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Abstract
While open-source software has enabled significant levels of reuse to speed up software development, it has also
given rise to the dreadful dependency hell that all software practitioners face on a regular basis. This article
provides a catalogue of dependency-related challenges that come with relying on OSS packages or libraries.
The catalogue is based on the scientific literature on empirical research that has been conducted to understand,
quantify and overcome these challenges. Our overview of this very active research field of package dependency
management can be used as a starting point for junior and senior researchers as well as practitioners that
would like to learn more about research advances in dealing with the challenges that come with the dependency
networks of large OSS package registries.
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1. Introduction

Probably every complex software system today relies, to some extent, on reusable OSS libraries dis-
tributed through package managers hosting millions of libraries in their package registries. Such reuse
inevitably leads to what is commonly known to developers as the dependency hell. Software becomes
dysfunctional, outdated, buggy, or insecure due to package interdependencies and updates that lead to
conflicts, breaking changes, incompatibilities, security issues, deprecations, and many more. Dealing
with such issues requires investing significant time and effort. This is why a lot of empirical research in
the last decade has focused on understanding OSS package dependency networks, and on mechanisms
to cope with dependency-related challenges.

We provide an overview of the literature on how OSS package reuse practices have evolved in recent
years. We propose a catalogue of challenges in OSS package dependency networks and beyond, and
present recent empirical research to understand and address each of these challenges. It can be used as
a basis for junior and senior researchers as well as practitioners that would like to get a kick-start in
the state-of-the-art research challenges and advances in package dependency management.

2. Starting point of the overview

As a starting point for this article we based ourselves on a seminal article reporting on an empirical
comparison of the evolution of the dependency networks of seven of the largest package registries for
mainstream programming languages [1]. The article provided quantitative insights into the dependency
issues that software practitioners face when relying on reusable OSS libraries distributed through large
package registries. The article focused on package registries for mainstream programming languages
for which complete package metadata was available from the libraries.io monitoring service, including
reliable information about package dependencies. Seven ecosystems were studied over a five-year
period (2012 – 2016): Cargo for Rust, CPAN for Perl, CRAN for R, npm for JavaScript (JS), NuGet for the
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Table 1
Comparing the number of packages in seven package registries between April 2017 and October 2024.

Package Language # packages Increase
manager 04-2017 10-2024 factor

npm JS 462K 4,875K 10.6
NuGet .NET 84K 539K 6.4

Packagist PHP 97K 461K 4.8
RubyGems Ruby 132K 187K 1.4

Cargo Rust 9K 167K 18.6
CRAN R 12K 27K 2.3
CPAN Perl 34K 41K 1.2

.NET platform, Packagist for PHP, and RubyGems for Ruby. The study answered four main research
questions pertaining to the evolution of the dependency networks of these package registries:

RQ1: How do package dependency networks grow over time? The dependency networks of all
studied package registries were observed to grow over time, though the speed of growth differs, with
npm being the largest registry experiencing the fastest growth. The dependency network’s complexity
in terms of ratio of dependencies over packages was observed to remain stable for CPAN, Packagist
and RubyGems, while it tended to increase for Cargo, CRAN, npm and NuGet.

RQ2: How frequently are packages updated? A Changeability Index was defined to characterise a
registry’s propensity to change at time 𝑡. The number of package updates was observed to remain stable
for Cargo, CPAN and CRAN, while it had a tendency to grow for the other registries. Most package
releases were observed to receive updates within a few months. However, the number of package
updates was not evenly distributed across packages, with a minority of active packages responsible for
most of the package updates. Younger or required packages were found to receive package updates
more often. Some of the observed behaviours depended on the age of the package registry.

RQ3: To which extent do packages depend on other packages? A Reusability Index was defined
to measure the amplitude of reuse (number of required packages) and the extent of reuse (number of
dependent packages) at time 𝑡. Dependencies were observed to abound in all package registries. Most
packages depend on other packages, and the proportion of connected packages increases over time.
Dependencies were not evenly spread across packages: < 30% of the packages were required by other
packages, and < 17% of all required packages concentrated > 80% of all reverse dependencies. This
unequal concentration increased over time.

RQ4: How prevalent are transitive dependencies? The indirect reuse induced by the prevalence
of transitive dependencies in a package dependency network causes package failures to propagate. This
may impact large parts of the network. The majority of dependent packages were observed to have
few direct dependencies but many transitive dependencies. More than half of the top-level packages
have a dependency tree of depth 3 or higher. The 𝑝-Impact Index of a package registry at time 𝑡 was
defined to quantify the number of packages that could have a high potential impact because of their
many transitive dependents. A notable increase in this impact over time was observed for Cargo, npm
and NuGet, suggesting that these registries are becoming more subject to single points of failure.

Based on the answers to these RQs, the authors observed that three package registries (npm, NuGet
and Cargo) faced more difficulties to cope with the rapid growth and increasing complexity of their
dependency networks, suggesting that they should make an effort to reduce their complexity and
fragility. Table 1 (based on data obtained from libraries.io) shows that these registries have continued
their growth, suggesting that this observation still holds today. Comparing the number of packages in
the dataset of [1] in April 2017 with the data in October 2024, we observe an 18-fold increase in the
number of packages for Cargo, a 10-fold increase for npm, and a 6-fold increase for NuGet.

Due to a lack of complete or reliable dependency data, only seven package registries were included
in [1]. Dietrich et al. [2] considered a larger collection of 17 different package managers, investigating



Table 2
Catalogue of dependency-related challenges and associated scientific references since 2018. Additional references
are provided in the respective subsections of Section 3.

Dependency-related challenges References

Outdated dependencies [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
Breaking changes and backward incompatibilities [3, 24, 25, 26, 27, 28, 29]
Versioning policies and update strategies [2, 5, 30, 31, 32, 33, 34, 35]
Dependency solving [36, 37, 38, 39]
Bloated and missing dependencies [4, 9, 40, 41, 42]
Vulnerable dependencies [8, 17, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52]
Supply chain attacks [53, 54, 55, 56, 57, 58, 59, 60]
Library deprecation and migration [61, 62, 63, 64, 65]
Depending on trivial libraries [66, 67, 68]
Abandoned and unmaintained dependencies [69, 70, 71, 72]
Incompatible licenses [73, 74, 75, 76]

over 70 million dependencies, complemented by a survey of 170 developers. Similar in vein, Bogart et al.
[3] combined a survey, repository mining, and document analysis to observe the dependency practices
across 18 ecosystems and their communities. They observed that all ecosystems share values such
as stability and compatibility, but differ in other values, and use different tools, policies and practices
to support these values. This implies that findings for one ecosystem may not generalise to another.
Researchers have therefore empirically studied dependency issues in specific package registries, such
as Maven for Java [4, 5, 6], PyPI for Python [7, 8, 9], Swift PM for Swift [10], the ROS ecosystem [11],
and CRAN [12, 13].

3. Dependency-related challenges

The empirical findings of [1] revealed the increasing (transitive) complexity, impact, and growth of
OSS package registries. This makes it challenging for developers to maintain (dependencies on) such
packages. The remainder of this article presents a literature review on empirical research focusing
on these challenges and on strategies and solutions that have been proposed to overcome them. The
review is based on the content of scientific articles that appeared since 2018, the publication year of [1].
We considered articles in major software engineering conferences or journals that directly cited this
work, and used snowballing to include more recent relevant articles. To avoid missing out on important
research advances, we also searched through Google Scholar, Semantic Scholar and ResearchRabbit to
identify other relevant recent empirical research in this domain. Table 2 catalogs the dependency-related
challenges that we have been able to identify based on our literature review. The remainder of this
section discusses the most relevant recent research for each of these challenges.

3.1. Outdated dependencies

Updating one’s dependencies is a good strategy to reduce or avoid many dependency issues. By keeping
dependencies up to date, one can benefit from the most recent functionalities, bug fixes and vulnerability
fixes. Staying up to date also makes it easier to interact with upstream dependency providers, who tend
to focus on their most recent package releases. Kula et al. [14] studied 4,600 GitHub software projects
and 2,700 library dependencies, revealing that 81.5% of the studied systems have outdated dependencies.
To quantify such outdatedness of a package w.r.t. its dependencies, the technical lag concept has been
introduced [15, 16, 19]. Different from the concept of technical debt, which focuses on the internal code
quality of a software system, technical lag quantifies how much a package is “lagging behind” w.r.t
upstream –often third-party– dependencies. Such lag can be expressed along different dimensions [18]:
time lag (e.g., the time interval between the current version of a dependency being used and some more



recent version); version lag (how many major/minor/patch versions a dependency is behind); security
lag and bug lag (if more recent versions have known fixes for vulnerabilities or bugs that affect the
version being used). Which dimension or combination to use ultimately remains the decision of the
package maintainer, depending on one’s priorities.

Researchers have extended the analysis of outdatedness beyond the boundaries of package registries.
Lauinger et al. [17] analysed the reliance of 133K websites on JS libraries, observing that a majority of
these websites are at least one patch version behind for one of their included libraries, and that most
of them are relying on library versions that are outdated by several years. Zerouali et al. [20] studied
outdatedness in Docker, the most popular containerization technology. Considering over 3K container
images in Docker Hub, they empirically quantified their outdatedness w.r.t. installed JS, Python and
Ruby packages. Zerouali et al. [22] studied the outdatedness of 9,482 Helm charts, configuration files
for containerized applications for Kubernetes distributed through the Helm package manager. They
observed that around half of the container images used in Helm charts are outdated and nearly nine
out of them are exposed to vulnerabilities. Decan et al. [23] studied the reliance of GitHub Actions
automation workflows on reusable Actions. They found that these reusable Actions are frequently
updated, and that most of the workflows are relying on outdated Action versions, hence lagging behind
the latest available version for at least seven months, even though they had the opportunity to be
updated during at least nine months.
Tool support. Given the importance of keeping dependencies up to date, many automated tools

emerged to help developers in this task, such as Dependabot (now part of GitHub), Gemnasium
(now part of GitLab), the independent multi-platform solution Renovate, and Greenkeeper (no longer
available). Based on a mixed method empirical analysis, He et al. [77] evaluated the effectiveness of
Dependabot in keeping dependencies up to date, observing that projects reduce their technical lag after
its adoption. On the downside, Dependabot was found to recommend too many incompatible updates;
and the amount of Dependabot notifications was considered too high. Rombaut et al. [78] analysed
93,196 issues opened by Greenkeeper for npm projects hosted on GitHub. Greenkeeper was found to
induce a significant amount of overhead and false alarms in reported issues. Hejderup and Gousios [21]
recommended improving existing dependency update tools to combine static and dynamic analysis in
order to reduce the number of semantically conflicting updates. Dann et al. [79] proposed UPCY, an
automated dependency update tool that aims to minimise incompatible dependencies when updating.
The tool was validated on 29,698 updates in 380 Maven projects, observing an important improvement
compared to the updates recommended by existing tools.

3.2. Breaking changes and backward incompatibilities

Keeping dependencies up to date requires much effort from developers, because of the rapid pace of
package updates, but also because these updates can lead to backward incompatibilities due to the
introduction of breaking changes. Bogart et al. [3] investigated the policies and practices of making and
facing breaking changes in 18 software ecosystems. They observed that maintainers are frequently
exposed to breaking changes, and that ecosystems differ in their approaches to breaking changes.
Through a mixed methods empirical study Brito et al. [27] analysed why and how developers introduce
breaking changes in libraries. The identified reasons were to support new features, simplify existing
APIs, and improve maintainability. They also identified a contrast between library producers and
consumers in the perceived effort to overcome breaking changes. On the one side, according to the
developers, the effort to adopt these breaking changes is generally limited. On the other side, nearly
half of the questions related to breaking changes on StackOverflow are about how to integrate and
overcome these breaking changes.

Venturini et al. [29] studied backward incompatibilities introduced by breaking changes when upgrad-
ing npm dependencies to newer versions. By analysing dependency updates in 384 npm packages they
found that 11.7% of them lead to breaking changes, even though 44% of these dependency upgrades were
meant to be backward compatible. They observed that more than half of the backward incompatible
updates are due to transitive dependencies, and that the usual mitigation strategy is either for the



provider package to release a patch fixing the backward incompatibilities (usually within a week) or
for the dependent packages to incorporate these backward incompatible changes in newer version of
their packages (taking 4 months on average). In a similar vein, Jayasuriya et al. [80] studied the Maven
ecosystem by analysing 142K+ direct dependencies of 18K+ Maven artifacts. 71.6% of the dependencies
were outdated, and 11.6% of the dependency upgrades applied to them resulted in breaking changes.
Changes in transitive dependencies were a major factor for these breaking changes.

Recently, researchers have started to focus on so-called semantic or behavioural breaking changes.
Jayasuriya et al. [81] conducted an empirical analysis on 30,548 dependencies of 8,086 Maven artifacts to
identify the impact of dependency upgrades on behavioral breaking changes in the test suites of client
Java projects. Only 2.30% of the dependency upgrades caused client tests to break. Zhang et al. [28]
proposed and empirically validated a tool to statically detect semantic breaking changes in third-party
libraries used by Java projects by measuring semantic differences.
Tool support. Several language-specific tools help developers to detect breaking changes before an

update is released to the clients. Examples include PyCompat [82], DepOwl [83] and AexPy [84] for
Python, APIDiff [85], Clirr and Revapi for Java [86], and NoRegrets for JS [24, 25]. These tools analyse
whether the changes made to the types used in the public API may break clients. Empirical evidence
revealed that such tools are able to catch most breaking changes in practice [87]. Approaches based
on type regression testing [24, 26] run the test suites of a library’s clients to detect breaking changes.
While effective, it can require a lot of storage capacity and execution time. Møller and Torp [25] propose
an improved variant of type regression testing for JS libraries, by automatically generating tests from a
reusable API model. This approach is shown to run faster and find breaking changes in more libraries.

3.3. Versioning policies and update strategies

Proper versioning policies and update strategies, such as semantic versioning [2, 30, 35] can help in
mitigating breaking changes. Semantic versioning provides an implicit convention between the library
consumers (who specify the range of allowed versions) and library producers (who avoid introducing
breaking changes in non-major versions). Decan and Mens [32] investigated semantic versioning
compliance in Cargo, npm, Packagist and RubyGems, observing that most packages are compliant
with semantic versioning. In a follow-up work [33], they found that semantic versioning is misused in
packages not having reached the 1.0.0 version barrier. By analysing 120K library upgrades on Maven,
Ochoa et al. [5] found that only a minority of library consumers are affected by breaking changes, and
a large majority of the upgrades comply with semantic versioning. A study by Jayasuriya et al. [80] on
dependency upgrades of outdated Maven libraries leading to breaking changes revealed that almost
half of these breaking changes coincided with violations of the semantic versioning scheme.

While convenient to inform about the presence of breaking changes, semantic versioning does not
help developers in overcoming them, and important updates containing bug or security fixes may still
be missed due to the breaking changes that come with them. Backporting these fixes from more recent
releases to less recent ones may be the only solution to benefit from them. Decan et al. [34] empirically
studied such backported changes in Cargo, npm, Packagist and RubyGems. They found infrequent
use of backporting to maintain previous major versions, even when those versions were still widely
used. The lack of backports led thousands of packages exposed to security vulnerabilities even if a
fix was available for them. Similar in vein, Cogo et al. [31] investigated dependency downgrades in
npm. By analysing release notes and commit messages, they found that maintainers downgrade their
dependencies either reactively (to avoid defects in a specific version, or to cope with unexpected feature
changes and incompatibilities) or pro-actively (to avoid issues in future releases). Moreover, maintainers
tend to be more conservative on the dependency versions they use after such downgrades.

3.4. Dependency solving

One of the key responsibilities of package managers is dependency solving, in order to ensure that all
versions of all installed packages are mutually compatible and non-conflicting, and remain so when



removing and upgrading existing packages or installing new ones [38]. Unfortunately, dependency
solving has shown to be an NP-complete problem for most package managers [36, 37]. Many package
managers provide ad hoc solutions that are not always complete or lack expressiveness.

Pinckney et al. [39] proposed and evaluated Maxnpm and Pacsolve to overcome the shortcomings of
the npm dependency solver. It enables customizable constraints and optimization goals, empowering
developers to combine multiple objectives when installing dependencies. Other researchers have
proposed more generic formally founded solutions based on constraint solving and optimisation [36].

Functional package managers, such as GNU Guix1 and Nix2, provide a robust solution by enforcing a
declarative approach to dependency management, requiring all dependencies to be declared upfront to
build or run software. This ensures that the software environment is fully defined, with each dependency
explicitly specified. Additionally, these managers enable the creation of separate namespaces on-the-
fly, allowing multiple versions of the same package to be installed side-by-side without any risk of
incompatibility or inconsistencies. This represents a significant improvement over mainstream package
managers, which often struggle to achieve similar functionality without complex workarounds or
dependency resolution issues.

3.5. Bloated and missing dependencies

Several researchers have studied dependency smells related to bloated and missing dependencies, for
the dependency networks of Maven [4], PyPI [9] and npm [40]. Missing dependencies refer to required
packages that are not explicitly declared in the configuration file and hence need to be manually installed
to avoid dependency problems. Bloated or unused dependencies are packaged with the application’s
compiled code but are actually not necessary to build and run the application. Including them can
increase the size of the application and possibly affect its performance and security posture. Soto-Valero
et al. [41] proposed a novel technique for debloating dependencies in Java projects. The technique relies
on bytecode coverage analysis to precisely capture what parts of a project and its dependencies are
used when running with a specific workload. 68% of the bytecode of Java libraries and 20% of their
total dependencies could be removed through coverage-based debloating. Based on a dataset of 988
client projects, 81% of them successfully compiled and passed their test suite when the original library
was replaced by its debloated version. Weeraddana et al. [42] showed that unused dependencies also
negatively impact CI resource usage. Based on 20K+ commits in 1,487 projects relying on npm packages,
they found that > 55% of the CI build time was associated with dependency updates triggered by
unused dependencies.

3.6. Vulnerable dependencies

A very important challenge for OSS package registries is how to cope with vulnerabilities and security
weaknesses in dependencies, either directly or indirectly. They can lead to single points of failure
with a huge cascading impact through transitive dependencies. One example of a major incident was
discovered in May 2021, with a remote code execution vulnerability in npm’s pac-resolver package that
received over 3 million weekly downloads [88]. Another example in December 2021 was a vulnerability
in Maven’s Log4Shell package in the Log4j logging framework for Java that caused widespread damage
[89]. These incidents increased public awareness of the need to mitigate OSS supply chain attacks [55].

Because of their importance and impact, security vulnerabilities in package registries are a very active
domain of research. Dependency outdatedness is one of the major sources of security vulnerabilities.
Starting from a dataset of 133K websites depending on JS libraries, Lauinger et al. [17] observed that 37%
of the outdated websites included at least one vulnerable library. Decan et al. [44] studied vulnerabilities
in npm packages and observed that while vulnerabilities are quickly fixed after their discovery, it takes
a lot of time to adopt the fix for a large fraction of packages that (transitively) depend on the vulnerable
package. The main reasons are too restrictive dependency constraints and unmaintained packages.

1https://guix.gnu.org
2https://nixos.org

https://guix.gnu.org
https://nixos.org


Zimmermann et al. [48] aligned with these insights, observing that a lack of maintenance by a small
number of maintainers causes many npm packages to depend on vulnerable, unmaintained packages.
This confirms that npm suffers from single points of failure. Chinthanet et al. [43] analysed the lag
between the vulnerable release and its package-side fixing release. Through an empirical study of the
adoption and propagation tendencies of 1,290 package-side fixing releases that impact throughout a
network of 1.5M+ releases of npm packages, they found that stale clients require additional migration
effort, even if the package-side fixing release was quickly made available. Liu et al. [47] investigated the
security threats from vulnerabilities in the npm dependency network. They constructed a dependency-
vulnerability knowledge graph capturing 10M+ library versions and 60M+ dependency relations and
proposed an algorithm to statically resolve dependency trees and transitive vulnerability propagation
paths. Based on it, they empirically studied the evolution of vulnerability propagation in npm. Among
many findings, they confirmed outdatedness to be a major source of vulnerable dependencies. To cope
with it, they developed DTreme, a vulnerability remediation method that outperforms the official npm
audit fix tool. Prana et al. [45] analysed vulnerabilities in libraries used by 450 projects written in Java,
Python, and Ruby. They examined the types, distribution, severity and persistence of the vulnerabilities
over a one-year period. They found that most vulnerabilities persist throughout the observation period,
and the resolved ones take 3-5 months to be fixed.

Several studies have compared npm to other package registries, given that the particularities of
specific ecosystems could affect their vulnerability posture. Zerouali et al. [46] compared npm to
RubyGems w.r.t. how and when vulnerabilities are disclosed and fixed, how their prevalence changes
over time, and how vulnerable packages expose their (transitive) dependents to vulnerabilities. Among
many findings, they observed an increase in vulnerabilities in npm, but also a faster disclosure for
RubyGems. Moreover, vulnerabilities in npm tend to affect fewer package releases. Alfadel et al.
[8] found similar vulnerability characteristics in PyPI and npm, as well as divergences that could be
attributed to specific PyPI policies. They empirically studied 1,396 vulnerability reports affecting 698
PyPI packages. Focusing on 2,224 Python projects they observed that more vulnerabilities are discovered
over time, and a large portion (> 40%) are only fixed after having been publicly announced. Moreover,
more than half of the dependent projects rely on at least one vulnerable package, and it requires seven
months to update to a non-vulnerable version.
Tool support. Many tools are available to help developers detect and resolve security weaknesses

in vulnerable dependencies. One of them is GitHub’s Dependabot, which issues pull requests to
automatically update vulnerable dependencies, providing an effective platform for increasing awareness
of dependency vulnerabilities and mitigating vulnerability threats. Alfadel et al. [49] studied the degree
to which developers adopt Dependabot by investigating 2,904 OSS JS projects. They observed that
a majority of security-related pull requests are accepted, often merged within a day. The severity of
the dependency vulnerability and the potential risk of breaking changes were not strongly correlated
with the time to merge these pull requests. Mohayeji et al. [50] empirically studied receptivity to
Dependabot security updates in JS projects, observing that developers tend to delegate the task of fixing
vulnerable dependencies and merge the majority of recommended security updates within several
days. This is considerably faster than fixing vulnerabilities manually, which often takes up to several
months. Similar to earlier research, Alfadel et al. [51] empirically analysed vulnerable dependencies
in 6,546 JS applications, observing that 4.63% of them were exposed to dependencies with publicly
known vulnerabilities, even if a fix was available in 90.8% of the cases. They proposed DepReveal, a
tool to help developers better understand vulnerabilities in their application dependencies and to plan
their project maintenance. Wang et al. [52] studied 356,283 active npm packages, observing that, in
their latest release, 20% of them still introduce vulnerabilities via transitive dependencies despite the
involved vulnerable packages already fixed the vulnerability for over a year. They empirically studied
and distilled the remediation strategies to mitigate the fix propagation lag. Based on this, they developed
Plumber, a tool to derive customised remediation suggestions for pivotal packages. The tool received
positive feedback from many well-known projects.

So-called Software Composition Analysis (SCA) tools are being increasingly adopted by practitioners
to keep track of potential security risks due to vulnerable dependencies on third-party libraries. Most



SCA tools are based on static and/or dynamic analysis of the project dependency graph. Imtiaz et al.
[90] compared nine industry-leading SCA tools on a case study. They observed important variations
in the accuracy of vulnerability reporting, suggesting that practitioners should not rely on any single
tool, and that SCA tools need to achieve higher precision by avoiding false positives. Dietrich et al. [91]
focused on the inverse problem of false negatives (i.e., low recall), when SCA tools miss dependencies
on vulnerable components. They found empirical evidence of this for the Maven ecosystem, where
somehow obfuscated clones of vulnerable components are deployed in Maven Central, but not marked
as vulnerable in vulnerability databases.

3.7. Supply chain attacks

Package dependency networks are part of the wider concept of software supply chains [55, 56, 58].
Assuring their security is crucial to avoid supply chain attacks such as the malicious update of the Solar-
Winds Orion monitoring software, shipping a delayed-activation trojan horse that affected thousands
of organisations, including the US government [92]. Ohm et al. [54] analysed 174 malicious software
packages in npm, PyPI, and RubyGems that were used in real-world supply chain attacks. Nonprofit
foundations such as OWASP aim to improve software security in various ways. Related to package
dependencies in the software supply chain, they reported in 2022 Dependency Chain Abuse to be one
of the top 10 CI/CD security risks3. It comes with four main attack vectors: (1) Dependency confusion
aims to to trick clients into downloading a malicious package from a public repository rather than a
private internal package with the same name; (2) Dependency hijacking aims to compromise clients
that upgrade their dependency version to a more recent, malicious version; (3) Typosquatting aims to
mislead clients into using a malicious package that has a very similar name as the intended package; (4)
Brandjacking aims to mislead clients in depending on malicious packages that have the characteristics
of packages of a trusted brand.

To mitigate supply chain attacks, so-called software bills of materials (SBOM) have been proposed as
complete, formally structured lists of all software components present in a software product, including
their licenses, versions, security vulnerabilities, and vendors.4 SBOMs are imposed or recommended
by US Executive Order 14028 [93] and the EU Cyber Resilience Act [94] to facilitate the transparent
management of the software supply chain. Nocera et al. [95] observed a low adoption of SBOM in
public GitHub repositories of OSS projects, but with an increasing trend. Although there are significant
efforts from academia and industry to facilitate SBOM development, it is still unclear how practitioners
perceive SBOMs and what are the challenges of adopting SBOMs in practice. Xia et al. [96] conducted
a survey and interviews with SBOM practitioners to understand the current state of SBOM practice,
tooling support and concerns for SBOM. They identified several open challenges that need to be further
studied, mitigated and addressed. In a similar vein, Stalnaker et al. [97] surveyed 138 practitioners and
identified 12 major challenges concerning the creation and use of SBOMs. They propose and discuss four
actionable solutions to these challenges, and provide suggestions for future research and development.
Tool support. SBOMs enhances vulnerability detection and facilitates license compliance (see Sec-

tion 3.11), through the use of SBOM generating tools such as Trivy, Syft, Microsoft’s sbom-tool, and
GitHub’s Dependency Graph. A prerequisite is that such tools achieve full precision and correctness.
Unfortunately, Yu et al. [98] observed that the SBOMs generated by these tools were inconsistent
and contained dependency omissions, leading to incomplete and perhaps erroneous SBOMs. They
consequently proposed best practices for SBOM generation and introduced a benchmark to steer the
development of more robust SBOM generators. In a similar vein, [60] observed a high variability
in vulnerability reporting by different SBOM generators. Tools such as OWASP Dependency-Track5

leverage the capabilities of SBOM to identify and reduce risk in the software supply chain.
Solutions. Because secure software supply chains can be hard to attain in practice, the Linux Foun-

3https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-03-Dependency-Chain-Abuse
4The most common SBOM formats are CycloneDX and SPDX.
5https://dependencytrack.org

https://owasp.org/www-project-top-10-ci-cd-security-risks/CICD-SEC-03-Dependency-Chain-Abuse
https://dependencytrack.org


dation proposes Supply chain Levels for Software Artifacts (SLSA) 6 as a set of guidelines for supply
chain security. Higher levels come with increasing security guarantees, with SLSA L3 providing the
highest degree of confidence that the generated SBOM is precise, accurate and has not been tampered
with. One way to achieve it is by resorting to the solution of reproducible builds [57, 59]. They ensure
that, given the same source code, build environment and build instructions, bitwise identical copies
of all artifacts are created. The functional package managers mentioned in Section 3.4 are instances
of this solution. By requiring all dependencies to be declared upfront, they offer a robust solution to
dependency management issues, ultimately supporting more reliable software supply chains.

3.8. Library deprecation and migration

Package registries such as npm or Cargo allow deprecating package releases, e.g., when a specific release
is known to be vulnerable, faulty or incompatible. The solution would be to upgrade or downgrade
one’s dependencies to that package [31, 35]. Package maintainers could also decide to fully deprecate
the package if they decide for some reason to cease maintaining it. In that case, the best possible
alternative would be to replace one’s dependency on that package with alternative packages. Sticking
to the deprecated one is likely to lead to security vulnerabilities for which no fixes will be provided.
Cogo et al. [61] quantified deprecation in the npm registry, observing that 3.7% of all packages have at
least one deprecated release, 31% of those packages do not have any replacement release, and 66% of
such packages even deprecated all their releases. They found that 27% of the client packages directly
(and 54% transitively) depend on at least one deprecated release.

Given that library migration is often the only way to deal with deprecated packages, it has received
quite some attention from researchers. Based on an empirical analysis of commits in 19K+ Java projects
on GitHub, He et al. [62] identified 14 different migration reasons, of which the most important ones
were lack of maintenance, known bugs and vulnerabilities, lack of usability, missing features, poor
performance, lack of popularity, complexity, integration problems, and licensing issues. He et al. [63]
improved upon existing techniques to recommend the most appropriate library to migrate to, based
on filtering approaches that leverage the wisdom of the crowd. Candidate libraries are ranked based
on a series of metrics. In a similar vein, Mujahid et al. [65] proposed an approach to automatically
identify npm packages requiring replacement, and suggesting alternatives based on wisdom of the
crowd. An evaluation showed that 96% of the suggested alternatives were accurate, and 67% of surveyed
JS developers responded they consider using these suggestions in the future. Gu et al. [64] opened up
the analysis of library migrations by comparing Maven, npm and PyPI. Library migrations were found
to be prevalent and similar in nature in all three package registries. For PyPI specifically, an increasing
competition was observed between libraries.

3.9. Depending on trivial libraries

Trivial libraries are packages that are either very small or provide little functionality. Depending on
such trivial libraries may unnecessarily introduce a high dependency overhead. Some trivial libraries
have even led to major incidents, as was the case when the leftpad package was removed from npm in
March 2016. This single point of failure caused a breakdown of popular web applications including
Facebook and Netflix. It drove researchers to scrutinise the necessity and prevalence of trivial packages
in package registries.

In an empirical study of trivial packages in the npm and PyPI package registries, Abdalkareem et al.
[66] observed that such packages are quite common, making up 16.0% of npm and 10.5% of PyPI. 125
surveyed developers who use trivial packages reported using them because they were perceived to be
well implemented and tested pieces of code. Contrary to developers’ beliefs, only around 28% of npm
and 49% of PyPI trivial packages were found to have tests. Surveyed developers were also concerned by
the maintenance overhead of depending on trivial packages, which was quantitatively confirmed since
18.4% of the npm and 2.9% of the PyPI trivial packages had more than 20 dependencies. Chen et al. [67]
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conducted another survey with 59 JS developers who publish trivial npm packages. The main reported
reasons for publishing them were to provide reusable components, testing and documentation, and
separation of concerns. On the downside, the surveyed developers reported the challenge of maintaining
multiple packages, dependency hell, and the increase of duplicated packages. As a way to cope with
these challenges, they suggested grouping trivial packages. This could lead to a reduction in the number
of dependencies by approximately 13%. Chowdhury et al. [68] empirically studied the project usage and
ecosystem usage of trivial npm packages. They reported that removing a trivial package can impact
approximately 29% of the ecosystem. They also revealed that trivial packages are being actively used in
central JS files of software projects.

3.10. Abandoned and unmaintained dependencies

Proper dependency management does not suffice to consider technical factors only. Human factors
are equally important. Relying on reusable OSS packages all too often ignores the considerable effort
required by package maintainers to keep them up to date and fixing reported issues in a timely
manner [58]. By depending on reusable packages, one implicitly trusts their associated OSS community.
This can be problematic if this community –which is often driven by volunteers– is not sufficiently
active or responsive, is too small (e.g., packages maintained by a single developer), or if packages
become unmaintained due to maintainer abandonment [69, 71]. Champion and Hill [99] studied the
underproduction of software projects, where the supply of labour for maintaining them is too small
to satisfy the demand of the project users. Analysing 21K+ packages with 461K+ bugs in the Debian
distribution they proposed a method to identify underproductive software packages.

Miller et al. [100] quantitatively observed that abandonment is common among widely-used npm
libraries, that hundreds of thousands of downstream projects were directly exposed to this abandonment,
and that most of these exposed projects never remove or replace an abandoned dependency. Factors
that make it more likely to remove abandoned dependencies are more mature project government and
dependency management practices, as well as the explicit public announcement of abandoned packages.

Abandoned, and therefore unmaintained, libraries can be a source of highly impactful security threats.
An incident in March 2024 was the compromised XZ-Utils software compression package for Linux
distributions. Its original well-intentioned maintainer who was no longer able to fully maintain the
package. After gaining this maintainer’s trust during a period of two years, a malicious attacker took
over its maintenance, and introduced a backdoor to authorise remote code execution on affected systems.
A similar situation happened in November 2018 for the event-stream npm package, whose maintenance
was unknowingly handed over to a malicious developer who subsequently modified the package to
include code for stealing crypto-coins [101].

These incidents underscore the importance of rigorous vetting processes to reduce the risk of social
engineering that can compromise software integrity. To avoid such incidents, it is of crucial importance
to maintain a healthy and sustainable community that is able to attract and retain motivated contributors
[102], and to ensure that they have the necessary financial and computing resources to maintain their
code. In case packages get abandoned, the ecosystem should rely on community package maintenance
organizations (CPMOs), consisting of volunteers that steward and maintain abandoned packages [72].

3.11. Incompatible licenses

A final challenge stems from the incompatibility of OSS licenses that determine the terms and conditions
to use or modify reusable libraries within one’s own software. A plethora of licenses exist7, making it
increasingly challenging for developers to select an appropriate license for their projects and to ensure
that they are complying with the terms of those licenses. Given that the use of incompatible licenses
can lead to legal disputes, it is essential to ensure license compatibility when reusing OSS packages,
and it is a frequent reason for migrating to an alternative library [62].

7The SPDX open standard for SBOM supports 600+ licenses, see https://spdx.org/licenses/
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Xu et al. [75] conducted an empirical study of license incompatibilities and their remediation practices
in the PyPI ecosystem for Python. They found that 7% of the package releases have license incompatibil-
ities and 61% of them are due to transitive dependencies. They also identified five remediation strategies,
including migrating to another library, removing the dependency, pinning versions or changing the
license of the dependent package. Inspired by their findings, they proposed Silence, an approach to
recommend license incompatibility remediations with minimal costs. Wu et al. [76] conducted an
empirical study of license usage, incompatibility and evolution in 33M+ packages across five package
registries (Maven, npm, PyPI, RubyGems and Cargo), observing both similarities and differences in
license usage across the five registries.
Tool support. In order to detect and resolve incompatible licenses, automated tools are needed. Xu

et al. [73] proposed LiDetector, a learning-based tool to detect license incompatibilities. An empirical
evaluation of 1,846 projects revealed that > 72% of the projects suffer from license incompatibility,
including popular ones such as the MIT License and the Apache License. In a follow-up work [74], they
presented LiResolver, a tool to resolve license incompatibility issues for OSS.

4. Conclusion

The reliance on reusable OSS libraries distributed through package registries continues to increase, and
the size of their dependency networks follows suit. Based on recent empirical research we compiled
a catalogue of frequently studied dependency-related issues that these registries suffer from. This
overview of dependency challenges can be used as a starting point for researchers and practitioners
that would like to delve deeper into the empirical research on OSS package dependency networks.

The extent to which they package registries suffer from dependency issues, and the way they deal
with them, is highly ecosystem-dependent. There is no single “one fits all” solution given the diversity of
targeted programming languages and communities involved in these ecosystems [3]. Versioning policies
such as semantic versioning have seen an increase in adoption. The same holds for the indispensable
suite of tools to detect and fix dependency issues of various nature. The use of appropriate policies and
tools should be promoted further, and tools need to be improved and completed on a continuous basis
(e.g., by including dynamic analysis techniques) to cope with the rapidly evolving OSS landscape.

Most of the empirical research focused on npm and Maven, and to a lesser extent on PyPI. This is not
surprising, since they come with the largest package registries, providing reusable libraries for JS, Java
and Python respectively, the top three of most popular programming languages.8 It is more surprising
that some large package registries and popular programming languages have not received the attention
they deserve. This is the case for NuGet, for instance, despite being the fourth-largest package registry
(with 539K packages) and despite the popularity of C# and the .NET platform.

With the increasing reuse of OSS packages comes an increasing reliance on software supply chains,
hence research on software supply chain security and SBOMs is on the rise. Security issues in package
registries can also propagate well beyond the boundaries of the package registry, affecting other
ecosystems with an even larger attack surface. As an example, the GitHub Actions workflow ecosystem
(created in 2018) has been shown to suffer from vulnerabilities due to its dependence on reusable Actions
implemented as JS components depending on npm packages [103].
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