rankings among the 40 runs (4 datasets,
10 initializations each). The ith entry of the vector indicates the number of times the
algorithm generated the ith best solution.

Algorithm mean ± std ranking
ANLS 0.110703± 2.964 10−2 ( 3, 3, 3, 5, 5, 8, 13)

E-ANLS (hp = 1) 0.110547± 2.958 10−2 ( 9, 12, 7, 5, 4, 2, 1)
E-ANLS (hp = 3) 0.110570± 2.956 10−2 ( 9, 6, 5, 7, 2, 8, 3)

AHALS 0.110690± 2.956 10−2 ( 1, 4, 4, 2, 3, 13, 13)
E-AHALS (hp = 1) 0.110634± 2.958 10−2 ( 4, 2, 2, 4, 17, 7, 4)
E-AHALS (hp = 3) 0.110552± 2.956 10−2 ( 5, 10, 11, 8, 3, 0, 3)

APG-MF 0.110559± 2.956 10−2 ( 9, 3, 8, 9, 6, 2, 3)

Sparse document datasets We repeat the previous experiments on the 6 document datasets; see
Fig. 7.11 which displays the evolution of the relative data fitting error (7.9) for each dataset, and
Table 7.6 which compares the final errors obtained by the different algorithms.

Table 7.6: Comparison of the final relative error obtained by the NMF algorithms on the document
datasets: Average error, standard deviation and rankings among the 60 runs (6 datasets,
10 initializations each). The ith entry of the vector indicates the number of times the
algorithm generated the ith best solution.

Algorithm mean ± std ranking
ANLS 0.850433± 3.186 10−2 ( 5, 3, 12, 6, 9, 11, 14)

E-ANLS (hp = 1) 0.850417± 3.187 10−2 ( 7, 8, 6, 12, 13, 12, 2)
E-ANLS (hp = 3) 0.850324± 3.189 10−2 ( 9, 11, 6, 9, 15, 6, 4)

AHALS 0.850232± 3.198 10−2 (15, 11, 9, 8, 7, 7, 3)
E-AHALS (hp = 1) 0.850287± 3.198 10−2 (13, 13, 12, 6, 7, 6, 3)
E-AHALS (hp = 3) 0.850281± 3.204 10−2 (15, 11, 11, 4, 5, 9, 5)

APG-MF 0.850471± 3.183 10−2 ( 5, 5, 9, 10, 5, 9, 17)

We observe the following:

• E-AHALS variants have the fastest initial convergence speed converging in average in about 10
seconds, followed by AHALS which sometimes takes much more time to stabilize (e.g., more
than 50 seconds for the classic dataset). APG-MF does not converge as fast as E-AHALS
variants. E-ANLS variants converge much faster than ANLS but sometimes take more than 30
seconds to stabilize.

• In terms of final error, there is no clear winner although AHALS and E-AHALS (hp = 3) gives
most of the time the best solution (15 our of 60 cases). APG-MF tends to generate the worst
solutions (17 out of the 60 cases) and performs similarly as ANLS in this respect.

For sparse datasets, E-AHALS is the best option for which both variants (hp = 1, 3) perform similarly.
APG-MF and ANLS and its extrapolated variants are less effective in this case.
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Remark 13 (Choice of hp). At this point, we do not have a good theoretical understanding to justify
the choice of hp. From the experiments, it is clear that hp = 2 should be avoided as it performs in most
cases worse than hp = 1, 3 while being a more aggressive variant (no projection and extrapolation
after the update of both W and H). Comparing hp = 1 and hp = 3, there is no clear winner
and performance vary from one experiment to another. Understanding this behavior and possibly
designing a better strategy (e.g., using a hybridization) is a topic for further research.

7.4.3 Section summary

The main conclusions are the following:

• In all cases, the extrapolated variants significantly outperform the original algorithms.

• For randomly generated low-rank matrices, E-ANLS, the extrapolated variant of ANLS, allows a
significant acceleration, being able to compute solutions with very small relative errors (≈ 10−8)
in all cases while the other approaches fail to do so.

• For dense datasets, E-ANLS and E-AHALS perform similarly although AHALS performs much
better than ANLS. This is interesting: the extrapolated variants allowed ANLS to get back on
AHALS.

• For sparse datasets, E-AHALS performs the best and should be preferred to the other variants.

• The extrapolated projected gradient method proposed by [109] and referred to as APG-MF
performs well but does not perform as well as the extrapolated variants proposed in this paper.

It would be crucial to understand the extrapolation scheme better from a theoretical point of view.
In particular, can we prove convergence to a stationary point as done in [109]? And can we quantify
precisely the acceleration like it has been done in the convex case?

7.4.4 Extension to minvol NMF

Finally, here we give an empirical evidence that HER approach also works on minvol NMF problems.
Fig.7.12 gives an example on the acceleration made by HER on algorithms solving minvol NMF with
Vlogdet on the Samson HSI data. Here we do not tune the HER parameters and use the default set of
parameters: hp = 3, β1 = 0.5, η = 1.5, γ = 1.01 and γ̄ = 1.005. The result shows that HER provides
acceleration on the convergence of the sequences

{
Wk,Hk

}
k=1,2,.... Similar results can be obtained

on other datasets and on other minvol NMF models.

7.5 Experiments on NTF

In this section, we empirically prove the efficacy of HER (Algorithm 8) by extensively test its per-
formance on a rich set of synthetic datasets as well as real datasets. As presented in § 7.3, HER is
a scheme to accelerate AO algorithms by using extrapolation between block update; and as such,
by using HER, we can derive several different algorithms corresponding to the solver we use for
the NNLS subproblem (7.1). We name the algorithms that use AS, ADMM, Nesterov and AHALS
for solving NNLS subproblem (7.1) by HER-AS, HER-ADMM, HER-Nesterov and HER-AHALS,
respectively. We call HER-AO the set of these algorithms. Table 7.7 lists the algorithms that we
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Table 7.7: Algorithms for solving NTF
Algorithms Reference
HER-AS, HER-ADMM, HER-Nesterov, HER-AHALS § 7.3
AO-AS, AO-ADMM, AO-Nesterov, AHALS § 6.3.1
GR-ADMM, GR-Nesterov, GR-AHALS § 7.3.2
LS-ADMM, LS-Nesterov, LS-AHALS § 7.3.2
Bro-ADMM, Bro-Nesterov, Bro-AHALS § 7.3.2
APG, iBPG (first-order type methods) § 6.3.2

implement and test in our experiments. All the figures in this section come from [3]. In case the
legend and the axis label of the figures are too small, we refer the reader to zoom in the figures in
the pdf file of this thesis or the pdf file of [3].

7.5.1 Experiment setup

Performance measurement Two important factors in the evaluation of the performance of an
algorithm are the data fitting error and the factor fitting error that are computed as follows. We use
the value of the objective function

fk := F
(
A(1)
k , . . . ,A(N)

k

)
(7.10)

to represent the fitting error, where F is defined in (6.8). Then, supposing the ground truth factor
matrices A(i)

true, i = 1 . . . , N are available, we compute the factor fitting error ek as

ek := 1
N

N∑
i=1

‖normalize(A(i)
true)− normalize(A(i)

k )Π‖F
‖normalize(A(i)

true)‖F
. (7.11)

Here normalize(·) is the column-wise normalization step (i.e., the i-th column of normalize(A) is set
to A(:,j)
‖A(:,j)‖2

), and Π is the permutation matrix computed through the Hungarian algorithm. The use
of Π is to remove the permutation degree of freedom for matching the columns of A(i) to the column
of A(i)

true, and the use of normalization is to remove the scaling degree of freedom for matching the
columns of A(i) to the column of A(i)

true.

Generate a synthetic data We first generate ground truth factor matrices A(i)
true ∈ RIi×r

+ , i =
1, . . . N whose entries are sampled from i.i.d. uniform distributions in the interval [0, 1]. The tensor
T clean ∈ RI1×···×IN

+ is then constructed from A(i)
true, i = 1, . . . N . Finally, we form a synthetic data

T by adding some noise to T clean, T = max(0, T clean + σE), where σ ≥ 0 is the noise level, and
E ∈ RI1×···×IN is a tensor whose entries are sampled from a unitary centered normal distribution.

Initialization, number of runs and plots For each run of an algorithm, we use a random ini-
tialization, i.e., the initial factor matrices A(i)

0 , i = 1, . . . , N , are generated by sampling uniform
distributions in [0,1]. Note that, testing a specific data tensor, we use the same initialization in one
run of all algorithms. We run all the algorithms 20 times with 20 different initializations. We stop
one run of an algorithm when the maximum time (which is chosen before running the algorithms) is
reached.
In presenting the results, we plot f − fmin; and if the ground truth is known, we also plot e− emin.

Here fmin and emin are respectively the minimal value of all the data fitting errors and the factor fitting
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errors obtained across all algorithms on all runs. In noiseless settings (σ = 0), exact factorization is
possible, so we set fmin = 0. To have a better observation of the performance of the algorithms, we
plot the curves with respect to both time and iterations 4. We remark that, “an iteration” for AO
algorithms refer to the counter k of the outer loop after all blocks have been updated. Regarding the
time evaluation, we record the time stamp for each iteration, and then perform a linear interpolation
to synchronize the time curves. Note that such linear interpolation does not reflect 100% truly the
real convergence behavior as it is just an linear estimate, but we consider such estimate to be accurate
enough.
In our experiment, we emphasize on plotting the median curves of the 20 runs (which are the thick

curves in the upcoming figures), because there may be large deviations between different runs.

Solving the NNLS subproblems (6.11) and (7.1) When using AS, ADMM, Nesterov’s accelerated
gradient descent algorithm or AHALS to solve NNLS subproblem (6.11) or (7.1), in our implemen-
tation, we terminate the solver when the number of iterations reaches 50 or when ‖A(i)

s −A(i)
s−1‖ ≤

10−2‖A(i)
0 −A(i)

1 ‖, where s is the iteration counter of the solver.

Parameter set up for HER We use the following set of parameters for HER-AO (unless other-
wise specified): β0 = 0.5, γ = 1.05, γ̄ = 1.01, η = 1.5, and extrapolation step (7.2) is used for the
extrapolation point.

List of experiments Table 7.8 lists the figures that report our diverse experiments on synthetic
data and real data sets. All the experiments have N = 3 and the input tensor is dense.

Complete numerical experimental results We refer the interested reader to the appendix of the
arXiv paper [3] for all the numerical experiments as reported in Table 7.8. The conclusions remain
the same: HER significantly accelerate the convergence of BCD algorithms, while the HER-BCD
outperforms both iBPG and APG.

7.5.2 Extensive experiments on synthetic datasets

As listed in Table 7.8, the experiments on synthetic data sets are designed to simulate different kinds
of situations that may occur in real applications, which includes: low rank, larger rank, noiseless,
noisy, tensor with balanced size (cubic tensor), tensor with unbalanced size (rectangular tensor), and
ill-conditioned tensor.
Figure 7.13, 7.14 7.15 and 7.16 strongly affirm that HER-ADMM and HER-AHALS significantly

outperform their counterparts AO-ADMM and AHALS in term of both fk and ek, where the im-
provement is often of several orders of magnitude (at least 104 in most cases). We observe the same
result for HER-AS and HER-Nesterov vs AO-AS and AO-Nesterov.
Compared with APG and iBPG, we observe from Fig. 7.17 that HER-Nesterov outperforms both

APG and iBPG in term of f and significantly outperforms them in term of e. From extensive
experiments, we observe that HER, the scheme that makes use of the extrapolation between block

4We do not report the number of MTTKRP as all the algorithms in the experiments (except for AS) share the same
number of MTTKRP (which is N for an tensor with order N), so the performance in terms of number of MTTKRP
is contained implicitly in the plot with respect to the iterations.
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Table 7.8: List of experiments on NTF.
Fig. Test description [I1, I2, I3, r, σ]

Synthetic data
7.13 Cube size, low rank, noiseless [50, 50, 50, 10, 0]
7.13 Unbalanced size, low rank, noiseless [150, 103, 50, 12, 0]
7.14 Unbalanced size, larger rank, noiseless [150, 103, 50, 25, 0]
7.15 Large cube size, low rank, noisy [500, 500, 500, 10, 0.01]
7.16 Unbalanced size, low rank, noisy, ill-condition [150, 103, 50, 12, 0.001]
7.17 HER-AO-gradients vs. APG and iBPG [150, 103, 50, 10, 0.01]

7.18 Comparing {HER,Bro,GR,LS}-AHALS
[50, 50, 50, 10, 0]

[150, 103, 50, 12, 0.01]
[150, 103, 50, 25, 0.01]

Real data

7.19 Two HSI images: PaviaU and Indian Pine
[610, 340, 103, 10]
[145, 145, 200, 15]

7.21 Big data: black-and-white video sequence [153, 238, 1.4× 104, {10, 20, 30}]

update scheme, shows much better performance than APG and iBPG, the accelerated block proximal
gradient methods that use Nesterov-type extrapolation inside each block update.
Compared with Bro-AHALS, GR-AHALS and LS-AHALS, Fig. 7.18 shows that our HER-AHALS

performs the best in the three experimental settings (only median is plotted here). Note that since
the acceleration frameworks Bro, GR and LS are not designed for NTF, it is possible the iterates
produced by these frameworks are infeasible. Here we only compare HER-AHALS with Bro- AHALS,
GR- AHALS and LS- AHALS; the comparison of these methods where AHALS is replaced with AO-
ADMM and AO-ADMM are available in the Appendix of [3], and similar conclusions are drawn,
namely that HER outperforms the other accelerations.

7.5.3 Experiments on real datasets: two HSI data

We test the performance of the algorithms on two hyperspectral images (HSI) PaviaU and Indian
Pines 5. They are nonnegative order-3 tensor; PaviaU has size [610, 340, 103] with r = 10 and Indian
Pines has size [145, 145, 200] with r = 15. The r chosen are commonly used in practice.

We perform minimal pre-processing on the raw data: NaN or negative values (if any) are replaced
by zero. Hence, it is possible the pre-processed data contains many zeros and being ill-conditioned.

5Data available from http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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Figure 7.19 reports the performance of HER-AHALS, HER-ADMM and their counterparts AO-
AHALS and AO-ADMM on the two data sets. As there are no ground truth factors, we only show
f in the results.
We observe that there are multiple swamps, which are common for real datasets as the data are

highly ill-conditioned (the condition numbers of the metricized pre-processed data tensor along all
modes are [593, 642, 1009] for Indian Pines and [944, 462, 8083] for PaviaU). Nevertheless, considering
the “best case” among the trials, HER-AHALS and HER-ADMM provide solutions with error 108−
1010 times smaller than the best case of their un-accelerated counterparts. To compare with other
algorithms, the readers can view the results in the Appendix of [3]. We observe that iBPG, APG
and the AO (AO-AHALS and AO-ADMM) algorithms accelerated by GR, Bro and LS schemes are
much slower than our AO (AO-AHALS and AO-ADMM) algorithms accelerated by HER. GR-AO
and Bro-AO (for AO being AO-AHALS or AO-ADMM) even sometimes diverge.

7.5.4 Experiments on real datasets: big data, and efficient tensor compression via
Tucker format

We test HER-AHALS on the video data of the UCSD Anomaly Dataset [82]. Constructed by com-
bining all the frame images of 70 surveillance video in the dataset, we have a tensor with sizes
153 × 238 × 14000, where the first two modes are the screen resolution and the third mode is the
number of frame. The data is shown in Fig.7.20 No pre-processing is performed on the raw data.
Data of such size is too big to store in our computer memory, so we perform compression using Tucker
decomposition, based on the built-in function from the Tensor toolbox [8]. We compare AHALS and
HER-AHALS with r ∈ {10, 20, 30}. Results in Fig. 7.21 shows that HER-AHALS performs much
better than AHALS.

Tensor compression via Tucker format Now we give the detail on how HER works with Tucker
compression. Although there is a long history of using the Tucker model as a compression tool to pre-
process big dataset, only recently has been formally discussed that compression does not actually
imply transforming the large dataset into a smaller tensor [107]. Given the tensor T , its Tucker
format is expressed as:

T =

 N⊗
a

p=1
U(p)

G (7.12)

where U(p) ∈ Rnp×rp , G ∈ Rr1×...×rN and {rp}p≤n are inputs integer parameters of the format,
sometimes called Tucker ranks [52]. This representation is not unique but still offers a compressed
expression of T thus the name format rather than decomposition.
A typical situation is that of a tensor T too big to fit in memory, since either too large and dense,

or extremely large but sparse. Therefore, a third party may instead provide the data directly in a
compact format such as the Tucker format. As Tucker format is in practice an approximation of the
real data, the cost function of the NTF problem is modified as follows:

Ft(A(1), . . . ,A(N)) = 1
2‖

 N⊗
a

p=1
U(p)

G −
 N⊗

a
p=1

A(p)

 Ir‖2F . (7.13)
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On top of the storage gain, there is a huge computational burden ease in using structured represen-
tations of the data when computing the MTTKRP. Indeed, the gradient of Ft w.r.t. A(1) is obtained
as follows:

∇A(1)Ft = −U(1)G[1]

 N⊙
p=2

(U(p))TA(p)

+ A(1)
[
N

~
p=2

(A(p))>A(p)
]
, (7.14)

where~ is the Hadamard product (elementwise product). Equation (7.14) involves only “cheap"
products if Tucker ranks rp are small compared to the data tensor dimensions np. In below, we check
that indeed HER-BCD is compatible with accelerating the NCPD using the Tucker format, and this
actually opens the door to many problems that could not be tackled with simply HER-BCD, while
enhancing at no cost the convergence speed of BCD algorithms for minimizing Ft. This contrasts
with usual developments of fast techniques to solve NCPD that typically do not consider other kind
of acceleration in conjunction.

As a conclusion for this section, we give some remarks on HER-AO. From our extensive experiments,
we observe that HER-AS has inferior performance than others when the data is either big in size,
high rank, or ill-conditioned. When the data has small size, all HER-AO algorithms have similar
performance, and they all outperform their un-accelerated counterpart algorithms in term of both
time and iteration. Among HER-AO algorithms, we highly recommend HER-AHALS for NTF since
it shows good performance in all experiments.

7.6 Experiments on unconstrained CPD

In this section we compare HER-ALS to 4 algorithms: the original un-accelerated Alternating Least
Squares (ALS), the accelerated ALS using Bro’s acceleration (Bro-ALS), the accelerated ALS using
line search (LS-ALS), and iBPG. See §7.3.2 for description of Bro’s acceleration and line search. All
the figures in this section are modified from [2]. In this section, HER-ALS is denoted as herALS in
the figures.
We perform tests on 3rd-order tensors using synthetic and real datasets, see Table 7.9. In each

experiment, the notation [I, J,K, r] denotes the sizes of the tensor (I, J,K), and the factorization
rank r. All experiments are run over 20 random initializations, and we plot the median of the cost
value over these 20 trials. Two things to note: all HER-BCD across all experiments use the same
set of parameters : [β0, γ, γ̄, η] = [0.5, 1.05, 1.01, 1.5]. All the y-axis of the plots is in the form of
F − Fmin, where F is the cost evaluated at all A(j) and Fmin is the minimal cost obtained in the
experiment across all initializations and algorithms.

Synthetic datasets Fig. 7.22 shows the result over two experiments on synthetic data. In both
balanced and unbalanced cases that were tested, the data tensor is generated as

r∑
q=1

a(1)
q ⊗ a(2)

q ⊗ a(3)
q +N ,

where the ground truth factors A(j) are sampled from a Gaussian distribution with zero mean and
unitary variance. Note that we adjust the condition number of A(j) to 100 using SVD by replacing
the singular values by logarithmic scaled values between 1 and 100. The tensor N is an additive
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Table 7.9: The datasets used for experiments on CPD. The nnz is the number of nonzero after
replacing NaN to 0. The sparsity is measured as 100%×#zero/(IJK).

Name Data Size [I, J,K] r nnz sparsity

Balanced synthetic [50, 50, 50] 10 - -
Unbalanced synthetic [150, 1000, 50] 10 - -

Wine real data [44, 2700, 200] 15 2489725 89.52
Indian Pine real data [145, 145, 200] 16 4205000 0
Blood plasma real data [289, 301, 41] 3,6,10 2516756 29.43

Gaussian noise with zero mean and variance 0.001. The results show that HER-ALS is the best
algorithm among the 5 tested algorithms, and in particular seem to avoid the swamp in which ALS
lands in the unbalanced case. LS-ALS, which converges fast in terms of iterations, suffers from higher
per-iteration cost.

Real datasets We now show the results on real datasets: Wine6 (Fig.7.23), HSI data of Indian Pine7

(Fig.7.24) and Blood plasma8 (Fig.7.25). Again the curves are the median over 20 initializations.
Minimal pre-processing is carried out: NaN value (if any) is replaced by zero, and therefore created
some sparsity in the data for the wine data and the blood plasma data. We observe that HER-ALS
performs the best, followed by Bro-ALS.

7.7 Chapter summary and perspective

Chapter summary We introduced an acceleration framework, namely HER, for accelerating the
algorithms for solving NMF, NTF and CPD. Various numerical experiments demonstrated the effec-
tiveness of HER on accelerating BCD-type algorithms for solving NMF, NTF and CPD problems.
We also illustrated that HER can be used to speed up the convergence of minvol NMF algorithm.

Open problem: the theoretical convergence analysis of HER Despite the success of HER in many
experiments, the convergence results are still only empirical. The theoretical convergence analysis of
HER remains open.

6See http://www.models.life.ku.dk/Wine_GCMS_FTIR for data description.
7http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
8See http://www.models.life.ku.dk/anders-cancer

http://www.models.life.ku.dk/Wine_GCMS_FTIR
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.models.life.ku.dk/anders-cancer
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Fig. 7.11. Comparing ANLS, AHALS and their extrapolated variants with APG on text datasets:
average value of the relative data fitting error (7.9) of ANLS, AHALS and their extrap-
olated variants applied on the 6 documents datasets.
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Fig. 7.12. HER on algorithms solving minvol NMF with Vlogdet. Top: the spectral profile of the
endmembers produced by the two algorithms. Bottom: the function values, regularizer
values versus iteration. Here the dataset Samson (see Fig.3.4 for details) is used. No
preprocessing is carried out on the data. In the decompositions, the same rank, same λ
and the same initialization is used. For the bottom plots, when plotting the x-axes in
computational time, the same results are obtained.
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Fig. 7.13. Convergence of algorithms: AHALS and AO-ADMM without HER (solid purple) and
with HER (dotted orange), on standard test case (top): [I1, I2, I3, r] = [50, 50, 50, 10]
and unbalanced sizes (bottom) [I1, I2, I3, r] = [150, 103, 50, 12]. The results show that
HER improves the convergence significantly, the convergence in both f and e for
HER-accelerated methods are already multiple-order of magnitude better than the un-
accelerated algorithms. Notice that due to a higher per-outer-iteration cost, ADMM-
based algorithms (AO-ADMM and HER-AO-ADMM) run fewer number of outer-
iteration than the AHALS-based algorithms. See the Appendix of [3] for the results
on other algorithms where we observe a similar behavior.
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show HER improves the convergence speed significantly. See Fig. 7.13 for the plot set
up, and the Appendix of [3] for the results on other algorithms.
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Fig. 7.18. Comparing AHALS with different acceleration frameworks on synthetic datasets on 3
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number of iteration, and all algorithm run with same run time limited. Results show
HER-AHALS performs better than all other algorithms. LS and GR run less number of
iterations due to their larger per-iteration cost. Bro’s approach has lower per-iteration
cost, but it is even slower than vanilla AHALS. See the Appendix of [3] for more results,
and the results of the same experiment with AHALS replaced by AO-ADMM and AO-
Nesterov.

100 200 300 400 500 600

A
H

A
L
S

10!3

100

103

106

109

1012
f(k)! fmin

20 40 60

f(time)! fmin

100 200 300 400 500

A
D

M
M

10!3

100

103

106

109

1012

20 40 60

(a) On PaviaU dataset.

300 600 900

A
H

A
L
S

10!3

100

103

106

109

1012
f(k)! fmin

10 20 30

f(time)! fmin

200 400 600

A
D

M
M

10!3

100

103

106

109

1012

10 20 30

(b) On Indian Pines dataset.

Fig. 7.19. The results on HSI data. For the plot set up, see Fig. 7.13. Results show HER improve
convergences. See the Appendix of [3] for more results.

Fig. 7.20. The UCSD Anomaly Dataset.
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Fig. 7.21. On video data [153, 238, 14000] for three values of r. Results show HER improve conver-
gence and works well with Tucker-based compression.
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Fig. 7.22. Median error over 20 runs on synthetic datasets plotted against iterations (top) and time
(bottom). For the unbalanced case, ALS improves very slowly up to the 90th iteration,
illustrated the phenomenon of swamp. HER-ALS do not encounter this issue in this
experiment.
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Fig. 7.23. Results on Wine [44, 2700, 200, 15].
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Fig. 7.24. Results on Indian Pines [145, 145, 200, 16].

iteration/k
100 200 300 400 500

10!1

101

103

105

Time/sec
1 2 3 4 5

ALS iBPG herALS LS-ALS Bro-ALS

herALS herALS

iteration/k
100 200 300 400 500

100

102

104

Time/sec
2 4 6 8

herALS herALS

iteration/k
300 600 900 1200

100

102

104

Time/sec
5 10 15 20 25

herALS herALS

Fig. 7.25. Results on Blood [289, 301, 41] with r = 3 (top), r = 6 (mid) and r = 10 (bottom).
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8 Conclusion
Stay hungry. Stay foolish.

Steve Jobs

We conclude the thesis in this chapter. First we summarize the whole thesis.

Chapter 1 We gave a brief introduction of the thesis, and discussed the technical background and
the development of NMF for the purpose of this thesis.

Chapter 2 We introduced the minvol NMF models. Minvol NMF with different volume regular-
izations were investigated, in which we talked about the uses of different volume regularizers, the
relationships between these regularizers and some comparisons in the practical setting such as noisy
cases and rank deficient cases. We provided an identifiability result on a specific minvol NMF model,
namely the noiseless minvol NMF with determinant volume, and showed that the solution of such
problem is provably unique under the SSC assumption. Finally, we discussed how to solve the min-
vol NMF problems. In particular, we solved minvol NMF with Vdet by transforming the objective
function into a quadratic form; we solved minvol NMF with Vlogdet with majorization-minimization;
and we solved minvol NMF with V∗ using a heuristic.

Chapter 3 We introduced Hyperspectral Unmixing (HU) as one of the application where NMF
methods shine. We discussed the data format and the performance measurement in HU applications.
Then, experimental results showed that min minvol NMF algorithms are superior than others in
HU problems on both synthetic and real datasets. In particular, the minvol NMF algorithms are
able to outperform both the state-of-the-art separable NMF algorithm SPA, and two volume-based
methods such as MVC-NMF [84] and RVolMin [41]. The minvol NMF with determinant volume and
log-determinant (logdet) volume are the top two methods among all the tested methods, where the
logdet-based one is better than the det-based one.

Chapter 4 We briefly reviewed the audio BSS problem, and discussed how and why NMF can be
applied to audio Blind source separation (BSS) problem. By solving the minvol β-divergence NMF
model, we demonstrated that it can be used to decompose single channel audio recording of piano
music into components correspond to each of the musical notes, showcased the effectiveness of NMF
models on audio BSS problems.

Chapter 5 We introduced a new model of NMF, namely Nonnegative Unimodal Matrix Factor-
ization (NuMF). We gave a characterization of the NU set, and proposed a brute-force heuristic to
solve NuMF, with acceleration made by a dimension reduction step based on multi-grid method,
which is then proved to be able to preserve unimodality. We gave three preliminary results on the
identifiability of NuMF under three special cases, and we present numerical experiments on synthetic
and real datasets to illustrate the effectiveness of multi-grid and as well as giving empirical evidences
to support the findings.
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Chapter 6 We briefly discussed the foundation of tensors for the purpose of this thesis, and talked
about the Canonical Polyadic Decomposition (CPD) formulation, showed that NMF and NTF prob-
lem fall under the class of constrained CPD. Finally we review some algorithms that solve CPD
problems in the Block Coordinate Descent (BCD) framework such as the Alternating methods and
the Block proximal gradient methods.

Chapter 7 We introduced an acceleration framework, namely Heuristic extrapolation with restarts
(HER), for accelerating algorithms for solving NMF, NTF and CPD. We first talked about the idea of
extrapolation, then illustrate the original form of HER for accelerating algorithms for solving NMF.
Next, we gave a detailed discussion on the HER framework for solving NTF problems. After that, we
provide numerical experiments to showcase the effectiveness of HER on accelerating algorithms for
solving NMF, NTF and CPD problems, under different experimental situations. Lastly, we illustrated
that HER can also be used to speed up the convergence of minvol NMF algorithm.

Summary of contributions In this thesis, we studied models that are theoretical with high practical
relevance. As the name suggests, the contributions of this thesis are centered on NMF and NTF over
three areas: the modeling aspect, the algorithm aspect and the application aspect, as detailed below.

1. Modeling aspect: minvol NMF and NuMF We studied a specific class of NMF
problem called Minimum-Volume NMF (minvol NMF). This class of NMF problem generalizes
another class of NMF called Separable NMF. We perform comparison studies on the choice of
volume function in minvol NMF. We showed the minvol NMF model with determinant volume
is identifiable under the SSC condition, and we argue that such a minvol NMF model is superior
than other existing minvol NMF approaches.

We studied a specific class of NMF problem called Nonnegative Unimodal Matrix Factorization
(NuMF). We proposed a brute-force heuristic to this problem, with acceleration made by a
dimension reduction step based on multi-grid method, which is then proved to be able to
preserve unimodality. We also provide three theorems on the identifiability of NuMF in three
special cases.

2. Algorithm aspect: HER acceleration framework and methods for solving minvol
NMF and NuMF As NMF and NTF problems in general are known to be NP-hard, we
proposed an efficient but approximate heuristic. We introduced a generic framework, named
Heuristic Extrapolation with Restarts (HER), on accelerating block coordinate descent type of
algorithms in solving NMF and NTF problems. We provided empirical evidence that HER can
significantly improve the convergence of various existing BCD algorithms for the problems in
various scenarios.

• The benefits of the HER heuristic are: it can accelerate any BCD algorithm; it extrapo-
late the variable sequence without increasing the per-iteration computational cost of the
algorithm; and the auxiliary extrapolation sequence it produce is always feasible.

• The main shortcomings of HER are: no theoretical convergence guarantee so far; and
HER requires parameter tuning.

Apart from HER, we provided efficient algorithms for solving minvol NMF and NuMF.
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3. Application aspect: Hyperspectral unmixing, audio source separation and beer
CGMS analysis

We demonstrated the usefulness of minvol NMF models in two applications: hyperspectral
imaging and audio source separation; and we demonstrate the usefulness of NuMF in the
application of analyzing the CGMS data of Belgian beers.

Theoretical results We now restate all the new theoretical results developed in this thesis.

• Theorem 2.1.1 Identifiability of a minvol NMF Let M = WH where H ∈ Rr×n+ satisfies
the SSC, W ∈ Rm×r satisfies W>1m = 1r and rank (M) = r. Then the (exact) solution of the
minvol NMF problem (2.8) is essentially unique.

• Theorem 5.2.1 Restriction operator preserves nonnegative unimodality Let x ∈
Um+ and R ∈ Rm×m′ with the structure defined in Equation (5.14). Then y = Rx ∈ Um′+ .
Furthermore, if x ∈ Um,p+ where p is even, then either y ∈ Um, p/2−1

+ , y ∈ Um, p/2+ or y ∈
Um, p/2+1

+ .

• Theorem 5.3.1 Identifiability of NuMF: strictly disjoint case Let M = WH where:
1. W is Nu and all the columns have strictly disjoint support, and 2. H ∈ Rr×n+ has n ≥ 1,
‖hi‖∞ > 0 for i ∈ [r]. Then the (exact) solution of the NuMF problem (5.3) is essentially
unique.

• Theorem 5.3.2 Identifiability of NuMF: adjacent case Let M = WH where: 1. W is Nu
and adjacent, 2. H ∈ Rr×n+ has n ≥ 1, ‖hi‖∞ > 0 for i ∈ [r], and 3. Independent sensing: for
each index pair (j1, j2), j1, j2 ∈ [r], j1 6= j2 such that the vectors wj1 ,wj2 satisfy the condition
of the vectors x,y in Lemma 5.3.2 , the j1, j2 rows of H contains a positive diagonal block D.
Then the (exact) solution of the NuMF problem (5.3) is essentially unique.

• Theorem 5.3.3 On demixing two unequal Nu vectors Given four non-zero vectors
x,y,u,v in Um+ . If supp(x) * supp(y), supp(x) + supp(y), x = au + bv and y = cu + dv with
a, b, c, d all nonnegative, then either u = x, v = y or u = y, v = x.

Summary of perspectives and future research Now we list the open problems related to the thesis.

• Robustness of minvol NMF for the Vdet and Vlogdet Unlike SNMF in which there are
some robustness results, currently there is no theoretical robustness analysis on minvol NMF
model (2.1a). This is a promising but seemingly difficult direction of further research.

• Identifiability of minvol NMF using Vlogdet, V∗ and Vp,δ The identifiability result
developed so far (say, Theorem 2.1.1, and those in [42, 77, 39]) are all based on using the SSC
condition (Definition (2.1.3)). The proof technique only works for the det regularizers, but not
for the Nuclear norm, Frobenius norm and the smooth Schatten p-norm. How to generalize the
identifiability result to minvol models with other regularizers remains open.

• Theoretical analysis of the automatic model order selection of logdet volume As
stated in §2.1.3 that the logdet regularizer works even in rank deficient case, and it has the abil-
ity of automatic model order selection. Furthermore, we see in the experiments in §4.2 that, the
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minvol KL-NMF automatically set the overestimated components to zero. Currently, the the-
oretical analysis of such phenomenon remains open. Developing the theoretical understanding
of this behavior of the volume regularizer is a interesting research problem.

• Effective computation for solving minvol NMF with Vdet and V∗ When solving
the subproblem on W for minvol NMF with Vdet, the solution approach relies on solving
the QP subproblem (2.18), in which the coefficients in the QP can be expensive to compute.
This makes the iterative algorithm for solving minvol NMF with Vdet expensive. Therefore,
it is helpful to develop more efficient algorithms for solving such minvol NMF problem. For
the approach to solve minvol NMF with V∗, the current method is just a heuristic with no
theoretical convergence guarantee, so an algorithm with theoretical support will be the future
work.

• On handling spectral variability In §3.3.4, we illustrated the ability of minvol NMF
on handling spectral variability, the approach is to use over-estimated r in the factorization,
followed by recombination of the components. The result so far is only preliminary, two ques-
tions remain open: How to choose an appropriate overestimated rank r? How to recombine
the components?

• Extensions of NMF We can consider extending the NMF model to handle the violation
of the assumptions listed in Table 4.2 . For example, in §4.2 on the experiment on the bell
music, we saw that we can relax the assumption that each source (the temporal block) can
be well-approximated by a rank-1 component. This leads to the study of Grouped NMF
which consider the sub-patterns instead of the rank-1 components to be nonnegative. Other
extensions of NMF includes the convolutive NMF, robust NMF, nonlinear NMF and NMF with
time-frequency consistency constraint.

• Automatic music transcription system fully based on NMF technology As stated
in the last section of §4 , it will be interesting to combine minvol KL-NMF with NuMF to build
an automatic music transcription system that can capture both the activation and the duration
profile of each music note. Such system can be used to convert audio files into sheet music, and
it is fully based on NMF technology.

• Open problems in NuMF As the result on NuMF are preliminary, many problems remain
open.

– Restriction operators preserve NU and nonuniform grid Currently we only show
a special class of restriction operator preserves NU. Showing a larger class of restriction
operators preserve NU is still open. Furthermore, currently the restriction performs a
uniform grid on scaling down the problem. It will be interesting to investigate the use of
nonuniform grid which is more adapted to the data structure on searching p.

– General identifiability Identifiability of NuMF in general remains open.

• Theoretical convergence analysis of HER Despite the success of HER in many experi-
ments, the convergence results are still only empirical. The theoretical convergence analysis of
HER remains open.
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Appendix
Symbols

§ Chapter or section symbol.
R,R+ The set of real and nonnegative real numbers.
Rm,Rm+ The set of real and nonnegative real m-vectors.
∆r Unit simplex in Rr.
Cr2 2nd-order cone in Rr.
Um,Um+ The set of unimodal and nonnegative unimodal m-vectors.
Rm×n,Rm×n+ The set of real and nonnegative real m× n matrices.
RI×J×K ,RI×J×K+ The set of real and nonnegative real I × J ×K tensors.
RI1×···×IN ,RI1×···×IN

+ The set of real and nonnegative real I1 × · · · × IN tensors.
[a, b] Interval a ≤ x ≤ b.
[n] Interval [1, n]. If n is integer, it denotes the set of integers {1, . . . , n}.
[ · ]+ max{ · , 0}, element-wise.
JmK The set of odd integers in [m].
v ≥ 0, M ≥ 0, T ≥ 0 Vector v, matrix M, tensor T are elementwise nonnegative.
vi The ith element of vector v.
‖v‖2, ‖v‖1, ‖v‖∞ The l2, l1 and l∞ norm of vector v.
mj ,M(:, j),M:,j ,M:j The jth column of matrix M.
mi,M(i, :),Mi,:,Mi: The ith row of matrix M.
T[i] The mode-i unfolding of tensor T , see (6.5).
T (i, :, :), T (:, j, :), T (:, :, k) MATLAB notation of mode-1,2,3 fiber of tensor T .
A�B Kronecker product of two matrices A,B, see (6.2).
A�B Khatri-rao product of two matrices A,B, see (6.3).
a ⊗ b Tensor product of two vectors a,b, see (6.1).
〈a,b〉,a>b Dot product of two vectors a,b.
M(i, j),Mi,j The entry at the ith row, jth column of matrix M.
rank (M) The rank of matrix M.
Tr (M) The trace of matrix M
det(M) The determinant of matrix M.
‖M‖F , ‖T ‖F The Frobenius norm of matrix M and tensor T .
‖M‖∗ The Nuclear norm (largest singular values) of matrix M.
‖M‖2 The spectral norm (largest singular value) of matrix M.
σi(M) The ith largest singular value of M.
cone(M) Cone generated by the columns of the matrix M.
cone∗(M) Dual cone generated by the columns of the matrix M.
Ir Identity matrix of order r.
Πr Permutation matrix of order r.
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Glossary
AccProjG Accelerated Projected Gradient. 29, 76, 80, 97

ALS Alternating Least Squares. 113, 127

ANLS Alternating Nonnegative Least Squares. 8, 97

AO Alternating Optimization. 97

BCD Block-Coordinate Descent. 95

BSS Blind Source Separation. 56

CPD Canonical Polyadic Decomposition. 93

HALS Hierarchical Alternating Least Squares. 8, 97

HER Heuristic Extrapolation with Restarts. 100, 106

HSI Hyperspectral Imaging. 37

HU Hyperspectral Unmixing. 37

minvolNMF Minimum Volume NMF. 15

MIP Mixed-Integer Programming. 76

MM Majorization Minimization. 32, 60

MRSA Mean Removed Spectral Angle. 42

MTTKRP Matricized Tensor Times Khatri-Rao Product. 96

NMF Nonnegative Matrix Factorization. 6, 94

NNLS Nonnegative Least Squares. 7, 96

NTF Nonnegative Tensor Factorization. 94, 96

NuMF Nonnegative Unimodal Matrix Factorization. 71

QP Quadratic Programming. 31, 96

SNMF Separable NMF. 10, 39

SPA Successive Projection Algorithm. 11

SSC Sufficiently Scattered Condition. 24

SVD Singular Value Decomposition. 31
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