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Abstract

The low-rank approximation of a matrix is a key problem in data analysis, and is widely
used for Linear Dimensionality Reduction (LDR). LDR techniques such as principal com-
ponent analysis are powerful tools for the analysis of high-dimensional data. In this thesis,
we explore a popular variant of LDR, namely Nonnegative Matrix Factorization (NMF),
which consists in a low-rank matrix approximation problem with nonnegativity constraints.
More precisely, we seek to approximate a given nonnegative matrix V with the product
of two nonnegative matrices, W and H, of smaller size. Even if, at first glance, the non-
negativity requirement seems to be restrictive in terms of practical use, it is not: NMF
has many applications. Indeed, nonnegativity of the solution is required in many fields
such as probability, geoscience, medical imagery, computational geometry, combinatorial
optimization, analytical chemistry and machine learning.
The nonnegativity constraints allow to extract easily interpretable and meaningful in-

formation from the input data. However, they make the problem much more difficult to
solve (NP-hard). The contributions of this thesis are centered on NMF over four aspects:
models, optimization problems, algorithms and applications.
The two first aspects are explored by proposing models and optimization problems for

NMF with volume regularization, usually referred to as minimum-volume NMF. In recent
years, the minimum-volume NMF has shown to be a powerful approach to compute mean-
ingful solutions forW andH. In this thesis, we show that our new models and optimization
problems, under some mild conditions, lead to identifiability, that is, the solution of the
optimization problems is unique up to ambiguities that are unavoidable and, most impor-
tantly, inconsequential for the applications at hand. Further, we propose a new class of
models and optimization problems, referred to as multi-resolution NMF, to tackle a com-
mon issue for many input matrices; they are generally the result of a resolution trade-off
between two adversarial dimensions. We address this issue by fusing the information com-
ing from multiple data sets with different resolutions in order to produce a factorization
with high resolutions for all the dimensions. Finally we propose a novel approach to tackle
a special case of NMF referred to as exact NMF by using conic programming.
On the algorithmic aspect, we propose efficient algorithms to solve the proposed op-

timization problems for minimum-volume NMF. In this thesis we mainly focus on two
classes of optimization problems for minimum-volume NMF: the first one integrates a
Frobenius norm for the data fitting term whereas the second one integrates the family of
β-divergences, in particular we deal with the Kullback-Leibler divergence that is notori-
ous hard to handle. Further we introduce a general framework to derive algorithms to
tackle penalized β-divergence NMF problems under disjoint equality constraints. Finally
we propose two algorithms relying on conic programming that are able to tackle problems
to compute an exact NMF.

On the application aspect, we demonstrate the efficiency of our algorithms compared to
state-of-the-art algorithms on hyperspectral imaging and audio source separation problems.
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1 Introduction

"You know that the beginning is the most important part of any work,..."
- Plato, The republic, Book II.

1.1 A short message from the author

This thesis summarizes my research conducted from January 2018 until September 2020
which has been dedicated to the development of models and algorithms for a widely used
and popular Linear Dimensionality Reduction (LDR) called Nonnegative Matrix Factor-
ization (NMF). NMF belongs to the field of data sciences and has shown a great deal of
interest since many years as, whether we want it or not, we are surrounded by data. The
data continuously grows year after year and processing such amount of data becomes a
hard challenge. In the context of this thesis, we are interested by identifying the underly-
ing structure of a data set and extracting meaningful information. Indeed, data does not
imply information. Data can be raw, not structured, incomplete and not exploitable by
Human begins or automatic systems. Information, on the opposite, should be coherent,
meaningful and helpful for good diagnostics. This thesis has been written in an inflection
period for recent Human history: the rate of data exchanges is huge and the way to ex-
tract information from data and the way to present it is a source of power and significant
influence. We have seen the impact of repeated and unchecked information in this COVID
period on our fellow citizens, we have seen inefficient 1 liberticide political decisions based
on unreliable predictive models (from Neil Ferguson and his team 2) and it is clear that
we need now to understand the consequence of the data and demand sound public debates
when it comes to interpret such data and take political decisions. I close this interlude by
writing down a couple of advices I usually give to students in Statistics which seem, at
first glance, trivial but easily put on the side when emotions enter the game: always ask
the relative and the absolute values for the statistics, do not rely on first-order moment
only, demand the standard deviation at least, consider with the highest degree of vigilance
any mono-variate studies, and machine learning is not the synonym of "truth". Behind
every model, there are parameters to choose, potentially with ideological biases or business
interests. The beauty of mathematics belongs into the rationale and the sound logic, what
the ancient Greeks called the logos. The logos, initially and formally discussed by Plato
and Aristotle, is a transparent, universal, time and space invariant method that ensures

1https://bit.ly/2Tzt2J7
2https://bit.ly/34A6f62

1
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a fair and correct thinking, here lies the key to exactitude (truth is too pretentious), here
lies to key to "Le Vrai, le Bien, le Beau". Now, you know what is the core-stone of my
training and my motivation, it is time to dive in the technical aspects.

1.2 Thesis structure

This thesis is the concatenation of the research outputs of the authors and its coauthors
that consist in one journal paper [90], two conference papers [93, 89], three journal preprints
[62, 91, 92] under review and one working paper on the content of Chapter 6. Most of the
chapters of this thesis appear in these papers. The present thesis is organized as follows:

• Chapter 1 Introduction: Some theoretical background needed throughout this
thesis is presented. This Chapter serves as the technical backbone for Chapters 2 to
6. In particular:

– Section 1.3 introduces NMF as a special case of LDR techniques.

– Section 1.4 formally defines the notion of NMF models and the standard op-
timization problems associated to these models that require to be solved to
compute the NMF of an input data matrix.

– Sections 1.5 presents the breakthrough experiment that put NMF on stage in
2000. It shows in particular that NMF is able to extract easily representable
and meaningful results from the data. Finally sections 1.5.1 and 1.5.2 present
the two main applications that we consider in this thesis to test our models and
algorithms.

– Section 1.6 presents two geometrical interpretations of NMF. These geometrical
interpretation will be useful to understand:

∗ one of the main issue about NMF models, that is, the nonuniquness. We
discuss in Section 1.8 the recent results and models from the literature useful
to address this issue. The material of Section 1.8 is the backbone for the
theoretical contributions presented in Chapter 3.

∗ to understand the main motivation for the NMF problems introduced in
Chapters 2 and 3 that rely on a "minimum-volume" regularization.

• Chapter 2: Nonnegative matrix factorization (NMF) with volume regularization has
been shown to be a powerful approach to identify the latent factors that generated the
data for many applications such as hyperspectral unmixing, document classification,
etc. In this Chapter, we show that minimum-volume NMF can also be used when
the basis matrix is rank deficient, which is a reasonable scenario for some real-world
NMF problems (e.g., for unmixing multispectral images). We propose an efficient
algorithm to tackle the optimization problems for minimum-volume NMF and we
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show its efficiency for NMF applications for which the basis matrix is rank-deficient.
The material of this Chapter appears in [89].

• Chapter 3: This Chapter presents a new class of model and associated optimization
problems, dubbed as min-vol β-NMF, that integrate a β-divergence and a minimum-
volume regularization. We show that, in the noiseless case and under mild conditions,
this model and the associated optimization problems provably identify the latent
factors. We introduce an efficient algorithm to tackle these optimization problems.
We showcase our algorithm to tackle the blind audio source separation problem. The
material of this Chapter appears in [93, 90].

• Chapter 4: We first give a brief introduction to the Blind spectral unmixing prob-
lem. This problem is typically tackled with NMF-based methods by factorizing a data
matrix that is the result of a resolution trade-off between two adversarial dimensions.
In this Chapter, we propose a new NMF-based framework, dubbed multi-resolution
β-NMF (MR-β-NMF), to address this issue by fusing the information coming from
multiple data with different resolutions in order to produce a factorization with high
resolutions for all the dimensions. The material of this Chapter appears in [91].

• Chapter 5: This Chapter introduces a general framework to design multiplicative
updates (MU) for NMF problems based on β-divergences with disjoint equality con-
traints, and with penalty terms in the objective function. Our MU satisfy the set of
constraints after each update of the variables during the optimization process, while
guaranteeing that the objective function decreases monotonically. The material of
this Chapter appears in [92].

• Chapter 6: We discuss in this Chapter how to use conic programming to compute
an exact NMF for an input matrix. We introduce a novel framework that includes
two approaches for computing an exact NMF. Each of the proposed approaches relies
on the construction and the resolution of a specific optimization problem. For each
optimization problem we introduce a particular change of variables that enables the
use of two special cases of conic constraints, that are the exponential and second-
order conic constraints. Then we propose a general algorithm that is able to tackle
both problems in a unified manner and that solves a sequence of conic problems. We
finally show that our algorithm is able to compute exact NMF for several classes of
nonnegative matrices, we also show that our framework is flexible and can be used
to tackle other problems such the maximum-edge biclique problem.

• Chapter 7 Conclusion: We conclude the thesis by summarizing the contributions
of the Chapters 2 to 6, we attempt to put them in perspective, recall the open
problems and give some directions for further research.
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1.3 From dimensionality reduction techniques to NMF

The extraction of the underlying structure within a data set is a problem of major im-
portance in data science. One of the first techniques is the LDR that consists in the
transformation of a set of data points that belong into a high-dimensional space into a
low-dimensional linear subspace so that the low-dimensional representation reveals the
meaningful properties of the original data (the underlying structure). Each data point is
represented as a linear combination of a small number of basis elements. Then, from a set
of data points, we want to extract a basis and find the coordinates of the data points in
this basis. Mathematically, given a set of N vectors vn P RF (1 ď n ď N), LDR searches
for K basis vectors wk P RF (1 ď k ď K) such that each data point is well estimated by a
linear combination of the basis vectors, that is,

vn «
K
ÿ

k“1
wkhkn for all n,

where the scalar hkn are the components of each data point expressed in the basis xw1, ..., wk, ..., wKy.
By concatenating these approximations for all n under a matrix form, we can write:

V “ rv1v2...vN s « rw1w2...wKs rh1h2...hN s

Therefore one can clearly see that LDR is equivalent to Low-Rank Matrix Approximation
(LRMA) of matrix V P RFˆN by matrices W P RFˆK and H P RKˆN such that:

• each column of W , denoted wk (1 ď k ď K), is a basis vector,

• each column of H, denoted hn (1 ď n ď N), gives the coordinates of data point vn
in the basis W ,

• in the case W is full-column rank, that is, rankpW q “ K, K corresponds to the
dimension of the vector subspace spanned by the columns of W ,

In the applications discussed in this thesis, the number of basis vectors is significantly
smaller than the space dimension F and the number of data points N , that is, K !

minpF,Nq. Another remark of major importance is that LRMA is a model, it means that
we consider that our input data matrix is well approximated by the product of W and H,



CHAPTER 1. INTRODUCTION 5

in other words we consider this linear approximation meaningful and representative of the
reality. Let us put the emphasis that we live with models and all the models are arguably
wrong but detains a part of exactitude.

The goal is then to compute the "best" matrices W and H for the approximation of
the input data matrix V . To achieve this goal, we need to define an error measure that
characterizes the level of accuracy of the approximation of V by WH w.r.t. a particular
metric. The error measure, denotedDpV |WHq, concerns each entry Vfn of V approximated
by rWHsfn. We define a "local" scalar error, denoted dpVfn| rWHsfnq, that is a function
of the pf, nq-th entries of V and WH and in some specific cases, it is a function of the
so-called residual matrix V ´WH. Typically, we do not give a priori greater importance
to the approximation’s accuracy of an entry rather than another. Therefore, the global
error measure usually boils down to the sum over indices f, n of all the local errors, that
is,

DpV |WHq “
F
ÿ

f

N
ÿ

n

dpVfn| rWHsfnq.

By choosing a specific expression for the local scalar error dpVfn| rWHsfnq, we choose a
metric. Typically, this error measure DpV |WHq corresponds to an entrywise norm of the
residual matrix V ´WH. Let us cite the most popular one; the squared Euclidean distance
dpVfn| rWHsfnq “ prV ´WHsfnq

2. In this case, the entrywise norm of the residual matrix
V ´WH corresponds to the well-known squared Frobenius norm and LRMA is equivalent
to principal component analysis (PCA) [76], which can be solved using the singular-value-
decomposition (SVD)[67] of V , keeping the first K singular values and setting

W “ UΣp:, 1 : Kq1{2,

H “ Σp:, 1 : Kq1{2V T ,

for instance. The metrics that we consider in this thesis are extensively discussed in
Section 1.9.1.
LRMA models have gained more and more interest in the two last decades as data

analysis and information extraction are at the center of the attention nowadays. Even if
LRMA models are apparently simple, they are powerful tools since many high-dimensional
data sets are well approximated by low-rank matrices [132]. Many variants of the LRMA
models have been used recently. They mainly differ in two ways (i) the metric used, (ii)
the different constraints imposed on W and H. For (i), the main reason for choosing a
specific metric is linked to the noise statistic that we assume on the data. For example,
minimizing the Forbenius norm implicitly assumes independent and identically distributed
(i.i.d.) Gaussian noise on each entry of V , see Section 1.9.2 for more details. From the
acquisition to the saving in memory of the data, noise can randomly occur at each stage of
the acquisition process. It is important in practice to assume some reasonable probability
density function for these random variables, the reason is mostly twofold; build a represen-
tative model of the reality and facilitate the computation of meaningful solutions. For (ii),
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the constraints depend on the application. For some applications, we want that each data
point is approximated at most by r basis vectors such as r ă K, therefore each column
of H should have at least K ´ r zeros. This LRMA variant is referred to as sparse dic-
tionary learning. This model yields a more compact and easily interpretable decomposition.

Among all variants of LRMA, we are interested in NMF. NMF requires the factors W
and H to be component-wise nonnegative. These constraints are denoted W ě 0 and
H ě 0. As mentioned above, NMF is not the only LDR or LRMA technique, we men-
tioned the principal component analysis (PCA), we can also cite independent component
analysis, sparse PCA, low-rank matrix completion, to cite a few. Then the question arises:
why focusing on NMF only ? NMF is a rich and variate topic, it is at the intersection
between various major disciplines: continuous optimization (convex and non-convex), lin-
ear algebra, signal processing, machine learning and data mining. Also, the nonnegative
constraints allow us to interpret the factors W and H meaningfully, for example when
they correspond to nonnegative physical quantities. Even if, at first glance, the nonneg-
ativity requirement seems to be restrictive in terms of practical use, it is not: NMF has
many applications. This is either due to the fact that, for many applications, the input
data is physically nonnegative, or the mathematical modeling of the problem requires non-
negativity. As popular applications for NMF, we can cite the identification of topics in
a set of documents, the identification of materials and their localization in hyperspectral
images, the audio spectral unmixing, the detection of communities in large networks, the
analysis of medical images, see [56, 61] and the references therein for others examples. For
applications mentioned above, the input data is nonnegative. Further, one can show the
connection between NMF and topics in mathematics and computer science such as the
minimum biclique cover of a bipartite graph [46] and the nested polytopes problem [61] for
which the modeling requires nonnegativity.

Now that the context is settled, let us give a formal definition of the standard NMF
problem.
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1.4 NMF: the standard problem and models definition

The standard NMF problem can be formulated as follows:

Problem 1.4.1: Nonnegative Matrix Factorization

Given a nonnegative matrix V P RFˆN` , a factorization rank K and a metric
dpx|yq between two scalars x and y, NMF aims to compute two nonnegative ma-
trices W P RFˆK` and H P RKˆN` such that the error measure DpV |WHq “
řF
f

řN
n dpVfn| rWHsfnq is minimized. NMF requires to solve:

min
WPRFˆK ,HPRKˆN

D pV |WHq “
ÿ

fn

dpVfn|rWHs fnq

subject to H ě 0,W ě 0 ,

where dpx|yq defined for all x, y ě 0 is such that:

• dpx|yq is continuous over x and y,

• dpx|yq ě 0 for all x, y ě 0,

• dpx|yq “ 0 if and only if x “ y.

The choice of dpx|yq is crucial as it leads to different properties such as the differentiablity
and L-smoothness (the gradient is Lipschitz-continuous) of the error measure D pV |WHq

on its active domain so that different optimization schemes are needed to tackle Problem
1.4.1; see Sections 1.9.1 and 1.10 for more details.

Let us now introduce the two linear models associated to problem 1.4.1: (i) the exact
NMF model and (ii) the approximate NMF model. For (i), we are looking for nonnegative
matrices W and H such that V “ WH, major aspects of the exact NMF models are
presented in Sections 1.6 to 1.8 . For (ii), the exactness is not required and we are searching
for an approximate decomposition, that is, V «WH. The reason is the presence of noise,
and the linear model being in most cases only an approximate model. To sum up, we made
in this thesis the distinction between the NMF model and the optimization problem that
is associated to the model and that is solved to compute pW,Hq. The two standard NMF
models are:

V “WH such that W P RFˆK` , H P RKˆN` with K ! minpF,Nq, (1.1)

V «WH such that W P RFˆK` , H P RKˆN` with K ! minpF,Nq. (1.2)

The standard problem 1.4.1 is solved in order to compute the solutions pW,Hq for the
NMF model at hand.
The exact NMF model (1.1) is useful to compute the nonnegative rank of V , denoted

rank`pV q, which is defined as the smallest integer K such that an exact NMF of V exists,
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mathematically, we write:

rank`pV q “ min
#

K P N|V “
K
ÿ

k“1
Ak, Ak ě 0, rank`pAkq “ 1 for all k

+

.

The computation of the nonnegative rank is NP-hard [135] and determining the value forK
such that V has an exact nonnegative factorization is a research topic on its own, referred
to as the Model Order Selection (MOS) problem. For the recent progress on computing the
value of the nonnegative rank in NMF, see [56, 37] and the references therein. The MOS
will come back further for the minimum-volume β-NMF problem we present in Chapter 3
that is able to perform automatic model order selection in the case we overestimate K.
In Section 1.4, we make the hypothesis that the factorization rank is given. In practice

when we deal with real-life data, we do not know the "correct" value for this parameter.
In other words, we do not know the embedding dimension of V in the column space of W .
In the literature, it is stated that that this dimension is closely related to the nonnegative
rank of V but from our point of view, this link is weak and circumstantial as:

• the nonnegative rank is a particular case of factorization rank, namely the smallest
one such that an exact NMF exists.

• The nonnegative rank makes senses as soon as an exact NMF model is valid, that is,
in the noiseless case.

• The nonnegative rank is a mathematical concept on its own as it is not only related
to exact NMF, it has meaning for other topics such as the nested polytope problem
and the decomposition of a bivariate probability matrix into a convex combination
of independent bivariate probability matrices [31].

• The factorization rank for an approximate NMF model has meaning only in the
paradigm of the application at hand. For instance, it could be referred to as the
number of materials present within a scenery, the number of audio sources in an
audio signal, the number of communities in a social network, etc.

Therefore, for this thesis and when it comes to deal with approximate NMF models, K
is an input parameter that we choose based on prior information (from the litterature for
instance) and depending on the application. In Section 6, we propose new optimization
problems associated to the exact NMF model but we consider that the nonnegative rank
is known.
The following section presents the breakthrough experiment that puts NMF on stage as

the most popular applications for NMF.

1.5 The breakthrough experiment for NMF

In 2000, Lee and Seung [87] wrote the seminal paper that really puts NMF on stage by
showing its remarkable ability to automatically extract sparse and easily interpretable



CHAPTER 1. INTRODUCTION 9

factors. Lee and Seung showcased its ability with a breakthrough experiment in which
NMF is applied for an input matrix V whose columns are vectorized images of human
face, see Figure 1.1. Interestingly, the columns of matrix W obtained for NMF models
correspond to vectorized images of constitutive parts of a human face, such as the eyes,
noise and the ears, whereas PCA learns holistic representations. Lee and Seung showed an
important feature of NMF: the nonnegativity constraints typically induce sparse factors,
i.e., factors with relatively many zero entries. Formally, the reason for such behavior is
that stationary points pW,Hq of optimization Problem 1.4.1 associated to NMF models will
typically belong to the boundary of the feasible domain (the nonnegative orthant) hence
will contain zero components. This can be easily explained with the first-order optimality
conditions; let us consider the following simplified optimization problem with nonnegativity
constraints:

min
xPRn

`

fpxq, (1.3)

By using the Karush–Kuhn–Tucker necessary condition, the set of stationary points for
such a problem is D “ tx P Rn|x ě 0,∇fpxq ě 0, xir∇fpxqsi “ 0 for 1 ď i ď nu. Hence
some components of the solution can be expected to be equal to zero. Sparsity of the
factors has many benefits as, in addition to reducing memory requirements to store the
factors, it improves their interpretability. On the opposite, PCA do not naturally generate
sparse factors.
We can trace the first results showing the ability of NMF to extract interpretable infor-

mation back in the 1990s in analytical chemistry for which researchers factorized spectral
samples of chemical compounds and showed that the columns of matrix W correspond
to the spectra of constituent elements of the chemical samples [112]. NMF also showed
impressive interpretability in machine learning applications such the text mining for which
NMF is able to identify the main topics contained in a set of documents (web site contents,
journal papers, etc). The interpretability of NMF is closely related to its model uniqueness,
or its ability to identify the ground-truth factors, denoted pW#, H#q, that generated the
data V through the exact NMF model V “ W#H# with W#, H# ě 0. The connection
between interpretabilty and identifiability is intuitively pleasing [50]. Indeed, in the case
the data V really follows the generative models V “ WH, then it is essential to find the
ground-truth factors as they explain the data. The identifiability for NMF is discussed
later in Section 1.8 as we first need to introduce many concepts related to the geometry of
NMF (Section 1.6).
NMF is used in many others applications that we briefly list here-under:

• Community detection; based on a social graph, NMF is able to identify groups of
people who have similar activities [100].

• Gene expression analysis;[24] the authors show that NMF is an efficient method for
identification of distinct molecular patterns and provides a powerful method for class



CHAPTER 1. INTRODUCTION 10

(a) Results with NMF

(b) Results with PCA

Fig. 1.1. The breakthrough experiment that puts NMF on stage. Non-negative matrix
factorization (NMF) learns a parts-based representation of faces, whereas prin-
cipal components analysis (PCA) learn holistic representations. Figure repro-
duced from [87].
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discovery. They demonstrate in particular the ability of NMF to recover meaningful
biological information from cancer-related microarray data.

• Identification of hidden Markov models [82].

• Prediction of epileptic seizures using electroencephalographic (EEG) signals [127].

• Recommender systems popularized by the "Netflix prize competition"; the goal is
to predict the preferences of users for some items based on the preferences or taste
information from many users. In the case of the Netflix problem, it boils down to
predict how much someone is going to like a movie based on her/his movie ratings
and the ratings of others.

This list is far from being exhaustive and we refer our readers to reference [56] for more
examples for which NMF has proved to be a powerful tool to understand the underlying
structure of data sets. In this thesis, we focus on two major applications for NMF:

• hyperspectral unmixing (Section 1.5.1),

• audio single-channel blind source separation (Section 1.5.2).

1.5.1 Hyperspectral imaging

A grayscale image is an image in which the value of each pixel is a single sample representing
only an amount of light; that is, it carries only intensity information. The intensity of a
pixel is expressed within a given range between a minimum and a maximum value. Each
pixel can be represented as a 1-dimensional vector. An RGB image is such that each of its
pixel is coded over three components, the three components give the intensity of reflected
light for the wavelengths corresponding to the visible red, green and blue.

An RGB image is based on additive color model in which red, green, and blue light are
added together in various ways to reproduce a broad array of colors in such a way it can
be perceived by an human eye. A hyperspectral image (HSI) is an image that contains
information over a wide spectrum of light instead of just assigning primary colors (red,
green, blue) to each pixel. The light striking each pixel is broken down into many different
spectral bands; each pixel has typically between 100 and 200 components, corresponding
to the reflectance (fraction of light reflected by that pixel) at many different wavelengths.
In general, the spectral range of airborne hyperspectral sensors is 380–12.700 nm and for
satellite sensors is 400–1.400 nm. The AVIRIS airborne hyperspectral imaging sensor, for
instance, obtains spectral data over 224 continuous channels, each with a bandwidth of 10
nm over a spectral range from 400 to 2.500 nm.
The number of wavelengths measured depend on the cameras sensor used and are usually

chosen depending on the application considered. The advantage of hyperspectral images
is that they provide more information on what is imaged, some of it blind to the human
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(a) Grayscale Image (b) RGB Image (c) MSI (d) HSI

Fig. 1.2. Cube data for different classes of images: a grayscale image (Left), a RGB image
(Left-Middle), a mutlispectral image (Right-Middle) and a hyperspectral image
(Right). Axis x and y designate the two spatial coordinates.

Fig. 1.3. Hyperspectral data cube containing all spatial and spectral data for each pixel
(figure extracted from [47])

eye as many wavelengths belong to the invisible light spectrum. This additional infor-
mation allows one to identify and characterize the materials present in a scenery. Prior
to hyperspectral images, we also have multi-spectral images which have fewer bands as
compared to hyperspectral images; each pixel has typically between 4 and 10 components.
In summary, an image acquired from any sensor will be in the format of a data cube; a
grayscale image would then correspond to a slice of a cube. For comprehension purposes,
Figure 1.2 presents side by side the cube data format for a grayscale image, an RGB image,
a seven band MSI and an HSI. Figure 1.3 shows a Hyperspectral data cube that contains
both spatial and spectral information from materials within a given scenery. Each pixel
across a sequence of continuous, narrow spectral bands contains both spatial and spectral
properties. Pixels are sampled across many narrowband images by a scanning system at a
particular spatial location, resulting in a “hyperspectral data cube”.

Blind Hyperspectral Unmixing with NMF

The algorithms and the image processing methodologies associated with HSI are a product
of military research, and were primarily used to identify targets and other objects against
background clutter. Now it has many civil applications, and has particularly been useful in
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satellite technology, we can cite: agriculture, mineralogy, astronomy, chemical imaging. It
is also a efficient tool for the assessment of tissue conditions at diagnosis and during surgery
[120]. The main aim is to extract physical information from raw data collected across the
spectrum, which can be easily converted to describe inherent properties of surface targets.
In this thesis, we would like to extract the constitutive material present in the image, called
endmembers (e.g., grass, trees, road surfaces, roof tops) and determine the abundances of
the endmembers in each pixel, that is, identify which pixels contain which materials and
in which quantity. To achieve this goal with NMF-based models, we need (i) to transform
the hyperspectral cube data of a given scene into an input nonnegative matrix V , and (ii)
assume a model for the mixing process. For (i), given a HSI with F wavelengths and a pˆq
spatial resolution, let us pose N “ p ˆ q and construct the matrix V P RFˆN` such that
V pk, nq corresponds to the reflectance of nthe pixel at the fth wavelength. Each column of
V corresponds to the spectral signature of one particular pixel while each row corresponds
to a vectorized image at a given wavelength. In practice, let us remark that when we do
not have at hand a dictionnary of spectral signatures for the endmembers, this problem is
referred to as the Blind Hyperspectral Unmixing (BHU).
For (ii), this follows the fact that the resolution of most hyperspectral images is low,

and hence most pixels potentially contain several materials. Here comes the necessity to
consider a model for the mixing of the recorded reflectance. The simplest and most popular
model is the linear mixing model which assumes that the spectral signature of a pixel is
a linear combination of the spectral signatures of its constitutive endmembers. For such a
model, the weights are given by the abundances. For instance, if a pixel contains 60 % of
grass and 40% of dirt, then its spectral signature is equal to 0.6 times the spectral signature
of the grass plus 0.4 times the spectral signature of the dirt.
In practice, the equality is not required as there are many sources of imperfections such

as the noise, the reflective surfaces arbitrary complex that induce numerous and different
modes of reflection in a small area, the mirage effects and the atmospheric absorption. This
model is only approximate. Finally if we assume that the combination for the linear com-
bination are nonnegative and that the image contains a limited number K of endmembers,
then the linear mixture model is mathematically equivalent to approximate NMF models,
indeed, for all n:

V p:, nq «
K
ÿ

k“1
W p:, kqhkn “WHp:, nq,

where hkn ě 0 is the abundance of the kth material in the nthe pixel. Figure 1.4 illustrates
the linear mixing model for a hyperspectral data cube and the corresponding NMF model
after rearranging the pixels in the case there are no imperfections.
Important remarks from [55] are reported here-under:

• using a standard algorithm such as the ones detailed in Section 1.10 will in general
not lead to the sought decomposition. The reason is related to non-uniqueness for
the solutions of NMF as explained in Section 1.8.1.
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Fig. 1.4. (Top) The linear mixture model for blind spectral unmixing with the slices of
the hyperspectral data cube on left hand side; on the right hand side we have
the vectors wk which contains the spectral signature of a pure material, or
endmember and the abundance maps of the endmembers, which are re-arranged
columns of H. (Bottom) The corresponding NMF model after re-arranging the
pixels (figure extracted from [50])

• In practice, meaningful solutions can be obtained by adding constraints to NMF
models such a sum-to-one constraint for the columns of the abundance matrix or
sparsity constraints. We refer the reader to references [30] for the discussion on
various constraints useful for blind hyperspectral applications based on NMF.

1.5.2 Single-channel blind source separation

Blind audio source separation concerns the techniques used to extract unknown signals
called sources from a mixed audio signal x. In this thesis, we assume that the audio signal
is recorded with a single microphone. Considering a mixed signal composed of various
audio sources, the blind audio source separation consists in isolating and extracting each
of the sources on the basis of the single recording. Usually, the only known information is
the number of estimated sources present in the mixed signal. The blind source separation
problem is said to be underdetermined as there are fewer sensors (only one in our case)
than sources. It then appears necessary to find additional information to make the problem
well posed. The most common technique used for this kind of problem is to get some
form of redundancy in the mixed signal in order to make it overdetermined. This is
typically done by computing the spectrogram which represents the signal in the time and
frequency domains simultaneously (splitting the signals into overlapping time frames).
The computation of spectrograms can be summarized as follows: short time segments are
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extracted from the signal and multiplied element wise by a window function or “smoothing”
window of size F . Successive windows overlap by a fraction of their length, which is usually
taken as 50%. On each of these segments, a discrete Fourier transform is computed and
stacked column-by-column in a matrix X. Thus, from a one-dimensional signal x P RT ,
we obtain a complex matrix X P CFˆN called spectrogram where F ˆN » 2T (due to the
50% overlap between windows). Note that the length of the window determines the shape
of the spectrogram. These preliminary operations correspond to computing the short time
Fourier transform (STFT), which is given by the following formula: for 1 ď f ď F and
1 ď n ď N , Xf,n “

řF´1
j“0 wjxnL`je

p´i 2πfj
F
q, where w P RF is the smoothing window of size

F , L is a shift parameter (also called hop size), and H “ F ´ L is the overlap parameter.
The number of rows corresponds to the frequency resolution. Letting fs be the sampling
rate of the audio signal, consecutive rows correspond to frequency bands that are fs{F Hz
apart. The STFT process is pictured on the left side of Figure 1.5.
The time-frequency representation of a signal highlights two of its fundamental proper-

ties: sparsity and redundancy. Sparsity comes from the fact that most real signals are not
active at all frequencies at all time points. Redundancy comes from the fact that frequency
patterns of the sources repeat over time. Mathematically, this means that the spectrogram
is a low-rank matrix. This has been validated on many experiments and makes sense phys-
ically. Indeed, let us take the example of the spectrogram of an instrument which is a finite
sum of the spectrograms of the each note. Usually the number of notes is small w.r.t. the
dimensions of the spectrograms.
These two fundamental properties led sound source separation techniques to integrate

algorithms such as nonnegative matrix factorization (NMF). Such techniques retrieve sen-
sible solutions even for single-channel signals.

Mixing assumptions

Given K source signals spkq P RT for 1 ď k ď K, we assume the acquisition process is well
modelled by a linear instantaneous mixing model:

xptq “
K
ÿ

k“1
spkqptq with t “ 0, ..., T ´ 1 . (1.4)

Therefore, for each time index t, the mixed signal xptq from a single microphone is the
sum of the K source signals. It is standard to assume that microphones are linear as long
as the recorded signals are not too loud. If signals are too loud, they are usually clipped.
The mixing process is modelled as instantaneous as opposed to convolutive used to take
into account sound effects such as reverberation. The source separation problem consist
in finding source estimates ŝpkq of spkq sources for all k P t1, . . . ,Ku. Let us denote S
the linear STFT operator, and let S: be its conjugate transpose. We have S:S “ FI,
where I is the identity matrix of appropriate dimension. For the remainder of this thesis,
S: stands for the inverse short time Fourier transform. Note that the term inverse is not
meant in a mathematical sense. Indeed the STFT is not a surjective transformation from



CHAPTER 1. INTRODUCTION 16

RT to CFˆN . In other words, each spectrogram or each matrix with complex entries is not
necessarily the STFT of a real signal; see [88] and [99] for more details. By applying the
STFT operator S to (1.4), we obtain the mixing model in the time-frequency domain :

X “ Spxptqq “ S

˜

K
ÿ

k“1
spkqptq

¸

“

K
ÿ

k“1
Spkq,

where Spkq is the STFT of the source k, that is, the spectrogram of source k.
To identify the sources, we use in this thesis the amplitude spectrogram V “ |X| P RFˆN`

or the power spectrograme respecively defined as Vfn “ |Xfn| and Vfn “ |Xfn|
.p2q for all

f , n. We assume that V “
řK
k“1

ˇ

ˇSpkq
ˇ

ˇ, which means that there is no sound cancellation
between the sources, which is usually the case in most signals. Figure 1.5 summarizes the
process to compute the amplitude spectrogram of an input signal:

Fig. 1.5. Process for generating an amplitude spectrogram based on an input audio signal.
We can observe two fundamental properties of an standard amplitude spectro-
gram for using NMF: sparsity and low-rank structure. Figure extracted from
[88].

Finally, we assume that the source spectrograms
ˇ

ˇSpkq
ˇ

ˇ are well approximated by non-
negative rank-one matrices. Note that a source can be made of several rank-one factors in
which case a post-processing step will have to recombine them a posteriori (e.g., looking
at the correspondence in the activation of the sources over time). Note also that we fo-
cus in this thesis on the NMF stage of the source separation which factorizes V into the
source spectrograms. For the phases reconstruction, which is a highly non-trivial problem,
we consider a naive reconstruction procedure consisting in keeping the same phase as the
input mixture for each source [88].
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NMF for audio source separation

Under the assumptions (i) the amplitude spectrogram of the mixture V is a nonnegative
linear combination of the spectrogram of the sources (no source cancelation) and (ii) the
spectrograms have a low-rank structure, blind source separation is another NMF problem;
given a non-negative matrix V P RFˆN` (the spectrogram) and a positive integer K !

minpF,Nq (the number of sources, called the factorization rank), we have seen that NMF
aims to compute two non-negative matrices W with K columns and H with K rows such
that V « WH. When the matrix V corresponds to the amplitude spectrogram or the
power spectrogram of an audio signal, we have that:

• W is referred as the dictionary matrix and each column corresponds to the spectral
content of a source, and,

• H is the activation matrix specifying if a source is active at a certain time frame and
in which intensity.

In other words, each rank-one factor W p:, kqHpk, :q will correspond to a source: the kth
column W p:, kq of W is the spectral content of source k, and the kth row Hpk, :q of H is its
activation over time. To compute W and H, we need to solve Problem 1.4.1, we discuss in
Section 1.9.1 the most appropriate choices for the metrics dpVfn|rWHsfnq in the frame of
audio source separation. Let us illustrate what would be the outputs of the NMF applied
to a simple monophonic signal; namely a piano recording of “Mary had a little lamb” whose
consists in a sequence of three notes as follows: E4, D4, C4, D4, E4, E4, E4. For this data
set, the three main sources are the piano notes whose spectrograms have rank-one: each
column of W is the spectral content of each note while the entries of H indicate when a
note is active. Figure 1.6 displays the input audio signal xptq, the input matrix V (the
amplitude spectrogram in this case) and the results for W and H. As we can observe, we
identify three notes and a fourth note that corresponds to the hammer within the piano
(a common trigger to each note) and the sequence of the activations is consistent with
the sequence played. NMF is therefore able to blindly separate the different sources and
identify which source is active at which moment in time. This ability led NMF to be used
for automatic music transcription [16].
For comprehensive purposes, we summarize the full process of blind source separation

with NMF-based methods considered in this thesis. The process consists in four steps
detailed here-under:

1. Step 1: an input vector xptq is loaded.

2. Step 2: computation of the STFT X “ Spxptqq and the phase matrix Φ such that
X “ |X| d exp jΦ where Φfn “ tan´1

´

=pXfnq
<pXfn

¯

and exp is the component-wise
exponential. In this illustration, we pose V “ |X| (the amplitude spectrogram).

3. Step 3: Computation of a NMF pW,Hq for the input matrix V .
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Fig. 1.6. Application of NMF to blind audio source separation: decomposition of the
piano recording "Mary had a little lamb" using NMF: (top-left) the input audio
signal xptq, (bottom-left) amplitude spectrogram V in dB, (middle-bottom) basis
matrixW corresponding to the three notes C4, D4, E4 and h (the hammer noise),
(bottom right) activation matrix H that indicates when each note is active.

4. Step 4: computation of the source estimates, denoted Ŝk, based on the Wiener Fil-
tering (or "Masking coefficients") as follows: ŝpkq “ S:

´

rW p:,kqHpk,:qs
rWHs d V d exp jΦ

¯

.
This reconstruction technique for the sources estimates enables to reconstruct the
input signal xptq, indeed;

ÿ

k

ŝpkq “
ÿ

k

S:
ˆ

rW p:, kqHpk, :qs
rWHs

d V d exp jΦ
˙

“ S:

˜˜

ÿ

k

rW p:, kqHpk, :qs
rWHs

¸

d V d exp jΦ
¸

“ S:pXq “ xptq.

NMF models have shown their potential to identify audio sources from more complex
signals, such as polyphonic music where several notes and even several instruments are
played at once. However, for such audio signals, it is advised to consider more elaborate
NMF models (and associated optimization problems) such as sparse NMF [137] and more
advanced mixture models such as convolutive NMF [125].

1.6 Geometry of NMF

"Let none ignorant of geometry enter here"
- Attributed to Plato, phrase over the entrance of his Academy [2]
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Motivations

In this section, we present two geometrical interpretations of NMF. These geomet-
rical interpretation will be useful:

• to understand one of the main issues about NMF models; the NMF models
are nonunique in general. In Section 1.8, this issue will be discussed and we
will introduce the notion of identifiability of an NMF model with its associated
optimization problem.

• to understand the main motivation for the NMF problems introduced in Chap-
ters 2 and 3.

NMF has a nice underlying geometrical interpretation which is a key aspect. The un-
derstanding of the NMF geometry enables to formulate meaningful problems and design
powerful algorithms. The geometrical interpretation is not recent and takes its origin in
the fields of geoscience and remote sensing, see [56] and the references therein for a detailed
historical review. In this section we describe the geometric interpretation of the exact NMF
model. We will develop these aspects w.r.t. the so-called nested cones and nested convex
hulls (or nested polytopes), the main reason is the ease to visualize it in the case we deal
with nested convex hulls. Note that most of the geometric aspects developed here-under
for exact NMF models are also useful for the approximate NMF models.
Let us first recall the mathematical definitions of a convex cone spanned by the columns

of a matrix U . Given a matrix U : the convex cone spanned by the columns of U P RFˆK ,
denoted cone(U), is defined as follows:

conepUq “
 

x P RF |x “ Uθ, θ P RK`
(

.

The elements of conepUq are conic combinations of the columns of U , that is, linear combi-
nations with nonnegative weights. The dimension of cone(U) is the dimension of the linear
subspace spanned by the columns of U and is therefore equal to the rank(U). Now, we
recall the exact NMF model V “ WH where V P RFˆN` , W P RFˆK` , H P RKˆN` , that is
each column of V is a nonnegative linear combination of the columns of W weighted by
the components of the corresponding column of H. Therefore, one can easily see that the
columns of V are contained in the convex cone generated by the columns of W . Mathe-
matically V p:, nq “ WHp:, nq and since W,H ě 0 we have V p:, nq P conepW q Ď RF` for all
n. Since this inclusion holds for all n, we can write the following chain of inclusions:

conepV q Ď conepW q Ď RF`. (1.5)

Based on equation (1.5), we can see why finding factors W ě 0 and H ě 0 such that
V “ WH is equivalent to find conepW q nested between two cones: conepV q Ď RF`. In
other words, we are looking for a set of K vectors within RF` such that their convex cone
contains the given cone spanned by the columns of the input data matrix V . Equation
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Fig. 1.7. Geometric illustration of Exact NMF for K “ F “ 3 and N “ 25. We observe
that conepV q Ď conepW q Ď RF`.

(1.5) also gives a lower bound for the dimension of the linear subpsace spanned by the
columns of W , that is rankpW q has a lower bound equal to rankpV q. Hence, by definition
of the rank of a matrix, we can build up the following interval for rankpW q:

rankpV q ď rankpW q ď minpF,Kq “ K. (1.6)

since K ! minpF,Nq by hypothesis. Figure 1.7 provides such a geometric interpretation
for K “ F “ 3 and N “ 25.
Another equivalent geometric interpretation of the exact NMF is reformulated by using

the nested convex hulls, also referred to as nested polytopes. The reason is twofold (i) it
is easier to visualize the problem and (ii) the intrinsic `1 normalizations for such represen-
tation will be used in the further chapters. Note that both geometric interpretations will
be useful for Section 1.8.1 that deals with the uniqueness of NMF solutions. Let us first
recall some basic useful notions from convex geometry.

Definition 1.6.1. A set S Ď RF is convex if for all a,b P S, we have λa ` p1 ´ λqb P S

for all λ P r0, 1s.

Definition 1.6.2. A point v P RF is a convex combination of vectors w1, ..., wk, ..., wK P

RF if for some real nonnegative numbers αk which satisfy
řK
k αk “ 1 and αk ě 0 (1 ď

k ď K), we have v “
ř

k αkwk.

Definition 1.6.3. The convex hull of a set S is the smallest convex set containing S or,
equivalently, the set of convex combinations of points in S.
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We define the convex hull spanned by the columns of a matrix U P RFˆK :

convpUq “ tx P RF |x “ Uθ, θ P RK` , eT θ “ 1u, (1.7)

where e is a all-one column vector of appropriate size. Therefore, each element of convpUq
is a convex combination of the columns of U . The vertices of the set convpUq are the
columns Up:, kq of U , in other words, no column Up:, kq of U can be expressed as a convex
combination of the remaining columns of U . Figure 1.5 shows the geometric illustration of
the convex hull of a matrix W . For the following, let us also define the unit simplex:

Definition 1.6.4. The unit simplex in dimension F , denoted ∆F , is the subset of RF

defined as:
∆F “ tx P RF |x ě 0, eTx “ 1u

Based on expression (1.7), ∆F is equivalent to convpIF q where IF is the identity matrix
of dimension F ˆ F .
We have now everything in hand to introduce the geometric interpretation of Exact

NMF in terms of nested convex hulls. Given an exact NMF V “ WH, we can assume
without loss of generality that the columns of V and W have a `1 norm equal to one, that
is }V p:, nq}1 “

řF
f |Vfn| “ 1 for all n and }W p:, kq}1 “

řF
f |Wfk| “ 1 for all k. Indeed,

for any exact NMF for which matrices V and W do not contain columns equal to the null
vector, we have the equivalency:

V “WH ðñ V QV “WHQV , (1.8)

where matrix QV is the diagonal matrix whose entries are such that QV pi, jq “ δij
1

}V p:,iq}1
with δij the Kronecker delta. Further, note that for any invertible, diagonal and nonnega-
tive QW matrix whose entries are such that QW pi, jq “ δij

1
}W p:,iq}1

, we have that:

WH “ pWQW qpQ
´1
W Hq, (1.9)

where Q´1
W pi, jq “ δij }W p:, iq}1. We finally insert (1.9) into (1.8) we get:

V “WH ðñ V QV
loomoon

Π∆F pV q

“ pWQW q
looomooon

Π∆F pW q

pQ´1
W HQV q

looooomooooon

H 1

ðñ Π∆F pV q “ Π∆F pW qH 1,

(1.10)

where Π∆F p.q denotes the projection operator of the columns of the input matrix onto the
unit simplex in dimension F , hence the columns of the the resulting matrix are included
in the subset ∆F . Let us first observe that H 1 ě 0 since each entry of Q´1

W is nonnegative.
Further, based on equation (1.10), we observe that the columns of matrix H 1 have unit
`1 norm. Indeed by definition the columns of Π∆F pV q and Π∆F pW q have `1 norm (as
they belong to the unit simplex), mathematically we have eT “ eTΠ∆F pV q and eT “

eTΠ∆F pW q. Therefore we can write the following chain:

eT “ eT pΠ∆F pV qq “ eT pΠ∆F pW qH 1q “ eTH 1,
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Fig. 1.8. Geometric illustration of Exact NMF w.r.t. the nested convex hulls on the data
set from Figure 1.7. We observe that conv pΠ∆F pV qq Ď conv pΠ∆F pW qq Ď ∆F .

and hence eT “ eTH 1, that is, the entries of each column of H 1 sum to one.
In the case the columns of Π∆F pV q and Π∆F pW q are not equal to the null vector,

one can easily see that the columns of Π∆F pV q are contained in the convex hull spanned
by the columns of Π∆F pW q. Mathematically Π∆F pV qp:, nq “ Π∆F pW qH 1p:, nq and since
H 1p: nq ě 0 and eTH 1p:, nq “ 1 for all n, we have Π∆F pV qp:, nq P conv pΠ∆F pW qq Ď ∆F for
all n. Since this inclusion holds for all n, we have the following chain of inclusions:

conv pΠ∆F pV qq Ď conv pΠ∆F pW qq Ď ∆F . (1.11)

Then, we see that computing an exact NMF V “ WH with a factorization rank K is
equivalent to finding a polytope, conv pΠ∆F pW qq, nested between two given polytopes,
conv pΠ∆F pV qq and the unit simplex ∆F . Alternatively, it is equivalent to finding a set of
K vectors (the columns of Π∆F pW q) within ∆F such that their convex hull contains the
columns of Π∆F pV q, in the case none of the columns of Π∆F pV q or Π∆F pW q equals the
null vector. Figure 1.8 provides such a geometric interpretation for the data set used in
Figure 1.7.

In summary, we have just showed that, without loss of generality, the exact NMF model
has two equivalent geometric interpretations: a first one based on the inclusion of cones
(1.5) and the second one based on the inclusions of convex hulls (1.11). In [56], the author
shows that the geometric interpretation based on nested convex hulls in still valid in a
lower dimensional linear subspace. The rationale begins by observing that a vector v P ∆F
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contains redundant information as any single entry can be deduced from the others since
řF
f vf “ 1 and then dimension of ∆F “ F ´ 1. It is then possible to reduce the dimension

of the problem by one and consider it in a lower dimensional subspace of dimension F ´ 1
[56]. The key ingredients are:

1. the introduction of the subset SK “ tx P RK |x ě 0, eTx ď 1u which is the convex
hull of the unit simplex and the origin, that is SK “ convprIK0sq,

2. the abandon of the last coordinate of the matrices of interests without loss of gener-
ality. So for all matrices A P ∆F , we use the reduced matrices Āp1 : F ´ 1, :q such
that each column of Ā P SF´1.

Based on these ingredients, one can show that inclusions from (1.11) is equivalent to:

conv
`

Π̄∆F pV q
˘

Ď conv
`

Π̄∆F pW q
˘

Ď SF´1 (1.12)

Finally, based on the examples presented in Figures 1.7 and 1.8, three important remarks
from [56] concerning the dimension of conv pΠ∆F pV qq and conv pΠ∆F pW qq must be done:

• in Figure 1.8, we see that dimension of conv pΠ∆F pV qq is equal to 2 which is also the
dimension of ∆F . We must insist on the fact that the dimension of conv pΠ∆F pV qq

is usually much smaller than F ´ 1, and therefore rankpV q is usually much smaller
than F , otherwise performing NMF has no sense, indeed let us recall that NMF is
a LDR technique and we expect to extract the meaningful properties of V with a
factorization rank K such that K ! minpF,Nq.

• One can show that the dimension of conv pΠ∆F pV qq “ rankpV q´1, see [56, Lemma2.5]
for the detailed proof.

• The dimension of the nested polytope conv pΠ∆F pW qq is not known a priori but, since
rankpW q belongs to interval rrankpV q;Ks (1.6), then dimension of conv pΠ∆F pW qq

belongs to interval rrankpV q ´ 1;K ´ 1s per [56, Lemma2.5]. When the three poly-
topes (inner, nested, and outer) have the same dimension, this problem is well known
in computational geometry and is referred to as the nested polytope problem (NPP)
[36].

• An important variant of the exact NMF model is the restricted exact NMF for which
we impose rankpV q “ rankpW q. We can prove that NPP and this restricted vari-
ant of exact NMF are equivalent, that is, they can be reduced to one another [61].
Indeed, if rankpV q “ rankpW q then the linear subspace spanned by the columns
of V and W coincide, one can show that the outer polytope can be restricted to
∆F X col pΠ∆F pV qq where colpAq “ tx P RF |x “ Ay, y P RNu. Since the dimension
of ∆F X col pΠ∆F pV qq “ rankpV q ´ 1 per [56, Lemma2.5], then the inner, nested,
and outer polytopes have the same dimension.

In the following Section 1.7, we introduce the major results about the complexity of
NMF.
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1.7 Computational complexity of NMF

In this section we briefly discuss the computational complexiy of NMF. The standard
algorithms proposed to tackle the problems associated to NMF models are generally based
on local improvement heuristics. We can also cite another class of heuristics that are based
on greedy rank-one downdating [12, 17, 19]. The most widespread optimization schemes
to tackle the problems associated to NMF models are brielfy presented in Section 1.10.
To the best of our knowledge, there is no algorithm proposed in the literature that comes
with a guarantee of optimality. This suggests that solving NMF to optimality is a difficult
problem.
The early results about the computational complexity of NMF were introduced by

Thomas [131] and concerns the relationship between the rank and nonnegative rank of
a matrix in the case of exact NMF models. They are summarized as follows: if V is a
nonnegative matrix with rankpV q ď 2, then rankpV q “ rank`pV q. In this case, Tomas
showed that Exact NMF is solvable in polynomial time, indeed it is easily solvable since
W can be built up by picking two columns of V .
In the case rankpV q “ 3, finding the minimal K such that an restricted exact NMF

(RE-NMF) exists can be solved in polynomial time. This results follows:

• the fact that there are polynomial-time reductions from RE-NMF to the nested poly-
tope problem (NPP) and from NPP to RE-NMF [135, 61, 28].

• the polynomial time algorithms from Silio [122] and Aggarwal et al. [3] for the
2-dimensional NPP.

In the case rankpXq ě 4, finding the minimum K such that RE-NMF has a solution is
NP-hard, this is a consequence of the NP-hardness results from [34, 35].
The main results for the complexity of exact NMF are introduced in the seminal paper

of Vavasis [135]. Vavasis [135] provides the proof that

Theorem 1.7.1. [135, Theorem4] NMF is NP-hard.

Sketch of the proof. Vavasis considers the exact NMF stated as follows: given a matrix
V P RFˆN` such that its rank is equal to K, the input is the pair pV,Kq. The output
is a pair of nonnegative matrices pW,Hq, where W P RFˆK and H P RKˆN such that
V “ WH. If no such pW,Hq exist, then the output is a statement of nonexistence of a
solution. The decision version of exact NMF takes the same input and gives as output
yes if such a W and H exists else it outputs no. Vavasis considers the implicit statement
that the rank of V is known, this assumption has no impact on the results as we can
use polynomial-time algorithms to compute the rank via an echelon-form or a singular
value decomposition. Let us remark that, in the case rankpV q “ K, the exact NMF and
restricted exact NMF models coincide; it can easily proved by using inequalities (1.6):

K “ rankpV q ď rankpW q ď minpF,Kq “ K
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since K ! minpF,Kq in general. Therefore we have rankpV q “ rankpW q which corre-
sponds to the RE-NMF. The proof of NP-hardness has two parts: first Vavasis uses the
corresponding NPP to RE-NMF, that he refers to as the the intermediate simplex prob-
lem, and secondly shows that there exists a polynomial-time reduction of the NP-complete
problem 3-SAT to the intermediate simplex problem.

Many important remarks are stated here-under:

• the exact NMF can be generalized by the problem of nonnegative rank determination.
This generalization is due to Cohen and Rothblum, which asks: give an nonnegative
matrix V , find the smallest integer K such that we find two matrices W P RFˆK

and H P RKˆN such that V “WH. Cohen and Rothblum give a super-exponential
time algorithm for this problem. Since nonnnegative rank determination is a gener-
alization of exact NMF, then the results in [135] shows that the nonnegative rank
determination is also NP-hard.

• For any approximate NMF models for which rankpV q is not constrained and the exact
equality is not required, an optimal algorithm when presented with an V whose rank
is exactly K ought to solve the exact NMF problem. Hence, the standard NMF
problem using any norm is a generalization of exact NMF. Therefore, any hardness
result that applies to exact NMF apply to most approximated NMF models as well
[135].

• In Theorem 1.7.1, K “ rankpV q is part of the input meaning that, unless P=NP,
there is no algorithm polynomial in K and in the size of V that solves Exact NMF.
We can also cite [121] that gives different proof using algebraic arguments. Moreover,
Arora et al. [11] showed that there is no algorithm to solve this problem that runs
in time pFNqoprq unless 3-SAT 3 can be solved in time 2opnq on instances with n

variables. However in practice, K is small and it makes senses to wonder what
becomes the complexity if we assume instead that K is a fixed constant. It turns
out that we can actually solve RE-NMF in polynomial time in F and N , namely in
time OppFNqcr2

q for some constant c [11, Lemma2.2]. The argument is based on
the quantifier elimination theory (in particular by using the seminal result by Basu,
Pollack and Roy [14]). Unfortunately, this cannot be used in practice even for small
size matrix because of its high computational cost: although the term OppFNqcr2

q

is a polynomial in F and N for K fixed, it grows extremely fast. Let us illustrate
with a 4-by-4 matrix with K “ 3, we have a complexity of order 169 and for a 5-
by-5 matrix with K “ 4, the complexity raises up to 2516. Therefore developing an
effective code for exact NMF for small matrices is an important direction for further
research. Some heuristics have been recently developed that allows solving exact

33-SAT, or 3-satisfiability, is an instrumental problem in computational complexity to prove NP-
completeness results. 3-SAT is the problem of deciding whether a set of clauses containing 3 Boolean
variables or their negation can be satisfied. A clause is for example "x = 1 or y = 0 or z = 1".
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NMF for matrices up to a few dozen rows and columns but these heuristics come
come with no global optimality guarantee [133]. This observation led us to develop
new formulation for problems associated to the exact NMF models, these problems
are presented in Chapter 6.

• Recently, Shitov showed that

– NMF remains NP-hard when restricted to Boolean matrices [146].

– The nonnegative rank over the reals might be different from the nonnegative
rank over the rationals. Shitov [121, 145] gives an explicit example of a 21ˆ 21
matrix with integral entries that can be written as a sum of 19 nonnegative rank-
one matrices but not as a sum of 19 rational nonnegative rank-one matrices. This
gives a solution of the Cohen–Rothblum problem, which has been open until
[145, 121]. Let mention that same results have been independently obtained by
Chistikov et al. [27] with a 6-by-11 rational matrix whose nonnegative rank is
5 while over the rational it is 6. This results also imply the nonnegative rank
computation is not in NP since the size of the output is not bounded by the size
of the input [55].

• Recent NMF models are proposed with additional assumptions such that the asso-
ciated problems are easier to solve or come with some theoretical guarantees on the
nature of the solutions. In [11] for instance, Arora et al. identify a class of models
for which the problem is much easier. This class of models is the so-called Separable
NMF that will be detailed in Section 1.8.3.
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1.8 From model uniqueness to identifiable NMF

"The investigation of the truth is in one way hard, in another easy. An
indication of this is found in the fact that no one is able to attain the truth
adequately, while, on the other hand, no one fails entirely, but everyone says
something true about the nature of all things, and while individually they con-
tribute little or nothing to the truth, by the union of all a considerable amount
is amassed.”
- Aristotle, Metaphysics

Motivations

The problems associated to NMF models like the standard problem presented in
Section 1.4 have one common goal in the end; identify the "good" W and H, by
good we mean: the ground-truth (or latent) factors, denoted W# and H#, that
generated the data V . The main limitation of such parameter identification problems
is the consequence of intrinsic limitations of NMF models: the NMF models without
additional constraints are nonunique. This section introduces the basics for Chapters
2 and 3 and is organized as follows:

• in Section 1.8.1 we formally define the concept of identifiability for NMF mod-
els. The idea is to find conditions on W and H under which the optimal
solutions pW ‹, H‹q of an optimization problem associated to an NMF model
are just permutated and scaled versions of the true factors W# and H#.

• In Section 1.8.2, we introduce two sufficient conditions under which recent
NMF models and their associated optimization problems have been proved to
be identifiable.

• In Section 1.8.4, we show how to relax these sufficient conditions, we present
an exact NMF model dubbed as "simplex-structured NMF model" and its
associated optimization problems that have been proved to be identifiable.

1.8.1 Identifiability for NMF

The notion of identifiability is closely related to the notion of uniqueness, which is known
in the signal processing community since it is one of the goals when it comes to parameter
estimation. For NMF, identifiability refers to the ability to identify the data generating
factors W# ě 0 and H# ě 0 that give rise to V “ W#H#. A nonnegative matrix
factorization model is nonunique: given a factorization V “WH with W ě 0 and H ě 0;
then any invertible matrix Q such that:

• WQ ě 0
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• Q´1H ě 0

provides an alternative solution V “ W̃ H̃ “ pWQq
`

Q´1H
˘

.
Remark that Q is not restricted to generalised permutation matrices but can be anything
else as soon as the alternative solutions pWQ,Q´1Hq satisfy the nonnegativity constraints.
The study of NMF identifiability tends to elaborate models, associated optimization prob-
lems and conditions under which most Q can be removed [48]. In particular, we ignore the
cases Q is a composition operator of permutation and scaling of the columns of W and H.
These degrees of freedom are unavoidable and, most importantly, inconsequential for the
applications at hand. Let us now formally define the identifiability for NMF models:

Definition 1.8.1. Given a data matrix V “ W#H# where W# and H# are the ground-
truth (or latent) factors. Suppose that W# and H# satisfy a certain condition. Let
pW ‹, H‹q be the optimal solution of the optimization problem associated to the NMF model
or an output from a procedure. If, under the aforementioned condition of W# and H#, we
have:

W ‹ “W#Q, H‹ “ Q´1H#, (1.13)

where Q “ ΠD with Π a permutation matrix and D is a full-rank diagonal matrix, then
we say that the NMF model is identifiable under that condition.

Let us illustrate the rationale to show that a model is identifiable; let us consider the
most popular optimization problem associated to the approximate NMF model:

min
WPRFˆK ,HPRKˆN

}V ´WH}2F

subject to H ě 0,W ě 0 ,
(1.14)

where }V ´WH}2F is the squared Forbenius norm of the residual matrix V ´WH. One
can observe that (1.14) is a particular case of the standard problem presented in Section 1.4
in which the metric dpVfn|rWHs fnq “ prV ´WHsfnq

2. To demonstrate the identifiability
of an NMF model and its associated optimization problem, one needs to determine the
conditions for W and H to be satisfied such that equations (1.13) hold. Many important
remarks from [50] are listed here-under:

• in linear algebra, identifiability of a factorization model such the matrix factoriza-
tion or the tensor factorization, commonly designates the ability of the model to
identify the latent factors independently from any associated optimization problems
(also referred to as "identification criteria"). In our case, we define the concept of
identifiability of a model with its associated optimization problem. This seems to
be unusual in the linear algebra community but it turns out that the choice of the
associated optimization problem is crucial to establish identifiability of NMF mod-
els. Actually, an NMF model with a particular associated optimization problem may
have be identifiable but the same model with a different optimization problem may
not be. However, we must mitigate these assertions as under strong conditions on W
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and H, identifiability for exact NMF models holds independently from the associated
problem. Further, we will relax these strong assumptions and then it will become
necessary to build an optimization problem associated to a regularized exact NMF
model to guarantee identifiability, see Section 1.8.4.

• A natural question should arrive: Should we care about identifiability ? It turns out
that yes, it is important as the notion of identifiabilty is closely related to meaningful
results when we have engineering applications at hand. The authors of [50] illustrates
this remark based on a widepsread application of NMF; topic mining model. In a nut-
shell, the task of topic mining model is to discover prominent topics (represented by
sets of words) from a large set of documents. The results obtained for the analysis of
real news articles with two methods, one identifiable and the second one not, are com-
pared. We observe that the different topics mined from the non-identifiable method
are mixed leading to weird associations such as "Lewinsky-white-star-president". Of
course, we could think to others applications in which inconsistent results can have
detrimental impact, let us imagine a case where NMF models are used to un-mix
signals recorded on an aerospace structure in which there are different sources of me-
chanical vibrations. Some mechanical vibrations indicate the near failure of a system,
therefore the identification of the ground truth signals is crucial for safety purposes.
This illustrates the pivotal role of identifiability in many real life applications [50].

In the following sections we present some key conditions under which recent NMF models
and their associated optimization problems have been proved to be identifiable. Note that
we consider only the exact NMF models for which the factorization rank K is equal to the
rank of the input matrix V . Most theoretical results on identifiability focus on Exact NMF.
The reason is mainly due to the fact that it is easier to study identifiability for noiseless
cases.

1.8.2 Sufficient conditions

Most results on identifiability of Exact NMF have been derived under the hypothesis K “

rankpV q “ rank`pV q (which implies K “ rankpW q “ rankpHq). The reason comes from
the fact that identifiabilty is intensively considered in applications for which we typically
consider that rankpV q “ rank`pV q [56]. We introduce two sufficient conditions for W and
H to obtain unique exact NMF V “WH, namely

• the separability condition, and

• the sufficiently scattered condition.

Note that we speak about "unique exact NMF ", but we spoke about identifiability in the
previous section. As mentioned earlier, the notions of identifiability and uniqueness of a
solution for an exact NMF model are closely related, they are equivalent in the case we
define uniqueness up to permutation and scaling ambiguities, that are inconsequential for
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applications. Therefore, if we prove that an exact NMF V “ WH is unique under mild
conditions on the factors, then we can conclude to the identifiability of the exact NMF
model or the identifiability of the exact NMF model and its associated optimization prob-
lem.

Before we formally define the separability and the sufficiently scattered conditions, we
give the geometrical intuition that led researchers to come up with such conditions. We
use in particular the geometric interpretation of exact NMF model in terms of nested
convex cones: we showed in Section 1.6 that computing an exact NMF V “ WH with a
factorization rank K is equivalent to finding a polytope, conv pΠ∆F pW qq, nested between
two given polytopes, conv pΠ∆F pV qq and the unit simplex ∆F , which can be very ill-posed
as many solutions may exist. Any Ŵ that satisfies conv pΠ∆F pV qq Ď conv pΠ∆F pW qq Ď ∆F

also satisfies the data model Π∆F pV q “ Π∆F pW qH 1 “ Π∆F pŴ qĤ 1, see Figure 1.9.
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Fig. 1.9. An illustration of the ill posedness of NMF for K “ 3 “ F based on the nested
convex hulls interpretation (we look at the unit simplex from "above", in the di-
rection (-1,-1,-1)). The dashed lines represent the boundaries of conv pΠ∆F pW qq

and conv
´

Π∆F pŴ q
¯

that enclose the convex hull of the data showing there are
many solutions that satisfy the inclusions of convex hulls. Vectors Π∆F pwkq and
Π∆F pŵkq (1 ď k ď K) correspond to the columns of Π∆F pW q and Π∆F pŴ q.
Vectors ei with 1 ď i ď 3 correspond to the vectors of the canonical basis of R3.

By closely looking at Figure 1.9, intuitively if the data points, namely the columns of
Π∆F pV q, are well spread in ∆F such that Π∆F pV q « ∆F , then it would be hard to find a
Ŵ such that the above inclusion holds and then, an unique factorization model is probably
guaranteed. This intuition suggests that, to understand the way we establish identifiability
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for NMF models, it is important to characterize the distribution of columns of Π∆F pV q

within the unit simplex, or equivalently the distribution of the data vectors V p:, nq within
the nonnegative orthant. Indeed we can build up equivalent conclusions based on the nested
cones interpretation of NMF as we showed the equivalence between the two geometric
interpretations of NMF. In the literature, we characterize the distributions in terms of
the geometric properties of H or equivalently W by symmetry of the factorization. The
dispersion, or more precisely the scattering, of the data points (columns of V ) is translated
to the the scattering of the columns Hp: nq of H as V and H are linked by a full-column-
rank matrix W through the exact NMF model. In others words, we can characterize the
scattering of the data points whether in RF` (and equivalently in ∆F ) or in RK` .
In the following section, we define the first sufficient condition that is the separability

condition.

Separability

Let us now define a separable matrix.

Definition 1.8.2. A nonnegative matrix H P RKˆN` is said to satisfy the separability
condition if

cone pHq “ conepe1, ..., eKq “ RK` . (1.15)

where ek is the kth canonical basis vector in RK .

We now define the notion of a dual cone; given a cone S Ď RK , its dual cone denoted
S˚ is defined as follows

S˚ “
 

y P RK |yTx ě 0 for all x P S
(

. (1.16)

Lemma 1.8.1. Given a matrix H P RKˆN , the dual cone of conepHq is given by:

cone˚pHq “ ty P RK |yTH ě 0u. (1.17)

Two natural consequences of lemma 1.8.1 are:

1. Given two matrices W P RFˆK and H P RKˆN , WH ě 0 if and only if conepW T q Ď

cone˚pHq.

2. The nonnegative orthant is a self-dual cone, that is, pRF`q˚ “ RF`.

We have the theoretical background to introduce equivalent conditions for a matrix H to
satisfy the separability condition.

Lemma 1.8.2. Let H P RKˆN` . The following conditions are equivalent:

• H satisfy the separability condition, that is, cone pHq “ RK` ,

• cone˚pHq “ RK` ,
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• H contains an K-by-K submatrix which is a permutation of a diagonal matrix with
positive diagonal entries [Lemma 4.11, [56]]. In others words, For every k “ 1, ...,K,
there exists a column index nk such that Hp:, nkq “ αkek where αk ą 0 is a scalar.

Before we provide the conditions of the uniqueness of Exact NMF, let us provide a
seminal result from [84]:

Theorem 1.8.1. [84, Theorem1] The Exact NMF V “WH of V of size K “ rankpV q is
unique if and only if the only simplicial4 cone T of order K such that

conepW T q Ď T Ď cone˚pHq, (1.18)

is the nonnegative orthant RK` .

We will see in the following that Theorem 1.8.1 is particularly useful to derive sufficient
conditions on W and H to ensure uniquness of the exact NMF model. Indeed, let us
combine the definition of a separable matrix from 1.8.2 and Theorem 1.8.1 we have the
following sufficient condition for a solution of an exact NMF model to be unique.

Theorem 1.8.2. [56, Theorem4.12] If matrix V admits an exact NMF V “ WH of size
K “ rankpV q with W T and H that satisfy the separability condition, then the solution is
unique.

Proof. Since W T and H satisfy the separability condition, by Lemma 1.8.2, we have

conepW T q “ RK` “ cone˚pHq.

Therefore, the only simplicial cone T nested between conepW T q and cone˚pHq is the non-
negative orthant RK` . We conclude the proof by using the sufficient condition from Theorem
1.8.1.

Then, under the condition thatW T andH are separable, we have the following equivalent
conclusions:

• the solution pW,Hq is unique up to permutation and scaling ambiguities,

• the exact NMF model V “WH with W ě 0 and H ě 0 is identifiable,

and these conclusions are valid independently from the procedure used or from the as-
sociated optimization problem that has been solved to compute pW,Hq. The reason is
due to the strongness of the conditions on both W T and H. However, it is considered a
relatively restrictive condition. Indeed the requirement that W T and H both satisfy the
separability condition is unlikely to be satisfied in real-world settings. Indeed, for many
real-life applications, we can hope for one factor to be separable at most. In Section 1.8.3,
we will show how to ensure uniqueness of the solution with only one factor that satisfies

4A simplicial cone is a polyhedral cone of the form conepW q where W has full column rank, such a cone
is of order K if W has K columns.
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the separability condition by adding constraints to the model, namely by imposing that
W “ V p:,Kq with some set of indices K of size K.
Another condition that can effectively model the scattering of the data vectors in the

nonnegative orthant but much relaxed than the previous ones is the so-called sufficiently-
scattered conditions, this is discussed in the following section.

Sufficiently scattered

Let us define the sufficiently scattered condition:

Definition 1.8.3. A nonnegative matrix H P RKˆN` is said to be sufficiently scattered if
the following two conditions SSC1 and SSC2 are satisfied:

1. SSC1: the columns of H are spread enough so that C Ď conepHq where C is the
second-order cone defined as follows: C “ tx P RK` | }x}1 ě

?
K ´ 1 }x}2u.

2. SSC2: There does not exist any orthogonal matrix Q such that conepHq Ď conepQq
except for permutation matrices. Note that an orthogonal matrix is a square matrix
such that QTQ “ IK .

The sufficiently scattered condition is a milder condition than separability, but not easy
to picture. To understand conditions SSC1 and SSC2, one key aspect is the second-
order cone C. One can show that this second-order cone is tangent to every facet of
the nonnegative orthant, see [Lemma 4.18, [56]], see Figure 1.10 for a closer look at C for
K “ 3. Figure 1.10 also displays the set CX∆K which corresponds to a pK´1q-dimensional
sphere. This sphere is centered at e{K (e is a all-one column vector of size K) of radius

1?
KpK´1q

and pass trough the points ēk “ 1
K´1pe´ ekq (1 ď k ď K). Hence, if H satisfies

condition SSC1, namely C Ď conepHq, it means that the columns are spread enough in the
nonnegative orthant; at least every facet of the nonnegative orthant is touched by some
columns of H [50]. It then imply some sparsity (zero elements) in the columns of H.
The condition SSC2 is kind of regularity condition that geometrically means that conepHq

has to be slightly larger than C.
Before illustrating the different scenarios for conepHq, we need to introduce the following

Lemmas:

Lemma 1.8.3. Let S and Q be two convex cones. If S Ď Q then Q˚ Ď S˚.

Lemma 1.8.4. The dual cone of C is given by

C˚ “ tx P RK | }x}1 ě }x}2u (1.19)

Lemma 1.8.5. [75, Lemma1] Let Q P RKˆK such that }Qp:, kq}2 “ 1 for all k, if

C Ď conepQq Ď C˚ (1.20)

then:
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Fig. 1.10. Illustration of the second-order cone C for K “ 3 and the 2-dimensional sphere
(disk) centered at p1

3 ,
1
3 ,

1
3q of radius 1?

6 that goes through the points ē1 “

p0, 1
2 ,

1
2q, ē2 “ p

1
2 , 0,

1
2q and ē3 “ p

1
2 ,

1
2 , 0q. This disk is the intersection between

C and the unit simplex ∆3. This figure has been reproduced from [56].

• Q is orthogonal and

• eTQ “ eT .

A first consequence of Lemmas 1.8.4 and 1.8.5 concerns the orthogonal matrices Q P

RKˆK that satisfies C Ď conepQq Ď C˚. For eTQ “ e and QTQ “ I, it implies that the
columns of Q belong to the boundary of C˚, denoted bDC˚ “ tx P RK | }x}1 “ }x}2u.
We finally introduce two Lemmas that will be useful for Theorem 3.2.1 in Section 3.2.2.

Lemma 1.8.6. [56, Lemma4.8] Let Q P RKˆK be an invertible matrix, then cone˚pQT q “
conepQ´1q.

By posing A “ Q´1, Lemma 1.8.6 implies that cone˚pA´T q “ conepAq.

Lemma 1.8.7. Let Q be an orthogonal matrix of size K ˆK, then cone˚pQq “ conepQq,
hence conepQq is self-dual.

Proof. Since Q is orthogonal by hypothesis, then QT “ Q´1 and Q´T “ Q, and per Lemma
1.8.6 we can write the following chain cone˚pQq “ cone˚pQ´T q “ conepQq.

Since Q is orthogonal, Lemma 1.8.6 implies that cone˚pQT q “ conepQT q.
Figure 1.11 illustrates the different scenarios for conepHq for K “ 3 projected onto the

subset tx P RK |eTx “ 1u, that are:
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Fig. 1.11. Illustration of the SSC and Separable conditions after projection onto tx P
RK |eTx “ 1u. The inner circle corresponds to the boundary of C, the shadowed
polytope corresponds to conepHq, the outer dashed circle corresponds to the
boundary of C˚, the triangle corresponds to the boundary of the unit simplex
and the dashed triangle correspond to boundary of conepQq with Q orthogonal
and whose columns belong to the boundary of C˚, the blue dots correspond to
the columns of H. (Figure similar to [53, Figure 8])
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• in Figure 1.11 (a): matrix H does not satisfy SSC1 (C Ę conepHq) nor SSC2 as we
can easily find an orthogonal matrix Q which is not a permutation matrix such that
conepHq Ď conepQq, for example a triangle within C˚.

• In Figure 1.11 (b): matrix H satisfies SSC1 but not SSC2. The dot triangle corre-
sponds to the boundary of conepQq with Q an orthogonal matrix. In this example,
Q is the rotation matrix of angle θ “ π{6 around axis v “ p1, 1, 1q defined as follows:

Q “

¨

˚

˚

˝

1´ 2s2 ` 2x2s2 2xys2 ´ 2zsc 2xzs2 ` 2ysc
2xys2 ` 2zsc 1´ 2s2 ` 2y2s2 2yzs2 ´ 2xsc
2xzs2 ´ 2ysc 2yzs2 ` 2xsc 1´ 2s2 ` 2z2s2

˛

‹

‹

‚

,

where px, y, zq “ v
}v}2

, c “ cos
`

θ
2
˘

and s “ sin
`

θ
2
˘

. We can easily check that the
columns of Q belong to the boundary of C˚.

• In Figure 1.11 (c): matrix H satisfies SSC1 (C Ď conepHq) and SCC2 as no triangle
within C˚ contains conepHq, except the unit simplex.

• In Figure 1.11 (d): matrix H satisfies the separability condition as H contains a
3-by-3 submatrix which is a permutation of a diagonal matrix with positive diagonal
entries, see Lemma 1.8.2.

Let us now state the main results of this section about the uniqueness of an exact NMF.

Theorem 1.8.3. [75, Theorem4] IfW T and H satisfy the sufficiently scattered conditions,
then the exact NMF V “WH of size K “ rankpV qis unique.

Proof. As per Theorem 1.8.1, we need to proove that the the only simplicial cone T nested
between conepW T q and cone˚pHq is the nonnegative orthant RK` . Since W T and H satisfy
the sufficiently scattered conditions, we have:

• SSC1 for W : C Ď conepW T q,

• SSC1 for H: C Ď conepHq and then cone˚pHq Ď C˚ by Lemma 1.8.3.

Hence, based on the inclusion conepW T q Ď T Ď cone˚pHq we have C Ď T Ď C˚. By Lemma
1.8.5, we have T “ conepQq for Q orthogonal satisfying eTQ “ e and QTQ “ I. Finally,
since H satisfies SSC2, then the only orthogonal matrix Q such that conepHq Ď conepQq
is a permutation matrix, then T “ conepQq “ RK` which concludes the proof.

Then, under the condition thatW T and H are sufficiently scattered, we have the unique-
ness of the exact NMF and therefore the exact NMF model is identifiable independently
from any procedure used or associated optimization problem solved to compute pW,Hq.
As we pointed out for the separability conditions, both SSC conditions on W T and H are
unlikely to be satisfied in real-world applications. We show in Section 1.8.4 how to relax
the requirement such that only one factor, usually H, satisfies the SSC condition.
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1.8.3 Separable NMF

Separable NMF, in noiseless scenario, is a particular case of exact NMF where matrix H
satisfies the separability condition, see Section 1.8.2. It means that H contains a K-by-K
submatrix which is a permutation of a diagonal matrix with positive diagonal entries. It
implies that the columns of W are scaled versions of a of subset K of columns of V of size
K. Mathematically, the separable model is expressed as follows:

V “WH “ pV p:,KqΛq
´”

IK H
1
ı

Πn

¯

, (1.21)

for some H 1

ě 0, Πn is a permutation matrix and Λ is a diagonal matrix such that the
k-th diagonal element denoted Λk,k is Λk,k “ }W p:,kq}

}V p:,kq} allowing the columns of W be scaled
versions of V p:,Kq.
Geometrically, the conical hull of V p:,Kq contains all the columns of V and conepV q “

conepW q. Indeed, the "remaining" data points can be expressed as V p:, K̄q “ V p:,KqΛH 1Πn

where K̄ designates the complement of K, so it means that these data points are some
nonnegative linear combinations of data points V p:,Kq. This is why Separable NMF is
sometimes qualified as a self-dictionary model; indeed the K basis vectors are within the
data set. Figure 1.12 illustrates the geometrical interpretations respectively for exact NMF
and separable NMF for K “ 3 “ F and N “ 25.
The main advantages of separable NMF are briefly enunciated here-under, we refer the

reader to references for more details on the topic:

• The separable NMF is identifiable, see [56, Theorem4.36].

• For Separable NMF it is possible to derive polynomial-time algorithms that provably
recover pW,Hq, even in the presence of noise. An example is the Successive Projection
Algorithm (SPA) [10]. Moreover, SPA is provably robust to bounded additive noise
[66]. However, a main drawback of SPA (and any algorithm relying on orthogonal
projections) is that it requires rankpW q “ K. In some real scenarios, this assumption
is not satisfied, see Chapter 2 for more details. To get rid of this assumption, the
author [57] proposes a projection onto the convex hull of the extracted columns and
the origin. Moreover, Gillis [57] shows that, in the full-column rank case, that is
rankpW q “ K, SNPA is more robust to bounded noise that SPA algorithm. We refer
the reader to [57] for more details about SNPA.

1.8.4 Minimum-volume NMF

We noticed earlier an important issue; the exact NMF model is identifiable under the
condition that W T and H both satisfy the sufficiently scattered condition. We mentioned
that for real-life applications, these requirements on W and H are unlikely to be satisfied.
For example, in image processing, the matrix W is usually dense. Actually, dense W
frequently arise [50]. For such cases, how can we guarantee the identifiability ? To handle
this, let us consider the regularized Exact NMF model V “ WH where the columns of
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Fig. 1.12. Geometric illustration of separable NMF and NMF for F “ K “ 3 and N “ 25.
The blue rays are data points V , the red rays correspond to the basis vectors
(columns of W ) whose are a subset of columns of V , then we can see that
conepV q “ conepW q.
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H belong to the unit simplex, that is, H ě 0 and eTH “ eT . This assumption is also
called column-stochasticity. For such a model, it means that each data point is a convex
combination of the columns of W and therefore we have V p:, nq P convpW q for all n. Since
it is valid for all n, then we have convpV q Ď convpW q. In the literature, this model is
referred to as simplex-structured NMF model (SSNMF). For comprehensive purposes, the
geometry of exact NMF (based on nested cones) and exact NMF with H column-stochastic
(SSNMF) models is shown on Figure 1.13 for K “ F “ 3.
Back in 1994, Craig [32] proposed an innovate way to recover W# (the ground truth

basis matrix). He formulated the conjecture known as "Craig’s belief" as follows: if the
data points V p:, nq are sufficiently spread within convpW q, then finding the matrix W

whose convex hull has minimum volume identifies W# in the sense of Definition 1.8.1, or
equivalently W is unique (up to permutation and scaling of the columns of W and the
rows of H). The corresponding problem is referred to as minimum-volume NMF (min-
vol NMF). Intuitively, min-vol NMF looks for basis vectors as close as possible to the
data points [50, 56]. The use of min-vol NMF has lead to a new class of NMF methods
that outperforms existing ones in many applications such as document analysis and blind
hyperspectral unmixing; see the recent survey [50]. Note that min-vol NMF implicitly
enhances the factor H to be sparse: the fact that W has a small volume implies that many
data points will be located on the facets of the convpW q hence H will be sparse.
Figure 1.14 illustrates the intuition of min-vol NMF; shrinking a data-enclosing convex

hull to have minimum "volume".
Craig did not provide an optimization problem associated to his conjecture. In 2015, Fu

et al. [53] came up with the first identifiability results for min-vol NMF. They formulated
the following optimization problem:

min
WPRFˆK ,HPRKˆN

detpW TW q

subject to V “WH,

H ě 0, eTH “ eT ,

(1.22)

where detpW TW q is a surrogate of the volume of convpW q. Let us give more insights
about this "volume" measure. One can easily show that the volume of convpW q for a
matrix W P RFˆK with F ě K is null (see Figure 1.13-(b), convpW q is an open surface
that obviously encloses no volume in RF ). In [101], the authors show how to measure
the volume of convpW q in a pK ´ 1q-dimensional linear subspace in the case W is full-
column rank by using PCA. Let us introduce another volume measure, namely the volume
of convpr0,W sq:

Lemma 1.8.8. [56, Lemma4.39] Given W P RFˆK and rankpW q “ K,
1
K!

b

detpW TW q

is the volume of the convex hull of the columns of W and the origin in the linear subspace
spanned by the columns of W .
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(a) standard exact NMF model(1.1)

(b) SSNMF model

Fig. 1.13. Geometric illustration of the standard exact NMF model (a) and exact NMF
model with H being column-stochastic (b), referred to as SSNMF, for F “

K “ 3. The orange dots are the data vectors (columns of V ) and wk (1 ď k ď

3) correspond to the basis vectors (columns of W ). The shadowed polytope
designates a part of conepW q in (a) and convpW q in (b). Figure reproduced
from [90, Figures 1 and 2].
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W#( :,1)

W#( :,2)

W#( :,3)

W( :,3)

W( :,1)

W( :,2)

Fig. 1.14. Geometric intuition of min-vol NMF; finding the minimum-volume enclosing
simplex will recover the ground-truth convpW#q. The dots correspond to the
data points. The red triangle designates convpW#q, the dashed triangle des-
ignates the current convpW q. This figure looks from "above" the convex hulls.
Figure similar to [90, Figure 7].

Therefore, minimizing detpW TW q makes sense if the ultimate goal is to minimize the
"volume" of convpW q.

Craig’s belief was a conjecture without theoretical proof, however it has been supported
by many empirical results over the years. In [53], Fu et al. showed the following:

Theorem 1.8.4. [53, Theorem1] If rankpW#q “ rankpH#q “ K and H# satisfies the
sufficiently scattered condition (Definition 1.8.3), then any optimal solution (W ‹,H‹) of
(1.22) is such that W ‹ “W#Π and H‹ “ ΠTH# where Π is a permutation matrix.

Proof. We refer the reader to [53, AppendixA] for the detailed proof.

Note that although min-vol NMF guarantees identifiability, there is a price to pay;
the corresponding optimization problem (1.22) is still hard to solve in general, as for the
original NMF problem [135]. Despite this nice result, the constraint HT e “ e makes the
NMF model less general and does not apply to all data sets. In the case where the data
does not naturally belong to a convex hull, one needs to normalize the data points so that
their entries sum to one so that HT e “ e can be assumed without loss of generality (in
the noiseless case). This normalization can sometimes increase the noise and might greatly
influence the solution, hence are usually not recommended in practice; consider the case
some columns of V have small norm, they typically contain less information and are more
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easily affected by noise. The `1 normalization gives the same importance compared to
columns with large norms which is not desirable; see the discussion in [48]. In order to fix
this issue, Fu et al. [49] recently proposed the following optimization problem:

min
WPRFˆK ,HPRKˆN

detpW TW q

subject to V “WH,

H ě 0, He “ ρe ,

(1.23)

where ρ ą 0 is any positive real number. One can see that both problems look very
similar. However, the sum-to-one constraint is now on the rows of H (when ρ “ 1).
As opposed to column stochasticity, row stochasticity of H can be assumed without loss
of generality, even in the presence of noise, since any factorization WH can be properly
normalized so that this assumption holds. In fact, WH “

řK
k“1pakW p:, kqqpHpk, :q{akq

for any ak ą 0 for k “ 1, . . . ,K. In other terms, letting A be the diagonal matrix with
Apk, kq “ ak “

řn
j“1Hpk, jq for k “ 1, . . . ,K, we have WH “ pWAqpA´1Hq “ W 1H 1

where H 1 “ A´1H is row stochastic.
Fu et al. [49] proved:

Theorem 1.8.5. [49, Theorem1] If rankpW#q “ rankpH#q “ K and H# satisfies the
sufficiently scattered condition (Definition 1.8.3), then any optimal solution (W ‹,H‹) of
(1.23) is such that W ‹ “ W#Q and H‹ “ Q´1H# where Q “ ΠD with Π a permutation
matrix and D is a full-rank diagonal matrix

Proof. We refer the reader to [49] for the detailed proof.

Although the two results above are equivalent in noiseless settings (after normalizing the
input matrix), they might behave rather differently in noisy scenarios [56].
In Chapter 3 we propose a new optimization problem in which we use the condition

W T e “ e that normalizes the columns of W instead of the rows of H. We prove in that
chapter that requiring W to be column stochastic (which can also be made without loss of
generality) also leads to identifiability. We also show that this normalization balances the
importance of the columns ofW leading to a better conditionedW and better performance
in terms of recovery for noisy settings.

1.9 Approximate factorization

In the previous sections, we have focused on exact NMF models. This section presents the
main concepts involved when we need to find solution pW,Hq for approximate NMF models.
As explained in Section 1.4, for an approximate NMF model the exactness is not required
and we are searching for an approximate decomposition, that is, V « WH. The reason
is the presence of noise, and the linear model being in most cases only an approximate
model. As already mentioned in Section 1.8, in order to find pW,Hq, we need to built
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up optimization problems associated to NMF models. When it comes to optimization
problems, we need to define the optimization variables, the objective function and the
constraints. Over the years, many optimization problems associated to approximate NMF
models have been introduced. The goal of this section is to present the most widespread
optitimization problems for NMF. In particular, we will discuss the choice of the error
measure DpV |WHq in Problem 1.4.1 which is related to the statistic of the noise that we
assume present in the data set. Then we will show that the optimization problem for NMF
models are maximum-likelihood in disguise. We finally present a distributionally robust
NMF problem.

1.9.1 The metrics: the β-divergences

As explained in Section 1.4, the choice of a particular error measure DpV |WHq boils down
to the choice for the scalar metric dpVfn|rWHsfnq, also referred to as the scalar divergence.
In this thesis, we mainly focus on the β-divergences: given two nonnegative scalars x and
y, the β-divergence (for β ě ´1) between x and y denoted dβpx|yq is defined as follows:

dβ px|yq “

$

’

’

&

’

’

%

1
βpβ´1q

`

xβ ` pβ ´ 1q yβ ´ βxyβ´1˘ for β P Rz t0, 1u ,
x log x

y ´ x` y for β “ 1,
x
y ´ log x

y ´ 1 for β “ 0.

For β “ 2, this is the standard squared Euclidean distance and DpV |WHq boils down to
the squared Frobenius norm of V ´WH, that is, 1

2 ||V ´WH||2F . For β “ 1 and β “ 0, the
β-divergence corresponds to the Kullback-Leibler (KL) divergence and the Itakura-Saito
(IS) divergence, respectively. Figure 1.15 displays the function dβpx|yq for x “ 1 and for
different values of the parameter β, namely β “ r´1, 0, 1, 2, 3s. We observe that, for β ď 1,
dβ px|yq goes to infinity as y goes to zero (because of the term yβ´1). Hence a positive
entry (here x “ 1) cannot be approximated by zero in the case for β ď 1. This implies
that β-divergences for β ď 1 tend to overapproximate the input matrix. On the opposite,
as β increases, the values of β-divergences for y ď x decrease, then β-divergences tend to
underapproximate the input matrix for β ě 1.
Let us mention important properties of the β-divergences:

• The β-divergence dβpx|yq is homogeneous of degree β: dβpλx|λyq “ λβdβpx|yq. It
implies that factorizations obtained with β ą 0 (such as the Euclidean distance or
the KL divergence) will rely more heavily on the largest data values and less precision
is to be expected in the estimation of the low-power components. The IS divergence
(β “ 0) is scale-invariant that is dISpλx|λyq “ dISpx|yq. The IS divergence is the only
one in the β-divergences family to possess this property. It implies that entries of low
power are as important in the divergence computation as the areas of high power.
This property is interesting in audio source separation as low-power frequency bands
can perceptually contribute as much as high-power frequency bands. Note that both
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Fig. 1.15. Graph of the β-divergences dβpx “ 1|yq for β “ r´1, 0, 1, 2, 3s.

KL and IS divergences are more adapted to audio source separation than Euclidean
distance as it is built on logarithmic scale as human perception; see [88] and [45].

• The function dβ px|yq is convex in the second argument y for β P r1, 2s. Otherwise,
the objective function is non-convex. This implies that, for β ă 1, even the problem
of inferring H with W fixed is non-convex.

• dβ px|yq for x “ 0 is not defined for all values of β, indeed:

dβ p0|yq “
#

not defined for β ď 0,
1
β y

β for β ą 0,

This means that, for NMF, one should use β-divergences with β ď 0 only when the
input matrix is positive.

Lemma 1.9.1. Given two nonnegative scalars x and y with x fixed, the KL-divergence
dKLpx|yq “ x log x

y ´ x` y is not L-smooth in y on its active domain R`

Proof. The gradient of the function w.r.t. y (for x fixed) is:

∇yfpyq “ 1´ x{y.
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Let us consider y1 and y2 that belong to the domain of the function and x fixed, we write:

}∇yfpy1q ´∇yfpy2q} “

›

›

›

›

ˆ

1´ x

y1

˙

´

ˆ

1´ x

y2

˙›

›

›

›

“

›

›

›

›

x

ˆ

1
y2
´

1
y1

˙›

›

›

›

ď }x}

›

›

›

›

1
y2
´

1
y1

›

›

›

›

“

›

›

›

›

x

y1y2

›

›

›

›

}y1 ´ y2}.

It is then clear that the coefficient

Lpy1, y2q “

›

›

›

›

x

y1y2

›

›

›

›

goes to infinite as y1 and/or y2 approaches to zero, therefore the gradient of function f is
not Lipschitz-continuous in y in int(domf).

Note. Similar rationale can be followed for Itakura - Saito divergence (β “ 0).

For more properties of the β-divergences, we refer the reader to [45, 56].

1.9.2 The probabilistic view of NMF

In the NMF literature, the choice for the metric is typically dictated by the noise statisc-
tics assumed in the data sets. In this section we explain the equivalency between the error
measures and maximum likelihood estimators of WH when we consider particular statis-
tical distribution for the noise. We focus on β-divergences which are the most widely used
in the NMF literature. First let us recall briefly what is a maximum-likelihood estimator;
given a simple random set5 xi (1 ď i ď n) for a random variable X, we assume that X fol-
lows a probability density function (p.d.f.) for which some parameters are unknown. The
maximum-likelihood estimator consists in building the probability to observe the sample
ramdom set as a function of the unknown parameters, referred to as likelihood function,
and finally estimate the values for these parameters such that the probability function
is maximized; in others terms, we search for the parameters of the p.d.f. such that the
observed ramdom sample set has the maximum-likelihood. For NMF, we assume that the
random simple set corresponds to the entries of input matrix V (the "observations") and
the parameters of the p.d.f. are pW,Hq. Let us give an example; we assume that we have
noise in the data sets. For instance, we assume we have additive Gaussian noise of mean 0
and standard deviation σ, mathematically we write: Ṽ “WH `N where Nfn „ N p0, σq.
Remark that Ṽ and V respectively denote the random variables and the observations or
the realizations of the random variable. Let us denote by ppṼfn|rWHsfnq the probability

5A simple random set is a set of observations of a random variable such that they are identically distributed
and statistically independent.
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to observe Ṽfn given rWHsfn. Under the Gaussian assumption on the noise, the model
Ṽ “WH `N and WH given, then Ṽfn „ N prWHsfn, σq, indeed:

• EpṼfnq “ EprWHsfn ` Nfnq “ rWHsfn per the properties of the expected value
operator Ep.q and,

• VarpṼfnq “ VarprWHsfn`Nfnq “ VarpNfnq “ σ2 per the properties of the variance
operator Varp.q.

Then the p.d.f. ppṼfn|rWHsfnq becomes:

ppṼfn|rWHsfnq “
1

σ
?

2π
e
´1
2σ2 pṼfn´rWHsfnq

2
. (1.24)

Due to the i.i.d. assumption for a random simple set, we can build the likelihood function
denoted L, that is the probability to observe V :

LpV |WHq “
FN
ź

fn

ppVfn|rWHsfnq “
1

σpFNqp
?

2πqpFNq
e
´1
2σ2

ř

fnpVfn´rWHsfnq
2
. (1.25)

Given V , computing pW,Hq that maximizes LpV |WHq under the nonnegativity con-
straints on pW,Hq is the so-called maximum likelihood estimator; we compute pW,Hq
such as it satisfies the Karush–Kuhn–Tucker conditions. In practice, as L is a prod-
uct, it is easier to cancel the derivative of its logarithm; the maximum of l “ logpLq “
´pFNq logp

?
2πq ´ pFNq logpσq ´ 1

2σ2
ř

fnpVfn ´ rWHsfnq
2 is reached for the same value

of WH. It does not change the result as the logarithm is a monotone increasing function.
Let us finally note that maximizing a function l is strictly equivalent to minimizing ´l.
Now here comes the link with optimization problem associated to NMF. Let us consider

the optimization problem associated to NMF models for which dpVfn|rWHsfnq “ pVfn ´

rWHsfnq
2, then we minimize the error measure DpV |WHq “

ř

fnpVfn´rWHsfnq
2. Hence

the divergence minimization becomes equivalent to a maximum likelihood estimator since

DpV |WHq “ p´ log pLq ´ bq a

with b “ pFNq logp
?

2πq ` pFNq logpσq and a “ 2σ2 ą 0. Here-under we list a few
important examples (where we assume i.i.d. noise) of equivalences between divergences
and maximum-likelihood estimator:

• Poisson distribution [87]: The entries Vfn of V are distributed as a Poisson distri-

bution of parameter rWHsfn, that is PpVfn “ kq “
rWHskfne

´rWHsfn

k! for k “ 0, 1, ....
Here the noise is not an additive noise. The Poisson distribution assumption is rea-
sonable when we deal with count data such as a vector of word counts used in text
mining topic or in image processing, as the acquisition process of a picture can be
seen as a photo counter [91]. One can show that the maximum likelihood estimator
for the Poisson distribution is the Kullback-Leibler (KL) divergence (β “ 1).
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• Exponential distribution [43]: in this case we consider a multiplicative noise model
V “ rWHs dN such that N follows an exponential distribution of parameter λ “ 1
(N „ Expp1q). Then, the entries Vfn „ Expp 1

rWHsfn
q as EpVfnq “ EprWHsfnNfnq “

rWHsfnEpNfnq “ rWHsfn
1
1 “ rWHsfn. One can show that the maximum likelihood

estimator for the Exponential distribution is the Itakura-Saito (IS) divergence (β “
0).

For others equivalences, we refer the reader to

• [78]: for an additive noise that follows a Laplacian distribution, the maximum-
likelihood estimator is the `1 norm of the residual matrix V ´WH,

• [64]: for an additive noise following a uniform distribution, the maximum-likelihood
estimator is the infinite norm of the residual matrix V ´WH.

• [45] shows that the Tweedie distributions orrespond to the maximum likelihood esti-
mators for problems including the generalized β-divergence.

1.9.3 How to choose the metric in practice ?

Choosing a suitable objective function for the optimization problems asscociated to NMF
models can be crucial. NMF divergence choice depends on the data and on the application
and one can choose the divergence as follows:

• by intuition or from some prior knowledge of the application goal. For instance, if
we use NMF for predicting the unseen data while minimizing the mean squared error
then the Frobenius norm of the residual matrix V ´WH is well suited. We can also
cite the case we are looking for some invariances properties of the error measure,
for instance the scale invariance of Itakura-Saito is well appreciated for audio signals
analysis [43].

• For computational reasons; the Frobenius norm is L-smooth and therefore we can use
efficient numerical scheme to solve it such as accelerated projected gradients methods
[107].

• By cross-validation: the objective function is automatically selected using cross val-
idation. In the case we know the ground-truth factors pW#, H#q, then they can be
used to assess the quality of solutions computed with different error measures.

• From some probabilistic considerations: for some applications, particular distribu-
tions for the noise can be reasonably assumed and therefore we can choose the di-
vergence accordingly as explained in Section 1.9.2. In some cases, we would like to
compute an NMF solution that is robust to different types of noise distributions,
this reason led us to develop a new NMF problem based on the minimization of the
maximum value among several β-divergences. The optimization problem is detailed
in Section 1.9.4.
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1.9.4 Distributionally Robust and Multi-Objective Nonnegative Matrix
Factorization

The content of this section is extracted from: [62] N. Gillis, Le Thi Khanh Hien, V. Leplat,
and Vincent Y. F. Tan. Distributionally robust and multi-objective nonnegative matrix
factorization. 2019. arXiv:1901.10757.
This section briefly summarizes research output [62]: a key aspect of optimization prob-

lems associated to NMF models is the choice of the objective function that depends, for
instance, on the noise model (or statistics of the noise) assumed on the data. In many
applications, the noise models is unknown and difficult to estimate. If the choice of the
objective function is wrong, the NMF solution provided could be far from the desired
solution. In [62] we compute an NMF solution that is robust to different types of noise
distributions; this is referred to as distributionnaly robust. In mathematical terms, we will
consider the problem:

min
W,Hě0

max
βPΩ

DβpV,WHq. (1.26)

where Ω is a subset of β’s of interest. However, the beta-divergences are homogeneous func-
tions of degree β, therefore, depending on the scaling of the input matrix, the minimization
of (1.26) amounts, in most cases, to minimizing a single objective corresponding to the β-
divergence with the largest value. To tackle this issue we will scale the different objective
functions as follows: first, we compute a solution pWβ, Hβq for minW,Hě0DβpV,WHq to
obtain the error eβ “ DβpV,WβHβq. Note that we can only compute this minimization
in an approximate fashion because the NMF problem is NP-hard [135] as explained in
Section 1.7. Then, we define Vβ “ αβV with αβ “ p1{eβq1{β so that

D̄βpV,WHq “
DβpV,WHq

eβ
,

so that D̄βpV,WβHβq “ 1.
Finally, if the noise model on the data is unknown but corresponds to a distribution

associated with a β-divergence with β P Ω, it makes sense to consider the following distri-
butionally robust NMF (DR-NMF) problem

min
W,Hě0

max
βPΩ

D̄βpV,WHq.

Note that we use D̄βp¨, ¨q, not Dβp¨, ¨q.
We then propose to use Lagrange duality to judiciously optimize for a set of weights to

be used within the framework of the weighted-sum approach, that is, we minimize a single
objective function which is a weighted sum of the all objective functions. We design a simple
algorithm using multiplicative updates to minimize this weighted sum. We show how this
can be used to find distributionally robust NMF (DR-NMF) solutions, that is, solutions
that minimize the largest error among all objectives. We illustrate the effectiveness of this
approach on synthetic, document and audio datasets. The results show that DR-NMF is
robust to our in-cognizance of the noise model of the NMF problem.
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1.10 Standard optimization schemes

In this section we present the state-of-the-art optimization schemes to tackle the standard
optimization problems associated to NMF models that we introduced in Section 1.4. To the
best of our knowledge, most algorithms developed to solve the NMF optimization problems
are based on iterative local optimization schemes converging to local solutions. Some
elementary notions of non-linear programming are used to characterize these algorithms
and we refer the reader to Appendix 3 for a brief introduction to these concepts starting
with the first-order optimality conditions for Problem 1.4.1.

For optimization problems associated to NMF models, it is usually easier to optimize
over one matrix (say H) given the other matrix (say W ) is known and fixed. Indeed,
for several scalar metrics dpVfn|rWHsfnq, the resulting error measure DpV |WHq (the ob-
jective function in Problem 1.4.1) is even convex separately w.r.t. H and w.r.t. W for
β P r1, 2s, but not w.r.t. tW,Hu jointly. For this reason many state-of-the-art NMF opti-
mization algorithms rely on a two-block coordinate descent (BCD) scheme by optimizing
alternatively over W for H fixed and vice versa; see Algorithm (1). In this thesis, we
mostly propose algorithms that rely on the two-block coordinate descent scheme, therefore
at each iteration we successively solve two sub-problems; one in W and the other in H.
Note that in Chapter 6, we propose an algorithm that is able to iteratively solve NMF
problems on W and H jointly.

Algorithm 1 BCD framework to tackle NMF optimization problems
Require: Input matrix V P RFˆN` , the factorization rank K and number of iterations

maxiter.
Ensure: pW,Hq is an approximate solution of 1.4.1.

1: Initialize pW,Hq.
2: for k “ 1, 2, . . . , maxiter do
3: % Update W
4: W k ÐÝ updatepV,W k´1, Hk´1q such that DpW k, Hk´1q ď DpW k´1, Hk´1q

5: % Update H
6: Hk ÐÝ updatepV,W k, Hk´1q such that DpW k, Hkq ď DpW k, Hk´1q

7: end for

In the case we have no additional constraints and penalty terms in the objective func-
tions, then the updates of W and H are performed in a similar fashion. The reason is
the symmetry of the NMF models since V « WH is equivalent to V T « HTW T and
DpV |WHq “ DpV T |HTW T q.

The BCD-based algorithms used to tackle NMF optimization problems mainly differ
from the strategy followed to tackle the two sub-problems. In the case β P r1, 2s, the
subproblems are convex w.r.t. variables and therefore, the subproblems can be solved by a
large variety of off-the-shelf convex optimization algorithms. Many such BCD algorithms
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are summarized in [152, 143, 55, 73]. We list here-under the most popular ones:

• The multiplicative updates (MU); they were proposed by Lee and Seung [86] in 1999
and 2001, and since then they have become the standard update rules for many
NMF-based applications. Their main advantage is a low computational complexity.
However, it has several drawbacks: it converges slowly compared to accelerated gra-
dient descent methods in the case β “ 2; it cannot modify zero entries ("zero-locking
phenomena"); and it is not guaranteed to converge to a stationary point. Note that
it can be interpreted as a rescaled gradient descent [56]. Févotte and Idier [45]
proposed an efficient general framework (based on the "Majorization-Minimization"
framework [129]) to design multiplicative updates to tackle NMF optimization with
β-divergences. These multiplicative updates are guaranteed to monotonically de-
crease the objective function and will be the baseline for algorithms developed in
Chapters 3 and 4. To the best of our knowledge, multiplicative updates show good
rates of convergence to tackle NMF optimization problems for β ă 2.

• Active set methods; these methods are used to solve exactly the two subproblems in
the case β “ 2, see [79] and the references therein. The state-of-the art algorithm
using active-set is the so-called "Alternating Nonnegative Least Squares" (ANLS),
see [58]. ANLS is guaranteed to converge to a stationary point [68].

• The exact coordinate descent method in the case β “ 2; the most popular algorithm
for NMF is the so-called "Hierarchical alternating least squares" that updates one
column w of W (resp. H) at the time. The optimal solutions of the corresponding
subproblems can be written in closed form. HALS was proposed in [[23], pp.161-170]
and rediscovered in [29]. HALS was observed to converge much faster than the MU
while having similar computational cost. Furthermore, HALS is, under some mild
assumptions, guaranteed to converge to a stationary point; see [58] and the references
therein.

• The projected gradient method [94]; these methods tackle sub-problems using pro-
jected gradient steps. Gradient methods belong to the family of line-search methods
(the gradient being one possible direction of descent). Such methods recently re-
gained interests, the reason is due to the advances in first-order optimization (exploit
information on values and gradients/subgradients (but not Hessians) of the objective
function) [15, 108].

Finally, one of the recently developed algorithm, referred to as "Alternating Optimization-
Alternating Direction for Multiplier" (AO-ADMM), employs ADMM methods for solving
the subproblems in W and H. The main advantage lies in the fact ADMM can easily
handle a large variety of regularizations and constraints simultaneously by the judicious
introduction of slack variables [74].
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2 Minimum-Volume Rank-Deficient
Nonnegative Matrix Factorizations

In recent years, nonnegative matrix factorization (NMF) with volume regularization has
been shown to be powerful approach to identify the latent factors that generated the data;
for example for hyperspectral unmixing, document classification, community detection and
hidden Markov models. In this chapter, we show that minimum-volume NMF can also be
used when the basis matrix is rank deficient, which is a reasonable scenario for some real-
world NMF problems (e.g., for unmixing multispectral images). We propose an alternating
fast projected gradient method for minimum-volume NMF and illustrate its use on rank-
deficient NMF problems; namely a synthetic data set and a multispectral image.
The content of this chapter is extracted from: [89] V. Leplat, A.M.S. Ang, and N. Gillis.

Minimum-volume rank-deficient nonnegative matrix factorizations. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3402-3406. IEEE,
2019.

2.1 Introduction

As introduced in Section 1.4, computing an NMF requires to find two nonnegative matrices
W P RFˆK` and H P RKˆN` for a given nonnegative matrix V P RFˆN` and a factorization
rank K such that V «WH. In this chapter;

• we mostly deal with noisy scenarios and therefore we are searching for an approximate
decomposition.

• We will use the Frobenius norm of the residual matrix V ´WH for the error measure-
ment DpV |WHq in Problem 1.4.1. Due to its simplicity and its L-smooth property,
Frobenius norm is arguably the most widely used to assess the error of an NMF
solution.

Problem 1.4.1 now becomes:

min
WPRFˆK ,HPRKˆN

||V ´WH||2F s.t. W ě 0 and H ě 0.

In Section 1.8, it has been shown that NMF is in most cases ill-posed because the optimal
solution is not unique. In order to make the solution of the above problem unique (up to
permutation and scaling of the columns of W and rows of H) hence making the problem
well-posed and the parameters pW,Hq of the problem identifiable, a key idea is to look for

51
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a solutionW with minimum volume; see Section 1.8.4 for more details. A possible problem
formulation for minimum-volume NMF is as follows

min
Wě0,Hp:,nqPSK @n

||V ´WH||2F ` λ volpW q, (2.1)

where SK “ tx P RK` |
řK
k xk ď 1u, λ is a penalty parameter, and volpW q is a function

that measures the volume of the columns ofW . Let us recall that H needs to be normalized
otherwise W would go to zero since WH “ pcW qpH{cq for any c ą 0. In this chapter,
we will use volpW q “ logdetpW TW ` δIq, where I is the identity matrix of appropriate
dimensions.
The reason for using such a measure is twofold (i)

a

detpW TW q{K! is the volume of the
convex hull of the columns ofW and the origin, see Section 1.8.4 and (ii) it has been shown
to be one of the most efficient volume regularization [7]. Under some appropriate conditions
on V “ WH, this model will provably recover the true underlying pW,Hq that generated
V . These recovery conditions require that the columns of V are sufficiently well spread in
the convex hull generated by the columns of W ; this is the so-called sufficiently scattered
condition. In particular, data points need to be located on the facets of this convex hull
hence H needs to be sufficiently sparse, see Section 1.8.2 for more details. Let us remark
that, as far as we know, these theoretical results only apply in noiseless conditions hence
robustness to noise of problem (2.1) associated to approximate NMF models still needs to
be rigorously analyzed (this is a very promising but difficult direction of further research).
Another key assumption that is used in minimum-volume NMF is that the basis matrix

W is full rank, that is, rankpW q “ K; otherwise detpW TW q “ 0. However, there are
situations when the matrix W is not full rank: this happens in particular when rankpV q ‰
rank`pV q. Here is a simple example:

V “

¨

˚

˚

˚

˚

˝

1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

˛

‹

‹

‹

‹

‚

(2.2)

for which rankpV q “ 3 ă rank`pV q “ 4. Indeed, given an exact NMF decomposition
V “WH under the assumptionK “ rank`pV q, as per equation (1.6) we have the following
ineqalities for the ranks: rankpV q ď rankpW q ď minpF,Kq “ K “ rank`pV q in the case
F ě K.
It is then clear that if rankpV q ‰ rank`pV q, i.e. rankpV q ă rank`pV q, W may not be

full column rank. Furthermore, if rankpV q “ rank`pV q, then we have rankpW q “ K; W is
therefore full column rank. The columns of the matrix V defined in (2.2) are the vertices
of a square in a 2-dimensional subspace; see Figure 2.2 for an illustration.
A practical situation where this could also happen is in multispectral imaging. Let us

construct the matrix V such that each column V p:, nq ě 0 is the spectral signature of a
pixel. As explained in Section 1.5.1, under the linear mixing model, each column of V is
the nonnegative linear combination of the spectral signatures of the constitutive materials
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present in the image, referred to as endmembers: we have V p:, nq “
řK
k“1W p:, kqHpk, nq,

whereW p:, kq is the spectral signature of the kth endmember, andHpk, nq is the abundance
of the kth endmember in the nth pixel. For multispectral images, the number of materials
within the scene being imaged can be larger than the number of spectral bands meaning
that K ą F hence rankpW q ď F ă K.
In this chapter, we focus on the rank-deficient scenario for minimum-volume NMF, that

is, when rankpW q ă K. The main contribution of this chapter is three-fold: (i) We explain
why optimization problem (2.1) can be used meaningfully when the basis matrix W is not
full rank. This is, as far as we know, the first time this observation is made in the literature.
(ii) We propose an algorithm based on alternating projected fast gradient method to tackle
this problem. (iii) We illustrate our results on a noisy synthetic data set and a real-life
multispectral image.

2.2 Minimum-volume NMF in the rank-deficient case
Let us discuss in more details the optimization problem that we consider in this chapter,
namely,

min
Wě0,Hp:,nqPSK @n

||V ´WH||2F ` λlogdetpW TW ` δIq, (2.3)

which has three key ingredients: the choice of the volume regularizer, that is, logdetpW TW`

δIq, the parameters δ and λ. They are discussed in the next three paragraphs.
Choice of the volume regularizer Most functions used to minimize the volume of
the columns of W are based on the Gram matrix W TW ; in particular, detpW TW q and
logdetpW TW ` δIq for some δ ą 0 are the most widely used measures; see, e.g., [102,
52]. Note that detpW TW q “ ΠK

k“1σ
2
kpW q, hence the log term allows to weight down large

singular values and has been observed to work better in practice; see, e.g., [9]. When W is
rank deficient (that is, rankpW q ă K), some singular values of W are equal to zero hence
detpW TW q “ 0. Therefore, the function detpW TW q cannot distinguish between different
rank-deficient solutions1. However, we have logdetpW TW ` δIq =

řK
k“1 logpσ2

kpW q ` δq.
Hence if W has one (or more) singular value equal to zero, this measure still makes sense:
among two rank-deficient solutions belonging to the same low-dimensional subspace, min-
imizing logdetpW TW ` δIq will favor a solution whose convex hull has a smaller vol-
ume within that subspace since decreasing the non-zero singular values of pW TW ` δIq

will decrease logdetpW TW ` δIq. In mathematical terms, let W P RFˆK belong to a r-
dimensional subspace with r ă K so that W “ US where U P RFˆr is an orthogonal basis
of that subspace and S P RrˆK are the coordinates of the columns of W in that subspace.
Then, logdetpW TW ` δIq “

řr
k“1 logpσ2

kpSq ` δq ` pK ´ rq logpδq. The minimum-volume
criterion logdetpW TW ` δIq with δ ą 0 is therefore meaningful even when W does not
have rank K.

1Of course, one could also use the measure detpWTW ` δIq meaningfully in the rank-deficient case.
However, it would be numerically more challenging since for each singular value of W equal to zero, the
objective is multiplied by δ which should be chosen relatively small.
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Choice of δ The function logdetpW TW ` δIq which is equal to
řK
k“1 logpσ2

kpW q ` δq

is a non-convex surrogate for the `0 norm of the vector of singular values of W (up to
constants factors), that is, of rankpW q [41, 42]. It is sharper than the `1 norm of the
vector of singular values (that is, the nuclear norm) for δ sufficiently small; see Fig. 2.1.
Therefore, if one wants to promote rank-deficient solutions, δ should not be chosen too
large, say δ ď 0.1. Moreover, δ should not be chosen too small otherwise WW T ` δI

Fig. 2.1. Function logpx2`δq´logpδq
logp1`δq´logpδq for different values of δ, `1 norm (“ |x|) and `0 norm

(“ 0 for x “ 0, “ 1 otherwise).

might be badly conditioned which makes the optimization problem harder to solve (see
Section 2.3) –also, this could give too much importance to zero singular values which
might not be desirable. Therefore, in practice, we recommend to use a value of δ between
0.1 and 10´3. We will use δ “ 0.1 in this chapter. Note that in previous works, δ was
chosen very small (e.g., 10´8 in [52]) which, as explained above, is not a desirable choice,
at least in the rank-deficient case. Even in the full-rank case, we argue that choosing δ too
small is also not desirable since it promotes rank-deficient solutions.
Choice of λ The choice of δ will influence the choice of λ. In fact, the smaller δ,
the larger |logdetpδq|, hence to balance the two terms in the objective (2.3), λ should be
smaller. For the practical implementation, we will initialize W p0q “ V p:,Kq where K is
computed with the successive nonnegative projection algorithm (SNPA) that can handle
the rank-deficient separable NMF problem [57]. Note that SNPA also provides the matrix
Hp0q so as to minimize ||V ´W p0qHp0q||2F while Hp0qp:, nq P SK for all n. Finally, we will
choose

λ “ λ̃
||V ´W p0qHp0q||2F

|logdetpW p0qTW p0q ` δIq|
,

where we recommend to choose λ̃ between 1 and 10´3 depending on the noise level (the
noisier the input matrix, the larger λ should be).
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2.3 Algorithm for minimum-volume NMF
Most algorithms for NMF optimize alternatively overW and H, and we adopt this strategy
in this chapter. For the update of H, we will use the projected fast gradient method
(PFGM) from [57]. Note that, as opposed to previously proposed methods for minimum-
volume NMF, we assume that the sum of the entries of each column of H is smaller or equal
to one, not equal to one, which is more general. For the update of W , we use a PFGM
applied on an strongly convex upper approximation of the objective function; similarly as
done in [52]–although in that paper, authors did not consider explicitly the case W ě 0
(W is unconstrained in their model) and did not write down explicitly a PFGM taking
advantage of strong convexity. For the sake of completeness, we briefly recall this approach.
The following upper bound for the logdet term holds: for any Q ą 0 and S ą 0, we have

logdetpQq ď gpQ,Sq “ logdetpSq ` Tr
`

S´1pQ´ Sq
˘

“ Tr
`

S´1Q
˘

` logdetpSq ´K.

This follows from the concavity of logdetp.q as gpQ,Sq is the first-order Taylor approx-
imation of logdetpQq around S–it has also been used for example in [150]. This gives
logdetpW TW`δIq ď Tr pYW TW q`logdetpY ´1q´K for anyW and any Y “ pZTZ`δIq´1

with δ ą 0. Plugging this in the original objective function, and denoting wTi the ith row
of matrix W and x., .y is the Frobenius inner product of two matrices, we obtain

`pW q “ ||V ´WH||2F ` λlogdetpW TW ` δIq

“ ||V ||2F ´ 2xV HT ,W y ` xW TW,HHT y

` λlogdetpW TW ` δIq

ď xW TW,HHT ` λY y ´ 2xC,W y ` b

“ 2
n
ÿ

i“1

ˆ

1
2w

T
i Awi ´ c

T
i wi

˙

` b “ ¯̀pW q,

where Y “ pZTZ ` δIq´1 and A “ HHT ` λY are positive definite for δ, λ ą 0, C “

V HT , and b is a constant independent of W . Note that ¯̀pW q “ `pW q for Z “ W .
Minimizing the upper bound ¯̀pW q of `pW q requires to solvem independent strongly convex
optimization problems with Hessian matrix A. Using PFGM on this problem, we obtain a
linear convergence method with rate 1´

?
κ´1 where κ is the condition number of A [107].

Note that the subproblem in variable H is not strongly convex when W is rank deficient
in which case PFGM converges sublinearly, in Op1{k2q where k is the iteration number.
In any case, PFGM is an optimal first-order method in both cases [107], that is, no first-
order method can have a faster convergence rate. When W is rank deficient, we have
λ
δ ď L “ λmaxpAq ď ||H||

2
2 `

λ
δ , where L is the largest eigenvalue of A. This shows the

importance of not choosing δ too small, since the smaller δ, the larger the conditioning of
A hence the slower will be the PFGM. Note that L is the Lipschitz constant of the gradient
of the objective function and controls the stepsize which is equal to 1{L. Our proposed
algorithm is summarized in Algorithm 2. We will use 10 inner iterations for the PFGM on
W and H.
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Algorithm 2 Min-vol NMF using alternating PFGM
Require: Input matrix V P RFˆN` , the factorization rank K, δ ą 0, λ̃ ą 0, number of

iterations maxiter.
Ensure: pW,Hq is an approximate solution of (2.3).

1: Initialize pW,Hq using SNPA [57].
2: Let λ “ λ̃

||V´WH||2F
logdetpWTW`δIq

.
3: for k “ 1, 2, . . . , maxiter do
4: % Update W
5: Let A “ HHT ` λpW TW ` δIq´1 and C “ V HT .
6: Perform a few steps of PFGM on the problem minUě0

1
2xU

TU,Ay´xU,Cy, with
initialization U “W . Set W as last iterate.

7: % Update H
8: Perform a few steps of PFGM on the problem minHp:,nqPSK @n ||V ´ WH||2F as

in [57].
9: end for

2.4 Numerical Experiments
We now apply our method on a synthetic and a real-world data set. All tests are preformed
using Matlab R2015a on a laptop Intel CORE i7-7500U CPU @2.9GHz 24GB RAM. The
code is available from http://bit.ly/minvolNMF.

Synthetic data set. Let us construct the matrix V P R4ˆ500 as follows: W is taken as
the matrix from (2.2):

W “

¨

˚

˚

˚

˚

˝

1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

˛

‹

‹

‹

‹

‚

so that rankpW q “ 3 ă K “ 4, and each column of H is distributed using the Dirichlet
distribution of parameter p0.1, . . . , 0.1q. Each column of H with an entry larger 0.8 is
resampled as long as this condition does not hold. This guarantees that no data point
is close to a column of W (this is sometimes referred to as the purity index). Figure 2.2
illustrates this geometric problem. As observed on Figure 2.2, Algorithm 2 is able to
perfectly recover the true columns of W . For this experiment, we use λ̃ “ 0.01. Figure 2.3
illustrates the same experiment where noise is added to V “ maxp0,WH`Nq where N “ ε

randn(F ,N) in Matlab notation (i.i.d. Gaussian distribution of mean zero and standard
deviation ε). Note that the average of the entries of V is 0.5 (each column is a linear
combination of the columns of W , with weights summing to one). Figure 2.3 displays the
average over 20 randomly generated matrices V of the relative error dpW, W̃ q “ ||W´W̃ ||F

||W ||F

where W̃ is the solution computed by Algorithm 2 depending on the noise level ε. This

http://bit.ly/minvolNMF
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Fig. 2.2. Synthetic data set and recovery. (Only the first three entries of each four-
dimensional vector are displayed.)

illustrates that problem (2.1) is robust against noise since the dpW, W̃ q is smaller than 1%
for ε ď 1%.

Fig. 2.3. Evolution of the recovery of the trueW depending on the noise N “ ε rand(F,N)
using Algorithm 2 (λ̃ “ 0.01, δ “ 0.1, maxiter = 100).
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Multispectral image. The San Diego airport is a HYDICE hyperspectral image (HSI)
containing 158 clean bands, and 400 ˆ 400 pixels for each spectral image; see, e.g., [63].
There are mainly three types of materials: road surfaces, roofs and vegetation (trees and
grass). The image can be well approximated usingK=8. Since we are interested in the case
rankpW qăK, we select F=5 spectral band using the successive projection algorithm [65]
(this is essentially Gram-Schmidt with column pivoting) applied on V T . This provides
bands that are representative: the selected bands are 4, 32, 116, 128, 150. Hence, we are
factoring a 5-by-160000 matrix using a F=8. Note that we have removed outlying pixels
(some spectra contain large negative entries while others have a norm order of magnitude
larger than most pixels). Figure 2.4 displays the abundance maps extracted (that is, the
rows of matrix H): they correspond to meaningful locations of materials. Here we have
used λ̃=0.1 and 1000 iterations. From the initial solution provided by SNPA, Algorithm 2

Fig. 2.4. Abundance maps extract by Algorithm 2 using only five bands of the San Diego
airport HSI. From left to right, top to bottom: vegetation (grass and trees),
three different types of roof tops, four different types of road surfaces.

is able to reduce the error ||V ´WH||F by a factor of 11.7 while the term logdetpW TW`δIq

only increases by a factor of 1.06. The final relative error is ||V´WH||F
||X||F

“ 0.2%.
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2.5 Faster Algorithm for minimum-volume NMF

This section gives preliminary results on the development and the test of a new algorithm
to solve the following minimum-volume NMF problem:

min
Wě0,Hp:,nqPSK @n

||V ´WH||2F ` λlogdetpW TW ` δIq. (2.4)

In Section 2.3, we use the alternating approach to compute a numerical solution pW,Hq
for the problem (2.4). In particular, for the update of W , we used PFGM applied on a
strongly convex upper approximation of the objective function; the logdet term is replaced
by its first-order Taylor approximation. For the new algorithm, referred to as fast min-vol
NMF, we directly apply PFGM on the objective function of the minimization sub-problem
in W . For the update of H, we still apply the optimal fast gradient method using strong
convexity of the objective function.
The acceleration in PFGM scheme is made by adding extrapolation step after the pro-

jected gradient descent step. For instance, the optimization overW is performed as follows:

Gradient step W k`1 “
”

Y k ´ αYk ∇Y f
´

Y k, H
¯ı

`

Extrapolation step Y k`1 “W k`1 ` βk

´

W k`1 ´W k
¯ (2.5)

where Y is the pairing variable of W , αYk is the step size and r.s` “ max p., 0q is the
projection operator onto the feasible set (the non-negative orthant). The expression of the
gradient of the objective function w.r.t. W has been determined as follows: we first focus
on computing the gradient of logdetpW TW `δIq w.r.t. W by using the following formulas:

B

BW
trace pAW q “ AT ,

B

BW
logdet pW q “W

B

BW
logdet pF pW qq “ B

BW
trace

`

F´1pZqF pW q
˘

|Z“W

B

BW
trace pGpW qHpW qq “ B

BW
trace pHpZqGpW q `HpW qGpZqq |Z“W

Therefore we obtain:

B

BW
logdet

¨

˝W TW ` δI
looooomooooon

F(W)

˛

‚“
B

BW
trace

`

F´1pZqF pW q
˘

|Z“W

“
B

BW
trace

´

`

ZTZ ` δI
˘´1 `

W TW ` δI
˘

¯

|Z“W

“
B

BW
trace

¨

˚

˝

`

ZTZ ` δI
˘´1

W T
looooooooooomooooooooooon

G(W)

W
loomoon

H(W)

˛

‹

‚

|Z“W

“
B

BW
trace

´”

Z
`

ZTZ ` δI
˘´1

` Z
`

ZTZ ` δI
˘´T

ı

W T
¯

|Z“W

“

”

Z
`

ZTZ ` δI
˘´1

` Z
`

ZTZ ` δI
˘´T

ı

Z“W

“W
”

`

W TW ` δI
˘´1

`
`

W TW ` δI
˘´T

ı

.
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As
`

W TW ` δI
˘´1 is symmetric, then B

BW logdet
`

W TW ` δI
˘

“ 2W
`

W TW ` δI
˘´1. We

finally derive the gradient of the objective function denoted fpW q (for the sub-problem in
W ) w.r.t. W as follows:

∇W f pW,Hq “ 2 pWH ´ V qHT ` 2λW
`

W TW ` δI
˘´1

.

The critical parts of this scheme are the step size and the extrapolation parameter βk.
The parameter βk is adapted over iterations of the scheme and is always within the range
r0, 1s. In the case βk “ 0, the scheme (2.5) reduces to the plain projected gradient scheme.
In convex non-linear programming, β has a closed-form expression and the resulting scheme
has optimal rate of convergence [107]. However, if the problem to solve is non-convex, it is
not known how to determine β. For problem (2.4), let us first note that the logdet function
is nor convex nor concave as it can be observed on Figure 2.5 in the 1-dimensional case.
It is then clear that the objective function for the sub-problem in W is also nor convex

Fig. 2.5. logdet function evolution in the 1-dimensional case with δ “ 1

nor concave when λ ą 0. Therefore, we do not have theoretically grounded closed-form
formula to tune βk, we have followed the approach developed in [8] to numerically tune
βk. The step size αk is also tuned numerically with a similar approach than βk. In short,
the idea is to change the value of αk based on the increase or decrease of the objective
function. When the objective function of the sub-problem in W increases, αk is decreased,
otherwise αk is slightly increased.

We have tested this scheme, denoted fast-min vol, on the data sets considered in Sec-
tion 2.4.
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Synthetic data set. Figure 2.6 illustrates the problem and the solutions obtained with
two algorithms. The first algorithm, simply denoted "min-vol", corresponds to Algorithm 2
presented in Section 2.3. The second algorithm is the fast-min vol algorithm presented
above. Figure 2.7 displays the evolution of the objective functions as the Frobenius norm
and the λlogdet term over iterations for both algorithms. Figure 2.6 depicts the estimated
W for both algorithms as the ground truth W . As it can be observed, both algorithms
are able to perfectly recover the true columns of W and the rates of convergence of the
objective function are almost identical.
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Fig. 2.6. Synthetic data set and recovery for "min-vol" and "fast-min-vol" algorithms.
(Only the first three entries of each four-dimensional vector are displayed.)

Multispectral image. We selected F “ 5 spectral bands from the San Diego airport
hyperspectral image (HSI) using the successive projection algorithm [65] applied to V T

and we have chosen a factorization rank K “ 8; this corresponds to a rank-deficient sce-
nario as rankpW q ă K. Note that we have removed outlying pixels. Figure 2.8 displays
the evolution of the objective functions as the Frobenius norm and the logdet term over
iterations for both algorithms. Here we have used λ̃ “ 1 and 200 iterations. From the ini-
tial solution provided by SNPA, min-vol algorithm is able to reduce the error }V ´WH}2F
by a factor of 14.1 while the term logdet

`

W TW ` δI
˘

only increases by a factor of 1.03.
Fast-min-vol algorithm is able to reduce this initial error by a factor of 51.2 while the term
logdet

`

W TW ` δI
˘

only increases by a factor of 1.04. Furthermore, the final error for the
objective function obtained with the fast-min-vol algorithm is approximately half the one
obtained with min-vol algorithm. For this scenario, fast-min vol algorithm clearly outper-
forms min-vol algorithm. Similar conclusions have been derived when both algorithms are
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Fig. 2.7. Rates of convergence for "min-vol" and "fast-min-vol" algorithms on synthetic
data set

compared on other famous data sets for HSI such as "Urban" and "Jasper".
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Fig. 2.8. Rates of convergence for the objective function of problem (2.4) and the Frobe-
nius norm along iterations for fast-min vol and min-vol algorithms in the rank
deficient case for San Diego Dataset.

Hyperspectral image. We repeated the previous experiment without selecting a subset
of spectral bands, i.e. the data matrix to factorize is the original San Diego HSI. In this
context, the solution for W is most likely not rank-deficient and we are dealing with a
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higher-dimensional problem. As it can be observed in Figure 2.9, min vol algorithm gives
a better solution than the fast-min vol algorithm in terms of final errors. It appears that
fast-min vol algorithm is more quickly stuck in a stationary point after few iterations.
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Fig. 2.9. Rates of convergence for the objective function of problem (2.4) and the Frobe-
nius norm along iterations for fast-min vol and min-vol algorithms in the high-
dimensional case for San Diego Dataset.

Our claim is that this is due to the explosion of the number of saddle points for a
non-convex objective function when the dimension of the problem increases. Fast-min vol
uses the gradient of the objective function of (2.4) while min-vol algorithm minimizes an
auxiliary function built at each iteration (first-order Taylor approximation which boils down
to a trace function of W ), fast-min vol seems to be more sensitive to the saddle points. For
some data sets, we can show that the min-vol algorithm with a fast-min vol initialization
can escape from the current solution which tends to support our claim. Similar conclusions
have been derived with random initialization for W and H instead of using SNPA.

Further works will try to tackle this issue observed for the high dimensional case and
allows fast-min vol to escape from saddle points.

2.6 Conclusions
In this chapter, we have shown that minimum-volume NMF can be used meaningfully for
the rank-deficient scenario. We have provided a simple algorithm to tackle this problem
and have illustrated the behaviour of the method on synthetic and real-world data sets.
We have developed and tested a faster algorithm referred to as fast-min vol. We have
shown that fast-min vol outperforms min-vol algorithm (Algorithm 2) in low-dimensional
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setting but tends to be more easily stuck in saddle points as the dimension of the problem
increases. This work is only preliminary and many important questions remain open; in
particular
‚ Under which conditions can we prove the identifiability of models and associated opti-
mization problems for minimum-volume NMF in the rank-deficient case (as done in [95,
53] for the full-rank case)? Intuitively, it seems that a condition similar to the sufficiently-
scattered condition would be sufficient but this has to be analysed thoroughly.
‚ Can we prove robustness to noise of such techniques? (The question is also open for the
full-rank case.)
‚ Can we design more robust algorithms? And algorithms taking advantage of the fact
that the solution is rank-deficient?
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3 Minimum-Volume β-NMF for blind audio
source separation

Considering a mixed signal composed of various audio sources and recorded with a sin-
gle microphone, we consider in this chapter the blind audio source separation problem
which consists in isolating and extracting each of the sources, see Section 1.5.2. To per-
form this task, nonnegative matrix factorization (NMF) based on the Kullback-Leibler
and Itakura-Saito β-divergences is a standard and state-of-the-art technique that uses the
time-frequency representation of the signal. We present a new NMF model and its asso-
ciated (optimization) problem, referred to as minimum-volume β-NMF (min-vol β-NMF),
better suited for this task. It is based on the minimization of β-divergences along with
a penalty term that promotes the columns of the dictionary matrix W to have a small
volume with W being column stochastic. To the best of our knowledge, this problem is
novel in two aspects: (1) it is the first time a minimum-volume penalty is associated with
a β-divergence for β ‰ 2 and it is the first time such problems are used in the context of
audio source separation, and (2) as opposed to most previously proposed minimum-volume
NMF problems, our problem imposes a normalization constraints on the factor W instead
of H. As far as we know, the only other references that used a normalization of W is [153]
but the authors did not justify this choice compared to the normalization of H (the choice
seems arbitrary, motivated by the ‘elimination of the norm indeterminacy’), nor provided
theoretical guarantees. In this chapter, we explain why normalization of W is a better
choice in practice, and we prove that, under some mild assumptions and in the noiseless
case, this problem provably identify the sources; see Theorem 3.2.1. To the best of our
knowledge, this is the first result of this type in the audio source separation literature. In
Section 3.3 we propose an algorithm to tackle min-vol β-NMF, focusing on the KL and
IS divergences. The algorithm is based on multiplicative updates (MU) that are derived
using the standard majorization-minimization framework, and that monotonically decrease
the objective function. In Section 3.4, we present several numerical experiments, compar-
ing min-vol β-NMF with standard NMF and sparse NMF. The two mains conclusions are
that (1) minimum-volume β-NMF performs consistently better to identify the sources, and
(2) as opposed to NMF and sparse NMF, min-vol β-NMF is able to detect when the fac-
torization rank is overestimated by automatically setting sources to zero hence performs
model order selection automatically.

65



CHAPTER 3. MINIMUM-VOLUME β-NMF FOR BLIND AUDIO SOURCE
SEPARATION 66

The content of this chapter is extracted from:

• [90] V. Leplat, N. Gillis, and A.M.S. Ang. Blind Audio Source Separation With
Minimum-Volume Beta-Divergence NMF. In IEEE Transactions on Signal Processing
68(2020), pp. 3400-3410.

• [93] V. Leplat, N. Gillis, X. Siebert and A.M.S. Ang. Séparation aveugle de sources
sonores par factorisation en matrices positives avec pénalité sur le volume du dictio-
nnaire. In XXVIIeme Colloque francophone de traitement du signal et des images.
GRESTI. 2019

3.1 Introduction: NMF for audio source separation

Given an input matrix V P RFˆN` that correspond whether to an amplitude audio spectro-
gram whether a power spectrogram (see Section 1.5.2), we are searching for two nonnegative
matricesW P RFˆK` and H P RKˆN` where K is the factorization rank such that V «WH.
Because we deal in this section with real-life audio signals, that are noisy settings, we con-
sider the approximate NMF models. When the matrix V corresponds to the amplitude
spectrogram or the power spectrogram of an audio signal, let us briefly recall that:

• W is referred as the dictionary matrix and each column corresponds to the spectral
content of a source, and

• H is the activation matrix specifying if a source is active at a certain time frame and
in which intensity.

In other words, each rank-one factor W p:, kqHpk, :q will correspond to a source: the kth
column W p:, kq of W is the spectral content of source k, and the kth row Hpk, :q of H
is its activation over time. To compute W and H, NMF requires to solve the following
optimization problem associated to the approximate NMF models:

min
Wě0,Hě0

D pV |WHq “
ÿ

f,n

dpVfn|rWHsfnq,

where A ě 0 means that A is component-wise nonnegative, and dpx|yq is an appropriate
measure of fit. In audio source separation, a common measure of fit is the discrete β-
divergence denoted dβpx|yq, see Section 1.9.1.

3.2 Minimum-volume β-NMF

In this section, we present a new optimization problem for the separation based on the
minimization of β-divergences including a penalty term promoting solutions with mini-
mum volume spanned by the columns of the dictionary matrix W . Section 3.2.1 briefly
recalls the geometric interpretation of NMF which motivated the use of a minimum vol-
ume penalty on the dictionary W . Section 3.2.2 discusses the new proposed normalization
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compared to previous minimum volume NMF problems, and proves that min-vol β-NMF
provably recovers the true factors pW,Hq under mild conditions and in the noiseless case;
see Theorem 3.2.1.

3.2.1 Geometry and min-vol β-NMF problem

As mentioned earlier, V “ WH means that each column of V is a linear combination of
the columns of W weighted by the components of the corresponding column of H. As
mentioned in previous chapters, NMF decompositions are not unique because there exists
several (often, infinitely many) sets of columns of W that span the convex cone generated
by the data points. In order to make the problem well-posed and the parameters pW,Hq of
the problem identifiable, a key idea is to look for a solution W with minimum volume, see
Section 1.8.4. The use of minimum-volume NMF has lead to a new class of NMF methods
that outperforms existing ones in many applications such as document analysis and BHU;
see the recent survey [90]. Note that minimum-volume NMF implicitly enhances the factor
H to be sparse: the fact that W has a small volume implies that many data points will be
located on the facets of the conepW q hence H will be sparse.
Hence, in this chapter, we consider the following optimization problem, referred to as

min-vol β-NMF:
min

W p:,jqP∆F @j,Hě0
DβpV |WHq ` λvolpW q, (3.1)

where ∆F “

!

x P RF`
ˇ

ˇ

řF
i“1 xi “ 1

)

is the unit simplex, λ is a penalty parameter and
volpW q is a function that measures the volume spanned by the columns of W . In this
thesis, we use volpW q “ logdetpW TW ` δIq, where δ is a small positive constant that
prevents logdetpW TW q to go to ´8 when W tends to a rank-deficient matrix (that is,
when r “ rankpW q ă K). The justification for using such volume measurement has been
discussed earlier in Chapter 2.

3.2.2 Normalization and identifiability

The first identifiability results for minimum-volume NMF problems assumed that the en-
tries in each column of H sum to one, that is, that HT e “ e where e is the all-one column
vector whose dimension is clear from the context, meaning that H is column stochastic,
see Section 1.8.4. Under this condition, each column of V lies in the convex hull of the
columns of W . Under the three assumptions that (1) H is column stochastic, (2) W is
full column rank, and (3) H satisfies the sufficiently scattered condition, as per Theorem
1.8.4; minimizing the volume of convpW q such that V “ WH recover the true underlying
factors, up to permutation and scaling. The sufficiently scattered condition makes sense
for most audio source data sets as it is reasonable to assume that, for most time points,
only a few sources are active hence H is sparse. As mentioned earlier, the SSC condition
is a relaxation of the separability that is a much stronger assumption in this context since
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it requires that, for each sources, there exists a time point where only that source is active
[90].

Similarly as done in [49], we prove that requiring W to be column stochastic (which
can also be made without loss of generality) also leads to identifiability. Geometrically,
the columns of W are constrained to be on the unit simplex. Minimizing the volume still
makes a lot of sense: we want the columns of W to be as close as possible to one another
within the unit simplex. Here-under, we prove the following theorem.

Theorem 3.2.1. Assume V “ W#H# with rankpV q “ K, W# ě 0 and H# satisfies
the sufficiently scattered condition (Definition 1.8.3 in section 1.8.2). Then the optimal
solution of

min
WPRFˆK ,HPRKˆN

logdet
`

W TW
˘

(3.2)

such that V “WH,W T e “ e,H ě 0,

recovers pW#, H#q up to permutation and scaling.

Proof. Recall thatW# andH# are the true latent factors that generated V , with rankpV q “
K and H# is sufficiently scattered. Let us consider Ŵ and Ĥ a feasible solution of (3.2).
Since rankpV q “ K and V “ Ŵ Ĥ, we must have rankpŴ q “ rankpĤq “ K. Hence there
exists an invertible matrix A P RKˆK such that Ŵ “W#A´1 and Ĥ “ AH#. Since Ŵ is
a feasible solution of problem (3.2), we have

eT Ŵ “ eTW#A´1 “ eTA´1 “ eT ,

where we assumed eTW# “ eT without loss of generality since W# ě 0 and rankpW#q “

K. Note that eTA´1 “ eT is equivalent to eTA “ eT . This means that matrix A is column
stochastic. Therefore we have that eTAe “ K. Since Ĥ is a feasible solution, we also have
Ĥ “ AH# ě 0. Let us denote by aj the jth row of A, and by aTk the kth column of AT .
By the definition of the a dual cone, AH# ě 0 means that the rows aj P cone˚pH#q for
j “ 1, ...,K, hence conepAT q Ď cone˚pH#q as per consequence 1 or Lemma 1.8.1. Since
H# is sufficiently scattered, cone˚

`

H#˘ Ď C˚ (by Definition 1.8.3 and Lemma 1.8.3) hence
aj P C˚. Therefore we have }aj}2 ď aje by definition of C and Lemma 1.8.4. This leads to
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the following:

|detpAq| “ |detpAT q| ď
K
ź

k“1

›

›aTk
›

›

2

“

K
ź

j“1
}aj}2

ď

K
ź

j“1
aje

ď

˜

řK
j aje

K

¸K

“

ˆ

eTAe

K

˙K

“ 1.

(3.3)

The first inequality is the Hadamard inequality, the second inequality is due to aj P C˚,
the third inequality is the arithmetic-geometric mean inequality.
Let us know consider two possible situations:

1. If |detpAq| “ 1, all inequalities above hold as equality’s and specifically, we have that :

aje “ }aj}1 “ }aj}2 for all j=1,...,K.

Therefore matrix AT is orthogonal (this is a standard linear algebra result). Since
conepAT q Ď cone˚pH#q, we can write conepH#q Ď cone˚pAT q by Lemma 1.8.3 (and
since the dual of the dual of a convex cone S is the cone Sq. Since AT is orthogonal,
we know that cone˚pAT q “ conepAT q per Lemma 1.8.7, then conepH#q Ď conepAT q.
Per hypothesis, H# satisfies SSC2 (see Definition 1.8.3), then the only matrix AT

such that conepH#q Ď conepAT q must be a permutation matrix. Hence, A can only
be permutation matrix as well and therefore identifiability for problem (3.2) holds
per Definition 1.8.1.

2. Let us consider an optimal solution pW ‹, H‹q to problem (3.2) where H‹ is not
a row permutation of H# (note that the scaling ambiguity is absent due to the
constraint W T e “ e). This assumption implies that A is not a permutation matrix
and per the chain rule in (3.3) we have |detpAq| ă 1. Further, by optimality, we
have that logdetppW ‹qTW ‹q ď logdetppW#qTW#q which implies detppW ‹qTW ‹q ď

detppW#qTW#q since log is an increasing monotone function. Since the optimal
solution pW ‹, H‹q is also feasible, it means that W ‹ “ W#A´1 and H‹ “ AH# for
a certain invertible matrix A P RKˆK . Let us insert these relations in the volume
function:

detppW ‹qTW ‹q “ det
´

A´T pW#qTW#A´1
¯

“ det
´

pW#qTW#
¯

|det pAq|´2

ą det
´

pW#qTW#
¯

(3.4)
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since detpAT q “ detpAq, detpA´1q “ pdetpAqq´1 and |detpAq| ă 1 per hypothesis.
This result then contradicts our assumption for the optimality of pW ‹, H‹q. There-
fore, matrix A can only be a permutation matrix for an optimal solution pW ‹, H‹q

of (3.2), and therefore identifiability for problem (3.2) holds which concludes the
proof.

In noiseless conditions, replacing W T e “ e with He “ e in (3.2) leads to the same
identifiability result; see [48, Theorem 1]. Therefore, in noiseless conditions and under the
conditions of Theorem 3.2.1, both problems return the same solution up to permutation
and scaling. However, in the presence of noise, we have observed that the two problems
may behave very differently. In fact, we advocate that the constraint W T e “ e is better
suited for noisy real-world problems, which we have observed on many numerical examples.
In fact, we have observed that the normalization W T e “ e is much less sensitive to noise
and returns much better solutions. The reason is mostly twofold:
(i) As described above, using the normalization He “ e amounts to multiply W by a
diagonal matrix whose entries are the `1 norms of the rows of H. Therefore, the columns
of W that correspond to dominating (resp. dominated) sources, that is, sources with much
more (resp. less) power and/or active at many (resp. few) time points, will have much higher
(resp. lower) norm. Therefore, the term logdetpW TW `δIq is much more influenced by the
dominating sources and will have difficulties to penalize the dominated sources. In other
terms, the use of the term logdetpW TW ` δIq with the normalization He “ e implicitly
requires that the rank-one factors W p:, kqHpk, :q for k “ 1, . . . ,K are well balanced, that
is, have similar norms. This is not the case for many real (audio) signals.
(ii) As it will be explained in Section 3.3, the update of W needs the computation of the
matrix Y which is the inverse ofW TW`δI–this terms appears in the gradient with respect
to W of the objective function. The numerical stability for such operations is related to
the condition number of W TW ` δI. For a `1 normalization on the columns of W , the
condition number is bounded above as follows:

condpW TW ` δIq “
σmaxpW

TW ` δIq

σminpW TW ` δIq

“
σmaxpW q

2 ` δ

σminpW q2 ` δ

ď

`?
K maxk ||W p:, kq||2

˘2
` δ

δ

ď 1` K

δ

where σminpW q and σmaxpW q are the smallest and largest singular values of W , respec-
tively. In the numerical experiments, we use δ “ 1. On the other hand, the normalization
He “ e may lead to arbitrarily large values for the condition number of W TW ` δI, which
we have observed numerically on several examples. This issue can be mitigated with the
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use of the normalization He “ ρe for some ρ ą 0 sufficiently large for which identifiabilty
still holds [48]. However, it still performs worse because of the first reason explained above.
For these reasons, we believe that our problem would also be better suited (compared

to the normalization on H) in other contexts; for example for document classification [51].

3.3 Algorithm for min-vol β-NMF

As explained in Section 1.10 most NMF algorithms alternatively update H for W fixed
and vice versa, and we adopt this strategy in this chapter. For W fixed, (3.1) is equivalent
to subproblem in H of standard NMF problem 1.4.1 and we will use the MU that have
already been derived in the literature [86, 45].
To tackle (3.1) for H fixed, let us consider

min
Wě0

F pW q “ DβpV |WHq ` λlogdetpW TW ` δIq. (3.5)

Note that, for now, we have discarded the normalization on the columns of W . In our
algorithm, we will use the update for W obtained by solving (3.5) as a descent direction
along with a line search procedure to integrate the constraint on W . This will ensure
that the objective function F is non-increasing at each iteration. In the following sec-
tions we derive MU for W that decrease the objective in (3.5). We follow the standard
majorization-minimization framework [130]. First, an auxiliary function, which we denote
F̄ , is constructed so that it majorizes the objective. An auxiliary function for F at point
W̃ is defined as follows.

Definition 3.3.1. The function F̄ pW |W̃ q : ΩˆΩ Ñ R is an auxiliary function for F pW q :
Ω Ñ R at W̃ P Ω if the conditions F̄ pW |W̃ q ě F pW q for all W P Ω and F̄ pW̃ |W̃ q “ F pW̃ q

are satisfied.

Then, the optimization of F can be replaced by an iterative process that minimizes F̄ .
More precisely, the new iterate W pi`1q is computed by minimizing exactly the auxiliary
function at the previous iterate W piq. This guarantees F to decrease at each iteration.

Lemma 3.3.1. Let W,W piq ě 0, and let F̄ be an auxiliary function for F at W piq. Then
F is non-increasing under the update W pi`1q “ arg min

Wě0
F̄ pW |W piqq.

Proof. In fact, we have by definition that F pW piqq “ F̄ pW piq|W piqq ě min
W
F̄ pW |W piqq “

F̄ pW pi`1q|W piqq ě F pW pi`1qq.

The most difficult part in using the majorization-minimization framework is to design an
auxiliary function that is easy to optimize. Usually such auxiliary functions are separable
(that is, there is no interaction between the variables so that each entry of W can be
updated independently) and convex.
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3.3.1 Separable auxiliary functions for β-divergences

For the sake of completeness, we briefly recall the auxiliary function proposed in [45]
for the data fitting term. It consists in majorizing the convex part of the β-divergence
using Jensen’s inequality and majorizing the concave part by its tangent (first-order Taylor
approximation). We have

dβpx|yq “ ďβpx|yq ` d̂βpx|yq ` d̄βpx|yq, (3.6)

where ď is convex function of y, d̂ is a concave function of y and d̄ is a constant of y; see
Table 3.1.

Table 3.1: Differentiable convex-concave-constant decomposition of the β-divergence under
the form (3.6) [45].

ďpx|yq d̂px|yq d̄pxq

β “ 0 xy´1 logpyq xplogpxq ´ 1q
β P r1, 2s dβpx|yq 0 0

The function DβpV |WHq can be written as
ř

f Dβpvf |wfHq where vf and wf are re-
spectively the fth row of V and W . Therefore we only consider the optimization over one
specific row of W . To simplify notation, we denote iterates wpi`1q (next iterate) and wpiq

(current iterate) as w and w̃, respectively.

Lemma 3.3.2 ([45]). Let ṽ “ w̃H and w̃ be such that ṽn ą 0 for all n and w̃k ą 0 for all
k. Then the function

Gpw|w̃q “
ÿ

n

«

ÿ

k

w̃khkn
ṽn

ďpvn|ṽn
wk
w̃k
q

ff

` d̄pvnq

`

«

d̂
1

pvn|ṽnq
ÿ

k

pwk ´ w̃kqhkn ` d̂pvn|ṽnq

ff (3.7)

is an auxiliary function for
ř

n dpvn| rwHsnq at w̃.

3.3.2 A separable auxiliary function for the minimum-volume regularizer

The minimum-volume regularizer logdetpW TW ` δIq is a non-convex function. However,
it can be upper-bounded using the fact that logdetp.q is a concave function so that its
first-order Taylor approximation provides an upper bound; see for example [52]. For any
positive-definite matrices A and B P RKˆK , we have:

logdet pBq ď logdet pAq ` Tr
`

A´1 pB ´Aq
˘

“ Tr
`

A´1B
˘

` logdet pAq ´K .
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This implies that for any W,Z P RFˆK , we have

logdetpW TW ` δIq ď lpW,Zq, (3.8)

where lpW,Zq “ Tr
`

YW TW
˘

` logdet
`

Y ´1˘ ´K, Y “ pZTZ ` δIq´1 with δ ą 0. Note
that ZTZ ` δI is positive definite hence is invertible and its inverse Y is also positive
definite. Finally lpW,Zq is an auxiliary function for logdetpW TW ` δIq at Z. However, it
is quadratic and not separable hence non-trivial to optimize over the nonnegative orthant.
The non-constant part of lpW,Zq can be written as

ř

f wfY w
T
f where wf is the fth row

of W . Henceforth we will focus on one particular row vector w with l pwq “ wTY w which
will be further considered as a column vector of size K ˆ 1.

Lemma 3.3.3. Let w, w̃ P RK` be such that w̃k ą 0 for all k, Y “ Y ` ´ Y ´ with
Y ` “ max pY, 0q and Y ´ “ max p´Y, 0q, and Φ pw̃q be the diagonal matrix Φ pw̃q “
diag

´

2 rY
`w̃`Y ´w̃s
rw̃s

¯

where rAs
rBs is the component-wise division between A and B , and

∆w “ w ´ w̃. Then

l̄pw|w̃q “ lpw̃q `∆wT∇l pw̃q ` 1
2∆wTΦpw̃q∆w, (3.9)

is a separable auxiliary function for l pwq=wTY w at w̃.

Proof. Separability of l̄pw|w̃q holds since Φ pw̃q is diagonal. The condition l̄pw̃|w̃q “

lpw̃q from Definition 3.3.1 can be checked easily. It remains to prove that l̄pw|w̃q ě
lpwq for all w. Let first rewrite the quadratic function lpwq using its Taylor expan-
sion at w “ w̃: lpwq “ lpw̃q ` pw ´ w̃qT ∇l pw̃q ` 1

2 pw ´ w̃q
T ∇2l pw̃q pw ´ w̃q “ lpw̃q `

pw ´ w̃qT 2Y w̃` 1
2 pw ´ w̃q

T 2Y pw ´ w̃q. Proving that l̄pw|w̃q ě lpwq is equivalent to prov-
ing that 1

2 pw ´ w̃q
T
rΦ pw̃q ´ 2Y s pw ´ w̃q ě 0, which boils down to proving that the matrix

rΦ pw̃q ´ 2Y s is positive semi-definite. We have Φijpw̃q “ 2δij pY
`w̃qi`pY

´w̃qi
w̃i

, where δij is the
Kronecker symbol. Let us consider the following matrix: Mijpw̃q “ w̃i rΦ pw̃q ´ 2Y sij w̃j ,
which is a rescaling of rΦ pw̃q ´ 2Y s. Therefore, rΦ pw̃q ´ 2Y s is positive semi-definite if



CHAPTER 3. MINIMUM-VOLUME β-NMF FOR BLIND AUDIO SOURCE
SEPARATION 74

and only if M is positive semi-definite if and only if for all ν we have νTMν ě 0. We have:

νTMν “
ÿ

ij

Mijνiνj “
ÿ

ij

”

w̃i rΦ pw̃q ´ 2Y sij w̃j
ı

νiνj

“ 2
ÿ

ij

„

w̃i

„

δij
pY `w̃qi ` pY

´w̃qi
w̃i

´ Yij



w̃j



νiνj

“ 2
”

ÿ

ij

δij
“

pY `w̃qi ` pY
´w̃qi

‰

w̃jνiνj

´
ÿ

ij

w̃iY
`
ij w̃jνiνj `

ÿ

ij

w̃iY
´
ij w̃jνiνj

ı

“ 2
”

ÿ

ij

Y `ij w̃jw̃iν
2
i ´

ÿ

ij

Y `ij w̃jw̃iνiνj

`
ÿ

ij

Y ´ij w̃jw̃iν
2
i `

ÿ

ij

Y ´ij w̃jw̃iνiνj

ı

“

”

ÿ

ij

Y `ij w̃jw̃i
“

ν2
i ` ν

2
j ´ 2νiνj

‰

`
ÿ

ij

Y ´ij w̃jw̃i
“

ν2
i ` ν

2
j ` 2νiνj

‰

ı

“

”

ÿ

ij

Y `ij w̃jw̃i rνi ´ νjs
2
`
ÿ

ij

Y ´ij w̃jw̃i rνi ` νjs
2
ı

,

which is nonnegative hence concludes the proof.
Alternatively, we can show that M is positive semi-definite1 as follows: since M is

symmetric and its diagonal entries are non-negative, it is sufficient to show that M is
diagonally dominant [71, Proposition 7.2.3], that is,

|Mii| ě
ÿ

j‰i

|Mij | for all i.

We have for all i that

Mii “ 2wi
ÿ

j

´

Y `ij ` Y
´
ij

¯

wj ´ 2wiYiiwi, and

Mij “ ´2wiYijwj for j ‰ i.

Since Y `ij ` Y
´
ij “ |Yij |, we have

Mii ´
ÿ

j‰i

|Mij | “ 2wi
ÿ

j

|Yij |wj ´ 2wiYiiwi

´ 2wi
ÿ

j‰i

|Yij |wj

“ 2wi |Yii|wi ´ 2wiYiiwi ě 0,

implying that M is diagonally dominant.

1this was suggested to us by one of the reviewers of [90], it is more elegant and simpler than our original
proof.
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Remark 1 (Choice of the auxiliary function). A simpler choice for the auxiliary function
would be to replace Φpw̃q with 2λmaxpY qI where λmaxpY q is the largest eigenvalue of Y (the
constant 2 appears because l pwq “ wTY w while there is a factor 1{2 in front of Φpw̃q).
However, it would lead to a worse approximation. In particular if Y is a diagonal matrix
(since Y ą 0, these diagonal elements are positive), our choice gives Φpw̃q “ 2Y for any
w̃ ą 0, meaning that the auxiliary function matches perfectly the function l pwq. This would
not be the case for the choice 2λmaxpY qI (unless Y is a scaling of the identity matrix).

3.3.3 Auxiliary function for min-vol β-NMF

Based on the auxiliary functions presented in Sections 3.3.1 and 3.3.2, we can directly
derive a separable auxiliary function F̄ pW |W̃ q for min-vol β-NMF (3.1).

Corollary 3.3.0.1. For W,H ě 0, λ ą 0, Y “ pW̃ T W̃`δIq´1 with δ ą 0 and the constant
c “ logdet

`

Y ´1˘`K, the function

F̄ pW |W̃ q “
ÿ

f

G pwf |w̃f q ` λ

˜

ÿ

f

l̄ pwf |w̃f q ` c

¸

,

where G is given by (3.7) and l̄ by (3.9), is a convex and separable auxiliary function for
F pW q “ DβpV |WHq ` λlogdetpW TW ` δIq at W̃ .

Proof. This follows directly from Lemma 3.3.2, Equation (3.8) and Lemma 3.3.3.

In the following section, we provide explicitly MU for the KL divergence (β “ 1) by
finding a closed-form solution for the minimization of F̄ . In Section 3.3.5, we provide the
MU for the IS divergence (β “ 0). Note that the other cases are not treated explicitly but
can be in a similar way. For the same reason, we will only compare KL NMF problems in
the numerical experiments (Section 3.4).

3.3.4 Algorithm for min-vol KL-NMF

As before, let us focus on a single row of W , denoted w, as the objective function F pW q is
separable by row. For β “ 1, the derivative of the auxiliary function F̄ pw|w̃q with respect
to a specific coefficient wk is given by ∇wk F̄ pw|w̃q “

ř

n hkn ´
ř

n hkn
w̃kvn
wk ṽn

` 2λ rY w̃sk `
2λ

”

diag
´

Y `w̃`Y ´w̃
w̃

¯ı

k
wk ´ 2λ

”

diag
´

Y `w̃`Y ´w̃
w̃

¯ı

k
w̃k.

Due to the separability, we set the derivative to zero to obtain the closed-form solution,
which is given in Table 3.2 in matrix form.

Note that although the closed-form solution has a negative term in the numerator of
the multiplicative factor (see Table 3.2), they always remain nonnegative given that V,H
and W̃ are nonnegative. In fact, the term before the minus sign is always larger than
the term after the minus sign: eF,NH

T ´ 4λpW̃Y ´q is squared (component wise) and
added a positive term, hence the component-wise square root of that result is larger than
eF,NH

T ´ 4λpW̃Y ´q.
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Table 3.2: Multiplicative update for min-vol KL-NMF.

W “ W̃ d

»

–

„

reF,NHT´4λpW̃Y ´qs
.2
`8λW̃pY ``Y ´qd

ˆ

rV s

rW̃Hs
HT

˙. 12
´peF,NHT´4λpW̃Y ´qq

fi

fl

r4λW̃ pY ``Y ´qs
,

where AdB (resp. rAs
rBs) is the Hadamard product (resp. division) between A and B

, Ap.αq is the element-wise α exponent of A, eF,N is the F -by-N all-one matrix, and
Y “ Y ` ´ Y ´ “ pW̃ T W̃ ` δIq´1 with δ ą 0, Y ` ě, Y ´ ě 0, λ ą 0.

Algorithm 3 summarizes our algorithm to tackle (3.1) for β “ 1 which we refer to as
min-vol KL-NMF LS (Line Search). Note that the update ofH (step 4) is the one from [86].
More importantly, note that we have incorporated a line-search for the update of W . In
fact, although the MU for W are guaranteed to decrease the objective function, they do
not guarantee that W remains normalized, that is, that ||W p:, kq||1 “ 1 for all k. Hence,
we normalize W after it is updated (step 10), and we normalize H accordingly so that
WH remains unchanged. When this normalization is performed, the β-divergence part
of F is unchanged but the minimum-volume penalty will change so that the objective
function F might increase. In order to guarantee non-increasingness, we integrate a simple
backtracking line-search procedure; see steps 11-16 of Algorithm 3. In summary, our
MU provide a descent direction that preserved nonnegativity of the iterates, and we use
a projection and a simple backtracking line-search to guarantee the monotonicity of the
objective function, as in standard projected gradient descent methods.
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Algorithm 3 min-vol KL-NMF LS
Require: A matrix V P RMˆT , an initialization H P RKˆT` , an initialization W P RMˆK

, a factorization rank K, a maximum number of iterations maxiter, min-vol weight
λ ą 0 and δ ą 0

Ensure: A rank-K NMF pW,Hq of V «WH with W ě 0 and H ě 0 .

1: γ “ 1, Y “
`

W TW ` δI
˘´1

2: for i = 1 : maxiter do
3: % Update of matrix H

4: H Ð H d

”

WT
´

rV s
rWHs

¯ı

rWT eF,N s

5: % Update of matrix W
6: Y Ð

`

W TW ` δI
˘´1

7: Y ` Ð max pY, 0q
8: Y ´ Ð max p´Y, 0q
9: W` is updated according to Table 3.2

10: pW`
γ , Hγq “ normalize pW`, Hq

11: % Line-search procedure
12: while F

`

W`
γ , Hγ

˘

ą F pW,Hq do
13: γ Ð γ ˆ 0.8
14: W`

γ Ð p1´ γqW ` γW`

15: pW`
γ , Hγq Ð normalize

`

W`
γ , H

˘

16: end while
17: pW,Hq Ð pW`

γ , Hγq

18: % Update of γ to avoid a vanishing stepsize
19: γ Ð min p1, γ ˆ 1.2q
20: end for

It can be verified that the computational complexity of the min-vol KL-NMF LS is
asymptotically equivalent to the standard MU for β-NMF, that is, it requires O pFNKq
operations per iteration. Indeed, all the main operations include matrix products with
a complexity of O pFNKq and element-wise operations on matrices of size F ˆ K or
K ˆ N . Note that the inversion of the K-by-K matrix pW TW ` δIq requires O

`

K3˘

operations which is dominated by O pFNKq since K ď minpF,Nq (in fact, typically K !

minpF,Nq hence this term is negligible). Therefore, although Algorithm 3 will be slower
than the baseline KL-NMF (that is, the standard MU) because of the additional terms
to be computed and the line-search, the asymptotical computational cost is the same; see
Table 3.4 for runtime comparison.
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3.3.5 Algorithm for min-vol IS-NMF

For β “ 0 (IS divergence), the derivative of the auxiliary function F̄ pw|w̃q with respect to
a specific coefficient wk is given by:

∇wk F̄ pw|w̃q “
ÿ

n

hkn
ṽn

´
ÿ

n

hkn
w̃2
kvn

w2
kṽ

2
n

` 2λ rY w̃sk

` 2λ
„

diag
ˆ

Y `w̃ ` Y ´w̃

w̃

˙

k

wk

´ 2λ
„

diag
ˆ

Y `w̃ ` Y ´w̃

w̃

˙

k

w̃k.

Let
ã “ 2λ

„

diag
ˆ

Y `w̃ ` Y ´w̃

w̃

˙

k

,

b̃ “
ÿ

n

hkn
ṽn

´ 4λ
“

Y ´w̃
‰

k
,

d̃ “ ´
ÿ

n

hkn
w̃2
kvn
ṽ2
n

.

(3.10)

Setting the derivative to zero requires to compute the roots of the following degree-three
polynomial ãw3

k` b̃w
2
k` d̃. We used the procedure developed in [118] which is based on the

explicit calculation of the intermediary root of a canonical form of cubic. This procedure is
able to provide highly accurate numerical results even for badly conditioned polynomials.
The algorithm for min-vol IS-NMF follows the same steps as for min-vol KL-NMF LS:
only the two steps corresponding to the updates of W and H have to be modified. For the
update of H (step 4), use the standard MU. For the update of W (step 9), use
for f Ð 1 to F

for k Ð 1 to K
Compute ã, b̃ and d̃ according to equations (3.10)
Compute the roots of ãw3

k ` b̃w
2
k ` d̃

Pick y among these roots and zero that minimizes
the objective
W`
f,k Ð max

`

10´16, y
˘

end for
end for

3.4 Numerical experiments

In this section we report an experimental comparative study of baseline KL-NMF, min-
vol KL-NMF LS (Algorithm 3) and sparse KL-NMF [119] applied to the spectrogram of
three monophonic piano sequences and a synthetic mix of a bass and drums. For the two
monophonic piano sequences, the audio signals are true life signals with standard quality.
Note that the sequences are made of pure piano notes, the number K should therefore
correspond to the number of notes present into the mixed signals. The comparative study
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is performed for several values of K with a focus on the case where the factorization rank
K is overestimated. For all simulations, random initializations are used for W and H,
the best results among 5 runs are kept for the comparative study. In all cases, we use
a Hamming window of size F=1024, and 50% overlap between two frames. Sparse KL-
NMF LS has a similar structure as min-vol KL-NMF LS, with a penalty parameter for the
sparsity enforcing regularization. To tune these two parameters, we have used the same
strategy for both methods: we manually tried a wide range of values and report the best
results.
The code is available from bit.ly/minvolKLNMF (code written in MATLAB R2017a),

and can be used to rerun directly all experiments below. They were run on a laptop
computer with Intel Core i7-7500U CPU @ 2.70GHz 4 and 32GB memory. A demonstration
video has been recorded and is available online from https://www.youtube.com/watch?v=

1BrpxvpghKQ which shows the results obtained with our algorithm applied to the Montoise
folk song "El Doudou" with an overestimated factorization rank K.

Mary had a little lamb The first audio sample is the first measure of “Mary had a little
lamb". As explained in Section 1.5.2 the sequence is composed of three notes; E4, D4

and C4, played all at once. The recorded signal is 4.7 seconds long and downsampled to
fs “ 16000Hz yielding T=75200 samples. STFT of the input signal x yields a temporal
resolution of 16ms and a frequency resolution of 31.25Hz, so that the amplitude spectro-
gram V has N=294 frames and F=257 frequency bins. The musical score is shown on
Figure 3.1. The input audio signal xptq and the input matrix V (amplitude spectrogram)
are pictured in Figure 1.6.

Fig. 3.1. Musical score of “Mary had a little lamb".

All NMF algorithms were run for 200 iterations which allowed them to converge. Fig-
ure 3.2 presents the columns of W (dictionary matrix) and the rows of H for baseline
KL-NMF and min-vol KL-NMF LS with K “ 3. Figure 3.3 presents the time-frequency
masking coefficients. These coefficients are computed as follows

maskpkqf,n “
X̂
pkq
f,n

ř

k X̂
pkq
f,n

with k “ 1, ...,K ,

where X̂pkq “ W p:, kqHpk, :q is the estimated source k. The masks are nonnegative and
sum to one for each pair pf, nq. This representation allows to identify visually whether

bit.ly/minvolKLNMF
https://www.youtube.com/watch?v=1BrpxvpghKQ
https://www.youtube.com/watch?v=1BrpxvpghKQ
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(a) Columns of W (b) Rows of H

Fig. 3.2. Comparative study of baseline KL-NMF (top), min-vol KL-NMF LS (middle)
and sparse KL-NMF (bottom) applied to “Mary had a little lamb" amplitude
spectrogram with K=3.
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(a) baseline KL-NMF (b) min-vol KL-NMF LS

(c) sparse KL-NMF

Fig. 3.3. Masking coefficients obtained with baseline KL-NMF (top), min-vol KL-NMF
LS (middle) and sparse KL-NMF (bottom) applied to “Mary had a little lamb"
amplitude spectrogram with K=3.
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the NMF algorithm was able to separate the sources properly. All the simulations give a
nice separation with similar results for W and H. The activations are coherent with the
sequences of the notes. However, Figure 3.3 shows that min-vol KL-NMF LS and sparse
KL-NMF provide a better separation in terms of time-frequency localization compared to
the baseline KL-NMF.

We now perform the same experiment but using K=7. Figure 3.4 presents the results.
This situation corresponds to the situation where the factorization rank is overestimated.
Figure 3.5 presents the time-frequency masking coefficients.
We observe that min-vol KL-NMF LS is able to extract the three notes correctly and set

automatically to zero three source estimates (more precisely, three rows ofH are set to zero,
while the corresponding columns of W have entries equal to one another as ||W p:, kq||1 “ 1
for all k) while baseline KL-NMF and sparse KL-NMF split the notes in all the sources.
One can observe that a fourth note is identified in all simulations (see isolated peaks on
Figure 3.5-(b), second row of H from the top) and corresponds to each very first offset
of each note in the musical sequence. This result makes sense and corresponds to some
common mechanical vibrations acting in the piano just before triggering a specific note.
This observation is confirmed by the fact that the amplitude is proportional to the natural
strength of the fingers playing the notes. In this scenario, with K is overestimated, min-vol
KL-NMF LS outperforms baseline KL-NMF and sparse KL-NMF.

Prelude of Bach The second audio sample corresponds to the first 30 seconds of “Prelude
and Fugue No.1 in C major" from J. S. Bach played by Glenn Gould2. The audio sample
is a sequence of 13 notes: B3, C4, D4, E4, F#

4 , G4, A4, C5, D5, E5, F5, G5, A5. The
recorded signal is downsampled to fs “ 11025Hz yielding T=330750 samples. STFT of the
input signal x yields a temporal resolution of 46ms and a frequency resolution of 10.76Hz,
so that the amplitude spectrogram V has N=647 frames and F=513 frequency bins. The
musical score is presented on Figure 3.8. All NMF algorithms were run for 300 iterations
which allowed them to converge. Figure 3.9 presents the results obtained for W and H

with a factorization rank K “ 16, hence overestimated. We observe that min-vol KL-
NMF LS automatically sets three components to zero (with * symbol on Figure 3.9) while
13 source estimates are determined. The analysis of the fundamentals (maximum peak
frequency) of the 13 source estimates correspond to the theoretical fundamentals of the 13
notes mentioned earlier. Note that using baseline KL-NMF or sparse KL-NMF led to same
conclusions as for the first audio sample; these two algorithms generate as many source
estimates as imposed by the rank of factorization while min-vol KL-NMF LS algorithm
preserves the integrity of the 13 sources. Additionally, the activations are coherent with
the sequences of the notes. Figure 3.10 shows (on a limited time interval) that the estimate
sequence follows the sequence defined in the score. Note that a threshold and permutations

2https://www.youtube.com/watch?v=ZlbK5r5mBH4

https://www.youtube.com/watch?v=ZlbK5r5mBH4
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(a) Columns of W (b) Rows of H

Fig. 3.4. Comparative study of baseline KL-NMF (top), min-vol KL-NMF LS (middle)
and sparse KL-NMF (bottom) applied to “Mary had a little lamb" amplitude
spectrogram with K=7.
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(a) baseline KL-NMF (b) min-vol KL-NMF LS

(c) sparse KL-NMF

Fig. 3.5. Masking coefficients obtained with baseline KL-NMF (top), min-vol KL-NMF
LS (middle) and sparse KL-NMF (bottom) applied to “Mary had a little lamb"
amplitude spectrogram with K=7.
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Fig. 3.6. Factors matricesW andH obtained with min-vol KL-NMF LS with factorization
rank K=7 for the third audio sample.

on rows of H was used to improve visibility.

Third piano sequence The third audio sample is a piano sequence played from the score
given in Figure 3.7. The piano sequence is composed of four notes; D4, F4, A4 and C5,
played all at once in the first measure and then played by pairs in all possible combinations
in the remaining measures. This signal is a real-life sample initially proposed in [43] played
on a Yamaha DisKlavier MX100A piano and recorded in a small-size room by a Schoeps
omnidirectional microphone. The signal is 15.6 seconds long and has a sampling frequency
fs “ 22050Hz yielding T “ 345500 samples. STFT of the input signal x yields a temporal
resolution of 23ms and a frequency resolution of 21.5Hz, so that the amplitude spectrogram
V has N=676 frames and F=513 frequency bins.
All NMF algorithms were run for 500 iterations which allowed them to converge. Fig-

ure 3.6 presents the results obtained for W and H with a factorization rank K “ 7, hence
overestimated.
We observe that min-vol KL-NMF LS automatically sets two components to zero while 5

source estimates are determined. We observe that the notes estimation is equivalent to the
ones presented in [43]. We get four notes and one component that corresponds to residual
noise and transient events (as such, the hammer hits and pedal releases).
Note that using baseline KL-NMF or sparse KL-NMF led to same conclusions as for

the two first audio samples; these two algorithms generate as many source estimates as
imposed by the rank of factorization while min-vol KL-NMF LS algorithm preserves the
integrity of the four notes.
For illustration purposes, the audio files for the source estimates obtained with Algo-

rithm 3 are available online 3.

3https://www.dropbox.com/sh/i9hgcl8g1fviq3t/AAARYAYfGdN65UsgzIMto5roa?dl=0

https://www.dropbox.com/sh/i9hgcl8g1fviq3t/AAARYAYfGdN65UsgzIMto5roa?dl=0
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Fig. 3.7. Musical score of the third audio sample.

Bass and drums The third audio signal is a synthetic mix of a bass and drums4. The
audio signal is downsampled to fs=16000Hz yielding T=104821 samples. STFT of the
input signal x yields a temporal resolution of 32ms and a frequency resolution of 15.62Hz,
so that the amplitude spectrogram V has N=206 frames and F=513 frequency bins. For
this synthetic mix, we have access to the true sources under the form of two audio files.
Therefore, we can estimate the quality of the separation with standard metrics, namely the
signal to distortion ratios (SDR), the source to interference ratios (SIR) and the sources to
artifacts ratios (SAR) [136]. They have been computed with the toolbox BSS Eval5. The
metrics are expressed in dB and the higher they are the better is the separation. Algorithms
min-vol KL-NMF LS, baseline KL-NMF and sparse KL-NMF have been considered for this
comparative study. A factorization rank equal to two is used. It is clear that the rank-one
approximation is too simplistic for these sources but the goal is to compare the algorithms
and show that min-vol KL-NMF LS is able to find a better solution even in this simplified
context.
All NMF algorithms were run for 400 iterations which allowed them to converge. Ta-

ble 3.3 shows the results.

Table 3.3: SDR, SIR and SAR metrics comparison for results obtained with baseline KL-
NMF and min-vol KL-NMF LS on a synthetic mix of bass and drums

Algorithms Source 1: bass Source 2: drums
SDR(dB) SIR(dB) SAR(dB) SDR(dB) SIR(dB) SAR(dB)

min-vol KL-NMF LS -1.14 0.12 7.78 9.60 19.8 10.09
baseline KL-NMF -4.26 -1.39 2.64 7.97 9.00 15.25
sparse KL-NMF -4.69 -1.73 2.33 7.89 8.96 14.98

Except for SAR metric for the second source (drums), min-vol KL-NMF LS outperforms
baseline KL-NMF and sparse KL-NMF.

Runtime performance Let us compare the runtime of baseline KL-NMF, min-vol KL-
NMF LS (Algorithm 3) and sparse KL-NMF [119]. The algorithms are compares on the
three examples presented in paragraphs 3.4 and 3.4:

• Setup 71: sample “Mary had a little lamb” with K “ 3, 200 iterations.
4http://isse.sourceforge.net/demos.html
5http://bass-db.gforge.inria.fr/bss_eval/

http://isse.sourceforge.net/demos.html
http://bass-db.gforge.inria.fr/bss_eval/
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Fig. 3.8. Musical score of the sample “Prelude and Fugue No.1 in C major".

(a) Columns of W (b) Rows of H

Fig. 3.9. Factors matricesW andH obtained with min-vol KL-NMF LS with factorization
rank K=16 on the sample “Prelude and Fugue No.1 in C major".

Fig. 3.10. Validation of the estimate sequence obtained with min-vol KL-NMF LS with
factorization rank K=16 on the sample “Prelude and Fugue No.1 in C major".
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• Setup 72: sample “Mary had a little lamb” with K “ 7, 200 iterations.

• Setup 73: “Prelude and Fugue No.1 in C major” with K “ 16, 300 iterations.

For each test setup, the algorithms are run for the same 20 random initializations of W
and H. Table 3.4 reports the average and standard deviation of the runtime (in seconds)
over these 20 runs. We observe that the runtime of min-vol KL-NMF LS (Algorithm 3) is
slower but not significantly so, as expected. In particular, on the larger setup 73, it is less
than three times slower than the standard MU.

Table 3.4: Runtime performance in seconds of baseline KL-NMF, min-vol KL-NMF LS
(Algorithm 3) and sparse KL-NMF [119]. The table reports the average and
standard deviation over 20 random initializations for three experimental setups
described in the text.

Algorithms runtime in seconds
setup 71 setup 72 setup 73

baseline KL-NMF 0.44˘0.03 0.43˘0.01 3.81˘0.19
min-vol KL-NMF LS 3.79˘0.13 2.39˘0.30 10.19˘1.28

sparse KL-NMF 0.20˘0.02 0.20˘0.01 2.21˘ 0.26

3.5 Conclusion and Perspectives

In this chapter, we have presented a new NMF problem for audio source separation based
on the minimization of a cost function that includes a β-divergence (data fitting term) and
a penalty term that promotes solutions W with minimum volume. We have proved the
identifiability of the problem in the exact case, under the sufficiently scattered condition for
the activation matrix H. We have provided multiplicative updates to tackle this problem
and have illustrated the behaviour of the method on real-world audio signals. We high-
lighted the capacity of the model to deal with the case where K is overestimated by setting
automatically to zero some components and give good results for the source estimates.
Further work includes tackling the following questions:

• Under which conditions can we prove the identifiability of min-vol β-NMF in the
presence of noise, and the rank-deficient case?

• Can we prove that min-vol β-NMF performs model order selection automatically?
Under which conditions? We have observed this behaviour on many examples, but
the proof remains elusive.

• Can we design more efficient algorithms? For this question, the answer is yes. In
Chapter 5, we develop a general framework to tackle β-divergences NMF problems
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under linear disjoint constraints. Among others, we derive a new algorithm to tackle
problem 3.1.

Further work also includes the use of our new problem and derived algorithms for other
applications.

Acknowledgments We thank Kejun Huang and Xiao Fu for helpful discussion on Theo-
rem 3.2.1, and giving us the insight to adapt their proof from [49] to our problem (3.1).
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4 Multi-resolution β-NMF for blind spectral
unmixing

Blind spectral unmixing is the problem of decomposing the spectrum of a mixed signal or
image into a collection of source spectra and their corresponding activations indicating the
proportion of each source present in the mixed spectrum. To perform this task, nonnegative
matrix factorization (NMF) based on the β-divergence, referred to as β-NMF, is a standard
and state-of-the art technique. Many NMF-based methods factorize a data matrix that is
the result of a resolution trade-off between two adversarial dimensions. Two instrumental
examples are (1) audio spectral unmixing for which the frequency-by-time data matrix is
computed with the short-time Fourier transform and is the result of a trade-off between the
frequency resolution and the temporal resolution, and (2) BHU for which the wavelength-
by-location data matrix is a trade-off between the number of wavelengths measured and the
spatial resolution. In this chapter, we propose a new NMF-based method, dubbed multi-
resolution β-NMF (MR-β-NMF), to address this issue by fusing the information coming
from multiple data with different resolutions in order to produce a factorization with high
resolutions for all the dimensions. MR-β-NMF relies on a nonnegative joint factorization.
To achieve this goal, we propose an optimization problem including the β-divergences as
objective functions. In order to solve this problem, we propose multiplicative updates
based on a majorization-minimization algorithm. We show on numerical experiments that
MR-β-NMF is able to obtain high resolutions in both dimensions for two applications:
the joint-factorization of two audio spectrograms, and the hyperspectral and multispectral
data fusion problem.

The content of this chapter is extracted from: [91]: V. Leplat, N. Gillis, and C. Févotte.
Multi-Resolution Beta-Divergence NMF for Blind Spectral Unmixing. 2020. arXiv: 2007.03893.

4.1 Introduction

As introduced in Section 1.5, spectral unmixing concerns the techniques used to decompose
the spectrum of a mixed signal into a set of source spectra and their corresponding acti-
vations. The activations give the proportion of each source spectrum present in the mixed
spectrum. More specifically, blind spectral unxming consists in estimating the source spec-
tra with limited prior information; usually, the only known information is the number of
sources. Spectral unmixing techniques are applied in many fields such as in audio and

90
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image processing. In this chapter, we introduce a flexible framework to perform spectral
unmixing by fusing the information coming from multiple data with different resolutions.
We showcase its efficiency on two major applications: audio spectral unmixing and fusion
of hyperspectral and multispectral images. For these applications, the input data usually
results from a trade-off between two adversarial dimensions. Let us illustrate this assertion
in the particular case of audio spectral unmixing that commonly uses the simultaneous
time-frequency representation of an input mixed signal. The simultaneous time-frequency
representation is here computed with the short-time Fourier transform (STFT).

As explained in Section 1.5.2, the STFT consists in dividing the time signal into short
segments of the same length, in multiplying the segments element-wise by a window func-
tion of size 2F , and then in computing the Fourier transform of each windowed segment
(only half of the frequency coefficients can be retained thanks to the Hermitian symme-
try). Therefore, from an input signal u P RT , we obtain a complex matrix U P CFˆN

called spectrogram. The number of rows corresponds to the frequency resolution. Letting
fs be the sampling rate, consecutive rows correspond to frequency bands that are fs

2F Hz
apart. Choosing a particular value for the window length 2F is equivalent to fixing the
frequency and the time resolutions. A larger window implies a higher frequency resolution
but it comes at the cost of lower temporal resolution. Moreover, the trade-off between de-
tailed frequency and temporal information is due to the fundamental physical limit known
as the Heisenberg uncertainty principle. A natural solution is to consider multiple audio
spectrograms and fuse them into a product with both high frequency and high temporal
resolutions. A similar idea has been studied in the hyperspectral imaging community; see
for example [114, 54, 25, 26, 110, 116, 4, 141, 77]. Indeed, hyperspectral (HS) images have
high spectral resolution (typically between 100 and 200 spectral bands) but low spatial res-
olution, whereas the opposite is true for multispectral (MS) images. The fusion of HS and
MS data, which we refer to as the HS-MS fusion problem, gives the possibility to produce
fused data with both high spectral and high spatial resolutions, called the super-resolution
(SR) image. The SR image can improve the precision of the unmixing [149].

Contribution and outline We propose multi-resolution β-NMF (MR-β-NMF) for fusing
the information coming from multiple audio amplitude spectrograms with different fre-
quency resolutions. As far as we know, it is the first time such an approach is used in
this context. High-frequency-resolution data and high-temporal-resolution data are jointly
factorized by MR-β-NMF, taking into account the linear mixture model (4.3). Based on
these audio spectrograms, we are able to generate a solution W that exploits the spec-
tral accuracy from the high-frequency-resolution data and a solution for H exploiting the
temporal accuracy from the high-temporal-resolution data. Both frequency and temporal
reconstruction qualities are evaluated by numerical simulation using synthetic audio sig-
nals. We also show that MR-β-NMF is flexible and can be used in other applications. In
particular we motivate and show its efficiency to deal with the HS-MS fusion problem. As
far as we know, it is the first time that a HS-MS fusion model and algorithm tackles any
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β-divergence. Most previous works focused on the case β “ 2, that is, least squares, which
assumes Gaussian noise as a prior. As we will see, considering β-divergences for β ‰ 2
allows to obtain much better solutions in the presence of non-Gaussian noise. In particular,
we show that in the presence of Poisson noise, using β “ 1 (Kullback-Leibler divergence)
outperforms standard approaches.
This chapter is organized as follows. Section 4.2 details the problem formulation, in

particular the mixture model and the (optimization) problem for MR-β-NMF. Section 4.3
describes the algorithm developed to tackle this problem. Section 4.4 (resp. Section 4.5)
presents numerical results on audio datasets (resp. on the HS-MS fusion problem). MR-
β-NMF is shown to be competitive with state-of-the-art techniques, and allows to obtain
solutions with both high spectral resolution and high temporal (resp. spatial) resolution.

4.2 Problem formulation

The aim of multi-resolution unmixing, or more generally data fusion, is to estimate non-
observable data with high resolutions in adversarial dimensions from observable data that
show high resolution in one dimension only. In this chapter, we propose a flexible framework
that can be easily adapted to many applications. More particularly, we consider the blind
audio spectral unmixing and the HS-MS fusion problem.
In the case of the audio spectral unmixing, the multi-resolution unmixing is based on

high-frequency-resolution (HRF) data and low-frequency-resolution (LRF) data. In this
chapter we limit the discussion to the use of two input audio amplitude spectrograms
X P RFXˆNX` and Y P RFY ˆNY` .
We assume they are computed with STFTs based on a common input audio signals u.

The windows lengths are respectively FX and FY such that FY ą FX with FY
FX
“ d where

d is usually referred to as the frequency downsampling ratio. Sizes NX and NY denote the
number of time frames of LRF and HRF spectrograms, respectively, with NX ą NY as per
the trade-off between frequency and temporal resolutions. GivenX and Y , we are searching
for an amplitude audio spectrogram V P RFY ˆNX` that has both high frequency and high
temporal resolutions. We suppose in this chapter that the observed LRF spectrogram X

is a frequency downsampled version of V , that is,

X « RV, (4.1)

where R P RFXˆFY is the frequency downsampling operator. Similarly, the observed HRF
spectrogram Y is a temporally downsampled version of V , that is,

Y « V S, (4.2)

where S P RNXˆNY is the temporal downsampling operator. For the HS-MS fusion prob-
lem, we assume that a high spatial resolution image X and a high spectral resolution
image Y are available to reconstruct the target image with high-spectral and high-spatial
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resolutions V , the SR image. These images result from the linear spectral and spatial
degradations of the SR image V , given by the same equations (4.1) and (4.2). In this
context, the operator R from (4.1) is the relative spectral bandpass responses from the
super-resolution image to the MS image, while the operator S introduced in (4.2) specifies
the spatial blurring and down-sampling responses that result in the HS image. Hence both
operators are nonnegative matrices. In the context of HS-MS fusion, the operators R and
S can be acquired either by cross-calibration [148] or by estimations from the HS and MS
images [149, 124]. As far as we know, in the context of audio spectral unmixing, it is
unknown how to estimate R and S, and we will propose an optimization strategy to do so.

Linear Spectral Mixture Model

A linear spectral mixture model is commonly used for the audio spectral unmixing or HS
unmixing due to its physical meaning and its mathematical simplicity; see sections 1.5.1,
1.5.2 and references [21, 126, 147] for detailed reviews. Under this model and assuming we
have noise in the data, the input data matrix V has the form

V «WH, (4.3)

where W P RFY ˆK` is the dictionary matrix and H P RKˆNX` is the activation matrix.
Substituting (4.3) into (4.1) and (4.2), X and Y are expressed as follows:

X « RWH, (4.4)

Y «WHS. (4.5)

where R P RFXˆFY` and S P RNXˆNY` . Equations (4.4) (resp. (4.5)) correspond to the
linear spectral mixture model degraded in the frequency (resp. spectral) and temporal
(resp. spatial) domains. This leads to our proposed NMF approach described in the next
section.

Multi-Resolution β-NMF problem

In this section, we present a new approach for spectral unmixing based on the minimization
of β-divergences. To solve the multi-resolution problem and estimate the signal V , we need
to estimateW and H. From (4.4) and (4.5), we propose to solve the following optimization
problem, which we refer to as MR-β-NMF problem:

min
Wě0,Hě0,Rě0,Sě0

DβpX|RWHq ` λDβpY |WHSq, (4.6)

where A ě 0 means that A is component-wise nonnegative, λ is a positive penalty
parameter, and DβpZ|ABCq “

ř

fn dβpZfn|rABCsfnq with dβpx|yq is the β-divergence
between scalars x and y, see Section 1.9.1 for more details. In the general case, MR-β-
NMF is also able to estimate the downsampling operators R and S, which is a contribution.
Note that when the downsampling operators R and S are known, the objective function is
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minimized over W and H only, see section 4.3 for more details. Note also that in general
R and S have a particular structure where some entries are fixed to zero; see Section 4.2.
As our algorithm will rely on multiplicative updates, entries initialized at zero remain zero
in the course of the optimization process. As explained in sections 1.9.2 and 1.9.3, the
error measure should be chosen depending on the noise statistic assumed on the data.
Let us briefly recall that the Euclidean distance (β “ 2q assumes i.i.d. Gaussian noise,
KL divergence (β “ 1) assumes Poisson noise, and the IS divergence (β “ 0) assumes
multiplicative noise following exponential distributions. KL and IS divergences are usually
considered for amplitude spectrogram and power spectrogram, respectively. Both KL and
IS divergences are more adapted to audio spectral unmixing than Euclidean distance; see
[88] and [45]. The Euclidian distance is the most widely used to tackle the HS unmixing
problem as well as the HS-MS data fusion problem. However, when no obvious choice of
a specific divergence is available, finding the right measure of fit, namely the value for β,
can be seen as a model selection problem [44]. Therefore an objective function with an
adjustable β is fully justified. Moreover, divergences are often log-likelihoods in disguise
(see Section 1.9.2) and therefore choosing a divergence boils down to choosing a noise
statistic as mentioned earlier. For example, sensors embedded in cameras can be seen as
photon counters, and the Poisson distribution makes particular sense for count data. This
assumption supports once again our motivation to consider an adjustable β, in this case
with β “ 1. Based on numerical experiments, we will show that the KL-divergence is also
well suited for the HS-MS fusion problem.

Downsampling operators

As mentioned earlier, for HS-MS data fusion, downsampling operators can usually be
estimated and hence are assumed to be known. In the context of audio spectral unmixing,
the downsampling operators in (4.6) are unknown. Different structures for downsampling
operators R and S have been tested, and we report here the form for R that shows the best
results in practice, while S is obtained in the same way. Let us illustrate this on the simple
example of the frequency downsampling of a matrix W P R8ˆ3 with a downsampling ratio
d “ 2. A possible structure for the matrix R P R4ˆ8

` is as follows:

R “

¨

˚

˚

˚

˚

˝

r11 r12 r13 0 0 0 0 0
0 r21 r22 r23 r24 0 0 0
0 0 0 r31 r32 r33 r34 0
0 0 0 0 0 r41 r42 r43

˛

‹

‹

‹

‹

‚

,

This downsampling operator R performs a weighted arithmetic mean over a set of rows of
the matrix it is applied on; here, W P R8ˆ3

` is downsampled as RW P R4ˆ3
` . The structure

of the matrix R relies on two parameters: d and f . As mentioned earlier, d corresponds to
the downsampling ratio. Each row of R has at least d non-zero values that correspond to
the rows in W that are combined to form the rows of RW ; see the underlined entries of R
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above. The parameter f controls the overlap between the linear combinations of the rows
of W .

In the example above, f “ 1 and one positive value is added to the left and the right
end of the d non-zero entries corresponding to the downsampling parameter; see the bold
entries in matrix R above. These positive values allow an overlap (or coupling) within the
downsampling process. If we consider two consecutive frequency bins that result from a
downsampling operation, it is reasonable to consider that they share common frequency
bins in the original frequency space. We imposed f ď d

2 to avoid too much non-physical
coupling. This limitation is also based on numerical experiments that show a degradation
of the results when f exceeds d

2 . When f “ 0, the downsampling operator R performs a
weighted arithmetic mean over d rows without overlapping. Note that these downsampling
operators are sparse nonnegative matrices.

4.3 Algorithm for MR-β-NMF problem

As explained in Section 1.10 many state-of-the-art NMF optimization algorithms rely on a
BCD scheme by optimizing alternatively over W for H fixed and vice versa, and we adopt
this approach in this chapter. Recall that the β-divergence is only convex with respect to
its second argument when β P r1, 2s. The goal in this section is to derive an algorithm to
tackle MR-β-NMF problem (4.6). For R,S and W fixed, let us consider the subproblem
in H:

min
Hě0

LpHq “ DβpX|RWHq ` λDβpY |WHSq. (4.7)

As we will see, the subproblems in W , R and S for the other variables fixed are similar. To
tackle this problem, we follow the standard majorization-minimization framework [130].
We start by constructing an auxiliary function denoted L̄ which is a tight upper-bound for
the objective L at the current iterate, see Definition 3.3.1. The optimization problem with
L is then replaced by a sequence of simpler problems for which the objective is L̄. The new
iterate Hpi`1q is computed by minimizing the auxiliary function at the previous iterate
Hpiq, either approximately or exactly. This guarantees L to decrease at each iteration as
per Lemma 3.3.1.
The most difficult part in using the majorization-minimization framework is to design an

auxiliary function that is easy to optimize. Usually such auxiliary functions are separable
(that is, there is no interaction between the variables so that each entry of H can be
updated independently) and convex. We will construct an auxiliary function for LpHq
from (4.7) by a positive linear combination of two auxiliary functions, one for each term
of LpHq.

Separable auxiliary function for the first term of LpHq

The function DβpX|RWHq separates into
ř

nDβpxn|RWhnq, where xn and hn are the nth
column of X and H respectively. Therefore we only consider the optimization over one
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specific column x of X and h of H. To simplify notation, we denote the current iterate as
h̃.

We now use the separable auxiliary function presented in [45] which consists in majorizing
the convex part of the β-divergence using Jensen’s inequality and majorizing the concave
part by its tangent (first-order Taylor approximation). Note that the divergence can always
be expressed as the sum of a convex, concave, and constant part, such that:

dβpx|yq “ ďβpx|yq ` d̂βpx|yq ` d̄βpx|yq,

where ď is convex function of y, d̂ is a concave function of y and d̄ is a constant of y, see
[45] for the definition of these terms for different values of β.

By denoting RW by P and RWh̃ by x̃ with entries
“

RWh̃
‰

f
“ x̃f for f P r1, FXs, the

auxiliary function for
ř

f dβpxf | rPhsf q at h̃ is given by:

GXph|h̃q “
FX
ÿ

f

«

ÿ

k

pfkh̃k
x̃f

ďβpxf |x̃f
hk

h̃k
q

ff

` d̄βpxf |x̃f q

`

«

d̂
1

βpxf |x̃f q
ÿ

k

pfkphk ´ h̃kq ` d̂βpxf |x̃f q

ff

.

(4.8)

Therefore the function

GXpH|H̃q “
ÿ

n

GXphn|h̃nq (4.9)

is an auxiliary function (convex and separable) for DβpX|RWHq at H̃ where GXph|h̃q is
given by (4.8).

Separable auxiliary function for the second term of LpHq

Let ỹfn “ rWHSsfn:

DβpY |WHSq “
ÿ

fn

dβpyfn| rWHSsfnq

“
ÿ

fn

dβpyfn|
ÿ

kj

wfkhkjsjnq

“
ÿ

fn

dβpyfn|
ÿ

kj

pwfksjnqhkjq

“
ÿ

fn

ďβpyfn|
ÿ

kj

pwfksjnqhkjq

`
ÿ

fn

d̂βpyfn| rWHSsfnq

`
ÿ

fn

d̄βpyfn| rWHSsfnq

(4.10)
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where the indices f P r1, FY s, n P r1, NY s and j P r1, NXs. If we introduce λ̃fkjn “
pwfksjnqh̃kj

ř

kj wfksjnh̃kj
, then (4.10) can be written as follows:

DβpY |WHSq “
ÿ

fn

ďβpyfn|
ÿ

kj

λ̃fkjn
pwfksjnqhkj

λ̃fkjn
q

`
ÿ

fn

d̂βpyfn| rWHSsfnq

`
ÿ

fn

d̄βpyfn| rWHSsfnq.

(4.11)

Let ỹfn “ rWHSsfn and let us remark that
ř

kj λ̃fkjn “ 1. Therefore we can majorize the
convex part of (4.11) using Jensen’s inequality and majorize the concave part of (4.11) by
its first-order Taylor approximation and we get the following function:

GY pH|H̃q “
ÿ

f,n

«

ÿ

k,j

pwfksjnqh̃kj
ỹfn

ďβpyfn|ỹfn
hkj

h̃kj
q

ff

` d̄βpyfn|ỹfnq ` d̂βpyfn|ỹfnq

` d̂
1

βpyfn|ỹfnq
ÿ

k,j

wfkphkj ´ h̃kjqsjn.

(4.12)

In [45], the authors show that (4.12) is an auxiliary function (separable and convex) to
DβpY |WHSq at H̃. Indeed GY pH|H̃q is an upper-bound to DβpY |WHSq at H̃ by con-
struction and is tight when H “ H̃.

Auxiliary function for multi-resolution β-NMF

Based on the auxiliary functions presented in previous sections, we can directly derive a
separable auxiliary function F̄ pH|H̃q for multi-resolution β-NMF (4.7).

Corollary 4.3.0.1. For H ě 0, λ ą 0, the function

L̄pH|H̃q “ GXpH|H̃q ` λGY pH|H̃q,

where GX is given by (4.9) and GY by (4.12), is a convex and separable auxiliary function
for LpHq “ DβpX|RWHq ` λDβpY |WHSq.

Proof. This follows directly from (4.9) and (4.12).

Algorithm for MR-β-NMF

Given the convexity and the separability of the auxiliary function, the optimum is obtained
by canceling the gradient. The derivative of the auxiliary function L̄pH|H̃q with respect to
a specific coefficient hkz, with index z identifying the same column specified by n in (4.8)
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and specified by j in (4.12), is given by:

∇hkz L̄ “ ∇hkzGXpH|H̃q ` λ∇hkzGY pH|H̃q

“

FX
ÿ

f

pfk

„

ď1β

ˆ

xfz|x̃fz
hkz

h̃kz

˙

` d̂
1

βpxfz|x̃fzq



` λ
FY
ÿ

f

NY
ÿ

n

wfksznrď
1

β

ˆ

yfn|ỹfn
hkz
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˙

` d̂
1

βpyfn|ỹfnqs.

(4.13)

For β “ 1, (4.13) becomes:

∇hkz L̄ “
FX
ÿ

f

pfk

«

1´
xfzh̃kzx̃

´1
fz

hkz

ff

` λ
FY
ÿ

f

NY
ÿ

n

wfkszn

«

1´
yfnh̃kz ỹ

´1
fn

hkz

ff

.

(4.14)

We set (4.14) to zero and get the following closed-form solution for the hkz coefficient of
H:

hkz “ h̃kz

řFX
f pfkxfzx̃

´1
fz ` λ

řFY
f

řNY
n wfksznyfnỹ

´1
fn

řFX
f pfk ` λ

řFY
f

řNY
n wfkszn

(4.15)

The generalization of the closed-form solution (4.15) for any β for H is given in Table 4.1
in matrix forms. Table 4.1 gives also the closed-form solution for W which is derived with
the same rationale. As mentioned in Section 4.2, in the general case, operators R and
S are unknown. We propose here to derive updates for R and S so that these operators
can be learned from the data and sensible estimates for W and H during the optimization
scheme. The updates for R and S have been derived in a similar fashion as for matrices
W and H. For the update of R for instance, one has simply to note it corresponds to the
update of W where we only keep the terms multiplied by λ “ 1 and where the roles of Y ,
W , H and S are exchanged with X, R, W and H, respectively.

Algorithm 4 summarizes our method to tackle (4.6) which is referred as MR-β-NMF. It
consists in two optimization loops:

• Loop 1: matrices W and H are alternatively updated with downsampling operators
R and S kept fixed so that we obtain good estimates for W and H. The updates
are performed for a maximum number of iterations imposed by the parameter MAX-
ITERL1.

• Loop 2: matrices W , H, S and R are alternatively updated so that the algorithm
learns the downsampling operators during the optimization process. The maximum
number of iterations for loop 2 is controlled by parameter MAXITERL2.
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Table 4.1: Multiplicative updates for MR-β-NMF.

H “ H̃ d

˜

”

WT
´

RT
´

pRWH̃q
.pβ´2q

dX
¯

`λ
´

pWH̃Sq
.pβ´2q

dY
¯

ST
¯ı

”

WT
´

RT pRWH̃q
.pβ´1q

`λpWH̃Sq
.pβ´1q

ST
¯ı

¸.γpβq

,

W “ W̃ d

˜

”´

RT
´

pRW̃Hq
.pβ´2q

dX
¯

`λ
´

pW̃HSq
.pβ´2q

dY
¯

ST
¯

HT
ı

”´

RT pRW̃Hq
.pβ´1q

`λpW̃HSq
.pβ´1q

ST
¯

HT
ı

¸.γpβq

,

S “ S̃ d

˜

”

HT
´

WT
´

pWHS̃q
.pβ´2q

dY
¯¯ı

”

HT
´

WT pWHS̃q
.pβ´1q¯ı

¸.γpβq

,

R “ R̃d

˜

”´´

pR̃WHq
.pβ´2q

dX
¯

HT
¯

WT
ı

”´

pR̃WHq
.pβ´1q

HT
¯

WT
ı

¸.γpβq

,

where γpβq “ 1
2´β for β ă 1, γpβq “ 1 for β P r1, 2s and γpβq “ 1

β´1 for β ą 2 [45].

For the HS-MS fusion problem, the operators R and S are usually known and therefore
the parameter MAXITERL2 is set to zero. In this chapter, the second optimization loop
is considered only for the audio spectral unmixing application since the operators R and
S are unknown.

After W and H are updated, we normalize W such that ||W p:, kq||1 “ 1 for all k,
and we normalize H accordingly so that WH remains unchanged. This normalization is
commonly used for NMF-based methods and is mainly performed to remove the scaling
degree of freedom. As a convergence condition, we consider the relative change ratio of the
cost function L from (4.6), namely |Li ´ Li`1| ď κLi where κ is a given threshold, and i
is the iteration counter. We also stop the optimization process if the number of iterations
exceeds the predefined maximum number of iterations.
It can be verified that the computational complexity of the MR-β-NMF is asymptotically

equivalent to the standard MU for β-NMF, that is, it requires O pFNKq operations per
iteration.

Parallel computing

We remark that some of the most computationally intensive steps of the proposed algorithm
can be easily ran onto a parallel computation platform. Indeed, the complexity of our
multiplicative updates detailed in Table 4.1 is mainly driven by the matrix products in
which matrix S is involved. On Matlab for example, we can easily take of advantage of
a GPU compatible with CUDA libraries by simply transforming usual arrays into GPU
arrays. In our case, on a desktop equipped with a Intel CoreTM i7-8700 CPU and a GeForce
RTX 2070 Super GPU, the runtime can be up to 5 times shorter.

4.4 Numerical experiments on audio data sets

In this section, we perform numerical experiments to validate the effectiveness of MR-β-
NMF on two synthetic audio data sets.
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Algorithm 4 Multiplicative updates for MR-β-NMF

Require: A matrix X P RFXˆNX` , a matrix Y P RFY ˆNY` , an initialization H P RKˆNX` ,
an initialization W P RFY ˆK` , a matrix R P RFXˆFY` , a matrix S P RNXˆNY` , a factor-
ization rank K, a maximum number of iterations MAXITERL1, a maximum number
of iterations MAXITERL2, a threshold κ and a weight λ ą 0

Ensure: A rank-K NMF pW,Hq of V « WH with W ě 0 and H ě 0, and operators R
and S such that X « RWH and Y «WHS.

1: % Loop 1
2: iÐ 0
3: while i ă MAXITERL1 and

ˇ

ˇ

ˇ

Li´Li`1

Li

ˇ

ˇ

ˇ
ą κ do

4: % Update of matrices H and W
5: Update H and W sequentially; see Table 4.1
6: pW,Hq Ð normalize pW,Hq, iÐ i` 1
7: end while
8: % Loop 2
9: iÐ 0

10: while i ă MAXITERL2 and
ˇ

ˇ

ˇ

Li´Li`1

Li

ˇ

ˇ

ˇ
ą κ do

11: % Update of matrices H,W,S and R
12: Update H,W,S,R sequentially; see Table 4.1
13: pW,Hq Ð normalize pW,Hq, iÐ i` 1
14: end while

4.4.1 Experimental setup and evaluation

Data

The proposed technique for joint-factorization of amplitude audio spectrograms is applied
to two synthetic audio samples. Both music samples, respectively referred as dataset 1 and
dataset 2, have been generated with a professional audio software called Sibelius based on
the musical score shown in Figures 3.1 and 3.7.
The two following subsections respectively introduce a dedicated test procedure and the

quantitative criteria to evaluate the performance of MR-β-NMF algorithm.

Experimental comparison

This section describes the test procedure elaborated to evaluate the quality of the results
obtained with MR-β-NMF (4.6) that jointly factorizes two audio spectrograms X and Y .
In the following, matrices W and H stand for the solutions computed with Algorithm 4
that solves MR-β-NMF problem (4.6). We aim at showing that the factor W has a high
frequency resolution whereas the matrix H has a high temporal resolution. To achieve this
goal, we compare W to a dictionary matrix denoted WY computed with a baseline β-NMF
approach that factorizes the high frequency spectrogram Y only. The baseline β-NMF
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applied on Y solves the following optimization problem:

min
WY ě0,HY ě0

DβpY |WYHY q. (4.16)

Due to the trade-off between detailed frequency and temporal information, the activation
matrix HY shows a low temporal resolution. To compare the accuracy of the solutions
W and WY , we need to have access to an oracle matrix W# that is the reference for the
comparison. For instance, for the dataset 1, each column of W# is supposedly the "true"
spectral signature of each of the three notes; E4, D4 and C4. We estimated W# as follows:

• We synthetically generate three audio signals and each one contains the sequence of
one note in particular.

• Based on the three audio signals, we generate three amplitude spectrograms that have
high frequency resolution with the same window size as the one used to generate Y .

• For each amplitude spectrogram, we perform a rank-1 NMF. The resulting FY -
dimensional vectors are concatenated to form the oracle matrix W#.

We show the accuracy of H with a similar procedure; H is compared to an activation
matrix HX obtained by solving

min
WXě0,HXě0

DβpX|WXHXq, (4.17)

using multiplicative updates. The oracle matrix H#, that is, the reference for the com-
parison, is computed by performing three independent rank-1 NMF on three amplitude
spectrograms that have high temporal resolution, all generated with the same window size
as the one used to generate X.

Performance Evaluation

This section presents the qualitative criteria for evaluating the performance of the solutions
obtained with Algorithm 4. We compute the following measures of reconstruction.
‚ Activation matrices: in order to avoid the scaling and permutation ambiguities inherent
to the considered NMF models, we first normalize in L-1 norm the rows of the actications
matrices H and solve an assignment problem w.r.t. the oracle matrix H#. The quality
of the activation matrix H is compared to HX w.r.t. H# by computing the following
signal-to-noise ratios (SNR): for all k,

SNRHk “ 20 log10

ˆ

||H̄pk, :q||F
||H̄pk, :q ´ H̄#pk, :q||F

˙

, (4.18)

where H̄pk, :q “ Hpk,:q
||Hpk,:q||1 and ||Hpk, :q||1 “

ř

j |Hpk, jq|, and

SNRHX,k “ 20 log10

ˆ

||H̄Xpk, :q||F
||H̄Xpk, :q ´ H̄#pk, :q||F

˙

. (4.19)
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The higher the SNRs (4.18) and (4.19), the better is the estimation for the activation
matrix.
‚ Dictionary matrices: The quality of the dictionary matrix W is evaluated in the same
fashion, except that the normalization is performed by columns.

4.4.2 Results

In this section, we use the following setting:

• 100 random initializations for W and H for each NMF.

• the window lengths are set to 1024 (23ms) and 4096 (93ms), then the downsampling
ratio d is equal to 4. For the generation of R and S, parameter f is set to 2.

• β “ 1, and we consider the amplitude spectrograms as the input data.

• we use λ “ 1 in all our experiments.

Note that we finally report qualitative numerical results obtained for a real-life recording
of data set 2 used in [43]. In particular we showcase the results obtained for W and H

with Algorithm 4 for two values of β, namely β “ 0 and β “ 1 with increasing values of
penalty weight λ. Algorithm 4 has been implemented using Matlab R2018a, the code is
available from https://bit.ly/2J6dKtc.

Dataset 1: "Mary had a little lamb"

In this section we report the numerical results obtained after the completion of the test set
up presented in Section 4.4.1, and using MAXITERL1=100 and MAXITERL2=400. for
Algorithm 4.
Table 4.2 reports the average SNR, the standard deviation and the best SNR com-

puted for the activations and dictionary vectors obtained with the models described in
Section 4.4.1 over the 100 initializations. As it can be observed, activations H are slightly
better than activations HX , and with a significant lower standard deviation for each note.
The results for the dictionary are even more conclusive; MR-β-NMF outperforms baseline
NMF (4.16) for which the SNR (best case) can be up to two times larger. Moreover, the
standard deviations of MR-β-NMF are significantly lower than those obtained with base-
line NMF (4.16). It appears that the second term in the objective function in (4.6) acts as
a regularizer so that MR-β-NMF is more robust to different initializations.
Figure 4.1 shows the dictionary matrices W#, W , WY and WX . For more clarity, the

frequency range is limited to 2 kHz. This limited range includes all the most significant
peaks in terms of magnitude. We observe that all the frequency peaks are accurately
estimated by MR-β-NMF for each note. Figure 4.1 also integrates the dictionary matrix
WX to highlight the impact of using baseline NMF (4.17) that uses a higher temporal
resolution.

https://bit.ly/2J6dKtc
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Fig. 4.1. Columns of W#, W , WY and WX in semi-log scale. Top, middle and bottom
sub-figures show the spectral content respectively for C4, D4 and E4.

We conclude that MR-β-NMF is able to obtain more robust and more accurate results
than baseline β-NMFs that factorize a single spectrogram.

Table 4.2: Comparison of MR-β-NMF with baseline β-NMF in terms of SNR on the acti-
vations and the dictionary vectors with respect to true factors on the dataset 1.
The table reports the average, standard deviation and the best SNR over 100
random initializations for W and H. Bold numbers indicate the highest SNR.

Note Activation SNR’s (dB) Basis SNR’s (dB)
SNRHk SNRHX,k SNRWk

SNRWY,k

average ˘ std best average ˘ std best average ˘ std best average ˘ std best
C4 12.33 ˘ 0.17 12.74 3.89 ˘ 8.99 12.19 21.35 ˘ 1.77 22.66 7.95 ˘ 7.84 12.38
D4 14.50 ˘ 0.08 14.62 8.57 ˘ 6.44 14.38 21.25 ˘ 0.35 21.61 14.71 ˘ 6.06 18.23
E4 19.68 ˘ 0.04 19.82 15.28 ˘ 5.06 19.74 22.71 ˘ 0.36 23.02 19.36 ˘ 2.02 20.66
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Dataset 2

In this section we report the numerical results obtained for dataset 2, using MAXITERL1=500
and MAXITERL2=1500 for Algorithm 4.
Table 4.3 reports the average SNR, the standard deviation and the best SNR computed

for activations and dictionary vectors obtained with the methods described in 4.4.1 over
100 initializations. We observe that:

• MR-β-NMF algorithm provides results that show high resolutions in both frequency
and temporal domains,

• the regularization effect of MR-β-NMF w.r.t. baseline NMFs is less stunning than
observed for dataset 1. However the standard deviations obtained with MR-β-NMF
for the dictionary are significantly lower than those obtained with the baseline NMFs.

• by looking more accurately at the results for the dictionary, MR-β-NMF globally
performs better than baseline NMFs. For the activations, baseline NMFs perform
slightly better than MR-β-NMF for three scores, with an improvement of at most
1.9% (for the F4 score).

Table 4.3: Comparison of MR-β-NMF with baseline β-NMF in terms of SNR on the acti-
vations and the dictionary vectors with respect to true factors on the dataset 2.
The table reports the average, standard deviation and the best SNR over 100
random intializations for W and H. Bold numbers indicate the highest SNR.

Note Activation SNR’s (dB) dictionary SNR’s (dB)
SNRHk SNRHX,k SNRWk

SNRWY,k

average ˘ std best average ˘ std best average ˘ std best average ˘ std best
A4 11.98 ˘ 0.01 12.03 12.17 ˘ 0.01 12.17 16.24 ˘ 0.02 16.43 16.29 ˘ 0.26 16.42
C5 9.54 ˘ 0.02 9.57 9.43 ˘ 0.01 9.43 9.41 ˘ 0.02 9.42 8.61 ˘ 0.72 8.73
D4 14.81 ˘ 0.01 14.82 14.92 ˘ 0.01 14.92 16.20 ˘ 0.06 16.33 15.24 ˘ 2.37 15.64
F4 11.23 ˘ 0.01 11.32 11.52 ˘ 0.01 11.54 16.47 ˘ 0.05 16.50 16.76 ˘ 0.99 16.93

Qualitative numerical results on real-life recording for data set 2 In this section we
report qualitative numerical results obtained for a real-life recording of data set 2 used in
[43]. The objective is to highlight the effect of increasing the penalty weight λ in MR-
β-NMF problem on the solutions W and H obtained with Algorithm 4. Two values for
parameter β are considered; β “ 1 (KL) and β “ 0 (IS). For the analysis, the following
parameters have been considered:

• values for penalty weight λ in the range r0.001; 2s are considered. For clarity purpose
only results with λ “ 0.001 and λ “ 1 are presented in this section.
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• initializations for W and H are performed with a continuation method; with λ set
to zero, 50 analysis with MR-β-NMF with random initialization for W and H have
been conducted and best solutions (in terms of final value for the objective function)
among them have been considered for initialization of Algorithm 4 for the different
values of λ.

• we use MAXITERL1=100 and MAXITERL2=900.

• For β “ 1, we have chosen the amplitude spectrograms as input data for Algorithm
4 with the factorization rank set to 5 as suggested in [43].

• For β “ 0, we have chosen the power spectrograms as input data for Algorithm 4
with the factorization rank set to 6 as suggested in [43].

Figures 4.2 and 4.3 respectively show the activations and the basis obtained with MR-
KL-NMF for both values of parameter λ. For more clarity, frequency range is limited to 5
kHz.
First of all, one can observe that the pitch estimation is equivalent to the ones presented

in [43]. We get four pitches and one extra component that correspond to a mix of residual
noise and transient events (as such, the hammer hits and pedal releases). Further, one
observe that:

• as the value for λ increases, the frequency peaks estimation is more accurate and the
frequency spread around the peaks decreases.

• increase the value for λ has no impact on the activations accuracy. For λ “ 0.001,
the factorization is mainly driven by input data VX which ensures high-temporal
resolution for the solution. When λ “ 1, we get solutions with high frequency and
temporal resolutions.

Let us finally report that the conclusions of the analysis conducted for β “ 0 are identical.

4.5 Numerical experiments on HS-MS fusion

In this section, we perform numerical experiments to validate the effectiveness of MR-β-
NMF on the HS-MS fusion problem.

4.5.1 Test setup and criteria

Test data

The proposed MR-β-NMF algorithm is tested on semi-real datasets against several methods
and algorithms widely used to tackle the HS-MS data fusion problem, namely GSA [6],
CNMF [149], HySure [123], FUMI [142], GLP [5], MAPSMM [40], SFIM [96] and Lanaras’s
method [83]. In a nutshell: GSA, SFIM and GLP are pansharpening-based methods, the
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Fig. 4.2. Rows of H obtained with MR-KL-NMF with K “ 5 for λ “ 0.001 and λ “ 1.

remaining methods belong to subspace-based methods that can be splitted into unmixing
methods (CNMF, Lanaras’s method and HySure) and Bayesian-based approaches (FUMI,
MAPSMM) [147].
All the algorithms are implemented and tested on a desktop computer with Intel Core

i7-8700@3.2GHz CPU, Geforce RTX 2070 Super GPU and 32GB memory. The codes1

are written in MATLAB R2018a. The implementation for benchmarked algorithms comes
from the comparative review of the recent literature for HS and MS data fusion detailed
in [147]. We consider the following real HS datasets:

• HYDICE Urban: this data set has been acquired with HS Digital Imagery Collection
Experiment (HYDICE) HS sensor [13] over an urban area at Copperas Cove, TX,
U.S. in October 1995. The Urban dataset2 consists of 307ˆ307 pixels and 162 spectral
reflectance bands in the wavelength range 400 nm to 2500 nm. We extract a 120ˆ120

1https://naotoyokoya.com/Download.html
2http://lesun.weebly.com/hyperspectral-data-set.html

https://naotoyokoya.com/Download.html
http://lesun.weebly.com/hyperspectral-data-set.html
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Fig. 4.3. Columns of W (log10 scale) obtained with MR-KL-NMF with K “ 5 for λ “
0.001 and λ “ 1.

subimage from this dataset.

• HYDICE Washington DC Mall: this dataset3 has been acquired with HYDICE HS
sensor over the Washington DC Mall and consists of 1208ˆ307 pixels and 191 spectral
reflectance bands in the wavelength range 400 nm to 2500 nm. We extract a 240ˆ240
subimage from this dataset.

• AVIRIS Indian Pines: this dataset has been acquired with NASA Airborne Visi-
ble/Infrared Imaging (AVIRIS) Spectrometer [134] over the Indian Pines test site in
North-western Indiana and consists of 145ˆ145 pixels and 200 spectral reflectance
bands in the wavelength range 400 nm to 2500 nm. We extract a 120ˆ120 subimage
from this dataset.

3https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Note that entries of the datasets are uncalibrated relative values, also referred as Dig-
ital Numbers (DN). As the goal is to fuse data and not to perform HS unmixing and
classification, we do not convert these values into reflectances.

Test procedure

In this chapter we consider semi-real data by conducting the numerical experiments based
on the widely used Wald’s protocol [138]. This protocol consists in simulating input MS
and HS images from a reference high-resolution HS image. In this chapter, MS image X
and HS image Y have been derived from high-resolution HS image V through the models
(4.4) and (4.5) respectively. Let us recall that the operator R from (4.1) designates the
relative spectral responses from the super-resolution image to the MS image. In other
words, it defines how the satellite instruments measure the intensity of the wavelengths
(colors) of light. We generate a six-band MS image X by filtering the reference image V
with the Landsat 4 TM-like reflectance spectral responses4 depicted in Figure 4.4. The
Landsat 4 TM sensor [105] has a spectral coverage from 400 nm to 2500 nm so that it is
consistent with the spectral coverage of the datasets.
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Fig. 4.4. Landsat 4 TM relative spectral responses.

The operator S (4.5) corresponds to the process of spatial blurring and downsampling.
The high spectral low spatial resolution HS image Y is generated by applying a 11ˆ11
Gaussian spatial filter with a standard deviation of 1.7 on each band of the reference image
V and downsampling every 4 pixels, both horizontally and vertically. The HS and MS
images are finally both contaminated with noise. The level of noise is usually characterized

4https://landsat.usgs.gov/spectral-characteristics-viewer

https://landsat.usgs.gov/spectral-characteristics-viewer
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by the SNR expressed in dB. Here, SNRX and SNRY refer to the noise level for the MS
and HS images respectively. In this chapter, we apply the same level of noise for each
spectral band. Let us give more insights on the last step of the MS image generation:
X “ max

`

0, RV ` εX
˘

where the noise matrix εX is constructed as follows: we introduce
xi for i “ 1, 2, some binary coefficients, and

Ñ “ x1
NP
}NP}F

` x2
NF
}NF}F

,

where

• Each entry of NP is generated using the Poisson distribution of parameter pRṼ qi,j
for all pi, jq, where Ṽ is a noiseless low-rank approximation of V that is computed
separately. More precisely, by setting εX “ 0FXˆNX where 0FXˆNX is all-zero matrix,
a solution pW,Hq for MR-β-NMF (4.6) is first computed with Algorithm 4, and the
parameter for the Poisson distribution is defined as Ṽ “WH.

• Each entry of NF is generated using the normal distribution of mean 0 and variance
1.

We set εX “ η }RV }F
}Ñ}F

Ñ with η “ 1

10
SNRX

20
. For example, if we fix SNRX “ 25dB,

V1 “ maxp0, RV ` εXq is a MS image contaminated with 5.62% of noise (that is, }εX}F “
0.0562}RV }F ) and projected onto the nonnegative orthant. The noise matrix εY is obtained
in the same way. As an illustration, the reference image of Urban data set as the noise-
contaminated HS and MS images are displayed in Figure 4.5.

Fig. 4.5. Urban data set: (Left) reference input image, (Middle) contaminated HS input
image with SNRX “ 25dB and (Right) contaminated MS input image with
SNRY “ 25dB. All the images are in composite RGB color based on spectral
bands 13 (460 nm), 33 (560 nm) and 39 (600 nm) for HS images and bands 1 to
3 for MS image.

The benchmarked algorithms listed in 4.5.1 are configured as recommended in the com-
parative review [147] with the following variations:
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• The number of endmembers is a key parameter for unmixing-based methods. For
MR-β-NMF, CNMF, Lanaras’s method and HySure, K is set to the 5 and 6 for
HYDICE Urban and HYDICE Washington DC Mall datasets respectively as done in
[154]. For the Indian Pine dataset, K “ 16 as in [128].

• The benchmarked algorithms are stopped when the relative change of the objective
function is below 10´4 or when the number of iterations exceeds 500. For algorithms
such as CNMF that include outer and inner loops, we contacted the authors to set up
the best balance for the maximum number of inner (I1) and outer (I2) loop iterations
to fairly compare the methods, the following couples of values are considered: I1 “

100 and I2 “ 5 and I1 “ 250 and I2 “ 2. The couple of values that gives the best
results for each dataset is considered in Section 4.5.2, that is I1 “ 100 and I2 “ 5.

• The matrix R is known for all algorithms that make use of it. For MR-β-NMF, it
means we use MAXITERL1=500 and MAXITERL2=0.

Finally, let us summarize the initialization strategy:

• MR-β-NMF uses random nonnegative initializations for W and H.

• CNMF starts by unmixing the HS image using VCA [106] to initialize the endmember
signatures,

• SISAL [20] is used to initialize the endmembers for Lanaras’s method.

Four variants of the MR-β-NMF are considered, namely β “ 2, β “ 3
2 , β “ 1 and β “ 1

2 .
We test the algorithms under a scenario where no noise is added (that is, Ñ = 0), and
a scenario where noise is added so that the SNRs for the noise terms in εX and εY are
SNRX “ 25dB and SNRY “ 25dB.

Performance evaluation

In order to assess the fusion quantitatively, we use the following five complementary and
widely used quality measurements:

• Peak SNR (PSNR): the PSNR is used to assess the spatial reconstruction quality of
each band. It corresponds to the ratio between the maximum power of a signal and
the power of residual errors. The PSNR of the f -th band is defined as:

PSNRpvf , ṽf q “ 10 log10

˜

maxpvf q2

}vf ´ ṽf }
2
2 {NX

¸

where NX is the number of pixels, maxpvf q is the maximum pixel value in the f -
th reference band image. A larger PSNR value indicates a higher quality of spatial
reconstruction. We use the average PSNR with respect to bands for the quality index
of the entire fused image.
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• The root-mean-square error (RMSE): RMSE is a similarity measure between the
super-resolution image V and the fused image Ṽ “WH defined as:

RMSEpV, Ṽ q “ 1
FYNX

›

›V ´ Ṽ
›

›

2
F

where FY is the number of spectral bands in the super-resolution image. The smaller
the RMSE is, the better the fusion quality is.

• Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS): ERGAS provides
a macroscopic statistical measure of the quality of the fused data. More precisely,
ERGAS calculates the amount of spectral distortion in the image [139] which is
defined as:

ERGASpV, Ṽ q “ 100d

g

f

f

e

1
FY

FY
ÿ

f“1

}vf ´ ṽf }
2
2

p1{NXeT vf q
2

where d is the spatial downsampling ratio between the higher and lower spatial res-
olution input images and e is a all-ones column vector of appropriate size. ERGAS
calculates the band-wise normalized RMSE and multiplies it with d ratio to account
for the difficulty in the fusion problem. The best value is at 0.

• Spectral Angle Mapper (SAM): SAM is used to quantify the spectral information
preservation at each pixel. More precisely, SAM determines the spectral distance
by computing the angle between two vectors of the estimated and reference spectra.
The SAM index at the n-th pixel is defined as follows:

SAMpvn, ṽnq “ arccos
ˆ

xvn|ṽny

}vn}2 }ṽn}2

˙

where x.|.y stands for the inner product. The overall SAM is obtained by averaging
the SAMs computed for all image pixels. The smaller the absolute value of SAM is,
the better the fusion quality is.

• The universal image quality index (UIQI) introduced in [140]: UIQI evaluates the
similarity between two single-band images. It is related to the correlation, luminance
distortion, and contrast distortion of the estimated image w.r.t. reference image. The
UIQI between two single-band images vf and ṽf is defined as follows:

UIQIpvf , ṽf q “
4σ2

vf ,ṽf
µvfµṽf

´

σ2
vf
` σ2

ṽf

¯´

µ2
vf
` µ2

ṽf

¯

where pµvf , µṽf , σ2
vf
, σ2

ṽf
q are the sample means and variances of vf and ṽf and σ2

vf ,ṽf

is the sample covariance of pvf , ṽf q. UIQI indicator is in the range r´1, 1s. For
multiband images, the overall UIQI is computed by averaging the UIQI computed
band by band. The best value for UIQI is at 1.

For more details about these quality measurements, we refer the reader to [97] and [142].
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4.5.2 Experimental results

We ran 20 independent trials for each dataset detailed in 4.5.1. The average performance
of each algorithm is shown in Tables 4.4 to 4.6.
Except for runtimes, MR-β-NMF generally rank in the fifth first for all the quality

measurements. For Urban dataset with noise added, MR-β-NMF with β “ 1, β “ 1{2

and β “ 3{2 respectively rank first, second and third for all the metrics except for SAM
for which CNMF ranks first. For the condition with no noise added, MR-β-NMF with
β “ 1, β “ 1{2 ranks first and second for all metrics. MR-β-NMF with β “ 3{2, FUMI and
HySure give similar results. For Washington DC Mall without noise added, MR-β-NMF
with β “ 1, β “ 1{2 ranks first and second for all metrics. For Indian Pines dataset without
noise added, MR-β-NMF with β “ 1 ranks second while HySure ranks first. When noise
is added, Lanaras’s method ranks first while MR-β-NMF with β “ 1{2, β “ 1 rank second
and third for most criteria. In order to give more insights on the performance comparison
between algorithms, Figure 4.6 displays the SAM maps obtained for one trial for the
Urban, Washington DC Mall and Indian Pines datasets. Visually, the proposed method
performs competitively with other state-of-the-art methods. Indeed, as already observed
with the SAM comparison in Tables 4.4 to 4.6, the variants of MR-β-NMF show in general
lower values for SAM errors across the images. For the Urban dataset, the highest SAM
errors obtained with the variants of MR-β-NMF are less widespread and localized at some
specific spots which correspond to the edges of the roofs and trees. This observation makes
sense as those regions show more atypic reflectance angles and therefore more non-linear
effects in terms of spectral mixture. The same observations apply for the Washington DC
Mall dataset with and without noise added. For the Indian Pines dataset without noise
added, HySure and FUMI algorithms show lower SAM errors accross images, we visually
confirm that MR-β-NMF with β “ 1, 1{2, 3{2 rank third to fifth. When the noise is added,
Lanaras’s method gives the lowest SAM errors and is less widespread, while MR-β-NMF
with β “ 1, 1{2, 3{2 appear to provide less accurate estimates than CNMF that visually looks
better.

4.6 Conclusions and outlooks

In this chapter, we have presented a new NMF approach for blind spectral unmixing, called
multi-resolution β-NMF (MR-β-NMF). The estimation relies on the minimization of the β-
divergence, a flexible family of measures of fit. MR-β-NMF addresses the resolution trade-
off between two adversarial dimensions by fusing the information coming from multiple
data with different resolutions in order to produce a factorization with high resolutions for
all the dimensions. We have provided multiplicative updates to tackle the minimization
problem and we showed that MR-β-NMF is flexible and can be successfully applied to
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Fig. 4.6. SAM maps for the different hyperspectral images. From top to bottom: Urban
dataset with K “ 5, Washington DC Mall dataset with K “ 6, and Indian Pines
dataset with K “ 16. On the left column: SAM maps without added noise. On
the right column: SAM maps with added noise (SNRX “ SNRY “ 25dB). For
each image, the 12 SAMmaps correspond to the different benchmark algorithms;
from left to right, top to bottom: MR-2-NMF, MR-3{2-NMF, MR-1-NMF, MR-
1{2-NMF, GSA, CNMF, HySure, FUMI, GLP, MAPSMM, SFIM, and Lanaras’s
method.
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Table 4.4: Comparison of MR-β-NMF with state-of-the-arts methods for HS-MS fusion
problem on dataset HYDICE Urban. The table reports the average, standard
deviation for the quantitative quality assessments over 20 trials. Bold, under-
lined and italic to highlight the three best algorithms.

Method Runtime (seconds) PSNR (dB) RMSE ERGAS SAM UIQI
Best value 0 8 0 0 0 1

Dataset - HYDICE Urban - SNR “ 25dB
MR-β “ 2-NMF 52.25 ˘2.45 33.88 ˘ 0.10 16.26 ˘ 0.19 2.48 ˘ 0.03 4.13 ˘ 0.06 0.97 ˘ 0.00
MR-β “ 3{2-NMF 54.46 ˘2.31 34.54 ˘ 0.06 14.92 ˘ 0.09 2.28 ˘ 0.01 3.65 ˘ 0.04 0.98 ˘ 0.00
MR-β “ 1-NMF 52.20 ˘2.03 34.85 ˘ 0.10 14.51 ˘ 0.14 2.22 ˘ 0.03 3.49 ˘ 0.06 0.98 ˘ 0.00
MR-β “ 1{2-NMF 54.47 ˘1.96 34.81˘ 0.10 14.65 ˘ 0.15 2.24 ˘ 0.02 3.52 ˘ 0.06 0.98 ˘ 0.00

GSA 0.72 ˘0.05 32.52˘ 0.00 19.41 ˘ 0.00 2.87 ˘ 0.00 5.63 ˘ 0.00 0.96 ˘ 0.00
CNMF 9.73 ˘1.84 34.33˘ 0.50 15.45 ˘ 0.85 2.37 ˘ 0.17 3.64 ˘ 0.27 0.98 ˘ 0.00
HySure 31.57 ˘2.93 33.90˘ 0.00 16.44 ˘ 0.00 2.57 ˘ 0.00 4.17 ˘ 0.00 0.97 ˘ 0.00
FUMI 0.39 ˘0.03 32.92˘ 0.00 20.30 ˘ 0.00 2.85 ˘ 0.00 4.92 ˘ 0.00 0.96 ˘ 0.00
GLP 6.05 ˘0.42 27.24˘ 0.00 34.37 ˘ 0.00 5.10 ˘ 0.00 6.27 ˘ 0.00 0.91 ˘ 0.00

MAPSMM 44.12 ˘2.60 25.57˘ 0.00 41.95 ˘ 0.00 6.15 ˘ 0.00 6.82 ˘ 0.00 0.87 ˘ 0.00
SFIM 0.24 ˘0.03 26.32˘ 0.00 37.89 ˘ 0.00 5.71 ˘ 0.00 5.90 ˘ 0.00 0.90 ˘ 0.00

Lanaras’s method 8.12 ˘8.71 29.33˘ 0.29 26.84 ˘ 0.85 4.39 ˘ 0.23 4.88 ˘ 0.26 0.94 ˘ 0.00
Dataset - HYDICE Urban - No added noise

MR-β “ 2-NMF 49.55 ˘0.31 38.10 ˘ 0.40 10.94 ˘ 0.31 1.67 ˘ 0.07 3.28 ˘ 0.10 0.99 ˘ 0.00
MR-β “ 3{2-NMF 51.54 ˘0.52 40.01 ˘ 0.50 8.82 ˘ 0.32 1.35 ˘ 0.09 2.60 ˘ 0.10 0.99 ˘ 0.00
MR-β “ 1-NMF 49.71 ˘0.12 41.53 ˘ 0.56 7.86 ˘ 0.28 1.19 ˘ 0.07 2.27 ˘ 0.10 0.99 ˘ 0.00
MR-β “ 1{2-NMF 52.09 ˘0.35 41.69˘ 0.64 7.81 ˘ 0.35 1.19 ˘ 0.08 2.23 ˘ 0.12 0.99 ˘ 0.00

GSA 0.67 ˘0.04 32.93˘ 0.00 22.17 ˘ 0.00 2.87 ˘ 0.00 5.25 ˘ 0.00 0.97 ˘ 0.00
CNMF 10.56 ˘2.02 35.35˘ 0.64 13.91 ˘ 1.81 2.18 ˘ 0.32 3.26 ˘ 0.53 0.98 ˘ 0.00
HySure 28.51 ˘1.09 40.27˘ 0.00 9.67 ˘ 0.00 1.46 ˘ 0.00 2.50 ˘ 0.00 0.99 ˘ 0.00
FUMI 0.36 ˘0.02 41.01˘ 0.00 14.14 ˘ 0.00 1.67 ˘ 0.00 2.71 ˘ 0.00 0.99 ˘ 0.00
GLP 5.61 ˘0.09 27.97˘ 0.00 31.97 ˘ 0.00 4.65 ˘ 0.00 4.78 ˘ 0.00 0.94 ˘ 0.00

MAPSMM 42.19 ˘0.84 25.92˘ 0.00 40.56 ˘ 0.00 5.89 ˘ 0.00 5.66 ˘ 0.00 0.89 ˘ 0.00
SFIM 0.21 ˘0.03 27.05˘ 0.00 35.19 ˘ 0.00 5.21 ˘ 0.00 4.21 ˘ 0.00 0.93 ˘ 0.00

Lanaras’s method 4.72 ˘4.72 29.50˘ 0.35 26.54 ˘ 0.69 4.26 ˘ 0.23 4.57 ˘ 0.21 0.95 ˘ 0.00
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Table 4.5: Comparison of MR-β-NMF with state-of-the-arts methods for HS-MS fusion
problem on dataset HYDICE Washington DC Mall. The table reports the aver-
age, standard deviation for the quantitative quality assessments over 20 trials.
Bold, underlined and italic to highlight the three best algorithms.

Method Runtime (seconds) PSNR (dB) RMSE ERGAS SAM UIQI
Best value 0 8 0 0 0 1

Dataset - HYDICE Washington DC Mall - SNR “ 25dB
MR-β “ 2-NMF 57.59 ˘0.32 26.77 ˘ 0.25 202.02 ˘ 3.59 18.21 ˘ 0.13 3.38 ˘ 0.11 0.90 ˘ 0.01
MR-β “ 3{2-NMF 60.04 ˘0.39 26.37 ˘ 0.32 194.40 ˘ 6.38 18.07 ˘ 0.23 3.05 ˘ 0.18 0.87 ˘ 0.01
MR-β “ 1-NMF 57.95 ˘0.24 26.29 ˘ 0.20 188.42 ˘ 11.18 18.50 ˘ 0.25 2.83 ˘ 0.28 0.86 ˘ 0.01
MR-β “ 1{2-NMF 60.38 ˘0.20 25.68˘ 0.28 201.62 ˘ 14.05 19.46 ˘ 0.41 3.06 ˘ 0.30 0.83 ˘ 0.01

GSA 0.79 ˘0.04 23.00˘ 0.00 235.64 ˘ 0.00 32.25 ˘ 0.00 4.20 ˘ 0.00 0.74 ˘ 0.00
CNMF 7.25 ˘1.26 27.60˘ 0.09 192.67 ˘ 6.50 17.37 ˘ 0.10 2.55 ˘ 0.14 0.89 ˘ 0.00
HySure 34.14 ˘0.94 24.01˘ 0.00 351.13 ˘ 0.00 33.51 ˘ 0.00 6.15 ˘ 0.00 0.75 ˘ 0.00
FUMI 0.42 ˘0.02 24.67˘ 0.00 243.06 ˘ 0.00 19.73 ˘ 0.00 4.04 ˘ 0.00 0.80 ˘ 0.00
GLP 6.42 ˘0.24 19.85˘ 0.00 423.89 ˘ 0.00 33.64 ˘ 0.00 5.28 ˘ 0.00 0.67 ˘ 0.00

MAPSMM 40.91 ˘0.46 19.34˘ 0.00 494.39 ˘ 0.00 32.18 ˘ 0.00 5.91 ˘ 0.00 0.65 ˘ 0.00
SFIM 0.24 ˘0.01 18.08˘ 0.00 892.35 ˘ 0.00 42.23 ˘ 0.00 5.45 ˘ 0.00 0.64 ˘ 0.00

Lanaras’s method 3.11 ˘1.94 25.95˘ 0.06 235.62 ˘ 2.67 17.36 ˘ 0.02 2.78 ˘ 0.03 0.90 ˘ 0.00
Dataset - HYDICE Washington DC Mall - No added noise

MR-β “ 2-NMF 58.55 ˘1.50 32.61 ˘ 0.28 128.50 ˘ 5.87 5.54 ˘ 0.13 2.59 ˘ 0.12 0.97 ˘ 0.00
MR-β “ 3{2-NMF 60.95 ˘1.58 35.36 ˘ 0.38 104.11 ˘ 5.89 2.41 ˘ 0.22 1.89 ˘ 0.12 0.98 ˘ 0.00
MR-β “ 1-NMF 59.01 ˘2.02 37.80 ˘ 0.75 89.20 ˘ 5.43 1.76 ˘ 0.27 1.47 ˘ 0.07 0.99 ˘ 0.00
MR-β “ 1{2-NMF 61.21 ˘1.05 38.27˘ 0.83 90.88 ˘ 6.26 1.55 ˘ 0.20 1.48 ˘ 0.10 0.99 ˘ 0.00

GSA 0.81 ˘0.08 29.93˘ 0.00 262.27 ˘ 0.00 3.11 ˘ 0.00 3.84 ˘ 0.00 0.97 ˘ 0.00
CNMF 7.90 ˘2.67 31.46˘ 1.07 152.95 ˘ 14.25 5.93 ˘ 8.92 2.01 ˘ 0.49 0.96 ˘ 0.03
HySure 35.85 ˘2.19 31.23˘ 0.00 190.57 ˘ 0.10 3.21 ˘ 0.00 3.21 ˘ 0.00 0.96 ˘ 0.00
FUMI 0.43 ˘0.03 36.52˘ 0.00 142.92 ˘ 0.00 2.32 ˘ 0.00 1.76 ˘ 0.00 0.98 ˘ 0.00
GLP 6.95 ˘0.52 26.19˘ 0.00 373.07 ˘ 0.00 4.53 ˘ 0.00 4.16 ˘ 0.00 0.93 ˘ 0.00

MAPSMM 42.88 ˘0.85 24.42˘ 0.00 459.09 ˘ 0.00 5.61 ˘ 0.00 4.98 ˘ 0.00 0.88 ˘ 0.00
SFIM 0.27 ˘0.05 25.12˘ 0.00 408.40 ˘ 0.00 6.53 ˘ 0.00 3.95 ˘ 0.00 0.92 ˘ 0.00

Lanaras’s method 4.70 ˘3.55 28.46˘ 0.36 230.31 ˘ 7.44 3.94 ˘ 0.21 2.55 ˘ 0.03 0.96 ˘ 0.00
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Table 4.6: Comparison of MR-β-NMF with state-of-the-arts methods for HS-MS fusion
problem on dataset AVIRIS Indian Pines. The table reports the average, stan-
dard deviation for the quantitative quality assessments over 20 trials. Bold,
underlined and italic to highlight the three best algorithms.

Method Runtime (seconds) PSNR (dB) RMSE ERGAS SAM UIQI
Best value 0 8 0 0 0 1

Dataset - AVIRIS Indian Pines - SNR “ 25dB
MR-β “ 2-NMF 15.48 ˘0.53 27.11 ˘ 0.03 187.37 ˘ 0.80 1.64 ˘ 0.01 2.26 ˘ 0.02 0.78 ˘ 0.00
MR-β “ 3{2-NMF 16.76 ˘0.75 27.29 ˘ 0.02 183.47 ˘ 0.56 1.57 ˘ 0.00 2.14 ˘ 0.01 0.78 ˘ 0.00
MR-β “ 1-NMF 15.57 ˘0.53 27.38 ˘ 0.02 181.77 ˘ 0.51 1.55 ˘ 0.00 2.09 ˘ 0.01 0.78 ˘ 0.00
MR-β “ 1{2-NMF 16.90 ˘0.55 27.55˘ 0.03 179.10 ˘ 0.41 1.52 ˘ 0.01 2.03 ˘ 0.01 0.79 ˘ 0.00

GSA 0.31 ˘0.04 21.79˘ 0.00 326.23 ˘ 0.00 2.94 ˘ 0.00 3.28 ˘ 0.00 0.64 ˘ 0.00
CNMF 2.13 ˘0.10 24.05˘ 0.21 241.72 ˘ 5.39 2.33 ˘ 0.07 1.68 ˘ 0.04 0.60 ˘ 0.01
HySure 22.70 ˘0.43 24.82˘ 0.28 241.17 ˘ 3.31 2.33˘ 0.13 3.25 ˘ 0.05 0.64 ˘ 0.01
FUMI 0.12 ˘0.02 24.71˘ 0.00 242.25 ˘ 0.00 2.27 ˘ 0.00 3.19 ˘ 0.00 0.66 ˘ 0.00
GLP 2.36 ˘0.07 20.24˘ 0.00 403.70 ˘ 0.00 3.47 ˘ 0.00 3.14 ˘ 0.00 0.49 ˘ 0.00

MAPSMM 10.63 ˘0.21 18.35˘ 0.00 519.28 ˘ 0.00 4.30 ˘ 0.00 3.36 ˘ 0.00 0.42 ˘ 0.00
SFIM 0.20 ˘0.02 19.74˘ 0.00 423.46 ˘ 0.00 3.68 ˘ 0.00 3.31˘ 0.00 0.48 ˘ 0.00

Lanaras’s method 2.82 ˘1.69 29.59˘ 0.71 149.59 ˘ 13.20 1.19 ˘ 0.09 1.43 ˘ 0.06 0.76 ˘ 0.05
Dataset - AVIRIS Indian Pines - No added noise

MR-β “ 2-NMF 14.55 ˘0.07 36.43 ˘ 0.15 69.71 ˘ 1.65 0.65 ˘ 0.02 1.23 ˘ 0.03 0.92 ˘ 0.00
MR-β “ 3{2-NMF 15.69˘0.09 38.09 ˘ 0.09 57.69 ˘ 0.89 0.48 ˘ 0.00 1.00 ˘ 0.02 0.93 ˘ 0.00
MR-β “ 1-NMF 14.56 ˘0.03 39.30 ˘ 0.13 51.66 ˘ 0.79 0.41 ˘ 0.01 0.90 ˘ 0.01 0.94 ˘ 0.00
MR-β “ 1{2-NMF 16.00 ˘0.05 39.15˘ 0.20 52.98 ˘ 1.18 0.42 ˘ 0.01 0.91 ˘ 0.02 0.94˘ 0.00

GSA 0.29 ˘0.03 23.33˘ 0.00 300.32 ˘ 0.00 2.42 ˘ 0.00 1.38 ˘ 0.00 0.90˘ 0.00
CNMF 1.94 ˘0.09 26.72˘ 0.16 184.42 ˘ 2.95 1.71 ˘ 0.04 1.17 ˘ 0.03 0.74 ˘ 0.01
HySure 20.83 ˘0.17 40.96˘ 0.03 44.29 ˘ 0.18 0.34 ˘ 0.00 0.56 ˘ 0.00 0.96 ˘ 0.00
FUMI 0.11 ˘0.02 39.13˘ 0.00 115.58 ˘ 0.00 0.83 ˘ 0.00 0.90 ˘ 0.00 0.95 ˘ 0.00
GLP 2.24 ˘0.05 23.12˘ 0.00 312.46 ˘ 0.00 2.48 ˘ 0.00 1.42 ˘ 0.00 0.85 ˘ 0.00

MAPSMM 10.09 ˘0.14 22.27˘ 0.00 346.40 ˘ 0.00 2.74 ˘ 0.00 1.54 ˘ 0.00 0.78 ˘ 0.00
SFIM 0.18 ˘0.01 22.66˘ 0.00 328.92 ˘ 0.00 2.62 ˘ 0.00 1.39 ˘ 0.00 0.85 ˘ 0.00

Lanaras’s method 2.05 ˘1.90 29.89˘ 0.54 155.03 ˘ 7.39 1.15 ˘ 0.06 1.18 ˘ 0.02 0.81 ˘ 0.00
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various problems. In particular, we have showcased its efficiency on two instrumental
examples. The first is the audio spectral unmixing for which the frequency-by-time data
matrix is computed with the short-time Fourier transform and is the result of a trade-off
between the frequency resolution and the temporal resolution. We highlighted the capacity
of this approach to provide solutions that show high frequency and high temporal accuracy
taking advantage from the input data. Based on these results, MR-β-NMF seems to be
well suited for audio applications such as transcription problems and performs in general
better than baseline NMF methods. The second is BHU for which the wavelength-by-
location data matrix is a trade-off between the number of wavelengths measured and the
spatial resolution. We demonstrated the efficiency of MR-β-NMF to tackle the HS-MS data
fusion problem. Based on various quantitative quality assessments, the proposed method
performs competitively with the state of the art.
Further work includes:

• The theoretical guarantees for recoverability or identifiability of the latent factors for
the model and the associated problem.

• The design of more efficient algorithms to reduce the runtime.

• The design of more accurate downsampling operators in the frame of audio spectral
unmixing.
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5 Multiplicative Updates for NMF with
β-divergences Under Disjoint Equality
Constraints

In this chapter, we introduce a general framework to design multiplicative updates (MU)
for NMF based on β-divergences (β-NMF) with disjoint equality constraints, and with
penalty terms in the objective function. By disjoint, we mean that each variable appears
in at most one equality constraint. Our MU satisfy the set of constraints after each update
of the variables during the optimization process, while guaranteeing that the objective
function decreases monotonically. We showcase this framework on three NMF optimization
problems, and show that it outperforms the state of the art: (1) β-NMF with sum-to-one
constraints on the columns of H, (2) minimum-volume β-NMF with sum-to-one constraints
on the columns of W , and (3) sparse β-NMF with `2-norm constraints on the columns of
W .

The content of this chapter is extracted from [92]: V. Leplat, N. Gillis, and J. Idier.
Multiplicative Updates for NMF with β-Divergences under Disjoint Equality Constraints.
2020. arXiv: 2010.16223

5.1 Introduction

As introduced in sections 1.4 and 1.9, the most standard approach to compute W and
H for the standard approximate NMF model V « WH (1.2) is to solve the following
optimization problem

min
WPRFˆK ,HPRKˆN

D pV |WHq such that H ě 0 and W ě 0, (5.1)

where D pV |WHq “
ř

f,n dpVfn|rWHs fnq, dpx|yq is a measure of distance between two
scalars. In this chapter, we consider the β-divergences dβpx|yq, see Section 1.9.1 for more
details.
In Section 1.10 we explained that most NMF algorithms developed to tackle (5.1) are

based on iterative schemes that alternatively updates the factors W and H. At each
iteration, the minimization over one factor,W orH, is performed with various optimization
methods. For β-divergences, the most popular approach is to use multiplicative updates
(MU) which were introduced in the seminal papers of Lee and Seung [87, 85]. In all
application we are aware of, β is always chosen smaller than two. The reason is that,
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for β ą 2, β-divergences become more and more sensitive to outliers. Already for β “
2, it is well-known that the squared Frobenius norm is sensitive to outliers. However,
the case β “ 2 is particular because the subproblem in W and H are nonnegative least
squares problems, that is, convex quadratic problems with Lipschitz continuous gradient.
Therefore, highly efficient schemes exist when β “ 2 that outperform the MU; for example
exact block coordinate descent methods [29, 60, 79], or fast gradient methods [69]. In this
chapter, we focus on the case β ă 2.

In many applications, on top of the nonnegative constraints on the variables, additional
constraints are needed to provide a meaningful solution. An instrumental example is the
constraint that the entries in each column of H sum to one; this is the so-called sum-to-one
constraint that is crucial in BHU; see Section 5.3 for more details. Another example from
Chapter 3 is the sum-to-one constraint on the columns ofW along with a volume regularizer
on W . This model and associated optimization problem (3.2) leads to identifiability of the
factors W and H under mild conditions; see Section 5.4 for more details. Most algorithms
that deal with such equality constraints do it a posteriori with a projection onto the feasible
set, or with a renormalization of the columns of W and the rows of H (that is, replace
W p:, kq and Hpk, :q by αkW p:, kq and Hpk, :q{αk for some αk ą 0), so that their product
WH remains unchanged, and hence DpV |WHq remains unchanged. Such approaches are
not ideal:

• Projection requires to perform a line-search to ensure the monotonicity of the algo-
rithm, that is, to ensure that the objective does not increase after each iteration,
which may be computationally heavy.

• Renormalization of the columns of W and the rows of H is only useful when each
constraint applies to the columns of W or the rows of H. It is not applicable for
example for the sum-to-one constraint on the columns of H mentioned above. More-
over, in the presence of regularization terms in the objective function, it may destroy
the monotonicity of the algorithm.

Another approach is to use parametrization. However, as far as we know, it does not
guarantee the monotonicity of the algorithm; see Section 5.3 for more details.

Outline and contribution In this chapter, we introduce a general framework to design
MU for β-NMF with disjoint linear equality constraints, and with penalty terms in the
objective function. By disjoint, we mean that each variable appears in at most one equal-
ity constraint. This framework, presented in Section 5.2, does not resort to projection,
renormalization, or parametrization. Our MU satisfy the set of constraints after each up-
date of the variables during the optimization process, while guaranteeing that the objective
function decreases monotonically. This framework works as follows:

• First, as for the standard MU for β-NMF, we majorize the objective function using a
separable majorizer, that is, the majorizer is the sum of functions involving a single
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variable.

• Second, we construct the augmented Lagrangian for the majorizer. Because the
majorizer is separable, the problem can be decomposed into independent subproblems
involving only variables that occur in the same equality constraint since they are
disjoint. For a fixed value of the Lagrange multipliers, we prove that the solution
of these subproblems are unique, under mild conditions (Proposition 1). Moreover,
they can be written in closed form via MU for specific values of β and depending on
the regularizer used (this is summarized in Table 5.1).

• Finally, we prove that, under mild conditions, there is a unique solution for the La-
grange multipliers so that the equality constraints are satisfied (Proposition 2). This
allows us to apply the Newton-Raphson method to compute the Lagrange multipliers
while guaranteeing quadratic convergence (Proposition 3).

We then showcase this framework on two NMF optimization problems, and show that
it outperforms the state of the art:

1. A β-NMF problem with sum-to-one constraints on the columns of H, which we refer
to as simplex-structured β-NMF (Section 5.3), and

2. A minimum-volume β-NMF problem with sum-to-one constraints on the columns of
W (Section 5.4).

Finally, Section 5.5 shows that the framework can be extended to the case of quadratic
disjoints constraints, which we showcase on sparse β-NMF with `2-norm constraints on the
columns of W .

5.2 General framework to design MU for β-NMF under disjoint
linear equality constraints and penalization

In this chapter, we introduce a general framework to tackle β-NMF with disjoint linear
equality constraints, and with penalty terms in the objective function. Let us first introduce
specific notations: given a matrix A P RFˆN and a list of indices K Ď tpf, kq | 1 ď f ď

F, 1 ď n ď Nu, we denote ApKq the vector of dimension |K| whose entries are the entries
of A corresponding to the indices within K. Let us introduce Ki (1 ď i ď I) and Bj
(1 ď j ď J) to be disjoint sets of indices for the entries of W and H, respectively, that is,

• Ki Ď tpf, kq | 1 ď f ď F, 1 ď k ď Ku for i “ 1, 2, . . . , I,

• Bj Ď tpk, nq | 1 ď k ď K, 1 ď n ď Nu for j “ 1, 2, . . . , J ,

• Ku XKv “ H for all 1 ď u, v ď I and u ‰ v,

• Bq X Bp “ H for all 1 ď q, p ď J and q ‰ p.
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We now define penalized β-NMF with disjoint linear equality constraints as follows

min
WPRFˆK

`
,HPRKˆN

`

Dβ pV |WHq ` λ1Φ1pW q ` λ2Φ2pHq

such that αTi W pKiq “ bi for 1 ď i ď I,

γTj H pBjq “ cj for 1 ď j ď J,

(5.2)

where

• the penalty functions Φ1pW q and Φ2pHq are lower bounded and admit a particular
upper approximation; see Assumption 5.2.1 below.

• λ1 and λ2 are the penalty weights (nonnegative scalars).

• αi P R|Ki|`` (1 ď i ď I) and γj P R|Bj |`` (1 ď j ď J) are vectors with positive entries.
Note that if αi or γj contains zero entries, the corresponding indices can be removed
from Ki and Bj .

• bi (1 ď i ď I) and cj (1 ď j ď J) are positive scalars.

As for most NMF algorithms, we propose to resort to a block coordinate descent (BCD)
framework (see Algorithm 1) to solve problem (5.2): at each iteration we tackle two sub-
problems separately; one in W and the other in H.
The subproblems in W and H are essentially the same, by symmetry of (5.2). Hence,

we may focus on solving the subproblem in H only, namely

min
HPRKˆN

`

Dβ pV |WHq ` λ2Φ2pHq such that γTj H pBjq “ cj for 1 ď j ď J. (5.3)

In order to tackle (5.3), we will design MU based on the majorization-minimization (MM)
framework [129], which is the standard in the NMF literature; see [45] and the references
therein. As introduced in Chapter 3, it consists in two steps: find a function that is an
upper approximation of the objective and is tight at the current iterate, which is referred
to as a majorizer, then minimize the majorizer to obtain the next iterate. This guarantees
the objective function to decrease at each step of this iterative process.
To do so, we first provide a majorizer for the objective of (5.3) in Section 5.2.1. This

majorizer has the property to be separable in each entry of H. In order to handle the
equality constraints, we introduce Lagrange dual variables in Section 5.2.2, and explain
how they can be computed efficiently. This allows us to derive general MU in Section
5.2.3 in the case of non-penalized β-NMF under disjoint linear equality constraints. This
is showcased on simplex-structured β-NMF in Section 5.3. In section 5.4, we will illustrate
on minimum-volume KL-NMF how to derive MU in the presence of penalty terms.

5.2.1 Separable majorizer for the objective function

Let us derive a majorizer for

ΨpHq :“ Dβ pV |WHq ` λΦpHq, (5.4)
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that is, a function G
`

H| rH
˘

satisfying (i) G
`

H| rH
˘

ě ΨpHq for all H, and (ii) G
`

rH| rH
˘

“

Ψ
`

rH
˘

. Note that, to simplify the presentation, we denote Φ2pHq “ ΦpHq and λ “ λ2. To
do so, let us analyze each term of ΨpHq independently.

Majorizing Dβ pV |WHq The first term Dβ pV |WHq can be decoupled into n indepen-
dent terms, one for each column hn of H, that is, Dβ pV |WHq “

řN
n“1Dβ pvn|Whnq.

Let us focus on a specific column of H, denoted h P RK` . We majorize Dβpv|Whq “
řF
f“1 dβpvf |pWhqf q following the methodology introduced in [45], which consists in apply-

ing a convex-concave procedure [151] to dβ, as presented in Appendix 5. The resulting
upper bound is given by

dβpvf |pWhqf q ď
K
ÿ

k“1

wfkrhk
rvf

qd

ˆ

vf |rvf
hk
rhk

˙

` pd1
`

vf |rvf
˘

K
ÿ

k“1
wfk

`

hk ´ rhk
˘

` pd
`

vf |rvf
˘

, (5.5)

where wfk denotes the entry of matrix W at position pf, kq, rvf :“
`

Wrh
˘

f
denotes the fth

entry of rv, and pd and qd are the concave and convex parts of d, respectively.

Majorizing ΦpHq For the second term ΦpHq, we rely on the following assumption for Φ.

Assumption 5.2.1. The function Φ : RKˆN` ÞÑ R is lower bounded, and for any rH P

RKˆN` there exists constants Lkn (1 ď k ď K, 1 ď n ď N) such that the inequality

ΦpHq ď Φ
`

rH
˘

`

A

∇Φp rHq, H ´ rH
E

`
ÿ

k,n

Lk,n
2 pH ´ rHq2kn (5.6)

is satisfied for all H P RKˆN` . (Note that the constants Lkn’s may depend on rH.)

Let us mention two important classes of functions satisfying Assumption 5.2.1.

1. Smooth concave functions that are lower bounded on the nonnegative orthant. For
such functions, we can take Lkn “ 0 for all k, n since they are upper approximated
by their first-order Taylor approximation. Note that, in this case,

∇Φp rHq ě 0, (5.7)

otherwise we would have limyÑ8Φ
`

H`yeie
T
j

˘

“ ´8, where ei is the ith unit vector,
and this would contradict the fact that Φ is bounded from below. This observation
will be useful in the proof of Proposition 1 and is only valid for the special case
Lkn “ 0 for all k, n.

Examples of such penalty functions include the sparsity-promoting regularizers ΦpHq “
}H}pp “

ř

k,nHpk, nq
p for 0 ă p ď 1 since H ě 0.

2. Lower-bounded functions with Lipschitz continuous gradient for which (5.6) follows
from the descent lemma [18].

Examples of such penalty functions include any smooth convex functions; for example
any quadratic penalty, such as ||AH ´B||22 for some matrices A and B in which case
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Lkn “ σ1pAq
2 for all k, n. We will encounter another example later in this chapter,

namely logdet
`

HHJ`δI
˘

for δ ą 0 which allows to minimize the volume of the rows
of H; see Section 5.4 for the details. (Note that we will use this regularizer for W .)

Majorizing ΨpHq Combining (5.5) and (5.6), we can construct a majorizer for ΨpHq.
Since both (5.5) and (5.6) are separable in each entry of H, their combination is also
separable into a sum of K ˆN component-wise majorizers, up to an additive constant:

G
`

H| rH
˘

“

N
ÿ

n“1

K
ÿ

k“1
g
`

hkn| rH
˘

` C
`

rH
˘

, (5.8)

where

g
`

hkn| rH
˘

“

F
ÿ

f“1

wfkrhkn
rvfn

qd

ˆ

vfn|rvfn
hkn
rhkn

˙

` ah2
kn ` pknhkn, (5.9)

C
`

rH
˘

“

N
ÿ

n“1

F
ÿ

f“1

˜

pd
`

vfn|rvfn
˘

´

K
ÿ

k“1

pd1
`

vfn|rvfn
˘

wfkrhkn

¸

` aknrh
2
kn,

with akn “ λLkn2 , and

pkn “
F
ÿ

f“1
wfk pd

1
`

vfn|rvfn
˘

` λ

ˆ

BΦ
Bhkn

`

rH
˘

´ Lknrhkn

˙

.

This will allow us to minimize the majorizer G
`

H| rH
˘

under the equality constraints
efficiently, as presented in the next section.

5.2.2 Dealing with equality constraints via Lagrange dual variables

In the previous section, we derived a majorizer for ΨpHq, G
`

H| rH
˘

, which is separable
in each entry of H. Without the equality constraints, we could then compute closed-form
solutions to univariate problems to minimize G

`

H|H̃
˘

to obtain the standard MU for NMF
as in [45].
However, in problem (5.3), the entries of H in the subsets Bj are not independent as

they are linked with the equality constraints γTj HpBjq “ cj for j “ 1, 2, . . . , J . In fact, to
minimize the majorizer under the equality constraints, we need to solve

min
HPRKˆN

`

G
`

H| rH
˘

such that γTj HpBjq “ cj for 1 ď j ď J. (5.10)

The variables in different sets Bj can be optimized independently, as they do not interact in
the majorizer nor in the constraints. Note that, for the entries of H that do not appear in
any constraints, the standard MU [45] can be used. For simplicity, let us fix j and denote
B “ Bj , Q “ |B|, y “ HpBq P RQ`, γ “ γj P RQ``, and c “ cj ą 0. The problems we need
to solve have the form

min
yPY

G
`

y| rH
˘

, (5.11)
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where Y “
!

y P RQ` | γT y “ c
)

and

G
`

y| rH
˘

“
ÿ

pk,nqPB
g
`

hkn|rhn
˘

, (5.12)

where the component-wise majorizers g
`

hkn| rH˘ are defined by (5.9). Let us introduce a
convenient notation: for q “ 1, 2, . . . , Q, we denote by pkpqq, npqqq the qth pair belonging
to B. Hence the Lagrangian function of (5.12) can be written as

Gµ
`

y| rH
˘

“ G
`

y| rH
˘

´ µpγT y ´ cq “ µc` C
`

rH
˘

`

Q
ÿ

q“1
gµ
`

yq| rH
˘

, (5.13)

where

gµ
`

yq| rH
˘

“ g
`

yq| rH
˘

´ µγq yq

“

F
ÿ

f“1

wfkpqqryq

rvfnpqq
qd

ˆ

vfnpqq|rvfnpqq
yq
ryq

˙

` aqy
2
q ` ppq ´ µγqqyq, (5.14)

pq “
F
ÿ

f“1
wfkpqq pd

1
`

vfnpqq|rvfnpqq
˘

` λ

ˆ

BΦ
Byq

`

rH
˘

´ Lkpqqnpqqryq

˙

, (5.15)

and µ P R. Note that Gµ is separable, as is G, because the term γT y is linear.
Assume for now that the Lagrangian multiplier µ is known, and let us minimize Gµ

`

y| rH
˘

on p0,8qQ. Such a problem is separable under the form of L subproblems, consisting
in minimizing univariate functions gµ

`

¨ | rH
˘

separately over p0,8q. We now show in
Proposition 1 that, under mild conditions, each subproblem admits a unique solution over
p0,8q.

Proposition 1. Let q P t1, 2, . . . , Qu. Assume that β ă 2 and ryq, vfnpqq, wfkpqq ą 0 for
all f . Moreover, if β ď 1 and a “ 0, assume that µ ă pq

γq
. Then there exists a unique

minimizer y‹q pµq of gµ
`

yq| rH
˘

in p0,8q.

Proof. According to Proposition 4 (see Appendix 5), each gµ is C8 and strictly convex on
p0,8q, so its infimum is uniquely attained in the closure of p0,8q. We have to prove that
it is neither reached at 0 nor at 8.
On the one hand, from (5.14), we have

pgµq1
`

yq| rH
˘

“

F
ÿ

f“1
wfkpqq qd

1

ˆ

vfnpqq|rvfnpqq
yq
ryq

˙

` 2aqyq ` pq ´ γqµ (5.16)

and, for any β ă 2 and any x ą 0,

lim
yÑ0`

qd1px|yq “ ´8,

so limyqÑ0`pg
µq1

`

yq| rH
˘

“ ´8, which ensures that the infimum is not reached at 0.
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On the other hand,

lim
yÑ8

qd1px|yq “

$

&

%

0 if β ď 1,

8 otherwise.
(5.17)

According to (5.16) and (5.17), the distinction must be made between two cases:

• If aq ą 0 or β P p1, 2q: limyqÑ8pg
µq1

`

yq| rH
˘

“ 8, so the infimum is reached for a
finite yq.

• If aq “ 0 and β ď 1: limyqÑ8pg
µq1

`

yq| rH
˘

“ pq ´ γqµ, so the same conclusion holds
if µ ă pq

γq
.

We just proved that, under mild conditions, each gµ has a unique minimizer over p0,8q.
However we assumed that the value of µ is fixed. Now given y‹pµq “

“

y‹1pµq, . . . , y
‹
Qpµq

‰T ,
let us show that the solution to γT y‹pµq “ c is unique. The corresponding value of µ, which
we denote µ‹, provides the minimizer y‹pµ‹q of Gµpy| rHq that satisfies the linear constraint
γT y‹pµ‹q “ c. Moreover, µ‹ naturally fulfills µ‹ ă pq

γq
for all q when β ď 1 and aq “ 0, as

required in Proposition 1.

Proposition 2. Assume that β ă 2 and ryq, vfnpqq, wfkpqq ą 0 for all q, f , Then the scalar
equation γT y‹pµq “ c in the variable µ admits a unique solution µ‹ in p´8, tq, where

t “

$

&

%

minq pqγq ě 0 if β ď 1 and aq “ 0,

8 otherwise,

such that y‹pµ‹q is the unique solution to problem (5.11).

Proof. Under the conditions of Proposition 1, gµ
`

yq| rH
˘

has a unique minmizer y‹q pµq for
each j. By the first-order optimality condition, y‹q pµq is a solution of pgµq1

`

yq| rH
˘

“ 0 or
equivalently, by (5.16), a solution of γ´1

q g1
`

yq| rH
˘

“ µ over p0,8q where

γ´1
q g1

`

yq| rH
˘

“ γ´1
q

F
ÿ

f“1
wfkpqq qd

1

ˆ

vfnpqq|rvfnpqq
yq
ryq

˙

` 2aq
γq
yq `

pq
γq

(5.18)

is strictly increasing on p0,8q (since g is strictly convex) and one-to-one from p0,8q to an
open interval Tq “ pt´q , t`q q where

t´q “ lim
yqÑ0

g1
`

yq| rH
˘

“ ´8, (5.19)

t`q “ lim
yqÑ8

g1
`

yq| rH
˘

“

$

&

%

pq
γq

if β ď 1 and yq “ 0,

8 otherwise.
(5.20)

Moreover, pq ě 0 if yq “ 0 (then Lkpqqnpqq “ 0) and β ď 1 according to (5.7) and (5.15).
As a consequence, γ´1

q g1py‹q |ryqq “ µ is equivalent to

y‹q pµq “
`

g1
˘´1
pγqµq, (5.21)
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where µ P Tq and
`

g1
˘´1 denotes the inverse function of g1.

Coming back to the multivariate problem (5.11), we must find a value µ‹ of the La-
grangian multiplier such that the constraint γT y‹pµq “ c is satisfied. Given (5.21), µ‹ is a
solution of

Q
ÿ

q“1
γq
`

g1
˘´1
pγqµq “ c. (5.22)

Each g1
`

yq| rH
˘

being strictly increasing on p0,8q, pg1q´1pγqµq is also strictly increasing
(from Tq to p0,8q), this is a direct consequence of pf´1q1 “ 1

f 1˝f´1 where f is any strictly
increasing function on some interval. Finally

řQ
q“1 γqpg

1q´1pγqµq is strictly increasing from
XJj“1Tq “ p´8, tq to p0,8q, with t ě 0. Therefore, the solution µ‹ is unique.

Proposition 2 shows that the optimal Lagrangian multiplier is the unique solution of
(5.22). It is clear that finding the solution of (5.22) is equivalent to finding the root of a
function rpµq. We propose here-under to use a Newton-Raphson method to compute µ‹,
and show that this method generates a sequence of iterates µn that converges towards µ‹

at a quadratic speed.

Proposition 3. Assume that β ă 2 and ryq, vfnpqq, wfkpqq ą 0 for all q, f . Let

rpµq “
Q
ÿ

q“1
γqpg

1q´1`γqµ
˘

´ c

for µ P p´8, tq, and denote µ‹ the unique solution of rpµq “ 0. From any initial point
µ0 P pµ

‹˚, tq, Newton-Raphson’s iterates

µn`1 “ µn ´
rpµnq

r1pµnq

decrease towards µ‹ at a quadratic speed.

Proof. We already know that r is strictly increasing from p´8, tq to p0,8q. Let us show
that r is also strictly convex. According to the third item of Proposition 4 in Appendix 5,
qd2px|yq is completely monotonic, so it is strictly decreasing in y. Equivalently, qd1px|yq is
strictly concave in y, and each g1 is also strictly concave according to (5.18). Since the
inverse of a strictly increasing, strictly concave function f is strictly increasing and strictly
convex, which is a direct consequence of pf´1q2 “ ´ f2˝f´1

pf 1˝f´1q3 , then each pg1q´1 is strictly
convex, and finally, r is strictly convex.

For any µ0 P pµ
‹, tq, we have rpµ0q ą 0, so µ1 “ µ0 ´

rpµ0q
r1pµ0q

ă µ0. We have also µ1 ą µ‹

as a consequence of the strict convexity of r. By immediate recurrence, we obtain that
µn is a decreasing series that converges towards µ‹. According to [111], it converges at a
quadratic speed since |r1| and |r2| are bounded away from 0 in rµ‹, µ0s.

Discussion At this point, we have derived an optimization framework to tackle prob-
lem (5.11). The optimal Lagrangian multiplier value is determined before each majorization-
minimization update using a Newton-Raphson algorithm. However, such a formal solution
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is implementable if and only if each y‹q pµq can be actually computed as the minimizer of
gµ
`

yq| rH
˘

in p0,8q. In some cases, computing y‹q pµq is equivalent to extracting the roots
of a polynomial of a degree smaller or equal to four, which is possible in closed form. In
other cases, we have to solve a polynomial equation of degree larger than four, or even an
equation that is not polynomial. Table 5.1 indicates the cases where a closed-form solution
is available, and hence when our framework can be efficiently implemented. We observe

β P p´8, 1qzt0u β “ 0 β “ 1 β P p1, 2q
5
4

4
3

3
2 other

No penalization 1 1 1 1 1 1 1
Lkn “ 0 for all k, n 1 1 1 3 4 2 O

Lkn ą 0 for some k, n O 3 2 O O 3 O

Table 5.1: Cases where (5.21) can be computed in closed form. They are indicated by
the degree of the corresponding polynomial equation, otherwise the symbol O

is used. The constants Lkn’s is the one needed in Assumption 5.2.1 for the
penalization functions Φ1pHq and Φ2pW q; see (5.6).

that, without penalization, the polynomial equation is of degree one, and hence always
admit a closed form. This particular case is discussed in the next Section, which we will
exemplify in Section 5.3 with β-NMF with sum-to-one constraints on the columns of H.
In Section 5.4, we will present an important example with Lkn ą 0 for all k, n and β “ 1,
namely minimum-volume KL-NMF.

5.2.3 MU for β-NMF with disjoint linear equality constraints without
penalization

In this section, we derive an algorithm based on the general framework presented in the
previous section to tackle the β-NMF problem under disjoint linear equality constraints
without penalization, that is, problem (5.2) with λ1 “ λ2 “ 0. We consider this simplified
case here as it allows to provide explicit MU for any value of β ă 2; see the first row ’No
penalization’ of Table 5.1. These updates satisfy the constraints after each update of W
or H, and monotonically decrease the objective function Dβ pV |WHq.

Let us then consider the subproblem of (5.2) over H when W is fixed and with λ2 “ 0,
that is,

min
HPRKˆN

`

Dβ pV |WHq such that γTj HpBjq “ cj for 1 ď j ď J. (5.23)

Let us follow the framework presented above. First, an auxiliary function, which we
denote GpH| rHq, is constructed at the current iterate rH so that it majorizes the objective
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for all H and is defined as follows:

G
´

H| rH
¯

“
ÿ

f,n

«

ÿ

k

wfkrhkn
rvfn

qd

ˆ

vfn|rvfn
hkn
rhkn

˙

ff

`

«

pd1
`

vfn|rvfn
˘

ÿ

k

wfk
`

hkn ´ rhkn
˘

` pd
`

vfn|rvfn
˘

ff

,

(5.24)

where qdp.|.q and pdp.|.q are the ones defined in Appendix 5. Second, we need to minimize
G
´

H| rH
¯

while imposing the set of linear constraints γTj HpBjq “ cj . The Lagrangian
function of G is given by

GµpH| rHq “ GpH| rHq ´
J
ÿ

j

“

µj
`

γTj HpBjq ´ cj
˘‰

, (5.25)

where µj are the Lagrange multipliers associated to each linear constraint γTj HpBjq “ cj .
We observe that Gµ in (5.25) is a separable majorizer in the variables H of the Lagrangian
function Dβ pV |WHq ´

řJ
j

“

µj
`

γTj HpBjq ´ cj
˘‰

. Due to the disjoitness of each subset of
variables Bj (5.25), we only consider the optimization over one specific subset Bj . The
minimizer (5.21) of GµpH pBjq | rH pBjqq has the following component-wise expression:

H‹ pBjq “ rH pBjq d
ˆ

rC pBjqs
rD pBjq ´ µjγjs

˙.pγpβqq

, (5.26)

where C “W T
´

pWHq.pβ´2q
d V

¯

, D “W T pWHq.pβ´1q.
Finally, we need now to find the optimal value for µj , denoted µ‹j , wihch is the solution

of γTj H‹ pBjq “ cj .
It requires to finding the root of the function

rjpµjq “
Q
ÿ

q“1
γj,q

«

rH pBjq d
ˆ

rC pBjqs
rD pBjq ´ µjγjs

˙.pγpβqq
ff

q

´ cj , (5.27)

where rAsq denotes the q-th entry of expression A. Proposition 2 shows that µ‹j is unique
on some interval p´8, tq. Indeed, rjpµjq is a finite sum of elementary rationale functions of
µj and each of them is an increasing, convex function in µj over p´8, tq, q with tq “ DqpBjq

γj,q

for all β. It is even completely monotone for all β in p´8, tqq because γ pβq ą 0 [103]. As
a consequence rjpµjq is also a completely monotone, convex increasing function of µj in
p´8, tq, where t “ min ptqq. Finally, we can easily show that the function rjpµjq changes
of sign on the interval p´8, tq by computing two limits at the closure of the interval.
As µ‹ P p´8, tq, the update (5.26) is nonnegative. To evaluate µ‹, we use a Newton-
Raphson method, with any initial point µ0 P pµ

‹, tq, with a quadratic rate of convergence
as demonstrated in Proposition 3. Algorithm 5 summarizes our method to tackle (5.2)
for all the β-divergences which we refer to as disjoint-constrained β-NMF algorithm. The
update for matrix W can be derived in the same way, by symmetry of the problem.
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Computational cost The computational cost of Algorithm 5 is asymptotically equivalent
to the standard MU for β-NMF, that is, it requires O pFNKq operations per iteration.
Indeed, the complexity is mainly driven by matrix products required to compute C and
D; see (5.26). To compute the roots of (5.27) corresponding to H using Newton-Raphson,
each iteration requires to compute rjpµjq{r1jpµjq for all j which requires at most OpKNq
operations. Finding the roots therefore requires OpKNq operations times the number of
Newton-Raphson iterations. By symmetry, it requires OpKF q operations to compute the
roots corresponding to W . Because of the quadratic convergence, the number of iterations
required for the convergence of the Newton-Raphson method is typically small, namely
between 10 to 100 in our experiments using the stopping criterion |rpµjq| ď 10´6 for all j.
Therefore, in practice, the overall complexity of Algorithm 5 is dominated by the matrix
products that require O pFNKq operations. The same conclusions apply to the algorithms
presented in Sections 5.3, 5.4 and 5.5, and this will be confirmed by our numerical experi-
ments.

Algorithm 5 β-NMF with disjoint linear constraints
Require: A matrix V P RFˆN , an initialization H P RKˆN` and W P RFˆK , a factor-

ization rank K, a maximum number of iterations, maxiter, a value for β, and the
linear constraints defined by Ki, αj and bi for i “ 1, 2, . . . , I, and Bj , γj and cj for
j “ 1, 2, . . . , J .

Ensure: A rank-K NMF pW,Hq of V satisfying constraints in (5.2).

1: for it = 1 : maxiter do
2: % Update of matrix H
3: C ÐW T

´

pWHq.pβ´2q
d V

¯

4: D ÐW T pWHq.pβ´1q

5: for j “ 1 : J do
6: µj Ð root prjpµjqq % see Equation (5.27)

7: H pBjq Ð H pBjq d
´

rCpBjqs
rDpBjq´µjγjs

¯.pγpβqq

8: end for
9: Bc “ tpk, nq |1 ď k ď K, 1 ď n ď Nu z

`

YJj Bj
˘

. % Bc is the complement of
YJj Bj

10: H pBcq Ð H pBcq d
´

rCpBcqs
rDpBcqs

¯.pγpβqq

11: % Update of matrix W
12: W is updated in the same way as H, by symmetry of the problem.
13: end for
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5.3 Showcase 1: Simplex-structured β-NMF

In this section, we showcase a particularly important example of β-NMF with linear dis-
joint constraints and no penalization, namely, the simplex-structured matrix factorization
(SSMF) problem. It is defined as follows: given a data matrix V P RFˆN and a factor-
ization rank K, SSMF refers to the problem of computing W and H such that V « WH

and the columns of H lie on the unit simplex, that is, the entries of each column of H
are nonnegative and sum to one. SSMF is a powerful tool in many applications such as
hyperspectral unmixing in geoscience and remote sensing [21, 98, 1], document analysis
and time-resolved Raman spectroscopy. We refer the reader to the recent survey [50] for
more applications and details about SSMF.
To understand the underlying significance of SSMF, it is necessary to give more insights

on a research topic for which important SSMF techniques were initially developed which is
the BHU, a main research topic in remote sensing. As explained in Section 1.5.1, the task
of BHU is to decompose a remotely sensed hyperspectral image into endmember spectral
signatures and the corresponding abundance maps with limited prior information, usually
the only known information being the number of endmembers. In this context, the columns
of W correspond to the endmembers spectral signatures and the columns of H contain the
proportion of the endmembers in each column of V , so the column-stochastic assumption for
H naturally holds. For many SSMF-based methods, the nonnegativity constraint W ě 0
is assumed as many hyperspectral images are such that V ě 0. The resulting NMF model
is referred to as SSNMF and was previously introduced in Section 1.8.4 in the exact
case. Since there is potentially noise within the input data, we consider the following
approximate SSNMF model

V «WH such that W P RFˆK` , H P RKˆN` , eTH “ eT , with K ! minpF,Nq.

We refer to the associated optimization problem as simplex-structured nonnegative matrix
factorization with the β-divergence (β-SSNMF), and is formulated as follows:

min
WPRFˆK

`
,HPRKˆN

`

Dβ pV |WHq such that eThj “ 1 for 1 ď j ď N, (5.28)

where e is the vector of all ones of appropriate dimension. This is particular case of (5.2)
where

• the subsets Bj correspond to the columns of H, and there is no subset Ki (no con-
straint on W ),

• γTj “ e and cj “ 1 for j “ 1, 2, . . . , N .

Hence Algorithm 5 can be directly applied to (5.28).

Numerical experiments Let us perform numerical experiments to evaluate the effective-
ness of Algorithm 5 on the simplex-structure β-NMF problem against existing methods.
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To the best of our knowledge, the so-called group robust NMF (GR-NMF) algorithm1 from
[44] is the most recent algorithm that is able to tackle problem (5.28) for the full range of β-
divergences. The approach is not based on Lagrangian multipliers but introduces a change
of variables for matrix H. This approach, initially used for NMF in [39], does not provide
an auxiliary function for the subproblem in H and resort to a heuristic commonly used in
NMF, see, e.g., [137, 43]. Therefore there is no guarantee that the objective function is
decreasing at each update of the abundance matrix, unlike Algorithm 5.
We apply Algorithm 5 and GR-NMF on three widely used real hyperspectral data

sets2 [154]:

• Samson: 156 spectral bands with 95ˆ95 pixels, containing mostly 3 materials pK “

3q, namely “Soil", “Tree" and “Water".

• Jasper Ridge: 198 spectral bands with 100ˆ100 pixels, containing mostly 4 materials
pK “ 4q, namely “Road", “Soil", “Water" and “Tree".

• Cuprite: 188 spectral bands with 250ˆ190 pixels, containing mostly 12 types of
minerals pK “ 12q.

β-SSNMF has shown itself as a powerful one to tackle BHU, hence this comparative study
between Algorithm 5 and GR-NMF [44] focuses on the convergence aspects including the
evolution of the objective function and the runtime. The algorithms are implemented and
tested on a desktop computer with Intel Core i7-8700@3.2GHz CPU and 32GB memory.
The codes are written in MATLAB R2018a. The code for Algorithm 5 applied to (5.28) is
available from https://bit.ly/31QWqz1. The algorithms are compared for the following
values for β P

 

0, 1
2 , 1,

3
2 , 2

(

. For all simulations, the algorithms are run for 20 random
initializations of W and H (each entry sampled from the uniform distribution in r0, 1s).
Table 5.2 reports the average and standard deviation of the runtime (in seconds) as the
final value for the objective function over these 20 runs for a maximum of 300 iterations.
We observe that Algorithm 5 outperforms the GR-NMF in terms of runtime and final

value for the objective functions for all test cases except when β “ 0 for the Samson and
Cuprite data sets. In particular, for β “ 1, Algorithm 5 is up to 2.5 times faster than
the GR-NMF. For the Cuprite data set with β “ 1{2, Algorithm 5 and GR-NMF perform
similarly. We also observe that the standard deviations obtained with Algorithm 5 are in
general significantly smaller for all β, except for β “ 0 for the Samson and Cuprite data
sets.
In the following, we provide figures that show the evolution of the objective as a function

of the iterations, and that confirm the observations above. Figure 5.1 displays the evolution
of the objective function of β-SSNMF for Algorithm 5 and GR-NMF [44] on the experiments
described above. We confirm that Algorithm 5 performs better than GR-NMF [44], except
for β “ 0.

1https://www.irit.fr/~Cedric.Fevotte/extras/tip2015/code.zip
2http://lesun.weebly.com/hyperspectral-data-set.html

https://bit.ly/31QWqz1
https://www.irit.fr/~Cedric.Fevotte/extras/tip2015/code.zip
http://lesun.weebly.com/hyperspectral-data-set.html
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(b) Jasper Ridge Data set
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(c) Cuprite Data set

Fig. 5.1. Averaged objective functions over 20 random initializations obtained for Al-
gorithm 5 (red line with circle markers) and the GR-NMF (black dashed line)
applied to the three data sets detailed in the text for 300 iteration. The compar-
ison is performed for different values of β, from top to bottom: β “ 2, β “ 3{2,
and β “ 1. Logarithmic scale for y axis.
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Table 5.2: Runtime performance in seconds and final value of objective function FendpW,Hq

for Algorithm 5 and the GR-NMFreported for β P
 

0, 1
2 , 1,

3
2 , 2

(

. The table
reports the average and standard deviation over 20 random initializations with
a maximum of 300 iterations for three hyperspectral data sets.

Algorithms Samson Jasper Ridge Cuprite
runtime (s.) FendpW,Hq runtime (s.) FendpW,Hq runtime (s.) FendpW,Hq

β “ 2
Algorithm 5 16.62˘0.15 42.37˘0.92 22.86˘0.08 (4.93 ˘ 0.41)109 121.04 ˘ 0.62 (1.68 ˘ 0.10)1010

GR-NMF 18.23˘0.29 42.86˘1.17 25.32˘0.16 (6.19 ˘ 1.28)109 114.27 ˘ 0.20 (2.23 ˘ 0.12)1010

β “ 3{2
Algorithm 5 63.69˘0.40 124.82 ˘38.80 89.23 ˘0.30 (1.50 ˘ 0.08)108 421.49 ˘ 2.79 (2.68 ˘ 0.12)108

GR-NMF 80.09˘0.60 128.59 ˘31.22 112.72 ˘0.67 (1.93 ˘ 0.42)108 508.57 ˘ 3.50 (3.50 ˘ 0.16)108

β “ 1
Algorithm 5 18.33 ˘ 0.08 413.76 ˘ 30.96 24.82 ˘ 0.35 (5.73 ˘ 0.20)106 182.98 ˘ 14.14 (4.56 ˘ 0.21)106

GR-NMF 44.78 ˘ 0.18 439.40 ˘ 44.91 62.83 ˘ 0.76 (6.85 ˘ 1.41)106 370.25 ˘ 21.33 (5.89 ˘ 0.22)106

β “ 1{2
Algorithm 5 89.80 ˘ 0.65 (2.15 ˘ 0.22)103 126.43 ˘ 0.61 (3.43 ˘ 0.30)105 682.80 ˘ 3.32 (1.03 ˘ 0.05)105

GR-NMF 102.21 ˘ 0.72 (2.06 ˘ 0.26)103 141.75 ˘ 0.69 (3.56 ˘ 0.39)105 642.49 ˘ 1.22 (1.04 ˘ 0.05)105

β “ 0
Algorithm 5 52.89˘0.54 (3.99 ˘ 0.57)104 69.59˘0.44 (4.61 ˘ 0.14)104 479.84 ˘ 16.02 (2.42 ˘ 0.17)103

GR-NMF 55.61˘0.47 (3.67 ˘ 0.68)104 77.87˘0.63 (4.61 ˘ 0.53)104 354.65 ˘6.01 (1.85 ˘ 0.06)103

5.4 Showcase 2: minimum-volume KL-NMF

In this section, we showcase another important example of β-NMF with linear disjoint
constraints, namely, the minimum volume NMF with β-divergences (min-vol β-NMF) op-
timization problem. This optimization problem was introduced in Section 3.2 by (3.1) and
is based on the minimization of β-divergences including a penalty term promoting solu-
tions with minimum volume spanned by the columns of the matrix W . Problem (3.1) is
associated to the following approximate NMF model:

V «WH such that W P RFˆK` , H P RKˆN` ,W T e “ e, with K ! minpF,Nq. (5.29)

We recall the problem (3.1) here-under:

min
W p:,jqP∆F @j,Hě0

DβpV |WHq ` λlogdetpW TW ` δIq,

where ∆F “

!

x P RF`
ˇ

ˇ

řF
i“1 xi “ 1

)

is the unit simplex λ is a penalty parameter and
logdetpW TW ` δIq is a function that measures the volume spanned by the columns of W
where δ is a small positive constant that prevents logdetpW TW q to go to ´8 when W

tends to a rank-deficient matrix (that is, when r “ rankpW q ă K).
We showed in Chapter 3 that problem (3.1) is particularly powerful as it leads to iden-

tifiability which is crucial in many applications such as in hyperspectral imaging or audio
source separation. Indeed, under some mild assumptions and in the exact case, we demon-
strated that (3.1) is able to identify the groundtruth factors pW#, H#q that generated
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the input data V , in the absence of noise, see Theorem 3.2.1. In Chapter 3, (3.1) is used
for blind audio source separation. We have to mention that (3.1) is also well suited for
hyperspectral imaging when β “ 2. Indeed, [56] shows the efficiency of (3.1) to tackle the
BHU problem.
In the next sections, we show that we can tackle the min-vol β-NMF optimization prob-

lem defined in (3.1) with the general framework presented in Section 5.2 in the case β “ 1.

5.4.1 Problem formulation and algorithm

As the minimum-volume penalty of model (3.1) concerns matrixW only, the main challenge
concerns the update of W . Indeed, the update of H is simply the one from [85]. Let us
therefore consider the subproblem in W for H fixed:

min
WPRFˆK

F pW q “ Dβ pV |WHq ` λlogdetpW TW ` δIq

subject to W ě 0

eTW p:, iq “ 1 for 1 ď i ď K,

(5.30)

where e is the all-one column vector of appropriate dimension. Considering the general
model (5.2), we have that:

• the subsets Ki correspond to the columns of W , and there is no subset Bj ,

• αTi “ e and bi “ 1 for 1 ď i ď K.

To upper bound logdetpW TW`δIq as required by (5.6) in Assumption 5.2.1, we majorize
it using a convex quadratic separable auxiliary function provided in (3.8) and (3.9) and
which is derived as follows. First, the concave function logdetpQq for Q ą 0 can be upper
bounded using the first-order Taylor approximation: for any rQ ą 0,

logdetpQq ď logdetp rQq ` x rQ´1, Q´ rQy “ x rQ´1, Qy ` cst,

where cst is some constant independent of Q. For any W,ĂW , and denoting rQ “ ĂW T
ĂW `

δI ą 0, we obtain

logdetpW TW ` δIq ď
A

rQ´1,W TW
E

` cst “ Tr pW rQ´1W T q ` cst,

which is a convex quadratic and Lipschitz-smooth function in W . In fact, letting rQ´1 “

DDT be a decomposition (such as Cholesky) of rQ´1 ą 0, we have Tr pW rQ´1W q “ }WD}2F ,
from which (5.6) can be derived easily; see Section 3.3.2 for the details. With this and
following our framework from Section 5.2, we obtain the Lagrangian function

Gµ
`

W |ĂW
˘

“
ÿ

f

G pwf | rwf q ` λ

˜

ÿ

f

l̄ pwf | rwf q ` c

¸

` µT
ÿ

f

ˆ

wf ´
1
F
e

˙

, (5.31)
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where wf P denotes the f -th row of W , G is given by (3.7), l̄ by (3.9) and derived as
explained above, and c is a constant. Let µ is the vector Lagrange multipliers of dimension
K associated to each linear constraint eTwi “ 1.
Exactly as before (hence we omit the details here), Gµ is separable, let us consider one

specific row w P RKˆ1 of W and rewrite (5.31) for w as follows:

Gµpw| rwq “ G pw| rwq ` λl̄ pw| rwq ` c` µ̄T pw ´ e{F q (5.32)

For β “ 1, the derivative of Gµpw| rwq (5.32) w.r.t. a specific entry wk is given by:

∇wkG
µpw| rwq “

ÿ

n

hkn ´
ÿ

n

hkn
rwkvn
wkrvn

` 2λ rY rwsk ` 2λ
„

diag
ˆ

Y ` rw ` Y ´ rw

rw

˙

k

wk

´ 2λ
„

diag
ˆ

Y ` rw ` Y ´ rw

rw

˙

k

rwk ` µk.

Due to the separability, canceling the derivative provides the following closed-form solution:

w‹kpµkq “ rwk

b

p
ř

n hkn´4λrY ´ rwsk`µkq
2
`8λrdiagpY ` rw`Y ´ rwqsk

ř

n hkn
vn
rvn
´
ř

n hkn`4λrY ´ rws
k
´µk

4λrdiagpY ` rw`Y ´ rwqsk
(5.33)

which is non-negative. For clarity purpose, let us pose C “ eF,NH
T ´ 4λ

´

ĂWY ´
¯

,

S “ 8λĂW pY ` ` Y ´q d

ˆ

rV s

rĂWHs
HT

˙

, D “ 4λĂW pY ` ` Y ´q, then Equation (5.33) can

be generalized in the following matrix form

W ‹pµq “ ĂW d

„

”

“

C ` eµT
‰.2
` S

ı. 12
´
`

C ` eµT
˘



rDs
,

(5.34)

where C “ eF,NH
T ´ 4λ

`

ĂWY ´
˘

, D “ 4λĂW pY ` ` Y ´q, and S “ 8λĂW pY ` ` Y ´q d
ˆ

rV s

rĂWHs
HT

˙

with Y “ Y ` ´ Y ´ “
`

ĂW T
ĂW ` δI

˘´1, Y ` “ maxpY, 0q ě 0 and Y ´ “

maxp´Y, 0q ě 0, and eF,N is the F -by-N matrix of all ones. As proved in Proposition
2, the constraint W ‹pµqT e “ e is satisfied for a unique µ in p´8, tq where t “ 8 in this
case. We can therefore use a Newton-Raphson method to find the µi with quadratic rate
of convergence, see Proposition 3. Algorithm 6 summarizes our method to tackle (3.1).

5.4.2 Numerical experiments

In this section we compare baseline KL-NMF (that is, the standard MU), Algorithm 3
from Chapter 3 that uses line search, and Algorithm 6 applied to the spectrogram of two
monophonic piano sequences considered in Chapter 3. The first audio sample is the first
measure of “Mary had a little lamb", a popular English song. The second audio sample
corresponds to the first 30 seconds of “Prelude and Fugue No.1 in C major" from de Jean-
Sebastien Bach played by Glenn Gould3.
We use the following three setups:

3https://www.youtube.com/watch?v=ZlbK5r5mBH4

https://www.youtube.com/watch?v=ZlbK5r5mBH4
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Algorithm 6 Min-vol KL-NMF
Require: A matrix V P RFˆN , an initialization H P RKˆN` , an initialization W P RFˆK ,

a factorization rank K, and a maximum number of iterations, maxiter, the parameters
δ ą 0 and λ ą 0.

Ensure: A rank-K NMF pW,Hq of V satisfying constraints in (3.1).

1: for it = 1 : maxiter do
2: % Update of matrix H

3: H Ð H d

”

WT
´

rV s
rWHs

¯ı

rWT eF,N s

4: % Update of matrix W
5: Y Ð

`

W TW ` δI
˘´1

6: Y ` Ð max pY, 0q
7: Y ´ Ð max p´Y, 0q
8: C Ð eF,NH

T ´ 4λ pWY ´q

9: S Ð 8λW pY ` ` Y ´q d
´

rV s
rWHsH

T
¯

10: D Ð 4λW pY ` ` Y ´q

11: µÐ root
`

W ‹pµqT e “ e
˘

over RK % see (5.34) for the expression of W ‹pµq

12: W ÐW d

«

”

rC`eµT s
.2
`S

ı. 12
´pC`eµT q

ff

rDs

13: end for

• Setup 71: sample “Mary had a little lamb" with K “ 3, 200 iterations.

• Setup 72: sample “Mary had a little lamb" with K “ 7, 200 iterations.

• Setup 73: “Prelude and Fugue No.1 in C major" with K “ 16, 300 iterations.

For each setup, the algorithms are run for the same 20 random initializations of W and
H. Table 5.3 reports the average and standard deviation of the runtime (in seconds) over
these 20 runs. Table 5.4 reports the average and standard deviation of the final values for
β-divergences (data fitting term) and the objective function of (3.1) over these 20 runs for
Algorithm 3 and Algorithm 6. For this last comparison, the value for the penalty weight
λ has been chosen so that KL-NMF leads to reasonable solutions for W and H. More
precisely, the values for λ are chosen so that the initial value of

λ
ˇ

ˇ

ˇ
logdetpW p0qTW p0q`δIq

ˇ

ˇ

ˇ

DβpV |WHq is
equal to 0.1, 0.1 and 0.022 for setup 71, setup 72 and setup 7, respectively. The algorithms
are implemented and tested on a desktop computer with Intel Core i7-8700@3.2GHz CPU
and 32GB memory. The codes are written in MATLAB R2018a. The code for Algorithm 6
is available from https://bit.ly/35J8Yth.

We observe that the runtime of Algorithm 6 is close to the baseline KL-NMF algorithm
which confirms the negligible cost of the Newton-Raphson steps to compute µ‹ as discussed

https://bit.ly/35J8Yth
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Table 5.3: Runtime performance in seconds of baseline KL-NMF, Algorithm 3 and Algo-
rithm 6. The table reports the average and standard deviation over 20 random
initializations.

Algorithms runtime in seconds
setup 71 setup 72 setup 73

baseline KL-NMF 0.53˘0.03 0.45˘0.02 4.32˘0.30
Algorithm 3 3.79˘0.13 2.39˘0.30 10.19˘1.28
Algorithm 6 0.58˘0.03 0.66˘0.03 4.80˘ 0.38

Table 5.4: Final values for Dβ and the penalized objective Ψ from (3.1) obtained with
Algorithm 3 and Algorithm 6. The table reports the average and standard
deviation over 20 random initializations for three experimental setups.

Algorithm 3 Algorithm 6
setup 71 Dβ,end (3.52 ˘ 0.03)103 (2.31 ˘ 0.01)103

Ψend (4.17 ˘ 0.03)103 (3.08 ˘ 0.01)103

setup 72 Dβ,end (3.54 ˘ 0.03)103 (1.77 ˘ 0.02)103

Ψend (4.42 ˘ 0.04)103 (2.87 ˘ 0.02)103

setup 73 Dβ,end (7.77 ˘ 0.23)103 (4.67 ˘ 0.08)103

Ψend (9.14 ˘ 0.20)103 (6.50 ˘ 0.06)103

in Section 5.2.3. On the other hand, since no line search is needed, we have a drastic
acceleration from 2x to 7x compared to the backtracking line-search procedure integrated in
Algorithm 3. Moreover, we observe in Table 5.4 that Algorithm 6 outperforms Algorithm 3
in terms of final values for the data fitting term and objective function values with lower
standard deviations.

5.5 Extension to quadratic disjoints constraints

Our general framework presented in Section 5.2 applies to penalized β-NMF with concave
or L-smooth penalties and under disjoint linear equality constraints; see problem (5.2). We
have showcased our approach on β-SSNMF in Section 5.3 and on min-vol KL-NMF under
sum-to-one constraints on the columns of W in Section 5.4. In this section, we show that
the same framework can be extended to other simple constraints, namely disjoint quadratic
constraints. We consider sparse β-NMF for β “ 1 where the rows of H are penalized with
the `1 norm and each column of W have a fixed `2 norm. We show that MU satisfying the
set of constraints can be derived which we apply on BHU.
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5.5.1 Problem formulation and algorithm

In this section we consider the following optimization problem involving quadratic disjoints
constraints, that we refer to as hyperspheric-structured sparse β-NMF:

min
WPRFˆK

`
,HPRKˆN

`

DβpV |WHq `
K
ÿ

k“1
λk }Hpk, :q}1 such that eTw

.p2q
j “ ρ for 1 ď i ď K,

(5.35)
where λk is a penalty weight to control the sparsity of the k-th row of H, and the quadratic
constraints require the columns ofW to lie on the surface of a hyper-sphere centered at the
origin with radius ?ρ ą 0. Without this normalization, the `1-norm regularization would
make H tends to zero and W grows to infinity.

As done before, we update W and H alternatively. We tackle the subproblem in H

with W fixed based on the MU developed in [43] and guaranteed to decrease the objective
function:

H‹ “ rH d

”

W T
´

V d
“

W rH
‰.pβ´2q

¯ı

”

W T
“

W rH
‰.pβ´1q

` λeT
ı , (5.36)

where λ P RK` is the vector of penalty weights. It remains to compute an update for W .
To do so, we use the convex separable auxiliary function G from [45] constructed at the
current iterate ĂW , from which we obtain, as before, the Lagrangian function

Gµ
`

W |ĂW
˘

“
ÿ

f

G pwf | rwf q `
ÿ

k

λk }Hpk, :q}1 ` µ
T
ÿ

f

ˆ

w
.p2q
f ´

1
F
ρe

˙

, (5.37)

where µ P RK is the vector of Lagrange multipliers associated to the constraint eTW .p2q “

ρeT . As Gµ is separable, let us consider one specific row w P RKˆ1 ofW and rewrite (5.37)
for w as follows:

Gµpw| rwq “ G pw| rwq `
ÿ

k

λk }Hpk, :q}1 ` µ
T

ˆ

w.p2q ´
1
F
ρe

˙

. (5.38)

For β “ 1, the derivative of Gµpw| rwq (5.38) w.r.t. a specific entry wk is given by:

∇wkG
µpw| rwq “

ÿ

n

hkn ´
ÿ

n

hkn
rwkvn
wkrvn

` 2µkwk.

Due to the separability, canceling the derivative provides the following closed-form solution:

w‹kpµq “

b

p
ř

n hknq
2
` 8µk

ř

n hkn
rwkvn
rvn

´
ř

n hkn

4µk
(5.39)

which is non-negative as soon as µk ą 0. Let, so (5.39) can be written in the following
matrix form

W ‹pµq “

„

”

rCs.2 ` 8
`

eµT
˘

d S
ı. 12
´ C



r4eµT s ,
(5.40)
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where C “ eF,NH
T and S “ ĂW d

ˆ

rV s

rW rHs
HT

˙

. Let us now write the expression of the

quadratic constraint
ř

f pW
‹pµqf,iq

2 ´ ρ “ 0 for one specific column of W , say the i-th:

ri pµiq :“
ÿ

f

pW ‹
f,ipµiqq

2 ´ ρ “
ÿ

f

¨

˝

b

pCf,iq
2
` 8µiSf,i ´ Cf,i

4µi

˛

‚

2

´ ρ “ 0. (5.41)

Computing the Lagrangian multiplier µi to satisfy the constraint requires computing the
roots of the functions ri pµiq. We can show that eachW ‹

f,ipµiq (5.40) is a monotone decreas-
ing, nonnegative convex function over p0,`8q. Therefore

ř

f pW
‹
f,ipµiqq

2 is also monotone
decreasing and convex in µi over p0,`8q. Indeed, let g : R` Ñ R` be a monotone decreas-
ing, nonnegative convex function. If g is twice-differentiable, then

`

g2˘2 “ 2 pg1q2`2gg2 ě 0
since g, g2 ě 0 and

`

g2˘1 “ 2g1g ď 0 since g ě 0, g1 ď 0 by hypothesis. Now we can con-
clude that ri pµiq is a monotone decreasing convex function over p0,`8q. Moreover, using
Hospital’s rule, we have:

lim
µiÑ0`

ÿ

f

pW ‹
f,ipµiqq

2 ´ ρ “ `8 and lim
µiÑ`8

ÿ

f

pW ‹
f,ipµiqq

2 ´ ρ “ ´ρ ă 0,

since ρ ą 0. Therefore, the root of ri pµiq is unique over p0,`8q. We use a Newton-Raphson
method to solve the problem. Algorithm 7 summarizes our method.

Algorithm 7 Hyperspheric-structured sparse KL-NMF
Require: A matrix V P RFˆN , an initialization H P RKˆN` , an initialization W P RFˆK

, a factorization rank K, a maximum number of iterations, maxiter, a weight vector
λ ą 0.

Ensure: A sparse rank-K NMF pW,Hq of V satisfying constraints in (5.35).

1: for it = 1 : maxiter do
2: % Update of matrix H

3: H Ð H d

„

WT

ˆ

Vd
“

WH
‰.pβ´2q

˙

„

WT
“

WH
‰.pβ´1q

`λeT


4: % Update of matrix W
5: C Ð eF,NH

T

6: S ÐW d

´

rV s
rWHsH

T
¯

7: for j = 1 : K do
8: µi Ð root pri pµiqq over p0,`8q % See Equation (5.41)
9: end for

10: W Ð

„

rrCs.2`8peµT qdSs
. 12´C



r4µeT s
11: end for
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5.5.2 Numerical experiments

In this section, we perform numerical experiments to evaluate the effectiveness of Algo-
rithm 7 on the HU problem. To the best of our knowledge, sparse β-NMF4 from [119] is
the most recent algorithm that is able to tackle problem (5.35) for the KL-divergence by
integrating the `2-normalization for each update of matrix W . This approach is similar to
that of [44] for β-SSNMF, that is, it uses parametrization, and resort to a heuristic with no
guarantee on the decrease of the objective function. We refer to this algorithm as β-SNMF.
We apply Algorithm 7 and β-SNMF [119] to the three real hyperspectral datasets detailed
in Section 5.3. This comparative study focuses on the convergence aspects including the
evolution of the objective function and the runtime. All the algorithms are implemented
and tested on a desktop computer with Intel Core i7-8700@3.2GHz CPU and 32GB mem-
ory. The codes are written in MATLAB R2018a. The code for Algorithm 7 is available
from https://bit.ly/35MWUYb. For all simulations, the algorithms are ran for 20 random
initializations of W and H, the entries of the penalty weight λ has been set to 0.1, 0.05
and 0.05 for Samson, Jasper Ridge and Cuprite data sets, respectively. In order to fairly
compare both algorithms, ρ has been set to 1 as β-SNMF considers a `2-normalization for
the columns of W , and the entries of the weight vector λ in Algorithm 7 have the same
values as β-SNMF requires to use the same values for all rows of H. Table 5.5 reports
the average and standard deviation of the runtime (in seconds) as the final value for the
objective function over these 20 runs for a maximum of 300 iterations. Figure 5.2 displays
the objective function values.

Table 5.5: Runtime performance in seconds and final value of objective function ΦendpW,Hq

for Algorithm 7 and β-SNMF. The table reports the average and standard devi-
ation over 20 random initializations with a maximum of 300 iterations for three
hyperspectral data sets.

Algorithms Samson data set Jasper Ridge data set Cuprite data set
runtime (sec) ΦendpW,Hq runtime (sec) ΦendpW,Hq runtime (sec) ΦendpW,Hq

Algorithm 7 11.07˘0.19 (2.68˘0.00)103 15.67˘0.17 (4.65 ˘ 0.00)103 70.16 ˘ 0.85 (2.12 ˘ 0.00)103

β-SNMF [119] 7.63˘0.13 (2.68˘0.00)103 10.98˘0.18 (4.71 ˘ 0.00)103 51.86 ˘ 0.74 (2.18 ˘ 0.00)103

According to Table 5.5 (top row), we observe that Algorithm 7 outperforms the heuristic
from [119] in terms of final value for the objective functions while β-SNMF shows lower
runtimes. Additionally, based on Figure 5.2, we observe that Algorithm 7 converges on
average faster than β-SNMF for all the data sets, in terms of iterations. However, β-
SNMF has a lower computational cost per iteration. Thus, we complete the comparison
between both algorithms by imposing the same computational time: we run Algorithm 7
for 300 iterations, record the computational time and run β-SNMF for the same amount
of time. Table 5.6 reports the average and standard deviation of the final value for the
objective function over 20 runs in this setting. Figure 5.2 (bottom row) displays the

4http://www.jonathanleroux.org/software/sparseNMF.zip

https://bit.ly/35MWUYb
http://www.jonathanleroux.org/software/sparseNMF.zip
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Fig. 5.2. Averaged objective functions over 20 random initializations obtained for Algo-
rithm 7 with 300 iterations (red line with circle markers), and the heuristic
β-SNMF from [119] (black dashed line).

Table 5.6: Final value of objective function values ΦendpW,Hq for Algorithm 7 and the
heuristic from [119]. The table reports the average and standard deviation over
20 random initializations for an equal computational time that corresponds to
300 iterations of Algorithm 7.
Algorithms Samson data set Jasper Ridge data set Cuprite data set

ΦendpW,Hq ΦendpW,Hq ΦendpW,Hq

Algorithm 7 (2.68˘0.00)103 (4.65 ˘ 0.00)103 (2.12 ˘ 0.00)103

β-SNMF [119] (2.68˘0.00)103 (4.66 ˘ 0.00)103 (2.15 ˘ 0.00)103

objective function w.r.t. time for the three data sets. On this comparison, Algorithm 7 and
the heuristic from [119] perform similarly although Algorithm 7 has slightly better final
objective function values. However, keep in mind that only Algorithm 7 is theoretically
guaranteed to decrease the objective function. For all simulations, the algorithms are ran
for 20 random initializations of W and H, the entries of the penalty weight λ has been
set to 0.1, 0.05 and 0.05 for Samson, Jasper Ridge and Cuprite data sets, respectively.
In order to fairly compare both algorithms, ρ has been set to 1 as β-SNMF considers a
`2-normalization for the columns of W , and the weight vector λ in Algorithm 7 have the
same values as β-SNMF requires to use the same values for all rows of H.

In the following we report qualitative results obtained with Algorithm 7 applied to three
HS real data sets, that are Samson, Jasper and Urban data sets. The first two data sets are
detailed in Section 5.3. The Urban data set contains 162 spectral bands with 307ˆ307 pixels
with mostly six endmembers. Note that Cuprite data set is replaced by the Urban data set
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since endmembers for Cuprite correspond to chemical components which are more difficult
to interpret visually while endmembers for Urban data sets are more easily interpretable.
As mentioned earlier, λk enables to control sparsity of the k-th row of H. Given a row

Hpk, :q P RN` of H, a meaningful way to measure its sparsity is to consider the following
measure [72]:

sp pHpk, :qq “

?
N ´

}Hpk,:q}1
}Hpk,:q}2?

N ´ 1
P r0, 1s . (5.42)

During the numerical experiments, we observed that Algorithm 7 gives better results
when the initial values for λ are low and progressively increased. During a specified interval
of iterations ritmin, itmaxs, the sparsity of the current iterate is measured by using equation
(5.42), and the entries of λ are dynamically updated (increased with a rate α ą 1) to
achieve a desired sparsity level sp. The dynamic update of the weight vector to reach the
desired levels of sparsity has been activated in the iterations intervals r1, 150s, r1, 150s and
r1, 75s for Samson, Jasper and Urban, respectively. We report here the abundance maps
of each end-member for two levels of average target sparsity that are 0.25 and 0.5. For all
the simulations, the weight vector λ has been initialized to 0.05e, and the algorithm was
run for 300 iterations. We fix the number of endmembers to 3, 4 and 6 respectively for
Samson, Jasper Ridge and Urban data sets, these values are commonly considered in the
HS community [154]. Figures 5.3 to 5.5 picture the abundance estimation for the three
data sets for the two levels of sparsity.
In order to validate the results obtained for the abundances of the endmembers, we

display in Figures 5.6, 5.7 and 5.8 the ground truth results obtained in [154]. Note that
the grayscale used in [154] is the complementary of the one used in Figures 5.3 to 5.5.
We observe that the abundance estimation gets significantly more accurate when the level

of average sparsity is higher. For the Samson and Jasper Ridge data sets, the abundances
for the endmembers are nicely estimated while five endmembers over six are well estimated
for the Urban data set. The “Roof" is divided into “Roof1" and “Roof2/shadow" [115, 154].
In our simulations, it seems that the sixth endmember corresponds to some shadows with
a small residual of “Grass", while the “Roof" is not split into two groups.

5.6 Conclusion

In this chapter we have presented a general framework to solve penalized β-NMF prob-
lems that integrates a set of disjoint constraints on the variables; see the general formula-
tion (5.2). Using this framework, we showed that we can derive algorithms that compete
favorably with the state of the art for a wide variety of β-NMF problems, such as the
simplex-structured NMF and the minimum-volume β-NMF with sum-to-one constraints
on the columns of W . We have also shown how to extend the framework to non-linear
disjoints constraints, with application to a sparse β-NMF model for β “ 1 where each
column of W lie on a hyper-sphere.
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(a) Samson Data set

(b) Abundance map with average sparsity level set to 0.25

(c) Abundance map with average sparsity level set to 0.5

Fig. 5.3. Samson data set (a) and results ((b) and (c)) for the Abundance maps estimated
using Algorithm 7 for the three endmembers: 71 Tree, 72 Soil and 73 Water. Two
average sparsity levels considered: 0.25 (b) and 0.5 (c).
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(a) Jasper Ridge Data set

(b) Abundance map with average sparsity level set to 0.25

(c) Abundance map with average sparsity level set to 0.5

Fig. 5.4. Jasper Ridge data set (a) and results ((b) and (c)) for the Abundance maps
estimated using Algorithm 7 for the four endmembers: 71 Road, 72 Tree, 73
Water and 74 Soil. Two average sparsity levels are considered: 0.25 (b) and 0.5
(c).
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(a) Urban Data set

(b) Abundance map with average sparsity level set to 0.25

(c) Abundance map with average sparsity level set to 0.5

Fig. 5.5. Urban data set (a) and results ((b) and (c)) for the Abundance maps estimated
using Algorithm 7 for the six endmembers: 71 Soil, 72 Tree, 73 Grass, 74 Roof,
75 Road/Asphalt and 76 Roof2/shadows. Two average sparsity levels are con-
sidered: 0.25 (b) and 0.5 (c).
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(a) Samson#1. The 3 endmembers are "#1 Soil", "#2 Tree" and "#3 Water".
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(c) Samson#3. The 3 endmembers are "#1 Soil", "#2 Tree" and "#3 Water".

Fig. 2. The three subimages selected from the Samson hyperspectral image,
i.e., Samson#1, Samson#2 , Samson#3 respectively. Besides, we provide the
illustration of the endmembers and their abundance maps for each subimage.

Tree” and “#5 Other”, as shown in Fig. 3a.
The second subimage (i.e., Jasper Ridge#2) contains 100⇥

100 pixels. The first pixel is the (105, 269)-th pixel in the
original image. There are four endmembers latent in this
hyperspectral subimage: “#1 Road”, “#2 Soil”, “#3 Water”
and “#4 Tree”, as shown in Fig. 3b. Since I provided the
information of this data in my papers [14, 25, 26] and pub-
lished the data (including the ground truth) on my homepage
[33] in 2015, it has been widely used in lots of state-of-
the-art methods [2, 29, 34–41] to verify the state-of-the-
art HU results. The third subimage (i.e., Jasper Ridge#3) is
comprised of 122⇥104 pixels, whose first (i.e., top-left) pixel
is the (1, 246)-th pixel in the original image. There are four
endmembers latent in Jasper Ridge#3: “#1 Road”, “#2 Soil”,
“#3 Water” and “#4 Tree”, as shown in Fig. 3c.

C. HYDICE Urban and its two subimages

HYDICE Urban is one of the most widely used hyper-
spectral image for the HU research [2, 12, 25, 26, 37, 42–
49]. It was recorded by the HYDICE (Hyperspectral Digital
Image Collection Experiment) sensor in October 1995, whose
location is an urban area at Copperas Cove, TX, U.S. There
are 307⇥307 pixels in this image, each of which corresponds
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(a) Jasper Ridge#1. There are 5 endmembers “#1 Road”, “#2 Soil”, “#3 Water”,
“#4 Tree” and “#5 Other” respectively.
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(b) Jasper Ridge#2. There are 4 endmembers “#1 Road”, “#2 Soil”, “#3 Water”
and “#4 Tree” respectively.
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(c) Jasper Ridge#3. There are 4 endmembers “#1 Road”, “#2 Soil”, “#3 Water”
and “#4 Tree” respectively.

Fig. 3. The three subimages selected from the Jasper Ridge hyperspectral
image, i.e., Jasper Ridge#1, Jasper Ridge#2 , Jasper Ridge#3 respectively.
Besides, we provide the illustration of the endmembers and their abundance
maps for each subimage.

to a 2 ⇥ 2 m2 area in the scene. The image has 210 spectral
bands ranging from 400 nm to 2, 500 nm, resulting in a very
high spectral resolution of 10 nm. After removing the badly
degraded bands 1–4, 76, 87, 101–111, 136–153 and 198–210
(due to dense water vapor and atmospheric effects), there
remains 162 bands.

There are three versions of ground truths for the HYDICE
Urban hyperspectral image:

• In the early HU papers [2, 12, 25, 26, 37, 42, 43, 46],
it is widely accepted that there are four endmembers in
the HYDICE Urban, i.e., “#1 Asphalt Road”, “#2 Grass”,
“#3 Tree” and “#4 Roof”, as shown in Fig. 4a.

• Recently, the analyse on Urban image become more
precise. The “#1 Asphalt Road” is divided into “#1
Asphalt” and “#6 Soil” whereas the “#4 Roof” is divided
into “#4 Roof1” and “#5 Roof2/shadow”. In other words,
the number of endmembers rises to six [12, 49]; they are
“#1 Asphalt”, “#2 Grass”, “#3 Tree”, “#4 Roof1”, “#5
Roof2/shado” and “6 Soil”, as shown in shown in Fig. 4c.

• Apart from the above two versions, we introduce a
new ground truth that consists of 5 endmembers: “#1
Asphalt”, “#2 Grass”, “#3 Tree”, “#4 Roof” and “5 Soil”,
as shown in Fig. 4b. Compared with the 1st version, the

Fig. 5.6. Baseline abundances for the endmembers obtained for Samson data extracted
from [154]: 71 Soil, 72 Tree and 73 Water.
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(a) Samson#1. The 3 endmembers are "#1 Soil", "#2 Tree" and "#3 Water".
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(b) Samson#2. The 3 endmembers are "#1 Soil", "#2 Tree" and "#3 Water".
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(c) Samson#3. The 3 endmembers are "#1 Soil", "#2 Tree" and "#3 Water".

Fig. 2. The three subimages selected from the Samson hyperspectral image,
i.e., Samson#1, Samson#2 , Samson#3 respectively. Besides, we provide the
illustration of the endmembers and their abundance maps for each subimage.

Tree” and “#5 Other”, as shown in Fig. 3a.
The second subimage (i.e., Jasper Ridge#2) contains 100⇥

100 pixels. The first pixel is the (105, 269)-th pixel in the
original image. There are four endmembers latent in this
hyperspectral subimage: “#1 Road”, “#2 Soil”, “#3 Water”
and “#4 Tree”, as shown in Fig. 3b. Since I provided the
information of this data in my papers [14, 25, 26] and pub-
lished the data (including the ground truth) on my homepage
[33] in 2015, it has been widely used in lots of state-of-
the-art methods [2, 29, 34–41] to verify the state-of-the-
art HU results. The third subimage (i.e., Jasper Ridge#3) is
comprised of 122⇥104 pixels, whose first (i.e., top-left) pixel
is the (1, 246)-th pixel in the original image. There are four
endmembers latent in Jasper Ridge#3: “#1 Road”, “#2 Soil”,
“#3 Water” and “#4 Tree”, as shown in Fig. 3c.

C. HYDICE Urban and its two subimages

HYDICE Urban is one of the most widely used hyper-
spectral image for the HU research [2, 12, 25, 26, 37, 42–
49]. It was recorded by the HYDICE (Hyperspectral Digital
Image Collection Experiment) sensor in October 1995, whose
location is an urban area at Copperas Cove, TX, U.S. There
are 307⇥307 pixels in this image, each of which corresponds
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(a) Jasper Ridge#1. There are 5 endmembers “#1 Road”, “#2 Soil”, “#3 Water”,
“#4 Tree” and “#5 Other” respectively.
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(b) Jasper Ridge#2. There are 4 endmembers “#1 Road”, “#2 Soil”, “#3 Water”
and “#4 Tree” respectively.
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(c) Jasper Ridge#3. There are 4 endmembers “#1 Road”, “#2 Soil”, “#3 Water”
and “#4 Tree” respectively.

Fig. 3. The three subimages selected from the Jasper Ridge hyperspectral
image, i.e., Jasper Ridge#1, Jasper Ridge#2 , Jasper Ridge#3 respectively.
Besides, we provide the illustration of the endmembers and their abundance
maps for each subimage.

to a 2 ⇥ 2 m2 area in the scene. The image has 210 spectral
bands ranging from 400 nm to 2, 500 nm, resulting in a very
high spectral resolution of 10 nm. After removing the badly
degraded bands 1–4, 76, 87, 101–111, 136–153 and 198–210
(due to dense water vapor and atmospheric effects), there
remains 162 bands.

There are three versions of ground truths for the HYDICE
Urban hyperspectral image:

• In the early HU papers [2, 12, 25, 26, 37, 42, 43, 46],
it is widely accepted that there are four endmembers in
the HYDICE Urban, i.e., “#1 Asphalt Road”, “#2 Grass”,
“#3 Tree” and “#4 Roof”, as shown in Fig. 4a.

• Recently, the analyse on Urban image become more
precise. The “#1 Asphalt Road” is divided into “#1
Asphalt” and “#6 Soil” whereas the “#4 Roof” is divided
into “#4 Roof1” and “#5 Roof2/shadow”. In other words,
the number of endmembers rises to six [12, 49]; they are
“#1 Asphalt”, “#2 Grass”, “#3 Tree”, “#4 Roof1”, “#5
Roof2/shado” and “6 Soil”, as shown in shown in Fig. 4c.

• Apart from the above two versions, we introduce a
new ground truth that consists of 5 endmembers: “#1
Asphalt”, “#2 Grass”, “#3 Tree”, “#4 Roof” and “5 Soil”,
as shown in Fig. 4b. Compared with the 1st version, the

Fig. 5.7. Baseline abundances for the endmembers obtained for Jasper Ridge data ex-
tracted from [154]: 71 Road, 72 Soil, 73 Water and 74 Tree.
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Fig. 4. The three versions of ground truths for the Urban hyperspectral image. (a) illustrates the ground truth that has 4 endmembers; (b) shows the ground
truth that has 5 endmembers; (c) the ground truth that has 6 endmembers.

“#1 Asphalt Road” is divided into “#1 Asphalt” and “#5
Soil”. Compared with the 2nd version, we merge “#4
Roof1” and “#5 Roof2/shadow” into “#4 Roof”.

To make it more challenging, we select two subimages from
the Urban image (cf. Fig. 1c), where the small objects, like
small houses, vehicles, small grasslands etc., are the main
scene, causing lots of transitional areas. This surely leads
to lots of mixed pixels due to the low spatial resolution of
hyperspectral sensors. The first subimage (i.e., Urban#1) has
160⇥168 pixels, whose first pixel is the (1, 1)-th pixel in the
original image. The second subimage (i.e., Urban#2) starts
from the (40, 1)-th pixel in the original image. It also has
160 ⇥ 168 pixels. There are six endmembers: "#1 Asphalt",
"#2 Grass", "#3 Tree", “#4 Roof1”, "#5 Roof2/shadow", and "6
Soil" for both Urban#1 (cf., Fig. 5a) and Urban#2 (cf., Fig. 5b).

D. Cuprite

Cuprite is the most benchmark and challenging hyperspec-
tral image for the HU research [12, 14, 50–59], which is
captured by the AVIRIS sensor. It covers a Cuprite area in
Las Vegas, NV, U.S. There are 224 spectral bands in the

Cuprite image, ranging from 370 nm to 2, 480 nm. After
removing the noisy bands (i.e., 1–2 and 221–224) and the
water absorption bands (i.e., 104–113 and 148–167), it remains
188 bands. In this paper, a subimage of 250 ⇥ 190 pixels
is considered, which is widely used in the state-of-the-art
HU works [12, 14, 56, 59]. Please refer to Fig. 1d for the
illustration of its position, size and scene.

In this subimage, there are 14 types of minerals (or end-
members), whose spectra can be obtained from the ENVI soft-
ware. There are very minor differences between the variants of
the same mineral, for example Kaolinite1 and Kaolinite3 are
very similar in appearance. The researchers have their own
thoughts, resulting in different versions of ground truth. In
[59], there are 14 endmembers; while there are 10 endmembers
in [12]; then Dr. Lu hold that there are 12 endmembers in the
Cuprite. Here we agree with Dr. Lu’s setting. Please refer to
Fig. 6 for the illustration of the 12 endmembers. Because there
are small differences in the setting of endmembers among the
papers [12, 56–59], the results of the state-of-the-art methods
in their papers might be different from each other.

Fig. 5.8. Baseline abundances for the endmembers obtained for Urban data extracted
from [154]: 71 Asphalt, 72 Grass, 73 Tree, 74 Roof1, 75 Roof2/Shadow and 76
Soil.

Further works will focus on the possible extension of the methods to non-disjoints con-
straints. The non-disjoint constraints will lead to roots finding problems of polynomial
equations in the Lagrangian multipliers for which we hope to find conditions that ensure
the uniqueness of the solution.
Another interesting direction of research would be to apply our framework to other NMF

models. For example, in probabilistic latent semantic analysis/indexing (PLSA/PLSI), the
model is the following: given a nonnegative matrix V such that eTV e “ 1 (this can be
assumed w.l.o.g. by dividing the input matrix by eTV e), solve

max
Wě0,Hě0,sě0

ÿ

i,j

Vi,j logpW diagpsqHqi,j such that W T e “ e,He “ e, sT e “ 1.

This model is equivalent to KL-NMF [38], with the additional constraint that eTWHe “
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eTXe, and hence our framework is applicable to PLSA/PLSI. Such constraints have also
applications in soft clustering contexts; see [144].
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6 Exact NMF with conic programming

In this chapter, we introduce a novel framework that includes two approaches for computing
an exact NMF. Exact NMF can be defined as follows: given an input nonnegative matrix
V P RFˆK` , we search for two nonnegative matrices W P RFˆK` and H P RKˆN` such that
V “WH. Each of the proposed approaches relies on the construction and the resolution of
a specific optimization problem. For each optimization problem we introduce a particular
change of variables that enables the use of two special cases of conic constraints, that are
the exponential and second-order conic constraints.
In order to solve the two optimization problems, we propose a general algorithm with

two key ingredients:

1. the original optimization problems are replaced by a sequence of easier optimization
problems to solve, each successive problem being obtained by majorizing the objective
functions by their linearization constructed at the current solution pW,Hq. By doing
so, we show that the successive approximated problems belong to two special cases
of conic programming; namely the exponential programming and the second-order
programming.

2. Interior-point methods are used to solve each successive problem with high accuracy.

We show that our algorithm once applied to tackle the two optimization problems is
able to compute exact NMF for several classes of nonnegative matrices (namely, ran-
domly generated, infinite rigid matrices and nested hexagons problem matrices) and as
such demonstrate their competitivity compared to recent methods from the literature. We
finally show that the first approach relying on exponential programming is competitive
compared to recent method for solving the so-called maximum-edge biclique problem for
small size input matrices.
The following sections present some preliminaries required before we formally introduce

the two formulations for computing an exact NMF. In particular, we present the main
properties of the nonnegative rank of a matrix, the notion of conic programming and the
special cases of cones we consider in this chapter.

6.1 Introduction and preliminaries

As introduced in Section 1.3, computing an NMF corresponds to finding good approxima-
tions of a given nonnegative matrix as a low-rank product of two nonnegative matrices.

148
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Despite the fact that NMF is NP-hard in general as explained in Section 1.7, it has been
used successfully in many practical situations, see Section 1.5. Many local optimization
schemes have been developed to compute good factorizations and therefore try to iden-
tifying good local minima of the optimization problems associated to NMF models, see
section 1.4. Most of the algorithms are based on iterative schemes such that at each it-
eration, they aim to improve the current solution. On a pracitcal point of view, many
state-of-the art algorithms rely on a two-BCD scheme, see section 1.10 for more details.
Comparatively, less attention has been given in the literature to the development of algo-
rithms aimed at finding global minima of the optimization problems associated to NMF
models. In this chapter, we are interested in computing high quality local minima for
the NMF optimization problems without relying on the BCD framework; the optimization
over W,H is performed jointly. In particular, our focus is on finding exact NMFs, that is,
computing nonnegative factorsW and H such that V “WH holds exactly. The minimum
factorization rank for which such an exact NMF exists is called the nonnegative rank of V
and is denoted rank`pV q. In the following section, we briefly present some properties of
the nonnegative rank.

6.1.1 Some properties of the nonnegative rank

Here-under we briefly present some properties of the nonnegative rank, most of these results
presented here-under are extracted from the seminal paper by Cohen and Rothblum [31].
First, an upper bound and a lower bound for rank`pV q can be easily computed.

Lemma 6.1.1. Let V P RFˆN` , then

rankpV q ď rank`pV q ď minpF,Nq

Proof. The first inequality holds since it is not possible to find an exact factorization of
lower rank than V . Indeed, the rank of V is the smaller integer K such that we can find
two matrices W P RFˆK and H P RKˆN . The nonnegative rank is defined in the way with
the requirement for W and H to be componentwise nonnegative. The second comes from
one of the trivial factorizations IFV or V IN .

In some particular cases, the first inequality is tight. For the rank-one nonnegative
matrix V , we can easily find an exact NMF V “ whT where w P RF` and h P RN` . This
implies that rankpV q “ rank`pwhT q “ 1. This observation is still true for a rank-two
nonnegative matrix, see the proofs in [31].
Let us cite here-under others well-known properties of the nonnegative rank proved in

[31], let V and U be two nonnegative matrices P RFˆK` and P RKˆN` respectively:

• rank`pV T q “ rank`pV q [31, Lemma2.5],

• rank`pV ` Uq ď rank`pV q ` rank`pV q [31, Lemma2.5],

• rank`pV Uq ď minprank`pV q, rank`pUqq [31, Lemma2.6]
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In the Appendix, we introduce more features of the nonnegative rank of a matrix, in
particular we present the impact on the nonnegative rank of a matrix V under two types
of perturbations, namely small continuous perturbations and rank-1 perturbations.
In all the experiments considered in this chapter, the nonnegative rank of the input

matrices are known.

6.1.2 Conic programming

The key ingredients for CP are:

• a closed, convex cone K Ď Rn : if x1, x2 P K, then t1x1 ` t2x2 P K for any t1, t2 ě 0,

• a linear operator A : Rn Ñ Rm, two vectors b P Rm, c P Rn and a scalar d,

• an inner product x., .y on Rn.

The general form of a conic optimization problem is as follows:

min
xPRn

xc, xy ` d

subject to Ax “ b,

x P K,

(6.1)

where the last constraint is commonly referred to as convex conic constraint. Hence a
conic optimization problem is an optimization problem in which a linear function is mini-
mized over the intersection of an affine subspace and a convex cone. Thus, CP are convex
optimization problems. By choosing a specific cone K for the conic constraint, we choose
a special case of CP. For instance, Linear programming (LP) is a special case of conic
programming (CP) for which K “ Rn`. The important convex cones in optimization and
the associated case of CP are detailed in Table 6.1.

Table 6.1: Important convex cones and the associated case of CP
Convex cone K Conic Programming

Rn` (the nonnegative orthant) Linear Programming (LP)
Snˆn` (the cone of Positive Semi-Definite matrices) Semi-Definite Programming (SDP)

Kexp, the exponential cone Conic Geometric Programming (CGP)
Qn, the quadratic (ice cream) cone Second-Order Conic Programming (SOCP)

In this chapter, we consider the exponential cones and the second-order cones which are
discussed in the two following sections.
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Exponential cones

In the case n “ 3, the (primal) exponential cone, denoted Kexp, is a convex subset of R3

defined as follows:

Kexp “

!

px, y, zq |x ě ye
z
y , y ą 0

)

Y tpx, 0, zq |x ď 0, z ě 0u . (6.2)

Thus the exponential cone is the closure in R3 of the epigraph of ex (non-proper cone).
We can easily see that Kexp defined by (6.2) is a convex cone since:

• for all x P Kexp, then αx P Kexp for all α ě 0,

• the convexity of Kexp follows from the fact that the Hessian of fpz, yq “ y exp z{y,
namely

∇2f “ e
z
y

˜

y´1 ´zy´2

´zy´2 z2y´3

¸

,

is positive semidefinite for y ą 0.

Figure 6.1 displays the boundary of the exponential cone Kexp when n “ 3:

Fig. 6.1. Boundary of the exponential cone Kexp in the case n “ 3.

The use of the exponential cone in CP leads to new types of constraint building blocks
and new types of representable sets. We list here-under some useful modeling examples
using the exponential cone:

• Exponential: the epigraph t ě ex is a section of Kexp, indeed:

t ě ex ðñ pt, 1, xq P Kexp.

• Log-sum-exp: the log-sum-exp (logarithm of sum of exponentials) expression t ě

log pex1 ` ...` exnq is equivalent to the inequality ex1´t` ...`exn´t ď 1 and therefore
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can be modeled as follows:
n
ÿ

i“1
τi ď 1,

pτi, 1, xi ´ tq P Kexp for i “ 1, ..., n
(6.3)

These examples of modeling will be useful in Section 6.2.

Second-order cones

The n-dimensional quadratic cone, denoted Qn, is defined as follows

Qn “
"

x P Rn | x1 ě
b

x2
2 ` ...` x

2
n

*

.

Further, we will use a variant of this quadratic cone which is usually referred to as the
rotated quadratic cone. Mathematically, a n-dimensional rotated quadratic cone is defined
as:

Qnr “
 

x P Rn | 2x1x2 ě x2
3 ` ...` x

2
n

(

.

We pass from a quadratic to a rotated quadratic cone with an orthogonal transformation.
Indeed, let us define the following orthogonal linear operator:

Tn “

¨

˚

˚

˝

1{
?

2 1{
?

2 0
1{
?

2 ´1{
?

2 0
0 0 In´2

˛

‹

‹

‚

.

In the case n “ 3, we easily verify that :

x P Q3 ðñ z “ Tnx P Q3
r .

Indeed,
¨

˚

˚

˝

z1

z2

z3

˛

‹

‹

‚

“

¨

˚

˚

˝

1{
?

2 1{
?

2 0
1{
?

2 ´1{
?

2 0
0 0 In´2

˛

‹

‹

‚

¨

˚

˚

˝

x1

x2

x3

˛

‹

‹

‚

“

¨

˚

˚

˝

1{
?

2px1 ` x2q

1{
?

2px1 ´ x2q

x3

˛

‹

‹

‚

,

therefore
2z1z2 ě z2

3 , z1, z2 ě 0 ùñ px2
1 ´ x

2
2q ě x2

3, x1 ě 0.

The orthogonal transformation then corresponds to a rotation of π{4 around axis x3. As
an illustration, the boundary of the 3-dimensional quadratic and the rotated 3-dimensional
cone is depicted Figure 6.2.
Hence, one could argue that we only need vanilla second-order cone Qn, however there

are many practical situations where it is more natural to use rotated second-order cones.
For instance, some power-like inequalities can be modeled using rotated second-order cones:

|t| ď
?
x, x ě 0 ðñ px, 1{2, tq P Q3

r .

We have now everything in hand to introduce in the next section the two optimization
problems that we will try to solve for computing exact NMFs.
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Fig. 6.2. Boundaries of Q3 and Q3
r , reproduced from MOSEK doc.

6.2 Problem formulations for exact NMF

In this section we propose two optimization problems associated to the exact NMF model
V “ WH, pW,Hq ě 0. Each optimization problem integrates a special case of conic
constraints.

6.2.1 Problem formulation via exponential cones

Given a non-negative matrix V P RFˆN` and a positive integer K ! minpF,Nq, we want to
compute an exact NMF. A natural way to compute such a factorization would be to solve
the following problem:

max
WPRFˆK ,HPRKˆN

ÿ

f,n

˜

ÿ

k

WfkHkn

¸

subject to
ÿ

k

WfkHkn ď Vfn for all f, n,

Wfk ě 0, Hkn ě 0 for all f, k, n.

(6.4)

This formulation could be referred as an under-approximation formulation since we max-
imize

ř

kWfkHkn to equal Vfn for all f, n. In order to deal with such nonnegative con-
straints on the entries of W and H, we propose the following change of variables: we
pose Wfk “ GpUfkq “ eUfk and Hkn “ GpVknq “ eVkn with f “ 1, .., F , n “ 1, .., N and
k “ 1, ..,K. By applying a logarithm on top of this change of variable to the objective
function and on both sides of the inequality constraints (it does not change the optimal
solutions since a logarithm is a monotone increasing function), optimization problem (6.4)
becomes:

max
UPRFˆK ,V PRKˆN

log
˜

ÿ

fn

ÿ

k

eUfk`Vkn

¸

subject to log
˜

ÿ

k

eUfk`Vkn

¸

ď log pVfnq for all f, n,

(6.5)
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which corresponds to the maximization of a convex function (log-sum-exponentials) over a
convex set Q. Indeed, we can easily check that any function fpxq “ log p

řn
i e

xiq is convex;
by posing ri “ exi for all i, the Hessian matrix has the following form:

∇2f “
1
eT r

diagprq ´ 1
peT rq2

rrT .

To show that ∇2f ľ 0, we must verify that vT∇2fv ě 0 for all v:

vT∇2fv “

`
ř

i riv
2
i

˘

p
ř

i riq ´ p
ř

i riviq
2

p
ř

i riq
2 ě 0,

since p
ř

i riviq
2
ď

`
ř

i riv
2
i

˘

p
ř

i riq from Cauchy-Schwarz inequality.
The convex set Q from (6.5) is defined as follows:

Q “

#

pU, V q | log
˜

ÿ

k

eUfk`Vkn

¸

ď log pVfnq , f “ 1, .., F, n “ 1, .., N.
+

(6.6)

by using the log-sum-exp reduction from (6.3), we write (6.6) as explicit conic constraints
as follows:

K
ÿ

k“1
tfkn ď Xfn for all f, n,

ptfkn, 1, Ufk ` Vknq P Kexp for all f, k, n.

(6.7)

Thus, the optimization problem (6.5) becomes:

max
UPRFˆK ,V PRKˆN

log
˜

ÿ

fn

ÿ

k

eUfk`Vkn

¸

subject to
K
ÿ

k“1
tfkn ď Xfn for all f, n,

ptfkn, 1, Ufk ` Vknq P Kexp for all f, k, n.

(6.8)

This leads to F ˆN inequality constraints and the introduction of F ˆKˆN exponential
cones. The strategy followed to tackle problem (6.8) is detailed in Section 6.3.

6.2.2 Problem formulation via rotated quadratic cones

In this section we present an optimization problem formulation to compute an exact NMF
via (rotated) quadratic cones. Let us start by considering the following alternative formu-
lation to (6.4) for computing an exact NMF:

min
WPRFˆK ,HPRKˆN

ÿ

f,n

˜

ÿ

k

WfkHkn

¸

subject to
ÿ

k

WfkHkn ě Vfn for all f, n,

Wfk, Hkn ě 0 for all f, k, n.

(6.9)
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This formulation could be referred as an upper-approximation formulation since we min-
imize

ř

kWfkHkn to equal Vfn for all f, n. We consider the following change of variables:
we pose Wfk “ GpUfkq “

a

Ufk and Hkn “ GpVknq “
?
Vkn with f “ 1, ..., F , n “ 1, ..., N

and k “ 1, ...,K. Thus the optimization problem (6.9) becomes

min
UPRFˆK ,V PRKˆN

ÿ

fn

˜

ÿ

k

a

Ufk
a

Vkn

¸

subject to
ÿ

k

a

Ufk
a

Vkn ě Vfn for all f, n,
(6.10)

which corresponds to the minimization of a concave function over a convex set Q. We now
write Q as explicit conic constraints as follows:

K
ÿ

k“1
tfkn ě Vfn,

pUfk, 1{2Vkn, tfknq P Q3
r for all f, k, n.

(6.11)

Thus, the optimization problem (6.10) becomes

min
UPRFˆK ,V PRKˆN

ÿ

fn

˜

ÿ

k

a

Ufk
a

Vkn

¸

subject to
K
ÿ

k“1
tfkn ě Vfn for all f, n,

pUfk, 1{2Vkn, tfknq P Q3
r for all f, k, n.

(6.12)

which leads to F ˆN inequality constraints and the introduction of of F ˆK ˆN rotated
quadratic cones. In Section 6.3, we present the algorithm developed to tackle (6.8).

6.3 Algorithm

In this section we present the methodology followed to tackle both problems (6.8) and
(6.12). Let us first observe that both problems correspond to the minimization of a concave
function Φ over a convex set Q. Indeed, for problem (6.8), the maximization of the convex
function g “ log

´

ř

fn

ř

k e
Ufk`Vkn

¯

is equivalent to minimizing the concave function ´g “
Φ. There are three main building blocks for our proposed algorithm:

1. Initialization for U and V ; we chose to randomly initialize W and H (uniformly
distributed random number) and apply the two changes of variables to compute the
initializations for U and V for both problems.

2. The main algorithm which is detailed below. For problem (6.12), the main algorithm
integrates a procedure that automatically updates the optimization problems in the
case some of the entries of the current solutions tend to zero. This procedure is
referred to as Sparsity Patterns Integration (SPI) and is detailed in Section 6.3.1.



CHAPTER 6. EXACT NMF WITH CONIC PROGRAMMING 156

3. A final refinement step that will try to further improve the output of the main
algorithm as far as possible (ideally, until an exact NMF is found); we will use the
accelerated HALS algorithm from [60]. The final refinement step will be applied to
all solutions generated by the second building block of the algorithm. In this chapter,
we use a tolerance for the relative error equal to 10´6, that is we assume that an
exact NMF pW,Hq is found for an input matrix V as soon as }V´WH}F

}V }F
ď 10´6.

Let us give more insights about the second building block of our algorithm. The mini-
mization of the objective functions from (6.8) and (6.12) over their respective convex set Q
is replaced by a sequence of simpler problems in which the objective functions are replaced
by their linearization constructed at the current solution pU, V q. By posing Z “ pU, V q for
clarity purpose, the algorithm is therefore based on a iterative scheme such that at each
iteration i we update Z as follows:

Zi “ argmin
ZPQ

ΦpZi´1q ` x∇ΦpZi´1q, Z ´ Zi´1yF

“ argmin
ZPQ

x∇ΦpZi´1q, ZyF ` d,
(6.13)

where Φ designates the objective function from (6.8) or from (6.12), d “ ΦpZi´1q ´

x∇ΦpZi´1q, Zi´1yF is a constant. For illustration purpose, we explicit here-under the
form of the successive optimization problems for (6.12):

min
UPRFˆK ,V PRKˆN ,tPRFˆKˆN

`

x∇UΦ
`

U i´1, V i´1˘ , UyF ` x∇V Φ
`

U i´1, V i´1˘ , V yF ` d

subject to
K
ÿ

k“1
tfkn ě Vfn for all f, n

pUfk, 1{2Vkn, tfknq P Q3
r for all f, k, n

(6.14)
where ∇UΦ and ∇V Φ are respectively the gradients of Φ w.r.t. U and V under matrix
form defined as follows:

∇UΦ pU, V q “ 1
2U

.´1
2 d

˜

e

«

ÿ

n

V
. 12

1n ...
ÿ

n

V
. 12
Kn

ff¸

∇V Φ pU, V q “ 1
2V

.´1
2 d

¨

˝

«

ÿ

f

U
. 12
f1...

ÿ

f

U
. 12
fK

ffT

eT

˛

‚

(6.15)

where e are the all-one column vectors of appropriate size. As we can see, each successive
problem given by (6.14) is a particular case of the general conic optimization problem
defined in (6.1), in other words, each successive problem is convex. In order to solve
each successive problem, we use Interior Points Methods (IPM). IPM provide a general
methodology via self-concordant barrier functions to obtain polynomial-time algorithms for
general families of convex programs such as LP, SDP, CGP and SOCP. In a nutshell, let us
illusrate the principle of IPM on a general constrained non-linear optimization problem that



CHAPTER 6. EXACT NMF WITH CONIC PROGRAMMING 157

includes a simple conic constraint, that is, the variable x must belong to the nonnegative
orthant:

min
xPRn

Φpxq

subject to hpxq “ 0,

x ě 0,

(6.16)

where the objective function and equality constraints, Φpxq : Rn Ñ R and hpxq : Rn Ñ Rm

are assumed to be twice continuously differentiable. The class of primal-dual path-following
interior-point methods is considered the most successful and solves problem (6.16) through
a sequence of barrier problems:

min
xPRn

Ψµpxq “ Φpxq ´ µ
ÿ

i

logpxiq

subject to hpxq “ 0,
(6.17)

with decreasing values of barrier parameter µ ą 0 and where the violation of inequality
constraints are prevented by augmenting the objective function with the self-concordant
barrier term (´µ

ř

i logpxiq) that causes the optimal unconstrained value to be in the
feasible space. Problem (6.17) is solved through the primal-dual equations:

∇Φpxq ` λ∇hpxq ´ s “ 0

hpxq “ 0

XSe´ µe “ 0

(6.18)

where λ P Rm is the vector of Lagrangian multipliers for the equality constraints, the
dual variable is S “ µX´1e, X and S are diagonal matrices generated respectively from
vectors x and s. This set of equations (6.18) is iteratively solved using Newton-Raphson
methods. We refer the reader to the seminal reference [109] for more details on IPM. Here
we highlight the types of barrier functions that are employed in interior-point methods
for conic constraints. For the second order cone as for the nonnegative orthant used in
the simple example above, natural self-concordant barriers are specified by the associated
logarithmic barriers [109]. For the exponential cone defined by (6.2), the following self-
concordant barrier is considered [33]:

F px, y, zq “ ´ log py logpx{yq ´ zq ´ logpxq ´ logpyq.

In this thesis, we use MOSEK software to solve each successive problem (6.13) with
IPM. Algorithm 8 summarizes our algorithm to tackle both problems (6.8) and (6.12).
As mentioned earlier, the SPI procedure detailed in following section can be activated at
stage 7 of Algorithm 8.
Finally, by posing ΨpZ|Zi´1q “ x∇ΦpZi´1q, ZyF`d with d “ ΦpZi´1q´x∇ΦpZi´1q, Zi´1yF ,

we observe that ΨpZ|Zi´1q is an auxiliary function (tight upper-bound) since:

• ΨpZ|Zi´1q ě ΦpZq for all Z P Q; it follows the fact that ΨpZ|Zi´1q is the linearization
of a concave function ΦpZq.
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Algorithm 8 Successive Conic Convex Approximation for Exact NMF
Require: Input matrix V P RFˆN` , the factorization rank K, number of iterations maxiter

and a threshold th for SPI procedure.
Ensure: pW,Hq ě 0 is such that V “WH with }V´WH}F

}V }F
ď 10´6.

1: % Block 1: Initialization
2: pW 0, H0q ÐÝ nonnegative random initializationpF,K,Nq.
3: pU0, V 0q ÐÝ GpW 0, H0q with G defining the change of variable
4: Z0 ÐÝ pU0, V 0q

5: % Block 2: iterative update of Z
6: for i “ 1, 2, . . . , maxiter do
7: Zi ÐÝ argmin

ZPQ
x∇ΦpZi´1q, ZyF with IPM available in MOSEK software and acti-

vation of SPI procedure if required.
8: end for
9: pW,Hq ÐÝ G´1pZiq

10: % Block 3: Final Refinement
11: pW,Hq ÐÝ Algo A-HALSpW,Hq

• ΨpZi´1|Zi´1q “ ΦpZi´1q.

Further each new iterate Zi computed by IPM is the optimal solution Z‹ of (6.13), since
each successive problem (6.13) is convex. This guarantees Φ to decrease at each iteration.

Lemma 6.3.1. Let Z,Zpi´1q P Q, and let ΨpZ|Zpi´1qq be an auxiliary function for Φ at
Zpi´1q. Then Φ is non-increasing under the update

Zpiq “ arg min
ZPQ

ΨpZ|Zpi´1qq.

Proof. We have by definition that:

ΦpZpi´1qq “ ΨpZi´1|Zi´1q ě min
ZPQ

ΨpZ|Zpi´1qq “ ΨpZi|Zpi´1qq ě ΦpZiq.

In the next section we detail the SPI procedure.

6.3.1 Sparsity Pattern Integration

Due to nonnegative contraints on the entries of W and H, the sparsity for an input matrix
V (many entries equal to zero) induces sparse patterns for the solutions pW,Hq, as for
the solutions pU, V q of (6.12) since Wfk “ GpUfkq “

a

Ufk and Hkn “ GpVknq “
?
Vkn.

One can observe that the objective function Φ from (6.12) is not L-smooth on the interior
of the domain (non-negative orthant). When an entry Ufk for the current solution U i´1

tends to zero, the corresponding entry in the gradient of Φ w.r.t. U tends to 8 which
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therefore ends the optimization process. As a first simplistic approach, we normalized
the gradients of Φ evaluated at

`

U i´1, V i´1˘ w.r.t. Frobenius norm. However, based on
preliminary numerical experiments, we have noticed that the solution obtained pW,Hq for
an input matrix with zero entries cannot reach the desired tolerance threshold to consider
the solution as en exact NMF, even if the obtained solutions pW,Hq seem to be close to
an exact NMF. In order to tackle this issue and enables the solution to reach the desired
tolerance of 10´6 for the relative error, we integrated an additional stage within the second
building block of Algorithm 8 when used to tackle (6.12). This additional stage is referred
to as "Sparsity Pattern Integration" and can be summarized as follows: let us consider a
simple case for which one entry Wf̄ ,k̄ of the current solution W i´1 tends to zero, it implies
that entry Uf̄ ,k̄ tends to zero as well. Let us now fix this entry Uf̄ ,k̄ to zero, it implies
that this variable is dropped from the optimization process. Let us observe the impact on
the constraints of (6.10) in which Uf̄ ,k̄ is involved; the inequality constraints identified by
index f “ f̄ are:

b

Uf̄ ,1
a

V1,n ` ...`
b

Uf̄ ,k̄

b

Vk̄,n ` ...`
b

Uf̄ ,K
a

VK,n ě Vf̄ ,n for 1 ď n ď N.

First, since
b

Uf̄ ,k̄ “ 0, there is no more constraints on
b

Vk̄,n for N inequalities identified

by index f “ f̄ . Second, for the problem (6.12) and the successive convex problems (6.14),
it is then clear that N conic variables tf̄ ,k̄,n (and hence the N associated conic constraints)
can be dropped from the optimization process. Finally, the objective function is also
automatically impacted by removing the linear term

“

∇UΦ
`

U i´1, V i´1˘‰
f̄ ,k̄

Uf̄ ,k̄.
The same rationale is followed for the case entries of the current solution for V tend to

zero. To sum up, at each iteration, Algorithm 8 verifies if entries of the current solutions
pW i´1, H i´1q “ G´1pU i´1, V i´1q is below a threshold th defined by the user, then the cor-
responding entries of U and V are set to zero so that we determine a sparsity pattern, that
are the indices of the entries set to zero. The optimization problem (6.14) is automatically
updated based on the current sparsity pattern with the approach explained above. Let
us illustrate the impact of triggering this SPI procedure on the solutions obtained for the
factorization of the following input matrix V with zero entries:

V “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (6.19)

The nonnegative rank of (6.19) is known and is equal to 5. Algorithm 8 is used to compute
an exact NMF of V with the following input parameters:

• K “ 5 “ rank`pV q,

• th “ 10´3,
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• the maximum number of iterations defined by parameter maxiter is set to 500 and
the SPI procedure is activated in the iterations interval r400, 500s.

Figure 6.3 displays the evolution of }V´WH}F
}V }F

along iterations for V (6.19) with a factor-
ization rank K “ 5. One can observe that, once the SPI is activated, the relative Frobenius
error drops from 5 10´4 to 8 10´9, hence below the tolerance of 10´6 such that we assume
an exact NMF pW,Hq is found. For this experiment, we obtain:

W “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1.4748 0.9259 0 0
0.7824 0 1.8517 0 0

0 0 0.9259 0 1.4716
0 0 0 0.6024 1.4716

0.7824 0 0 1.2049 0
0 1.4748 0 0.6024 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

H “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 0 1.2781 0 0 1.2781
0 0.6780 1.3561 0.6780 0 0
0 0 0 1.0801 1.0801 0

1.6599 1.6599 0 0 0 0
0.6796 0 0 0 0.6796 1.3591

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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Fig. 6.3. Evolution of }V´WH}F
}V }F

along iterations; SPI is activated in the iterations interval
r400, 500s.
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6.4 Numerical experiments

Algorithm 8 is tested for two main applications (1) the computation of exact NMF for
particular classes of matrices usually considered in the exact NMF litterature and (2) the
computation of the largest biclique in a bipartite graph. For the first application, both
optimization problems (6.8) and (6.12) are considered and solved by Algorithm 8. For
the second application, as we need to use under-approximation models (the reason will
be detailed in Section 6.4.2), only optimization problem (6.12) will be considered. The
algorithm will be benchmarked against recent algorithms available in the literature.

6.4.1 Benchmark Nonnegative Matrices for Exact NMF

Throughout this section, we will compare exact NMF algorithms on the following nonneg-
ative matrices:

• Randomly Generated Matrices: It is standard in the NMF literature to use randomly
generated matrices to compare algorithms (see, e.g., [38]), with the nice feature that
the resulting nonnegative rank of these matrices can be specified. In this chapter, we
have generated matrices V P R4ˆ15 as follows: W is taken as the matrix from (2.2):

W “

¨

˚

˚

˚

˚

˝

1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1

˛

‹

‹

‹

‹

‚

so that rankpW q “ 3 ă K “ 4, and each column of H is distributed using the
Dirichlet distribution of parameter p0.1, . . . , 0.1q. Each column of H with an entry
larger 0.8 is resampled as long as this condition does not hold. This guarantees that
no data point is close to a column of W .

• Infinitesimally rigid factorizations: in this chapter, we consider four infinitesimally
rigid factorizations for 5 ˆ 5 matrices with positive entries and of nonnegative rank
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four extracted from [80]:

Vinf1 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

573705 806520 167622 246500 531659
397096 39600 299176 63720 274120
131646 403260 30269 226915 264510
9114 85160 311182 827468 851798

147857 3200 351037 599025 697755

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

Vinf2 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

30893 319912 149770 873 111428
383490 87990 5580 628440 587250
560076 1030324 331070 288045 350647
203830 305184 277512 264376 205933
90911 142936 500784 618842 609633

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

Vinf3 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

948201 723609 958755 591858 397953
222448 218040 30429 348793 15825
329588 7189 623001 12012 469185
467424 160704 115092 835504 343912
1114797 932972 975775 997164 636096

˛

‹

‹

‹

‹

‹

‹

‹

‚

,

Vinf4 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

88076 294646 658787 902872 244559
2216 4216 596705 652698 250465

279360 180864 769506 1051380 391634
553284 826606 765406 293965 883775
696039 897917 148301 832169 169525

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

These matrices have shown to be challenging to factorize. We refer the reader to [80]
for more details.

• Nested hexagons problem: as explained in Section 1.6 NMF has a nice geometric
interpretation. In particular we have seen that computing an exact NMF with a fac-
torization rankK is equivalent to finding a polytope, conv pΠ∆F pW qq, nested between
two given polytopes, conv pΠ∆F pV qq and the unit simplex ∆F . The dimension of the
inner polytope conv pΠ∆F pV qq is rankpV q´ 1, while the dimension of the outer poly-
tope ∆F is F ´ 1. The dimension of conv pΠ∆F pW qq is not known a priori but when
we impose explicitly that rankpV q “ rankpW q, we explained that the outer polytope
can be restricted to ∆F X col pΠ∆F pV qq where colpAq “ tx P RF |x “ Ay, y P RNu.
Since the dimension of ∆F Xcol pΠ∆F pV qq “ rankpV q´1 per [Lemma 2.5, [56]], then
the inner, nested, and outer polytopes have the same dimension. This problem is
well known in computational geometry and is referred to as nested polytope prob-
lem. Here we consider a family of input matrices whose computing an exact NMF
corresponds to find a polytope nested between two hexagons; let a ą 1 and let Va be
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the matrix:

Va “
1
a

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a 2a´ 1 2a´ 1 a 1
1 1 a 2a´ 1 2a´ 1 a

a 1 1 a 2a´ 1 2a´ 1
2a´ 1 a 1 1 a 2a´ 1
2a´ 1 2a´ 1 a 1 1 a

a 2a´ 1 2a´ 1 a 1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

which has rankpVaq “ 3 and therefore the dimension of the nested hexagons is
rankpV q ´ 1 “ 2. The inner hexagon is smaller than the outer one with a ratio
of a´1

a . We consider three values for a:

– a “ 2: the inner hexagon is twiced smaller than the outer one and we can fit a
triangle between the two, thus rank`pVaq “ 3.

– a “ 3: the inner hexagon is 2{3 smaller than the outer one and we can fit a
rectangle between the two, thus rank`pVaq “ 4.

– a “ 4: rank`pVaq “ 5.

– aÑ `8, which gives:

V “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 2 2 1 0
0 0 1 2 2 1
1 0 0 1 2 2
2 1 0 0 1 2
2 2 1 0 0 1
1 2 2 1 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

with rank`pV q “ 5

For each of the 8 matrices above we ran Algorithm 8 and the algorithm from [133]
with Multi-Start 1 heuristic "ms1" and the Rank-by-rank heuristic "rbr" ten times with
SPARSE10 for the initialization as recommended in [133]. For these analyzes, the target
precision is 10´6. Table 6.2 reports the number of success over 10 attempts for computing
the exact NMF of the input matrices such that }V´WH}F

}V }F
is below the target precision. One

can observe that for three types of matrices (random, nested hexagons with a “ 2 and a “
3), SCCAE-NMF algorithm with both formulations (6.8) and (6.12) perform equivalently
with Algorithm from [133]. Further, Algorithm from [133] outperforms in average SCCAE-
NMF algorithm for Vinf2, Vinf3 and the two last nested hexagons. However, for matrices
Vinf1 and Vinf4, none of the runs performed with Algorithm from [133] found a rank-4
factorization while SCCAE-NMF algorithm finds 2 times out of 10 attempts. For the
nested hexagons with a Ñ `8, SCCAE-NMF with formulation (6.8) found none of the
factorization while SCCAE-NMF with formulation (6.12) gives satisfactory results. We
report that SCCAE-NMF with formulation (6.8) requires 50 attempts one average to find
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Table 6.2: Comparison of Algorithm 8 with algorithm from [133] with "ms1" and "rbr"
heuristic for 10 attempts to compute the factorizations of matrices described in
the text. In bold we specify the matrices for which SCCAE-NMF is the only
one to find exact NMF’s.

SCCAE-NMF with SCCAE-NMF with Algorithm from [133] Algorithm from [133]
Problem (6.8) Problem (6.12) with "ms1" with "rbr"

Matrices /10 /10 /10 /10
Random matrices 10 10 9 10

Inf. Rig. Fac. Vinf1 1 2 0 0
Vinf2 6 5 4 10
Vinf3 2 1 3 10
Vinf4 4 2 0 0

Nested hexagons a “ 2 10 10 10 10
a “ 3 10 10 10 10
a “ 4 3 7 3 10

aÑ `8 0 6 1 10

a rank-5 factorization. We observe similar behaviour for SCCAE-NMF with formulation
(6.8) based on additional numerical tests involving input matrix whose have significant
number of null entries; the number of attempts required to find an exact factorization
significantly increases.

6.4.2 The largest biclique in a bipartite graph

A bipartite graph G “ pS,Aq is a graph whose vertices can be divided into two disjoint
and independent sets S1 and S2 such that S “ S1 Y S2 and every edge connects a vertex
in S1 to one in S2, in other words, there is no edge that connects two vertices that belong
to the same set S. A biclique is a subgraph of G where all the vertices are connected
by an edge. The so-called maximum-edge biclique problem in a bipartite graph G is the
problem of finding a bliclique in G with maximum number of edges. The corresponding
decision problem: Given B, does G contain a biclique with at least B edges? has been shown
to be NP-complete [113]. Therefore, the problem of finding the biclique with maximum
number of edges in G is at least NP-hard [59]. For such a problem, the input matrix
V P t0, 1uFˆN is the so-called biadjacency matrix of the bipartite graph G “ pS1 Y S2, Aq

with S1 “ to1, ..., of , ...oF u and S1 “ tt1, ..., tn, ...tNu and Vfn=1 if and only if pof , tnq P A.
Figure 6.4 shows an illustration of the maximum-edge biclique problem for a bipartite
graph that corresponds to the following biadjacency matrix:
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V “
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0 0 1 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1
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Fig. 6.4. An illustration of the maximum-edge biclique problem for a graph that corre-
sponds to the biadjacency matrix (6.20).

In [59], authors show that finding the best rank-one under-approximation of a biad-
jacency matrix is equivalent to finding the largest biclique in the corresponding bipar-
tite graph, that is, finding the largest rectangles of all ones hidden in the binary matrix.
We compare our approach, namely SCCAE-NMF, with formulation (6.12), with that of
[59] on randomly generated binary matrices with F “ N and values for N in the set
t8, 10, 14, 16, 18, 20, 24u. The method that finds the largest rectangle is the better one.
Each method is launched 10 times and the best result among these 10 attempts is kept.
Table 6.3 displays the results obtained, namely the number of edges for the largest biclique
extracted by the two methods from bipartite graphs defined by matrices V .
One can observe that for biadjacency matrices V such that F “ N P r8, 20s, methods find

the same results. But when the size is above 20ˆ 20, then method from [59] outperforms
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Table 6.3: Comparison of Algorithm 8 with algorithm from [59] for finding the maximum-
edge biclique from a bipartite graph. The table reports the number of edges for
the largest biclique extracted by the two methods from bipartite graphs defined
by random binary matrices V of size N ˆN .

SCCAE-NMF with formulation (6.12) Algorithm from [59]
N “ 8 12 12
N “ 10 12 12
N “ 14 18 18
N “ 16 24 24
N “ 18 24 24
N “ 20 24 24
N “ 24 18 32

SCCAE-NMF. It implies that our method shows difficulty to scale up. We report that the
number of random initializations required by SCCAE-NMF to find competitive solutions
significantly increase with the size of the input matrix.

6.5 Conclusion

In this chapter, we introduced two formulations for computing exact NMFs. Each of the
proposed formulation relies on the construction and the resolution of a specific optimization
problem; namely problems (6.4) and (6.9) that can be respectively referred to as under-
approximation and upper-approximation formulations for NMF. For each optimization
problem we introduced a particular change of variables that enabled the use of two special
cases of conic constraints, that are the exponential and second-order conic constraints. In
order to solve the two optimization problems, we proposed a general algorithm, denoted
SCCAE-NMF, that relies on the resolution of successive approximations of the objective
functions based on interior-point methods. We showed that the successive approximated
problems belong to two special cases of conic programming. We showed that our algo-
rithm is able to compute exact NMFs for several classes of nonnegative matrices (namely,
randomly generated, infinite rigid matrices and nested hexagons problem matrices) and
as such demonstrate its competitivity compared to recent methods from the literature.
However, we have tested algorithm SCCAE-NMF on a limited number of nonnegative ma-
trices. In the future we plan to test it on a larger library of nonnegative matrices at our
disposal, in order to better understand the behavior of SCCAE-NMF along with the two
formulations (6.8) and (6.12). In particular, we need to develop better strategies to deal
with nonnegative matrices with many zero entries when SCCAE-NMF is used with for-
mulation based on exponential cones. We have shown that our framework is flexible and
can be used for other interesting applications of NMF such as the maximum-edge biclique
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problem. In particular, we demonstrated that SCCAE-NMF along with formulation (6.8)
is able to give competitive results compared to recent methods for small size biadjacency
matrices. However, we highlighted a drawback of our approach; the number of random
initializations required by SCCAE-NMF to find competitive solutions significantly increase
with the size of the input matrix. In others words, the approach shows difficulties when
the size of the input matrix increases.

Further works include:

• the theoretical guarantees for the convergence of SCCAE-NMF algorithm, in partic-
ular can we prove that SCCAE-NMF converges towards stationary points of both
problems (6.8) and (6.12) ?

• The design of more advanced strategies for the initialization of pU, V q.

• The elaboration of alternative formulations for (6.8) and (6.12) to deal with the
non-uniqueness of the NMF models, see Section 1.8.1. In particular, we plan to
develop new formulations so that we remove most of alternative solution V “ W̃ H̃ “

pWEq
`

E´1H
˘

for a given solution pW,Hq and for any invertible matrix E such that
WE ě 0 and E´1H ě 0.

• The use of our framework to others applications such as the computation of symmetric
NMFs. Symmetric NMF can be used for data analysis and in particular for various
clustering tasks [81].
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7 Conclusion

We conclude the thesis in this chapter. We first summarize our results, we recall the main
contributions over four aspects and finally give some directions for further research.

Summary

In this thesis, we have explored a famous problem from linear algebra, namely nonnegative
matrix factorization (NMF). NMF is a linear dimensionality reduction technique for non-
negative data, and requires factors of the corresponding low-rank matrix approximation
to be nonnegative. These additional constraints enhance compression (through sparsity)
and allow to extract easily interpretable and meaningful information from the input data.
However, they make the problem much more difficult to solve (NP-hard).

Chapter 1 We gave a brief introduction of the thesis and discuss some theoretical back-
ground required for the thesis purposes. In particular the geometric interpretation gave
useful insights to understand one of the main issues about NMF models, that is, the
nonuniquness and the main motivation for the introduction of NMF models and associated
(optimization) problems relying on the notion of minimum-volume, that is, the construc-
tion of identifiable NMF models and problems. By solving these problems, under some
mild conditions such as the SSC condition on H, the solutions obtained pW ‹, H‹q are per-
mutated and scaled versions of the ground-truth factors pW#, H#q that gave rise to the
data V . These degrees of freedom are unavoidable and, most importantly, inconsequential
for the applications at hand.

Chapter 2 We have shown that minimum-volume NMF can be used meaningfully for
the rank-deficient scenario. We have provided an optimization problem for minimum-
volume NMF that relies on the minimization of an objective function that integrates the
Frobenius norm of the residual matrix V ´WH and a function that measures the volume
of the columns of W . We have provided a simple algorithm, referred to as min-vol NMF,
to tackle this optimization problem and have illustrated the behaviour of the method on
synthetic and real-world data sets. In particular, we solved the proposed minimum-volume
NMF problem by transforming the objective function for the subproblem in W into a
quadratic form (defined by matrix A) which is a strongly convex upper approximation of
the objective function and we used a PFGM optimization scheme so that we have a linear
convergence method with rate 1´

?
κ´1 where κ is the condition number of A [107]. We
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have developed and tested a faster algorithm referred to as fast-min vol. We have shown
that fast-min vol NMF outperforms min-vol NMF algorithm in low-dimensional setting but
tends to be more easily stuck in saddle points as the dimension of the problem increases.

Chapter 3 We have presented a new NMF problem for audio source separation based on
the minimization of a cost function that includes a β-divergence (data fitting term) and
a penalty term that promotes solutions W with minimum volume. We have proved the
identifiability of the problem in the exact case, under the sufficiently scattered condition for
the activation matrix H. We have provided multiplicative updates to tackle this problem
and have illustrated the behaviour of the method on real-world audio signals. On an
application aspect, we briefly reviewed the audio BSS problem, and discussed how and
why NMF can be applied to audio Blind source separation (BSS) problem. By solving the
minvol β-divergence NMF problem, we demonstrated that it can be used to decompose
single channel audio recording of piano music into components correspond to each of the
musical notes. We highlighted in particular the capacity of minvol β-divergence NMF
problem to deal with the case where K is overestimated by setting automatically to zero
some components and give good results for the source estimates hence performing model
order selection automatically.

Chapter 4 We have presented a new NMF approach for blind spectral unmixing, called
multi-resolution β-NMF (MR-β-NMF). The estimation relies on the minimization of the β-
divergence, a flexible family of measures of fit. MR-β-NMF addresses the resolution trade-
off between two adversarial dimensions by fusing the information coming from multiple
data with different resolutions in order to produce a factorization with high resolutions for
all the dimensions. We have provided multiplicative updates to tackle the minimization
problem and we showed that MR-β-NMF is flexible and can be successfully applied to
various problems. In particular, we have showcased its efficiency on two instrumental
examples. The first is the audio spectral unmixing for which the frequency-by-time data
matrix is computed with the short-time Fourier transform and is the result of a trade-off
between the frequency resolution and the temporal resolution. We highlighted the capacity
of this approach to provide solutions that show high frequency and high temporal accuracy
taking advantage from the input data. Based on these results, MR-β-NMF seems to be
well suited for audio applications such as transcription problems and performs in general
better than baseline NMF methods. The second is BHU for which the wavelength-by-
location data matrix is a trade-off between the number of wavelengths measured and the
spatial resolution. We demonstrated the efficiency of MR-β-NMF to tackle the HS-MS data
fusion problem. Based on various quantitative quality assessments, the proposed method
performs competitively with the state of the art.

Chapter 5 We have presented a general framework to solve penalized β-NMF problems
that integrates a set of disjoint constraints on the variables. Using this framework, we
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showed that we can derive algorithms that compete favorably with the state of the art for
a wide variety of β-NMF problems, such as the simplex-structured NMF and the minimum-
volume β-NMF with sum-to-one constraints on the columns ofW . We have also shown how
to extend the framework to non-linear disjoints constraints, with application to a sparse
β-NMF model for β “ 1 where each column of W lie on a hyper-sphere.

Chapter 6 We introduced two formulations for computing exact NMFs. Each of the pro-
posed formulation relies on the construction and the resolution of a specific optimization
problem. For each optimization problem we introduced a particular change of variables
that enabled the use of two special cases of conic constraints, that are the exponential
and second-order conic constraints. In order to solve the two optimization problems, we
proposed a general algorithm, denoted SCCAE-NMF, that relies on the resolution of suc-
cessive approximations of the objective functions based on interior-point methods. We
showed that the successive approximated problems belong to two special cases of conic
programming. Unlike the majority of existing algorithms to tackle NMF problems, our al-
gorithm updates both matrices W and W simultaneously. We showed that our algorithm
is able to compute exact NMFs for several classes of nonnegative matrices and as such
demonstrate its competitivity compared to recent methods from the literature. We have
shown that our framework is flexible and can be used for other interesting applications of
NMF such as the maximum-edge biclique problem.

Summary of contributions

The contributions of this thesis were centered on NMF over four aspects: models, opti-
mization problems, algorithms and applications:

1. On the model and optimization problems aspect, we studied a specific class of NMF
called minimum-volume NMF. This class of NMF generalizes another class of NMF
called Separable NMF. We showed that our proposed model and associated opti-
mization problem with determinant volume for minimum-volume NMF is identifiable
under the SSC condition on H, and we argue that such model and optimization prob-
lem are highly relevant for real-life applications. Further, we proposed models and
problems, referred to as multi-resolution NMF, to tackle a common issue for many
input matrices; they are generally the result of a resolution trade-off between two ad-
versarial dimensions. We addressed this issue by fusing the information coming from
multiple data with different resolutions in order to produce a factorization with high
resolutions for all the dimensions. Finally we proposed new models and problems to
tackle a special case of NMF referred to as exact NMF by using conic programming.

2. On the algorithmic aspect, we proposed efficient algorithms to solve the optimization
problems for minimum-volume NMF. We mainly focused on two classes of opti-
mization problems for minimum-volume NMF: the first one integrates a Frobenius
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norm for the data fitting term whereas the second one integrates the family of β-
divergences, in particular we deal with the Kullback-Leibler divergence that is noto-
rious hard to handle. Further we introduced a general framework to derive efficient
algorithms to tackle penalized β-divergence NMF problems under disjoint equality
constraints. Finally we proposed a general algorithm that is able to tackle prob-
lems to compute an exact NMF such that at each iteration, matrices W and H are
simultaneously updated.

3. On the application aspect, we demonstrated the efficiency of models and algorithms
compared to state-of-the-art methods on hyperspectral imaging and audio source sep-
aration problems. In particular, we showed that minvol β-divergence NMF was able
to perform automatic MOS which is rare in the literature. Further we showed that
MR-β-NMF was able to give a factorization that show high resolution in adversarial
dimensions, we showed that the Kullblack-Leibler divergence was an efficient choice
to deal with the HS-MS fusion problem in the case we have Poisson noise within the
data.

Summary of perspectives and further research

We conclude this section by listing the four major open problems related to the thesis.

• Robustness for minimum-volume NMF: Minimum-volume NMF is arguably the
most versatile class of NMF models and optimization problems as it allows identifi-
ability condition under weak requirements. However, as opposed to separable NMF,
currently there is no theoretical robustness analysis on models and optimization prob-
lems for minimum-volume NMF. We will investigate the conditions on factorsW and
H under which minimum-volume NMF models and optimization problems are robust
to bounded noise.

• Theoretical analysis of the MOS: We have seen in the numerical experiments
carried out in Section 3.4 that, minvol KL-NMF automatically set to zero some com-
ponents when the factorization rank K is overestimated regarding the number of
rank-one sources present within the audio signal. Currently, the theoretical analy-
sis of such phenomenon remains open. We will focus in developing the theoretical
understanding of this behavior of the volume regularizer.

• Theoretical guarantees of recoverability for MR-β-NMF: We have seen in
Sections 4.4 and 4.5 that MR-β-NMF approach was able to give a factorization with
high resolutions for all the dimensions and stable results. The theoretical guaran-
tees for recoverability or identifiability of the latent factors for the model and the
associated problem remains open.

• Theoretical convergence analysis of SCCAE-NMF: Despite the promising re-
sults obtained with SCCAE-NMF algorithm in many experiments, the convergence
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results are limited to the decreasingness of the objective function along iterations.
The theoretical convergence analysis of SCCAE-NMF remains open. In particular
can we prove that SCCAE-NMF converges towards stationary points of both prob-
lems (6.8) and (6.12) ?

“He said that the root of education is bitter but the fruit is sweet.”
- Attributed to Aristotle by Diogenes Laertius in his Lives of the Eminent
Philosophers.

“A lack of education is the mother of all suffering.”
- Pythagoras, reported by Stobaeus 2.31.96.
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Appendix

1 Symbols

Scalars, Vectors, Matrices

R,R`,R`` The set of real, nonnegative and positive real numbers.
RF ,RF` The set of real and nonnegative F -vectors.
RFˆN ,RFˆN` The set of real and nonnegative matrices of dimension F -by-N .

Norms

}.}1 `1-norm, }x}1 “
řn
i“1 |xi|, x P Rn

}.}2 vector `2-norm, }x}2 “
a

řn
i“1 x

2
i , x P Rn

matrix `2-norm, }A}2 “ maxxPRN ,}x}2“1 }Ax}2, A P RFˆN

}.}0 `0-norm, }x}0 “ |ti|xi ‰ 0u|, x P Rn

}.}F Frobenius norm, }A}F “
b

řF
f“1

řN
n“1A

2
fn, A P RFˆN

Operators

Ep.q expected value of a random variable
Ip.q component-wise imaginary part of a vector, or a matrix
Π∆F p.q projection of a vector, or the columns of a matrix onto the unit simplex of dimension F
Rp.q component-wise real part of a vector, or a matrix
Sp.q linear opetator for the STFT computation of a vector
Varp.q variance of a random variable
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Functions on Matrices

Trp.q trace of a matrix
xA,ByF Frobenius inner product between two real matrices A and B,

xA,ByF “
ř

pq ApqBpq “ TrpATBq
detp.q determinant of a matrix
σip.q ith singular value of a matrix
rankp.q rank of a matrix
rank`p.q nonnegative rank of a matrix
conep.q cone spanned by the columns of a matrix
convp.q convex hull of the columns of a matrix
colp.q column space of a matrix
Apf, :q f th row of A
Ap:, nq nth column of A
Apf, nqor rAsfn entry at position pf, nq of A
ApKq submatrix of A with row and column indices in K
AdB Hadamard product (component-wise multiplication), rAdBsfn “ AijBfn
rAs
rBs component-wise division,

”

rAs
rBs

ı

fn
“

Afn
Bfn

p.qT transpose of a matrix,
“

AT
‰

fn
“ rAsnf

Ap.αq element-wise α exponent of A,
“

Ap.αq
‰

fn
“ Aαfn

vol(W ) function that measures the volume of the columns of a matrix,
p.q` nonnegative part of a matrix, pAq` “ maxp0, Aq
p.q´ negative part of a matrix, pAq` “ maxp0,´Aq
log detpAq natural logarithm of the determinant of a matrix

Sets

∆F unit simplex of dimension F
SK convex hull of the unit simplex of dimension K and the origin

Miscellaneous

e vector of all ones of appropriate dimension
eF,N F -byN all ones matrix
IK identity matrix of dimension K ˆK

a : b set ta, a` 1, ..., b´ 1, bu (for a and b integers with a ď b)
∇f the gradient of the function f
∇2f the hessian of the function f
\ substraction of two sets, S\Q is the set of elements in S and not in Q
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2 Acronyms

3-SAT 3-Satisfiability.
ALS Alternating Least Squares.
ANLS Alternating Nonnegative Least Squares.
AO-ADMM Alternating Optimization-Alternating Direction for Multiplier.
BCD Block-Coordinate Descent.
BHU Blind Hyperspectral Unmixing.
CGP Conic Geometric Programming.
CP Conic Programming.
DR-NMF Distributionally Robust Nonnegative Matrix Factorization.
ERGAS Erreur Relative Globale Adimensionnelle de Synthèse.
GR-NMF Group Robust Nonnegative Matrix Factorization.
HALS Hierarchical Alternating Least Squares.
HSI Hyperspectral Image.
IPM Interior Point Methods.
IS Itakura-Saito.
KL Kullback-Leibler.
LDR Linear Dimensionality Reduction.
LP Linear Programming.
LRMA Low Rank Matrix Approximation.
LS Line Search.
min-vol NMF minimum-volume Nonnegative Matrix Factorization.
MM Majorization-Minimization.
MOS Model Order Selection.
MR Multi Resolution.
MSI Multispectral Image.
MU Multiplicative Updates .
NMF Nonnegative Matrix Factorization.
NPP Nested Polytope Problem.
PCA Principal Component Analysis.
PFGM Projected Fast Gradient Method.
RE-NMF Restricted Exact Nonnegative Matrix Factorization.
RMSE Root-Mean-Square Error.
SAM Spectral Angle Mapper.
SAR Signal to Artefacts Ratio.
SCCAE-NMF Successive Conic Convex Approximation for Exact NMF.
SDP Semi-Definite Programming.
SDR Signal to Distortion Ratio.
SIR Signal to Interference Ratio.
SNPA Successive Nonnegative Projection Algorithm.
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SNR Signal-to-Noise Ratio.
SOCP Second-Order Conic Programming.
SPA Successive Projection Algorithm.
SPI Sparsity Pattern Integration.
SR Super Resolution.
SSC Sufficiently Scattered Condition.
SSMF Simplex-Structured Matrix Factorization .
SSNMF Simplex-Structured Nonnegative Matrix Factorization .
STFT Short Time Fourier transform.
SVD Singular Value Decomposition.
UIQI Universal Image Quality Index.

3 A brief introduction to convergence theory of popular BCD
schemes

In this section we give a brief introduction to the convergence theory of popular BCD
schemes used to tackle NMF optimization problems. Let recall that Algorithm 1 from
Section 4.3 presents the general structure of the BCD schemes. First, we develop the
first-order optimality conditions of standard NMF problem 1.4.1, then we present the
Majorization-Minimization framework which is used to tackle each subproblem of a BCD
scheme and finally we cite recent results about the convergence theory of popular BCD
schemes.

First-order optimality condition for standard NMF problems

As explained several times in the thesis, the standard NMF problem 1.4.1 is symmetric in
variables W and H, as long as DpV |WHq “ DpV T |HTW T q which holds for most error
measures. Then we focus at the subproblem in H defined as follows:

min
HPRKˆN

D pV |WHq “
ÿ

fn

dpVfn|rWHs fnq

subject to H ě 0 ,
(1)

For the following, we assume that the objective function DpV |WHq is differentiable. Let
us denote by ∇HDpV |WHq P RKˆN the gradient of DpV |WHq w.r.t. matrix H such that:

r∇HDpV |WHqsk,n “
BDpV |WHq

BHk,n

In the case we choose for the scalar divergence dpVfn|rWHs fnq “ dβpVfn|rWHs fnq (see
Section 1.9.1), then the gradient ∇HDpV |WHq in matrix form is as follows:

∇HDpV |WHq “W T
´

pWHq.pβ´2q
d pWH ´ V q

¯
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The point pW,Hq is called a (first-order) stationary point of problem (1) if it satis-
fies the first-order optimality conditions, also known as the Karush-Kuhn-Tucker (KKT)
conditions, given here-under:

H ě 0,∇HDpV |WHq ě 0,∇HDpV |WHq dH “ 0KˆN ,

where 0KˆN is matrix full of zeros of size KˆN . The last condition ∇HDpV |WHqdH “

0KˆN implies that for all k, n we have

Hk,n “ 0 or r∇HDpV |WHqsk,n “ 0,

which are the complementary slackness conditions. Most NMF algorithms are first-order
methods, meaning that they only use the information from the gradient to find the min-
imizer of (1) (and similarly for W ). For the first-order methods, only convergence to
stationary points can be achieved (such methods are stuck at stationary points). A sta-
tionary point of a differentiable function is either a local minimum, a local maximum or
a saddle point, which is a point for which there exists a direction in which the objective
function decreases and a direction in which the objective function increases, hence the
term "saddle". As explained in Section 1.10, the large majority of NMF algorithms resort
to BCD schemes, the variablesW and H are updated alternatively until a stationary point
of the standard NMF problem 1.4.1 is reached. Because DpV |WHq is jointly non-convex
in W and H, the stationary point may be not a global minimum (and possibly not even
a local minimum). In the next section, we present a standard approach, referred to as
Majorization-Minimization, to update W and H at each iteration of the BCD scheme.

Majorization-Minimization framework

In this section, we give a brief overview to the Majorization-Minimization (MM) framework
for the minimization of the standard NMF problem 1.4.1. Generally speaking, MM consists
in minimizing iteratively an easier-to-minimise tight upper bound of the original objective
function in (1). Let us denote by H̃ the current iterate and by CpHq the objective function
for the suproblem in H (1), at each iteration, MM includes two steps:

1. "Majorization": we build an upper bound GpH|H̃q of CpHq which is tight for H “ H̃.
In others words, were are looking for GpH|H̃q such that:

a) GpH|H̃q ě CpHq for all H ě 0,

b) GpH̃|H̃q “ CpH̃q.

The function GpH|H̃q is called an auxiliary function of C at H̃.

2. "Minimization": we minimize the auxiliary function w.r.t. H to derive a valid descent
algorithm. MM ensures the decreasingness of the objective function at each iteration i
since CpHpiqq ď GpHpiq|Hpi´1qq ď GpHpi´1q|Hpi´1qq “ CpHpi´1qq.
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Fig. 1. Illustration of the MM principle on a 1-dimensional problem. For a current solu-
tion, the MM approach consists in minimizing an auxiliary function (dashed red
curves) to the objective function C (blue curve) build at each iterate. The mini-
mizer of the current auxiliary function is used to build the next auxiliary function,
and so on until convergence. This figure has been reproduced from [45].

The principle of MM is illustrated in Figure 1. Typically, we build G such that it has
convenient properties:

1. GpH|H̃q is convex,

2. the minimizer of GpH|H̃q can be computed in closed form. A common manner to
ensure this property is to design G as a separable function, that is,

GpH|H̃q “
ÿ

k,n

Gk,npHk,n|H̃q,

for some functions Gk,n so that minimizing GpH|H̃q requires solving K ˆ N inde-
pendent monovariate subproblems.

The main challenge for designing MM algorithms is the construction of the function G

which should be a good approximation of C while being easy to optimize thanks to the
aforementioned properties. For the NMF problems that include β-divergences as objective
functions, [45] introduces a powerful framework to design auxiliary functions for CpHq.
The trick is to decompose CpHq into the sum of a convex part and a concave part and to
upper-bound each part separately. The convex part is upper-bounded by using Jensen’s
inequality and the concave part is upper-bounded using the tangent inequality. The two
upper-bounds are finally summed and the resulting convex auxiliary function turns out to
have a closed form minimizer, see [45] for more details.
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Convergence to stationary points

In this section, we present a few convergence results for BCD schemes. We only focus on
presenting general results that concern the convergence of some of the methods presented
in this thesis. Most of the algorithms discussed in this thesis are monotonically decreasing
the objective function which is bounded below. As explained in [56], this implies the
convergence of the objective function values

Cpiq “ DpV |W piqHpiqq for i “ 1, 2, 3, ...

where pW piq, Hpiqq is the i-th iterate produced by the algorithm. In the case the feasible set
if compact, Bolzano-Weierstrass theorem ensures that there exists at least one converging
subsequence of the iterates. However,

1. because of the scaling ambiguities of an NMF we may have that W piqHpiq converge
but not pW piq, Hpiqq.

2. The feasible set of the standard NMF problem, namely S “ tpW,Hq|W ě 0, H ě 0u
is not compact since it is not bounded.

In [56], the author explains that fixing the scaling degree of freedom by adding constraints
such as ||W p:, kq||1 “ 1 for all k can be used to guarantee compactness.
In many cases, BCD schemes fail to converge rapidly when they get close to stationary

points of C, typically because of their zigzagging behavior (same behaviour can be observed
for gradient-descent methods). However, when the blocks of coordinates are rather large
and can be optimized efficiently (possibly up to global optimality), BCD schemes have
shown to be a powerful technique. At least, they often exhibit a relatively fast initial
convergence to the neighborhood of a stationary point.
It is sometimes possible to perform an exact BCD descent, in others words, the subprob-

lems in W and H (steps 4 and 6 of Algorithm 1) are solved exactly, that is, an optimal
solution is used for W piq and Hpiq. In that particular case, we have the following conver-
gence guarantees:

Theorem 3.1. [18, Proposition 2.7.1] The limit points of the iterates of an exact BCD
algorithm are stationary points provided that the following two conditions hold:

1. each block of variables is required to belong to a closed convex set,

2. the minimum computed at each iteration for a given block of variables is uniquely
attained.

Theorem 3.2. [68, Corollary 2] The limit points of the iterates of an exact two-BCD
algorithm are stationary points provided that the following two conditions hold:

1. the objective function is continuously differentiable, and

2. each block of variables is required to belong to a closed convex set.
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Hence exact two-BCD does not require the minimum of the subproblems to be uniquely
attained to guarantee convergence to a stationary point. For NMF problems and Algorithm
1, the second condition is satisfied since the nonnegative orthant is a closed convex set. The
first condition is met for many objective functions such as the Frobenius norm. However,
the condition is not met by β-divergences. Indeed, for x ą 0:

Bdβpx, yq

By
“ yβ´1 ´ xyβ´2

Table 1 extracted from [56] provides the domain of Bdβpx,yq
By depending on the values of x

and β.

Table 1: domain of Bdβpx,yq
By depending on the values of x and β

β ď 0 β P p0, 1q β P r1, 2q β ě 2
x “ 0 H R`` R` R`
x ą 0 R`` R`` R`` R`

Hence, for β ă 1, dβpx, yq is not continuously differentiable at zero. Moreover, for β ă 2,
the derivative of dβpx, yq w.r.t. y is not defined at zero when x ą 0.

In the case MM framework is used to tackle each subproblem in W and H (steps 4 and
6 of Algorithm 1), convergence guarantee has been established by Razaviyayn et al. [117].
The authors introduce the so-called Block Successive Upper-bound Minimization (BSUM)
framework. In this framework, for each block of variables, a majorizer is constructed which
has additional properties than in the MM framework. In the MM framework, the majorizer
is a global upper bound of the objective function which is tight at the current iterate. On
top of that, BSUM requires that the directional derivatives of the majorizers and of the
objective function coincide at the current iterate for each block of variables (intuitively,
their tangent need to exist and coincide), while the majorizers should be continuous func-
tions in all the variables. Moreover, in the BSUM framework, the majorizers are minimized
exactly, while an essentially cyclic block update is used. We refer the reader to [117] for
more details.

Theorem 3.3. [117, Theorem2] Convergence of BSUM can be guaranteed in the following
two scenarios:

1. If the majorizers are quasi-convex1 and their minimum is uniquely attained, then
every limit point of the sequence of iterates generated by BSUM is a stationary point.

2. If the level sets of the majorizers are compact and the subproblems have a unique
solution for all blocks but one, then the sequence of iterates generated by BSUM
converges to the set of stationary points.

1A function g is quasi-convex if the level sets tx|gpxq ď cu are convex, for any constant c.
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For interesting applications of Theorem 3.3, we refer the reader to [56] and to the survey
[70]. Let briefly mention that in the case we use the framework proposed by [45] to tackle
the subproblems in W and H, it is possible to have the convergence results of Theorem 3.3
by using a small lower bound for the entries of W and H, and by considering the following
modified NMF problem:

min
WPRFˆK ,HPRKˆN

D pV |WHq “
ÿ

fn

dpVfn|rWHs fnq

subject to W ě ε,H ě ε ,

(2)

where ε ě 0 is a parameter. Using this modification, [56] obtains the following results:

Theorem 3.4. [56, Theorem8.9] Let ε ą 0 and let us define the modified update for H as:

H ÐÝ max

¨

˚

˝

ε,H d

¨

˝

”

W T
´

pWHq.pβ´2q
d V

¯ı

”

W T pWHq.pβ´1q
ı

˛

‚

.γpβq
˛

‹

‚

where γpβq is given in Table 4.1, and the update of W is obtained by symmetry. Then,

• The modified updates do not increase the objective function of (2), given that W ě ε

and H ě ε.

• For any initial matrices pW,Hq, every limit point of the modified updayes that alter-
natively update H and W converge to a stationary point of (2).

• For β ě 2, we may take ε “ 0 (that is, the standard MU) and the same convergence
result as in the case ε ą 0 given that the initial iterate has only positive entries.

4 Behaviour of the nonnegative rank under perturbations

Small continuous perturbations

In [22], the authors study how perturbing a matrix changes its nonnegative rank, they
particularly prove that the nonnegative rank can only increase in a neighborhood of a
matrix with no zero columns. Mathematically, they demonstrate that the nonnegative
rank is lower semicontinuous in the topology given by the Frobenius norm. Let us recall
the notion of lower semicontinuous function for a simple real function:

Definition 4.1. A real-valued function fpxq is lower semicontinuous at a point x0 if,
for any small positive number ε, there exists rpεq such that fpxq ą fpx0q ´ ε for all x P
Bpx0, rpεqq where Bpx0, rpεqq designates a ball centered at x0 of radius rpεq.

Roughly speaking, the function values for arguments near x0 are not much lower than
fpx0q. In [22], authors use the following topological definition of lower semicontinuity,
which is commonly used in algebraic geometry
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Definition 4.2. A function f : RN ùñ Z is said to be lower semicontinuous if the set

tx P RN |fpxq ě ru

is open in RN for all r P Z.

Given a nonnegative matrix V P RFˆN` and ε ą 0, we define the ball of center V and
radius ε as:

BpV, εq “ tU P RFˆN` | }U ´ V }F ă εu

Theorem 4.1. [22, Theorem3.1] Let V be a F by N nonnegative matrix, without zero
columns,such that rank`pV q “ K; then there exists a ball BpV, εq such that rank`pNq ě K

for all N P BpV, εq.

Proof. We refer the reader to [22] for the detailed proof. The key ingredients are based
on the geometric interpretation of NMF. More specifically, they consider the problem of
finding a nested polytope between an inner and an outer polytope, perturbing slightly the
inner and outer polytopes cannot lead to a nested polytope with fewer vertices.

Rank-one perturbations

In this section we show the impact of adding a rank-one matrix to a nonnegative matrix
V onto its nonnegative rank. Let us first recall a well-known property for the rank; given
a matrix V P RFˆN and two vectors x P RF and y P RN , we have:

rankpV q ´ 1 ď rankpV ` xyT q ď rankpV q ` 1

The question naturally arises; do we have similar intervals for rank`pV`xyT q for V P RFˆN`

and two vectors x P RF` and y P RN`? We can easily derive a similar upper-bound by using
the properties of the nonnegative ranks presented in section 6.1.1:

rank`pV ` xyT q ď rank`pV q ` rank`pxyT q

“ rank`pV q ` 1

In [56], the author shows an interesting result for the lower bound of rank`pV `xyT q, that
is the nonnegative rank of V ` xyT can be smaller than the nonnegative rank of V minus
one. This result is the consequence the following theorem.

Theorem 4.2. [56, Theorem3.3] For any nonnegative matrix V P RFˆN` , there exists
x P RF` and y P RN` such that:

rank`pV ` xyT q “ rankpV q

Sketch of the proof. Given an input matrix V whose columns sum to one and such that
the rank of V equal to K, the proof begins with the construction of a first unconstrained
factorization V “ QP with Q P RFˆK and P P RKˆN where Q is built up by picking K
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linearly independent column of V . The key transformations are x “ Qe ě 0 and y “ αe

where α “ |minkn P pk, nq| hence V ` xyT “ QP ` QeeTα “ QpP ` eeTαq “ QP 1 and
Q,P 1 ě 0 by construction. Then from an unconstrained factorization, an exact NMF with
a factorization rank K is found allowing to upper-bound rank`pV ` xyT q ď K. Using
the fact that for any matrix the nonnegative rank is lower-bounded by the rank, hence
rank`pV ` xyT q ě rankpV ` xyT q. They conclude the proof by showing that rankpV `
xyT q “ K.

Let us illustrate the consequence of such theorem by considering a nonnegative matrix
whose columns have `1 norm and for which there is a significant gap between the rank and
the nonnegative rank. We showcase the results from theorem (4.2) on a simple example
extracted from [104]; let a ą 1 and Va be the matrix:

Va “
1
6a

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 a 2a´ 1 2a´ 1 a 1
1 1 a 2a´ 1 2a´ 1 a

a 1 1 a 2a´ 1 2a´ 1
2a´ 1 a 1 1 a 2a´ 1
2a´ 1 2a´ 1 a 1 1 a

a 2a´ 1 2a´ 1 a 1 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Matrix Va has rank three and for any a ą 3, rank`pVaq “ 5. Also, the matrix has columns
with `1 norm thanks to the scaling factor 1

6a . We choose here-under a “ 4 and we first
built up an unconstrained exact factorization V4 “ QP such that

Q “
1
24

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 4 7
1 1 4
4 1 1
7 4 1
7 7 4
4 7 7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

where the columns of Q correspond to the first three columns of V4 which are linearly
independent. We easily compute P as follows:

P “ pQTQq´1QTV4 “

¨

˚

˚

˝

1 0 0 1 2 2
0 1 0 ´2 ´3 ´2
0 0 1 2 2 1

˛

‹

‹

‚

.

We have α “ |minkn P pk, nq| “ 3, then we obtain x “ Qe “ p1
2

1
4

1
4

1
2

3
4

3
4q
T and y “ αe “
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p3 3 3 3 3 3qT . Hence we can compute an exact NMF for V4 ` xy
T as follows:

V4 ` xy
T “ QP

1 with P 1 “ P ` eeTα,

1
24

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

37 40 43 43 40 37
19 19 22 25 25 22
22 19 19 22 25 25
43 40 37 37 40 43
61 61 58 55 55 58
58 61 61 58 55 55

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“
1
24

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 4 7
1 1 4
4 1 1
7 4 1
7 7 4
4 7 7

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˝

4 3 3 4 5 5
3 4 3 1 0 1
3 3 4 5 5 4

˛

‹

‹

‚

which shows that V4 ` xy
T has a nonnegative rank equal to rankpV4q “ 3 which is smaller

than rank`pV4q minus one. Actually, we can easily prove that, in the case of a matrix V
such that rank`pV q ě rankpV q`d with d an arbitrarily large positive integer, we can reduce
at least by d the nonnegative rank of V by adding the adequate rank-one matrix. This
directly follows Theorem 4.2; since for any nonnegative matrix V we can find a rank-one
matrix xyT such that rank`pV ` wyT q “ rankpV q, we can write:

rank`pV q ě rankpV q ` d “ rank`pV ` wyT q ` d

ðñ rank`pV ` wyT q ď rank`pV q ´ d

This result is enunciated in [56, Corollary 3.5].

5 Convexity, concavity and complete monotonicity for a
convex-concave decomposition of the discrete β-divergence

The discrete β-divergence can always be expressed as the sum of convex, concave, and con-
stant terms. In Table 2 we introduce a convex-concave decomposition of the β-divergence
which slightly differ from the one given in [45, Table 1] (by the fact that ours contains no
constant term sd) as given in Table 2.

Decomposition
dβ “ qd` pd

β P p´8, 1qzt0u β “ 0 β “ 1 β P p1, 2q β P r2,`8q

qdpx|yq 1
1´βx y

β´1 x
y ´x log y 1

β y
β ´ 1

β´1xy
β´1 1

β y
β

pdpx|yq 1
β y

β ´ 1
β p1´βqx

β log y
x ´ 1 y ` x log x´ x 1

β pβ´1qx
β ´ 1

β´1x y
β´1 ` 1

β pβ´1qx
β

Table 2: Proposed concave-convex decomposition of the discrete β-divergence.

In Table 2, y P p0,8q, β is real valued and x P p0,8q. Further, β and x are considered
as parameters, dβ, pd and qd being handled as univariate functions of y.

Let us now recall the definition of a complete monotonic function f :

Definition 5.1. A function f is said to be completely monotonic (c.m.) on an interval I
if f has derivatives of all orders on I and p´1qnf pnqpxq ě 0 for x P I and n ě 0.
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We can now introduce the properties of concavity, convexity and monotonicity for our
convex-concave formulation of the discrete β-divergence:

Proposition 4. Given qdp¨|¨q and pdp¨|¨q as defined above, we have that

1. qdpx|yq is C8 and strictly convex on p0,8q for x ą 0 and β P R;

2. pdpx|yq is concave for x ą 0 and β P R;

3. for all β ă 2, qd2px|yq and pd2px|yq are c.m.

Proof. The proof is straightforward, given that qdpx|yq and pdpx|yq linearly combine C8

functions on p0,8q, and that in the same interval,

• log y is strictly concave;

• yν is strictly convex for all ν P p´8, 0qYp1,8q, and strictly concave for all ν P p0, 1q;

• yν is c.m. for all ν ă 0.

According to the first two items of Proposition 4, qd and pd indeed yield a convex-concave
decomposition of the β-divergence, which is a variant of [45, Table 1]. Let us remark that
the successive minimization of an upper approximation of this convex-concave decomposi-
tion following the methodology presented in [45] yields to the usual multiplicative update
scheme.
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