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Abstract
We study zero-sum turn-based games on graphs. In this note, we show the existence of a game
objective that is Π0

3-complete for the Borel hierarchy and that is positional, i.e., for which positional
strategies suffice for the first player to win over arenas of arbitrary cardinality. To the best of our
knowledge, this is the first known such objective; all previously known positional objectives are
in Σ0

3. The objective in question is a qualitative variant of the well-studied total-payoff objective,
where the goal is to maximise the sum of weights.
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1 Context and contribution

We consider infinite-duration zero-sum two-player games played on (potentially infinite)
graphs [6]. In this context, two players, Eve and Adam, take turns in moving a token along
the edges of an edge-labelled directed game graph. This interaction produces an infinite
path inducing an infinite word x in Cω, where C is the (potentially infinite, but assumed
countable) alphabet of labels. An objective W ⊆ Cω is specified in advance; Eve wins the
game if the word x belongs to W , otherwise Adam wins.

A strategy is called positional (or memoryless) if it chooses the next move only according
to the current vertex of the graph containing the token, regardless of past moves. An objective
is called positional1 if for any game graph (of arbitrary cardinality), Eve has a positional
strategy winning from every vertex from which she has a winning strategy.

To the best of our knowledge, all previously known positional objectives belong to Σ0
3, the

(existential) third level of the Borel hierarchy in the usual product topology2 over Cω. For
instance, the positionality of the ω-regular languages is well-understood [4], but they all lie in
∆0

3 = Σ0
3∩Π0

3 (as shown in [3]). There are additional examples stemming for characterizations
for objectives in Σ0

1, Π0
1, and Σ0

2 (see, respectively, [2], [5] and [10]). The following natural Σ0
3-

complete objective is also shown to be positional in [6]: InfOcc = {x ∈ Nω | ∃c ∈ N, |x|c = ∞},
where |x|c denotes the number of occurrences of c in x (InfOcc is thus the set of words in which
some number occurs infinitely often). However, its complement, which is a Π0

3-complete
objective, is not positional — to see it, consider a game graph with a single vertex where
Eve has to choose among infinitely many self-loops, each labelled with a different number

1 The literature sometimes uses “half-positional” for this notion, since there is a requirement on Eve’s
strategy complexity, but not on Adam’s.

2 We recall that the open sets of this topology are those of the form LCω, for L ⊆ C∗ a set of finite words.
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c ∈ N. This leads to the following question: does there exist a positional objective that does
not belong to Σ0

3?
We answer this question positively, by showing that the following Π0

3-complete objective
over C = Z is positional:

SumToInfinity = {w0w1 . . . ∈ Zω | lim
k→∞

k−1∑
i=0

wi = +∞}.

This objective is a qualitative variant of a total-payoff objective (also called total-reward
objective), where the goal is to maximise the (lim sup or lim inf of the) sum of weights.
Total-payoff objectives are positional over finite arenas [7]. However, over infinite arenas,
they are in general not positional, with various classes of strategies needed depending on the
variant considered (lim sup or lim inf, and with a rational, +∞, or −∞ threshold) and the
class of arenas [10, 1]. Objective SumToInfinity is a specific natural variant which turns out
to have a remarkably low strategy complexity even over the most general class of arenas.
Our results fill a gap in the understanding of quantitative objectives [1].

Note that SumToInfinity is prefix-independent (i.e., for all x ∈ Z∗ and x′ ∈ Zω, x′ ∈
SumToInfinity if and only if xx′ ∈ SumToInfinity).

▶ Theorem 1. The objective SumToInfinity is Π0
3-complete and positional.

The rest of the note is devoted to the proof of Theorem 1. We quickly show in Section 2
that SumToInfinity is Π0

3-complete; our main contribution, in Section 3, is a positionality
proof based on constructing (almost)-universal graphs for SumToInfinity, and applying [9,
Theorem 3.2].

Naturally, a follow-up open question is whether every level of the Borel hierarchy admits
a complete objective that is positional.

2 Π0
3-completeness of SumToInfinity

We refer to [8] for definitions on the Borel hierarchy.
To show that SumToInfinity is in Π0

3, observe that

SumToInfinity =
⋂

n∈N

⋃
j∈N

⋂
k≥j

{w0w1 . . . ∈ Zω |
k−1∑
i=0

wi ≥ n},

where the inner sets {w0w1 . . . ∈ Zω |
∑k−1

i=0 wi ≥ n} are clopen.
To show that SumToInfinity is Π0

3-hard, we reduce the following Π0
3-hard objective [8, Ex.

23.2] to it:

FinOcc = {x ∈ Nω | ∀c ∈ N, |x|c is finite}.

This objective is the complement of objective InfOcc discussed above. We recall that for a
reduction, we need to show a continuous mapping f : Nω → Zω such that f−1(SumToInfinity) =
FinOcc. Such a mapping is defined by:

f(c0c1 . . . ) = w0w1 . . . , with wi = ci+1 − ci.

The function f is continuous, as if x, x′ ∈ Nω are two words with a common prefix of
size k, then f(x) and f(x′) have a common prefix of size k − 1.

Let us show that f−1(SumToInfinity) = FinOcc. Note that
∑k−1

i=0 (ci+1 − ci) = ck − c0.
If c0c1 . . . /∈ FinOcc, then ck − c0 takes infinitely often a constant value c ∈ N. Therefore,∑k−1

i=0 (ci+1 − ci) ↛ +∞. Conversely, if c0c1 . . . ∈ FinOcc, then, for all c ∈ N, ck − c0 > c for
all sufficiently large k, so

∑k−1
i=0 (ci+1 − ci) → +∞.
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3 Positionality of SumToInfinity

To keep this note short, we include only the crucial formal definitions; we refer the reader
to [9] for additional context.

In what follows, the word graph stands for a directed graph with edges labelled by elements
of C. The set of vertices of a graph G is written V (G), and its edges E(G) ⊆ V (G)×C×V (G).

Almost-universality. A tree is a graph with a root t0 such that all vertices admit a unique
path from t0. A graph morphism from G to H is a map f : V (G) → V (H) such that for
each edge v

c−→ v′ in G, f(v) c−→ f(v′) is an edge in H. We write G → H if there exists such a
morphism. A well-ordered graph is a graph whose vertices are well-ordered by an ordering ≤.
An ordered graph is monotone if u ≥ v

c−→ v′ ≥ u′ implies u
c−→ u′. A graph satisfies an

objective W if the labelling of any infinite path on it belongs to W . For a prefix-independent
objective W and a cardinal κ, a graph U is said to be (κ, W )-almost-universal if

U satisfies W , and
for all trees T of size < κ satisfying W , there is a vertex v0 such that T [v0] → U ,

where T [v0] is the restriction of T to vertices reachable from v0. We will rely on the following
result:

▶ Lemma 2 ([9, Theorem 3.2 and Lemma 4.5]). Let W be a prefix-independent objective.
If, for all cardinals κ, there exists a well-ordered monotone (κ, W )-almost-universal graph,
then W is positional.

Objective SumToInfinity is prefix-independent. To prove that it is positional, it therefore
suffices, for every cardinal κ, to build a (κ, SumToInfinity)-almost-universal graph U . In what
follows, let C = Z and let κ be a cardinal.

Definition of U . We will manipulate finite tuples of ordinals. For such a tuple u, we
write u<i for the restriction of u to its first i coordinates:

(u0, . . . , un)<i = (u0, . . . , ui−1).

We let |u| denote the length of u; for instance, |(0, 1)| = 2. Recall the lexicographic ordering:

u >lex u′ ⇐⇒ u′ is a prefix of u or ∃i, [u<i = u′
<i and ui > u′

i].

Consider the graph U defined over V (U) =
⋃

n<ω κn by

E(U) = {u
w−→ u′ | |u| + w ≥ |u′| and [|u| + w = |u′| =⇒ u >lex u′]}.

Intuitively, the length of the tuples in U encodes an underapproximation of the sum of weights
in a given path: an edge either tracks precisely the sum of weights (when |u| + w = |u′|),
or it underestimates it (when |u| + w > |u′|). In the former case, there is an additional
requirement on u′, which is that it decreases for <lex. In the latter case, the tuple can have
any value. These rules prevent in particular the existence of cycles with sum of weight 0
in U ; to go back to the same vertex, some underestimating of the sum of weights is necessary.

The order over U is then defined by

u > u′ ⇐⇒ |u| > |u′| or [|u| = |u′| and u >lex u′].

We raise the reader’s attention on the fact that the order over U does not coincide with the
lexicographic order: for instance, (0, 0) > (1) in U .
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Figure 1 Tree T used in Example 4. Remember that the weights (in black) label edges. This
tree satisfies SumToInfinity (as any infinite path ends with 1ω). The value in red inside each vertex
is the value n(·) defined in the proof of Lemma 7. The top vertex v0 is such that n(v0) = −1 < 0, so
we can assume it is the vertex given by Claim 7.1. Every path from v0 not reaching another vertex
with value −1 is tight. Observe that there is exactly one infinite tight path from v0 (staying on
the left branch), indeed satisfying the property of Claim 7.2. The tuples in blue next to vertices
correspond to the morphism to U built in the proof of Claim 7.3.

▶ Lemma 3. The graph (U, ≤) is a well-ordered monotone graph.

Proof. It is immediate that the order over U is well-founded and total. Let us check that U

is monotone. Let u ≥ v
w−→ v′ ≥ u′ in U . Then, |u| + w ≥ |v| + w ≥ |v′| ≥ |u′|. If one of these

inequalities is strict, then, |u|+w > |u′|. Otherwise, |u|+w = |u′| and u ≥lex v >lex v′ ≥lex u′.
We conclude that u

w−→ u′. ◀

▶ Example 4. Before proving the (κ, SumToInfinity)-almost-universality of U , we give one
example of a morphism of a tree into U . We consider the tree T from Figure 1. The blue
tuples next to each vertex indicate a possible morphism from T to U . The morphism given
is exactly the one built by our proof of almost-universality below; we incite the reader to
come back to this example as an illustration of the upcoming proof. ⌟

Almost-universality of U . We now prove the following.

▶ Theorem 5. The graph U is (κ, SumToInfinity)-almost-universal.

We prove the two conditions for almost-universality in two separate lemmas.

▶ Lemma 6. The graph U satisfies SumToInfinity.

Proof. Take an infinite path u0 w0−−→ u1 w1−−→ . . . in U . For all i, let

bi =
{

0 if |ui| + wi = |ui+1|,
1 otherwise.
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For each i, we have |ui| + wi ≥ |ui+1| + bi. Therefore, for all k,

k−1∑
i=0

wi ≥ |uk| − |u0| +
k−1∑
i=0

bi ≥
k−1∑
i=0

bi − |u0|.

If
∑k−1

i=0 bi goes to +∞, then by the above it also holds that
∑k−1

i=0 wi → +∞, as wanted. So
we assume otherwise: there is i0 such that for i ≥ i0, bi = 0. Then, for all i ≥ i0, we have
|ui| + wi = |ui+1| and thus ui >lex ui+1; this contradicts the well-foundedness of <lex. ◀

▶ Lemma 7. For all trees T < κ satisfying SumToInfinity, there exists a vertex v0 of T such
that T [v0] → U .

Proof. Let T < κ be a tree satisfying SumToInfinity. Given a finite path π, we let w(π)
denote the sum of the weights appearing on π. For all v ∈ T , define

n(v) = − inf{w(π) | π is a non-empty finite path from v} ∈ Z ∪ {+∞}.

We note that for all edges v
w−→ v′, it holds that n(v) + w ≥ n(v′).

▷ Claim 7.1. There exists a vertex v0 such that n(v0) < 0.

Proof. Assume towards a contradiction that for all vertices v, n(v) ≥ 0. In other words, from
all vertices, there is a non-empty path of weight ≤ 0. By concatenating such paths, we get
a path whose weight does not converge to +∞, which contradicts the fact that T satisfies
SumToInfinity. ◁

Using the above claim, let v0 be a vertex such that n(v0) < 0. We will construct a
mapping ϕ : T [v0] → U . The following claim will be useful for the definition of this morphism.
We say that an edge v

w−→ v′ of T is tight if n(v) + w = n(v′), and that a (finite or infinite)
path is tight if it is comprised only of tight edges.

▷ Claim 7.2. Let π be an infinite tight path from v0. For each k ≥ 0, there are finitely
many vertices v on π satisfying n(v) ≤ k.

Proof. Denote π = v0
w0−−→ v1

w1−−→ . . . ; since all edges are tight, we have

n(vi) = n(v0) +
∑
j<i

wj .

Since π satisfies SumToInfinity,
∑

j<i wj converges to +∞; therefore, so does n(vi). The
result follows. ◁

We now define a morphism ϕ : T [v0] → U . First, notice that all vertices v in T [v0] are
such that n(v) < +∞; otherwise, we would also have n(v0) = +∞. For v in T [v0], we define
the length of the tuple ϕ(v) to be max{n(v) + 1, 0} ∈ N (in particular, if n(v) < 0, then ϕ(v)
is the empty tuple). For a vertex v in T [v0] with n(v) ≥ 0 and 0 ≤ k ≤ n(v), the k-th
coordinate of ϕ(v) is defined as follows. Informally, we count the number of vertices v′ with
n(v′) ≤ k on a tight path starting in v. Formally, define Tv,k to be the graph with vertices

V (Tv,k) = {v′ ∈ V (T ) | there is a tight path from v to v′ and n(v′) ≤ k},

and edges

E(Tv,k) = {v′
1

w−→ v′
2 | w is the weight of a tight path from v′

1 to v′
2

whose inner vertices v′ satisfy n(v′) > k}.
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The graph Tv,k is actually a tree with root v when k = n(v), but is in general a disjoint
union of trees.

Claim 7.2 implies that Tv,k is well-founded (it does not admit any infinite path). The
rank of a vertex in a well-founded disjoint union of trees is an ordinal number defined to
be 0 for leaves, and one plus the supremum rank of its successors for non-leaves. The rank
of Tv,k, written rk(Tv,k), is the supremum rank of its vertices (note that it is < κ).

We set the k-th coordinate of ϕ(v) to be the rank of Tv,k, thus

ϕ(v) = (rk(Tv,0), rk(Tv,1), . . . , rk(Tv,n(v))).

▷ Claim 7.3. The map ϕ : V (T [v0]) → V (U) defines a morphism from T [v0] to U .

Proof. Consider an edge v
w−→ v′; we show that ϕ(v) w−→ ϕ(v′) is an edge in U .

First, notice that we have in general that n(v) + w ≥ 0: indeed, π = v
w−→ v′ is a

non-empty path from v so, by definition of n(v), −n(v) ≤ w.
If n(v′) < 0, then

|ϕ(v)| + w = max(n(v) + 1, 0) + w ≥ n(v) + 1 + w ≥ 1 > 0 = |ϕ(v′)|,

thus ϕ(v) w−→ ϕ(v′) is an edge in U .
We now assume in the rest of the proof that n(v′) ≥ 0. We reason according to whether

the edge v
w−→ v′ is tight.

First, assume that edge v
w−→ v′ is not tight, i.e., that n(v) + w > n(v′). Then the

argument is similar to the previous one:

|ϕ(v)| + w ≥ n(v) + 1 + w > n(v′) + 1 = |ϕ(v′)|,

where the last equality uses that n(v′) ≥ 0.
Second, assume v

w−→ v′ is tight, i.e., n(v) + w = n(v′). Therefore,

|ϕ(v)| + w ≥ n(v) + 1 + w = n(v′) + 1 = |ϕ(v′)|,

so it suffices to show that ϕ(v) >lex ϕ(v′).
Let k ≤ min{n(v), n(v′)}. As v′ is reachable from v, Tv′,k is a subgraph of Tv,k. Therefore,
rk(Tv,k) ≥ rk(Tv′,k). If n(v) > n(v′), we deduce that ϕ(v) >lex ϕ(v′) (ϕ(v) is a longer
tuple and starts with values at least as large). If n(v) ≤ n(v′), with k = n(v), since v is a
vertex (in fact, the root) of Tv,n(v) but not of Tv′,n(v), we get rk(Tv,n(v)) > rk(Tv′,n(v)).
We also conclude that ϕ(v) >lex ϕ(v′), as required. ◁

This ends the proof of positionality of SumToInfinity. ◀
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