## Active Learning of Mealy Machines with Timers

Véronique Bruyère, Bharat Garhewal, Guillermo A. Pérez, Gaëtan Staquet, Frits W. Vaandrager

December 6, 2024













### Many computer systems have timing constraints:

- ► Network protocols;
- Schedulers;
- ► Embedded systems;
- ► In general, real-time systems.

Learning algorithm

### Many computer systems have **timing** constraints:

- Network protocols;
- Schedulers;
- Embedded systems;
- ► In general, real-time systems.

Well-known model for these systems: **timed Mealy machines**.

### Many computer systems have timing constraints:

- ► Network protocols:
- Schedulers:
- Embedded systems;
- In general, real-time systems.

Well-known model for these systems: **timed Mealy machines**.

In short: finite Mealy machines augmented with clocks that can be reset or used in guards along transitions and states.

Learning algorithm

Many computer systems have **timing** constraints:

- Network protocols;
- Schedulers;
- Embedded systems;
- In general, real-time systems.

Well-known model for these systems: **timed Mealy machines**.

In short: finite Mealy machines augmented with **clocks** that can be reset or used in guards along transitions and states.

**BUT** timed Mealy machines are hard to construct and understand.

We focus on systems that can be represented with timers: Mealy machines with timers.

# **Timed Mealy machines** Mealy machines with timers

### **Timed Mealy machines**

- ► Clocks go from 0 to infinity:
- **>**

### Mealy machines with timers

► Timers go from a given value to 0:

We focus on systems that can be represented with timers: Mealy machines with timers.

### Timed Mealy machines

- ► Clocks go from 0 to infinity:
- ► We can test the current value of the clocks:

- ► Timers go from a given value to 0;
- ► We can only test if a timer is zero;

We focus on systems that can be represented with timers: Mealy machines with timers

### Timed Mealy machines

- ► Clocks go from 0 to infinity:
- ▶ We can test the current value of the clocks:
- ► Timed Mealy machines are more expressive;

- ► Timers go from a given value to 0:
- ▶ We can only test if a timer is zero;
- ▶ Mealy machines with timers are more restrictive:

We focus on systems that can be represented with timers: Mealy machines with timers

### **Timed Mealy machines**

- ► Clocks go from 0 to infinity:
- ► We can test the current value of the clocks:
- ► Timed Mealy machines are more expressive;
- ► Well-known model:

Motivation: timed systems

- ► Timers go from a given value to 0:
- ► We can only test if a timer is zero;
- ► Mealy machines with timers are more restrictive:
- ► We previously studied some properties of Mealy machines with timers;<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Bruyère, Pérez, et al., "Automata with Timers", 2023

We focus on systems that can be represented with timers: Mealy machines with timers

### Timed Mealy machines

### ► Clocks go from 0 to infinity:

- ▶ We can test the current value of the clocks:
- ► Timed Mealy machines are more expressive;
- ▶ Well-known model:
- Learning timed Mealy machines is
   This work: learning algorithm. challenging.

- ► Timers go from a given value to 0:
- ▶ We can only test if a timer is zero;
- ▶ Mealy machines with timers are more restrictive:
- ► We previously studied some properties of Mealy machines with timers;<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Bruyère, Pérez, et al., "Automata with Timers", 2023

### A Mealy machine with timers

(MMT) is a tuple

Motivation: timed systems

$$\mathcal{M} = (X, I, O, Q, q_0, \delta)$$
 where

- ► *X* is the set of **timers**:
- I is the set of **inputs**; the set of all actions is:

$$I \cup \{to[x] \mid x \in X\};$$

O is the set of outputs;

## A Mealy machine with timers

(MMT) is a tuple  $\mathcal{M} = (X, I, O, Q, q_0, \delta) \text{ where}$ 

- ► *X* is the set of **timers**:
- ► *I* is the set of **inputs**; the set of all actions is:

$$I \cup \{to[x] \mid x \in X\};$$

- O is the set of outputs;
- Q is the finite set of states;
- $ightharpoonup q_0 \in Q$  is the initial state;







Figure 1: An MMT.

### A Mealy machine with timers

(MMT) is a tuple

$$\mathcal{M} = (X, I, O, Q, q_0, \delta)$$
 where

- ► *X* is the set of **timers**:
- ► *I* is the set of **inputs**; the set of all **actions** is:

$$I \cup \{to[x] \mid x \in X\};$$

- O is the set of outputs;
- Q is the finite set of states;
- $ightharpoonup q_0 \in Q$  is the initial state;
- $\triangleright$   $\delta$  is the transition function.

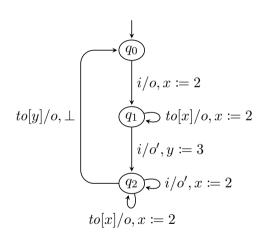


Figure 1: An MMT.

$$to[x]/o, x \coloneqq 2 \qquad i/o', x \coloneqq 2$$

$$i/o, x \coloneqq 2 \qquad i/o', y \coloneqq 3$$

$$to[y]/o, \bot$$

$$to[y]/o, \bot$$

Learning algorithm

$$(q_0,\emptyset)$$

Learning algorithm

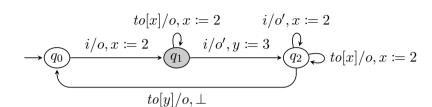
$$to[x]/o, x \coloneqq 2 \qquad i/o', x \coloneqq 2$$

$$i/o, x \coloneqq 2 \qquad i/o', y \coloneqq 3$$

$$to[y]/o, \bot$$

$$to[y]/o, \bot$$

$$(q_0,\emptyset) \xrightarrow{1} (q_0,\emptyset)$$



$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i/o} (q_1, x = 2)$$

$$to[x]/o, x := 2 \qquad i/o', x := 2$$

$$i/o, x := 2 \qquad 0 \qquad i/o', y := 3 \qquad 0$$

$$to[y]/o, \bot$$

$$to[y]/o, \bot$$

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i/o} (q_1, x = 2) \xrightarrow{2} (q_1, x = 0)$$

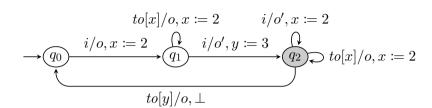
Learning algorithm

$$(q_0,\emptyset) \xrightarrow{1} (q_0,\emptyset) \xrightarrow{i/o} (q_1,x=2) \xrightarrow{2} (q_1,x=0) \xrightarrow{to[x]/o} (q_1,x=2)$$

Learning algorithm

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i/o} (q_1, x = 2) \xrightarrow{2} (q_1, x = 0) \xrightarrow{to[x]/o} (q_1, x = 2)$$

$$\xrightarrow{0} (q_1, x = 2) \xrightarrow{i/o'} (q_2, x = 2, y = 3)$$



$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i/o} (q_1, x = 2) \xrightarrow{2} (q_1, x = 0) \xrightarrow{to[x]/o} (q_1, x = 2)$$

$$\xrightarrow{0} (q_1, x = 2) \xrightarrow{i/o'} (q_2, x = 2, y = 3) \xrightarrow{2} (q_2, x = 0, y = 1)$$

Learning algorithm

$$(q_0, \emptyset) \xrightarrow{1} (q_0, \emptyset) \xrightarrow{i/o} (q_1, x = 2) \xrightarrow{2} (q_1, x = 0) \xrightarrow{to[x]/o} (q_1, x = 2)$$

$$\xrightarrow{0} (q_1, x = 2) \xrightarrow{i/o'} (q_2, x = 2, y = 3) \xrightarrow{2} (q_2, x = 0, y = 1)$$

$$\xrightarrow{i/o'} (q_2, x = 2, y = 1) \xrightarrow{0.5} (q_2, x = 1.5, y = 0.5).$$

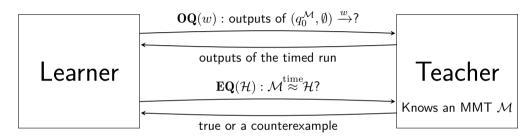


Figure 2: Adaptation of Angluin's framework<sup>2</sup> to MMTs.

 $<sup>^2</sup>$ Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987; Shahbaz and Groz, "Inferring mealy machines", 2009.

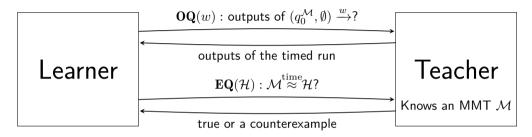


Figure 2: Adaptation of Angluin's framework<sup>2</sup> to MMTs.

Both queries are in the **timed** world... Cumbersome to use!

<sup>&</sup>lt;sup>2</sup>Angluin, "Learning Regular Sets from Queries and Counterexamples", 1987; Shahbaz and Groz, "Inferring mealy machines", 2009.

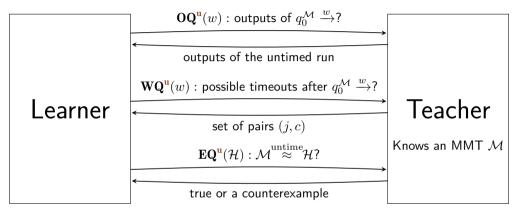


Figure 3: Untimed adaptation of Angluin's framework to MMTs.

We stay in the untimed world!

Does **not** hold for all MMTs!

Does **not** hold for all MMTs! It holds when an MMT is **good**:

timeouts are observed via their outputs,

Learning algorithm

Does **not** hold for all MMTs! It holds when an MMT is good:

- timeouts are observed via their outputs.
- for every untimed sequence of transitions, there exists a timed run using exactly this sequence of transitions...

Does **not** hold for all MMTs! It holds when an MMT is **good**:

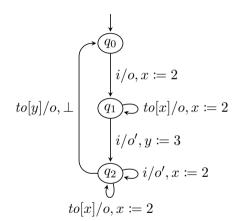
- timeouts are observed via their outputs,
- ► for every untimed sequence of transitions, there exists a timed run using **exactly** this sequence of transitions...
- ▶ with all delays > 0 and there is at most one timer that times out at any time (see Bruyère, Pérez, et al., "Automata with Timers", 2023).

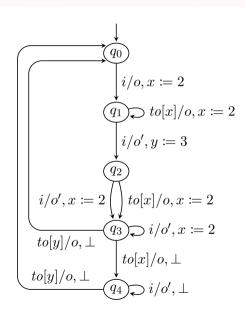
Learning algorithm

Does **not** hold for all MMTs! It holds when an MMT is **good**:

- timeouts are observed via their outputs,
- ► for every untimed sequence of transitions, there exists a timed run using **exactly** this sequence of transitions...
- ▶ with all delays > 0 and there is at most one timer that times out at any time (see Bruyère, Pérez, et al., "Automata with Timers", 2023).

**Proposition 2.** It is possible to construct an MMT in which the second condition is satisfied.





Learning algorithm

000

Motivation: timed systems

Learning algorithm

<sup>&</sup>lt;sup>3</sup>Vaandrager et al., "A New Approach for Active Automata Learning Based on Apartness", 2022.

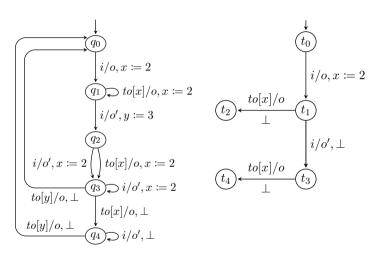
We adapt  $L^{\#}$  (active learning algorithm for Mealy machines<sup>3</sup>) to MMTs:  $L_{MMT}^{\#}$ .

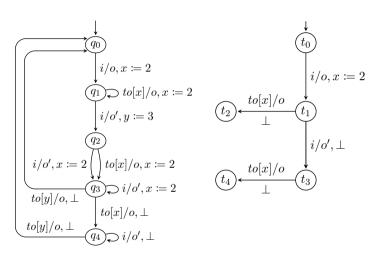
**Theorem 3.** Let  $\mathcal{M}$  be a "good" MMT and  $\ell$  be the length of the longest counterexample returned by the teacher. Then,

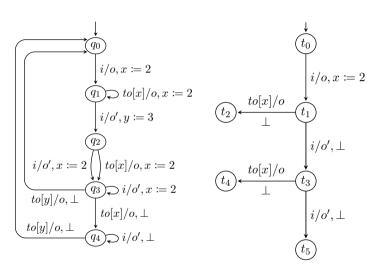
- lacktriangle the  $L^\#_{MMT}$  algorithm eventually terminates and returns an MMT  ${\mathcal N}$  such that  $\mathcal{M} \stackrel{\mathrm{time}}{\approx} \mathcal{N}$  and whose size is **polynomial** in  $|Q^{\mathcal{M}}|$  and **factorial** in  $|X^{\mathcal{M}}|$ , and
- in time and number of untimed queries **polynomial** in  $|Q^{\mathcal{M}}|, |I|$ , and  $\ell$ , and factorial in  $|X^{\mathcal{M}}|$ .

Learning algorithm

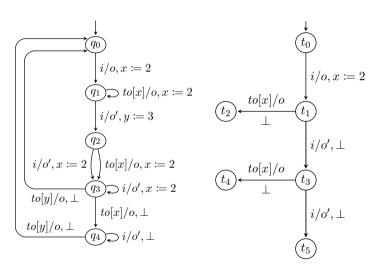
<sup>&</sup>lt;sup>3</sup>Vaandrager et al., "A New Approach for Active Automata Learning Based on Apartness", 2022.





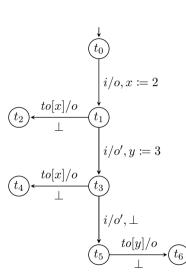


$$ightharpoonup$$
 So,  $t_3 \xrightarrow{i/o'} t_5$ .



$$ightharpoonup$$
 So,  $t_3 \xrightarrow[]{i/o'} t_5$ .

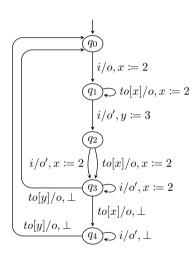
► 
$$\mathbf{WQ^{u}}(i \cdot i \cdot i)$$
  
  $\sim \{(2,3),(3,2)\}.$ 

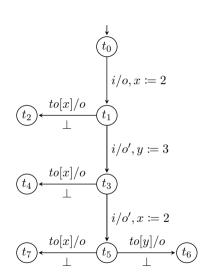


- $ightharpoonup \mathbf{OQ^u}(i \cdot i \cdot i) \sim o \cdot o' \cdot o'.$
- ightharpoonup So,  $t_3 \xrightarrow{i/o'} t_5$ .
- $ightharpoonup \mathbf{WQ^u}(i \cdot i \cdot i)$  $\sim \{(2,3),(3,2)\}.$
- ▶ So.  $t_1 \stackrel{i}{\rightarrow} t_3$  starts a timer at constant 3.

Motivation: timed systems

Learning algorithm





- $ightharpoonup \mathbf{OQ^u}(i \cdot i \cdot i) \sim o \cdot o' \cdot o'.$
- ightharpoonup So,  $t_3 \xrightarrow{i/o'} t_5$ .
- $ightharpoonup \mathbf{WQ^u}(i \cdot i \cdot i)$  $\sim \{(2,3),(3,2)\}.$
- ▶ So.  $t_1 \stackrel{i}{\rightarrow} t_3$  starts a timer at constant 3.
- ightharpoonup And  $t_3 \xrightarrow{i} t_5$  starts a timer at constant 2.

We implemented  $L_{\rm MMT}^{\#}$  in Rust<sup>4</sup> and ran some experiments.

| Model           | Q  | I | X | $ \mathbf{WQ^u} $ | $ \mathbf{OQ^u} $ | $ \mathbf{EQ^u} $ | Time[msecs] |
|-----------------|----|---|---|-------------------|-------------------|-------------------|-------------|
| AKM             | 4  | 5 | 1 | 22                | 35                | 2                 | 684         |
| CAS             | 8  | 4 | 1 | 60                | 89                | 3                 | 1344        |
| Light           | 4  | 2 | 1 | 10                | 13                | 2                 | 302         |
| PC              | 8  | 9 | 1 | 75                | 183               | 4                 | 2696        |
| TCP             | 11 | 8 | 1 | 123               | 366               | 8                 | 3182        |
| Train           | 6  | 3 | 1 | 32                | 28                | 3                 | 1559        |
| Running example | 3  | 1 | 2 | 11                | 5                 | 2                 | 1039        |
| FDDI 1-station  | 9  | 2 | 2 | 32                | 20                | 1                 | 1105        |
| Oven            | 12 | 5 | 1 | 907               | 317               | 3                 | 9452        |
| WSN             | 9  | 4 | 1 | 175               | 108               | 4                 | 3291        |

<sup>4</sup>https://gitlab.science.ru.nl/bharat/mmt lsharp.

### Still work to be done:

- ► Further experiments with more timers,
- ▶ Simplify the learning algorithm as much as possible.

### Still work to be done:

- ► Further experiments with more timers,
- ► Simplify the learning algorithm as much as possible.

# Thank you!

For all details, see Bruyère, Garhewal, et al., "Active Learning of Mealy Machines with Timers", 2024.

# Part I – Appendix

Appendix

### References I

- Angluin, Dana. "Learning Regular Sets from Queries and Counterexamples". In: *Inf. Comput.* 75.2 (1987), pp. 87–106. DOI: 10.1016/0890-5401(87)90052-6.
- Bruyère, Véronique, Bharat Garhewal, et al. "Active Learning of Mealy Machines with Timers". In: CoRR abs/2403.02019 (2024). DOI: 10.48550/arXiv.2403.02019. arXiv: 2403.02019.
- Bruyère, Véronique, Guillermo A. Pérez, et al. "Automata with Timers". In: Formal Modeling and Analysis of Timed Systems 21st International Conference, FORMATS 2023, Antwerp, Belgium, September 19-21, 2023, Proceedings. Ed. by Laure Petrucci and Jeremy Sproston. Vol. 14138. Lecture Notes in Computer Science. Springer, 2023, pp. 33–49. DOI: 10.1007/978-3-031-42626-1\\_3.
- Shahbaz, Muzammil and Roland Groz. "Inferring mealy machines". In: *International Symposium on Formal Methods*. Springer. 2009, pp. 207–222.

### References II

Vaandrager, Frits W. et al. "A New Approach for Active Automata Learning Based on Apartness". In: Tools and Algorithms for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part I. Ed. by Dana Fisman and Grigore Rosu. Vol. 13243. Lecture Notes in Computer Science. Springer, 2022, pp. 223–243. DOI: 10.1007/978-3-030-99524-9\\_12.