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Abstract: The two-thirds power law is a link between angular speed ω and curvature κ observed in
voluntary human movements: ω is proportional to κ2/3. Squared jerk is known to be a Lagrangian
leading to the latter law. However, it leads to unbounded movements and is therefore incompatible
with quasi-periodic dynamics, such as the movement of the tip of a pen drawing ellipses. To solve
this drawback, we give a class of higher-derivative Lagrangians that allow for both quasi-periodic
and unbounded movements, and at the same time lead to the two-thirds power law. The current
study extends this framework and investigates a wider class of Lagrangians admitting generalised
conservation laws.

Keywords: higher-derivative actions; phase-space dynamics; Ostrogradsky’s procedure; motor
control; biomechanics

1. Introduction

The Newtonian approach to mechanics relies on the fundamental equation F⃗ = m⃗a in
Cartesian coordinates, where the total external force F⃗ acting on a point-like body of inertial
mass m gives it an acceleration a⃗ = ¨⃗x (with the dot on top denoting the time (t) derivative),
which in turn yields the velocity v⃗(t) = ˙⃗x and position x⃗(t) of the body after successive
integrations and upon imposing initial conditions. By invoking a principle of least action,
Joseph-Louis Lagrange replaced Newton’s equations by the search for a single function
L that is called the Lagrangian. In its original formulation, the Lagrangian L depends on
the configuration (position) space variables, qα(t), and their first-order time derivative
q̇α(t), where α ∈ {1, . . . , n} and the integer n is the dimension of the configuration space,
i.e., the number of degrees of freedom of the system once all the holonomic constraints
have been taken into account. Typically, L = Ek − Ep, the difference between the kinetic
and potential energy functions of the system. Lagrange’s postulate is that the dynamical
system, during its temporal evolution between two (initial and final) instants ti and tf,
minimises the action S[qα] =

∫ tf
ti

L(qα, q̇α)dt. The motion is then given by Hamilton’s
variational principle δS = 0 subjected to the boundary conditions δqα(ti) = 0 = δqα(tf).
Hamilton’s principle has then been generalised by Mikhail Ostrogradsky [1] to encompass
Lagrangian functions depending on higher than one time derivatives of the dynamical
variables qα(t), therefore involving adapted boundary conditions. Note that by the term
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“Lagrangian”, one understands the function appearing under the integral in the expression
of the action functional S[qα], be it of the original form L(qα, q̇α) or in a higher-derivative
form L(qα, q̇α, q̈α, . . .). We say that an action is “higher-derivative” if it is given by the
integral, along a given path in configuration space, of a higher-derivative Lagrangian,
L(qα, q̇α, q̈α, . . .).

In the realm of motor control, which resides at the intersection of biomechanics,
neuroscience, and mathematics, there has been a paradigm shift akin to the one from
Newtonian to Lagrangian mechanics. Instead of merely describing motion, researchers
have begun to ask why organisms move the way they do. Indeed, certain actions or
behaviours are repeated in a consistent manner. The concept of stereotyped movements
was observed centuries ago, among others by Charles Scott Sherrington in 1906 [2]. The
answer may lie in the minimisation of a cost function, a mathematical representation of the
effort, energy, or some other metric that a biological system tries to optimise. The interested
reader may find reviews about optimal control theory in motor control in Refs. [3,4]. By
quantifying the cost linked with diverse trajectories or control strategies, these functions
illuminate pathways to optimal movement strategies.

Traditionally applied to describe the dynamics of non-living physical systems, the
recent introduction of Lagrangians as cost functions offers new insights accompanied by
new challenges. One frequently cited cost function in motor control relies on what is
called the jerk, j⃗ = ˙⃗a, a vectorial quantity related to movement smoothness [5]. Research
suggests that when humans make smooth, unperturbed movements, the trajectory they
follow tends to minimise the integrated squared jerk, i.e., the movement minimises the
following higher-derivative action [6]

SJ [⃗x(t)] =
∫ tf

ti

LJdt =
∫ tf

ti

∥⃗j∥2 dt. (1)

An apparent paradox that is going to be solved in the current study is that, from a
mechanical point if view, the higher-derivative Lagrangian, LJ = ∥⃗j∥2, does not lead to
bounded trajectories. Indeed, the solutions x⃗(t) of the Euler–Lagrange equations x⃗(4) = 0⃗
that minimise the action SJ based on the Lagrangian LJ are polynomials of degree three
in the time parameter t; the polynomials are not periodic solutions. The jerk has however
been considered in the study of bounded trajectories, which is problematic for describing
voluntary movements such as the drawing of ellipses on a sheet of paper. In the present
paper, we propose another framework in which higher-derivative actions produce bounded
trajectories satisfying the two-thirds law (see below), and in which the minimisation of
jerk appears to be a dynamical consequence of the variational principle. We reiterate
that, by “higher-derivative”, we mean a Lagrangian L(x⃗(0), x⃗(1), . . . , x⃗(N)) depending on
the first N > 1 derivatives of the dynamical variables x⃗(t) := x⃗(0)(t), i.e., depending on
x⃗(0)(t), x⃗(1)(t) := ˙⃗x(t), x⃗(2)(t) := ¨⃗x(t), and so on. Three-dimensional vectors are assumed
throughout. The study of such higher-derivative classical systems with finitely many
degrees of freedom is achieved here by resorting to Ostrogradsky’s approach [1], which
pioneered the study of higher-derivative actions.

Although cost functions can be central in elucidating optimal movement trajectories,
cost functions are not the only framework in motor control research. Another approach is
to identify conserved quantities or invariants. Invariants, as the term implies, are quantities
whose value stays constant during dynamical evolution. A particularly illuminating
example of this field is the empirical two-thirds power law, hereafter referred to as “2/3-
PL”. It has been found in Ref. [7] and can be written as

v = C κ−1/3, (2)

with velocity v⃗ = ˙⃗x, speed v = ∥v⃗∥ and C ∈ R+
0 a constant. One speaks of “two-thirds”

because this law’s original formulation involved the angular speed ω = vκ where κ = 1/R
is the curvature (the inverse of the radius R of the osculating circle) of the trajectory at a
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given time leading to ω = C κ2/3, i.e., the 2/3 exponent. The initial observation was that
the speed of a drawing or writing movement is related to the curvature of the drawing.
This law has since been observed in a wide range of planar movements [8], and especially
in elliptic trajectories. Note that a more general link of the type may be observed in an even
wider class of trajectories [9], though here we do not consider the generalisation,

v = C κβ . (3)

There has been quite a debating on the 2/3-PL, with claims that the law (3) is mostly
an artefact due to fitting, while others (including the authors of this paper) argue that this
law is indeed a behavioural consequence of a fundamental law in human; see [8] for a
detailed review on this topic.

Results from various studies challenge a purely kinematic interpretation of the 2/3-PL
and highlight the role of the central nervous system in motion planning, which leads to
Equation (2), using the motor imagery paradigms for covert movements [10,11].

The present investigation extends the understanding of cost functions through the
lens of higher-derivative Lagrangians. The study proposes that a class of higher-derivative
actions broader than Equation (1) leads to the 2/3-PL, providing new insights into cost
functions in human motion. This is developed in Section 3 after general considerations
about the 2/3-PL in Section 2.

Complementing the Lagrangian perspective, the Hamiltonian formalism provides
a phase-space representation of the dynamics of a system as well as a general way to
compute invariants through action-angle variables [12]. The proposed higher-derivative
Lagrangians give rise to corresponding Hamiltonian functions through Ostrogradsky’s
procedure [1], after which the invariants are computed in Section 4. A contextualisation of
the results obtained in the framework of motor control is then discussed in Section 5.

2. Two-Thirds Law: Kinematical Considerations

In the context of three-dimensional motion in Euclidean space, the curvature and
torsion of a given trajectory are obtained through standard formulae (see, e.g., Refs. [13,14])

κ =
∥v⃗ × a⃗∥

v3 , τ =
j⃗ · (⃗v × a⃗)
∥v⃗ × a⃗∥2 , (4)

where a⃗ = ¨⃗x and where the symbol × stands for the vector product in three-dimensional
space. From the first Equation (4) giving the curvature of the trajectory in terms of the
velocity and acceleration, one can write

v = ∥v⃗ × a⃗∥1/3κ−1/3 . (5)

Hence, the 2/3-PL is valid if and only if the norm ℓ2 of the vector ℓ⃗2 = v⃗× a⃗ is constant.

A sufficient although not necessary condition is ˙⃗ℓ2 = 0⃗. Using ˙⃗ℓ2 = a⃗ × a⃗ + v⃗ × j⃗ along with
a⃗ × a⃗ ≡ 0, one can find that for Equation (2) to hold true, it suffices to have

j⃗ = γv⃗ . (6)

The coefficient function γ may explicitly depend on time and on the various derivatives
x⃗(i). Since j⃗ = x⃗(3) and v⃗ = x⃗(1), Equation (6) can be rewritten as x⃗(3) − γ(x⃗(i), t)x⃗(1) = 0⃗.
That is, a trajectory satisfying this last relation also satisfies Equation (2). The simplest
choice is that of a constant function γ leading to elliptic trajectories. In Ref. [15], different
choices of the form γ = γ(t) are explored leading to trajectories that all comply with the
2/3-PL.

Let us note that a straightforward way to obtain dynamics leading to a conserved
norm ℓ2 of the vector ℓ⃗2 is proposed in Ref. [16]. The Lagrangian considered is actually
proportional to ℓ2 = ∥v⃗ × a⃗∥ itself. Since the Lagrangian does not explicitly depend
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on the evolution parameter, via Noether’s theorem, there exists the conserved quantity
B := v⃗ · p⃗0 + a⃗ · p⃗1 − L, where, in this case, p⃗0 = ∂L

∂v⃗ − d
dt

∂L
∂⃗a and p⃗1 = ∂L

∂⃗a . In the case when
L = ℓ2, one has B = 2L = 2ℓ2, ensuring a conservation of the norm of the vector ℓ⃗2, which
we recall is a sufficient and necessary condition for the 2/3-PL (see Equation (5)). However,
the dynamics associated with the Lagrangian L = ℓ2 is x⃗(3) = 0 leading to unbounded
trajectories in phase-space, as is the case for the jerk Lagrangian LJ discussed in Section 1.

Condition (6) implies that the motion is planar, so that the torsion τ defined in Equa-
tion (4) vanishes. Hence, non-planar trajectories should not be related to Equation (2).
Although it is not the main topic of the current paper, it has been proposed in Ref. [17] that
the law

v = Cκ−1/3τ−1/6 (7)

should hold in non-planar, three-dimensional motion, with C being a positive constant.
From Equation (4), it can be deduced that C = ∥⃗j · (⃗v × a⃗)∥1/6. In other words, the law (7)
is valid if j⃗ · (⃗v × a⃗) is constant, or

˙⃗j = f v⃗ . (8)

Since ˙⃗j = x⃗(4) and v⃗ = x⃗(1), Equation (8) can be rewritten as

x⃗(4) − f (x⃗(i), t)x⃗(1) = 0⃗. (9)

Hence, any trajectory such that given by Equation (9) holds satisfies the law (7).

3. Dynamical Principle—Lagrangian Formalism
3.1. The Model

We propose that the actions associated with the higher-derivative Lagrangians are

L =
λ

2
∥x⃗(N)∥2 − 1

2
U
(
∥x⃗(N−1)∥2

)
, (10)

where N ≥ 1 and λ ∈ R+
0 are relevant cost function candidates that may lead to trajectories

satisfying (2) for any “potential” function U(z) where the variable z denotes the squared
norm ∥x⃗(N−1)∥2. Recall that the Lagrangian (10) is higher-derivative as soon as N > 1.

From the variational principle based on the action functional S[⃗x(t)] =
∫ tf

t′ i
Ldt, the

equations of motion read as follows, for a generic higher-derivative Lagrangian [1,18]:

0⃗ =
δL
δx⃗

≡
N

∑
j=0

(
− d

dt

)j ∂L
∂x⃗(j)

. (11)

Equations (11) have to be satisfied along with the vanishing of the boundary terms
defining the momenta p⃗i [1,18]:

N−1

∑
i=0

δx⃗(i) p⃗i

∣∣∣∣∣
t2

t1

= 0 , (12)

p⃗i :=
δL

δx⃗(i+1)
≡

N−i−1

∑
j=0

(
− d

dt

)j ∂L
∂x⃗(i+j+1)

, i ∈ {0, . . . , N − 1} . (13)

So far, no assumption has been made to derive Equations (11) and (12). These equations
are mere consequences of Hamilton’s variational principle, δS = 0, for a generic higher-
derivative action. One chooses to cancel the boundary terms (12) by imposing the following
conditions at the boundaries of the integration domain:

δx⃗(j)(tf) = 0 = δx⃗(j)(ti) , ∀ j ∈ {0, . . . , N − 1} .
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Since the Lagrangians under discussion do not explicitly depend on time, let us choose
the initial date ti = 0 for convenience. More specifically, the equations of motion computed
from the Lagrangian (10) are

λ
dN

dtN x⃗(N) = − dN−1

dtN−1

[
U′(∥x⃗(N−1)∥2) x⃗(N−1)

]
, (14)

where the prime denotes the derivative over the squared norm ∥x⃗(N−1)∥2.
Integrating Equation (14) (N − 1) times leads to

λ x⃗(N+1) = −U′(x⃗(N−1)2) x⃗(N−1) +
N−2

∑
j=0

b⃗j

j!
tj , (15)

with (N − 1) constant vectors {⃗bj}, j = 0, . . . , N − 2, that can be fixed by initial conditions.
As one can see from the last terms on the right-hand side of Equation (15), the Lagrangian
field equation (14) leads to general solutions with a polynomial dependence on the evolu-
tion parameter, therefore signalling an instability that is a landmark of higher-derivative
models.

One can find that in order to avoid any instabilities—also called run-away solutions in
the context of field theory—one has to impose the initial conditions

b⃗j = 0⃗, ∀ j ∈ {0, . . . , N − 2} , (16)

as soon as then, the field Equation (14) leads to the differential equation

λ
d
dt

x⃗(N) + U′(x⃗(N−1)2) x⃗(N−1) = 0 (17)

that provides stable solutions and may imply the 2/3-PL in the cases discussed below. Note
that Equation (16) only fixes (N − 1) conditions among the 2N initial conditions needed to
ensure a unique solution.

An equivalent way of presenting the initial conditions (16) is by first defining the
(N − 1) vectors

A⃗N
j := λ

dj+1

dtj+1 x⃗(N) +
dj

dtj [U
′(∥x⃗(N−1)∥2)x⃗(N−1)] , j ∈ {0, . . . , N − 2} , (18)

and then setting the initial conditions

A⃗N
j

∣∣∣
t=0

≡ b⃗j = 0⃗ , ∀ j ∈ {0, . . . , N − 2} . (19)

The point with the presentation (19) of the initial conditions (16) is that, for the
considered Lagrangian (10), the set of vectors {A⃗N

j }, j ∈ {0, . . . , N − 2}, is in one-to-one
correspondence with the set of momenta { p⃗j}, j ∈ {0, . . . , N − 2}; see Equation (13). Indeed,
one readily sees from the Lagrangian (10) and the definition (13) of the momenta that

A⃗N
j = (−1)j−1 p⃗N−2−j , j = 0, . . . , N − 2 . (20)

Therefore, the choice of initial conditions (16), equivalently the conditions (19), is in
turn equivalent to setting the following initial conditions on the first (N − 1) momenta:

p⃗j(t = 0) = 0⃗ , j = 0, 1, . . . , N − 2 . (21)
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To summarise, with the Lagrangian (10) and the above initial conditions (19), the
Lagrangian field equations (14) lead to the differential equation

λ
d
dt

x⃗(N) + U′(∥x⃗(N−1)∥2) x⃗(N−1) = 0 . (22)

From Equation (22), one observes that the vector

ℓ⃗N = λx⃗(N−1) × x⃗(N) (23)

remains constant during the dynamical evolution, i.e., ˙⃗
ℓN = 0⃗. Conversely, from the

variational equations (14) and their consequence (15), one sees that imposing the condition
˙⃗ℓN = 0⃗ is equivalent to imposing the initial conditions (19). Therefore, a compact way of

imposing the initial conditions (19) is by imposing ˙⃗
ℓN = 0⃗.

Now, let us write the squared norm of the vector ℓ⃗N (23) in a way that simplifies
the expressions for the Lagrangian and the Hamiltonian. To this end, at any instant t,
one decomposes the vector x⃗(N−1) into its norm x(N−1) times a unit vector 1⃗(N−1)

t . In the

formula, one has x⃗(N−1) = x(N−1)⃗1(N−1)
t . This allows one to write

x⃗(N) ≡ ˙⃗x(N−1) = ẋ(N−1)⃗1(N−1)
t + k(N−1)x

(N−1)⃗1(N−1)
n , (24)

where we use d
dt 1⃗(N−1)

t = k(N−1)⃗1
(N−1)
n in terms of some function k(N−1); we do not need to

specify and of a unit vector 1⃗(N−1)
n orthogonal to 1⃗(N−1)

t , as one straightforwardly verifies

by taking the derivative of the scalar product 1⃗(N−1)
t · 1⃗(N−1)

t = 1. From the decompositions
(24) of the vectors x⃗(N−1) and x⃗(N), one readily finds ℓ2

N = λ2k2
(N−1)(x(N−1))4. In turn, this

allows us to rewrite the Lagrangian (10) in the form

L =
λ

2
(ẋ(N−1))2 +

ℓ2
N

2λ(x(N−1))2
− 1

2
U((x(N−1))2) ≡ L(x(N−1), ẋ(N−1)) . (25)

Equation (25) is the higher-derivative generalisation of the reduced Lagrangian for a
dynamical system with spherical symmetry.

The question of finding a Lagrangian whose equations of motion are Equations (9)
arises naturally but, at this stage, it remains an open problem since we have not found any
Lagrangian leading to Equation (9). In what follows, we choose not to investigate the case
of non-planar trajectories further.

3.2. The Case N = 2

Equations (22) and (6) surely coincide if N = 2. In this case, the Lagrangian (10)
reduces to the Flash–Handzel Lagrangian [19], i.e.,

L =
λ

2
∥⃗a∥2 − 1

2
U(∥v⃗∥2). (26)

If one imposes the initial condition b⃗0 := λ⃗j(0) + v⃗(0)U′(v2(0)) = 0⃗, the vector
ℓ⃗2 = λv⃗ × a⃗ is conserved since Equation (22) now reads

λ j⃗ = −U′(v2) v⃗ , (27)

where we use the notation V2 = ∥V⃗∥2 for the squared norm of vectors. The trajectories
generated by any choice of U therefore satisfies 2/3-PL. Note that the velocity at initial time
should not vanish, since in that case, the conserved vector ℓ⃗2 would vanish at all ulterior
times leading to a vanishing constant of proportionality between the norm of the velocity
and the curvature κ to the power p = −1/3 (compare Equation (2) with Equation (5)),
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thereby enforcing a straight line as the only possible movement. For a movement with non-
zero curvature κ, it is therefore crucial that the initial condition b⃗0 = 0⃗ combines the two
vectors j⃗(0) and v⃗(0) in such a way as to cancel their weighted sum, λ⃗j(0) + U′(v2(0))⃗v(0),
without cancelling them separately.

3.3. The Case of a Linear Potential Function

Keeping N arbitrary but setting U(z) = λω2z leads to Pais–Uhlenbeck oscillators [18]
since Equation (10) now reads

LPU =
λ

2

(
x⃗(N)2 − ω2 x⃗(N−1)2

)
. (28)

After (2N − 2) integrations, the equations of motions (14) reduce to

¨⃗x = −ω2 x⃗ +
2N−3

∑
j=0

b⃗j

j!
tj (29)

whose general solution is

x⃗(t) = K⃗1 cos(ωt) + K⃗2 sin(ωt) +
2N−3

∑
j=0

a⃗j
tj

j!
, (30)

with a⃗2N−3 = b⃗2N−3/ω2, a⃗2N−4 = b⃗2N−4/ω2, the other a⃗j with j ≤ 2N − 5 being recursively
given by

ω2⃗aj + a⃗j+2 = b⃗j , j ∈ {0, 1, . . . , 2N − 5} . (31)

Imposing the initial conditions b⃗j = 0⃗ for all j certainly implies that a⃗j = 0⃗ for all j
and the dynamics reduce to elliptic trajectories x⃗(t) = K⃗1 cos(ωt) + K⃗2 sin(ωt) without any
run-away modes. Indeed, with these initial conditions, the equations of motion reduce to
¨⃗x + ω2 x⃗ = 0; hence, ℓ⃗2 = ω2⃗ℓ1 and the angular momentum ℓ⃗1 is conserved, as in standard
Newtonian mechanics with central forces.

3.4. The Case of a Vanishing Potential Function

In the case when U(z) = 0, one recovers the mean squared (ms) derivative cost
functions of [20]:

Lms =
λ

2
∥x⃗(N)∥2 , (32)

whose equations of motion are x⃗(2N) = 0⃗ leading to

x⃗(t) =
2N−1

∑
j=0

b⃗j

j!
tj . (33)

Such trajectories are unbounded and do not satisfy Equation (6). Still, Lagrangians of
this type have been shown to successfully model pointing tasks since the seminal paper
[21] using N = 3.

4. Hamiltonian Formalism
4.1. Ostrogradsky’s Approach

Following Ref. [1], the position degrees of freedom are defined as q⃗j = x⃗(j) and
the momenta p⃗j are defined by Equation (13) for j = 0, . . . , N − 1. Specifically, for the
Lagrangian (10), one has
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p⃗j = (−1)N−j−1λx⃗(2N−j−1) + (−1)N−j−1 dN−j−2

dtN−j−2

(
U′(x⃗(N−1)2) x⃗(N−1)

)
(34)

= (−1)N−j−1 dN−j−2

dtN−j−2 A⃗N
0 ≡ (−1)N−j−1 A⃗N

N−j−2 , (35)

and the corresponding Hamiltonian reads

H =
N−2

∑
j=0

p⃗j · q⃗j+1 +
p⃗2

N−1
2λ

+
1
2

U
(
(⃗qN−1)2

)
. (36)

Hamilton’s equations ˙⃗qj = ∂H
∂ p⃗j

, ˙⃗pj = − ∂H
∂⃗qj lead to

˙⃗q 0 = q⃗1 , (37)
...

˙⃗qN−2 = q⃗N−1 , (38)

˙⃗qN−1 =
p⃗N−1

λ
, (39)

˙⃗p0 = 0⃗ , (40)
˙⃗p1 = − p⃗0 , (41)

...
˙⃗pN−2 = − p⃗N−3 , (42)

˙⃗pN−1 = − p⃗N−2 − U′
(
(⃗qN−1)2

)
q⃗N−1 . (43)

On the conserved phase-space surface given by

p⃗0 = · · · = p⃗N−2 = 0⃗ , (44)

and by using Equation (39) along with Equation (24), one obtains the reduced Hamiltonian,

H̃(qN−1, pN−1) =
p2

N−1
2λ

+
ℓ2

N
2λ(qN−1)2 +

1
2

U
(
(qN−1)2

)
, (45)

with qN−1 = ∥⃗qN−1∥ and ℓN is the norm of the constant vector ℓ⃗N given in Equation (23).
Let us recall that the conditions (44) are equivalent to the conditions (19).

The trajectory in the plane (qN−1, pN−1) is such that H̃ = Ẽ is constant—we use the
notation Ẽ although the Hamiltonian does not a priori possess the dimension of an energy.
For example, in the Pais–Uhlenbeck case discussed in Section 3.3, the trajectory in the plane
(qN−1, pN−1) is a closed loop whose equation is given by

p2
N−1 +

ℓ2
N

(qN−1)2 + λ2ω2(qN−1)2 = 2λẼ , qN−1 > 0 . (46)

A stability analysis of trajectories can be carried out by applying the method of Ref. [22]
(Chapter 7) to the Hamiltonian equations (37)–(43). Equations (37)–(43) can be rewritten in
a matrix form: ζ̇ = Bζ, where ζ is a vector containing the 2N coordinates in phase-space
and B is a 2N×2N matrix. The eigenvalues of B are 0, with multiplicity (2N − 2), and
±
√

U′(0)/λ. The zero modes are global translation modes. If U′(0) < 0 as in the harmonic
oscillator case, the non-zero eigenvalues are complex conjugated and all trajectories are
bounded, global translation excepted. If U′(0) > 0, there necessarily exist unbounded
trajectories even if the global translation mode is set to zero. The existence of unbounded
trajectories preserving the 2/3-PL is a prediction that could be experimentally studied and
is out of the scope of this paper.



Physics 2022, 6 1259

4.2. Action Variables

Let us now restrict the discussion to potentials U for which there exist some values

of Ẽ such that the equation Ẽ =
ℓ2

N
2λ(qN−1)2 +

1
2 U[(qN−1)2] has two finite, distinct solutions

for qN−1 > 0leading to bounded trajectories that will appear as closed loops Γ in the plane
(qN−1, pN−1). The two distinct solutions are denoted qN−1

i and qN−1
f , where one can choose

qN−1
i < qN−1

f without loss of generality. These correspond to the two turning points of the
radial motion in the three-dimensional space with coordinates (qN−1

x , qN−1
y , qN−1

z ). The two
turning points qN−1

i and qN−1
f are reached at the successive dates ti and tf, respectively.

It is known that the action variable IN = 1
2π

∮
Γ pN−1dqN−1 is a constant of motion [12].

IN can be expressed in various ways, where in all cases one chooses to parametrise the
closed curve Γ by the evolution parameter t. First, by using Equation (39),

IN =
1
π

∫ tf

ti

pN−1q̇N−1dt =
1

πλ

∫ tf

ti

p2
N−1dt =

λ

π

∫ tf

ti

(q̇N−1)2dt , (47)

where (tf − ti) is half the period of the radial movement. By starting from the equivalent
expression IN = − 1

2π

∮
Γ qN−1dpN−1 and using the solution (17), and equivalently Equation

(39) with Equation (43), one obtains

IN =
λ2

π

∫ tf

ti

(q̈N−1)2

U′(q(N−1)2)
dt . (48)

For potential functions U such that U′(0) ̸= 0, let us define

Ia
N =

λ2

πU′(0)

∫ tf

ti

(q̈N−1)2dt (49)

for convenience.
In the Pais–Uhlenbeck case, IN ≡ Ia

N = λ
πω2

∫ tf
ti
(q̈N−1)2dt and H̃ = ω(2IN + ℓN)

[22] (Chapter 6); see also [23] for a discussion of action variables in the generic Pais–
Uhlenbeck oscillator model. It can be expected that IN ≈ Ia

N from the Taylor expansion
U(z) ≈ U(0) +U′(0)z + . . . . It is worth pointing out that the mean squared derivative cost
functions used in Ref. [20] are equal to Ia

N .

4.3. Application to the Pais–Uhlenbeck N = 2 Oscillator

We apply the formalism exposed so far to the simplest higher-derivative case with N = 2
and a linear potential, giving a Pais–Uhlenbeck Lagrangian LPU(x⃗, ˙⃗x, ¨⃗x) = λ

2
(
a2 − ω2v2).

The Ostrogradsky momenta ( p⃗0, p⃗1) read p⃗0 = −λ(⃗j + ω2v⃗) and p⃗1 = λ⃗a. With the
notation (⃗q0, q⃗1) = (x⃗, v⃗), the expression for p⃗1 allows us to express the acceleration as
a⃗ = ˙⃗q1 = p⃗1/λ.

The Ostrogradsky Hamiltonian reads

H(⃗q0, q⃗1, p⃗0, p⃗1) = p⃗0 · q⃗1 +
1
λ

p⃗1 · p⃗1 − λ
2

(
p2

1
λ2 − ω2(q1)2

)
= p⃗0 · q⃗1 + 1

2λ p2
1 +

λω2

2 (q1)2 . (50)

Hamilton’s equations ˙⃗qj = ∂H
∂ p⃗j

, ˙⃗pj = − ∂H
∂⃗qj for j ∈ {0, 1} yield

˙⃗q0 = q⃗1 , ˙⃗q1 =
p⃗1

λ
, ˙⃗p0 = 0 , ˙⃗p1 = −λω2q⃗1 . (51)

Altogether, Hamilton’s equations (51) lead to the field equations x⃗(3) + ω2 x⃗(1) = 0,
with the solution

x⃗(t) = K⃗1 cos(ωt) + K⃗2 sin(ωt) + a⃗0 , (52)
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with K⃗1, K⃗2, a⃗0 ∈ R3. On the conserved surface p⃗0 = 0⃗ in phase-space, the reduced
Hamiltonian reads

H̃(q1, p1) =
p2

1
2λ

+
ℓ2

2
2λ(q1)2 +

λω2

2
(q1)2 = Ẽ , (53)

similarly to the more general case Hamiltonian (45). Finally, I2 = Ia
2 = λ

πω2

∫ tf
ti

q(3)2dt

as a constant of motion and H̃ = ω(2I2 + ℓ2). Solution (52) is graphically illustrated in
Figure 1A, while the phase-space trajectory computed from Hamiltonian (53) is illustrated
in Figure 1B.

Figure 1. (A) Graphical illustration of the position, speed and acceleration degrees of freedom
versus time in an N = 2 Pais–Uhlenbeck oscillator. Trajectory is computed from Equation (52),
where K⃗1 = (K, 0, 0), K⃗2 = 0⃗, a⃗0 = 0⃗ are set. (B) Phase-space plot of the Pais–Uhlenbeck oscillator
Hamiltonian (53) in the (q1, p1) plane. The points q1

i and q1
f are the two turning points of the radial

motion that is allowed when Ẽ > ωℓ2. One has (q1
i )

2 = Ẽ
λω2 −

√
Ẽ2−ℓ2

2ω2

λω2 and (q1
f )

2 = Ẽ
λω2 +

√
Ẽ2−ℓ2

2ω2

λω2 ,
with 0 < q1

i < q1
f .

5. Conclusions
5.1. Variational Principle for 2/3-PL

The application of Lagrangian and Hamiltonian formalisms in motor control demands
a multidisciplinary approach that respects both an established mathematical formalism
and the intricacies of human physiology. This paper proposed a broader class of higher-
derivative Lagrangians that, upon defining appropriate initial conditions, lead to trajecto-
ries complying with the 2/3-PL, thus providing new insights into cost functions critical
to human motion. These Lagrangians are given in Equation (10). A salient issue for the
observation of the 2/3-PL is the necessity of setting accurate initial conditions: If a La-
grangian involving up to the Nth time derivative x⃗(N) is used, it is necessary, in order to
have a bounded motion, to set the Ostrogradsky momenta p⃗j(0) = 0⃗, with 0 ≤ j ≤ N − 2.
For the class of Lagrangians (10), the momenta are given by Equation (34). If these (N − 1)
initial conditions are unaligned with the natural capabilities of the human motor system,
the considered Lagrangian is not qualified to model voluntary human movement. This con-
sideration leads us to the conclusion that a minimal N is the most natural choice. Therefore,
we consider that N = 2 actions of the form

S =
∫ tf

ti

[
λ

2
a⃗2 − 1

2
U
(

v⃗2
)]

dt (54)

are favoured:

• The actions (54) naturally lead to the 2/3-PL, provided one individual is able to fix
the initial condition b⃗0 := λ⃗j(0) + U′ (⃗v2(0))⃗v(0) = 0⃗. For a motion with vanishing
initial speed, one just needs to impose j⃗(0) = 0⃗, irrespective of the choice of potential
function U.
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• The actions (54) may lead to quite a large variety of trajectories satisfying the 2/3-
PL according to the choice made for U. In the case of harmonic potential, elliptic
trajectories are recovered, which are the best-known case in which this law appears.

• The action variable I2 = λ
2π

∮
Γ a dv ∼

∫ tf
ti
∥⃗j∥2 dt makes the mean squared jerk explicitly

appear, and it is known that minimising this function (maximising smoothness) is an
experimentally observed principle in motor control [19]. Mechanics imposes that I2
is constant but not necessarily minimal. However, provided λ is a mass scale, I2 has
the dimension of the mechanical power. Minimising I2 during motion is therefore a
way to minimise power expenditure. Figure 2 gives a schematic representation of I2
in this case.

Figure 2. Typical phase-space plot of a bounded trajectory Γ for N = 2. The action variable I2 is the
area of Γ. The cross marks the average q1 and p1 on the loop Γ. See text for detalis.

Note that the 2/3-PL and minimal jerk, which are closely linked within our frame-
work, are not the only proposed models to describe voluntary motion. Let us consider
Lagrangian (54) in which the position degree of freedom is actually an angular degree of
freedom describing a circular motion in a plane, i.e., a circular motion restricted to a single
constant axis of rotation. In this case, the movement tends to minimise I2 ∼

∫ tf
ti

α̇2 dt, with
α the angular acceleration. By virtue of Euler equation with a single rotation axis, α̇ ∼ Ṁ
with M the external torque applied on the considered body and I2 ∼

∫ tf
ti

Ṁ2 dt. This is
a simplified version of the minimal torque-change model [24] suggesting that voluntary
human motion minimises the rate of change of total external torque. This last comment
suggests that, beyond the 2/3-PL, the integration of Lagrangian and Hamiltonian formu-
lations of mechanics may fit within a general motor control model of voluntary motion
encompassing several kinds of cost functions.

5.2. First Principles Shaping Voluntary Motion

Beyond the confines of the 2/3-PL, humans exhibit various stereotyped behaviours,
such as bell-shaped velocity profiles [25] and adherence to Fitt’s law [26]. In the former
case, the kinematics of horizontal reaching movements invariably shows a peak velocity in
the middle of the trajectory, with a slight asymmetry depending on whether the movement
is upward or downward [27]. These phenomena, which describe kinematic features of
horizontal reaching movements and the compromise between speed and accuracy, are
underpinned by the central nervous system’s capacity to maintain consistency in the
face of environmental variability. Our study here suggests that theoretical constructs like
action variables may mirror such neural processes, serving as constants/constraints in
the complex generation of human motion. The central nervous system, equipped with its
intricate network of neurons and sensory receptors, plays a pivotal role in orchestrating
movements. The brain, acting as the command centre, receives sensory feedback, processes
it, and generates precise motor commands. It is conceivable that the brain, through its
complex computations and feedback loops, sets dynamical principles and initial conditions
that align with the physiological capabilities of the human body, ultimately giving rise to
observed movement patterns, including the 2/3-PL.
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We expect that assuming a higher-derivative action principle as the dynamical princi-
ple shaping voluntary human movement fits naturally within an optimal feedback control
model; see, e.g., refs. [3,28]. Although the detailed matching between both frameworks
is the subject of a separate paper, the correspondence can be summarised as follows. A
higher-derivative action can be seen as the optimal feedback control law, coming into play
at the level of movement planification/task selection: knowing the initial and final points
to reach, an action principle allows us to plan the optimal movement and its trajectory in
phase-space. This leads to an estimation of the initial conditions, with the initial acceleration
as a tunable parameter as a consequence of the higher-derivative nature of the action. It is
indeed crucial that the acceleration, i.e., muscular force, can be tuned by one individual and
is not just a consequence of the external forces as in standard Newtonian mechanics. Then,
after movement is initiated and sensory feedback is collected, the phase-space trajectory can
be used as optimal state estimator: The actual trajectory can be compared to the planned
one, and corrections can be made by the individual. The invariance of action variables can
be seen as a further control policy in the case of rhythmic movements. Also, identifying the
neural correlates for these mechanical concepts is an open challenge. While certain brain
regions responsible for sensory processing are understood well enough, those involved in
integrating multimodal sensory information to estimate physical forces like gravity remain
less defined [29].

The framework considered here can be experimentally studied. A first type of study
is to compute trajectories generated by a particular form of potential term, then to ask
participants to perform those trajectories and check that they actually follow the 2/3-PL. A
second type of study is to identify movements that lead to self-intersecting trajectories in a
(position, speed)-plane, hence incompatible with standard dynamics. Then, the underlying
higher-derivative Lagrangian may be found by solving the inverse problem. As an example,
such movements have been found in participants performing infinity-shaped rhythmic
motion of the forearm in parabolic flight [30]. A last direction is to make one individual
evolve in a time-changing environment, for example, in variable gravity. If an action
principle shapes voluntary movement, the time-changing environment a priori causes
some parameters of the Lagrangian to be variable. The corresponding modifications of
trajectories can be predicted via the equations of motion, and the question of whether an
individual actually perform these changes or not can be experimentally studied. We have
found in Ref. [30] the first hints that such a study is actually the case in variable gravity
and consider to pursue this research program in forthcoming investigations.
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