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Abstract

Identifying whether GitHub contributors are automated bots is important for empirical research
on collaborative software development practices. Multiple such bot identification approaches
have been proposed in the past. In this article, we identify the limitations of these approaches
and we propose a new binary classification model, called BIMBAS, to overcome these limitations.
To do so, we propose a new ground-truth dataset containing 1,035 bots and 1,115 humans on
GitHub. We train BIMBAS on a wide range of features extracted from the activity sequences of
these GitHub contributors. We show that the performance of BIMBAS (in terms of precision,
recall, F1 score and AUC) is comparable to state-of-the-art bot identification approaches, while
being able to identify bots engaged in a wider range of activity types. We implement RABBIT, an
open-source command-line bot identification tool based on BIMBAS. We demonstrate its ability
to be used at scale, and show that its efficiency outperforms the state-of-the-art.
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1. Introduction

Collaborative software development practices through social coding platforms such as GitHub
enable developers to jointly engage in software development activities irrespective of their geo-
graphical location [1, 2]. Some of these activities can be quite repetitive and effort-intensive such
as updating dependencies, reviewing code, checking code quality, testing, processing issues and
pull requests, publishing releases, onboarding newcomers, and interacting with users [3, 4]. This
justifies the need for tools to automate these tasks and activities, such as automated workflows
and development bots. This article focuses on the latter automation practice in the context of
GitHub.

GitHub distinguishes different types of actors that can perform activities on GitHub. Actors of
type Organization are used to control a collection of repositories, members and teams, but will
be ignored in the current paper. Actors of type Bot perform activities on behalf of their associated
GitHub Apps, which are automated tools that extend GitHub functionality. Actors of type User
are associated to individual contributors that use their GitHub account to own repositories and
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generate new content (such as commits, issues, pull requests, comments, reviews and many
more). While this actor type is mainly intended for humans, nothing prevents it to be used to
automate repetitive activities (which we will refer to as bot accounts). While bot actors (serving
Apps) have “[bot]” in their name and are trivial to detect through the Users API, GitHub does
not allow distinguishing humans from bot accounts, justifying the need for bot identification
approaches.

In the remainder of this paper, we reserve the term bots to collectively refer to bot actors and
bot accounts, and the term contributors to collectively refer to humans and bots.

Bots have been shown to belong to the top contributors in certain repositories [5]. Their
prevalence [6] is challenging for researchers conducting quantitative socio-technical analyses
on software repositories since neglecting the presence of bots might lead to biased or incorrect
conclusions [7, 8]. The ability to identify bots is also important for empirical studies about the
role played by bots in collaborative software development [3]. Last but not least, communities
and funding organisations can benefit from bot identification tools to correctly recognise, accredit
and sponsor human activity [9].

The inability to distinguish bot accounts from humans in GitHub has lead to the proposal of
several bot identification approaches [10, 11, 12, 13, 14]. However, each approach has specific
shortcomings, such as focusing on a limited subset of activities, the need for a substantial amount
of API queries or data to be downloaded, the use of computationally costly features to identify
bot accounts, or even the absence of a publicly available tool or script to execute the approach on
recent accounts and repositories. These limitations make existing bot identification approaches
difficult to use in practice for identifying large sets of contributors, highlighting the need for a bot
identification tool that can be used at scale. Therefore, the current article addresses the following
goals:

G1. Creating a ground-truth dataset of bots and humans. Developing a new bot detection ap-
proach requires a ground-truth dataset containing a large amount of humans and bots. The con-
struction of a new dataset is motivated by the fact that older existing datasets are either restricted
to a limited set of event types, or not sufficiently accurate. Also, creating such a dataset takes
time and effort. We propose a manually curated ground-truth dataset of 2,150 contributors that
were active on GitHub as of 3 May 2024. This dataset contains 1,115 humans and 1,035 bots (of
which 242 are Apps and 793 are bot accounts).

G2. Identifying the limitations of existing bot identification approaches. We found four GitHub
bot identification approaches in the research literature that can be applied in practice, either
because they rely on simple heuristics that are easy to implement; or because they come with a
documented implementation or even a directly installable and usable tool. We study the internal
workings of each approach and identify their limitations. We execute these approaches on the
ground-truth dataset to compare their performance in terms of precision, recall and F1 score. We
also compare their efficiency in terms of amount of data downloaded, time taken to execute and
number of required GitHub API queries.

G3. Creating a bot identification model based on activity sequences. To overcome the limita-
tions identified in G2 we propose BIMBAS, a novel binary classification model based on activity
sequences of GitHub contributors. BIMBAS relies on a wide range of features extracted from
the contributor activity sequences to accurately detect bots. BIMBAS makes use of Gradient
Boosting model and achieves a performance comparable to state-of-the-art bot identification ap-
proaches.
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G4. Developing an efficient bot identification tool. To enable practitioners and researchers
to benefit from the BIMBAS bot identification model we develop RABBIT, an open-source
command-line-based bot identification tool. We compare RABBIT to the approaches identified
for G2, in terms of precision, recall, execution time, data downloaded and number of API queries.
Our results show that RABBIT can be used efficiently to identify bots in GitHub at scale.

The remainder of this article is structured as follows. Section 2 presents the related work on
GitHub bot usage, analysis and identification. Sections 3, 4, 5 and 6 align with goals G1, G2,
G3 and G4 respectively. Section 7 presents the main threats to validity of our research. Finally,
Section 8 concludes.

2. Related Work

This section presents the related work on bots in collaborative software development on
GitHub. Section 2.1 focuses on quantitative and qualitative research related to the use of bots, the
tasks they carry out, the way they interact with human contributors, and the benefits, drawbacks
and impact of using them. Section 2.2 provides an overview of the existing bot identification
approaches that have been reported in the scientific literature.

2.1. Analysing the use of development bots

Based on developer perceptions of productivity [15], Storey et al. [16] reflected on the positive
and negative impact of bots in social coding platforms. They identified the qualities of bots that
can improve developer productivity. They found that bots are used to automate tedious tasks,
help developers to keep up with the flow, improve decision-making by capturing and analysing
data relevant to decisions, support team communication and task coordination. However, they
also noticed that bots might reduce team interaction, bring interruptions and distractions, and
might not accommodate cultural changes in the organisation. Erlenhov et al. [17] interviewed
21 developers and performed an online survey with another 111 developers to identify three
personas among bots, focusing on autonomy, chat interfaces and smartness. They found that
bots do not tend to go beyond simple automation tools and chat interfaces. This highlighted
the absence of smart, general-purpose bots with a potential transformative effect on software
projects.

Ghorbani et al. [18] qualitatively analysed the characteristics affecting developer preferences
for interacting with bots in PRs. They formulated 13 questions to collect data based on contrib-
utor experiences of using bots in their respective communities. By interviewing 12 participants
from four different open-source communities they identified seven themes on how software de-
velopers perceive software bots: attitude, autonomy, persona, task, feelings, project norm, and
role. Among these, they found autonomy and persona to exert more influence in shaping devel-
oper perception of bots. To further study this influence of autonomy and persona, they conducted
surveys among 56 participants and recommended that developers should have options to: (i) scale
the autonomy of bots; (ii) select and change bot personae; and (iii) improve project-specific feed-
back on bot behaviour and developer preferences.

Wessel et al. [3] analysed the usage of 48 different bots in 93 GitHub projects and identified 12
different tasks performed by bots, such as ensuring license agreements, reviewing code, welcom-
ing newcomers, running automated tests and creating issues and pull requests (PR). To analyse
the changes in PR characteristics before and after bot adoption, they looked into PRs belonging
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to 44 projects for a duration of 6 months before and 6 months after bot adoption. They found
statistically significant differences in terms of number of commits, number of changed files, num-
ber of comments and time to close PR. Furthermore, through surveys involving 205 participants
(developers and integrators), they identified 16 challenges in using bots in PRs (e.g., bots may
take wrong actions and provide non-comprehensive/poor feedback) and reported 23 improve-
ments (e.g., enhancing user interaction and improving code reviews). In another study, Wessel
et al. [19] interviewed 21 practitioners to identify challenges that need to be taken into account
when developing bots that interact in PRs. They classified challenges into 25 categories (e.g.,
introducing noise, providing non-comprehensive feedback, difficulty in setting up configuration
files, ensuring that the bot is properly performing its intended task, and restricted bot actions).
To mitigate the noise introduced by bots, they developed a meta-bot that summarises and cus-
tomises other bots’ actions to reduce information overload incurred by their use [20]. They found
22 design strategies and grouped them into four categories for developing their meta-bot and one
category for modifying GitHub’s interface: (a) information management (e.g., summarisation of
bot comments); (b) newcomer assistance (e.g., welcoming message); (c) notification manage-
ment (e.g., schedule bot notification); (d) spam and failure management (e.g., bug reports); and
(e) platform support (e.g., separating bot comments).

Wyrich et al. [21] analysed the PRs created and commented by humans and bots to understand
the difference in priority given to PRs created by bots and humans. They found that PRs created
by humans received faster response and 72.53% of them were merged. PRs created by bots took
significantly more time to receive a response and only 37.38% of them were merged, even though
they contained fewer changes on average than PRs of humans. Zhang et al. [22] quantitatively
studied the factors influencing PR latency and the change in these factors with a change in con-
text (e.g., time, project and developer). They identified 47 features that influence PR latency.
They classified these features into developer characteristics (e.g., Is this the developer’s first PR?
and Do contributor and integrator have the same affiliation?), project characteristics (e.g., team
size and project age), and PR characteristics (e.g., whether it is bug fix, and the number of PR
comments). As they found a widespread usage of bots in PRs, they conducted a case study to
identify the impact of bots on PR latency. Executing an existing bot identification tool to identify
bots in 3.3M+ PRs belonging to 11K+ GitHub projects obtained from GHTorrent, they observed
that more than one out of three PR comments were made by bots. Further, they found that the
presence of comments posted by humans were more important than those of bots in explaining
PR latency.

Khatoonabadi et al. [23] qualitatively studied the potential benefits and drawbacks of using
stale bot for pull-based development. By observing PRs for a duration of two years (1 year before
and 1 year after adopting stale bot) in 20 large and popular open-source projects, they concluded
that: (i) stale bot usage widely varies across projects (in terms of intervening, warning and
closing PRs); (ii) stale bot adoption is associated with faster reviews, resolutions, fewer updates
in merged PRs, and a decreased number of active project contributors; and (iii) stale bot tends to
be active in more complex PRs (in terms of #commits, #files changed and #lines changed), PRs
submitted by first time contributors and PRs with a lengthy review process. Overall, they found
that stale bot can help projects deal with a backlog of unresolved PRs and also improve the PR
review process, but may negatively affect project newcomers.

2.2. Bot identification approaches
Several bot identification approaches have been proposed in the literature, either as an explicit

contribution or implicitly as part of the data filtering process of empirical studies. We provide a
4



brief overview of these approaches here. A more in-depth explanation of the most prominent bot
identification approaches will be presented in Section 4.

A straightforward approach is to rely on a predefined list of bots that have been manually iden-
tified and published as ground-truth dataset [6, 10, 21]. Such ground truths are indispensable for
empirical research, and for developing and evaluating new bot identification models. However,
they should not be applied “in practice” since they are inevitable incomplete (by construction)
and therefore can only be used to find a subset of all potential bots that may be present. More-
over, ground truth datasets become outdated over time, including bots that may no longer exist
today.

Another straightforward approach is a Name-Based Heuristic (henceforth abbreviated to NBH
based on simple regular expressions to detect whether a contributor name contains specific sub-
strings (e.g., “bot” or “automate”). This heuristic has been used with different variations in the
research literature [21, 24].

Several bot identification approaches have been proposed based on machine learning classifi-
cation models. Dey et al. [11] developed BIMAN, an ensemble model combining three different
models to identify bots. The first model, called BIN (for Bot In Name) is a variant of NBH to
check for the “bot” substring preceded and/or followed by non-alphabetic characters (e.g., sre-
bot, github-actions[bot]). The second model relies on similarity in commit messages, based on
the assumption that the textual variation in commit messages is lower for bots than for humans.
The third model is a Random Forest classifier trained on six features related to the modifications
made to files in commits: (i) number of files changed by author across commits; (ii) number of
unique file extensions in all commits; (iii) standard deviation of number of files per commit; (iv)
mean number of files per commit; (v) number of unique projects commits have been associated
with; and (vi) median number of projects commits have been associated with. BIMAN can be
applied on any GitHub account. However, if the account is not involved in committing, then only
the BIN model will be used.

Golzadeh et al. [10] developed BoDeGHa, a tool that relies on a Random Forest classification
model to identify bots in a given repository based on the repetitive comments they create in
issues and PRs. Chidambaram et al. [25] improved BoDeGHa by relying on the wisdom of the
crowd principle to address the diverging predictions that BoDeGHa could make for the same
contributor when applied to multiple repositories. Golzadeh et al. [12] proposed BoDeGiC, a
variation of BoDeGHa to identify bots based on their commit messages.

Abdellatif et al. [13] proposed BotHunter, a tool that relies on a Random Forest classification
model to detect bots based on the GitHub account login, GitHub profile information, account
activity based on GitHub events, and similarity in comments and commit messages. Inspired
by previous bot identification approaches, Liao et al. [14] proposed BDGOA, a Random Forest
classifier that uses features related to GitHub account information, account activity based on
GitHub event sequences, and text similarity in PR, issue, and commit comments, and commit
and release messages.

Chidambaram et al. [26] proposed to consider 24 different activity types as a basis for features
to distinguish bots from human contributors. Among others, they observed statistically signifi-
cant differences in their number of activity types, the time taken to perform these activities, the
dispersion in the number of activity types performed in each repository, and the median time
taken to switch between repositories to perform another activity. They suggested to leverage
these and related features to provide a new activity-based bot identification model, which is the
purpose of the current article.
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3. G1: Creating a ground-truth dataset of bots and humans

Our first research goal is to create a ground-truth dataset of active bots and humans that will
serve as the basis for creating a new bot identification model (G3) and tool (G4). The construction
of a new dataset is motivated by the fact that older existing datasets are either restricted to a
limited set of GitHub event types, or not sufficiently accurate.

To reach goal G1, we started from three existing data sources to increase the likelihood of
finding bots. We complemented this with the top contributors of several popular repositories.
Since we aim to use the ground-truth dataset as a basis for a bot identification model (goal G3)
based on contributor activity sequences, we impose as an inclusion filter that contributors need
to have been recently active on GitHub.2

To ensure the accuracy of our ground-truth dataset we only include contributors that are man-
ually checked by two raters. To do so, we applied a multi-rater labelling process to determine
the contributor type. Two raters independently inspected the contributors’ GitHub profiles, as
well as the activities they performed on GitHub. Based on this information they labelled the
contributor as either bot or human and discussed together in case of disagreement. If not enough
information was available to come to a decision, the account was discarded.

As a starting point for our new ground-truth dataset we relied on the dataset of Chidambaram et
al. [4], initially containing 350 bots and 620 humans that were manually labelled. Applying the
inclusion filter we retained 271 bots and 501 humans.

To further complement our ground-truth dataset, we considered the dataset used by Wyrich et
al. [21] in the context of an empirical study of the difference between bots and humans in the
proportion of PRs being merged by them. They proposed a dataset of 4,654 bots, but a large
majority of them (86.1%) did not pass our inclusion filter. Following the multi-rater labelling
process we manually labelled the remaining 645 contributors, resulting in 506 bots and 139
humans.

Cardoen et al. [27] provided a dataset of the commit histories of GitHub Actions workflow
files in 32K+ repositories. The dataset contains the names of more than 62K contributors. Given
the automated nature of GitHub Actions workflows, we expect this dataset to contain many bots.
Ignoring all the contributors that were no longer active, we started by analysing all the contrib-
utors having the substring “bot” in their name. Following the multi-rater labelling process, we
identified 178 bots and 45 humans. To further expand our list of bots, we applied a state-of-the-
art identification tool [13] on randomly selected contributors. Considering only the contributors
identified as bots, we followed the multi-rater labelling process until we reached 72 bots (leading
to a total of 250 bots). We complemented them with 205 humans to reach an equal amount of
250 humans.

Golzadeh et al. [5] reported that many bots are among the top contributors in GitHub reposi-
tories. Driven by this insight, we selected 10 popular GitHub repositories known by the authors3

and analysed the top 30 contributors (as reported by GitHub) in each of them. After ignoring
duplicates and removing contributors who are no longer active, we followed the multi-rater la-
belling process and identified and included another 8 bots and 225 humans in our dataset.

Table 1 summarises the final ground-truth dataset we obtained after following all these steps.
Overall, the dataset includes 2,150 contributors, of which 1,115 humans and 1,035 bots. 791 of

2The exact definition and rationale of “active” will be provided in Section 5.1.
3Each of the considered repositories contained more than 500 watchers, more than 8k forks, and more than 25k stars.
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Table 1: GitHub contributors included in the ground-truth dataset.
data source total #bots #humans
Chidambaram et al. [4] 772 271 501
Wyrich et al. [21] 645 506 139
Cardoen et al. [27] 500 250 250
Top contributors in 10 popular GitHub repositories 233 8 225
total 2,150 1,035 1,115

these bots are bot accounts, while the remaining 242 are Apps. It has been made publicly avail-
able at https://zenodo.org/records/12588134 to be used by researchers and practitioners.

4. G2: Identifying the limitations of existing bot identification approaches

Research goal G2 aims to compare the performance and efficiency of the most prominent
approaches in order to identify their main limitations. Based on these limitations, goal G3 (that
will be presented in Section 5) will come up with an improved bot identification model that
mitigates the identified limitations.

4.1. Excluded bot identification approaches
Section 2.2 provided an overview of the bot identification approaches for GitHub that have

been proposed in the scientific research literature. For practical reasons, we could only include
the following approaches in our comparison: NBH, BoDeGHa, BoDeGiC and BotHunter.

We excluded BIMAN [11] since it requires as input specific files that need to be obtained from
the World of Code [28] dataset. This dataset contains the commits, blobs, trees and folders of
open-source git software repositories. However, the World of Code dataset is not publicly avail-
able since access should be granted on an individual basis. Because of this practical limitation
of BIMAN, we could not include it in our comparison.

We excluded BDGOA [14] since we did not find any mention of a replication package, dataset
or executable tool that could be used to replicate or evaluate the proposed model. As such, we
were not able to replicate the approach and could not include it as part of our comparison.

4.2. Experimental setup
To compare the selected bot identification approaches, we will use a test set corresponding to

40% of the contributors contained in the ground-truth dataset. The remaining 60% of contributors
are part of the training set that is reserved for training the new BIMBAS model that will be
proposed in G3. We use stratified splitting to preserve the proportion of bots and humans in the
training and test set. Overall, the training set includes 621 bots and 669 humans, whereas the
test set includes 414 bots and 446 humans.

Note that some approaches (BoDeGHa and BoDeGiC) work at the repository level, i.e., they
require as input a repository and optionally a set of contributor names to identify which of the
repository contributors are bots. By default, all contributors to the given repository will be anal-
ysed. If a contributor is active in multiple repositories, the prediction made by these approaches
may depend on the repository that has been selected for analysis. For our experiment we selected
the repository on which the contributor was the most active recently based on the GitHub Events
API.4

4https://docs.github.com/en/rest/activity/events#list-public-events-for-a-user
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To evaluate the performance of the considered bot identification approaches, we rely on the
usual metrics of precision (P), recall (R), F1-score and their weighted counterparts. The use of the
weighted variant is motivated by the fact that our dataset is slightly imbalanced (51.9% humans
and 48.1% bots). Table 2 recalls the definitions of the performance metrics, with TP referring
to the number of true positives (bots that are correctly classified as bots), TN the number of
true negatives (humans that are correctly classified as humans), FP the number of false positives
(humans that are wrongly classified as bots) and FN the number of false negatives (bots that are
wrongly classified as humans).

Table 2: Definition of precision, recall, F1-score and their weighted variants.
population precision (P) recall (R) F1-score (F1)

bots (B)
T P

T P + FP
T P

T P + FN
2 ∗ P(B) ∗ R(B)

P(B) + R(B)

humans (H)
T N

T N + FN
T N

T N + FP
2 ∗ P(H) ∗ R(H)

P(H) + R(H)

weighted (B ∪ H)
P(B) ∗ |B| + P(H) ∗ |H|

|B| + |H|
R(B) ∗ |B| + R(H) ∗ |H|

|B| + |H|
2 ∗ P(B ∪ H) ∗ R(B ∪ H)

P(B ∪ H) + R(B ∪ H)

Table 3 summarises the performance metrics for each considered bot identification approach.
We additionally report the number of “unknown” contributors, i.e., those contributors whose
type could not be determined because of intrinsic limitations of the considered approach. The
presence of unknown contributors has a direct effect on the recall: a higher number of unknowns
will lead to a lower recall.

Table 3: Performance of considered bot identification approaches on 860 contributors.
bots humans weighted

approach P R F1 unknown P R F1 unknown P R F1
NBH .803 .671 .732 0 .735 .848 .788 0 .768 .763 .761
BoDeGHa .918 .512 .657 169 .861 .457 .597 223 .891 .486 .629
BoDeGiC .812 .271 .406 278 .747 .159 .262 349 .785 .224 .346
BotHunter .967 .928 .947 1 .937 .971 .954 0 .952 .950 .950

Table 4: Efficiency of considered bot identification approaches on 860 contributors.

approach data downloaded time API queries
NBH - 0.01 sec -
BoDeGHa 3.83 GB 7.7 h 10,222
BoDeGiC 23.3 GB 23.1 h -
BotHunter 0.261 GB 20.8 h 37,240

Table 4 reports on the efficiency of the considered approaches in terms of amount of data
downloaded and execution time. Each approaches was executed on the same system with an Intel
Xeon W-1290P 3.7 GHz CPU processor running Fedora 34 (Server Edition). The downloaded
data is measured using the network monitoring tool NetHogs (version 0.8.7). We also count, for
those approaches relying on GitHub, the number of API queries used. Such information is quite
relevant, since GitHub imposes an API rate limit of maximum 5,000 queries per hour. Exceeding
this limit results in a waiting time until the query limit is reset by GitHub. For the approaches
that use the GitHub API, we report on this waiting time.
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4.3. NBH: Name-Based Heuristic
The name-based heuristic (NBH) naively identifies a contributor as bot if the substring “bot”

appears somewhere in its name. Many variations of this heuristic have been used in research lit-
erature [24, 21] (e.g., only considering substring “bot” at the end of the name, considering related
terms like “automate”, requiring that the substring is preceded or followed by a non-alphabetic
character, and so on). However, Golzadeh et al. [29] executed this approach on 540 contributors
belonging to 27 repositories and obtained a recall of R = 0.520 for detecting bots. This reveals an
important limitation of this heuristic, namely that it yields many false negatives, i.e., bots that do
not contain the substring “bot” in their name (e.g., bors, micronaut-build, id-jenkins, strapi-cla).
Conversely, this heuristic leads to false positives when humans have the string “bot” as part of
their name. For example, the last names Cabot and Abbott are not uncommon for humans. For
instance, NBH falsely identified 68 humans as bot due to the presence of “bot” in their name,
leading to a recall of R = 0.848 for humans. Line NBH of Table 3 summarises the performance
results, with an overall weighted precision P = 0.768 and recall R = 0.763, confirming the
presence of many false positives and false negatives.

From Table 3, one can observe that the recall for bots (R = 0.671) is higher than the recall
of R = 0.520 that was observed by Golzadeh et al. [29]. This is because the recall for NBH
depends only on the proportion of bots that have ‘bot’ in their name. So, the recall reported for
this approach in Table 3 is an overestimation since, by construction, our dataset (in Section 3)
contains a higher proportion of such bots.

On the positive side, the NBH approach is extremely efficient in time and memory. Since it
only relies on contributor names, it does not require any other data to be downloaded or any API
queries to be executed, implying that bots can be identified almost instantly.

4.4. BoDeGHa

Golzadeh et al. [10] developed a bot identification tool that uses a Random Forest binary classi-
fication model to identify bots. It works at the level of individual GitHub repositories, i.e., it only
considers the activities of contributors within that repository. For each contributor, BoDeGHa
retrieves their issue and pull request comments and compute five features: (i) the string distance
between comments5, (ii) the number of comment patterns (sets of very similar comments), (iii)
the (Gini) inequality between comment patterns, (iv) the total number of comments, and (v) the
number of empty comments.

A limitation of BoDeGHa is that it restricts itself to issue and pull request comments, making
it unable to detect bots that do not engage in such activities. Even when a contributor is engaged
in such activities, BoDeGHa requires at least 10 comments (by default) to provide a prediction.
This explains why BoDeGHa could not give a prediction for 392 contributors (169 bots and 223
humans) during its execution on the test set (see Table 4).

While evaluating BoDeGHa, we identified some overly restrictive condition to avoid exceed-
ing the API rate limit. We relaxed this condition in order to optimise BoDeGHa’s execution and
created a pull request that has been merged into BoDeGHa’s GitHub repository 6. We executed
this improved version BoDeGHa with its default parameters on the contributors of the test set. It
took 7.7 hours (464 minutes), required 10,222 GitHub API queries and downloaded 3.83 GB of
data to provide its predictions. A reason for BoDeGHa’s high execution time is that it depends on

5using a combination of Levenshtein and Jaccard distance
6https://github.com/mehdigolzadeh/BoDeGHa/pull/25
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the combination of features that are computationally costly (calculating Levenshtein and Jaccard
distance). Overall, BoDeGHa achieved a weighted precision of P = 0.891. Since BoDeGHa
could make a prediction only for 468 contributors, it achieved a very low recall of R = 0.486.

4.5. BoDeGiC

Golzadeh et al. developed BoDeGiC [12] in a follow-up work and alternative to BoDeGHa.
BoDeGiC uses an approach that is similar to the one of BoDeGHa, but applied to commit mes-
sages rather than to issue and pull request comments. Unlike BoDeGHa, BoDeGiC does not take
a GitHub repository as input but can work directly with a given (local) git repository. By doing
so, it only requires data stored in the .git folder to make its predictions and does not need to use
GitHub API.

We executed BoDeGiC on the contributors of the test set. Since cloning all the repositories is
time-consuming and requires downloading a large amount of data, and since BoDeGiC only re-
quires the commit messages, we adapted the git command used to clone repositories to exclude
blobs. 7 With this command, for example, the servo/servo repository on GitHub took only 10.5
seconds to be cloned (and 114MB) while cloning this repository with all blobs would have taken
128 seconds (and 1.14GB). The process of cloning all considered repositories took one hour
while predicting the type of contributor took 22.1 hours, so in total it took 23.1 hours to execute
and required 23.3GB of data. BoDeGiC was able to provide a prediction for 233 contributors.
It could not provide a prediction for the remaining 627 contributors (278 bots and 349 humans)
because they do not reach the minimum 10 commits required by BoDeGiC to make a prediction.
Although, BoDeGiC achieved an overall weighted precision of P = 0.785, it has very low recall
of R = 0.224 due to the latter reason.

4.6. BotHunter

Abdellatif et al. [13] proposed BotHunter, a Python script that executes a bot identification
model based on a Random Forest classifier. BotHunter takes as input the name of a contributor,
and relies on the GitHub API to retrieve its data, as is the case for BoDeGHa.

The model uses 19 features (three of which are in common with BoDeGHa and BIMAN) to
identify bots based on profile information (account login, account name, tag and bio, number of
followers and number of followings) and account activity (total number of repository, issue, PR
and commit events, unique number of repository, issue, PR and commit events, median events per
day and median response time). Among these considered features, the top five most important
features were account name, account login, number of followers, issue/PR comments similarity,
and median events per day. Two of these top features (account name and account login) are
actually variants of the NBH approach presented in Section 4.3, since both features check for the
presence of substring “bot” or “automate”.

While evaluating BotHunter, we discovered that it retrieves only 30 events per API call while
the GitHub API allows to retrieve up to 100 events at once. We therefore adapted BotHunter to
retrieve up to 100 events per API call, thus reducing the number of API queries and reducing
its execution time since the hourly API rate limit is reached less frequently. We created a pull
request of these modifications to the GitHub repository of BotHunter8 which was accepted by
the repository maintainer and is now integrated in the latest release of BotHunter.

7git clone --filter=blob:none --no-checkout <repo>
8https://github.com/ahmad-abdellatif/BotHunter/pull/5
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We applied this modified version of BotHunter on the contributors of the test set. With the no-
table exception of a contributor that no longer exists on GitHub, BotHunter was able to provide
predictions for all the other contributors. Table 3 shows that BotHunter exhibits the best perfor-
mance, reaching a precision of P = 0.952 and recall of R = 0.950. On the other hand, Table 4
shows that BotHunter consumed 37,240 queries, downloaded 261 MB data and took 20.8 hours
to provide the predictions. This long execution time includes the 50 minutes of waiting time due
to the fact that BotHunter reached the GitHub API rate limit seven times.

4.7. Summary

All the considered approaches to detect bots were found to suffer from several limitations that
make them difficult to use in practice, and more specifically at large-scale. On the one hand,
NBH is fast to determine the type of a contributor but exhibits low precision and recall compared
to more advanced approaches. On the other hand, these more advanced approaches, while being
more accurate, require a large amount of data and take a lot of time when applied on hundreds or
thousands of contributors, either because they need a lot of API queries or because the features
they need to make their decisions are costly to compute. This makes them impractical to be
used at scale. Additionally, many of the considered approaches require, or specifically target,
contributors to be involved (at least) in specific activity types (e.g., committing for BoDeGiC
or commenting for BoDeGHa), making them unable to accurately determine the type of the
contributors that are not involved in these activities. To some extent, deciding which approach
should be used is basically a trade-off between efficiency (at scale) and performance.

These limitations highlight the need for a more practical bot identification approach that:
(i) exhibits a good performance in terms of precision and recall; (ii) does not restrict itself to
specific activity types; (iii) does not require a large amount of data nor API queries to remain be-
low the hourly rate limit; (iv) is fast to compute by avoiding the use of computationally intensive
features.

In the remaining of this article, we propose BIMBAS, an approach based on activity sequences
able to accurately detect bots involved in various activity types, and RABBIT, an efficient tool (in
terms of execution time, API queries and amount of data) implementing the BIMBAS bot detec-
tion approach. We will show that RABBIT does not suffer from the above-mentioned limitations
while being able to accurately detect bots and humans.

5. G3: Creating BIMBAS, a bot identification model based on activity sequences

We identified the limitations of the existing bot identification approaches in Section 4. The
goal of the current section is to develop a new model detecting whether a contributor is a bot or
a human that: (i) exhibits a performance comparable to the state-of-the-art; (ii) can be used to
predict contributors that are involved in other (or more) activity types than the usual commit-,
issue- or PR-related activities; (iii) requires a low amount of data to be downloaded; and (iv) can
be implemented as part of an efficient tool that is able to classify thousands of contributors in a
limited amount of time.

The current section is structured as follows. Section 5.1 explains how to construct activity
sequences based on the events provided by the GitHub API. Section 5.2 details the features we
compute from the activity sequences and presents their rationale. Section 5.3 explains the proce-
dure that we follow to impute missing values, select the best classification model, and eliminate
unimportant features. Based on the output of this process, we propose BIMBAS, a classification
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model distinguishing bots and humans based on their activities. Section 5.4 evaluates the perfor-
mance of BIMBAS on the test set. Section 5.5 discusses the most important features contributing
to the predictions made by BIMBAS. Section 5.6 discusses the misclassified cases. Finally, Sec-
tion 5.7 summarises the resulting model.

The replication package containing the material for creating and evaluating BIMBAS is avail-
able online. 9

5.1. Extracting activity sequences
In order to develop a new bot identification tool that will not require a lot of data and can

consider a wide range of activity types to give a prediction for many contributors, we propose a
novel approach that is entirely based on activity sequences.

The GitHub Events API allows one to retrieve up to the last 300 public events that were
generated by a contributor during the last 90 days. These low-level events will then be converted
to fine-grained activity sequences [4]. Relying on activity sequences has two main benefits:
(i) events can be retrieved from the GitHub API using at most three API queries, implying the
hourly API rate limit will not be reached before around 1,666 contributors; and (ii) the activities
that can be obtained from these events cover a wide range of all possible activities a contributor
can do on GitHub, implying that we will be able to categorize more contributors, even those not
active in committing or commenting. This section explains the procedure that we followed to
retrieve the recent events from GitHub Events API for all the contributors present in our dataset
and convert them to activities sequences.

For each contributor, we queried the GitHub Events API, as of 3 May 2024, and retrieved
376,638 events performed by 2,150 contributors (194,863 by 1,035 bots and 181,775 by 1,115
humans). These events correspond low-level events, for example, IssuesEvent is generated
whenever a contributor opens, closes or reopens an issue. In order to identify the correspond-
ing fine-grained activities, one has to refer to the action field present in the payload field of the
event provided by GitHub Events API. Based on this value, the IssuesEvent can correspond
to Opening issue, Closing issue or Reopening issue. We followed the process presented by
Chidambaram et al. [4] to convert the low-level event types provided by the API into 24 more
fined-grained activity types. These activity types include Pushing commit, Opening PR, Clos-
ing issue, Publishing release, Creating tag, and so on. In this paper, we ignored all GitHub
contributors that performed less than five GitHub events, as they would not provide enough in-
formation for a bot identification model to make any conclusive decision. This resulted in a total
of 337,246 activities performed by the 2,150 contributors of the ground-truth dataset. 182,218 of
these activities were performed by 1,035 bots, while 155,028 activities were performed by 1,115
humans.

5.2. Selecting features
Chidambaram et al. [26] already observed many differences between the activities made by

bots and those made by humans. They suggested five behavioural features that capture the dif-
ferences between bots and humans: the number of activity types, the inequality of number of
activity types across repositories, and the inequality of time between consecutive activities. In
addition to this, they also observed a significant difference in the number of repositories con-
tributed to by bots and humans, and in the median time for them to switch between repositories.

9https://github.com/natarajan-chidambaram/BIMBAS_RABBIT_replication_package
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Figure 1: Generic pipeline for training and evaluating the classification model.

We took these five features as an initial set of features. We extended this feature set by con-
sidering a wide range of counting metrics related to contributors (e.g., their number of activities,
number of activity types, and number of repositories contributed to) as well as temporal metrics
related to their activity sequences (e.g., duration between consecutive activities in a repository,
and time difference between consecutive activities of different activity types). Several of these
metrics are computed at the level of a single repository (e.g., NTR) or a single activity type (e.g.,
NAT) and therefore have to be aggregated. Since we do not know in advance which aggregation
functions will be the most useful for the model, we aggregate them using mean and median for
central tendency, std (standard deviation) and IQR (inter-quartile range) for dispersion, and Gini
for inequality. This leads us to a total of 45 features, of which 5 are non-aggregated and 8*5 are
aggregated features. The entire list of considered features is reported in Table 5, together with
the rationale for selecting these features.

5.3. Model selection

In this section we explain the process we followed to come up with a classification model for
detecting bots. More specifically, Section 5.3.1 explains how we handle and impute missing val-
ues for the features we selected. Section 5.3 details the approach we followed to identify the best
classification model (classifier and its hyperparameters). Section 5.3.3 explains the methodology
followed to remove the features that do not contribute to the predictions made by the classifica-
tion model.

5.3.1. Handling and imputing missing values
Some machine learning classifiers do not support the presence of missing values. Since the

values of several features cannot be computed for contributors that are exclusively working in
a single repository (e.g., DAAR) or exclusively performing a single activity type (e.g., DCAT),
we apply a two-step process to impute such missing values and make the model aware of this.
More specifically, we (1) replace missing values with the median value of the corresponding
feature, and (2) add a Boolean indicator to signal to the model whether a missing value was
imputed [30]. Combining the imputed value and the Boolean indicator allows improving model
performance [31]. This two-step process is part of the model pipeline, i.e., the missing values
are computed based on training data only, to avoid the model becoming contaminated by unseen
data. Fig. 1 depicts this generic pipeline, the “Estimator” step abstracting the actual model in
use.

5.3.2. Identifying a classification model
To differentiate bots from humans based on their activity sequences, we rely on a classification

model based on a binary classifier since we only have two classes (bot and human).
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Table 5: List of considered features and the intuition behind them.
Counting metrics:

acronym feature intuition
NA Number of Activities Since bots are automated agents, we expect them to produce more ac-

tivities than humans as they do not suffer from the same limitations as
humans (e.g., the need for sleep).

NT Number of (activity) Types Bots are expected to perform a smaller range of activity types than hu-
mans since they are likely to be specialised towards specific tasks.

NR Number of Repositories
contributed to

Bots are expected be involved in more repositories than humans.

NOR Number of Owners of
Repositories contributed to

Many bots are expected to be used by a small number of repository own-
ers, as they may have been developed or configured by those owners
specifically for their repositories. Humans on the other hand, have the
freedom to decide which repositories they contribute, regardless of who
owns the repository.

ORR Owner-Repo Ratio = #NOR
#NR We expect many bots to be used by small number of repository own-

ers that use these bots in most of their repositories. In contrast, human
accounts can be freely involved in multiple repositories belonging to a
wide range of repository owners.

Aggregated metrics: Each of the metrics below is aggregated using five aggregation functions: mean, std, median,
IQR, and Gini.

acronym feature intuition
NAR Number of Activities per

Repository
The number of activities per repository might be high for bots as they are
intended to perform repetitive tasks and can work continually without
needing breaks.

NAT Number of Activities per
Type

The number of activities per activity type might be higher for bots as
they are specialised in performing specific activity types in repositories.

NCAR Number of Consecutive
Activities in a Repository

Bots do not suffer from context switching, hence they are expected to
switch more easily and more frequently between different repositories.

NTR Number of (activity) Types
per Repository

We expect bots to be specialised in the activities they do within reposi-
tories, hence the number of activity types they have across repositories
is more likely to be constant.

DCAR Duration of Consecutive
Activities in a Repository

If bots tend to switch between repositories, the time spent in a repository
for carrying out consecutive activities might be lower than for humans.

DAAR Duration between Activi-
ties Across Repositories

Since bots do not suffer from context switching, we expect them to take
less time to have activities in multiple repositories than humans.

DCA time Difference between
Consecutive Activities

Since bots are automated scripts, they may be very fast in carrying out
their next activity after the previous one. The same bot might even work
in parallel in multiple, not necessarily related, repositories.

DCAT time Difference between
Consecutive Activities of
different Types (in hours)

Since bots do not suffer from context switching, we expect them to
switch more swiftly between activities of different types.

We selected seven different classifier types that are commonly used and have the ability to
perform binary classification: Decision Tree [32], Random Forest [33], Support Vector Ma-
chines [34], Gradient Boosting [35], XGBoost [36], Linear Discriminant Analysis [37], and
Gaussian Naive Bayes [38].

All the considered classifier types accept a set of hyperparameters that can be tuned to increase
the model performance. We followed a grid-search 10-fold cross-validation hyperparameter tun-
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Figure 2: Overview of the process followed to identify the best model, eliminate features and to evaluate BIMBAS.

ing process [39] to find, for each classifier type, the values that should be used for these hyper-
parameters. In total, we consider 13,021 combinations of classifier types and hyperparameter
values. The process is illustrated in Fig. 2 (leftmost gray box).

To train and evaluate these 13K+ models, we used the features corresponding to activity se-
quences of each contributor present in the training set. The training set contains 669 (out of
1,115) humans and 621 (out of 1,035) bots, i.e., 60% of all the contributors. We followed a
10-fold cross-validation process, relying on a stratified shuffle split strategy to maintain similar
proportions of humans and bots within each fold, and we measured the resulting performance of
each model based on the usual performance measures of weighted precision (P), recall (R), F1
score, and area under ROC curve (AUC).

Table 6 reports on the results of this process. To allow us to interpret and compare the perfor-
mance of the models, we also included NBH a baseline, task-specific model. Since we cannot list
all the considered combinations, we report for each type of classifier on the results obtained by
the best combination of hyperparameters in terms of weighted F1 score, as this score reflects the
precision and recall of a model through a single, easy to compare value. Among all considered
combinations, Gradient Boosting is the best overall performer, with the highest F1 score (for
bots, humans, and weighted overall), the highest precision for bots, and the highest AUC score.

5.3.3. Eliminating features
We trained and evaluated the models on a set of 45 initial features. However, not all these

features have the same importance during the classification process, and some of them may be
redundant or may contribute little or not at all to the decision of the model. To identify which
features can be safely removed without affecting model performance, we rely on the well-known
recursive feature elimination (RFE) technique [40]. RFE aims to identify and eliminate the
least important features (i.e., those that do not contribute much to the model performance) by
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Table 6: Performance of the best model for each considered classifier type, in descending weighted F1 score.
bots humans weighted

classifier type P R F1 P R F1 P R F1 AUC
Gradient Boosting .923 .939 .930 .944 .925 .934 .934 .932 .932 .970
Random Forest .897 .947 .921 .948 .899 .922 .924 .922 .922 .969
XGBoost .900 .935 .917 .938 .903 .920 .920 .919 .919 .967
Decision Tree .891 .931 .909 .933 .891 .911 .913 .910 .910 .924
Linear Discriminant Analysis .874 .916 .893 .921 .876 .897 .898 .895 .895 .961
Support Vector Machines .820 .806 .812 .823 .833 .827 .822 .820 .820 .833
Gaussian Naive Bayes .865 .597 .705 .710 .912 .798 .785 .760 .753 .893
NBH (baseline model) .765 .669 .714 .725 .810 .765 .744 .742 .740 .739

recursively considering smaller and smaller sets of features.
We applied RFE in a 10-fold cross-validation loop on the training set. At the end of the process,

RFE identified the following seven features that can be removed without any compromise on the
model performance: NR, DCAIQR, NARstd, NTRIQR, NCARmedian, NCARGini, DCARGini.

5.4. Training and evaluating BIMBAS
The grid search cross-validation explained in Section 5.3.2 allowed us to identify the best

classifier type (Gradient Boosting) and its corresponding hyperparameters. In Section 5.3.3,
we identified that 38 features are important for the model to exhibit good performance. In this
section, we introduce, train and evaluate BIMBAS, a “Bot Identification Model Based on Activity
Sequences”. BIMBAS implements the selected classifier and its hyperparameters, and takes as
input the 38 identified features.

Table 7: Performance comparison of BIMBAS against existing approaches on the test set of 860 unseen contributors.
bots humans weighted

approach P R F1 P R F1 P R F1
NBH .803 .671 .732 .735 .848 .788 .768 .763 .761
BoDeGHa .918 .512 .657 .861 .457 .597 .891 .486 .629
BoDeGiC .812 .271 .406 .747 .159 .262 .785 .224 .346
BotHunter .967 .928 .947 .937 .971 .954 .952 .950 .950
BotHunter without NBH .984 .587 .735 .722 .991 .836 .848 .797 .787
BIMBAS .883 .911 .897 .915 .888 .901 .899 .899 .899

BIMBAS is trained on the full training set (60% of all contributors). To assess its performance
on unseen data, and therefore to validate BIMBAS, we applied it on the test set containing the
remaining 40% contributors (i.e., 414 bots and 446 humans). Table 7 reports on the results of
BIMBAS on this test set. Since the test set is the same than the one we used in Section 4, we also
report on the results obtained by the other bot detection approaches for comparison.

BIMBAS correctly identified most of the bots (377 out of 414) with a precision P = 0.883
and a recall R = 0.911. Similarly, most of the humans (396 out of 446) that are present in the
test set were correctly identified by BIMBAS with a precision P = 0.915 and recall R = 0.888.
Overall, BIMBAS reaches a precision P = 0.899 and a recall R = 0.899, making it the second
most performant bot detection approach.

However, in Section 4.3 we mentioned that the good performance of NBH could be explained
by the high proportion of bots in the ground-truth dataset that have “bot” in their name. The most
important features of BotHunter (e.g., account name and account login) are variations of NBH,
relying on the presence of “bot” or “automate” [13]. This is likely the reason why BotHunter
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correctly identified 97.7% of the bots that have “bot” in their name, whereas it identified only
66.7% of the bots that do not. To get a better understanding of the actual performance of BotH-
unter on less obvious cases of bot contributors, we executed a modified version of BotHunter that
no longer relies on the presence of “bot” or “automate” to make its decision.10 The results are
provided in Table 7 as “BotHunter without NBH”. As anticipated, this variant of BotHunter has
more difficulties to identify bots, with a decrease of recall for bots from R = 0.928 to R = 0.587,
a decrease in overall recall from R = 0.950 to R = 0.797 and a decrease in overall precision
from P = 0.952 to P = 0.848. This confirms that the performance of BotHunter heavily depends
on the NBH-related features to detect bots and is less effective in detecting non-obvious cases
of bots. On the other hand, BIMBAS makes no distinction between contributors based on their
names, and bases its decision exclusively on the activity sequences. As such, its performance
does not depend on the presence of “bot” in the name, nor of any other substring.

5.5. Feature importance
In order to identify the most contributing features (among the 38 remaining ones), we applied

the permutation importance [33] technique on the test set. This model inspection technique
measures the importance of each feature by randomly shuffling the values of one feature at a
time, and measuring how this affects the performance of the model. We applied this technique in
a 10-fold cross-validation setting on the test set, meaning that each feature is shuffled 10 times
and the resulting F1 scores are aggregated.

Table 8: Top five important features for distinguishing bots from humans in test set, reporting their median values and
effect size.

median effect size
acronym feature bots humans δ interpretation

NT number of activity types 4.0 10.0 .725 large
NOR number of owners of repositories contributed to 1.0 4.0 .554 large
DCATmedian median time difference between consecutive activi-

ties of different types
0.003 h 0.125 h .482 large

NATmedian median number of activities per type 29.5 6.0 .676 large
NATmean mean number of activities per type 45.0 14.9 .703 large

Table 8 reports on the 5 most important features, i.e., on the 5 features that have the higher
impact in terms of F1 score when shuffled. This table also reports on the median value of these
features, distinguishing between bots and humans. To determine whether there is a statistically
significant difference between bots and humans for these features, we performed Mann-Whitney
U tests [41]. The null hypothesis, stating there is no difference between the two populations, was
consistently rejected with a significance level α = 0.001 after controlling for family-wise error
rate with the Bonferroni-Holm method [42]. The effect size of these tests, based on Cliff’s δ [43],
reveals a large difference for these features between bots and humans.

5.6. Analysing the misclassifications
The evaluation of BIMBAS revealed that is performing well on the test set. Nevertheless,

BIMBAS misclassified 37 out of 414 bots as humans (FN) and 50 out of 446 humans as bots
(FP). We manually tried to find possible reasons for these misclassifications.

10It did not suffice to simply change the names of those contributors, since BotHunter requires the exact contributor
name to retrieve its data.
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A first observation was that many misclassified contributors performed very few activities. For
example, eclipse-metro-bot and arduino-ci-script-bot are bots that respectively have only 6 and
8 activities. This lack of data makes it difficult for BIMBAS to determine if their behaviour is
closer to humans or bots. To quantify the impact of the number of activities on misclassifications,
we measured the proportion of misclassified contributors in function of the number of withheld
activities for each contributor. Fig. 3 shows this proportion, revealing that a lower number of
activities coincides with a higher proportion of misclassified contributors. For instance, when
applied on the latest eight activities of each contributor, 25% of the contributors are misclassified.
When applied on the latest 25 activities, 16% of the contributors are misclassified. In contrast,
the proportion of misclassified contributors does not exceed 10% starting from 107 activities.
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Figure 3: Proportion of misclassified contributors in function of number of considered activities.

Another reason for misclassified bots is that they are taking a long time to switch between
activity types (DCATmedian), although they are involved in multiple activity types (NT) and the
mean and median number of activities per activity type (NATmedian and NATmean) is similar to
that of humans. For example, bot-gradle is a bot that performed 244 activities belonging to 9
different activity types, but its DCATmedian is 0.307 whereas its NATmedian and NATmean are 7
and 21.375 respectively. Comparing these values with the corresponding median for bots and
humans in Table 8 conveys that it is difficult for BIMBAS to classify them as bots.

We also found instances of misclassified bots whose main or only purpose is to mirror (e.g.,
migrate, copy-paste or translate) human activities coming from other sources (e.g., another repos-
itory or another bug tracking system). For example, zx2c4-bot is a mirroring bot that creates and
deletes tags and branches, closes PRs, and pushes commits to GitHub that were made on an ex-
ternal git repository. Such bots are difficult to distinguish from humans, given that each of their
mirrored activities actually originate from some human activity.

On the other hand, one of the misclassified humans performed 300 activities belonging to a sin-
gle activity type (pushing commits). While it is expected to have humans involved in this activity
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type, it is unlikely for them to be involved in only a single activity type, since the median number
of activity types for humans is 1.0 (see NT in Table 8). Indeed, the test set included only one
human contributor that was exclusively pushing commits, so it can be considered to be an outlier
in the class of humans. Another observation is that six misclassified humans have a median time
difference between consecutive activity types (DCATmedian) of 0.001h, which corresponds more
to bot behaviour than to human behaviour (see in Table 8).

5.7. Summary

We proposed BIMBAS, a novel bot identification approach based on activity sequences. To cre-
ate BIMBAS, we followed a grid-search 10-fold cross-validation on the training set and compared
the results obtained by 13K+ combinations of classifiers and their hyperparameters. Through this
process, we found Gradient Boosting and its associated hyperparameters to be the top performer.
We applied the RFE technique to remove features that do not contribute to the model perfor-
mance, retaining 38 features. We then evaluated the performance of BIMBAS on the test set.

Overall, the performance of BIMBAS is comparable to the best existing bot identification ap-
proaches, making it a good candidate to be implemented as part of a tool. This will be the goal
of the next section, in which we present RABBIT, an open source tool implementing BIMBAS.
We will show that RABBIT outperfoms the existing state-of-the-art approaches in terms of effi-
ciency.

6. G4: Developing RABBIT, an efficient bot identification tool

In order to allow researchers and practitioners to use BIMBAS, the activity-based bot identifi-
cation model proposed and evaluated in Section 5, we propose RABBIT, an efficient executable
command-line tool to detect bots on GitHub. Section 6.1 introduces RABBIT and explains its
functioning. Section 6.2 evaluates its efficiency and compares it against the existing bot identifi-
cation approaches of Section 4, showing that RABBIT addresses their main limitations. Finally,
Section 6.3 summarizes our contribution.

6.1. Implementation of RABBIT

RABBIT is a recursive acronym for “RABBIT is an Activity-Based Bot Identification
Tool”. It provides a command-line interface to use the BIMBAS model trained on the
full dataset. It is released as an open source project on GitHub11 under the Apache
2.0 License. Release 2.2.0 of RABBIT was used for the experiments in the current pa-
per.12 RABBIT can be installed using Python’s package manager pip with pip install

git+https://github.com/natarajan-chidambaram/rabbit.
The functioning of RABBIT is schematically represented in Fig. 4. The mandatory input is a

list of contributor names. These names can be provided directly on the command line or through
a text file. RABBIT also provides several optional parameters to change its default behaviour
(number of queries, number of events, etc.) The output can be displayed on the standard output
(by default) or stored in a CSV or JSON file.

11https://github.com/natarajan-chidambaram/rabbit
12An earlier version of RABBIT implemented an XGBoost classification model based on a more limited set of features

and trained on a significantly smaller dataset [44].
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Figure 4: Schematic representation of RABBIT.

RABBIT will assign one of five possible types to each provided contributor name: Human, Bot,
Organization, Unknown or Invalid. To do so, the tool follows the process depicted in the middle
part of Fig. 4. The process starts by querying GitHub’s Users API13 to extract the value stored
in the “type” field. The contributor type is predicted as Invalid if the contributor name does not
exist on GitHub. If the contributor does exist, but the value in the “type” field is not “User” (e.g.,
it will be “Bot” for GitHub Apps, and “Organization” for organisations), this value is provided
as output without needing any further processing. Only if the “type” field is “User”, RABBIT
queries the Events API14 to extract up to 300 events (using at most 3 API queries) performed by
the contributor during the last 90 days (a constraint imposed by the API). The contributor type
will be Unknown if the number of events obtained does not reach the minimum threshold set by
RABBIT (which is 5 events by default). If enough events can be retrieved, the extracted event
sequence is converted into an activity sequence (see Section 5.1), the features are computed for
this activity sequence (see Section 5.2), and the BIMBAS classification model is used to predict
the contributor type as either Bot or Human.

Along with the contributor type, RABBIT also reports on the confidence of its decision. The
confidence score is based on the probability associated to each prediction made by BIMBAS.
Given that BIMBAS provides the probability for a contributor to be a “bot”, the confidence score
is computed as |probability − 0.5| ∗ 2. Listing 1 shows an example of the execution of RABBIT
with a list of 8 contributor names provided through the input file names.txt.

c o n t r i b u t o r type conf idence
gi thub −ac t ions [ bot ] Bot 1.0

johnpbloch −bot Bot 0.932
openssl −machine Bot 0.714

13https://api.github.com/users/CONTRIBUTORNAME
14https://api.github.com/users/CONTRIBUTORNAME/events
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r i t c h i e 4 6 Human 0.926
j u l i a r e g i s t r a t o r Bot 0.875

gvanrossum . Human 0.960
google Organ iza t ion 1.0

renovate Unknown −
gh− c i I n v a l i d −

Listing 1: Example of RABBIT usage and output.

6.2. Comparing RABBIT’s efficiency with existing approaches
RABBIT benefits from the good model performance of BIMBAS, while at the same time ad-

dressing all limitations reported in Section 4 for the existing bot identification approaches. For
instance, RABBIT supports a wider range of activity types and is able to determine the type of
many more contributors than BoDeGHa or BoDeGiC.

To evaluate the efficiency of RABBIT, we applied it on the same test set of 860 contributor
names as those that were used for evaluating the other bot detection approaches in Section 4.
To determine the type of these 860 contributors, RABBIT required 22 minutes and 112 MB of
downloaded data. Only 2,426 API queries were required to make all predictions, staying well
below GitHub API rate limit of 5,000 queries per hour and per API key. By extrapolation, this
means that RABBIT can process 1,772 contributors on average before reaching the rate limit.

Table 9: Efficiency comparison of RABBIT against existing approaches on the test set of 860 unseen contributors.

approach data downloaded time API queries
NBH - 0.01 sec -

BoDeGHa 3.83 GB 7.7 h 10,222
BoDeGiC 23.3 GB 22.1 h -

BotHunter 0.261 GB 20.8 h 37,240
RABBIT 0.112 GB 22 m 2,426

To put the evaluation results of RABBIT in perspective, Table 9 compares its efficiency to the
existing bot identification approaches, highlighting their limitations in terms of execution time,
data downloaded, and number of required API queries. In terms of execution time, RABBIT is
more than an order of magnitude faster than BoDeGHa (21×), BotHunter (57×) and BoDeGiC
(60×). RABBIT requires considerably less data to be downloaded compared to BoDeGHa (34×)
and BoDeGiC (208×). RABBIT uses an order of magnitude less API queries than other ap-
proaches relying on the GitHub API, namely BoDeGHa (4×) and BotHunter (15×).

6.3. Summary
We implemented RABBIT as a command-line tool to allow researchers and practitioners to

use BIMBAS in practice to identify bots in GitHub repositories. RABBIT is more efficient than
previous bot identification approaches. While still achieving a comparable performance, it can
be used for considerably larger sets of contributors since it runs an order of magnitude faster,
uses an order of magnitude less API queries and requires less data to be downloaded.

Based on one’s specific need, other bot identification approaches could be favored. If accuracy
is not a crucial factor, then NBH should be favored since it is really easy to implement and the
fastest bot identification approach so far. If higher model performance would be preferred over
a faster execution time, for example in the context of some empirical research study, BotHunter
might be favored since it had less misclassified cases on our test set than RABBIT. However, as
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explained in Section 5.4, this is likely to be a consequence of the high proportion of bots that
have “bot” in their name in the ground-truth dataset, and the strong reliance of BotHunter on the
NBH heuristic.

Creating an ensemble model that combines the strengths of different bot identification models
(e.g., combining BotHunter and BIMBAS) would likely reduce the number of misclassifications
that are inherent to any bot detection approach. However, such as an ensemble model would
nullify the benefits of using RABBIT for its efficiency, so we see little value in doing so.

7. Threats to validity

We follow the structure recommended by Wohlin et al. [45] to discuss the main threats to
validity of our research, and their potential consequences.

Construct validity examines the relationship between the theory behind the experiments per-
formed and the observations found. This threat is mainly related to correctness of the dataset used
in the experiments. A possible such threat is that contributors in the ground-truth are not labelled
correctly. This situation is very unlikely to happen since we followed a multi-rater labelling
process that resulted in an almost perfect inter-rater agreement (Cohen’s kappa κ = 0.91 [46]).
However, we cannot exclude that the ground-truth dataset contains so-called mixed accounts (i.e.,
accounts having a combination of human and bot activities) [8].
Another threat to construct validity is that the ground-truth dataset is biased, by construction,
towards bots having “bot” in their name: 67.1% of all bots in the dataset (i.e., 694 out of 1,035)
contain this substring in their contributor name, which is likely considerably more than what one
could expect in practice. While this higher proportion of bots having “bot” in their name can not
affect the performance of BIMBAS (and therefore of RABBIT) since it does not rely on this fea-
ture to detect bots, it may have led to an overestimation of the performance of bot identification
approaches such as NBH and BotHunter that make use of that feature.

Internal validity concerns choices and parameters of the experimental setup that could affect
the results of the observations. We strived to follow machine learning best practices during model
construction, training, testing and evaluation. We relied on a state-of-the-art machine learning
library (namely sklearn) to conduct the experiments. As such, our experimental setup is unlikely
to have biased the results we obtained.
Another internal threat to validity is the criterion we used to select the repositories for executing
BoDeGHa and BoDeGiC. We selected, for each contributor, the repository in which the con-
tributor was the most active (in terms of events generated). A different selection criterion could
lead to different performance results and to a different number of “unknown” predictions. How-
ever, none of these approaches explicitly define guidelines to decide on a repository whenever a
contributor is active in more than one repository.

External validity concerns the degree to which the conclusions we derived are generalisable
outside the scope of this study. The main threat to external validity is that BIMBAS was cre-
ated and evaluated with activity sequences obtained from public GitHub repositories (because
GitHub’s API only returns public events). Since activities in private repositories may differ in
their type, frequency and order we cannot make any claims on the performance of BIMBAS on
contributors in private repositories. Similarly, BIMBAS cannot be applied “as is” to other collab-
orative development platforms (e.g., GitLab, Gitea or BitBucket). Even though such platforms
are mostly based on the same principles, and even if the technical process we followed to create
BIMBAS is likely to be applicable to these platforms, there could be differences in the APIs,
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the activity pace, activity types of contributors, and the ways bots interact with repositories and
contributors. As a consequence, it is very likely that a new classification model would need to be
trained to take these differences into account.

Conclusion validity concerns whether the conclusions derived from the analysis are reason-
able. Since our conclusions are mostly based on quantitative observations and are supported by
the usual performance metrics to evaluate machine learning classifiers, they are unlikely to be
affected by such threats.

8. Conclusion

Several automated bot identification approaches based on machine learning classifiers have
been proposed for detecting bots that engage in automated activities in GitHub. They address
the absence of a direct way to distinguish regular human accounts from bot accounts that tend to
automate repetitive, effort intensive and error-prone activities.

Accurate detection of bots is important for researchers conducting empirical analyses, and
for developer communities and funding organisations to correctly recognise and accredit human
contributions. However, efficiency concerns make it challenging to apply existing bot identifica-
tion approaches at large scale, either because they rely on computationally expensive features,
because they need to download a lot of data, or because they have to wait for the API rate limit
to replenish.

To overcome these limitations, we proposed a new ground-truth dataset of GitHub contrib-
utors containing 1,035 bots and 1,115 humans. Based on this dataset we proposed a new bot
identification model, BIMBAS, and its accompanying tool, RABBIT. BIMBAS uses a Gradient
Boosting binary classifier involving 38 features related to the activity sequences of GitHub con-
tributors, obtained from their public GitHub events, to accurately determine the contributor type.
The performance of BIMBAS is comparable to the state-of-the-art bot detection approaches. The
RABBIT command-line tool relies on BIMBAS to detect bots on considerably larger sets of con-
tributors, since it runs an order of magnitude faster, uses an order of magnitude less API queries
and requires less data to be downloaded than existing approaches.
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