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Exceptional points in negatively refracting chirowaveguides due to giant chirality
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In non-Hermitian systems, particularly those adhering to PT symmetry, exceptional points (EPs) are critical
junctures wherein eigenvalues and eigenvectors coalesce. These points induce the convergence of eigenmodes
in waveguiding systems, resulting in unique dispersion features and remarkable effects such as slow light.
In a configuration comprising two coupled waveguides, EPs can be achieved via mechanisms involving bal-
anced gain-loss modulation or contradirectional modal interference. By leveraging the latter, in homogeneous
chirowaveguides without any reliance on periodicity, we demonstrate the signature phase transitions induced
by negative refraction due to giant chirality, which does not necessitate the simultaneous negativity of the
permittivity and permeability. Our approach offers advantages over traditional PT -symmetric and negative-
refractive-index waveguides, as it does not pose the manufacturing difficulties of balancing the creation and
absorption of photons while providing opportunities for remarkable light manipulation due to the presence of
chirality. Experimental implementations of metamedia with giant and, moreover, controllable chirality indicate
that our medium is well within reach of current technology.
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I. INTRODUCTION

Exceptional points (of degeneracy) are critical junctures in
a system’s parameter space wherein the eigenvalues and the
corresponding eigenvectors coincide [1], indicating a deeper
form of coalescence involving both [2]. This stands in di-
rect contrast to the so-called diabolic points, where only the
eigenvalues coincide [3]. Exceptional points (EPs) are par-
ticularly important in non-Hermitian systems that conform to
PT -symmetric conditions, under which real spectra can man-
ifest [4], suggesting that the system’s properties remain intact
under parity reflection and time reversal. In waveguiding sys-
tems, EPs lead to the convergence of multiple eigenmodes
into a single mode, resulting in distinctive dispersion relations
in the vicinity of the merging point(s). Such a convergence
induces a sharp reduction in group velocity (i.e., slow light)
[5–7] and a substantial increase in the local density of states
and photon lifetime [8], thereby enhancing the quality fac-
tor of coupled resonators [9]. Graphene-induced EPs lead to
polarization-dependent photonic switching [10], while com-
bining the nonlinear effect of saturable absorption with EPs
results in reciprocity breaking in non-Hermitian coupled pho-
tonic waveguides [11].

In a photonic configuration comprising two coupled
waveguides, Mealy and Capolino [12] identified two potential
methods for achieving EPs. The first relies on non-Hermitian
Hamiltonians [13], in which, within the context of PT sym-
metry, a conventional codirectional coupling exists between
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waveguides with modulated gain and loss [14]. By contrast,
the second mechanism does not necessitate the presence of
modulated gain or loss but, rather, involves the coupling
between waveguides that support contradirectional modal in-
terference. Indeed, upon fixing the wave vector corresponding
to the guided super-mode ks to point in the forward direction,
the latter scenario is conceptualized in Fig. 1. In this setup, a
standard waveguide, WA, is coupled to another waveguide, WB,
in which the direction of phase propagation is opposite to the
direction of the power flow, i.e., kB · SB < 0, with SB being
the axial component of the transversely integrated Poynting
vector (note that this is not equivalent to the group velocity;
see Ref. [17]).

Implementing a PT -symmetric grating that effectively
balances photon creation (i.e., gain) and absorption (i.e.,
loss) poses significant challenges [18]. Consequently, current
research efforts have shifted towards exploring alternative
approaches, such as anti-PT symmetry [19], non-Bloch PT
symmetry [20], regular or degenerate band edges [21], and
virtual gain [22], to name a few. Recently, Ref. [23] demon-
strated the feasibility of realizing EPs in a system of coupled
waveguides, where a homogeneous dielectric slab is coupled
to one with a negative refractive index. Subsequently, the same
group elaborated in Ref. [24] on how anti-PT symmetry, in-
duced by a negative refractive index, can lead to higher-order
EPs [25], even in the absence of dissipation.

Intriguingly, an alternative avenue to achieve negative re-
fraction exists which does not necessitate the simultaneous
negativity of the permittivity and the permeability. In this
paper, we diverge from conventional approaches and adopt
Pendry’s chiral route to negative refraction [26]. In partic-
ular, we propose a chiral system to achieve the signature
phase transitions, and hence the characteristic bifurcation
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points in modal dispersion, without relying on the standard
gain-loss modulation of Ref. [27]. Our approach leverages
contradirectional coupling between a dielectric waveguide
and a chirowaveguide, both of which are homogeneous and
nonperiodic, without the necessity of the permittivity and
permeability being simultaneously negative. Besides eliminat-
ing the need for meticulously engineering a double-negative
material, chirality provides an additional degree of freedom
for controlling various aspects of the apparent dispersion’s
“fork(s)” [28,29]. Since magnetoelectric coupling can be con-
trolled via a plethora of methods (such as piezoelectricity [30],
externally applied electric fields [31], conductivity [32], etc.),
our medium offers a convenient platform for manipulating the
location of the emerging EPs.

This paper is structured as follows: In Sec. II, we
adapt coupled-wave theory to describe negatively refracting
chirowaveguides with giant chirality and demonstrate the pos-
sibility of achieving EPs in a single chirowaveguide with
extreme optical rotatory capabilities without resorting to any
kind of loss-gain modulation. In Sec. III, our coupled-wave
approach is extended to model wave propagation in a con-
tradirectional coupler, where a conventional dielectric slab
waveguide is coupled to a negatively refracting chirowaveg-
uide. The previously identified condition for the occurrence
of EPs is generalized to couplers with nonidentical waveg-
uides, and we illustrate the predicted dispersion features
and modal profiles using the SIMPHOTONICS MATLAB tool-
box, a Maxwell-equations solver developed at Laboratoire
Charles Fabry [29] that utilizes the finite-element method.
Furthermore, we discuss how varying chirality influences the
dispersion characteristics and modal profiles of the supported
eigenmodes, including an interesting phenomenon of merging
“broken-symmetry” complex zones, with two EPs effectively
canceling each other. Finally, in Sec. IV, we summarize and
propose potential approaches toward the experimental imple-
mentation of our setup.

II. PT -LIKE BEHAVIOR OF A CHIROWAVEGUIDE
WITH GIANT CHIRALITY

A. Coupled-wave theory description

If E and B are the primitive electromagnetic fields and
D and H are the corresponding stimulated excitation fields,
Tellegen’s temporal-frequency-domain constitutive relations
for the simplest reciprocal bi-isotropic medium read [33]

D = εrε0E + i
κ

c
H and B = −i

κ

c
E + μrμ0H. (1)

Here, εr and μr are the relative permittivity and permeability,
respectively; ε0 and μ0 are the corresponding parameters of
free space, and c = (ε0μ0)−1/2 is the phase velocity of light in
vacuum. The dimensionless chirality parameter κ measures
the wavelengths after which the electric field of a linearly
polarized wave is rotated by 2π .

Such an unbounded reciprocal bi-isotropic medium sup-
ports both right- and left-handed circular polarizations [34].
Indeed, upon combining Maxwell’s macroscopic source-free
curl relations with the constitutive relationships of Eq. (1), the
supported wave numbers turn out to be ±k(±) = ±k0(κ ± n̄),
where k0 is the free-space wave number and n̄ = (εrμr )1/2

FIG. 1. Contradirectional chiral coupler: An achiral dielectric
slab waveguide WA is coupled to a homogeneous chirowaveguide WB

brought into proximity at a distance d . Under the indicated excita-
tion source s, waveguide WA supports a forward-propagating mode,
which can couple with a counterpropagating mode supported by WB.
For giant chirality (|κ| > nc, where κ represents the dimensionless
chirality parameter and nc denotes the core refractive index) the
chirowaveguide operates in the negative refraction regime, where the
phase propagation opposes the Poynting vector (i.e., kB · SB < 0).
Whence, for stationary solutions, the wave vector of the super-mode,
ks, points in the positive direction, albeit contra-directional cou-
pling is attainable. Crucially, the power-flow vector pointing toward
the source SB is attributed to the vortexlike behavior observed in
Refs. [15,16], thereby respecting causality.

is the medium’s refractive index. For |κ| < n̄, the nominally
forward-propagating (F) eigenmodes are [33]

EF
(±) = EF

(±)
eik0(n̄±κ )z

√
2

(
1
±i

)
, (2a)

whereas the backward-propagating (B) ones are

EB
(±) = EB

(±)
e−ik0(n̄±κ )z

√
2

(
1
±i

)
. (2b)

The signs within the parentheses in the phasors of the
electric fields EF,B

(±) denote the polarization state, and EF,B
(±) are

constant amplitudes; an e−iωt dependence is herein implicit
and suppressed. If |κ| > n̄, the direction of phase propagation
and the handedness of counterpropagating modes are inter-
changed [33,35], although the direction of the Poynting vector
remains unaffected.

A chiral medium can sustain two orthogonal polarization
states, whereas a dielectric slab waveguide can support TE
and TM modes. In TE modes, one electric-field component
lies out of the plane (as defined in Fig. 1), whereas in TM
modes, one magnetic-field component lies out of this plane.
Not surprisingly, a chirowaveguide slab sustains hybrid modes
[36]. Assuming weak chirality and weak guiding, Ref. [37]
approximated these modes as fE ETE + fMETM, where fE ,M

are slowly varying functions of one spatial coordinate and ETE

(ETM) are the electric-field components of TE (TM) modes.
Although such an approximation leads to simple, and thus
insightful, dispersion relations, it becomes ineffective when
dealing with giant chirality. Hence, we resort to the brute
force of numerical calculation of the dispersion, as derived in
Eqs. (22) and (23) of Ref. [38]. In fact, for a chirowaveguide
surrounded by air (ns = 1), with a core refractive index nc, the
values of κ for which the direction of phase propagation of
one mode is altered turn out to be |κ| = nc (note that |κ| = 1
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per the nomenclature of Ref. [38]). These points correspond
to those at which a reversal in the direction of phase prop-
agation occurs in unbounded bi-isotropic media [cf. Eq. (2)
for |κ| ≈ nc]. For insights into the implications of negative
refraction for cutoff frequencies, consult Refs. [15,39].

For a single chirowaveguide, Lee’s [40] coupled-wave
theory approach identifies the unperturbed and perturbed ge-
ometries. Regarding the former, let E and H be the electric and
magnetic excitation fields satisfying Maxwell’s equations and
the appropriate boundary conditions in a lossless reciprocal
homogeneous achiral waveguide, characterized by a relative
permittivity εr . For the latter geometry, E′ and H′ will be
the corresponding fields in a lossless reciprocal homogeneous
chirowaveguide, characterized by a relative permittivity ε′

r and
a chirality parameter κ . Then, the unperturbed fields associ-
ated with the nth proper mode are E = eneiknz and H = hneiknz,
where e and h are z-independent fields (i.e., they depend only
on the transverse coordinates). As derived in Appendix A, the
synthesis of Lorentz reciprocity and the orthogonality relation
delineated in Appendix B yields the coupled-wave system

dan

dz
=

∑
m

ameiδkmnzCmn, (3)

where am are the expansion coefficients of the transverse
components of the perturbed fields (radiation modes are disre-
garded), δkmn = km − kn are the detuning parameters, and Cmn

are the coupling coefficients.
If S is the arbitrary cross section of the chirowaveguide, all

overlapping terms in Eq. (3) are concisely written as

Cmn = sgn(n)
k0

2

∫
S

(
V [1]

mn + V [2]
mn + V [3]

mn

)
dS. (4)

The first term in Eq. (4) arises due to the permittivity’s pertur-
bation, which for the current purposes is presumed to be weak
(i.e., ε′

r/εr ≈ 1), and reads

V [1]
mn = i(ε′

r − εr )e∗
n · em, (5a)

corroborating Eq. (8.20) of Ref. [40]. The second term

V [2]
mn = κ (h∗

n · em − e∗
n · hm), (5b)

is attributed to the first-order chirality terms and corroborates
Eq. (24) of Ref. [41]. The third term,

V [3]
mn = κ

κ2 + n̄2 − ñ2

ñ2 − κ2
(h∗

‖,ne‖,m − e∗
‖,nh‖,m)

− i
κ2

ñ2 − κ2
(εre∗

‖,ne‖,m + μrh∗
‖,nh‖,m), (5c)

stems from the inclusion of higher-order chirality terms,
corroborating Eq. (25) of Ref. [42]; ñ = (ε′

rμr )1/2. Fur-
thermore, for weak guiding (i.e., for n̄ ≈ ñ), we note that
lim
κ→0

(V [3]
mn /V [2]

mn ) = 0, implying that in the limit of weak chi-

rality only V [2]
mn is appreciable.

Inspection of Eqs. (5a)–(5c), verifies that V [1],[2],[3]
mn =

−(V [1],[2],[3]
nm )∗, m �= n. Thus, for codirectional (contradirec-

tional) coupling, in which power flows in the same (opposite)
direction for both modes, we have the symmetry constraint
Cnm = −C∗

mn (Cnm = C∗
mn) [43]. Focusing on the first two

terms of Eq. (3), by rotating the amplitudes per ã1 = e−ik1za1

and ã2 = e−ik2za2, we obtain [44]

d

dz

(
ã1

ã2

)
=

(−ik1 C21

C12 −ik2

)(
ã1

ã2

)
, (6)

where k1,2 are the unknown propagation constants of the per-
turbed eigenmodes.

B. Bifurcation point in the modal dispersion

The (weighted) superposition of the two modes interfering
in the chirowaveguide constitutes the system’s supermode,
whose propagation constant can be found upon substituting
ãeiksz, where ã = (ã1 ã2)ᵀ, with ᵀ denoting transpose, in
Eq. (6). Algebraic manipulations yield the propagation con-
stants of such an eigenmode, namely,

ks = −k̄ ± S, (7)

where

k̄ = k1 + k2

2
and S =

[(
δk21

2

)2

− C12C21

]1/2

.

The corresponding eigenvectors turn out to be ã =
(−2iC21/(δk21 ± S) 1)ᵀei(k̄∓S)z, where it is evident that
both eigenvalues and eigenvectors coalesce to k̄ and ã =
(−2iC21/δk21 1)ᵀeik̄z, respectively, when

S = 0 ⇒ δk21 = ±2(C12C21)1/2. (8)

This is the condition for the occurrence of EPs in a single
chirowaveguide, in agreement with Ref. [12]. In a system
devoid of gain or loss, δk21 is purely real; hence, Eq. (8)
implies that this requirement can be fulfilled only in instances
of contradirectional coupling:

C12 = C∗
21. (9)

In the absence of any standard reflection mechanism in
the chirowaveguide (e.g., a grating), a wave with a Poynt-
ing vector directed toward the source would typically require
an additional excitation for causal power flow. This salient
feature is often overlooked, precisely because eigenanalysis
is inherently stationary and does not distinguish between an
excitation placed at −∞ or at +∞ [45]. Of course, any
waveguide with z-reversal symmetry allows for counterprop-
agating modes (kz → −kz), with the pairs (E⊥,−E‖) and
(−H⊥, H‖) also solving the wave-guiding problem. Here,
F = F⊥ + F‖k̂, with F = {E, H} and k̂ being a unit vector
in the direction of ks. As noted in Ref. [15], the energy flux
in the negatively refracting slab opposes that in the cladding
(note that ks is fixed for guided modes, as they are stationary
solutions of the corresponding wave equation). This implies
sustained waves may require continuous sources at both ends.
However, as explicated in Ref. [15], averaging the Poynting
vector over the pulse period reveals a double-vortex energy
flow structure, akin to that observed in the surface modes of
Ref. [16]. Such a mechanism confines energy within wave
packets with minimal dissipation, thus enabling opposing di-
rections of the Poynting vector in the core and the cladding via
only one source. These considerations justify the sign func-
tion in Eq. (4), elucidate the “counterintuitive” PT -symmetry
breaking in the anisotropic waveguide of Ref. [46] that does
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FIG. 2. Dispersion characteristics and modal profiles of a single
negatively refracting chirowaveguide due to giant chirality: (a) Real
and (b) imaginary parts of the refractive indices of two interfering
modes supported by a 150-nm-thick chirowaveguide, with nc = 2
and κ = 2nc, embedded in vacuum. (c) Schematic of the structure
with modes propagating in the z direction. (d) Dispersion ω(k) of
these same modes. Ex component of their electric-field profiles at
(e) λ = 0.8 μm, (f) λ = 0.9 μm, and (g) λ = 1 μm. The magnitude
of each field is shown in the top panel, with its associated phase
displayed in the bottom panel.

not possess gain or loss, and explains a negative Poynting
vector (cf. Fig. 2(d) in Ref. [23]).

For a chirowaveguide slab with a thickness of 150 nm,
refractive index nc = 2, and chirality parameter κ = 2nc [see
Fig. 2(c)], the guided modes are obtained using SIMPHOTON-
ICS MATLAB. As depicted in Fig. 2(a), a PT -like fork in
the modal dispersion emerges, with a sole EP arising at the
bifurcation point around λ ≈ 0.9 μm. In the “PT -broken”
regime (i.e., before the EP), the effective indices of the modes
exhibit equal real parts but opposite imaginary parts [see
Fig. 2(b)]. Consequently, one mode propagates as a growing
wave, ã2 ∝ e[C12C21−(δk21/2)2]1/2ze−ik̄z, while the other attenu-
ates, ã1 ∝ e−[C12C21−(δk21/2)2]1/2zeik̄z. In this regime, both modes
are backward, as indicated by the negative group velocity
[slope of ω(k) in Fig. 2(d)]. Moreover, the electric-field
profiles have identical magnitudes but opposite phases [see

FIG. 3. Controlling EPs via the chirality parameter: (a) Real part
of the refractive index and (b) wavelength of an EP arising in a 150-
nm-thick chirowaveguide embedded in vacuum, with nc = 2, as a
function of κ . Up to a first-order approximation, the reciprocal trend
becomes apparent upon scrutinizing Eqs. (8) and (5b).

Fig. 2(e)], the converse of the case of gain-loss PT -
broken modes that have asymmetric field magnitudes (see,
e.g., Ref. [29]). However, in this instance, complex-index
modes stem from strong coupling between counterpropagat-
ing modes [see Eq. (7)] and do not correspond to a spatial
imbalance between gain and loss regions, therefore not requir-
ing asymmetry. By contrast, precisely at the EP, the modes
merge: their effective indices and profiles are identical, as
shown in Fig. 2(f). Transitioning to the “PT -symmetric”
regime beyond the bifurcation point, the modes’ effective
refractive indices assume distinct real values. One mode is
backward with a negative group velocity (green), while the
other is forward with a positive group velocity (blue), as
indicated by the slope of ω(k) in the bottom panel of Fig. 2(d).
While the magnitudes of their electric fields differ, their
phases remain equal [see Fig. 2(g)], indicating an equal num-
ber of nodes but varying field distributions.

The value of the chirality parameter strongly influences
the effective refractive index of the chirowaveguide modes,
thereby shifting the dispersion of the forward and backward
modes and their coupling point. In the same 150-nm-thick
waveguide with refractive index nc = 2, we vary the chirality
parameter from 1.5nc to 2.25nc and plot the real part of the
effective refractive index of the modes at the EP as well as
the wavelength at which the EP ensues. Figure 3 reveals that
increasing the chirality shifts the EP to lower values of effec-
tive refractive index and shorter wavelengths, thus providing
a tuning mechanism for the EP location in parameter space.
A reciprocal dependence of this nature is anticipated and can
be heuristically traced back to Eq. (8). Specifically, since k̄ =
2π/λEP ∝ ±(C12C21)1/2, under a first-order approximation,
the quantity (C12C21)1/2 is proportional to κ [see Eq. (5b)],
which elucidates the illustrated reciprocal trend in Fig. 3.

III. EXCEPTIONAL POINTS IN CONTRADIRECTIONAL
CHIROWAVEGUIDE COUPLERS

A. Coupled-wave theory description of nonidentical
coupled waveguides

Hitherto, we have focused on a single chirowaveguide, with
the occurrence of an EP being attributed to either an actual
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FIG. 4. Dispersion forks and modal profiles in a contradirec-
tional chirowaveguide coupler: (a) Schematic of a 300-nm-thick
dielectric slab coupled to a 130-nm-thick chirowaveguide with
modes propagating in the z direction. (b) Refractive indices of modes
from the isolated 300-nm-thick dielectric slab waveguide (blue and
red) and the 130-nm-thick chirowaveguide (green). [(c)–(e)] Profiles
of the electric-field Ex component for two modes of the coupled
waveguides separated by 200 nm at (c) 1 μm, (d) 1.14 μm, and (e)
1.2 μm. The magnitude of the electric field’s dominant x component,
|Ex|, is shown. (f) Real and (g) imaginary parts of the refractive
indices of three modes interfering due to the coupling of the achiral
and chiral slabs.

grating-type distributed reflection or an “effective” reflection
mechanism. Proceeding to more sophisticated scenarios, one
would observe that Eq. (3) can serve as the foundation for
examining coupled chirowaveguides, thereby allowing one to
describe the transfer of energy between the two slabs schemat-
ically depicted in Fig. 1. Specifically, a 300-nm-thick achiral
slab waveguide will serve as the unperturbed geometry, whose
fields will be perturbed upon bringing a 130-nm-thick chi-
rowaveguide into proximity [see Fig. 4(a)]. Both waveguides
are embedded in vacuum and have a refractive index of
nc = 2. The chirowaveguide has a chirality parameter of
κ = 2nc; in fact, any value of κ > nc would suffice.

When the two waveguides are sufficiently close, we can
approximate the overall field distribution of the compos-
ite structure (i.e., the supermode) via the superposition:

E = aAeAeikAz + aBeBeikBz and H = aAHAeikAz + aBHBeikBz,
where aA and aB are modal amplitudes. We may then revisit
Eq. (3) and sum over m = A, B, therewith recasting Eq. (6) as

d

dz

(
aA

aB

)
=

(−ikA CBA

CAB −ikB

)(
aA

aB

)
, (10)

where the detuning parameter is δkBA = kB − kA. For the cou-
pled configuration, the propagation constants are perturbed
versions of those supported by each waveguide individually
(i.e., with the other waveguide at infinity). These depend
generally both on the individual waveguide mode overlap,
involving integrals of the terms E⊥,m × h∗

⊥,n, with {m, n} =
{A, B}, and on the perturbation to each waveguide separately
[cf. Eqs. (5a)–(5c)]. The former integrals extend over all space
to include radiation modes, whereas the latter are limited to
the perturbation region [47]. Here, we will limit the inte-
gration area from the entire space to the perturbation region
and assume that the orthogonality relation of Eq. (B4) in Ap-
pendix B is approximately satisfied, provided the two coupled
waveguides are not too close. This ensures that the fields from
one waveguide are minimal where those from the other are
significant and vice versa [40].

Thus far, the generalization of the coupled-wave theory
description from a single waveguide to coupled waveguides
has been straightforward, and the condition for the occurrence
of EPs, as identified in Eq. (8), seems to hold. Indeed, when
coupling identical (or even nearly identical) waveguides to
form a contradirectional coupler, the coupling coefficients are
related by CBA = C∗

AB. This follows from energy conservation:
d/dz(|aA|2 ± |aB|2) = 0, where the sign depends on the rela-
tive direction of power propagation [43,48].

However, for nonidentical waveguides, such as those il-
lustrated in Fig. 1, the coupling coefficient corresponding to
the coupling of a mode propagating at the achiral waveguide
WA to a mode supported by the chirowaveguide WB, CBA, is
given by Eq. (4). Contrarily, the disturbance of a mode in
the chirowaveguide WB by a mode propagating in the achiral
waveguide WA yields the coupling coefficient

CAB = i
k0

2

∫
SA

(εr − 1)(eA · e∗
B)dSA, (11)

as no other perturbation mechanism as such exists in WA; εr is
the relative permittivity of the medium filling WA and WB, and
the surrounding medium is vacuum.

Therefore, two natural questions arise: (i) is energy conser-
vation violated, and (ii) what is the condition for realizing EPs
in nonidentical couplers? Concerning the former, Ref. [47]
demonstrated that by considering the individual modal over-
lap integrals as a first-order effect of the perturbation and
disregarding any radiation mode only after their influence has
been determined, energy conservation is not violated. Regard-
ing the EP condition, it is given by

δkBA = ±2(CABCBA)1/2, (12)

which requires that

{CABCBA ∈ R | CABCBA � 0}. (13)

The condition in Eq. (13) can be satisfied even if CAB and
CBA are not related by complex conjugation, such as in cases
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involving nonidentical coupled waveguides, provided that
Re(CAB)Im(CBA) = −Re(CBA)Im(CAB). In our case, however,
as shown in Table I, the coupling coefficients are real, despite
the waveguides being nonidentical, thereby satisfying the con-
dition in Eq. (13). Otherwise, no EPs can occur in a system
presumed to be gain- or loss-free (see Sec. II A of Ref. [12]).

B. Forklike dispersion features without gain-loss modulation

To demonstrate the predictions of Sec. III A, let us start
by considering isolated waveguides. Their modes are studied
in a wavelength range that enables simple crossings between
one mode of the 130-nm-thick chirowaveguide [green in
Fig. 4(b)] and the two lowest-order (i.e., highest-index) guided
modes of the 300-nm-thick achiral waveguide [blue and red
in Fig. 4(b)]. The achiral mode polarizations are both linear,
TE for the blue mode and TM for the red mode, whereas
the chirowaveguide mode has a quasicircular polarization.
The achiral modes propagate forward, while the chiral mode
propagates backward (i.e., the direction of phase propagation
and the integrated Poynting vector are opposite), suggesting
the anticipated transition to the negative refraction regime due
to giant chirality.

Subsequently, the waveguides are brought into proxim-
ity by placing them at a distance d = 200 nm apart [see
the schematic in Fig. 4(a)]. The resulting supermodes are
therefore partially located in the achiral and chiral waveg-
uides. Away from any crossings between achiral and chiral
dispersions, the coupled modes tend to retain approximately
the same refractive index as their isolated counterparts and
are mainly located in the corresponding waveguide [short
and long λ in Figs. 4(f) and 4(g) and associated profiles
in Figs. 4(c) and 4(e)]. At the crossings between the achi-
ral and chiral dispersions, however, complex zones appear
[around λ = 1.05 and 1.15 μm in Figs. 4(f) and 4(g)]. As
seen in Fig. 4(d), complex-index coupled-mode profiles have
identical magnitudes, as in the single chirowaveguide. Their
polarizations are quasilinear in the achiral waveguide and
strongly elliptical in the chiral medium, with opposite orien-
tations and rotation directions between both modes.

These complex zones widen as the waveguides are brought
closer together since the coupling between the waveguides is
naturally increased. When their spacing is reduced to d = 100
nm, both complex zones merge, as shown in Fig. 5. Interest-
ingly, the forward-propagating mode (blue ) gradually evolves
from a lower-order achiral-dominated mode (n ≈ 1.75, λ ≈
0.95 μm) to a higher-order achiral-dominated mode (n ≈ 1.5,
λ ≈ 1.25 μm) by hybridizing with the complex-index modes
as it crosses their dispersion curve. Nonetheless, despite this
hybridization, the center of the complex zone does not con-
stitute a third-order EP, as evidenced by the nondegenerate
imaginary indices shown in Fig. 5(b).

To demonstrate the validity of the coupled-mode theory
developed in Sec. III A, we extract the mode profiles from
simulations of the isolated 300-nm-thick achiral waveguide
and the 130-nm-thick chirowaveguide. The coupling coeffi-
cients given by Eqs. (4) and (11) are then calculated based on
integration of the isolated mode profiles, considering the ad-
equate spacing between the waveguides and under the stated
assumptions. The resulting values of the coupling coefficients

FIG. 5. Effective refractive indices supported by a contradirec-
tional chirowaveguide coupler: (a) Real and (b) imaginary parts of
the refractive indices of three modes from the 300-nm-thick achiral
dielectric slab waveguide coupled to a 130-nm-thick chirowaveguide,
separated by d = 100 nm.

are thereafter inserted into a generalized, three-mode version
of the coupled-wave system [Eq. (10)], so that the effective
refractive indices of the supermodes may be calculated as
eigenvalues of the system:

d

dz

⎛
⎝a1

a2

a3

⎞
⎠ =

⎛
⎝−ik1 C21 C31

C12 −ik2 Cκ=0

C13 Cκ=0 −ik3

⎞
⎠

⎛
⎝a1

a2

a3

⎞
⎠, (14)

where subscripts 1, 2, and 3 of the coupling coefficients cor-
respond to the chiral mode and the two achiral modes of the
isolated waveguides, respectively (see Table I in Appendix C),
and kn are the propagation constants of these isolated modes.
The coupling between both achiral modes Cκ=0 is set to zero
since these modes are of TE and TM nature and therefore only
marginally interacting. Of course, the archetypal coupling co-
efficients Cmn between two modes are described by Eq. (10),
while Eq. (14) illustrates how this can be straightforwardly
generalized to include three modes or, indeed, n modes (see
Sec. I of the supplement in Ref. [49]).

The resulting effective refractive indices are presented in
Figs. 6(a) and 6(b) for a d = 200 nm gap and in Figs. 6(c) and
6(d) for a d = 100 nm gap. Clear qualitative agreement with
the simulation results is noted from these plots: two complex
zones for the d = 200 nm gap and one large, merged, complex
zone for the d = 100 nm gap. Although these zones emerge
at precisely the wavelengths predicted by the simulations,
the theory appears to slightly overestimate their associated
linewidths. This disparity stems from the interaction of a
multitude of other modes in the simulation not considered in
the idealized three-mode system used in theory. These other
simulated modes alter the final dispersion much less signif-
icantly than the coupling occurring at dispersion crossings.
We note that V [3] of Eq. (5c) contributes to about half the
value of coupling coefficients C21 and C31 (see Table I in Ap-
pendix C), demonstrating the importance of considering this
term for large values of chirality. Our theoretical framework is
capable of analyzing chirowaveguides with non-negligible (in
this instance, giant) chirality, with its success being evident
upon comparing the simulation results of Figs. 4 and 5 with
the theoretical predictions of Fig. 6.
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FIG. 6. Coupled-wave theory predictions for the spectral features
of a chirowaveguide contradirectional coupler: Effective refractive
indices of three modes theoretically calculated from Eq. (10) by
integrating isolated waveguide modes extracted from simulations
(a) and (b) for a d = 200 nm wide gap and (c) and (d) for a d = 100
nm wide gap. Here, (a) and (c) depict the real part of the effective
refractive index, while (b) and (d) illustrate its imaginary part. For
the values of the coupling coefficients obtained from the simulation,
refer to Appendix C.

IV. FURTHER DISCUSSION
AND CONCLUDING REMARKS

Over three decades ago, when interest in chirowaveguides
was burgeoning, approximations based on weak chirality were
well founded. This was due to the inherently weak opti-
cal rotatory power of natural media, necessitating advanced
structures to detect chiral responses. For instance, blue light
passing through 1 mm of a Bi12GeO20 crystal has its electric
field rotated by 42◦, corresponding to a chirality parame-
ter κ ≈ 5.6 × 10−5 [50]. However, recent advancements in
metamaterials have unlocked the potential for giant chirality
values across the electromagnetic spectrum, including optical
[51,52], terahertz [53,54], and gigahertz [55,56] frequencies.
For example, the metasurface reported in [51], which com-
prises pairs of vertically displaced dielectric bars, exhibited a
chirality reaching up to κ ∈ (2.98, 3.02) in the visible range
of 596–604 nm. For insights into various aspects of giant
chirality (maximum value, bandwidths, controllability), the
reader is referred to Sec. 6 of Ref. [35] and the references
therein.

Building on these developments, we proposed a chiral
system to achieve signature phase transitions and character-
istic bifurcations in modal dispersion without the need for
gain-loss modulation as described in Ref. [27]. Our approach
employs contradirectional coupling between a dielectric

waveguide and a chirowaveguide, with the latter exhibit-
ing negative refraction due to giant chirality. Importantly,
this method operates in homogeneous, nonperiodic media,
circumventing the requirement for simultaneous negativity
of the permittivity and permeability. This presents several
advantages over traditional PT -symmetric and negative-
refractive-index waveguides. Notably, it presents a flexible
alternative to current manufacturing processes while offering
an additional degree of freedom for manipulating the char-
acteristic forks in the dispersion of media such as those in
Refs. [28,29].

Furthermore, the magnetoelectric coupling in our medium
can be dynamically adjusted through various means such as
voltage [57], pneumatic force [58], piezoelectricity [30], ex-
ternally applied electric fields [31], and conductivity [32]. In
addition to the usual degrees of freedom for tuning EPs, such
as the refractive index, geometrical dimensions of the waveg-
uides, etc., our approach uniquely leverages the flexibility of
chirality to provide more versatile and precise control over
the location of EPs. This versatility positions our system as a
promising platform for advanced light manipulation, enabling
precise control over optical properties. It paves the way for
innovative applications in high-sensitivity integrated photonic
sensors [59], gain enhancement in lasing applications [60],
and topological waveguiding [61], among others.
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APPENDIX A: COUPLED-WAVE-EQUATIONS
DERIVATION

Maxwell’s macroscopic source-free curl relations for the
unperturbed achiral waveguide are

∇ × E = ik0μrh and ∇ × h = −ik0εrE, (A1)

where h = η0H, with η0 = (μ0/ε0)1/2. Accordingly, for the
perturbed chirowaveguide, we have

∇ × E′ = k0κE′ + ik0μrh′, (A2a)

∇ × h′ = −ik0ε
′
rE′ + k0κh′, (A2b)

where h′ = η0H′. Lorentz reciprocity dictates that [41]

∇ · (E∗ × h′ + E′ × h∗)

= ik0(ε′
r − εr )E∗ · E′ + κk0(h∗ · E′ − E∗ · h′), (A3)

with the asterisk (∗) denoting complex conjugation. Integrat-
ing over a volume V , enclosed by a surface S, Gauss’s theorem
yields∫

S
(E∗ × h′ + E′ × h∗)dS

= ik0

∫
V

(ε′
r−εr )E∗ · E′dV +k0

∫
V

κ (h∗ · E′−E∗ · h′)dV .

(A4)
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Let the longitudinal dimension of the waveguide slab align
with the z axis, let S denote the surface of a rectangular
parallelepiped enclosing the slab at infinity, and let 	z be the
longitudinal (infinitesimal) length. The transverse surface St

is positioned such that its center of mass lies on the z axis,
indicated by a unit vector ẑ. Furthermore, assuming an eik·r
dependence for each field, we may decompose the fields as
F = F⊥ + F‖k̂, where F = {E, h, E′, h′} and k̂ is a unit vector
in the direction of the wave vector k, which coincides with ẑ
for axial propagation. As 	z tends to zero, Eq. (A4) yields∫

S

∂

∂z
(E∗

⊥ × h′
⊥ + E′

⊥ × h∗
⊥) · ẑdS

= ik0

∫
S

(ε′
r − εr )E∗ · E′dS + k0

∫
S
κ (h∗ · E′ − E∗ · h′)dS.

(A5)

For the nth discrete proper mode supported by the unper-
turbed waveguide, we have

E = eneiknz, h = hneiknz, (A6)

where kn is the wave number associated with the mode; per the
aforesaid decomposition, en = e⊥,n + e‖,nẑ, and hn = h⊥,n +
h‖,nẑ. The transverse components of the unperturbed fields,
as detailed in Appendix B, are well established as forming a
complete set of orthonormal basis. Therefore, by disregarding
any coupling or scattering by continuous radiating modes, we
can expand the perturbed fields using such a basis and express
them as

E′
⊥ =

∑
m

ame⊥,meikmz, (A7a)

h′
⊥ =

∑
m

amh⊥,meikmz, (A7b)

where am are z-dependent amplitudes.
Defining ∇⊥ = ∇ − (∂/∂z)ẑ, and provided that κ �= ñ,

ñ = (ε′
rμr )1/2, Eqs. (A2a) and (A2b) lead to

E ′
‖ẑ = k−1

0 κ

κ2 − ñ2
∇⊥ × E′

⊥ − ik−1
0 μr

κ2 − ñ2
∇⊥ × h′

⊥,

h′
‖ẑ = ik−1

0 ε′
r

κ2 − ñ2
∇⊥ × E′

⊥ + k−1
0 κ

κ2 − ñ2
∇⊥ × h′

⊥.

Thus, upon substitution of the expanded perturbed fields of
Eqs. (A7a) and (A7b) we obtain, respectively,

E ′
‖ =

∑
m

am

(
n̄2

ñ2 − κ2
e‖,m − iκμr

ñ2 − κ2
h‖,m

)
eikmz, (A8a)

h′
‖ =

∑
m

am

(
n̄2

ñ2 − κ2
h‖,m + iκεr

ñ2 − κ2
e‖,m

)
eikmz. (A8b)

If we set κ = 0, our expressions reproduce the result of
Sec. 8.5 of Ref. [40]; for ε′

r ≡ εr , Eqs. (A8a) and (A8b)
corroborate Eqs. (16) and (17) of Ref. [41], respectively.

As highlighted by Kamenetskii [42], expressing the
longitudinal perturbed fields exclusively in terms of the cor-
responding component of the unperturbed fields does not
inherently follow from the assumption that κ � ñ and over-
looks the effects of longitudinal polarization currents, which
become significant near cutoff frequencies. Hence, here, we

retain the expansions of Eqs. (A8a) and (A8b) and represent
the total perturbed fields

E′ =
∑

m

amemeikmz + E ′
κ ẑ, (A9a)

h′ =
∑

m

amhmeikmz + h′
κ ẑ. (A9b)

The first terms on the right-hand sides of Eqs. (A9a) and
(A9b) are akin to those of Eqs. (18) and (19) in Ref. [41],
respectively, showcasing the expansion of the perturbed fields
in relation to the unperturbed fields. By contrast to Ref. [62],
in this paper, we have additionally included

E ′
κ =

∑
m

am

(
κ2 + n̄2 − ñ2

ñ2 − κ2
e‖,m − iκμr

ñ2 − κ2
h‖,m

)
eikmz,

h′
κ =

∑
m

am

(
κ2 + n̄2 − ñ2

ñ2 − κ2
h‖,m + iκεr

ñ2 − κ2
e‖,m

)
eikmz,

with lim
κ→0

E ′
κ = 0 and lim

κ→0
h′

κ = 0. We emphasize that neither

E ′
κ nor h′

κ exclusively represents the total longitudinal compo-
nent of each field.

If the unperturbed fields are those of Eq. (A6) and the per-
turbed fields are those of Eqs. (A9a) and (A9b), by exploiting
Eq. (B6), Eq. (A5) yields

sgn(n)δm,n

∑
m

[
∂am

∂z
+ iδkmnam

]
eiδkmnz =

∑
m

ameiδkmnzImn.

(A10)

Finally, we may cast Eq. (A10) in the more familiar form of
Eq. (6), where all integrand terms may be concisely expressed
as per Eq. (4) in the main text.

APPENDIX B: ORTHONORMAL BASIS
IN DIELECTRIC WAVEGUIDES

If we remove both perturbations from Eq. (A5), i.e., set
ε′

r ≡ εr and κ = 0, we obtain∫
S

∂

∂z
(E∗

⊥ × h′
⊥ + E′

⊥ × h∗
⊥) · ẑdS = 0. (B1)

In this case, the primed fields are supported by the unperturbed
geometry too. Thus, we may drop the prime notation and state
that the achiral waveguide supports an n mode, (En, hn)ᵀeiknz,
and an m mode, (Em, hm)ᵀeikmz. Thus, Eq. (B1) is rewritten as

(km − kn)
∫

S
(E∗

⊥,n × h⊥,m + E⊥,m × h∗
⊥,n) · ẑdS = 0, (B2)

where for km �= kn the integral is obviously zero.
Here, we adopt the convention of Ref. [40]: −m denotes

a mode whose phase propagates in the opposite direction
relative to that of the m mode but has the same phase velocity
as the latter. With the indices being arbitrary, we replace m
with −m in Eq. (B2) and obtain

(km + kn)
∫

S
(−E∗

⊥,n × h⊥,m + E⊥,m × h∗
⊥,n) · ẑdS = 0.

(B3)

We note that in deriving Eq. (B3), we have considered that
our structure respects the z-reversal symmetry. This implies
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that by replacing k with −k, it is E⊥,m and −h⊥,m that satisfy
Maxwell’s equations. Again, for km �= −kn, the integral in
Eq. (B3) is zero.

Adding the two conditionally zero integrals yields∫
S

(E⊥,m × h∗
⊥,n) · ẑdS = 0, (B4)

which holds true provided that n �= ±m. If n = ±m, it is
straightforward to show (see Ref. [40]) that the integral of
Eq. (B4) is, indeed, the Poynting power density, i.e.,

1

2
Re

[∫
S

(E⊥,n × h∗
⊥,n) · ẑdS

]
= sgn(n)Pn, (B5)

where Pn is the power carried by the nth mode. The sign func-
tion ensures that upon reversing the direction of propagation
the power density remains positive.

All the above are compactly summarized by∫
S

(E⊥,m × h∗
⊥,n) · ẑdS = sgn(n)2Pnδm,n, (B6)

where δm,n is the Kronecker delta. Equation (B6) shows that
the power carried by any electromagnetic field in the unper-
turbed waveguide is the sum of the powers of all supported
modes. Thus, we can expand any electric or magnetic field in
the waveguide using these modes.

APPENDIX C: COUPLING COEFFICIENTS

Table I provides the coupling coefficient values used in
Eq. (14) in Sec. III B to generate Fig. 6.

TABLE I. Coupling coefficients between one mode of a 130-nm-
thick slab waveguide with giant chirality (subscript 1) and two modes
of a 300-nm-thick achiral slab waveguide (subscripts 2 and 3).

d = 100 nm d = 200 nm

C12 0.114 0.054
C21 0.087 0.041
C13 0.037 0.020
C31 0.086 0.046
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