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Figure 1: Motion data from sparse inputs are extended with 3D Cartesian positions for leveraging the pose ambiguity in order to
reconstruct the full pose of the self-avatar. However, depending on the 3D tracking solution, desynchronization between VR
devices motion signals and 3D Cartesian coordinates as well as motion artifacts such as noise and occlusions can arise. With this
setup, we can measure the impact of each issue individually in the full-body pose reconstruction.

ABSTRACT

Virtual Reality (VR) applications have revolutionized user expe-
riences by immersing individuals in interactive 3D environments.
These environments find applications in numerous fields, including
healthcare, education, or architecture. A significant aspect of VR
is the inclusion of self-avatars, representing users within the vir-
tual world, which enhances interaction and embodiment. However,
generating lifelike full-body self-avatar animations remains challeng-
ing, particularly in consumer-grade VR systems, where lower-body
tracking is often absent. One method to tackle this problem is by pro-
viding an external source of motion information that includes lower
body information such as full Cartesian positions estimated from
RGB(D) cameras. Nevertheless, the limitations of these systems are
multiples: the desynchronization between the two motion sources
and occlusions are examples of significant issues that hinder the
implementations of such systems. In this paper, we aim to measure
the impact on the reconstruction of the articulated self-avatar’s full-
body pose of (1) the latency between the VR motion features and
estimated positions, (2) the data acquisition rate, (3) occlusions, and
(4) the inaccuracy of the position estimation algorithm. In addition,
we analyze the motion reconstruction errors using ground truth and
3D Cartesian coordinates estimated from YOLOv8 pose estimation.
These analyzes show that the studied methods are significantly sen-
sitive to any degradation tested, especially regarding the velocity
reconstruction error.
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1 INTRODUCTION

Virtual Reality (VR) applications create a 3D environment that im-
merses users and enables them to interact with virtual elements. The
versatility and interactivity of VR technology have led to a wide
array of practical uses spanning various industries and sectors. Be-
sides gaming and entertainment, VR finds valuable applications in
healthcare [4, 36], education and training [10, 18, 42], as well as
architecture and construction engineering [3, 12].

Several studies have highlighted the significance of including a
self-avatar, representing the user’s body within the virtual environ-
ment. These investigations have demonstrated its favorable effects
across multiple domains, including user interaction and embodi-
ment [34], cognitive processes of participants [44], and collaborative
tasks within shared virtual spaces [33]. Furthermore, the lifelike
movements of the avatar contribute to fostering more realistic and
engaging social interactions among users within immersive environ-
ments [39]. Hence, one crucial task in the design of VR applications
is the animation of the articulated full-body self-avatar.

Typically, VR systems designed for consumers consist of a Head-
Mounted Display (HMD) along with optional handheld controllers.
The HMD is a wearable device worn on the head and positioned
in front of the user’s eyes to present a visual display. These de-
vices incorporate tracking technology to determine their position
and orientation. Using this set of motion data (referred as sparse
inputs in this document), the system generates the user’s complete
body movements. However, tracking for the lower body is not in-
cluded, making it a complex task to synthesize the motion of this
body subset. Indeed, synthesizing the full-body motion exclusively
from the sparse inputs corresponds to a one-to-many problem since
several poses can resolve the motion generation task from one input
configuration.
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Deep Learning-based animation models have been proposed to
tackle this pose ambiguity by learning the complex relationship be-
tween the sparse inputs and the lower-body motion [11, 20, 41, 59].
One significant advantage of these methods is their independence
from additional tracking devices, beyond the HMD and controllers,
to reconstruct the complete self-avatar’s body pose. This feature
makes them suitable for consumer-grade applications but the pre-
cision in the pose reconstruction can be affected by the lack of
available information.

Another approach to mitigate the issue of pose ambiguity involves
incorporating external sources of motion data, particularly for the
lower-body pose. These additional motion features, that often inte-
grating lower-body limbs information, aim to guide the full-body
pose reconstruction [16, 24, 53, 56]. However, these methods are
associated with several drawbacks. Firstly, the need for external
devices may hinder the widespread adoption of such technologies.
Additionally, equipping users with these sensors can potentially af-
fect comfort and detrimentally impact the overall user experience.
To avoid this effect, the full-body Cartesian position can be esti-
mated from RGB videos [7, 22] and act as the additional motion
information.

In this configuration, the latency between VR motion signals and
the Cartesian position is a crucial factor that needs to be taken into
account in the implementation of a VR animation system. Hence, the
process of integrating, into a unified framework, motion capture data
from diverse sources, each operating at its distinct framerate, can be
a challenging task. Indeed, each sources needs to be synchronized
to avoid discrepancies and ensure the coherent representation of
the user’s movements. This synchronization is essential because
misalignments or desynchronization among the data streams can
lead to inaccuracies in the reconstructed body pose, which can
significantly impact the overall quality and realism of the animation.
Moreover, depending of the additional tracking solution and the
number of users to track, it can significantly increase the latency
between the two motion sources and have implications for the real-
time responsiveness of the animation system, which is a crucial
factor in this context.

Finally, the pose estimation from RGB(D) videos suffers from
a low-fidelity pose reconstruction compared to physical motion
capture devices such as optical markers. Low accuracy on the joint
position and artifacts such as occlusion i.e., a hidden information
resulting in a missing joint in the estimated pose, are major concerns
for animating self-avatar’s based on this set of motion features.

The goal of this paper is to analyze the impact in the articulated
self-avatar’s full-body pose reconstruction of:

• the latency between the Cartesian position estimated from
RGB videos and the VR motion signals

• the discrepancy between the motion acquisition rate of these
two sources of motion

• the motion artifacts that can occur in the estimation of the
full-body Cartesian coordinates

To do so, we propose to manually degrades the 3D Cartesian
positions with the artifacts described as above. The animation model
is then fed by the sparse inputs concatenated with these 3D positions.
Finally, we assess the reconstruction error across the tested configura-
tions. Moreover, we suggest extracting the 3D Cartesian coordinates
using the pose estimation algorithm embedded in YOLOv8 [22].
This approach enables us to discern the disparities in model perfor-
mance when utilizing either ground truth or 3D Cartesian positions
estimated in a real-world use case.

2 RELATED WORK

Approaches addressing the animation of a full-body self-avatar in
VR can be broadly categorized into two main groups: those relying

solely on sparse inputs and those augmenting VR motion signals
with extra motion data. These approaches are respectively explained
in Section 2.1 and 2.2.

2.1 Self-avatar’s full-body estimation from sparse VR
sensors

Tracking a user’s full-body motion based on sparse sensors is a
widely explored topic [13, 23, 24, 57]. In the VR paradigm, the full
motion tracking is performed using the motion signals from the
VR devices. The self-avatar’s full-body motion is synthesized from
the hands and head motion features. Solutions based on Inverse
Kinematics (IK) have been implemented to leverage this problem
[8, 19, 26, 46].

Then, machine learning techniques have further been used to im-
prove the quality of the full-body motion reconstruction. In the case
of CoolMoves [1], it leverages k-NN techniques to find a pose that
closely corresponds to the sparse inputs within a well-structured mo-
tion database. Similarly, MMVR [37] adopts motion matching [6] as
an alternative approach to achieve real-time animation with smooth
transitions. The major drawback of these approaches is the the fact
that we must ensure that the motion database gathers realistic sam-
ples that include not only seamless transitions and smooth blending
between distinct motions but also a diverse array of desired actions.
Moreover, animating upper body gestures using motion matching
is challenging due to the unconstrained nature of user’s arm move-
ments. This complexity necessitates the creation of an extensive and
challenging-to-manage motion database to encompass the multitude
of feasible poses.

With the emergence of Deep Learning, methods based on arti-
ficial neural networks have been designed to capture the complex
spatial-temporal dependencies between the sparse signals and the
full body pose, especially regarding the low body information where
no tracked data are available. More specifically, algorithms built
upon architectures designed for time series analysis have been pro-
posed to compute the self-avatar’s full pose based on the sparse in-
puts [20,41,54,59]. While LSTMs have been successfully employed
in this context [54], Transformer-based methods outperformed this
solution regarding the quality of the pose reconstruction. Avatar-
Poser [20] has integrated the encoder part of the transformer ar-
chitecture [50] to compute high-dimensional embeddings from the
sparse information to estimate the avatar’s full pose and its global
displacement. Dual Attention Poser [59] have proposed to decouple
the global and local motion features to feed two transformers and
further merge the computed information.

An alternative approach to address this challenge involves gen-
erative models. VAE-HMD [11] trained a Variational AutoEncoder
(VAE) to generate a latent vector from a sequence of sparse inputs.
This latent vector is then used as input to the decoder, which is re-
sponsible for reconstructing the complete body pose. More recently,
methods based on the combination of transformers and generative
algorithms have been introduced: In the same philosophy to VAE-
HMD, full motion prior is used as a part of a pretraining process
and a transformer-based encoder is then trained to predict the same
motion latent as the full motion encoder using sparse inputs [41].
Additionally, FLAG [2] employs the technology of Normalizing
Flow [38] that allows to compute exact pose likelihoods in contrast
with VAEs and improved the quality of the full pose reconstruction
in comparison with VAE-HMD outputs. BoDiffusion [9] employs a
generative diffusion model [43] for motion synthesis to tackle this
under-constrained reconstruction problem.

Finally, the full pose reconstruction from sparse inputs problem
has been leveraged involving physical-simulation of the self-avatar’s
body [27,52]. These methods are built upon Reinforcement Learning
for a physically plausible full-body pose reconstruction.



Figure 2: Reconstruction of the full-body position based on YOLOv8 algorithm. (a) and (b) Illustration of YOLOv8 detection applied to one
frame of AMASS dataset rendered from two different perspectives. (c) the 3D Cartesian reconstruction pose computed by triangulation (red)
compared with ground truth frame (blue)

2.2 Multimodal full-body pose estimation

In order to resolve the pose ambiguity, external motion sources have
been deployed to extend the information tracked by the HMD and
the handheld controllers.

Inspired by the success of 2D pose estimation from monocular
RGB videos, HybridTrack [55] extends VR motion data with the 2D
Cartesian coordinates. By combining an uncalibrated RGB camera
for the lower body with inside-out tracking for the upper body, it
offers cost-effective and user-friendly tracking capabilities.

Moreover, Liao et al. in [28] explore the fusion of sparse Inertial
Measurement Units (IMUs) with a single RGB camera to achieve
robust 3D human body reconstruction without the need for invasive
multi-IMU setups or 2D joint detection. Using adaptive regression
learning, a dual-stream network extracts features from IMUs and
images, followed by a residual model-attention network that effec-
tively fuses these features. The method significantly improves upon
existing approaches by reducing errors in 3D joint positions and
enhancing robustness, particularly in scenarios with occlusions or
challenging environments.

Next, EgoLocate [56] emphasizes the importance of merging hu-
man motion sensing and environment sensing. They note that while
human motion capture and environment sensing, such as SLAM,
are crucial, they have traditionally been treated as separate domains.
The authors introduce their EgoLocate system, which integrates
sparse IMUs and a monocular camera to achieve real-time human
motion capture, localization, and mapping.

Furthermore, Tome et al. in [48] propose a novel neural network
architecture to address challenges such as strong perspective dis-
tortions, self-occlusion, a lack of labeled datasets, and the inherent
ambiguity in lifting 2D joint positions to 3D space, demonstrat-
ing significant improvements in performance compared to existing
methods, both in egocentric and front-facing camera scenarios.

Finally, BodyTrak [29] employs wrist-mounted cameras to cap-
ture informative images of body silhouettes and derives a working
hypothesis that these partial body parts can effectively infer full-
body poses. The contributions include the introduction of the first
wrist-mounted device for full-body pose estimation, a custom deep
learning pipeline, user studies, and discussions on the challenges
and opportunities of applying such technology in practical contexts.

3 PROBLEM FORMULATION

The generation of the self-avatar’s full-body pose can be formalized
as follow: considering a sequence of the sparse inputs X0,...,T and
additional motion data XF

0,...,T , a method Φ is designed to synthesize
the full pose of the articulated self-avatar Y , as in Equation 1.

YT = Φ(X0,...,T ⊕XF
0,...,T ) (1)

Similarly to AvatarPoser [20], X0,...,T gathers the Cartesian posi-
tions, the orientations, the linear and angular velocities of the head
and the hands. We choose to extend the sparse inputs with the 3D
Cartesian positions that can be estimated with a setup of one or
multiple RGB(D) cameras [14] This configuration has the advantage
to not require any physical cumbersome tracking sensors on the user
body which can infringe with its overall experience.

However, implementing this kind of solution is not a straightfor-
ward task since it deals with several constraints. In this context, the
most common concerns are the lack of synchronization between the
two motion sources, induced by a latency and a discrepancy between
the data acquisition rate from both sources, joints occlusion and the
low-fidelity of the Cartesian position estimation method.

• Latency: Depending on the cameras setup, a significant la-
tency between the Cartesian positions and the sparse inputs can
occur. Indeed, the head and hands positions and orientations
are computed from inertial sensors or using SLAM-based al-
gorithms [21] regarding the VR devices employed. The delay
introduced by this process is relatively minor, typically ranging
from 1 to 2 milliseconds when employing IMU-based head-
mounted displays operating at 1000Hz for the rotational data
and between 60Hz and 100Hz for the positional data. In con-
trast, the overall position estimation system often introduces a
more substantial delay in the context of the deployed solution.
Moreover, this latency is notably variable over time, primarily
owing to frame loss. For instance, when assessing the ZED
2 stereo camera [45] operating at a 60 FPS configuration, it
exhibits a latency range of 30-45ms. This leads to desynchro-
nization between the head-mounted display and the camera
frames.

• Framerate: The motion data acquisition rates are not neces-
sarily equivalents between the motion sources. The motion
features of the HMD and the hands are extracted at 60Hz or
100Hz regarding the VR devices used [51]. While some cam-
eras, such as the ZED 2, can also achieve frame rates of 60 or
even 100 FPS, it’s crucial to take into account the computa-
tional demands associated with 3D position estimation [22].
This computational load can become substantial, contingent
on the chosen algorithm and the number of individuals being
tracked within the scene.

• Occlusion: It refers to the situation where a user being tracked
is partially or completely hidden from the cameras used for
tracking. This obstruction can occur when one user passes
in front of another, or when a part of the user’s body blocks
the view of one of its limbs. Occlusion poses a challenge for
motion tracking systems because it can lose sight of one or
multiple joints during the occluded period, leading to gaps



Occlusion

Figure 3: Examples of artifacts on motion signals. Top left: delay between two motion sources. Top Right: Cartesian position framerate
reduced by f psratio = 2. Bottom Left: Gaussian noise applied on positional data. Bottom Right: Random occlusion i.e., a joint position
randomly set to zero.

or inaccuracies in the tracking pose. In our configuration,
since we consider the additional motion information XF as the
3D Cartesian positions estimated from cameras, our setup is
subject to occlusion artifacts. This artifact gains prominence,
particularly in scenarios involving multiple users interacting
with each other, thereby increasing the likelihood of occluded
joints.

• Low accuracy: Since the markerless motion tracking algo-
rithm based on computer vision are often less accurate and
reliable than optical markers, the low fidelity on the 3D Carte-
sian coordinates estimation can have a negative impact on the
full-body pose reconstruction.

4 APPROACH

As in AvatarPoser [20], we rely on 3 subsets of the large-scale
motion capture AMASS Dataset [31]: BMLrub [49], CMU [25] and
HDM05 [32]. AMASS Dataset unifies optical-based motion capture
datasets into a standard kinematic tree and use SMPL approach [30]
to provide realistic 3D human meshes represented by a rigged body
model. These subsets gather around 5200 motion samples for a
duration of more than 20 hours. The standardized kinematic tree is
structured into 22 joints.

In order to measure the impact of each artifacts individually, we
propose to mimic the artifacts described in Section 3. Examples of
these artifacts on motion signals are shown in Figure 3.

• We introduce a delay d between the full-body Cartesian po-
sitions and the sparse motion signals. In this configuration,
Equation 1 becomes

YT+d = Φ(Xd,...,T+d ⊕XF
0,...,T ) (2)

• The framerate discrepancy between the two motion signals is
tackled by quantifying XF

0,...,T using a framerate ratio f psratio

between the two motion sources. The framerate of XF
0,...,T ,

initially equivalent to X0,...,T , is divided by f psratio.

• Inspired by the implementation of occlusion in [15], we define
a probability σo of the joint being occluded for a given frame.

OF
0,...,T ∼ Bernoulli(σo) (3)

XF
o0,...,T

= XF
0,...,T ∗OF

0,...,T (4)

YoT = Φ(X0,...,T ⊕XF
o0,...,T

) (5)

• To mimic the low accuracy of the full-body position estimation,
we add noise sampled from a zero-mean Gaussian distribution
with a standard deviation σ . Increasing the standard deviation
σ results in an augmented level of noise intensity within the
Cartesian positions.

N0,...,T ∼ N (0,σ2) (6)

XF
n0,...,T

= XF
0,...,T +N0,...,T (7)

YnT = Φ(X0,...,T ⊕XF
n0,...,T

) (8)

However, this distribution may not accurately represent the
actual noise in the markerless pose estimation system. To build
a set of noisy poses that reflects the lack of accuracy of the
data we could acquire in a real-case scenario, we use a solution
based on the YOLOv8 algorithm [22]. As shown in Figure 2,
using the SMPL+H model [40] linked to AMASS dataset, we
define two virtual cameras to render the character as mesh from



two different viewpoints. The rendering resolution in pixels is
640X480. The processing of each rendered image with Yolo
v8 detector (yolov8x-pose model) provides a pose as a set of
characteristic points. We apply the triangulation function from
the OpenCV library [5] to the characteristic points in the two
perspectives, using the parameters of the virtual cameras as
explained in [14]. The result is a 3-dimensional reconstruction
of the pose computed for each frame in the dataset.

5 EXPERIMENTS

For our experiments, we train the animation model Φ with X0,...,T ⊕
XF

0,...,T as input where XF
0,...,T is a sequence of the ground truth 3D

Cartesian positions and then measure the impact of each artifacts
independently. We rely on AvatarPoser [20] and an adapted version
of HybridTrack [55], two state-of-the-art deep learning-based models
for the animation of the self-avatar’s full-body. AvatarPoser [20]
is a model built upon the Transformer architecture that encodes
the sparse inputs into a high-level complex motion representation
to estimate the full-body local orientations as well as the global
displacement of the root. Providing 3D Cartesian positions into this
model helps to resolve the pose ambiguity that can arise due to the
lack of lower body motion information. HybridTrack [55] employs
a CNN-1D based architecture inspired by the method in [35], that
is fed by the sparse information and a single-view of 2D Cartesian
coordinates to generate the full body pose. In our experiments, we
adapt this model to our requirements by providing the 3D Cartesian
positions instead.

We add a latency between the Cartesian positions and the sparse
inputs of d = 2, 4 or 6 frames following the delays discussed in Sec-
tion 3. Then, since the framerate is sensitive to the computational
load induced by several factors such as the number of cameras or the
number of tracked users, we divided the Cartesian coordinates fram-
erate by a factor f psratio = 2, 3 or 4. In this last case, if the motion
data acquisition rate from VR devices reaches 100Hz, the cameras
achieve a framerate of 25Hz. Regarding the spatial-temporal noise,
we set up σo = 0.01 and 0.05 of occlusion probability (σo = 0.1
in [15]) and σ = 1cm, 2cm and 5cm which are reasonable noise
levels considering the error reconstruction in multi-users 3D pose es-
timation tracking from monocular videos [58] (60mm on Human36M
dataset [17]).

Finally, we test our implementations in a real-case scenario: from
AMASS Dataset, we use the pose estimation from YOLOv8 to gath-
ers the 3D Cartesian positions, instead of using the ground truth
Cartesian positions to train and to evaluate a specific animation
model.

We consider a temporal window of 40 previous frames and the
current frame (T = 41 frames) feeding the models. Both of them are
trained during 10k epochs on a NVIDIA GTX1080 GPU, following
the training procedure and hyperparameters in AvatarPoser [20] 1.

6 RESULTS

Table 1 shows the results of the evaluation of the two animation
models to the considered motion signals artifacts. We rely on 3 met-
rics called the Mean Per Joint Positional/Rotational/Velocity Error,
respectively referred as MPJPE, MPJRE and MPJVE. It indicates
the deviation between the avatar’s full pose estimated by the model
and the ground truth pose. We also refer in the aforementioned
Table the results on the full pose reconstruction from X0,...,T for
AvatarPoser but not for HybridTrack since it has not been designed
to tackle the problematic of the full pose reconstruction from only
the sparse inputs.

We observe that the overall behavior is that the errors increase
with the intensity of the artifact for both models and regardless the

1https://github.com/eth-siplab/AvatarPoser.git

evaluated artifact. The models trained with the clean and synchro-
nized data from AMASS dataset does not encompass the issues
related to the animation of the self-avatar’s character based on the
sparse inputs and the Cartesian positions estimated from cameras.
Then, when the spatio-temporal motion artifacts, i.e., the occlusions
and the noise, increases in intensity, HybridTrack provides more
accurate full pose reconstruction than AvatarPoser. In this config-
uration, HybridTrack exhibits greater resilience and accuracy than
AvatarPoser, showcasing its enhanced performance in challenging
conditions marked by heightened motion artifacts. However, it is
deemed ineffective to incorporate 3D Cartesian positions in both
animation model when confronted with intense artifacts. Indeed,
while HybridTrack effectively mitigates the impact of these artifacts,
AvatarPoser, trained solely with X0,...,T , outperforms HybridTrack
across various configurations. We highlighted in Table 1 the con-
figurations where the models fed by X0,...,T ⊕XF

0,...,T exhibits more
accurate pose reconstruction than AvatarPoser trained with sparse
inputs. The tested artifacts appear to have a more pronounced effect
on velocity compared to positions and orientations. In summary, this
evaluation highlights the sensitivity of the models to variations in
the training parameters, limiting their deployment in less controlled
environments.

The results, reported in 4, show the comparison between models
trained with ground truth and models trained with Cartesian posi-
tions generated with YOLO. HybridTrack produces less accurate
motion reconstruction than AvatarPoser with solely the sparse inputs
regarding the upper body. However, AvatarPoser trained with the
3D coordinates estimated from YOLOv8 outperforms AvatarPoser
from sparse inputs, except for the velocity of the upper body region.
Comparing these two cases, we can also observe that we do not get
any significant difference in velocity in the lower body region either.
So, there is no clear improvement in terms of noise present in the
synthesized movement.

Illustrative pose samples are depicted in Figure 5. The coloration
on various regions of the mesh represents the positional error specific
to each region. The figure serves to highlight that the quality of
motion reconstruction diminishes as noise is introduced to the 3D
coordinates. More videos presenting motion samples can be found
here 2

7 LIMITATIONS AND PERSPECTIVES

First of all, our analyses emphasize the sensitivity of AvatarPoser
and HybridTrack when trained with ground truth Cartesian positions
and sparse inputs from VR devices. While it has been shown that
incorporating Cartesian positions aids both models in addressing
this challenge, the artifacts examined in this study—such as latency
between motion sources, discrepancies in framerate, low accuracy
of pose reconstruction, and occlusions—result in a degradation of
the quality of the self-avatar’s full-body pose reconstruction.

Then, even if we consider these effects in the training process,
both of the models failed to improve the upper-body velocities in
comparison to the model trained only with the sparse inputs. Miti-
gating this effect will be crucial for further development, especially
when several users share the scene captured by the cameras. Indeed,
in this context, the risk of major artifacts such as occlusions can
explode.

Finally, considering the desynchronization between the two mo-
tion signals, recent methods have been proposed to integrate tem-
porally sparse observations in Transformer within a medical con-
text [47]. We believe that the integration of such systems will benefit
the field of self-avatar’s animation regarding the issues discussed in
this work.

2https://figshare.com/s/a6f9c9770e4be4919230

https://github.com/eth-siplab/AvatarPoser.git
https://figshare.com/s/a6f9c9770e4be4919230


Table 1: Evaluation of the sensitivity to common artifacts in the context of the self-avatar’s animation from sparse inputs and 3D Cartesian
coordinates. The highlighted results refer to configurations that outperform AvatarPoser with sparse inputs. We observe that AvatarPoser
overall gives the best results when it comes to deal with clean motion data. However, as a matter of example, when the noise or occlusion
intensity increases, HybridTrack leads to lower reconstruction error.

Body subset AvatarPoser HybridTrack
MPJPE (cm)
↓

MPJRE (°) ↓ MPJVE
(cm/s) ↓

MPJPE (cm)↓ MPJRE (°)↓ MPJVE
(cm/s)↓

Sparse inputs Up 1.65 5.64 12.86 - - -
Sparse inputs Low 6.79 6.4 44.35 - - -
GT 3D Cart.
Pos.

Up 0.72 2.52 8.1 2.38 6.51 20.72

GT 3D Cart.
Pos.

Low 1.41 2.03 14.19 4.97 5.55 40.81

Noise σ(cm)
1 Up 1.09 3.89 60.78 2.39 6.58 35.39
1 Low 1.96 3.37 107.91 5.02 5.61 69.86
2 Up 1.74 6.33 121.98 2.46 6.78 55.94
2 Low 3.04 5.65 215.17 5.18 5.77 111.11
5 Up 4.18 15.04 326.92 2.92 8.13 118.89
5 Low 7.2 13.35 565.61 6.25 6.83 240.02
Occlusion σo
0.01 Up 3.05 8.18 272.48 4.05 10.16 231.65
0.01 Low 5.87 5.26 525.83 7.87 7.59 414.22
0.05 Up 10.36 23.47 912.65 8.95 19.14 525.12
0.05 Low 19.68 13.73 1756.09 15.82 13.13 992.5
Framerate ra-
tio f psratio
2 Up 0.87 2.73 23.98 2.43 6.54 21.96
2 Low 1.81 2.41 57.02 5.19 5.71 45.29
3 Up 1.05 3.03 30.91 2.49 6.6 27.71
3 Low 2.22 2.81 74.18 5.44 5.89 68.37
4 Up 1.22 3.35 34.47 2.55 6.66 25.88
4 Low 2.64 3.21 82.65 5.72 6.1 57.54
Delay d
(frames)
2 Up 1.44 3.78 14.36 2.62 6.73 21.77
2 Low 3.02 7.23 24.57 5.98 6.31 47.5
4 Up 2.24 5.05 19.8 2.95 7.12 23.28
4 Low 4.83 5.42 42.69 7.26 7.31 56.27
6 Up 3.02 7.23 24.57 3.34 7.63 25.22
6 Low 6.5 7.01 54.15 8.66 8.36 65.51

Figure 4: Reconstruction errors regarding the models trained with ground truth and Cartesian positions from YOLOv8.



Figure 5: Illustration of two pose samples derived from the ground
truth data (Left). In the Mid-Left image, AvatarPoser is trained with
ground truth 3D Cartesian positions and provided with a sequence
of this ground truth. The Mid-Right image displays the effects
of introducing Gaussian noise into the 3D Cartesian coordinates,
with noise levels σ = 0.01. Right: AvatarPoser trained with only
sparse inputs. The positional features are improved in comparison to
those produced by solely the sparse inputs, even when the Cartesian
coordinates are degraded with a Gaussian noise with σ = 1cm.

8 CONCLUSION

In this work, we conducted experiments in the context of the self-
avatar’s full-body pose reconstruction from the head and hands
motion features and the 3D Cartesian coordinates. This additional
motion data has been chosen so that it can be extracted from a
non-intrusive systems, such as RGB-D cameras, to guarantee the
user experience. First, we discussed about the major concerns that
need to be taken into account in the design of such system. The
desynchronization between the motion signals from the VR devices
and the Cartesian positions, as well as the spatio-temporal motion
artifacts such as noise and occlusions are artifacts that importantly
degrades the reliability of the animation system. We showed that
the precision of the pose estimation system is crucial in this context,
especially considering the velocity of the reconstructed upper body.
From the results of these analyzes, we believe that this work provides
valuable insights concerning the task of self-avatar’s animation based
on multimodal data.
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