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Abstract: Estimating the optical power distribution in a room in order to assess the performance
of a visible light communication (VLC) system is nothing new. It can be estimated using a Monte
Carlo optical ray tracing algorithm that sums the contribution of each ray on the reception plane. For
now, research has focused on rectangular parallelepipedic rooms with single-textured walls, when
studying indoor applications. This article presents a new open-source simulator that answers the
case of more complex rooms by analysing them using a 3D STL (stereolithography) model. This
paper describes this new tool in detail, with the material used, the software architecture, the ray
tracing algorithm, and validates it against the literature and presents new use cases. To the best of
our knowledge, this simulator is the only free and open-source ray tracing analysis for complex 3D
rooms for VLC research. In particular, this simulator is capable of studying any room shape, such
as an octagon or an L-shape. The user has the opportunity to control the number of emitters, their
orientation, and especially the number of rays emitted and reflected. The final results are detailed
heat maps, enabling the visualization of the optical power distribution across any 3D room. This
tool is innovative both visually (using 3D models) and mathematically (estimating the coverage of a
VLC system).

Keywords: VLC; ray tracing; open-source; Python; simulator; 3D rooms

1. Introduction

Visible light communication (VLC) is a communication means that uses visible light
emitted by LEDs to transmit information seamlessly. This technology has the capability
to use lighting fixtures to send data, while lighting the surrounding environment. When
the communication is bidirectional, the technology is called Li-Fi (light fidelity). The
word is an analogy to Wi-Fi, which stands for wireless fidelity. To avoid harming the
user’s eyes, the uplink communication LED is often infrared, which is not visible to the
naked eye. Various applications exist where unguided light is used as a communication
means. The illustration in Figure 1 shows the three main examples: Li-Fi is the first
example (under A), B is the common VLC application related to this paper, and C is optical
camera communication (OCC). It worth mentioning that VLC, while being unidirectional,
is sometimes used interchangeably with Li-Fi, depending on the authors. The terminology
optical camera communication (OCC) is used when the light signal is decoded by a camera
(of a smartphone for example). Finally, when lasers are used as the source, free space optics
(FSO) is the acronym used, as seen in part D of Figure 1.

Within the scope of this paper, the focus is on VLC systems and the importance
of modelling them in complex environment using an ad hoc simulator. The goal is to

Informatics 2024, 11, 80. https://doi.org/10.3390/informatics11040080 https://www.mdpi.com/journal/informatics

https://doi.org/10.3390/informatics11040080
https://doi.org/10.3390/informatics11040080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/informatics
https://www.mdpi.com
https://orcid.org/0000-0001-9509-8351
https://orcid.org/0009-0006-1808-1293
https://orcid.org/0000-0002-5908-7636
https://orcid.org/0000-0001-8001-6982
https://doi.org/10.3390/informatics11040080
https://www.mdpi.com/journal/informatics
https://www.mdpi.com/article/10.3390/informatics11040080?type=check_update&version=1


Informatics 2024, 11, 80 2 of 32

estimate useful parameters (e.g., reception power, presence of walls and their impact on
the overall power, etc.) and, most importantly, their feasibility of implementation and
expected performance.

Emitter

Receiver

VLC
RECEIVER

Visible Light
Communication Optical Camera Communication Light Fidelity Free Space Optics

Propagation 
medium

Downlink: Visible Light Downlink: Infrared Light

Uplink: Infrared Light

B C DA B C D

Figure 1. Various applications using unguided light as a communication means (all are referred to as
OWC (optical wireless communication)). A: Li-Fi, B: VLC, C: OCC, D: FSO.

When one speaks of modelling a VLC system, first, the environment of the study must
be defined. This could be an indoor room, a urban environment, an industrial environment,
underwater, etc. Each of these environments modifies the light emitted by the LED due to
propagation obstacles like walls (in interiors or outdoor), attenuation due to particles in
the air (particularly in urban environments), and the presence of reflective metal walls (as
in industrial environments). All these particularities impact the light in such a way as to
reduce the quantity that reaches the receiver. As a result, it is important to be able to quantify
these losses, to ensure the minimum communication performance that is intrinsically linked
to a sufficient power of light reaching the receiver. Many environments can be imagined
(space, hospital, mines, etc.) but the focus of the present work and simulator is placed on
indoor rooms, as this is the most promising market segment for VLC.

Going back to part B in Figure 1, one can see that a VLC system is composed, like
any telecommunication system, of an emitter, a receiver, and a propagation medium. The
emitter, in the case studies in this paper, is composed of LEDs. LEDs are used in VLC
thanks to their linear optical power response with respect to the current flowing through
them. This allows a telecommunications engineer to modify this electric current to the
shape of the data signal that is to be transmitted. Once the optical wave is propagated from
the optical front-end (the LED), it is important to know how this light wave propagates
through the so-called communication channel to reach the photodiode on the reception side.
Figure 2 illustrates, for indoor and outdoor environments, a simplified VLC communication
system. The aim being that data, the message to be transmitted, and data’, the message
being received, are identical.

Generally speaking, when communication takes place indoors, the LEDs chosen
radiate light evenly around the room. The first step in studying the performance of a VLC
system in terms of data rate is to quantify the quantity of light that is distributed in the
room. This amount of light allows having direct knowledge of the signal’s strength at the
receiver location, wherever it is in the room.

Quantifying this optical power distribution in a space is the output of channel mod-
elling theory in VLC. Several techniques exist to model the communication channel:

• Ray Tracing: follows the trajectory of each light ray going from the LED until arriving
at the receiver. This technique takes into account the reflection properties of the
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surfaces on the path of the ray and counts the number of rays arriving to calculate the
power received [1].

• Geometrical Method: studies how the light is geometrically distributed in the room to
estimate the portion of optical power arriving at a reception plane, making it suitable
for basic VLC evaluations [2].

• Empirical Measurements: The channel behaviour is studied thanks to real-world data
from VLC systems deployed in various environments. These measurements can be
performed in the time or frequency domains [3].

• Statistical Channel Models: use probability distributions to represent channel charac-
teristics based on empirical data. These models capture phenomena like path loss and
multipath effects, generalizing performance across various environments [4,5].

• Machine Learning Models: leverage historical data to predict VLC channel character-
istics by training models on various environmental factors [6,7].

Channel

Driver

Data

Optical
front-end

Optical receiver

Outdoor

Indoor

Decoding
system

Data'

Figure 2. Simple VLC communication system. Illustration for indoor and outdoor environments.

Within the scope of this paper, the focus is put on the two most popular techniques,
which are the geometrical and ray tracing approaches. The geometrical method follows
how the light is geometrically distributed in the room to estimate the portions of optical
power arriving at a reception plane. To achieve this, the light’s radiation pattern is generally
modeled by a Lambertian emitter whose power consumption is known. A Lambertian
emitter is a light source that emits light uniformly in all directions according to an angular
distribution, such that the perceived light intensity decreases proportionally to the cosine of
the angle between the direction of emission and the normal to the surface of the emitter [8].
In the case of conventional indoor lighting, this hypothesis is valid. The key characteristics
of the receiver’s photodiode (such as its active reception area, its reception cone or field of
view (FOV), and other electronic parameters) are incorporated into the model. Once the
relative positions of the emitter and receiver are known, the room is meshed into small
surface elements at floor level (the reception plane where the power received is estimated)
and at wall level (if any, to estimate the portion of light coming from the lamp that is
reflected). The smaller the surface elements, the closer the method becomes to a simplified
ray tracing model; however, there are divergences. Nevertheless, if the surface element is
small enough in relation to the distance between the emitter and the surface plane or wall,
this algorithm can be likened to ray tracing, even if this is not entirely accurate. Figure 3
illustrates this principle. This technique was proposed in Prof Ghassemlooy’s book [2]. We
implemented it by transforming it into Python 3.9 [9] and applied its various scenarios to
estimate communication performance [10–12]. When reflections are studied, it is possible
to model a rather specular or diffuse surface (which is the case of a classical plaster wall).
In Ghassemlooy’s key work and our first simulator, walls had the property of being diffuse
rather than specular. If a portion of optical power arrives at an element of the wall surface,
this surface is assimilated to a point source, and the portion of optical power reaching it is
itself redistributed following a Lambertian. To limit the number of calculations, only the
portion of power re-emitted towards the receiving plane is studied in this method [9].



Informatics 2024, 11, 80 4 of 32

z

x

y

LED emitter

Radiation pattern Portion of light power towards
a wall cell

Portion of light re-emitted
going towards a floor cell

Reception plane where the
optical power is calculated

Point of intersection between
light beam and wall cell

Figure 3. Illustration of our first simulator, where portions of light (cones) are assimilated to rays
instead of real rays.

In contrast, the Monte Carlo method, which is the most popular ray tracing technique
in VLC research, takes a different approach by simulating numerous random scenarios to
estimate the light distribution. This method is based on shooting random rays from the light
sources, following their trajectories through the room, and taking into account reflections,
scattering, and absorption. Figure 4 illustrates random rays taken from an emitter. The
light interactions are modeled stochastically, and the results of these simulations are used
to obtain a statistical estimate of the light distribution. The method begins by emitting a
large number of light rays from the emission source, each launched randomly in different
directions. These rays represent the direction of the propagation of light in the room. Each
ray is then followed along its path, taking into account interactions with surrounding
surfaces, such as walls and objects. At each interaction, the followed ray may be reflected,
absorbed, or scattered, depending on the properties of the surfaces it encounters, which is
described using models specific to the materials and textures of the surfaces. In the present
work, as the assumption is working indoors, plaster walls are assumed. Plaster walls are
usually diffuse reflectors. By accumulating the results of numerous ray simulations, the
Monte Carlo method provides a statistical estimate of the distribution of light in the room.
The resulting statistics can be used to assess the optical power received at different positions
of the receiver within the room and to understand the performance of the transmission
channel [13–17].

z

x

y

Light ray taken from emitter

Figure 4. Monte Carlo method. Illustration of random rays taken from the emitter reaching the
studied reception plane, with or without first-order reflection.

One of the main advantages of the Monte Carlo method is its flexibility, making it
possible to model environments with varied light interactions. It is also accurate, as it
directly simulates the trajectories of light rays and their detailed interactions. However,
this method can be resource-intensive, requiring a large number of rays to obtain accurate
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results. This can lead to long calculation times and a high memory consumption. In
addition, the quality of the results is highly dependent on the reflection model and surface
properties used in the simulations.

In this paper, an open-source simulator is proposed that integrates the generation of
random rays from the emitter, as recommended by the Monte Carlo method, giving the
possibility to study the light propagation inside complex rooms. Complex rooms refer here
to rooms whose walls are not limited to being perpendicular to each other (e.g., square or
rectangular) but could be L or even polygonal-shaped (the case of an octagonal room is
described further on), thanks to the integration of a 3D model (in STL—stereolithography—
format). The aim of this paper is to highlight the computational and hardware advantages of
using the ray tracing method over the conventional approach. To the best of our knowledge,
this ray tracing VLC open-source simulator is the only one freely available and developed
using open-source tools (Python) [18].

This paper first focuses on describing the functionalities, including the innovative
functionalities such as the ray tracing algorithm and the 3D room integration, how the
reflections are handled, and how the result figures are generated. Afterwards, the structure,
material, and algorithms of the simulator are described in detail, and, finally, the last part
focuses on how the results were validated and how new use cases can be studied (L or
octagonal-shaped rooms).

2. Materials and Methods

This section details the materials and methods used to develop the open-source
Python simulator for estimating the optical power distribution in complex 3D rooms. The
use of Python was justified by its flexibility, extensibility for scientific computing, and
its free-of-charge availability as an open-source environment. The simulator uses a ray-
tracing approach to accurately model light interactions within complex 3D environments.
First, Section 2.1 presents an overview of the simulator’s main functionalities. Then,
Section 2.2 describes its core architecture, including its inputs and outputs, and the detailed
structure of each source file (see Section 2.2.1). Finally, the key algorithms upon which the
simulator is based are thoroughly described, linking the functionalities and their practical
implementation (see Section 2.2.2). The algorithms section comprises how the rays are
generated, how they are rotated to meet the emitter’s normal, how the collisions of the rays
with the walls are taken into account, how their respective power is computed, how the
reflections are handled, and finally how everything is put together to present the results.

2.1. Functionalities of the Simulator

Table 1 summarizes the functionalities of our ray tracing simulator for estimating the
optical power distribution in VLC systems. They are all then detailed in the remainder of
this subsection.

Table 1. Summary of the simulator’s functionalities.

Functionality Description

Custom 3D Environment Generation Importation and configuration of custom 3D models,
including material properties and light sources.

Ray Generation and Tracing Calculation of light ray paths within the 3D
environment, including reflections.

Communication System modelling Mathematical models for the VLC channel, including
channel attenuation.

Optical Power Distribution Estimation
Estimation of optical power distribution at various
points, visualized through color maps and
contour plots.
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2.1.1. Custom 3D Environment Generation

To describe the geometry of the simulated rooms, the STL file format was chosen.
This format describes only the surface geometry of a three-dimensional object. It has the
advantage of being an open file format, widely supported by many 3D modelling software
packages such as Blender 4.2 [19] and AutoCAD 24.3 [20]. In addition, the integration of the
STL format with Python is facilitated by libraries such as numpy-stl. Other file formats exist
such as the OBJ format, which includes additional information such as texture positions
and vertex normals, which was not necessary for this application. Proprietary formats such
as FBX and 3DS were also discarded, due to the constraints associated with their use in
open-source projects. Blender was chosen to model the rooms in the present work.

To the best of our knowledge, few papers have integrated STL models into open-
source VLC simulators. The most popular paper, written in 2015, used a dedicated software
product called Zemax to create the 3D environment to be studied and then extracted
the results using MATLAB [21]. Zemax is an optical design software used to model and
simulate the propagation of light through complex optical systems, such as those found in
VLC [22]. It can be used to create detailed models of light sources, receivers, and surfaces in
an indoor environment. Once the simulations have been carried out in Zemax, the results
can be exported and analyzed in MATLAB, a programming environment specializing
in numerical computation and data analysis [23]. An update from the same team was
published in 2020, but the conclusions were similar to the paper they wrote in 2015 [1].
Another paper dealing with more unusual rooms looked at circular and L-shaped rooms,
again thanks to Zemax [24]. As both of these software programs are not free of charge, our
previous simulator has the advantage of providing similar features, all coded in Python
and freely accessible online [9].

In many cases in the scientific literature, the rooms studied in VLC research are
rectangular parallelepipedic and assumed to be office spaces, classrooms, or living rooms.
However, in certain situations, more complex room shapes have been studied. For example,
reference [24] highlighted a relevant study of a hotel room, which are generally L-shaped.
This is a point of interest for a VLC simulator. The methodology used in in our paper to
deal with such room is to create the room under study using Blender, and then import
the generated STL file into our new Python’s simulator. The STL format is a type of file
mainly used for 3D modelling and 3D printing. It describes the geometry of a 3D object
using triangles. Each triangle is defined by its three vertices and a normal that indicates its
orientation. In the case of this paper, the 3D object is the room under consideration. The
simulator then analyses the file and can display the triangles that make up the room. It then
identifies where the light rays arrive on its surfaces and calculates how they are diffused
towards the reception plane under study.

Figures 5 and 6 show two STL files of a L-shaped room and an octagonal room,
respectively, imported in the Python simulator. The black lines represent the rays emitted
by the emitter towards each point of contact (plain yellow circle) with one of the walls.
The bold green lines represent a ray emitted from the point of contact with one of the
walls, symmetrically with respect to the normal of this wall and pointing inwards. In
both illustrations (see Figures 5 and 6), only one ray is re-emitted, but in practice it is the
reflective properties of the wall that dictate the nature of this reflection. On the one hand, if
a mirror is present, the reflection will be purely specular. Meanwhile, if the wall is made
of plaster, for example, the reflection will be diffuse and the point of contact between the
beam emitted by the LED and the wall will itself become a diffuse emission point source
that will re-emit a quantity of rays in different directions.

When modelling 3D objects in Blender, the surfaces’ normals point outwards. How-
ever, it is possible to reverse the normal of faces, which is necessary in our ray tracing
algorithm when the LED is located inside this volume. Appendix A explains in detail how
to generate a room in Blender with the expected normal directions.
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Figure 5. Highlighting of the first reflection with one ray in an L-shaped room.
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Figure 6. Highlighting of the first reflection with an octagon-shaped room.

2.1.2. Ray Generation and Tracing

The ray tracing algorithm forms the backbone of our simulator. Former VLC open-
source simulators approximated a ray using a very narrow cone of light power coming out
of the emitter [2]. This was predetermined and proportional to the area of the base of the
cone (see Figure 3). When the Monte Carlo method is used, the simulator accuracy depends
on the number of rays that the emitter spreads out in the room (see Figure 4). These rays
are emitted uniformly in a half sphere located under the emitter. In a classic scenario, the
emitter is assumed to be on the ceiling, pointing downwards. However, any orientation
can be chosen in our simulator. Figure 7 shows three different orientations of the emitter.
As mentioned above, the most common orientation is the emitter facing down, represented
by the left sub-figure.

Figure 7. Different orientations of an emitter and the resulting emission of rays.
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The generation of rays and the tracing algorithm comprise the following successive
steps (see Figure 8), which model the path of light rays through the given environment:

1. Ray generation: The algorithm starts by generating rays from each emitter. These rays
are emitted in a half sphere.

2. Rotation of the rays: The rays that are emitted in the half sphere undergo a rotation to
be in the half-sphere direction in relation to the emitter’s normal, this means in the
direction of the light emission.

3. Tracing the rays: Once the rays have been emitted, the algorithm traces their unique
path through the room. It checks whether the rays collide with any geometric objects
(or wall) in the room or with the reception plane.

4. Contribution of the rays to the reception plane: When a ray reaches the reception
plane, it contributes to the 2D matrix representing the distribution of the received
power (in mW or dBm). This contribution is calculated using the line-of-sight (LoS)
propagation model. This model takes into account the characteristics of the ray, as
well as the angle of incidence at which it strikes the plane.

5. Reflection of rays off obstacles: If a ray encounters an obstacle before it reaches the
reception plane, the algorithm re-emits several new rays from the point of collision,
assimilating it to a new point source. These new rays are emitted in random directions
relative to the normal vector of the wall. This assumes that the property of the wall
makes it a diffuse emitter, which is the case for most indoor walls, as opposed to
specular reflection which would be like a mirror.

6. Tracing the reflected rays: The reflected rays are then traced to determine whether
they manage to reach the reception plane or not. If a reflected ray reaches the plane,
its contribution is calculated using the non-line-of-sight (nLoS) propagation model. If
none of the reflected rays reach the reception plane, these rays are discarded and have
no impact on the final results.

Generating rays in
random directions

Receiver's plane

Emitter

1 2 3

LoS 
contribution

Emitter

4 5 6

nLoS 
contribution

LoS 
contribution

Discarded ray

Emitter

EmitterEmitter

New 
point source

Figure 8. Propagation algorithm representation.

2.1.3. Communication System modelling

To estimate the communication coverage of a VLC system in a room, the simulator
models the different elements composing the system, namely, the emitter, the receiver,
and the propagation medium. In this work, one or more emitters (LEDs), from which the
rays will be emitted, can be integrated into the simulator. The receiver’s plane, where the
coverage is assessed, is characterized by the properties of a photodiode. The propagation
medium, which is the environment in which the emitter and receiver are located can be
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a room with any geometry. These different elements are modelled mathematically in the
following part.

The LED Emitter

In general, LED lighting has a luminance that can be considered identical in all
directions per unit solid angle. Elements with this property are called Lambertian emitters.
This assumption is used in this work, and it will therefore be assumed that the LEDs
used have a Lambertian radiation pattern [25], in which the radiant intensity depends
on the irradiance angle θ. The function R(θ, φ) in Equation (1) represents the generalized
Lambertian model for energy intensity. In practice, not all LEDs are Lambertian radiators.
In urban and industrial environments, like street lighting for example, their radiation
patterns are not necessarily symmetrical [10–12]. On the other hand, Lambertian radiators
have a uniaxial symmetry to their radiation pattern, which makes it independent from φ
(see Figure 9). This leads to Equations (1) and (2).

R(θ, φ) = R(θ) =
m + 1

2π
cosm(θ) (1)

m = − ln(2)
cos(θ1/2)

(2)

ψc

φd1

d

d2

z

θ

ψ

LoS
nLoS

α

β

Figure 9. VLC system modelling.

The parameter m (see Equation (2)) represents the mode number, which determines
the directivity of the radiation pattern. The half-power angle, θ1/2, also known as the half-
power beamwidth, is the angle between the axis of the maximum power and half-power
points. Its value is often given in LED data sheets; an ideally Lambertian emitter has a
half-power angle of 60 degrees. In addition, there is a parameter to take into account the
relative total power of the LED. This means that all the individual rays must have a power
that adds up to the total power of the LED. The transmitter is therefore modeled as a set of
rays that come from a common origin and have random directions within a hemisphere.
The power of each of these rays is therefore the total power of the LED, weighted according
to the Lambertian radiation pattern.

The Photodiode Receiver

In order to ensure that the room is adequately covered, a reception plane is drawn to
study the performance. The plane is divided into a grid of small cells, and the number of
light rays hitting each cell is counted. To take into account the properties of a real VLC
receiver, each cell of this grid is modeled as a photodiode, to mimic a conventional receiver
that scans the room. A photodiode is a semiconductor device that converts light into an
electric current when exposed to light. It generates a current proportional to the power of
the light, enabling light to be detected and measured. Its main characteristics are its field of
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view (FOV), active reception surface, and refractive index. If the angle of incidence of the
light beam does not enter the receiver’s FOV, then the power received is zero. From these
parameters, the gain of the photodiode can be calculated (see Equation (3)).

g(n, ψc) =
n2

sin2(ψc)
(3)

In Equation (3), the parameter g(n, ψc) represents the optical gain of the photodetector
that has a field of view angle ψc < π/2 and a concentrating lens on top with a refractive
index n.

The Propagation Medium

Figure 9 shows a VLC system model and the different angles involved in the com-
putation of the power received. Given the information above and the relative position
of the emitter with respect to the receiver, the total power received at each point of the
receiver’s plane can be estimated using both Equations (4) and (5). Equation (4) represents
the power of the rays that directly fall into the receiver’s field of view when emitted from
the LED. They follow a trajectory which has a distance d. This is called line-of-sight (LoS)
communication. Arx is the receiving surface of the photodiode and cos(ψ) the inclination
between the emitter and the receiver. On the other hand, the reflected rays that contribute
to the power received are computed using Equation (5), called the non-line-of-sight (nLoS)
contribution. These rays follow a path corresponding to d1 and d2. Depending on the type
of reflection on the wall, either a specular or diffuse reflection can be considered. In the
case of this work, the point where the first ray reaches the wall itself becomes a light source
following a Lambertian emission. The reflection coefficient of the wall is ρwall . Once each
contribution has been calculated, the total power on each point of the receiver’s plane is the
sum of both contributions, as stated in Equation (6). In this work, only the first reflection
is taken into account. Considering first-order reflections as sufficient is often a question
of a compromise between the accuracy and complexity of the calculation. As additional
reflections have an increasingly small effect on received power, this justifies their neglect in
practical calculations [2].

Pr−LoS = PtHLoS(0) = PtR(θ, φ)g(n, ψc)
Arx

d2 cos(ψ) (4)

Pr−nLoS = PtHnLoS(0) = Pt
R(θ, φ)Arx

(d1d2)2 ρwallcos(α) cos(β)g(n, ψc)cos(ψ) (5)

Pr−total = Pt(HLoS(0) + HnLoS(0)) (6)

2.1.4. Optical Power Distribution Estimation

Taking into account the quantities estimated in the communication system modelling
(Equation (6)), the simulator outputs three-dimensional curves representing the optical
power distribution in the room. These 3D curves represent the optical power either in
milliwatt (mW) or decibel-milliwatt (dBm), with the relationship between both being
written as

PdBm = 10log10(PmW) (7)

The power curve generation allows the user to move the surface in any direction. The
default view is the top view. The abscissa and ordinate values correspond to the dimensions
of the room being studied in meters. One unit therefore corresponds to one meter. This is
also the case in STL files. It is therefore important to bear this in mind when creating 3D
parts with Blender or any other 3D design software.

In order to better comprehend the matrices presenting the values of the reception plane,
these are visualized in 3D using the Matplotlib library. In this example (see Figure 10), a
Lambertian transmitter is placed in the center of a ceiling in a square room measuring 5 m
on each side and with a height of 3 m. The transmitter is placed 2.5 m above the floor,
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which is the receiving plane that has been divided into small areas where the amount of
optical power has been quantified. Table 2 shows the parameters used to generate the
3D visualization of the room in Figure 10. Figures 11 and 12 represent received power
distribution examples, to explain how to interpret these curves as well as the output of
the simulator.

Table 2. Parameters of the example room.

Parameter Value

Environment Room size 5 × 5 × 3 m3

Reflection coefficient 80%

Emitter

Position (0; 0; 2.5)
Orientation Facing down

Half Power Angle 60 degrees
Power 2 W

Receiver

Position The ground
Active area 16 mm²

Field of View 60 degrees
Refractive index 1.5

X (m)
3 2 1 0 1 2 3 Y (m)3 2 1 0 1 2 3

Z 
(m

)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Illustration of some rays generated from emitter

Figure 10. Illustration of the cubic room example.

The left side of Figure 11 represents the optical power distribution in mW considering
the LoS rays. In this example, the LED emits 10 batches of 10,000 LoS rays and 100 reflected
nLoS rays. The right side of Figure 11 represents the nLoS contributions of optical power.
As the emitter is in the center of the ceiling, the curve shows that the reflected rays will be
more significant towards the walls than in the center of the room.
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Figure 11. (left) LoS ray contribution and (right) nLoS ray contributions in mW to total distributed
power.

The left side of Figure 12 represents the sum of both LoS and nLoS contributions pre-
sented in Figure 11. One can see that the contribution of the nLoS rays is really small com-
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pared to the direct rays. Nevertheless, the study of nLoS rays can be useful in other types
of room configurations, where nLoS rays might propagate further than LoS rays. The right
side of the figure is the scale conversion from mW to dBm of the sum of both contributions.
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Figure 12. Sum of both LoS contributions in mW and dBm.

2.2. Overview of the Simulator

In this section, the simulator’s architecture is described, highlighting the various
aspects of its features and operation. First, the main components of the simulator are
presented, explaining how data are introduced and processed within the system. In
particular, the various inputs to the simulator, such as the model configuration parameters
and 3D object specifications, and the outputs produced, such as the results of the optical
power distribution simulation, are discussed. The structure of the code is then described
in detail, outlining the main modules and their interactions. The aim of this section is
to provide an in-depth understanding of how the code is organized, so that how the
simulator’s various functionalities are integrated and implemented can be understood.
The architectural choices and technical considerations that guided the development of the
simulator are also discussed. In summary, this section provides a comprehensive overview
of the simulator architecture, including both functional and technical aspects, to provide a
solid basis for further analysis and discussion.

2.2.1. Simulator’s Architecture
Input/Output

Figure 13 presents an overview of the simulator’s architecture. The different inputs
include the STL file of the 3D room, the intrinsic parameters of the transmitter and receiver
and their relative positions, and finally the simulation parameters, such as the number of
rays. The output of the simulator is mainly the matrices (or 2D grids) representing the
power received in the receiver plane, followed by a 3D representation thanks to Matplotlib.

The detailed inputs to model the propagation of light rays in a given environment are
the following:

• Room geometry
The 3D room’s geometry is represented by a list of triangles, each defined by a normal
vector and a reflection coefficient ρ. Triangles were chosen to represent the geometry
because of their simplicity and flexibility. A triangle is the most basic geometric shape
that can be used to model complex surfaces with precision. By subdividing curved or
irregular surfaces into a mesh of triangles, it is possible to accurately represent almost
any geometric shape, while facilitating ray tracing calculations. These triangles can be
created directly in Python’s code or imported from an STL file, a format chosen for its
compatibility and simplicity.

• Transmitter(s) and receiver plane
Mandatory information on transmitters includes their number, positions, orienta-
tions, and powers, as well as their half-power angles (θ1/2). The latter represents
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the angular distribution at which the rays are emitted into the room. The receiver’s
plane represents the surface where the signal’s coverage needs to be assessed. This
is characterized by the receiver’s FOV angle (ψc), the area of the receiver Arx, the
refractive index of the receiver n, and the height at which it is located in the room (see
Equations (4) and (5)).

• Simulation parameters
These include the number of rays to be emitted per emitter, the reflections per ray
touching a surface, the number of batches used to optimize the simulation, and the
desired resolution of the final result matrix. The use of batches resulted from the
conclusion that efficient use of NumPy, a Python library that makes it easy to work
with arrays of numbers and mathematical calculations, is essential to reduce the
computing time and is quite unique to our work. By grouping rays into large matrices,
rather than processing them individually in separate Python objects, it was possible
to take advantage of NumPy’s optimized matrix operations. This approach makes it
possible to perform calculations on all the data simultaneously, considerably speeding
up the processing.

3D room geometry in
STL format

Position and direction
of transmitters and

receiver

Simulation
parameters

Simulator made in Python
with NumPy

2D grid representing
the power received on

the receiver plane

Graphics generated
with Matplotlib

Input Output

Propagation model

Figure 13. General architecture of the Python VLC ray tracing simulator.

The propagation model then simulates the trajectory of the rays from the emitters,
taking into account the geometry of the room and the defined parameters. The rays passing
through the receiver plane are then aggregated into a 2D matrix, where the plane is divided
into several squares of equal size. This matrix represents the distribution of the received
power and can be visualized as a 3D surface plot, as explained in the previous section.

Python was chosen for its cost-effectiveness, ease of development, and extensive
libraries for scientific calculations (like NumPy) and data visualization (like Matplotlib).
However, it has performance limitations compared to compiled languages, and dynamic
typing can lead to runtime errors. These issues are mitigated through optimized libraries,
techniques like type hinting, and thorough documentation for improved code maintenance.
All the software material can be found at the following reference [18].

Code Structure

This part of the paper describes the various files that compose the ray tracing simulator
code. Each file plays a specific role in the overall functionality of the simulator. Figure 14
illustrates each function or class in the code and how each file contributes to the overall
operation of the simulator. There are six files in the simulator: main, utils, rays_math,
simulator, random_vector and figures.
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main

utils

rays_math

figures

random_vectorsimulator

load_triangles_from_file

normalize_hemisphere
generate_points_uniform_angle
generate_points_uniform_cube
generate_points_normal
get_angle

normalize
normalize_batch
rotation_matrix_from_vectors
align_rays
moller_trumbore_batch
find_first_collision

compute_meshgrid
compute_mean_power_histogram
compute_median_power_histogram
get_triangles_values
class Triangle
class Emitter
class Receiver
class VLCSimulator
    compute_ray_powers
    compute_nlos_ray_powers
    compute_reflexion
    do_simulation

plot_points_on_sphere
plot_hist_sphere_projection
plot_sphere_projectionplot_random_vectors

plot_raysplot_triangles_rays
plot_trianglesplot_collisionsplot_surface

Figure 14. Structure of the simulator’s open-source code.

File utils.py
The utils.py file contains the function for importing an STL file of a 3D room into

the Python environment using the function load_triangles_from_file. This function
retrieves triangles and their normals from the STL file provided. It is essential for loading
the geometric data required for the simulation and converting them into objects that can be
used by the rest of the code.

File rays_math.py
The rays_math.py file is dedicated to mathematical calculations related to rays. It

includes functions to perform operations such as rotating vectors and detecting collisions
between vectors and triangles in geometry. The details of these functions and their imple-
mentation are described in depth in Section 2.2.2.

File random_vector.py
The random_vector.py file includes functions for generating vectors in random

directions within a half hemisphere. The detailed operation of these functions is ex-
plained in Section 2.2.2, where the specific algorithms used for these generation processes
are discussed.

File simulator.py
The simulator.py file constitutes the core of the simulator code. It contains the main

logic and essential classes for the simulator’s operation:

• Class Emitter: represents the emitters. It consolidates data related to emitters and
provides a structure for managing this information, such as the calculation of the
Lambertian emission order m (Equation (2)).

• Class Receiver: represents the receiving plane and manages data associated with the
surface receiving the rays.

• Class Triangle: represents triangles within the geometry, storing information such as
vertices, normals, and the reflection coefficient ρ associated with each triangle.

• Class VLCSimulator: This is the main class of the simulator. Upon instantiation, it
handles the emitter objects, the receiver object, and the list of triangles. The method
do_simulation is responsible for executing the simulation using these objects and the
defined simulation parameters. The details of this method’s functionality are explored
in Section 2.2.2.

File figures.py



Informatics 2024, 11, 80 15 of 32

The figures.py file is dedicated to generating various figures for visualizing the simu-
lator’s results. It includes functions for creating graphical representations of the simulation
results. Additionally, a corresponding Jupyter notebook file named figures.ipynb pro-
vides code examples and associated results, facilitating the understanding of the simulator’s
graphical functionalities [18].

2.2.2. Algorithms

The main algorithms used in the simulator are presented in this part of the paper. Each
of these algorithms plays a crucial role in the simulation and data processing. The methods
used for ray generation, ray tracing, communication modelling, and results visualization
are described in detail. First, the algorithm which deals with the methods used to generate
the rays needed for the simulation is presented. It defines how the rays are emitted from a
source and how they are distributed in space. Second, the ray tracing, a key process that
determines the path of the rays through the simulated environment, is presented. This algo-
rithm calculates the intersections between rays and objects, as well as the effects of reflection
and transmission. Then, the methods used to model aspects of optical communication in
the simulator are explained. These include simulating the interactions between the rays and
the receiving surfaces, as well as evaluating the performance of the communication system.
Finally, the visualization techniques used to present the simulation results are explained.
Notably, this involves how the data are transformed into graphical representations, making
it easier to analyze and interpret the results.

Ray Generation

The algorithm begins by iterating over the different emitters, which means that each
emitter emits its own rays independently. To generate rays in the simulator, several
techniques were considered for creating directions in a half sphere. A first naive way would
be to generate spherical coordinates where ϕ and φ follow a uniform law. An illustration
of these angles can be found in Figure 15, where ρ is the radial distance, ϕ the colatitude
(between 0 and π radians), and φ the longitude (between 0 and 2π radians).

y

z

φ

ρ

x

ɸ

Figure 15. Representation of spherical coordinates.

Generating 10,000 points on a half sphere or rays using this method gives Figure 16. It
can be seen that the distribution does not appear to be uniform. Indeed, there is a visibly
higher concentration of rays in the center part of the half sphere, as seen on the left side of
Figure 16.

The algorithm finally adopted in this work was proposed by [26], which is based on the
use of independent coordinates X, Y, and Z generated according to a normal distribution
(Equation (8)) centered reduced:

X, Y, Z ∼ N (0, 1) (8)
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After their generation, the X, Y, and Z coordinates are normalized to ensure that the
radius has a unit length. This normalization ensures that the ray directions are represented
uniformly across the sphere. To ensure that rays are generated only in the half sphere where
all directions have a positive Z value, the absolute value of Z is taken. This method ensures
that the ray directions are uniformly distributed across the half sphere. The distribution of
the points generated thus follows a uniform distribution over this surface, as illustrated
in Figure 17, which represents a generation of 10,000 points using this method. Both
Figures 16 and 17 were generated using the generate_points_normal function within the
random_vector.py file.
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Figure 16. Randomly generated points on a sphere following a uniform distribution using spherical
coordinates.
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Figure 17. Randomly generated points on a sphere using a normal distribution of X, Y, and Z
coordinates.

Rotation of Rays

After generating the rays in a half sphere directed with respect to the vector (0, 0, 1)
(facing up), they have to be orientated in the specific direction of the emitter. To that end,
the generated rays must be rotated by the angle between the vector (0, 0, 1) and the desired
direction of the emitter. The rotation matrix that will be applied to each ray needs to be
calculated to complete this step. To begin with, the reference vectors are computed. The
v vector is the initial direction of the generated rays. This vector must be aligned with
another vector w, representing the direction of the emitter (see Figure 18). To achieve this,
these two vectors are normalized to obtain the unit vectors v̂ and ŵ. These unit vectors are
obtained by dividing each vector by its norm:
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v

w

θ

Figure 18. Vectors v and w for ray rotation.

v̂ =
v

∥v∥ (9)

ŵ =
w

∥w∥ (10)

Subsequently, the cross product (also known as the vector product) of v̂ and ŵ is
computed to obtain a vector u that defines the axis of rotation. The norm of this cross
product provides the sine of the rotation angle θ, as both v̂ and ŵ vectors are unitary, while
the dot product (a.k.a. scalar product) between v̂ and ŵ yields the cosine of this angle.

sin(θ) = ∥v̂ × ŵ∥ (11)

cos(θ) = v̂ · ŵ (12)

In the case where the vectors are collinear, two particular situations must be considered.
If sin(θ) is zero, this indicates that the vectors are either in the same direction, in which
case no rotation is required and the rotation matrix is simply the identity matrix I, or in
opposite directions, in which case the rotation matrix is the negative of the identity matrix,
that is −I.

For the other situations, the rotation matrix R is constructed using Rodrigues’ for-
mula [27]. This formula involves first creating a square matrix K, which is the antisymmetric
matrix (it satisfies the condition KT = −K.) of the rotation vector u:

K =

 0 −uz uy
uz 0 −ux
−uy ux 0

 (13)

The rotation matrix is then calculated by

R = I + K sin(θ) + K2(1 − cos(θ)) (14)

Once the rotation matrix R has been determined, this rotation is applied to the gener-
ated rays, to realign them with the direction of the emitter. This application is performed
by multiplying each ray by the transpose of the rotation matrix RT :

aligned rays = rays × RT (15)

This algorithm allows the generated rays to be correctly aligned with the direction
of the emitter. Two examples, where rays are aligned with a vector that has a direction
(0, 0, −1) (facing down) and a vector that has a direction (0, 1, −1) (facing down towards
the right), are shown in Figure 7.

The rotation is implemented in the function align_rays, which is located in the file
rays_math.py.
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Calculating Collisions with Triangles

Now, the intersections between rays and triangles are needed. To achieve this, the
Möller–Trumbore algorithm is used [27,28]. This algorithm is well-suited for ray tracing
calculations, as it allows for efficient testing of collisions between rays and triangles in
three-dimensional space. This algorithm employs barycentric coordinates. Barycentric
coordinates are a coordinate system used to express a point within a triangle relative to its
distances from the triangle’s vertices. These coordinates are expressed as a triplet (a1, a2, a3),
such that a1 + a2 + a3 = 1.

The Möller–Trumbore algorithm consists of several steps. Firstly, the coordinates of
each triangle’s vertices must be extracted. For each triangle, there are three vertices: v0, v1,
and v2. The triangle’s edge vectors are defined as follows:

e1 = v1 − v0 (16)

e2 = v2 − v0 (17)

Next, the cross product between the ray direction and the edge vector e2 is computed
to obtain the vector h. The result of this cross product is used to calculate the determinant
a, which is the dot product between h and the edge vector e1:

h = d × e2 (18)

a = e1 · h (19)

If the determinant a is close to zero (<1×10−8), this indicates that the ray is parallel to
the triangle. In this case, no intersection is possible, and such cases are marked as parallel
and excluded from further calculations.

If a is not close to zero, the calculation continues by determining the factor f , which is
the reciprocal of a. This factor is used to normalize the coordinates and is defined as follows:

f =
1
a

(20)

Next, the vector s, which is the difference between the ray’s origin and the triangle’s
vertex v0, is computed. From this vector, the barycentric coordinates u and v of the potential
intersection point are determined:

s = o − v0 (21)

u = f · (s × e2) · e1 (22)

v = f · (d × e1) · s (23)

The barycentric coordinates u and v represent the position of the intersection point
relative to the triangle’s vertices. For the intersection point to lie within the triangle, the
barycentric coordinates must satisfy the following conditions: u ≥ 0, v ≥ 0, and u + v ≤ 1.
If these conditions are not met, there is no intersection with the triangle.

If the barycentric coordinates are valid, the distance t between the ray’s origin and the
intersection point is calculated using the factor f :

t = f · (e2 × e1) · s (24)

This distance t gives the position of the intersection point along the ray. Intersections
where the ray does not hit the triangle are set to infinity. This indicates that there is
no collision.

For each ray, the closest triangle is identified by comparing the distances calculated
for all possible intersections. The method find_first_collision (in rays_math.py in
Figure 14) returns the indices of the nearest triangles, along with the associated distances.
The indices of the triangles where no collision occurs are set to −1, and the distances of
intersections are set to infinity if no collision is detected. Figure 19 shows an example of



Informatics 2024, 11, 80 19 of 32

the algorithm in action: 20 rays have been emitted towards the top of an octagonal-shaped
room. It can be seen that collisions are accurately accounted for, and the normal vectors of
the walls that the rays have interacted with are also displayed.

X
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m
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Illustration of some rays generated from emitter

Figure 19. Top view with rays launched into the room from the ceiling center, collision points with
surfaces in orange and wall normals in green facing inwards.

Calculating the Power of Direct Rays

Once those collisions have been identified for each ray, they can be categorized into
several types, each treated differently:

• Rays that do not intersect any triangle are disregarded and not considered for further
calculations.

• Rays that collide with the geometry of the room are retained for reflection calculations.
• Rays that reach the receiver plane require calculation of their power on this plane.

To calculate the power of direct rays when they reach the receiver, the parameters
defined in Equation (4) need to be retrieved. Firstly, the knowledge of the cosine of the
emission angle θ between the direction of the rays (dr) and the direction of the emitter (de)
is necessary. This cosine can be obtained by performing the dot product between these
two directions:

cos(θ) = dr · de (25)

Next, the cosine of the angle ψ, which is the angle between the opposite direction of
the rays −dr and the vector z = [0, 0, 1] (oriented along the vertical axis) is needed (see
Figure 9). This cosine is computed as follows:

cos(ψ) = −dr · z (26)

The parameters m and Pt are constants of the emitter, provided or calculated during
the creation of the object. The values Arx and g are constants of the receiving plane, also
determined during the creation of the object. The distance d1 between the emitter and
the point of collision on the receiving plane is obtained from the previous step using the
Möller–Trumbore algorithm. It is then necessary to verify that the ray falls within the
FOV of the receiver on each cell of the receiver’s plane by verifying that the incidence falls
within ψc.

These calculations are performed in the method compute_ray_powers, which is lo-
cated in the file simulator.py (see Figure 14).
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Calculation of Reflections

When a ray collides with the geometry, reflections must be considered. The simulator
accounts only for diffuse reflections. To model these reflections, a new light source is
conceptualized at the point of collision on the surface, from which nnr new rays are emitted.
The value of nnr is a parameter of the simulation.

To generate these new rays, the same techniques as those previously described for
the emitter are applied. The nnr rays are initially generated randomly within a half hemi-
sphere and then oriented according to the normal to the collision surface by applying
an appropriate rotation. Subsequently, the Möller–Trumbore algorithm is again used to
detect intersections between these new rays and the geometry triangles, as well as the
receiving plane.

Only the rays that collide with the receiving plane are considered; others are ignored.
The power of a ray after reflection can then be calculated using Equation (5), where ρwall is
the reflection coefficient of the wall, which should be indicated as a parameter in the code.
For d1 and d2 (see Figure 9), the results from the two applications of the Möller–Trumbore
algorithm are used. The value of ρ (reflection coefficient) is associated with the triangle
with which the collision occurred.

The value of cos(α), which is the angle of incidence between the opposite direction of
the incident ray d1 and the normal to the wall n, is given by

cos(α) = −d1 · n (27)

Next, the cosine of the angle β is calculated. This is the angle between the normal n of
the collision surface and the direction of the reflected ray d2. This cosine is also computed
using the dot product:

cos(β) = n · d2 (28)

Finally, the cosine of angle ψ, which is the angle between the opposite direction of the
reflected ray −d2 and the vector z = [0, 0, 1], representing the vertical axis, is calculated
as follows:

cos(ϕ) = −d2 · z (29)

Similarly, the angle ψ can be computed, and if angle ψ exceeds the receiver’s field of
view ψc , the power received by this ray is set to zero:

Preceived = 0 if |ψ| > ψc (30)

These calculations are performed in the method compute_reflection and in the method
compute_nlos_ray_powers, which are found in the file simulator.py (see Figure 14).

Aggregation of Results

At this stage, the ray propagation process is complete. A set of points representing
collisions between the rays and the receiving plane, each associated with an intensity, are
obtained. The ultimate goal of the simulator is to produce a two-dimensional matrix that
represents the power density on the surface of the receiving plane. To obtain this matrix,
the receiving plane is divided into a grid. For each cell in this grid, the average power of
the rays that have landed in that cell are computed.

The function compute_mean_power_histogram handles this process by taking as input
the impact positions of the rays (xi, yi) and the associated powers Pi at these impacts. The
grid boundaries are also provided in the form of the arrays x_edges and y_edges. Firstly,
this function calculates a weighted two-dimensional histogram called total_power_hist,
which accumulates the total power in each cell of the grid. Mathematically, this involves
summing the powers of the rays that fall into each cell:

total_power_hist(x, y) = ∑
i

Pi where (xi, yi) is in cell (x, y) (31)
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Then, a second two-dimensional histogram, counts_hist, is calculated. This his-
togram simply counts the number of rays that have landed in each cell of the grid:

counts_hist(x, y) = ∑
i

1 where (xi, yi) is in cell (x, y) (32)

It is important to note that to avoid division by zero (which would occur if a cell
contains no rays), zero values in counts_hist are replaced with 1. The average power
in each cell is then obtained by dividing the total_power_hist by the number of rays in
that cell:

mean_power_hist(x, y) =
total_power_hist(x, y)

counts_hist(x, y)
(33)

Finally, this matrix mean_power_histT represents the average power density on the
receiver plane. This result is essential for visualizing and analyzing the distribution of
received energy across the plane.

These calculations are performed in the methods located in the file simulator.py (see
Figure 14).

3. Results

This section of the paper presents the results obtained with the simulator in different
scenarios. This includes comparisons with theoretical models, as well as benchmarking
against existing simulators. This validates the accuracy and reliability of the output of
the simulator. Next, the propagation results in rooms with geometries different from a
rectangular parallelepiped room are analyzed. Finally, the computational requirements and
efficiency of the simulator are described, this includes the simulator’s calculation time in
different situations. The simulations were performed using an AMD Ryzen 5 4600H CPU
and 16 GB of RAM manufactured by Advanced Micro Devices (SC, USA).

3.1. Validation

To the best of our knowledge, two open-source simulators are available in the research
literature. The first was developed in MATLAB 2019 and is available in reference [2]. The
second is the simulator we previously implemented in Python based on the MATLAB
version but with enhanced features [9,10,12]. Both are based on the methodology presented
in Figure 3.

3.1.1. Comparison with a Single Emitter in a LoS Configuration

In this simulation scenario, a square room measuring 5 × 5 × 3 m³, with a single
transmitter placed in the center of the ceiling, was studied in terms of propagation. The
parameters related to the pieces of equipment and the room are given in Table 2. Figure 20
shows the simulation results using the code from [9]. Figure 21 shows the results of this
simulator developed with 1,000,000 rays (100 batches of 10,000 rays in LoS). It can be seen
that the results were very similar.

To quantify the difference between the results obtained by the developed simulator
and the reference simulators, the mean square error (MSE) was calculated using the mW
values of the power. This error, which measures the mean squared deviation between the
simulated and reference received powers, was 0.086 when estimating those two results,
indicating a good simulation accuracy.

In addition to this static measurement, it is also interesting to examine how the error
varied as a function of the number of rays emitted. Figure 22 shows the evolution of the
MSE as a function of the number of rays emitted. To generate this figure, the number of rays
was adjusted from 1000 to 50,000 in increments of 1000. At each increment, 100 simulations
were carried out, and the average result of these simulations was taken. This is carried out
to reduce the impact of random variations and to obtain a more reliable estimate of the
average error. It can be seen that the error decreased as the number of rays increased,
reflecting a better approximation of light propagation in the simulated environment.
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Figure 23, a zoom of the previous graph, also shows that from 35,000 rays onward, the error
was close to zero and started to decrease very slightly.

Figure 20. Optical power distribution of one central emitter using the previous simulator.
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Figure 21. Optical power distribution of one central emitter using the new simulator.
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Figure 22. Evolution of the Mean Square Error for 1000 to 50,000 rays by step of 1000 rays—
computation on 100 runs.
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Figure 23. Evolution of the Mean Square Error for 1600 to 50,000 rays by step of 1000 rays—
computation on 100 runs.

3.1.2. Comparison with Four Emitters in a LoS Configuration

Another result that is commonly presented in the literature is the case of the same
room with four emitters evenly distributed across the ceiling. The positions in meters are
given in Table 3. Figure 24 shows the simulation results using the code from [9]. Figure 25
shows the results of the simulator developed in this work with 1,000,000 rays per emitter
(i.e., 4,000,000 rays in total). It can be seen that the results were again very similar.

Table 3. Positions of the four transmitters on the ceiling.

Position LED 1 Position LED 2

(1.25; 1.25; 3) (−1.25; 1.25; 3)

Position LED 3 Position LED 4

(1.25; −1.25; 3) (−1.25; −1.25; 3)

The MSE calculated for this simulation was 3.568. Note that this value was higher than
for a single transmitter, but was still relatively low. As before, it is interesting to examine
the evolution of the error as a function of the number of rays. To generate this figure,
the number of rays was adjusted from 1000 to 50,000 in increments of 1000. Given that
there were four emitters, this represented a total number of rays ranging from from 4000 to
200,000, as illustrated in Figure 26. The error decreased as the number of rays increased.
Figure 27 also shows that from 200,000 rays onward, the quality of the simulation no longer
improved significantly, the error value already being 3.568 with 4,000,000 rays. Whether
using one emitter or four, it can be seen that the statistical ray tracing method achieved
similar results to those obtained using an iterative method (previous simulator). It is
important to note that the use of the term ‘error’ in this context can be a source of confusion.
Indeed, the difference between the results of our simulator and those obtained with the
reference simulators is what is being measured here. However, this measure of difference
does not necessarily reflect an ‘error’ in the strict sense of the term, but rather a difference
that could be due to various factors. It is also possible that the simulator results, even if
they show deviations from the references, are closer to physical reality.
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Figure 24. Optical power distribution of four emitters using the previous simulator.
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Figure 25. Optical power distribution of four emitters using the new simulator.
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Figure 26. Mean Square Error for 4000 to 200,000 for four emitters.
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Figure 27. Mean Square Error for 40,000 to 200,000 for four emitters.
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3.1.3. Comparison of the NLoS Contributions for One Emitter

This study used the same parameters as those presented in Table 2. This simulation
was carried out with 1,000,000 rays sent by the emitter and 100 rays emitted for each
reflection on a wall. The contribution of reflections to received power was relatively small
compared to LoS power. To better illustrate this contribution, Figures 28 and 29 only show
the received power due to reflections. Although the general shape of the distributions was
comparable, minor differences were observed closer to the walls. Our hypothesis is that
this difference was due to the more accurate results offered by the ray tracing algorithm
for the behaviour of light during reflections, whereas the geometric approach used in our
old simulator simplified the interactions, and even predicted them, and therefore gave a
smoother but less accurate distribution result. However, it can be seen that the general
trend was really close. The power received was greater in the middle of the walls and less
in the center of the room in both cases. The MSE calculated for this simulation was 0.17.
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Figure 28. Optical power distribution of first order reflections for one emitter using the previous
simulator.
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Figure 29. Optical power distribution of first order reflections for one emitter using this simulator.

3.1.4. Comparison of the NLoS Contributions for Four Emitters

This simulation was carried out with 1,000,000 rays sent for each emitter and 100 rays
for the reflections. The situation was the same as described in Section 3.1.2 and Table 3.
The results were very close to those obtained from the references. Looking at the received
power from reflections alone, Figures 30 and 31 show that the general shape and values
were similar. Once again, the reflected rays were more powerful at the edges of the walls
than in the center of the room. The mean square error calculated for this simulation was
3.84, only similar to that obtained for LoS in the case of four transmitters.
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Figure 30. Optical power distribution of first order reflections for four emitters using the previous
simulator.
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Figure 31. Optical power distribution of first order reflections for four emitters using the new
simulator.

3.2. Propagation in Complex Geometry Rooms

Having been validated, the key to this new simulator, and what sets it apart from
anything else available free and open-source, is that it is capable of handling the propagation
of one or more LED emitters in rooms with a complex geometry. To demonstrate this, an
octagonal room and an L-shaped (corner) room were studied. Both rooms were created
using Blender and exported into a STL file. They were then imported into the simulator.
All simulation presented in the following sections used 1,000,000 rays for the emitter and
100 rays per reflection point.

3.2.1. Octagonal-Shaped Room

The simulation parameters used in this scenario can be found in Table 4 and the
geometry of the room can be found in Figure 32. The width of each wall was one meter, as
was the height of the room. Note that the user can select larger rooms, in the present case,
its dimensions were taken only as an example.

The results of the simulation with the octagonal room are shown in Figures 33 and 34.
Both figures show graphs of the received power, with a top view and a side view. It can
be seen that the simulator correctly took into account the geometry of the octagonal room.
The rays remained confined within the geometry, which indicates that the propagation of
the rays was correctly modeled, with no leakage.
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Table 4. Parameters of the octagonal room.

Parameter Value

Environment

Room type Octagonal
Wall width 1 m
Wall height 1 m

Reflection coefficient 80%

Emitter

Position (0; 0; 1)
Orientation Facing down

Half Power Angle 12.5 degrees
Power 2 W

Receiver

Position The ground
Active area 16 mm²

Field of View 60 degrees
Refractive index 1.5

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00

X

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Y

0.0

0.2

0.4

0.6

0.8

1.0

Z

Figure 32. Illustration of the octagonal room.
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Figure 33. Top view of the optical power distribution of an LED in an octagonal room.
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Figure 34. Side view of the optical power distribution of an LED in an octagonal room.

3.2.2. L-Shaped Room

An L-shaped room, as shown in Figure 35, was also simulated. This configuration
was used to verify how the simulator handled angles and reflections in confined spaces.
The parameters of this simulation are shown in Table 5. The room dimensions were two
meters for the larger outer walls and one meter for the inner walls, and the emitter was
decentralized in one of the corners of the room.

Table 5. Parameters of the corner room.

Parameter Value

Environment

Room type corner room
Inner walls 1 m
Outer walls 2 m
Wall height 1 m

Reflection coefficient 80%

Emitter

Position (−0.5; −0.5; 1)
Orientation Facing down

Half Power Angle 40 degrees
Power 2 W

Receiver

Position The ground
Active area 16 mm²

Field of View 90 degrees
Refractive index 1.5

X 
(m

)

1.00
0.75

0.50
0.25

0.00
0.25

0.50
0.75

1.00Y (m)

1.000.750.500.250.000.250.500.751.00

0.0

0.2

0.4

0.6

0.8

1.0

Illustration of some rays generated from emitter

Figure 35. Illustration of the L-shaped room.
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Figure 36 shows the results of the simulation in the room with a corner, without
taking the reflections into account. It can be seen that the light only propagated in the
areas accessible in a direct line-of-sight from the transmitter, while the area on the right
remained in shadow. Figure 37, on the other hand, shows the simulation taking reflections
into account. It can be seen that the light now reached the right-hand side thanks to the
reflections. This shows that the reflections were correctly integrated and that the simulator
was capable of modelling light scattering.
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Figure 36. Optical power distribution in a corner room without reflections.
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Figure 37. Optical power distribution in a corner room including reflections.

3.3. Computational Considerations

The computation time required to run the simulations using the simulator was exam-
ined. Particular attention was given to how the execution time varied with the number
of rays processed per simulation. To assess this performance, the time taken to perform
simulations with different numbers of rays, ranging from 1 to 300,000 in increments of
10,000 rays, was measured. This relationship is illustrated in Figure 38. For each ray count
value, 10 distinct simulations were conducted, and the average execution time of these
simulations was calculated. The execution time was measured using Python’s time library.
Only the time spent calling the do_simulation function was taken into account, while the
time needed to initialize the objects used by the simulator was excluded, to only concentrate
on the simulation part.

Figure 38 shows that the execution time seemed to increase linearly with the number
of rays. This trend was to be expected, as the rays were processed independently of each
other, implying that the computation time is proportional to the total number of rays to
be simulated. Furthermore, for this number of rays, the simulation time was very short
compared with the human reference point.
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Figure 38. Evolution of simulation time depending on number of rays to be generated.

4. Conclusions

This simulator represents a noteworthy advancement in open-source VLC channel
modelling, offering enhancements over existing models in the literature. To the best of our
knowledge, no other open-source and free of charge ray-tracing simulator is available that
can handle complex 3D room environments with a similar capability. Developed using
Python and accessible via GitHub’s free version [18], this work introduces several key
improvements over prior implementations. Notably, it supports the importing of intricate
3D room models and employs a ray-tracing algorithm to estimate light propagation and
optical communication coverage with increased precision. The simulator provides flexibility
in the emitter positioning, quantity, and orientation. The use of batches for the generated
and reflected rays to diminish the simulation time is a key novelty unique to this paper.

The paper details the simulator’s architecture, and describes the critical algorithms
utilized. The simulator’s outputs were validated against the current literature, demon-
strating its reliability. It also makes it easier for the user to define multiple emitters and
enhances the analysis of reflected rays, which is crucial for VLC system design. Unlike
previous models that primarily focused on rectangular parallelepiped rooms, this simu-
lator has expanded capabilities to include any room geometry, as demonstrated with the
L-shaped and octagonal-shaped room examples, showcasing its versatility in handling
various room geometries.

While future research may explore the integration of real radiation patterns for dif-
ferent LED types and advanced reflection models, the current version of the simulator
already represents a significant step forward in simulating complex optical environments,
demonstrating its ability to model complex room shapes and accurately analyze light
propagation and coverage in the field of VLC modelling.
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Abbreviations
The following abbreviations are used in this manuscript:

FoV Field of View
FSO Free Space Optics
LED Light Emitting Diode
Li-Fi Light Fidelity
LoS Line-of-Sight
MSE Mean Square Error
nLoS non-Line-of-Sight
OBJ Object file
OCC Optical Camera Communication
OWC Optical Wireless Communication
STL Stereolithography
VLC Visible Light Communication

Appendix A

To create a cube with inward-facing normals in Blender and export this model as an
STL file, follow these steps:

1. Create a cube Open Blender :

• Launch Blender. By default, a scene with a cube is usually already present.
• Select the cube: Click on the cube to select it, if it is already present in the scene.

Otherwise, add a cube by going to Add > Mesh > Cube.

2. Invert the Normals

• Switch to Edit Mode: Press Tab to switch to Edit Mode. Select All Sides: Press A
to select all sides of the cube.

• Flip Normals: Press Alt + N to open the normals menu, then select Flip Normals.

3. Check and clean Normals

• Check Normals: Switch to front view of normals by pressing Alt + N and select
Show Normals > Visible. This will allow you to see if the normals are correctly
oriented inwards.

• Manual Correction: If some of the normals are incorrect or you want better
control, you can manually select the faces and press Alt + N > Reverse Normals
to correct them.

4. Export to STL

• Return to Object Mode: Press Tab to return to Object Mode.
• Export the Model: Go to File > Export > STL.
• Configure Settings: Choose where you want to save the file, give it a name, and

make sure the export options are set to your requirements.
• Save the File: Click on Export STL to save the file.
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