

NMT and LLM Post-Editing Process in Videogame Localization: How Can Students' Productions Help Us Become Better Localisation Lecturers?

Fun for All 7

Loïc DE FARIA PIRES

FTI-EII, University of Mons, 31st January 2025

Presentation outline

- Context
- Theoretical background
- $\rm PE$ / localisation in academic context
- Objectives
- Methodology
- Results
- Discussion
- Conclusion

Context

- Recent years: NMT quality $++ \rightarrow$ PE as a professional practice (Cui *et al.*, 2023: 1)
- Rise of LLMs and quality of their MT outputs (Peng *et al.*, 2023: 1) → Higher relevance of generative AI on the translation market (Silva Loureiro and Ferreira, 2023 : 41)
- → Need for translation lecturers to update their classes
- → EMT Network requirements
- → BUT... scarce studies on NMT/Generative AI applied to localisation teaching and practices.

Theoretical background

• Hansen and Houlmont (2022)

- Raw MT quality can vary depending on the MT engine used ;
- Specifically-trained engines can be a good option for VG localisation
- Rivas Ginel and Theroine (2022)
 - Gender aspects in MT applied to VG localisation
 - Some MT engines provide better results than others
- Brenner (2024: 47)
 - Ongoing research on PE methods applied to VG localisation

PE and localisation in an academic context

- Many universities : PE and localisation classes (EMT, etc...)
- Since PE is used in more and more professional settings, class sessions on NMT/LLMs applied to localisation = relevant
- But... few research papers on VG PE performed by university students... however, understanding their biases could help us teach them more relevant classes
- Copet and De Faria Pires (2023)
 - Visual novel, Master's students: ChatGPT better than DeepL (human evaluation). ChatGPT ~equivalent to HT.
 - In press (2025?): Automated metrics (BLEU/HTER): ChatGPT required a few less edits than DeepL. More variety in HT compared to PE.

Objectives

- Determine the quality of Raw MT applied to VG localisation
- Identify the main problems \rightarrow improve teaching practices
- Determine whether some MT engines provide for better results
 - → Improve the way we teach PE applied to VG localisation by focusing on frequent problems
- Compare PE quality between 3 widely-used MT engines
- Compared PE effort between these engines
 - → Is MTPE more productive using one of said engines in the framework of VG localisation?

Methodology

• Exploratory study...

			ok
they/them	she/her	he/him	custom

- Excerpt from the Purrgatory videogame (free, Steam) You can choose your character's gender
- Submitted to 23 students EN-FR PE class 3 groups (DeepL_PE n=7, Google_PE n=9, GPT_PE n=7)
 - Students: already familiar with VG localisation (followed the class during the previous academic year).
- PosEdiOn (Álvarez-Vidal & Oliver, 2023)
 - PE time (temporal effort)
 - Keystrokes (technical effort)
 - Pauses (cognitive effort)
 - Automatic metrics
- Analysis of process data + interesting phenomena

Results – temporal effort

DeepL	Google	GPT
00:34:26	00:52:59	00:48:31
00:31:12	00:53:31	00:45:40
00:47:36	00:51:58	01:18:08
00:47:55	00:49:27	00:54:19
00:46:15	00:41:52	00:53:26
00:31:09	00:48:18	00:56:35
00:46:56	00:52:30	00:59:36
	00:38:02	
	00:41:10	
00:40:47	00:47:45	00:56:36

PE time

-DeepL < Google < ChatGPT

-Temporal effort seems to vary depending on the engine

-ChatGPT required the longest time (!) Possible bias because of the reduced sample

Results – technical effort

DeepL	Google	GPT
971	1348	793
92	1259	1126
460	1562	1227
1232	726	1332
928	494	2014
824	1011	514
621	1695	1860
	1236	
	763	
732,571429	1121,55556	1266,57143

Total keystrokes

-Matches temporal effort

-DeepL < Google < ChatGPT

-Variations depending on each engine

-To be confirmed with bigger sample

Results – cognitive effort

DeepL	Google	GPT
623	566	395
253	441	502
307	539	561
694	453	554
640	309	734
471	446	527
365	601	748
	465	
	437	
479	473	574,428571

Total long pauses

-Google = smallest cognitive effort (similar to DeepL)

-ChatGPT = (far) bigger cognitive effort than the other 2

-To be confirmed

Results - HTER

DeepL	Google	GPT
0,2414	0,2184	0,1552
0,0531	0,1622	$0,\!17$
0,1477	0,1649	0,212
0,2	0,1589	0,213
0,2083	0,1293	0,3321
0,1066	0,1495	0,1698
0,1615	0,2055	0,2641
	0,2396	
	0,1703	
0,1598	0,17762222	0,2166

Edit distance between Raw MT and PE

-DeepL < Google < ChatGPT

-Biggest edit distance: ChatGPT

-Corroborates the hypothetical bigger effort needed to work on ChatGPT for this text

Results – particular problems

- Is ChatGPT that bad ?
- <u>1) Lack of understanding</u>

Source text- receptionist: hello, hello. **be a dear** and fill out this form.

DeepL - réceptionniste : bonjour, bonjour. **soyez gentil** et **Gender of the main character?** remplissez ce formulaire.

Google - réceptionniste : bonjour, bonjour. **sois gentil** et remplis ce formulaire.

ChatGPT - réceptionniste : bonjour, bonjour. **Sois cher** et remplis **"be expensive"** ce formulaire.

Results – particular problems

• Is ChatGPT that bad ?

<u>2) Visual context</u>
Source text - it's a draw
DeepL - C'est un tirage au sort
Google - c'est un match nul

ChatGPT - c'est un dessin

Problem: localisers do not often have the text before translating. If they are going to post-edit it, errors can be caused by raw MT

Discussion

- Effort seems to be bigger with ChatGPT (automatic metrics) contradicts Copet & De Faria Pires (2023) → different for each game
- In this case, some errors were committed by ChatGPT only (lack of context)
 - But... ChatGPT's raw MT does not really contain more errors than DeepL or ChatGPT
 - Further analysis to determine why the effort was higher with it...
- In any case, the fact that efforts vary indicate that for some games, some MT engines require less effort to be post-edited. The used raw MT should therefore be carefully selected

Conclusion

- What to remember for PE applied to VG localisation in academic curricula?
 - Importance for students to be able to select the best MT engine depending on the game
 - · Identify ST characteristics that influence raw MT quality for different types of games?
 - Ability for students to spot frequent MT mistakes
 - MT, if selected carefully, can be a great tool to help localisers
 - Interesting PE times (between 30 and 50 minutes for 583 source words)
 - We can teach students to identify "traditional" localisation problems when working from English into French (gender, lack of context, invented éléments...) and analyse how each MT engine deals with them.
- Product studies required as well, to determine whether these productivity levels are detrimental to PE quality...

References

- Alvarez-Vidal, S., & Oliver, A. (2023). Assessing MT with measures of PE effort. *Ampersand*, 11. <u>https://www.sciencedirect.com/science/article/pii/S2215039023000176</u>
- Brenner, J. (2024). The MTxGames Project: Creative Video Games and Machine Translation Different Post-Editing Methods in the Translation Process. *Proceedings of the 25th Annual Conference of the European Association for Machine Translation*, 47-48, <u>https://eamt2024.github.io/proceedings/vol2.pdf</u>
- Copet, S., & De Faria Pires, L. (2023). Post-édition de TAN et localisation de jeux vidéo : quelles conséquences sur la qualité et l'immersion des joueurs ? *Journée d'étude Traduire le jeu vidéo: entre immersion, interactivité et interaction* [paper presentation]
- Cui, Y., Liu, X., & Cheng, Y. (2023). A Comparative Study on the Effort of Human Translation and Post-Editing in Relation to Text Types: An Eye-Tracking and Key-Logging Experiment. SAGE Open, 13(1), 1-15. <u>https://doi.org/10.1177/21582440231155849</u>
- Ferreira, A. P., & Loureiro, A. (2023). As percepções dos alunos sobre a utilização da inteligência artificial nas aulas de práticas de tradução. PRATICA Revista Multimédia De Investigação Em Inovação Pedagógica E Práticas De E-Learning, 7(1), 33-49. https://doi.org/10.34630/pel.v7i2.5628
- Hansen, D., & Houlmont, P. Y. (2022). A Snapshot into the Possibility of Video Game Machine Translation. Proceedings of the 15th Biennial Conference of the Association for Machine Translation in the Americas, 2, 257-269. https://orbi.uliege.be/bitstream/2268/294581/1/2022.amta-upg.18.pdf
- Peng, K., Ding, L., Zhong, Q., Shen, L., Liu, X., Zhang, M., Ouyang, Y., & Tao, D. (2023). Towards making the most of ChatGPT for machine translation. *EMNLP 2023*, 1-12. <u>https://doi.org/10.48550/arXiv.2303.13780</u>
- Rivas Ginel, M. I., & Theroine S. (2022), Machine Translation and Gender biases in video game localisation: a corpus-based analysis, *Journal of Data Mining and Digital Humanities*, 1-10, <u>https://hal.science/hal-03540605/document</u>