
ar
X

iv
:2

40
3.

02
01

9v
2

 [
cs

.F
L

]
 3

0
O

ct
 2

02
4

Active Learning of Mealy Machines with Timers⋆

Véronique Bruyère1 , Bharat Garhewal2 , Guillermo A. Pérez3 , Gaëtan
Staquet1,3 , and Frits W. Vaandrager2

1 University of Mons, Belgium
{veronique.bruyere,gaetan.staquet}@umons.ac.be

2 Radboud University, The Netherlands
{b.garhewal,f.vaandrager}@cs.ru.nl

3 University of Antwerp – Flanders Make, Belgium
guillermo.perez@uantwerpen.be

Abstract. We present the first algorithm for query learning of a class of
Mealy machines with timers in a black-box context. Our algorithm is an
extension of the L# algorithm of Vaandrager et al. [32] to a timed set-
ting. We rely on symbolic queries which empower us to reason on untimed
executions while learning. Similarly to the algorithm for learning timed
automata of Waga [33], these symbolic queries can be implemented using
finitely many concrete queries. Experiments with a prototype implemen-
tation, written in Rust, show that our algorithm is able to efficiently
learn realistic benchmarks.

Keywords: Timed systems, model learning, active automata learning

1 Introduction

To understand and verify complex systems, we need accurate models that are
understandable for humans or can be analyzed fully automatically. Such models,
are typically not available for legacy software and for AI systems constructed
from training data. Model learning is a technology that potentially may fill this
gap. In this work, we consider a specific kind of model learning: active automata
learning, which is a black-box technique for constructing state machine models of
software and hardware from information obtained through testing (i.e., providing
inputs and observing the resulting outputs). It has been successfully used in
many applications, e.g., for spotting bugs in implementations of major network
protocols [12–16,27]. We refer to [23, 30] for surveys and further references.

Timing plays a crucial role in many applications. However, extending model
learning algorithms to a setting that incorporates quantitative timing informa-
tion turns out to be challenging. Twenty years ago, the first papers on this
subject were published [19, 26], but we still do not have scalable algorithms for

⋆ Gaëtan Staquet is a research fellow of the F.R.S.-FNRS. The research of Bharat
Garhewal and Frits Vaandrager, and that of Guillermo A. Pérez, were supported by
NWO TOP project 612.001.852 “GIRLS” and FWO project G030020N “SAILor”.

http://arxiv.org/abs/2403.02019v2
http://orcid.org/0000-0002-9680-9140
http://orcid.org/0000-0003-4908-2863
http://orcid.org/0000-0002-1200-4952
http://orcid.org/0000-0001-5795-3265
http://orcid.org/0000-0003-3955-1910

2 V. Bruyère et al.

a general class of timed models. Consequently, in applications of model learning
technology, timing issues still need to be artificially suppressed.

Several authors have proposed active learning algorithms for the popular
framework of timed automata (TA) [3], which extends DFAs with clock variables.
Some of these proposals, for instance [20–22] have never been implemented. In
recent years, however, several algorithms have been proposed and implemented
that successfully learned realistic benchmark models. A first line of work re-
stricts to subclasses of TAs such as deterministic one-clock timed automata
(DOTAs) [5, 34]. A second line of work explores synergies between active and
passive learning algorithms. Aichernig et al. [1,29], for instance, employ a passive
learning algorithm based on genetic programming to generate hypothesis mod-
els, which are subsequently refined using equivalence queries. A major result was
obtained recently by Waga [33], who presents an algorithm for active learning of
(general) deterministic TAs and shows the effectiveness of the algorithm on vari-
ous benchmarks. Waga’s algorithm is inspired by ideas of Maler & Pnueli [26]. In
particular, based on the notion of elementary languages of [26], Waga uses sym-
bolic queries which are then implemented using finitely many concrete queries.
A challenge for learning algorithms for timed automata is the inference of the
guards and resets that label transitions. As a result, the algorithm of Waga [33]
requires an exponential number of concrete membership queries to implement a
single symbolic query. Notably, symbolic queries are also used for learning other
families of automata, such as register automata [18].

Given the difficulties of inferring the guards and resets of TAs, Vaandrager et
al. [31] propose to consider learning algorithms for models using timers instead
of clocks, e.g., the class of models defined by Dill [11]. The value of a timer de-
creases when time advances, whereas the value of a clock increases. Vaandrager
et al. [31] present a slight generalization of the notion of a Mealy machine by
adding a single timer (MM1T). In an MM1T, the timer can be set to integer
values on transitions and may be stopped or time out in later transitions. The
timer expires when its value becomes 0 and at this point a timeout event occurs.
Each timeout triggers an observable output, allowing a learner to observe the oc-
currence of timeouts. The absence of guards and invariants in MM1Ts simplifies
learning. A learner still has to determine which transitions (re)start timers, but
this no longer creates a combinatorial blow-up. If a transition sets a timer, then
slight changes in the timing of this transition will trigger corresponding changes
in the timing of the resulting timeout, allowing a learner to identify the exact
cause of each timeout. Even though many realistic systems can be modeled as
MM1Ts (e.g., the benchmarks in [31] and the brick sorter and traffic controller
examples in [10]), the restriction to a single timer is a serious limitation. There-
fore, Kogel et al. [25] propose Mealy machines with local timers (MMLTs), an
extension of MM1T with multiple timers subject to carefully chosen constraints
to enable efficient learning. Although quite interesting, the constraints of MMLTs
are too restrictive for many applications (e.g., the FDDI protocol described in
Appendix F). Also, any MMLT can be converted to an equivalent MM1T. We
explored in [7] a general extension of MM1Ts with multiple timers (MMTs), and

Active Learning of Mealy Machines with Timers 3

show that for MMTs that are race-avoiding, the cause of a timeout event can be
efficiently determined by “wiggling” the timing of input events. Finally, MMTs
form a subclass of TAs, and, thus, existing model checking algorithms and tools
for TAs (such as UPPAAL4) can be used.

The main result of this paper is a learning algorithm for the MMT mod-
els of [7], that is obtained by extending the L# learning algorithm for Mealy
machines of Vaandrager et al. [32] and using ideas of Maler & Pnueli [26]. Ex-
periments with a prototype implementation, written in Rust, show that our
algorithm is able to efficiently learn realistic benchmarks.

2 Mealy Machines with Timers

A Mealy machine is a variant of the classical finite automaton that associates an
output with each transition instead of associating a boolean with each state. A
Mealy machine can be seen as a relation between input words and output words.
Mealy machines with timers [31] can then be used to enforce timing constraints
over the behavior of the relation, e.g., if we send a message and do not receive
the acknowledgment after d units of time, we resend the message.

We fix a non-empty, finite set I of inputs and a non-empty set O of outputs.
A Mealy machine with timers uses a finite set X of timers, from which we define
the set TO [X] = {to[x] | x ∈ X} of timeouts of X , and write A(M) for the set
I ∪ TO [X] of actions of M: reading an input (an input action), or processing
a timeout (a timeout action). Finally, U(M) = (X × N

>0) ∪ {⊥} is the set
of updates of M, where (x, c) means that timer x is started with value c, and
⊥ stands for no timer update. We impose certain constraints on the shape of
MMTs, e.g., a timer x can time out only when it is active, allowing us to define
hereafter the timed semantics in a straightforward manner.

Definition 1 (Mealy machine with timers). A Mealy machine with timers
(MMT, for short) is a tuple M = (X,Q, q0, χ, δ) where:

– X is a finite set of timers (we assume X ∩ N
>0 = ∅),

– Q is a finite set of states, with q0 ∈ Q the initial state,
– χ : Q → P(X) assigns a set of active timers to each state, and
– δ : Q× A(M) ⇀ Q×O × U(M) is a partial transition function.

We write q
i/o
−−→
u

q′ if δ(q, i) = (q′, o, u). We require the following:

1. In the initial state, no timer is active, i.e., χ(q0) = ∅.
2. All active timers of the target state of a transition come from the source state,

except at most one timer that may be started on the transition. That is, if

q
i/o
−−→
⊥

q′, χ(q′) ⊆ χ(q), and, if q
i/o

−−−→
(x,c)

q′ with c ∈ N
>0, χ(q′) \ {x} ⊆ χ(q).

3. If timer x times out then x was active in the source state, i.e., if q
to[x]/o
−−−−→

u
q′

then x ∈ χ(q). Moreover, if u 6= ⊥, then u must be (x, c) for some c ∈ N
>0.

4 https://uppaal.org/

https://uppaal.org/

4 V. Bruyère et al.

q0 q1 q2 q3 q4

q5

i/o
x := 2

to[x]/o, x := 2

i/o′

y := 3
to[x]/o, x := 2

i/o′, x := 2

i/o′, x := 2

to[x]/o, x := 2

i/o′, x := 2

i/o′, x := 2

to[y]/o,⊥

to[y]/o,⊥

to[y]/o,⊥

to[x]/o, x := 2

Fig. 1: An MMT with χ(q0) = ∅, χ(q1) = {x}, and χ(q) = {x, y} for all other q.

When needed, we add a superscript to indicate which MMT is considered, e.g.,

QM, qM0 , etc. Missing symbols in q
i/o
−−→
u

q′ are quantified existentially. We say a

transition q −→
u

q′ starts (resp. restarts) the timer x if u = (x, c) and x is inactive

(resp. active) in q. We say that a transition q
i
−→ q′ with i 6= to[x] stops the

timer x if x is inactive in q′. The requirement that a to[x]-transition can only
restart the timer x is without loss of generality and a choice made to simplify the
presentation (see Appendix E.2). An example of an MMT is given in Figure 1.

A run π of M either consists of a single state p0 or of a nonempty sequence

of transitions π = p0
i1/o1
−−−→

u1

p1
i2/o2
−−−→

u2

· · ·
in/on
−−−−→

un

pn. We denote by runs(M) the

set of runs of M. We often write q
i
−→ ∈ runs(M) to highlight that δ(q, i) is

defined. We lift the notation to words i1 · · · in as usual: p0
i1···in−−−−→ pn ∈ runs(M)

if there exists a run p0
i1−→ · · ·

in−→ pn ∈ runs(M). Note that any run π is uniquely

determined by its first state p0 and word, as M is deterministic. A run p0
i1···in−−−−→

is x-spanning (with x ∈ X) if it begins with a transition (re)starting x, ends
with a to[x]-transition, and no intermediate transition restarts or stops x.

2.1 Timed Semantics

The semantics of an MMT M is defined via an infinite-state labeled transi-
tion system describing all possible configurations and transitions between them.
A valuation is a partial function κ : X ⇀ R

≥0 that assigns nonnegative real
numbers to timers. For Y ⊆ X , we write Val(Y) for the set of all valuations
κ with dom(κ) = Y . A configuration of M is a pair (q, κ) where q ∈ Q and
κ ∈ Val(χ(q)). The initial configuration is the pair (q0, κ0) where κ0 = ∅ since
χ(q0) = ∅. If κ ∈ Val(Y) is a valuation in which all timers from Y have a value
of at least d ∈ R

≥0, then d units of time may elapse. We write κ − d ∈ Val(Y)
for the resulting valuation that satisfies (κ− d)(x) = κ(x) − d, for all x ∈ Y . If
the valuation κ contains a value κ(x) = 0 for some timer x, then x may time
out. We define the transitions between configurations (q, κ), (q′, κ′) as follows:

delay transition (q, κ)
d
−→ (q, κ− d), with κ(x) ≥ d for every x ∈ χ(q),

discrete transition (q, κ)
i/o

−−−→
(x,c)

(q′, κ′), with q
i/o

−−−→
(x,c)

q′ a transition, κ′(x) = c

and κ′(y) = κ(y) for all y ∈ χ(q′) such that y 6= x. Moreover, if i = to[x],
κ(x) = 0 and it is a timeout transition; otherwise, it is an input transition.

Active Learning of Mealy Machines with Timers 5

A timed run of M is a sequence of configuration transitions such that delay
and discrete transitions alternate, beginning and ending with a delay transition.
We say a configuration (q, κ) is reachable if there is a timed run ρ that starts with
the initial configuration and ends with (q, κ). The untimed projection of ρ, noted
untime(ρ), is the run obtained by omitting the valuations and delay transitions
of ρ. A run π is said feasible if there is a timed run ρ such that untime(ρ) = π.

A timed word over a set Σ is an alternating sequence of delays from R
≥0

and symbols from Σ, such that it starts and ends with a delay. The length of a
timed word w, noted |w|, is the number of symbols of Σ in w. Note that, when
Σ = A(M), a timed run reading a timed word w is uniquely determined by its

first configuration and w. We thus write (p, κ)
w
−→ for a timed run. A timed run

ρ is called x-spanning (with x ∈ X) if untime(ρ) is x-spanning.

Example 1. Let M be the MMT of Figure 1. The timed run reading the timed
word 0.5 · i · 1 · i · 1 · to[x] · 2 · to[y] · 0 and its untimed projection are:

(q0, ∅)
0.5
−−→ (q0, ∅)

i/o
−−−→
(x,2)

(q1, x = 2)
1
−→ (q1, x = 1)

i/o′

−−−→
(y,3)

(q2, x = 1, y = 3)

1
−→ (q2, x = 0, y = 2)

to[x]/o
−−−−→
(x,2)

(q3, x = 2, y = 2)
2
−→ (q3, x = 0, y = 0)

to[y]/o
−−−−→

⊥
(q0, ∅)

0
−→ (q0, ∅)

π = q0
i/o

−−−→
(x,2)

q1
i/o′

−−−→
(y,3)

q2
to[x]/o
−−−−→
(x,2)

q3
to[y]/o
−−−−→

⊥
q0.

Hence, π is feasible, unlike the run q0
i·i·to[y]
−−−−−→, as the value of y in q2 is al-

ways greater than the value of x, no matter the chosen delays. Observe that

q1
i·to[x]·to[y]
−−−−−−−→ is y-spanning, while q0

i·i·to[x]
−−−−−→ is x-spanning.

As (q2, x = 0, y = 2) is reachable, we say that x is enabled in q2, i.e., it is
possible to observe the timeout of x in q2 along some timed run. However, y is
not enabled in q2, as it is impossible to reach a configuration (q2, x = ·, y = 0).
We write χ0(q) for the set of all enabled timers of q, i.e., χ0(q) = {x ∈ χ(q) |

∃(q0, ∅)
w
−→ (q, κ) : κ(x) = 0}. If q has at least one enabled timer then, just by

waiting in q for long enough, we can force one timer to reach the value zero.
A desirable property is for all such behaviors to have a corresponding timeout
transition, which is the case for M. We thus say that an MMT N is complete if

for all q ∈ Q and all i ∈ I ∪TO [χ0(q)] we have q
i
−→ ∈ runs(N).

2.2 Symbolic equivalence of MMTs

Later in this work, we need to decide whether two complete MMTs, that may
use different timers, describe the same timed behaviors, up to timer renaming.
To do so, we introduce a way to symbolically describe runs to abstract time and
timer names. We define symbolic words w over the alphabet A = I ∪TO [N>0] to
describe the x-spanning sub-runs of a run in the following way. Along a run π of

6 V. Bruyère et al.

a complete MMT, for any to[x]-transition there must exist an earlier transition
(re)starting x. The part of the run between the last such transition and the to[x]
is x-spanning. Hence, for a given to[x]-transition of π, there is a unique transition
that is the source of this timeout transition. Let w = i1 · · · in be a word over

A(M) that is the label of a run π = p0
i1−→
u1

p1
i2−→
u2

· · ·
in−→
in

pn ∈ runs(M). The

symbolic word (sw, in short) of w is the word w = i1 · · · in over A such that, for
every k ∈ {1, . . . , n}, ik = ik if ik ∈ I and ik = to[j] where j < k is the index of
the last transition (re)starting x if ik = to[x]. Conversely, given a symbolic word

w = i1 . . .in over A, one can convert it into a run q0
w
−→ using concrete timeout

symbols such that w = w if such a run exists in M. In an abuse of notation, we
write q0

w
−→ to denote the run q0

w
−→ such that w = w.

Example 2. Let M be the MMT of Figure 1 and π = q0
i

−−−→
(x,2)

q1
to[x]
−−−→
(x,2)

q1
to[x]
−−−→
(x,2)

q1 be a run. Let us construct the symbolic word w = i1 · i2 · i3 such that
i · to[x] · to[x] = w. As the first action of π is the input i, we get i1 = i. The second
action of π is to[x] and the last transition to (re)start x is the first transition of
π. So, i2 = to[1]. Likewise, the last symbol i3 of w must be to[2], as the second
transition of π restarts x. Hence, w = i · to[1] · to[2]. In the opposite direction, it
is not hard to see that the symbolic word w = i · i · to[1] · to[2] induces the run

q0
i

−−−→
(x,2)

q1
i

−−−→
(y,3)

q2
to[x]
−−−→ q2

to[y]
−−−→ q0 in M such that i · i · to[x] · to[y] = w.

Definition 2 (Symbolic equivalence). Two complete MMTs M and N are
symbolically equivalent, noted M

sym
≈ N , if for any sw w = i1 · · · in over A:

– qM0 = q0
i1/o1
−−−→

u1

· · ·
in/on
−−−→

un

qn is feasible in M iff qN0 = q′0
i1/o

′
1−−−→

u′
1

· · ·
in/o

′
n−−−→

u′
n

q′n

is feasible in N .

– Moreover, for all j ∈ {1, . . . , n}, oj = o′j and, if qj−1
ij···ik
−−−−→ qk is spanning,

then uj = (x, c) and u′
j = (x′, c′) with c = c′.

Notice that qj−1
ij···ik
−−−−→ qk is spanning in M if and only if q′j−1

ij···ik
−−−−→ q′k is span-

ning in N as both machines read the same symbolic word. Notice also that no
condition is imposed on the updates uj, u

′
j appearing outside the start of span-

ning runs. As outputs and updates at the start of spanning runs are the same,
symbolic equivalence implies the classical timed equivalence (see Appendix A).

2.3 Learning framework

As usual for learning algorithms, we rely on Angluin’s framework [6]: we assume
we have a teacher who knows M, and a learner who does not know M but can
query the teacher to obtain knowledge about M. Let us first characterize the
set of MMTs that we consider for our learning algorithm. We say that an MMT
M is s-learnable (the s stands for symbolically) if it is complete and every run
of M is feasible. The MMT of Figure 1 is s-learnable. From any complete MMT

Active Learning of Mealy Machines with Timers 7

M, one can construct an s-learnable MMT N that is symbolically equivalent,
by using zones (akin to the homonymous concept for timed automata, see [8]
for an introduction) to represent sets of valuations. See Appendix B for details.

Lemma 1. For any complete MMT M, there is an s-learnable MMT N
sym
≈ M.

We now define the queries the learner uses to gather knowledge about M,
the MMT of the teacher. For classical Mealy machines [28, 32], there are two
queries: output queries providing the sequence of outputs for a given input word,
and equivalence queries asking whether a hypothesis H is correct. If it is not,
a counterexample is returned, i.e., a word w inducing different outputs in H
and in M. In this work, we need to adapt those queries to encode the timed
behavior induced by the timers of M. As two MMTs do not use the same timers
in general, we rely on sws, and adapt our queries for the same. In order to deal
with timed behavior, we also need a new type of query, called a wait query. In the
definition, it is required that the word induces a run in M, which can be ensured
by stepwise increasing the length of the considered words (see Example 3).

Definition 3 (Symbolic queries). The learner uses three symbolic queries:

OQs(w) with w a sw such that qM0
w
−→ ∈ runs(M), returns the outputs of qM0

w
−→.

WQs(w) with w a sw such that qM0
i1−→ · · ·

in−→ qn ∈ runs(M) with i1 · · · in = w,

returns all pairs (j, c) such that qj−1
ij

−−−→
(x,c)

qj
ij+1···in·to[x]
−−−−−−−−−→ is x-spanning.

EQs(H) with H a complete MMT, returns yes if H
sym
≈ M, or a sw witnessing

the non-equivalence.

OQs and EQs are analogous to regular output and equivalence queries for
Mealy machines, while WQs provides, for each timer x enabled at the end of the
run induced by the symbolic word, the transition which last (re)started x and
the constant c with which x was (re)started. We claim these symbolic queries
can be performed via concrete output and equivalence queries, i.e., queries using
tiws instead of sws, under the assumption that M is race-avoiding [7]. In short,
a race-avoiding MMT allows runs to be observed deterministically, in the sense
that any feasible run is the untimed projection of a run ρ where all delays are
non-zero and there are no two timers that time out at the same time along ρ.
Not all MMTs are race-avoiding and a 3EXP algorithm to decide whether one is
race-avoiding is given in [7]. See Appendix C for a proof.

Lemma 2. For race-avoiding MMTs, the three symbolic queries can be imple-
mented via a polynomial number of concrete output and equivalence queries.

3 Learning algorithm

We now describe our learning algorithm for MMTs, called L#
MMT. Let M be the

hidden s-learnable MMT we want to learn. We first define the data structure of
the learner called an observation tree, before explaining how to use the queries

8 V. Bruyère et al.

t0 t1
t2

t3

t4

t5

t6

t7

t8

t9

t10

i/o, x1 := 2

i/o′, x3 := 3

to[x1]/o, x1 := 2 to[x1]/o,⊥

to[x1]/o, x1 := 2

i/o′, x6 := 2

to[x3]/o,⊥

to[x6]/o,⊥

to[x1]/o,⊥

to[x3]/o,⊥

Fig. 2: Sample observation tree (we write xi instead of xti for all states ti) with
χ(t1) = χ(t2) = {x1}, χ(t3) = χ(t5) = {x1, x3}, χ(t6) = {x3, x6}, and χ(t) = ∅
for the other states t.

to extend it. We then give a way to construct a hypothesis from the tree, and the
main loop of L#

MMT. We now state the complexity of L#
MMT (see Appendix E.3

for a proof). Observe that the complexity is polynomial, if |XM| is fixed.

Theorem 1. The L#
MMT algorithm terminates and returns an MMT N

sym
≈ M of

size polynomial in |QM| and factorial in |XM|, in time and number of symbolic
queries polynomial in |QM|, |I| and the length of the longest counterexample
returned by the teacher, and factorial in |XM|.

3.1 Observation tree

We describe the main data structure of our learning algorithm: a modification
of the observation tree used for L# [32]. Such a tree, noted T , is an MMT that
stores the observations obtained via symbolic queries. We impose that T is tree-
shaped, and that every run is feasible. Each state q of T has its own timer xq

that can only be started by the incoming transition of q, and may be restarted
only by a to[xq]-transition. Due to its tree-shape nature, we can impose strict
constraints on the sets of active and enabled timers: a timer x is active in q if
and only if there is an x-spanning run traversing q, and is enabled if and only if
the to[x]-transition is defined from q. We focus here on providing the main ideas
(see Appendix D for details).

Definition 4 (Observation tree). An observation tree is a tree-shaped MMT
T = (X,Q, q0, χ, δ) such that X = {xq | q ∈ Q\{q0}}, every run of T is feasible,

– for all p
i

−−−→
(x,c)

q with i ∈ I, we have x = xq,

– for all q ∈ Q, x ∈ X, we have x ∈ χ(q) if and only if there is an x-spanning
run traversing q, and

– for all q ∈ Q, x ∈ X, we have x ∈ χ0(q) if and only if q
to[x]
−−−→ ∈ runs(T).

We explain how to use OQs and WQs to gradually grow T on an example.

Example 3. Let M be the MMT of Figure 1 and T be the observation tree of

Figure 2, except that t3
i
−→ /∈ runs(T), i.e., the subtree rooted at t6 is not

present in the tree. We construct that subtree, via OQs and WQs.

Active Learning of Mealy Machines with Timers 9

First, we create the t3
i
−→ transition. Let w = i·i be the unique word such that

t0
w
−→ t3 and w = w = i · i be the corresponding sw. As M is s-learnable (and,

thus, complete), if follows that qM0
w·i
−→ ∈ runs(M). So, we can call OQs(w · i),

which returns o · o′ · o′. The last symbol o′ must then be outputted by the new

transition, i.e., we create t3
i/o′

−−→
⊥

t6. Observe that we initially use a ⊥ update,

as, for now, we do not have any information about the potential update of the

corresponding transition (here, q2
i

−−−→
(x,2)

q3) in M. Later on, we may discover

that the transition must start a timer, in which case ⊥ will be replaced by an
actual update. That is, ⊥ is used as a sort of wildcard while learning.

We then perform a symbolic wait query in t6, i.e., call WQs(w · i), which
returns the set {(2, 3), (3, 2)} meaning that the second transition of the run

qT0
w·i
−→ must (re)start a timer with the constant 3, and the third transition must

also (re)start a timer but with the constant 2. So, the ⊥ of the newly created
transition is replaced by (x6, 2) (as the label of the transition is an input). It
remains to create the to[x3]- and to[x6]-transitions from t6 by performing two
symbolic output queries. We call OQs(w · i · to[2]) and OQs(w · i · to[3]) (we know
that both words label runs of M by the symbolic wait query), and create the
transitions. We thus obtain the tree of Figure 2.

Functional simulation. One can show that each state of an observation tree
can be mapped to a state of M, by adapting the notion of functional simulation
of L# [32]. Here, we outline what this means and refer to Appendix D.1 for more
details. We have a function f : QT → QM such that f(qT0) = qM0 and every
outgoing transition from a state q ∈ QT can be reproduced from f(q) while
producing the same output. In addition, since T andMmay use different timers,
we need a function g : XT → XM that maps active timers of T to timers of M.
We lift g to actions such that g(i) = i for every i ∈ I and g(to[x]) = to[g(x)] for
every x ∈ dom(g). We require that for all q, q′ ∈ QT , x, y ∈ XT and i ∈ I:

1. any timer that is active in q must have a corresponding active timer in f(q),
i.e., if x ∈ χT (q), then g(x) ∈ χM(f(q));

2. two distinct timers that are active in q must be mapped to two distinct
timers in M, i.e., if x 6= y and both are active in q, then g(x) 6= g(y);

3. if there exists a transition q
i/o
−−→
u

q′ in T , there must exist a transition reading

g(i) from f(q) that also outputs o, i.e., f(q)
g(i)/o
−−−−→

u′
f(q′) in M. Furthermore,

if u = (x, c), the transition in M must (re)start the timer g(x) at value c,
i.e., u′ = (g(x), c). However, if u = ⊥, we do not impose anything on u′.

One can show the following properties from the above constraints.

Lemma 3. Let M be an s-learnable MMT, T be an observation tree, and f
and g be the functions described above. Then, for any state q ∈ QT , we have
|χT (q)| ≤ |χM(f(q))| and for all x ∈ χT

0 (q), it holds that g(x) ∈ χM
0 (f(q)).

10 V. Bruyère et al.

We say that a state q of T is explored once WQs(q) has been called. By
definition of wait queries, it means that every enabled timer of f(q) is identified in
q, i.e., |χ0(q)| = |χ0(f(q))|. We thus obtain a one-to-one correspondence between
χT
0 (q) and χM

0 (f(q)). Define ET as the maximal set of explored states of T .
During the learning algorithm, ET induces a subtree containing qT0 . Explored
states only make sense when M is s-learnable, as, otherwise, multiple states with
different numbers of enabled timers could be mapped, via f , to a single state in
M, i.e., we do not have a one-to-one correspondence. See Appendix D.1.

Example 4. In the tree of Figure 2, the explored states are t0, t1, t2, t3, t5, and
t6. In Example 3, t0 to t3, and t5 were already explored and formed a subtree.
The wait query over t6 made it an explored state, i.e., ET is still a subtree.
During the learning process, we will ensure that a wait query is only performed
on a state that is an immediate successor of an explored state.

Apartness. A key aspect of L# is the notion of apartness indicating which
states have different behaviors. In the setting of regular Mealy machines, states
p, p′ are apart if they have different output responses to the same input word. In
our case, we need to handle the fact that different timers in T can represent the
same timer in M. An example showcasing the various notions is given below.

First, recall that if two distinct timers x and y are both active in the same
state of T , it must hold that g(x) 6= g(y), i.e., they correspond to different timers
in M. Hence, we say that x, y are apart, noted x t# y if there exists q ∈ QT such
that x, y ∈ χT (q). Then, defining apartness for states requires us to quantify
possible equivalences of timers. For this, we rely on the concept of matching.
Given two finite sets S and T , a relation m ⊆ S × T is a matching from S to T
if it is an injective partial function. We write m : S ↔ T if m is a matching from
S to T . A matching m is maximal if it is total or surjective. Given two states p
and p′ of an observation tree T , we consider a matching m : χT (p) ↔ χT (p′),
denoted by abuse of notation as m : p ↔ p′. A matching is meant to indicate
that the timers x and m(x) could represent the same timer in M. Hence, we
say that m is valid if for all x ∈ dom(m), ¬(x t# m(x)). We lift m to actions:
m(i) = i for all i ∈ I, and m(to[x]) = to[m(x)] for every x ∈ dom(m).

We now move towards defining the apartness of two states p0 and p′0, which

requires to be able to “mimic” a run p0
w
−→ from p′0, in the sense that every

to[x]-symbol appearing in w must be replaced by a to[y] with y given by some

matching. Let π = p0
i1−→ p1

i2−→ · · ·
in−→ pn and π′ = p′0

i′1−→ p′1
i′2−→ · · ·

i′n−→ p′n.
We lift a matching m : p0 ↔ p′0 to runs π, π′ as follows. For π′ to match π, we
require that for all j ∈ {1, . . . , n}: (i) If ij ∈ I, then i′j = ij . (ii) If ij = to[x]

for some x ∈ XT then x ∈ χT (p0) or x = xpk
for some k. Then, i′j is either

to[m(x)], or to[xp′
k
] with the same k. When they match, we write mπ

π′ : π ↔ π′

with mπ
π′ = m ∪ {(xpk

, xp′
k
) | k ≤ n} and i′j = mπ

π′(ij) for every j. For a
fixed π ∈ runs(T) and m, there is at most one run π′ ∈ runs(T) such that
mπ

π′ : π ↔ π′. We denote by readm
π (p′0) this unique run π′ if it exists.

Active Learning of Mealy Machines with Timers 11

Definition 5 (Apartness). Two states p0, p
′
0 are m-apart with m : p0 ↔ p′0,

written p0#
mp′0, if there are π = p0

i1−→ · · ·
in/o
−−−→

u
pn and π′ = p′0

i′1−→ · · ·
i′n/o′

−−−→
u′

p′n

with mπ
π′ : π ↔ π′, and

Structural apartness there exists x ∈ dom(mπ
π′) such that x t#mπ

π′(x), or
Behavioral apartness one of the following holds:

o 6= o′ (outputs)

u = (x, c) ∧ u′ = (x′, c′) ∧ c 6= c′ (constants)

pn, p
′
n ∈ ET ∧ |χ0(pn)| 6= |χ0(p

′
n)| (sizes)

pn, p
′
n ∈ ET ∧ ∃x ∈ dom(mπ

π′) : (x ∈ χ0(pn) ⇔ mπ
π′(x) /∈ χ0(p

′
n)) (enabled)

The word w = i1 . . . in is called a witness of p0 #
m p′0, noted w ⊢ p0 #

m p′0.

Example 5. In the examples, we write x 7→ x′, y 7→ y′ for the matching m such
that m(x) = x′ and m(y) = y′. Let T be the observation tree of Figure 2

and π = t0
i/o

−−−−→
(x1,2)

t1
to[x1]/o
−−−−−→ t2 ∈ runs(T). We compute read∅

π(t3) (where

∅ denotes the empty matching). The first symbol in π is i, i.e., we take the

transition t3
i/o′

−−−−→
(x6,2)

t6. The second symbol in π is to[x1]. Since x1 was a fresh

timer started along π, we retrieve the corresponding fresh timer in the new

run, which is x6. Hence, π′ = read∅
π(t3) = t3

i/o′

−−−−→
(x6,2)

t6
to[x6]/o
−−−−−→ t9. As the

first transition of π outputs o but the first transition of π′ outputs o′ 6= o,
i ⊢ t0 #∅ t3 by (outputs). Since t1, t6 ∈ ET and |χ0(t1)| = 1 6= |χ0(t6)| = 2,

ε ⊢ t1 #∅ t6 and i ⊢ t0 #∅ t3 by (sizes). Now, let σ = t1
i/o′

−−−−→
(x3,3)

t3
to[x1]
−−−−→ t5

and σ′ = readx1 7→x3

π′ (t3) = t3
i/o′

−−−−→
(x6,2)

t6
to[x3]
−−−−→ t10. Since x1 7→ x3 is invalid,

t1 #
x1 7→x3 t3 is structural. We also have i ⊢ t1 #

x1 7→x3 t3 due to (constants).

Observe that whenever w ⊢ p#m p′ and readm

p
w
−→

(p′) = p′
w′

−→, it holds that

w′ ⊢ p′ #m−1

p. Moreover, any extension m′ of m is such that w ⊢ p #m′

p′,
i.e., taking a larger matching does not break the apartness, as readm

p
w−→
(p′) =

readm′

p
w
−→

(p′) = p′
w′

−→. Finally, we claim that the definition of apartness is rea-

sonable: when p#m p′, then f(p) 6= f(p′) (the two states are really distinct) or
g(x) 6= g(m(x)) for some x (m and g do not agree). Appendix D.2 gives a proof.

Theorem 2. Let T be an observation tree for an s-learnable MMT with func-
tional simulation 〈f, g〉, p, p′ ∈ QT , and m,m′ : p ↔ p′ matchings. Then,

– w ⊢ p#m p′ ∧m ⊆ m′ ⇒ w ⊢ p#m′

p′, and
– p#m p′ ⇒ f(p) 6= f(p′) ∨ ∃x ∈ dom(m) : g(x) 6= g(m(x)).

12 V. Bruyère et al.

3.2 Hypothesis construction

In this section, we provide the construction of a hypothesis MMT H from T .
In short, we extend the tree such that some conditions are satisfied and we
define a subset of QT , called the basis, that forms the set of states of H. Similar
to L# [32], we then “fold” the tree; that is, some transitions q −→ r must be
redirected to some state p of the basis. For MMTs, we also need to map every
timer active in r to an active timer of p. Formally, we define:

– The basis BT is a subtree of QT such that qT0 ∈ BT and p #m p′ for any
p 6= p′ ∈ BT and maximal matchingm : p ↔ p′. By Theorem 2, we thus know
that f(p) 6= f(p′) or g(x) 6= g(m(x)) for some x ∈ dom(m). As we have this
for every maximal m, we conjecture that f(p) 6= f(p′). We may be wrong,
i.e., f(p) = f(p′) but we need a matching that is currently unavailable, due
to unknown active timers which will be discovered later.

– The frontier FT ⊆ QT is the set of immediate non-basis successors of basis
states. We say p ∈ BT and r ∈ FT are compatible under a maximal matching
m if ¬(p#m r). We write compatT(r) for the set of all such pairs (p,m).

During the learning algorithm, the tree will be extended such that a complete
MMT can be constructed from T . We will ensure that (A) each basis and fron-
tier state is explored, i.e., BT ∪ FT ⊆ ET , in order to discover timers as fast

as possible, (B) the basis is complete, in the sense that p
i
−→ is defined for

every i ∈ I ∪ TO [χT
0 (p)], and (C) for every r ∈ FT , compatT(r) 6= ∅ and

|χT (p)| = |χT (r)| for every (p,m) ∈ compatT(r). All of these constraints can be
obtained via OQs and WQs, as we illustrate in the next example.

Example 6. In order to simplify the explanations, we assume from now on that
a call to OQs(w · i) with i ∈ I automatically adds the corresponding transition
to T , and that a call to WQs(w) automatically calls OQs(w · to[j]), for every
to[j] deduced from the wait query, modifies updates accordingly, and adds the
new explored states to ET . Recall that ET is exactly the set of states in which we
performed a WQs. Moreover, we let OQs(q, i) denote OQs(w · i) and WQs(q)

denote WQs(w) with w such that qT0
w
−→ q ∈ runs(T).

Let the MMT of the teacher be the MMT M of Figure 1 and T be the obser-
vation tree of Figure 2. One can check that t0, t1, and t3 are all pairwise apart
under any maximal matching. So, BT = {t0, t1, t3} and FT = {t2, t5, t6}. The ba-
sis states are highlighted in gray in the figure. Moreover, we have compatT(t2) =
{(t1, x1 7→ x1), (t3, x1 7→ x1)}, and compatT(t5) = compatT(t6) = ∅. We thus pro-
mote t6 by moving it from the frontier to the basis, i.e., BT is now {t0, t1, t3, t6}.

In order to satisfy (B), we call OQs(t6, i) and add a new transition t6
i/o′

−−→
⊥

t11.

We call WQs(t9),WQs(t10), and WQs(t11), which yield χ(t9) = χ0(t9) = {x3},
χ(t10) = ∅, and χ(t11) = χ0(t11) = {x3, x11}. Hence, we get (A) with FT =
{t2, t5, t9, t10, t11}, compatT(t2) = {(t1, x1 7→ x1), (t3, x1 7→ x1)}, compatT(t5) =
{(t6, x6 7→ x1, x3 7→ x3)}, compatT(t9) = ∅, compatT(t10) = {(t0, ∅)}, and
compatT(t11) = {(t6, x6 7→ x11, x3 7→ x3)}.

Active Learning of Mealy Machines with Timers 13

t0 t1
t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16t17

i/o

x1 := 2 i/o′, x3 := 3

to[x1]/o, x1 := 2 to[x1]/o,⊥

to[x1]/o, x1 := 2

i/o′, x6 := 2

to[x3]/o,⊥

to[x6]/o,⊥ to[x3]/o,⊥

to[x3]/o,⊥

to[x3]/o,⊥
to[x1]/o,⊥

to[x3]/o,⊥

i/o′, x11 := 2

to[x11]/o,⊥

i/o′,⊥

to[x1]/o,⊥

t0 t1 t3 t6 t9
i/o

y1 := 2

i/o′

y2 := 3

to[y1]/o, y1 := 2

i/o′, y1 := 2

to[y1]/o, y1 := 2 to[y1]/o,⊥
i/o′, y1 := 2 i/o′,⊥

to[y2]/o,⊥ to[y2]/o,⊥

Fig. 3: On top, an observation tree from which the hypothesis MMT at the bot-
tom is constructed, with y1 = Jx1K≡ and y2 = Jx3K≡. Basis states are highlighted
with a gray background.

Observe that (C) is not satisfied, due to (t3,m) ∈ compatT(t2) but |χ(t3)| = 2

while |χ(t2)| = 1. In order to resolve this issue, we replay the run t3
to[x1]to[x3]
−−−−−−−→ t8

(witnessing that x3 is active in t3 and eventually times out) from the state t2.
As we did when defining apartness, we rely on a mapping that we update after
each transition. The starting mapping is given by the compatible function. Here,

consider m = (x1 7→ x1). Since t2
to[x1]
−−−−→ t4 is already defined (and the transition

does not change the mapping), let us focus on replaying t5
to[x3]
−−−−→ from t4. We

first call WQs(t4) to learn χ0(t4) = χ(t4) = {x1}. As m dictates x1 7→ x1, it is

impossible to replay t5
to[x3]
−−−−→ from t4. Hence, t3#

m t2 and the set of compatible
states of t2 is reduced. In general, replaying a run may have two results: finding
a new active timer in a state, or a new apartness pair (either due to a fail,
as we illustrated, or due to newly defined transitions). In any case, the set of
compatible states of a state gets reduced. See Appendix E.1 for more details.

We now explain, via an example, how to construct a hypothesis H such that
QH = BT . The idea is to pick a (p,m) ∈ compatT(r) for each frontier state r.

Then, the unique transition q
i
−→ r in T becomes q

i
−→ p in H. We also globally

rename the timers according to m.

Example 7. Let M be the MMT of Figure 1 and T be the observation tree of
Figure 3, with BT = {t0, t1, t3, t6, t9} and FT = {t2, t5, t10, t11, t12, t15}. More-
over, compatT(t2) = {(t1, x1 7→ x1)}, compatT(t10) = compatT(t12) = {(t0, ∅)},
compatT(t5) = {(t6, x6 7→ x1, x3 7→ x3)}, compatT(t15) = {(t9, x3 7→ x3)}, and
compatT(t11) = {(t6, x6 7→ x11, x3 7→ x3)}.

We construct H with QH = BT . While defining the transitions q −→ q′ is easy
when q, q′ ∈ BT , we have to redirect the transition to some basis state when
q′ ∈ FT . To do so, we first define a map h : FT → BT , and an equivalence

14 V. Bruyère et al.

relation ≡ over the set of active timers of the basis and the frontier. For each
r ∈ FT , we pick (p,m) ∈ compatT(r), define h(r) = p, and add x ≡ m(x) for
every x ∈ dom(m) (and compute the symmetric and transitive closure of ≡).
Here, we obtain h(t2) = t1,h(t5) = h(t11) = t6,h(t10) = h(t12) = t0,h(t15) =
t9, x1 ≡ x6 ≡ x11, and x3 ≡ x3. We check whether we have x ≡ y and x t# y, in
which case, we restart again by picking some different (p,m). Here, this does not
hold and we construct H by copying the transitions starting from a basis state
(while folding the tree when required), except that a timer x is replaced by its
equivalence class JxK≡. Figure 3 gives the resulting H.

We highlight that it is not always possible to construct ≡ such that ¬(x t#y)
for every x ≡ y. In that case, we instead construct a generalized MMT, in
which every transition can arbitrarily rename the active timers. The size of that
generalized MMT is also |BT |. From the generalized MMT, a classical MMT can
be constructed of size n! · |BT |, with n = maxp∈BT |χT (p)|. See Appendix E.2.
We observed on practical examples that a valid ≡ can be constructed.

3.3 Main loop

We now give the main loop of L#
MMT. We initialize T to only contain qT0 , BT =

ET = {qT0 }, and FT = ∅. The main loop is split into two parts:

Refinement loop The refinement loop extends the tree to obtain the condi-
tions (A) to (C) (see page 12), by performing the following operations, in
this order, until no more changes are possible:
Seismic If we discover a new active timer in a basis state, then it may be

that ¬(q #m q′) for some q, q′ ∈ BT and maximal m, due to the new
timer. To avoid this, we reset the basis back to {qT0 }, as soon as a new
timer is found, without removing states from T .

Promotion If compatT(r) is empty for some frontier state r, then we know
that q #m r for every q ∈ BT and maximal matching m : q ↔ r. Hence,
we promote r to the basis.

Completion If an i-transition is missing from some basis state p, we com-
plete the basis with that transition. Recall that it is sufficient to only
check for i that are inputs.

Active timers We ensure |χT (p)| = |χT (r)| for every (p, ·) ∈ compatT(r).

Hypothesis and equivalence We call EQs(H) with H a hypothesis. If the
answer is yes, we return H. Otherwise, we process the counterexample, as
now explain in an example.

Example 8. Let T be the observation tree of Figure 4 with BT = {t0, t1}, F
T =

{t2, t3}, and compatT(t2) = compatT(t3) = {(t1, x1 7→ x1)}. Figure 4 also gives
the MMT constructed from T , which is not symbolically equivalent to the MMT
of Figure 1, with w = i ·i ·to[1] ·to[2] as a counterexample. We extend T such that
w can be read in T . That is, we call WQs(t5) and discover that the transition
from t1 to t3 must start the timer x3. Hence, t3 has no compatible state anymore

Active Learning of Mealy Machines with Timers 15

t0 t1
t2

t3

t4

t5

i/o

x1 := 2 i/o′,⊥

to[x1]/o, x1 := 2 to[x1]/o,⊥

to[x1]/o,⊥ t0 t1
i/o

y1 := 2
i/o′,⊥

to[y1]/o, y1 := 2

Fig. 4: On the left, an observation tree from which the hypothesis MMT on the
right is constructed, with y1 = Jx1K≡. Basis states have a gray background.

(i.e., we found a new apartness pair) and gets promoted. After completing the
tree and performing WQs on the frontier states, we get the tree from Figure 2.

In our example, simply adding the symbolic word provided by the teacher
was enough to discover a new apartness pair (meaning that the hypothesis can
no longer be constructed). However, there may be cases where we need to replay

(see Example 6) a part of the newly added run t0
w
−→: split the run into t0

u
−→ t

v
−→

with t ∈ FT and replay t
v
−→ from the state compatible with t that was selected

to build the hypothesis. Repeat this principle until a compatible set is reduced.

4 Implementation and Experiments

We have implemented the L#
MMT algorithm as an open-source tool.5 As we do not

yet have a timed conformance testing algorithm for checking equivalence between
a hypothesis and the teacher’s MMT, we utilize a BFS algorithm to check for
equivalence between the two MMTs.6 We have evaluated the performance of our
tool on a selection of both real and synthetic benchmarks.

We use the AKM, TCP and Train benchmarks from [31], and the CAS, Light
and PC benchmarks from [1]. These have also been used for experimental evalu-
ation by [25,31,33] and can be described as Mealy machines with a single timer.
We introduce two additional benchmarks with two timers: a model of an FDDI
station, and the MMT of Figure 1. We refer to Appendix F for details on our
FDDI benchmark. We did not include the FDDI 2 process benchmark from [33],
as our implementation cannot (yet) handle the corresponding gMMTs. Finally,
we learned instances of the Oven and WSN MMLTs benchmarks from [25]. We
modified the timing parameters to generate smaller MMTs with a single timer
(MM1Ts). For each experiment, we record the number of OQs, WQs, EQs, and
the time taken to finish the experiment. Note, in practice, a WQs, in addition
to returning the list of timeouts and their constants, also provides the outputs
of the timeout transitions. This is straightforward, as a WQs must necessarily
trigger the timeouts in order to observe them. Thus, we do not count the OQs

associated with a WQs.7

5 See: https://gitlab.science.ru.nl/bharat/mmt_lsharp and Zenodo [17].
6 That is, seeking a difference in behavior in the product of the hypothesis and the
SUL zone automaton.

7 An upper bound on the number of OQs can be obtained by adding |X||WQs| to
the values for |OQs|.

https://gitlab.science.ru.nl/bharat/mmt_lsharp

16 V. Bruyère et al.

Model |Q| |I | |X| |WQs| |OQs| |EQs| Time[ms] |MQ| [33] |EQ| [33]
AKM 4 5 1 22 35 2 684 12263 11
CAS 8 4 1 60 89 3 1344 66067 17
Light 4 2 1 10 13 2 302 3057 7
PC 8 9 1 75 183 4 2696 245134 23
TCP 11 8 1 123 366 8 3182 11300 15
Train 6 3 1 32 28 3 1559
MMT of Fig. 1 3 1 2 11 5 2 1039 - -
FDDI 1-station 9 2 2 32 20 1 1105 118193 8
Oven 12 5 1 907 317 3 9452 - -
WSN 9 4 1 175 108 4 3291 - -

Table 1: Experimental Results.

Table 1 lists the results of our experiments, and also the number of concrete
membership and equivalence queries used byWaga’s [33]. Comparison of learning
algorithms for timed systems is complicated. First of all, we need to convert
the numbers of symbolic L#

MMT queries to concrete queries. This can be done
using the polynomial bounds given in Appendix C.8 However, for MM1Ts each
symbolic query can be implemented using a single concrete query (see Lemma
3 in [31]). Several algorithms presented in the literature learn TAs [1, 5, 33, 34].
Typically, a TA model of some system will have different numbers of states and
transitions than an MMT model: Mealy machines tend to be more compact
than TAs, but the use of timers may lead to more states than a TA encoding.
Therefore we cannot just compare numbers of queries. As a final complication,
observe that equivalence queries can be implemented in different ways, which
may affect the total number of queries required for learning. MMLTs [25] can
be converted to equivalent MM1Ts [31], but this may blow up of the number of

states. Since L#
MMT learns the MM1Ts, it is less efficient than the MMLT learner

of [25] which learns the more compact MMLT representations. However, L#
MMT

can handle a larger class of models.

5 Future work

A major challenge in L#
MMT is to infer the update on transitions. This would

become easier if we know in advance that timers can only be started by specific
inputs, akin to what is done in event recording automata (ERA) [4] for timed
automata. Although, as discussed in [31], the restrictions of ERAs make it hard
to capture the timing behavior of standard network protocols, it would be in-
teresting to study the theoretical complexity of learning a system that can be
modelled by ERAs as well as MMTs. A more interesting trail would be to allow
transitions to start multiple timers, instead of a single one, which would permit

8 For the FDDI protocol, we can show that we need at most 1282 concrete queries to
do our symbolic wait and output queries in total.

Active Learning of Mealy Machines with Timers 17

more complex models (such as those resulting of parallel composition of simpler
models) to be learned.

References

1. Aichernig, B.K., Pferscher, A., Tappler, M.: From Passive to Active: Learn-
ing Timed Automata Efficiently. In: Lee, R., Jha, S., Mavridou, A. (eds.) Pro-
ceedings of the 12th International Symposium NASA Formal Methods, NFM
2020. Lecture Notes in Computer Science, vol. 12229, pp. 1–19. Springer (2020).
https://doi.org/10.1007/978-3-030-55754-6_1

2. Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) Proceed-
ings of the 11th International Conference Computer Aided Verification, CAV
1999. Lecture Notes in Computer Science, vol. 1633, pp. 8–22. Springer (1999).
https://doi.org/10.1007/3-540-48683-6_3

3. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

4. Alur, R., Fix, L., Henzinger, T.A.: Event-Clock Automata: A Determinizable Class
of Timed Automata. Theoretical Computer Science 211(1-2), 253–273 (1999).
https://doi.org/10.1016/S0304-3975(97)00173-4

5. An, J., Chen, M., Zhan, B., Zhan, N., Zhang, M.: Learning One-Clock Timed
Automata. In: Biere, A., Parker, D. (eds.) Proceedings of the 26th International
Conference Tools and Algorithms for the Construction and Analysis of Sys-
tems, TACAS 2020. Lecture Notes in Computer Science, vol. 12078, pp. 444–462.
Springer (2020). https://doi.org/10.1007/978-3-030-45190-5_25

6. Angluin, D.: Learning Regular Sets from Queries and Coun-
terexamples. Information and Computation 75(2), 87–106 (1987).
https://doi.org/10.1016/0890-5401(87)90052-6

7. Bruyère, V., Pérez, G.A., Staquet, G., Vaandrager, F.W.: Automata with Timers.
In: Petrucci, L., Sproston, J. (eds.) Proceedings of the 21st International Con-
ference Formal Modeling and Analysis of Timed Systems, FORMATS 2023.
Lecture Notes in Computer Science, vol. 14138, pp. 33–49. Springer (2023).
https://doi.org/10.1007/978-3-031-42626-1_3

8. Clarke, E.M., Henzinger, T.A., Veith, H., Bloem, R. (eds.): Handbook of Model
Checking. Springer (2018). https://doi.org/10.1007/978-3-319-10575-8

9. Daws, C., Olivero, A., Tripakis, S., Yovine, S.: The Tool KRONOS. In: Alur, R.,
Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III: Verification and Con-
trol, Proceedings of the DIMACS/SYCON Workshop on Verification and Control
of Hybrid Systems. Lecture Notes in Computer Science, vol. 1066, pp. 208–219.
Springer (1995). https://doi.org/10.1007/BFB0020947

10. Dierl, S., Howar, F.M., Kauffman, S., Kristjansen, M., Larsen, K.G., Lor-
ber, F., Mauritz, M.: Learning Symbolic Timed Models from Concrete
Timed Data. In: Rozier, K.Y., Chaudhuri, S. (eds.) Proceedings of the
15th International Symposium NASA Formal Methods, NFM 2023. Lec-
ture Notes in Computer Science, vol. 13903, pp. 104–121. Springer (2023).
https://doi.org/10.1007/978-3-031-33170-1_7

11. Dill, D.L.: Timing Assumptions and Verification of Finite-State Con-
current Systems. In: Sifakis, J. (ed.) Proceedings of the International
Workshop Automatic Verification Methods for Finite State Systems. Lec-
ture Notes in Computer Science, vol. 407, pp. 197–212. Springer (1989).
https://doi.org/10.1007/3-540-52148-8_17

https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/978-3-030-55754-6_1
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1007/3-540-48683-6_3
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1007/978-3-030-45190-5_25
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-031-42626-1_3
https://doi.org/10.1007/978-3-031-42626-1_3
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/BFB0020947
https://doi.org/10.1007/BFB0020947
https://doi.org/10.1007/978-3-031-33170-1_7
https://doi.org/10.1007/978-3-031-33170-1_7
https://doi.org/10.1007/3-540-52148-8_17
https://doi.org/10.1007/3-540-52148-8_17

18 V. Bruyère et al.

12. Ferreira, T., Brewton, H., D’Antoni, L., Silva, A.: Prognosis: closed-box analy-
sis of network protocol implementations. In: Kuipers, F.A., Caesar, M.C. (eds.)
Proceedings of the ACM SIGCOMM 2021 Conference. pp. 762–774. ACM (2021).
https://doi.org/10.1145/3452296.3472938

13. Fiterau-Brostean, P., Howar, F.: Learning-Based Testing the Sliding Window Be-
havior of TCP Implementations. In: Petrucci, L., Seceleanu, C., Cavalcanti, A.
(eds.) Proceedings of the Critical Systems: Formal Methods and Automated Verifi-
cation - Joint 22nd International Workshop on Formal Methods for Industrial Crit-
ical Systems FMICS and 17th International Workshop on Automated Verification
of Critical Systems AVoCS 2017. Lecture Notes in Computer Science, vol. 10471,
pp. 185–200. Springer (2017). https://doi.org/10.1007/978-3-319-67113-0_12

14. Fiterau-Brostean, P., Janssen, R., Vaandrager, F.W.: Combining Model Learning
and Model Checking to Analyze TCP Implementations. In: Chaudhuri, S., Farzan,
A. (eds.) Proceedings of the 28th International Conference Computer Aided Ver-
ification, CAV 2016. Lecture Notes in Computer Science, vol. 9780, pp. 454–471.
Springer (2016). https://doi.org/10.1007/978-3-319-41540-6_25

15. Fiterau-Brostean, P., Jonsson, B., Merget, R., de Ruiter, J., Sagonas, K., So-
morovsky, J.: Analysis of DTLS Implementations Using Protocol State Fuzzing.
In: Capkun, S., Roesner, F. (eds.) Proceedings of the 29th USENIX Security
Symposium, USENIX Security 2020. pp. 2523–2540. USENIX Association (2020),
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean

16. Fiterau-Brostean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Ver-
leg, P.: Model learning and model checking of SSH implementations. In: Erdogmus,
H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software. pp. 142–151. ACM (2017).
https://doi.org/10.1145/3092282.3092289

17. Garhewal, B.: L#MMT artifact (2024). https://doi.org/10.5281/ZENODO.10647627,
https://zenodo.org/doi/10.5281/zenodo.10647627

18. Garhewal, B., Vaandrager, F.W., Howar, F., Schrijvers, T., Lenaerts, T.,
Smits, R.: Grey-Box Learning of Register Automata. In: Dongol, B., Troubit-
syna, E. (eds.) Integrated Formal Methods - 16th International Conference,
IFM 2020, Lugano, Switzerland, November 16-20, 2020, Proceedings. Lec-
ture Notes in Computer Science, vol. 12546, pp. 22–40. Springer (2020).
https://doi.org/10.1007/978-3-030-63461-2_2

19. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of Event-Recording Automata.
In: Lakhnech, Y., Yovine, S. (eds.) Proceedings of the Formal Techniques, Mod-
elling and Analysis of Timed and Fault-Tolerant Systems - Joint International
Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS
and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004.
Lecture Notes in Computer Science, vol. 3253, pp. 379–396. Springer (2004).
https://doi.org/10.1007/978-3-540-30206-3_26

20. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording
automata. Theoretical Computer Science 411(47), 4029–4054 (2010).
https://doi.org/10.1016/J.TCS.2010.07.008

21. Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of Event-Recording Au-
tomata Using Timed Decision Trees. In: Baier, C., Hermanns, H. (eds.) Pro-
ceedings of the 17th International Conference Concurrency Theory, CONCUR
2006. Lecture Notes in Computer Science, vol. 4137, pp. 435–449. Springer (2006).
https://doi.org/10.1007/11817949_29

https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1145/3452296.3472938
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-67113-0_12
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.5281/ZENODO.10647627
https://doi.org/10.5281/ZENODO.10647627
https://zenodo.org/doi/10.5281/zenodo.10647627
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-030-63461-2_2
https://doi.org/10.1007/978-3-540-30206-3_26
https://doi.org/10.1007/978-3-540-30206-3_26
https://doi.org/10.1016/J.TCS.2010.07.008
https://doi.org/10.1016/J.TCS.2010.07.008
https://doi.org/10.1007/11817949_29
https://doi.org/10.1007/11817949_29

Active Learning of Mealy Machines with Timers 19

22. Henry, L., Jéron, T., Markey, N.: Active Learning of Timed Automata with Un-
observable Resets. In: Bertrand, N., Jansen, N. (eds.) Proceedings of the 18th
International Conference Formal Modeling and Analysis of Timed Systems, FOR-
MATS 2020. Lecture Notes in Computer Science, vol. 12288, pp. 144–160. Springer
(2020)

23. Howar, F., Steffen, B.: Active Automata Learning in Practice - An Annotated
Bibliography of the years 2011 to 2016. In: Bennaceur, A., Hähnle, R., Meinke,
K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits
- International Dagstuhl Seminar 16172, Dagstuhl Castle, Germany, April 24-27,
2016, Revised Papers. Lecture Notes in Computer Science, vol. 11026, pp. 123–148.
Springer (2018). https://doi.org/10.1007/978-3-319-96562-8_5

24. Johnson, M.J.: Proof that Timing Requirements of the FDDI Token Ring Pro-
tocol are Satisfied. IEEE Transactions on Computers 35(6), 620–625 (1987).
https://doi.org/10.1109/TCOM.1987.1096832

25. Kogel, P., Klös, V., Glesner, S.: Learning Mealy Machines with Local Timers.
In: Li, Y., Tahar, S. (eds.) Proceedings of the 24th International Conference on
Formal Engineering Methods Formal Methods and Software Engineering, ICFEM
2023. Lecture Notes in Computer Science, vol. 14308, pp. 47–64. Springer (2023).
https://doi.org/10.1007/978-981-99-7584-6_4

26. Maler, O., Pnueli, A.: On Recognizable Timed Languages. In: Walukiewicz,
I. (ed.) Proceedings of the 7th International Conference Foundations of
Software Science and Computation Structures, FOSSACS 2004. Lecture
Notes in Computer Science, vol. 2987, pp. 348–362. Springer (2004).
https://doi.org/10.1007/978-3-540-24727-2_25

27. de Ruiter, J., Poll, E.: Protocol State Fuzzing of TLS Implementations. In:
Jung, J., Holz, T. (eds.) Proceedings of the 24th USENIX Security Sym-
posium, USENIX Security 15. pp. 193–206. USENIX Association (2015),
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

28. Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A.,
Dams, D. (eds.) Proceedings of the 16th Formal Methods, FM 2009. Lec-
ture Notes in Computer Science, vol. 5850, pp. 207–222. Springer (2009).
https://doi.org/10.1007/978-3-642-05089-3_14

29. Tappler, M., Aichernig, B.K., Larsen, K.G., Lorber, F.: Time to Learn - Learning
Timed Automata from Tests. In: André, É., Stoelinga, M. (eds.) Proceedings of the
17th International Conference Formal Modeling and Analysis of Timed Systems,
FORMATS 2019. Lecture Notes in Computer Science, vol. 11750, pp. 216–235.
Springer (2019). https://doi.org/10.1007/978-3-030-29662-9_13

30. Vaandrager, F.W.: Model learning. Communications of the ACM 60(2), 86–95
(2017). https://doi.org/10.1145/2967606

31. Vaandrager, F.W., Bloem, R., Ebrahimi, M.: Learning Mealy Machines with One
Timer. In: Leporati, A., Mart́ın-Vide, C., Shapira, D., Zandron, C. (eds.) Pro-
ceedings of the 15th International Conference Language and Automata Theory
and Applications, LATA 2021. Lecture Notes in Computer Science, vol. 12638, pp.
157–170. Springer (2021). https://doi.org/10.1007/978-3-030-68195-1_13

32. Vaandrager, F.W., Garhewal, B., Rot, J., Wißmann, T.: A New Approach
for Active Automata Learning Based on Apartness. In: Fisman, D., Rosu,
G. (eds.) Proceedings of the 28th International Conference Tools and Al-
gorithms for the Construction and Analysis of Systems, TACAS 2022. Lec-
ture Notes in Computer Science, vol. 13243, pp. 223–243. Springer (2022).
https://doi.org/10.1007/978-3-030-99524-9_12

https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1007/978-3-319-96562-8_5
https://doi.org/10.1109/TCOM.1987.1096832
https://doi.org/10.1109/TCOM.1987.1096832
https://doi.org/10.1007/978-981-99-7584-6_4
https://doi.org/10.1007/978-981-99-7584-6_4
https://doi.org/10.1007/978-3-540-24727-2_25
https://doi.org/10.1007/978-3-540-24727-2_25
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1007/978-3-030-29662-9_13
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-68195-1_13
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1007/978-3-030-99524-9_12

20 V. Bruyère et al.

33. Waga, M.: Active Learning of Deterministic Timed Automata with Myhill-
Nerode Style Characterization. In: Enea, C., Lal, A. (eds.) Proceedings of
the 35th International Conference Computer Aided Verification, CAV 2023.
Lecture Notes in Computer Science, vol. 13964, pp. 3–26. Springer (2023).
https://doi.org/10.1007/978-3-031-37706-8_1

34. Xu, R., An, J., Zhan, B.: Active Learning of One-Clock Timed Automata Using
Constraint Solving. In: Bouajjani, A., Hoĺık, L., Wu, Z. (eds.) Proceedings of the
20th International Symposium Automated Technology for Verification and Anal-
ysis, ATVA 2022. Lecture Notes in Computer Science, vol. 13505, pp. 249–265.
Springer (2022). https://doi.org/10.1007/978-3-031-19992-9_16

https://doi.org/10.1007/978-3-031-37706-8_1
https://doi.org/10.1007/978-3-031-37706-8_1
https://doi.org/10.1007/978-3-031-19992-9_16
https://doi.org/10.1007/978-3-031-19992-9_16

Active Learning of Mealy Machines with Timers 21

A More details on equivalence of two MMTs

In this section, we give more details about equivalence of two MMTs. We first
define the classical notion of timed equivalence, before showing that the symbolic
equivalence introduced in Section 2.2 refines this timed equivalence. Moreover,
we give a counterexample for the other direction. That is, we prove that timed
equivalence does not imply symbolic equivalence.

A.1 Timed equivalence

In order to define timed equivalence between two MMTs that do not use the
same timers, we first introduce a way to “hide” the timeouts behind the delays.
As it is not possible to let time elapse when a timer times out, a complete
MMT M can be assumed to automatically process timeouts when they occur.
Let w = d1i1 · · · indn+1 be a timed word over I (and not over A(M)), called a
timed input word (tiw, in short). When a timer times out while reading w, M
automatically triggers the corresponding timeout-transition. As more than one
timer may time out simultaneously (or some timers time out at the same time
an input must be processed), a single tiw w can induce many timed runs. Let
	runs (w) be the set of all timed runs induced by w. Each ρ ∈ 	runs (w) yields
a timed output word (tow, in short), which is a timed word over O, obtained
by collecting the outputs of every transition and the delays between them. Let
toutputs(w) be the set of all tows produced by the runs in 	runs (w). Then,
we say that two complete MMTs M and N are equivalent, noted M

time
≈ N ,

whenever, for all tiws w, toutputsM(w) = toutputsN (w).

A.2 Symbolic equivalence refines timed equivalence

Lemma 4. Let M and N be two complete MMTs. If M
sym
≈ N , then M

time
≈ N .

Proof. Towards a contradiction, assume M
sym
≈ N but M

time
6≈ N . Then, there

must exist a tiw w such that toutputsM(w) 6= toutputsN (w). Without loss of
generality, there is a timed run

ρ = (qM0 , ∅)
d1−→ (qM0 , ∅)

i1/o1
−−−→

u1

· · ·
in/on
−−−−→

un

(qn, κn)
dn+1
−−−→ (qn, κn − dn+1)

in 	runsM(w) such that tow(ρ) = d1·o1 · · · dn·on·dn+1 and tow(ρ) /∈ toutputsN (w).9

Let w = i1 · · ·in be the symbolic word of i1 · · · in.
Let us consider the longest possible timed run of N

ρ′ = (qN0 , ∅)
d1−→ (qN0 , ∅)

i′1/o1−−−→
u′
1

· · ·
i′j/oj
−−−→

u′
j

(q′j , κ
′
j)

dj+1
−−−→ (q′j , κ

′
j − dj+1)

such that

9 Recall that tow(ρ) denotes the tow produced by the timed run ρ.

22 V. Bruyère et al.

– it reads a prefix of i1 · · · in (up to the names of the timers) with

i′k =

{

ik if ik ∈ I

to[x′] for some x′ ∈ χN (q′k−1) if ik = to[x] for some x ∈ χM(qk−1)

for all k ∈ {1, . . . , j},
– the delays dk, k ∈ {1, . . . , j +1}, and the outputs ok, k ∈ {1, . . . , j}, are the

same as in the timed run ρ, and

– the symbolic word of i′1 · · · i
′
j is equal to i1 · · · ij.

Such a timed run ρ′ exists with j ≥ 0, and we have j < n. Towards a contradic-
tion, let us show that we can extend it.

First, we argue that for any d ∈ R
≥0

∃x ∈ χM(qj) : (κj − d)(x) = 0 ⇔ ∃x′ ∈ χN (q′j) : (κ
′
j − d)(x′) = 0. (1)

We show the ⇒ direction. The other direction can be obtained with similar
arguments. Since (κj−d)(x) = 0, we have that x ∈ χM

0 (qj). As M is complete, it

follows that qj
to[x]
−−−→ ∈ runs(M) and we can take the transition (qj , κj−d)

to[x]
−−−→.

Thus, for some k ∈ {1, . . . , j − 1}, the sub-run

qk−1
ik−−−→

(x,c)
· · ·

ij
−→ qj

to[x]
−−−→

is x-spanning. Hence, i1 · · · ij · to[x] = i1 · · ·ij · to[k]. As M
sym
≈ N , we deduce

that there exists some timer x′ such that the run qN0
i′1···i

′
j ·to[x

′]
−−−−−−−→ is feasible with

i′1 · · · i
′
j · to[x

′] = i1 · · · ij · to[x] (i.e., M and N read the same symbolic word),
x′ is enabled in q′j , and the sub-run

q′k−1

i′k−−−−→
(x′,c′)

· · ·
i′j
−→ q′j

to[x′]
−−−→

is x′-spanning with c′ = c. Since the delays in the timed run ρ′ are the same as
in ρ and x, x′ are both started at the same constant c along the j-th transition,
it naturally follows that (κ′

j − d)(x′) = 0.

Consider now the action ij+1. We have two cases:

– If ij+1 ∈ I, the transition (q′j , κ
′
j − dj+1)

i′j+1
−−−→ (q′j+1, κ

′
j+1) with i′j+1 = ij+1

is defined as N is complete by hypothesis.

– If ij+1 = to[x] for some x ∈ χM
0 (qj), we have by (1) that there exists

x′ ∈ χN
0 (q′j) such that (κ′

j − dj+1)(x
′) = 0. As N is complete, we can thus

take the transition

(q′j , κ
′
j − dj+1)

to[x′]
−−−→ (q′j+1, κ

′
j+1).

Active Learning of Mealy Machines with Timers 23

q0 q1 q2 q3

q4

q5 q6

q7

i/o, x := 1 i/o, y := 1 i/o, z := 1

to[y]/o,⊥

to[z]/o,⊥

to[z]/o1,⊥

to[x]/o,⊥

to[y]/o2,⊥

Fig. 5: An MMT with χ(q0) = χ(q6) = ∅, χ(q1) = χ(q5) = {x}, χ(q2) = χ(q7) =

{x, y}, χ(q3) = {x, y, z}, χ(q4) = {x, z}. Every missing transition q
i/ω
−−→
u

p to

obtain a complete MMT is such that p = q6, ω = o, and u = ⊥.

By the previous arguments establishing (1), i′1 · · · i
′
j+1 = i1 · · ·ij+1 follows. As

M
sym
≈ N , we get that the output o′ of q′j

i′j+1/o
′

−−−−−→ q′j+1 is equal to oj+1.

It remains to prove that the delay transition (q′j+1, κ
′
j+1)

dj+2
−−−→ is possi-

ble. Assume the contrary, i.e., there exists a timer x′ ∈ χN (q′j+1) such that
κ′
j+1(x

′) < dj+2. Let d
′ = κ′

j+1(x
′). We thus have that (κ′

j+1−d′)(x′) = 0. By (1)
applied to qj+1 and q′j+1, there must exist a timer x such that (κj+1−d′)(x) = 0,
i.e., it is not possible to wait dj+2 units of time in (qj+1, κj+1) and we have a
contradiction.

We are thus able to extend the timed run ρ′ which leads to the contradiction.
We conclude that the symbolic equivalence implies the timed equivalence. ⊓⊔

A.3 Timed equivalence does not refine symbolic equivalence

Let M be the MMT of Figure 5. We make M complete by adding q
i/o
−−→
⊥

q6 for

every missing transition. Observe that O = {o, o1, o2} and that q4
to[z]
−−−→ outputs

o1 while q7
to[y]
−−−→ outputs o2. Moreover, let N be a copy of M such that o1 and

o2 are swapped. Let us argue that Mtime≈ N but M
sym

6≈ N , starting with the latter.
We write qMj and qNj to distinguish the states of M and N .

Let w = i · i · i · to[2] · to[3] be a symbolic word, inducing the following runs:

qM0
i/o

−−−→
(x,1)

qM1
i/o

−−−→
(y,1)

qM2
i/o

−−−→
(z,1)

qM3
to[y]/o
−−−−→

⊥
qM4

to[z]/o1
−−−−−→

⊥
qM5

qN0
i/o

−−−→
(x,1)

qN1
i/o

−−−→
(y,1)

qN2
i/o

−−−→
(z,1)

qN3
to[y]/o
−−−−→

⊥
qN4

to[z]/o2
−−−−−→

⊥
qN5 .

Hence, M
sym

6≈ N as the last pair of transitions has different outputs.
So, it remains to show that M

time
≈ N . Clearly, any tiw induces the same run

in both M and N (up to the outputs), as they have exactly the same transitions.

That is, any tiw w is such that qM0
w
−→ qMj if and only if qN0

w
−→ qNj . Moreover,

24 V. Bruyère et al.

outputs are the same in M and N , except that o1 and o2 are swapped. So, let

us focus on the transitions qM4
to[z]/o1
−−−−−→ and qM7

to[y]/o2
−−−−−→. It is not hard to see

that the only way these transitions are triggered is to start all timers x, y, and
z without any delay in between, to go through in either (qM4 , x = 0, z = 0) or
(qM7 , x = 0, y = 0), and to trigger the to[z] and to[y] transitions, respectively,
i.e., we must take the following two timed runs in M:

(qM0 , ∅)
0
−→ (qM0 , ∅)

i/o
−−−→
(x,1)

(qM1 , x = 1)
0
−→ (qM1 , x = 1)

i/o
−−−→
(y,1)

(qM2 , x = 1, y = 1)

0
−→ (qM2 , x = 1, y = 1)

i/o
−−−→
(z,1)

(qM3 , x = 1, y = 1, z = 1)

1
−→ (qM3 , x = 0, y = 0, z = 0)

to[y]/o
−−−−→

⊥
(qM4 , x = 0, z = 0)

0
−→ (qM4 , x = 0, z = 0)

to[z]/o1
−−−−−→

⊥
(qM5 , x = 0)

0
−→ (qM5 , x = 0)

and

(qM0 , ∅)
0
−→ (qM0 , ∅)

i/o
−−−→
(x,1)

(qM1 , x = 1)
0
−→ (qM1 , x = 1)

i/o
−−−→
(y,1)

(qM2 , x = 1, y = 1)

0
−→ (qM2 , x = 1, y = 1)

i/o
−−−→
(z,1)

(qM3 , x = 1, y = 1, z = 1)

1
−→ (qM3 , x = 0, y = 0, z = 0)

to[z]/o
−−−−→

⊥
(qM7 , x = 0, y = 0)

0
−→ (qM7 , x = 0, y = 0)

to[y]/o2
−−−−−→

⊥
(qM5 , x = 0)

0
−→ (qM5 , x = 0).

We can then obtain the same runs in N , up to a swap of o1 and o2:

(qN0 , ∅)
0
−→ (qN0 , ∅)

i/o
−−−→
(x,1)

(qN1 , x = 1)
0
−→ (qN1 , x = 1)

i/o
−−−→
(y,1)

(qN2 , x = 1, y = 1)

0
−→ (qN2 , x = 1, y = 1)

i/o
−−−→
(z,1)

(qN3 , x = 1, y = 1, z = 1)

1
−→ (qN3 , x = 0, y = 0, z = 0)

to[y]/o
−−−−→

⊥
(qN4 , x = 0, z = 0)

0
−→ (qN4 , x = 0, z = 0)

to[z]/o2
−−−−−→

⊥
(qN5 , x = 0)

0
−→ (qN5 , x = 0)

and

(qN0 , ∅)
0
−→ (qN0 , ∅)

i/o
−−−→
(x,1)

(qN1 , x = 1)
0
−→ (qN1 , x = 1)

i/o
−−−→
(y,1)

(qN2 , x = 1, y = 1)

0
−→ (qN2 , x = 1, y = 1)

i/o
−−−→
(z,1)

(qN3 , x = 1, y = 1, z = 1)

1
−→ (qN3 , x = 0, y = 0, z = 0)

to[z]/o
−−−−→

⊥
(qN7 , x = 0, y = 0)

0
−→ (qN7 , x = 0, y = 0)

to[y]/o1
−−−−−→

⊥
(qN5 , x = 0)

0
−→ (qN5 , x = 0).

Hence, any tiw w inducing the first run in M necessarily induces the second
run, too (and the runs triggering to[x]). Moreover, w also induces the two runs

Active Learning of Mealy Machines with Timers 25

in N (and the runs triggering to[x]). We thus conclude that toutputsM(w) =

toutputsN (w) for every tiw w. That is, M
time
≈ N and M

sym

6≈ N .

B Proof of Lemma 1

Lemma 1. For any complete MMT M, there is an s-learnable MMT N
sym
≈ M.

In order to prove this lemma, we first properly adapt the notion of zones
from timed automata [2, 8] to MMTs.10 Given a complete MMT M, we show
that the MMT constructed from the reachable zones of M is s-learnable.

B.1 Zones

Let X be a set of timers. A zone Z over X is a set of valuations over X , i.e.,
Z ⊆ Val(X), described by the following grammar:

φ = x < c | x ≤ c | c < x | c ≤ x | x− y < c | x− y ≤ c | φ1 ∧ φ2

with x, y ∈ X and c ∈ N. It may be that a zone is empty. For the particular case
X = ∅, we have that Val(X) = {∅}, meaning that a zone Z is either the zone
{∅} or the empty zone.

Given a zone Z over X , a set Y ⊆ X , a timer x (that does not necessarily
belong to X), and a constant c ∈ N

>0, we define the following operations:

– The downward closure of Z where we let some time elapsed in all valuations
of Z. That is, we obtain all valuations that can be reached from Z by waiting
(we take delays that do not exceed the smallest value to avoid going below
zero):

Z ↓= {κ− d | κ ∈ Z, d ≤ min
y∈dom(κ)

κ(y)}.

– The restriction of Z to Y 6= ∅ where, for every valuation of Z, we discard
values associated with timers in X \Y , i.e., we only keep the timers that are
in Y :

Z⌈Y = {κ′ ∈ Val(Y) | ∃κ ∈ Z, ∀y ∈ Y : κ′(y) = κ(y)}.

If Y is empty, then we define the restriction as:

Z⌈∅ =

{

∅ if Z = ∅

{∅} otherwise.

– The assignment of x to c in the zone Z over X . Either x is already in X in
which case we simply overwrite the value of x by c, or x is not in X in which
case we “extend” the valuations of Z by adding x:

Z[x = c] = {κ′ ∈ Val(X ∪ {x}) | κ′(x) = c ∧

∃κ ∈ Z, ∀y ∈ X \ {x} : κ′(y) = κ(y)}.
10 The concept of region from timed automata was adapted to automata with timers

in [7].

26 V. Bruyère et al.

– The timeout of x in Z where we keep valuations of Z s.t. x ∈ X times out:

to[Z, x] = {κ ∈ Z | κ(x) = 0}.

If Z is a zone, then Z ↓, Z⌈Y , Z[x = c], and to[Z, x] are again zones [8]. Observe
that Z ↓ and to[Z, x] are zones over X (when x ∈ X), Z⌈Y is a zone over Y , and
Z[x = c] is a zone over X ∪ {x}.

B.2 Zone MMT

Given a complete MMT M, we explain how to construct its zone MMT that we
denote zone(M). The states of zone(M) are pairs (q, Z) where q is a state of M
and Z is a zone included in Val(χ(q)). The idea to construct zone(M) is to start
from the pair (qM0 , {∅}) and explore every outgoing transition of qM0 . In general,
we want to define the outgoing transitions of the current pair (q, Z). To do so,
we consider the outgoing transitions of q in the complete machine M. For every

q
i
−→
u

q′ with i ∈ I, we reproduce the same transition in zone(M) (as it is always

possible to trigger an input transition). That is, we define (q, Z)
i
−→
u

(q′, Z ′) with

a zone Z ′ that depends on the update: if u = ⊥, then Z ′ is obtained by the
restriction of Z to the active timers of q′; if u = (x, c), then we first assign x to
c. In both cases, we also let time elapse, i.e., we always compute the downward

closure. Finally, we perform the same idea with every q
to[x]
−−−→ such that x ∈ χ(q),

except that we first only consider the valuations of Z where x is zero. If to[Z, x]
is empty, we do not define the transition. Hence, in this way, we construct the
states (q, Z) of zone(M) such that Z 6= ∅ and that are reachable from its initial
state (qM0 , {∅}).

More formally, let M = (XM, QM, qM0 , χM, δM) be a complete MMT . We
first define the tuple Z = (XZ , QZ , qZ0 , χZ , δZ) with:

– XZ = XM,
– QZ = {(q, Z) | q ∈ QM, Z ⊆ Val(χM(q)) ∧ Z 6= ∅},
– qZ0 = (qM0 , {∅}),
– For any (q, Z) ∈ QZ , we define χZ((q, Z)) = χM(q), i.e., we simply copy the

active timers of q,

– Let (q, Z) ∈ QZ and q
i/o
−−→
u

q′ be a transition of M. We define

Z ′ =

Z if u = ⊥ and i ∈ I

Z[x = c] if u = (x, c) and i ∈ I

to[Z, x] if u = ⊥ and i = to[x]

(to[Z, x])[x = c] if u = (x, c) and i = to[x].

Then, if Z ′ 6= ∅, we restrict Z ′ to χM(q′) and let time elapse. That is, we
define

δZ((q, Z), i) =
((

q′,
(

Z ′⌈χM(q′)
)

↓
)

, o, u
)

.

Active Learning of Mealy Machines with Timers 27

The MMT zone(M) is then the MMT Z restricted to its reachable states.
Observe that the set of actions of zone(M) is the set of actions of M, i.e.,
A(zone(M)) = A(M).

Let us now argue that zone(M) has finitely many states and it is well-formed.
We will prove later that it is also complete.

Lemma 5. Let M be a complete MMT. Then, zone(M) has finitely many states
and is well-formed.

Proof. The zone MMT is clearly well-formed because its transitions mimics the
transitions of M and for any (q, Z) ∈ QZ , we have χZ((q, Z)) = χM(q).

By construction, the states (q, Z) of zone(M) are such that Z is a zone
over χM(q), described as a finite conjunction of constraints of the shape x ⊲⊳ c
or x − y ⊲⊳ c, with ⊲⊳∈ {<,≤,≥, >} and c ∈ N. For each timer x, let cx be
the maximal constant appearing on an update (re)starting x. Since the value
of a timer can only decrease, it is clear that we will never reach a zone where
x > cx. Moreover, as the value of a timer must remain at least zero at any time,
we also have a lower bound. In other words, we know that each timer x will
always be confined between zero and cx. From the shape of the constraints and
these bounds, it follows immediately that there are finitely many zones. Hence,
zone(M) has finitely many states. ⊓⊔

We now move towards proving the required properties to show Lemma 1
where the announced MMT N is the zone MMT of M:

– Both MMTs M and zone(M) have the same timed runs. That is, for any

state q ∈ QM, it holds that (qM0 , ∅)
w
−→ (q, κ) if and only if ((qM0 , {∅}), ∅)

w
−→

((q, Z), κ) for some zone Z. See Proposition 1.
– zone(M) is complete, by Corollary 1.
– M and zone(M) have the same feasible runs, by Corollary 2.
– M and zone(M) are symbolically equivalent, by Proposition 2.
– Any run of zone(M) is feasible, by Proposition 3.

Proposition 1. Let zone(M) be the zone MMT of some complete MMT M.
Then, for every state q ∈ QM, valuation κ ∈ Val(χM(q)), and timed word w,

(qM0 , ∅)
w
−→ (q, κ) in M ⇔ ((qM0 , {∅}), ∅)

w
−→ ((q, Z), κ) in zone(M)

for some zone Z over χM(q) such that κ ∈ Z.

Proof. We focus on the ⇒ direction. The other direction can be obtained with
similar arguments. Let q ∈ QM, κ ∈ Val(χM(q)), and w be a timed word such

that (qM0 , ∅)
w
−→ (q, κ). We show that there exists a zone Z over χM(q) such that

κ ∈ Z and ((qM0 , {∅}), ∅)
w
−→ ((q, Z), κ). We proceed by induction over the length

of w.
Base case: |w| = 0, i.e., w = d with d ∈ R

≥0. Since no timer is active, it is
clear that we have the runs

(qM0 , ∅)
d
−→ (qM0 , ∅) and ((qM0 , {∅}), ∅)

d
−→ ((qM0 , {∅}), ∅),

28 V. Bruyère et al.

and ∅ ∈ {∅}.
Induction step: let k ∈ N and assume the implication is true for every

timed word of length k. Let w = w′ · i ·d of length k+1, i.e., |w′| = k, i ∈ A(M),
and d ∈ R

≥0. Then, we have

(qM0 , ∅)
w′

−→ (p, λ)
i
−→
u

(q, κ)
d
−→ (q, κ− d).

This implies that d ≤ miny∈χM(q) κ(y).
11 By induction hypothesis, we have that

((qM0 , {∅}), ∅)
w′

−→ ((p, Zp), λ)

such that λ ∈ Zp. It is then sufficient to show that we have

((p, Zp), λ)
i
−→
u

((q, Z), κ)
d
−→ ((q, Z), κ− d)

with κ− d ∈ Z.

By construction of the zone MMT and as p
i
−→ q is defined in M, the i-

transition from (p, Zp) to (q, Z) is defined if and only if Z is not empty and

Z =

(

Zp⌈χM(q)
)

↓ if i ∈ I and u = ⊥
(

(Zp[x = c])⌈χM(q)
)

↓ if i ∈ I and u = (x, c)
(

(to[Zp, x])⌈χM(q)
)

↓ if i = to[x] and u = ⊥
(

((to[Zp, x])[x = c])⌈χM(q)
)

↓ if i = to[x] and u = (x, c).

Since Zp is not empty (as λ ∈ Zp) and (p, λ)
i
−→ can be triggered (meaning that

λ(x) = 0 if i = to[x]), we have that Z is also not empty. Hence, ((p, Zp), λ)
i
−→

((q, Z), κ) is well-defined and can be triggered.
Let us show that κ ∈ Z. By definition of a timed run, κ ∈ Val(χM(q)).

Moreover, Z is a zone over χM(q). We know that λ ∈ Zp and κ is constructed
from λ by discarding the values for timers that are stopped by the discrete
transition and, maybe, (re)starting a timer. Since Z is constructed using the
same operations, it follows that κ ∈ Z.

Finally, we process the delay d. We already know that d ≤ miny∈χM(q) κ(y).
Hence, it is feasible to wait d units of time from ((q, Z), κ). Moreover, as Z is
already its downward closure, we still have that κ− d ∈ Z.

We thus obtain the implication. Again, one can show the other direction
using similar arguments, by definition of zone(M). ⊓⊔

From the (proof of the) previous proposition, we can easily obtain that
zone(M) is complete, if M is complete, Indeed, the construction of zone(M)
immediately copies input-transitions, while timeout-transitions are reproduced
when the timer is enabled in the state, meaning that zone(M) is complete.

11 We recall that miny∈χM(q) κ(y) = +∞ when χM(q) = ∅.

Active Learning of Mealy Machines with Timers 29

Corollary 1. Let M be a complete MMT and zone(M) be its zone MMT. Then,
zone(M) is complete.

From the previous proposition, we also conclude that any feasible run of M
can be reproduced in zone(M) and vice-versa. Recall that A(M) = A(zone(M)).

Corollary 2. Let M be a complete MMT and zone(M) be its zone MMT. Then,
for all words w ∈ A(M)∗

qM0
w
−→ q is in runs(M) and is feasible

⇔ (qM0 , {∅})
w
−→ (q, Z) is in runs(zone(M)) and is feasible for some zone Z.

Proof. Let qM0
w
−→ q be a feasible run of M. Then, there exists a timed run

(qM0 , ∅)
v
−→ (q, κ) of M. By Proposition 1, it follows that ((qM0 , {∅}), ∅)

v
−→

((q, Z), κ) is a timed run of zone(M) for some zone Z such that κ ∈ Z. As

v and w use the same actions, the run (qM0 , {∅})
w
−→ (q, Z) is a feasible run of

zone(M). The other direction holds with similar arguments. ⊓⊔

Let us now move towards proving that M
sym
≈ zone(M).

Proposition 2. Let M be a complete MMT. Then, M
sym
≈ zone(M).

Proof. We have to show that for every symbolic word i1 · · ·in over I∪TO [N>0]:

– qM0
i1/o1
−−−→

u1

q1 · · ·
in/on
−−−→

un

qn is a feasible run in M if and only if q
zone(M)
0

i1/o
′
1−−−→

u′
1

q′1 · · ·
in/o

′
n−−−→

u′
n

q′n is a feasible run in zone(M).

– Moreover,
• oj = o′j for all j ∈ {1, . . . , n}, and

• qj
ij
−→ · · ·

ik−→ qk is spanning ⇒ uj = (x, c) ∧ u′
j = (x′, c′) ∧ c = c′.

Let w = i1 · · · in be a symbolic word such that qM0
w
−→ qn is a feasible run of

M. Hence, there exists w = i1 · · · in such that w = w and qM0
i1/o1
−−−→

u1

q1 · · ·
in/on
−−−−→

un

qn is a feasible run of M. By Corollary 2, it follows that (qM0 , {∅})
i1/o

′
1−−−→

u′
1

(q1, Z1) · · ·
in/o

′
n−−−−→

u′
n

(qn, Zn) is a feasible run of zone(M). By construction of

zone(M), we immediately have that oj = o′j and uj = u′
j for every j. There-

fore, i′1 · · · i
′
n = w and (qM0 , {∅})

w
−→ (qn, Zn) is a feasible run of M. Hence, the

direction from M to zone(M) holds. The other direction follows with the same
arguments. We thus conclude that M

sym
≈ zone(M). ⊓⊔

Finally, we show that any run of zone(M) is feasible.

Proposition 3. Let M be a complete MMT. Then, any run of zone(M) is
feasible.

30 V. Bruyère et al.

Proof. As all states of zone(M) are reachable, we can restrict the proof to runs
starting at the initial state of zone(M). To get Proposition 3, let us prove that

for any run π = (qM0 , {∅})
w
−→ (q, Z) of zone(M), for any κ ∈ Z, there exists a

timed run
ρ = ((qM0 , {∅}), ∅)

v
−→ ((q, Z), κ)

such that untime(ρ) = π. We prove this property by induction over n = |w|.

Base case: n = 0, i.e., w = ε. Let π = (qM0 , {∅})
ε
−→ (qM0 , {∅}). It is clear that

there exists ρ = ((qM0 , {∅}), ∅)
d
−→ ((qM0 , {∅}), ∅) and ∅ ∈ {∅} for any d ∈ R

≥0.
And we have untime(ρ) = π.

Induction step: Let k ∈ N and assume the proposition holds for every
word of length k. Let w of length k + 1, i.e., we can decompose w = w′ · i with
i ∈ A(M) and |w′| = k. We show that, if π = (qM0 , {∅})

w
−→ (q, Z) is a run and

κ is a valuation in Z, there exists a timed run ρ = ((qM0 , {∅}), ∅)
v
−→ ((q, Z), κ)

such that untime(ρ) = π.

Assume that π is a run of zone(M) and let π′ = (qM0 , {∅})
w′

−→ (p, Zp).
Observe that π′ is a sub-run of π. By the induction hypothesis, we know that

for any λ ∈ Zp, there exists a timed run ρ′ = ((qM0 , {∅}), ∅)
v′

−→ ((p, Zp), λ) such

that untime(ρ′) = π′. Hence, let us focus on the last transition (p, Zp)
i
−→ (q, Z)

of π. By construction of zone(M), given (q, Z) and κ ∈ Z, we deduce that there
exists d ∈ R

≥0 and λ ∈ Zp such that

((p, Zp), λ)
i
−→ ((q, Z), κ+ d)

d
−→ ((q, Z), κ).

Thus, by the induction hypothesis with this λ, it follows that we have the timed
run

ρ = ((qM0 , {∅}), ∅)
v′

−→ ((p, Zp), λ)
i
−→ ((q, Z), κ+ d)

d
−→ ((q, Z), κ).

such that untime(ρ) = π. ⊓⊔

B.3 Proof of Lemma 1

We are now ready to prove Lemma 1 which we repeat one more time.

Lemma 1. For any complete MMT M, there is an s-learnable MMT N
sym
≈ M.

Proof. Let M be a complete MMT and zone(M) be its zone MMT. By Corol-
lary 1 and Propositions 2 and 3, zone(M) is complete, any run of zone(M) is
feasible, and M

sym
≈ zone(M). Hence, zone(M) is s-learnable and satisfies the

lemma. ⊓⊔

C Proof of Lemma 2

Lemma 2. For race-avoiding MMTs, the three symbolic queries can be imple-
mented via a polynomial number of concrete output and equivalence queries.

Active Learning of Mealy Machines with Timers 31

In order to prove this lemma, we first properly define what is a race-avoiding
MMT. We then explain how to construct a tiw ending in a state q of the MMT
in Appendix C.2 Finally, in Appendix C.4, we define the concrete output and
equivalence queries, and show how to use the tiws to obtain the lemma.

C.1 Race-avoiding MMT

Let M be an MMT. We say that M is race-avoiding [7] if every feasible run π
is the untimed projection of a timed run in which all delays are non-zero and
at most one timer times out in any configuration of the timed run. This implies
that there always exists a tiw such that there exists a unique timed run in M
(as we never have any choice to make while reading the tiw) and the untimed

projection of the run is π. Formally, any feasible run π = p0
i1−→ p1

i2−→ · · ·
in−→ pn

with p0 = q0 is the untimed projection of a timed run ρ = (p0, ∅)
d1−→ (p0, ∅)

i1−→

(p1, κ1)
d2−→ · · ·

in−→ (pn, κn)
dn+1
−−−→ (pn, κn − dn+1) such that:

– all delays are non-zero: dj > 0 for any j ∈ {1, . . . , n+ 1},
– a timer times out precisely when we want to process its timeout: in any

(κj−dj+1) and x ∈ χ(pj) with j ∈ {1, . . . , n−1}, we have (κj−dj+1)(x) = 0
if and only if ij+1 = to[x], and

– no timer times out in κn − dn+1: (κn − dn+1)(x) 6= 0 for all x ∈ χ(pn).

The notion of race-avoiding12 machine is introduced in [7] with a 3EXP algorithm
to decide whether a machine is race-avoiding.

The next lemma holds by taking a timed run satisfying the above constraints.
The next section is devoted to constructing such a timed run.

Lemma 6. Let M be a race-avoiding MMT in which every run is feasible. Then,
for any run π of M, there exists a tiw w such that

– there exists a unique timed run ρ = (q0, ∅)
w
−→ , and

– untime(ρ) = π.

C.2 Construction of a timed run reaching a state

Assume that M is a race-avoiding MMT such that every run of M is feasible.
Let

π = p0
i1/o1
−−−→

u1

p1
i2/o2
−−−→

u2

· · ·
in/on
−−−−→

un

pn ∈ runs(M)

with p0 = q0 (i.e., we start from the initial state). We explain how to construct

a tiw w that satisfies Lemma 6, i.e., such that (q0, ∅)
w
−→ is the unique timed

run reading w and whose untimed projection is π. We do this in two steps: we
first construct a timed word over A(M) and then transform it to remove the
timeout symbols.

12 Whenever we have a zero-delay between two actions of a timed run, we say that we
have a race.

32 V. Bruyère et al.

Since π is feasible, there exists a timed run

ρ = (p0, ∅)
d1−→ (p0, ∅)

i1/o1
−−−→

u1

(p1, κ1)
d2−→ · · ·

in/on
−−−−→

un

(pn, κn)
dn+1
−−−→ (pn, κn−dn+1)

such that untime(ρ) = π. Moreover, as M is race-avoiding, we can assume that

– dj > 0 for any j ∈ {1, . . . , n+ 1},
– (κj − dj+1)(x) = 0 if and only if ij+1 = to[x] for all j ∈ {1, . . . , n− 1} and

some x ∈ χ(pj), and
– (κn − dn+1)(x) 6= 0 for all x ∈ χ(pn).

Let w = d1i1 · · · dnindn+1 be the timed word over A(M) composed of the delays
and actions seen along ρ. Recall that any timeout can only occur if the timer was
started on a previous transition and enough time elapsed, e.g., if uj = (x, c), ik =
to[x], and x is not restarted between ij+1 and ik (i.e., the run from is pj−1 to pk
is x-spanning), then the sum of the delays dj+1 to dk must be equal to c. In a
similar manner, if uj = (x, c) but there are no k such that ik = to[x], then either
x was restarted, stopped or the run ended before x could reach zero. Hence, w
must satisfy the following set of constraints:

– For all j ∈ {1, . . . , n+ 1}, dj ∈ R
>0.

– For any j and k such that pj−1
ij

−−−→
(x,c)

pj
ij+1
−−−→ · · ·

ik=to[x]
−−−−−→ pk is an x-spanning

run, the sum of the delays dj+1 to dk must be equal to c, i.e.,
∑k

ℓ=j+1 dℓ = c.
– For any j such that uj = (x, c) and there is no k > j such that ik = to[x],

then either x is restarted or stopped by some transition, or the last action
in is read before c units of time elapse.

• In the first case, let k > j such that ik 6= to[x] and pk−1
ik−→ restarts

or stops x. Then, the sum of the delays dj+1 to dk must be strictly less

than c, i.e.,
∑k

ℓ=j+1 dℓ < c.
• In the second case (so, x ∈ χ(pn) and x does not time out after waiting
dn+1), the sum of the delays dj+1 to dn+1 must be strictly less than c,

i.e.,
∑n+1

ℓ=j+1 dℓ < c.

Observe that these constraints are all linear. Moreover, if we consider the
delays dj as variables, one can still gather the constraints and use them to find
a value for each dj . We denote by cnstr(π) the set of constraints for π over the
variables representing the delays. Notice that there may be multiple different
solutions. Importantly, from the arguments given above, a solution always exists.

Lemma 7. Let M be a race-avoiding MMT such that every run of M is feasible,
and π be a run of M starting from the initial state of M. Then, cnstr(π) has a
solution.

It remains to explain how to construct a tiw w′ from the timed word w =
d1i1 . . . dnindn+1 over A(M), i.e., how to drop the timeouts while still inducing
the same timed run. If ij = to[x] for some timer x, we remove ij and replace

Active Learning of Mealy Machines with Timers 33

the delay dj by dj + dj+1. We repeat this until all timeouts are removed from
w. Observe that w′ contains at most as many symbols as w and the sum of
the delays of w′ is equal to the sum of the delays of w. To simplify the rest
of this section, we assume from now on that cnstr(π) provides a tiw satisfying
the constraints. Furthermore, for a state q, we write cnstr(q) to denote a tiw
returned by cnstr(π) with π a feasible run from q0 to q (if one exists).

C.3 Now, with partial knowledge

The above construction explains how to construct such a run when M is known.
However, during the learning process, M is unknown. In this section, we explain
how to construct a timed run from the data structure introduced in Section 3.1,
i.e., from an observation tree T . In other words, the constructed tiws must come
from cnstrT (q) with q ∈ QT . Observe that T is race-avoiding when M is race-
avoiding. Moreover, due to the partial knowledge stored in T , we may have

q
i
−→
⊥

∈ runs(T) and f(q)
g(i)
−−−→
(x,c)

∈ runs(M).

Hence, the constructed tiw from T may still induce multiple runs in M. By
relying on the race-avoiding aspect of both T and M, we still have a way to force
determinism. In short, we can change the delays to ensure that the fractional
part of the sum of the delays up to an input is unique (see the notion of block
wiggling in [7, Sec. 4]).13 Then, the sum of the delays up to any timeout must
have a fractional part that is equal to the fractional part of the delays up to the
input that started the timer for the first time. In other words, all to[x]-transitions
that are induced by an input starting x share the same fractional part.

Formally, let w = d1i1 · · · indn+1 be a tiw that is constructed by cnstrT (q),
and ρ ∈ 	runsM(w) be a timed run of M reading w, i.e.,

ρ = (q0, κ0)
d′
1−→ (q0, κ0 − d′1)

i′1−→ · · ·
i′m−−→ (qm, κm)

d′
m+1

−−−→ (qm, κm − d′m+1)

with q0 = qM0 , κ0 = ∅ such that timeouts are inserted when needed and delays di
are split accordingly. Moreover, let us denote by Dj the sum of all delays from
d′1 to d′j , and by frac(c) the fractional part c − ⌊c⌋ of c ∈ R

≥0. Notice that if

qj−1

i′j
−−−→
(x,c)

· · ·
i′k=to[x]
−−−−−→ qk with i′j ∈ I is x-spanning, then frac(Dj) = frac(Dk)

(as c ∈ N
>0 units of time must have elapsed between the two actions i′j and

i′k). Moreover, if qk−1
to[x]
−−−→
(x,c′)

· · ·
i′ℓ=to[x]
−−−−−→ qℓ is again x-spanning, then frac(Dj) =

frac(Dk) = frac(Dℓ). So, if we carefully select the delays such that every input
i′j induces a unique fractional part for Dj , we ensure that two actions will never
happen with a zero-delay between then. Indeed, if iα = to[x] and iβ = to[y]

13 In practice, rational numbers are sufficient for these fractional parts and, thus, can
be perfectly encoded in a computer.

34 V. Bruyère et al.

with x 6= y, then frac(Dα) 6= frac(Dβ) and some time must elapse between the
two actions. Hence, w can be constructed from T such that |toutputsM(w)| = 1.
From now on, we assume that cnstrT (q) provides such a word.

C.4 Concrete queries and proof of Lemma 2

Let us now introduce the concrete queries that work over the timed semantics of
the MMT model. They are a direction adaptation of the queries used for Mealy
machines [28,32]: one requests the output of a timed word, and one asks whether
a hypothesis is correct.

Definition 6 (Concrete Queries). Let M be the s-learnable and race-avoiding
MMT of the teacher. The concrete queries the learner can use are:

– OQ(w) with w a tiw such that toutputsM(w) 6= ∅: the teacher outputs a tow
in toutputsM(w).

– EQ(H) with H a complete MMT H: the teacher replies yes if M
time
≈ H, or

a tiw w such that toutputsM(w) 6= toutputsH(w).

To ease the explanation, let us assume that the returned counterexample w is
such that |toutputsM(w)| = 1, as M is race-avoiding. We now describe how to
obtain each symbolic query from these concrete queries, i.e., we prove Lemma 2.

Symbolic output query. Let us start with symbolic output queries. We recall
the definition. For a sw (symbolic word) w such that π = qM0

w
−→ ∈ runs(M),

OQs(w) returns the sequence of outputs seen along the run π.
So, let w be a sw for which we want to ask OQs(w). During the learning

process, such a query is always used to define a new transition reading i ∈ A(T)
from a state q that is already present in T . Hence, we focus on this case. We can
assume that qM0

w
−→ ∈ runs(M).14 Let

πT = p0
i1−→ p1

i2−→ · · ·
in−→ pn ∈ runs(T)

such that p0 = qT0 , pn = q, and i1 · · · in · i = w. That is, we retrieve the unique
run going from qT0 to q, convert the actions into a symbolic word, alongside the

action i (whose transition is not necessarily already in the tree). Since qM0
w
−→ ∈

runs(M), i1 · · · in · i is well-defined (the last symbol is either an input, or to[j]
for some appropriate j ∈ {1, . . . , n}). We now construct a tiw that corresponds
to the sw w.

Let v = cnstrT (pn). We can then ask OQ(v · d · i · 0) such that the sum of
the last delay of v plus d > 0 leads to a very small delay (sufficiently small to
ensure that no timer can time out just before i). So, we have the unique timed
run

ρT = (qT0 , ∅)
d1−→ (qT0 , ∅)

i1−→ (p1, κ1)
d2−→ · · ·

in−→ (pn, κn)

14 We explain in Section 3.1 how to ensure this.

Active Learning of Mealy Machines with Timers 35

dn+1+d
−−−−−→ (pn, κn − (dn+1 + d))

of T reading v. Moreover, let

ρM = (qM0 , ∅)
d′
1−→ (qM0 , ∅)

i′1−→ (p′1, κ
′
1)

d′
2−→ · · ·

i′m−−→ (p′m, κ′
m)

d′
m+1

−−−→ (p′m, κ′
m − d′m+1)

be the unique timed run of M reading v · d · i · 0 (see Appendix C.2 for the
uniqueness of the run). Since T only holds partial knowledge about M, it is
possible that the constraints to build v are not enough, in the sense that we wait
for too long in some configuration of the run in M. Then, M has to process a
timeout-transition that is unexpected, i.e., there is no timeout-transition at that
specific moment in the run of T . (An input-transition can never be unexpected).
Let i′k = to[x′] be the first unexpected timeout-transition. Since any to[x′]-
transition implies that x′ was started before, there must exist an index j ∈
{1, . . . , k − 1} such that

(p′j−1, κ
′
j−1)

d′
j

−→ (p′j−1, κ
′
j−1 − d′j)

i′j
−−−→
(x′,c)

· · ·
i′k=to[x′]
−−−−−−→

is x′-spanning. Moreover, as k is the first such unexpected timeout, it must be
that d′ℓ = dℓ for all ℓ ∈ {1, . . . , k − 1}. Finally, by construction of v, we deduce
that we have

(pj−1, κj−1)
dj

−→ (pj−1, κj−1 − dj)
ij
−→
⊥

in T . Indeed, otherwise, we would have an update (x, c) (with the same c by the
fact that T is an observation tree for M), i.e., i′k would not be unexpected, as
both timed runs use the same delays up to that point.

Then, it means that we discovered a new enabled timer in pk−1. Moreover,
we know, by the fact that each timeout is associated with a unique fractional
part, that it must be the transition reading ij that (re)starts a timer. Let y be

xpj
if ij ∈ I, and be x if ij = to[x]. Then, we can create the transition pk−1

to[y]
−−−→

and change the update of the transition reading ij to replace ⊥ by an update
(y, c) (the constant can be inferred from the delays in ρT).

Hence, if an unexpected timeout occurs, we can add more information to the
tree and the constraints of cnstrT (pn) are refined. After expanding the tree, we
create a new v = cnstrT (pn) until there is no unexpected timeout. Observe there
can only be at most n unexpected timeouts. That is:

Proposition 4. We need at most n concrete output queries to perform one
symbolic output query on a symbolic word of length n.

Symbolic wait query. Let us proceed with symbolic output queries. We recall

the definition. For a sw (symbolic word) w inducing a concrete run π = qM0
i1−→

36 V. Bruyère et al.

· · ·
in−→ qn ∈ runs(M) such that i1 · · · in = w, WQs(w) returns the set of all pairs

(j, c) such that qj−1
ij

−−−→
(x,c)

· · ·
in−→ qn

to[x]
−−−→ is x-spanning.

Let w be a sw for which we want to call WQs(w). As for symbolic output
queries, such a query is performed to know the set of enabled timers of a state
q that is already present in T . Let v = cnstrT (q) be a tiw. Let us assume in
the following that there is no unexpected timeout when performing a concrete
output query (otherwise, we can proceed as explained above). So, we have that

(qM0 , ∅)
v
−→ (f(q), κ). Recall that each input in v is such that the fractional part of

the delays up to the input is unique. Hence, it is sufficient to wait “long enough”
in (f(q), κ) to identify one potential enabled timer. For now, assume the learner
knows a constant ∆ that is at least as large as the largest constant appearing
on any update of M. That is, if we wait ∆ units of time in a configuration and
no timeout occurs, then we are sure that χM

0 (f(q)) = ∅ (i.e., we add ∆ to the
last delay of v). We discuss below how to deduce ∆ during the learning process.
Moreover, by the uniqueness of the fractional parts, it is easy to identify which
transition (re)started the timer that times out.

So, we have to explain how to ensure that we eventually observe every en-
abled timer of f(q). Recall that a timer must be started on a transition be-
fore q to be potentially active in q. Thus, we define a set Potential(q) = {xp |
p is an ancestor of q} that contains every timer that may be enabled in q. Our
idea is to check each timer one by one to determine whether it is enabled.

We select any timer x from Potential (q) and refine the constraints of cnstrT (q)
to enforce that the last delay is equal to ∆, and the input that initially starts
x is triggered as soon as possible while still satisfying the other constraints of
cnstrT (q). It may be that the resulting constraints for that x are not satisfiable,
meaning by Lemma 7 that the run ending with to[x] is not feasible and x can
not be enabled in q. If there exists a solution, i.e., a tiw v, we can ask OQ(w) to
obtain a tow ω. By the uniqueness of the fractional parts, it is thus easy to check
whether x times out by waiting in q. So, we can easily deduce which transition
restarts x. Moreover, from the delays in ω, the constant of the update restarting
x can be computed.

We repeat this procedure for every timer in Potential(q). Once this is done,
we know the immediate timers of q. We can thus add q to ET . Let n be the
number of states in the path from q0 to q. The size of Potential (q) is at most n,
and, for every timer x in this set, we need at most n concrete output queries.

Proposition 5. We need at most n2 concrete output queries to perform one
symbolic wait query (correct up to our guess of ∆) on a symbolic word of length
n.

Guessing ∆. Let us quickly explain how the learner can infer ∆ during the
learning process. At first, ∆ can be assumed to be any integer (preferably small
when interacting with real-world systems). At some point, an update (x, c) may
be learned by performing a wait query (or processing the counterexample of
an equivalence query) with c > ∆. That is, we now know that ∆ is not the

Active Learning of Mealy Machines with Timers 37

largest constant appearing in M. We thus set ∆ to be c. This implies that a
new wait query must be performed in every explored state, in order to discover
potentially missing enabled timers. That is, throughout the learning algorithm,
the set of enabled timers in T may be an under-approximation of the set of
enabled timers of the corresponding state in M (cf. seismic events introduced
in Section 3.3 which require rebuilding the tree from the root). However, we will
eventually learn the correct value of ∆ (cf. Appendix E.3 for a bound relative
to the unknown M on how many times seismic events and, more generally, the
discovery of new timers, can occur).

Symbolic equivalence query. Finally, let us explain how to do a symbolic
equivalence query using a concrete equivalence query and knowledge of the
MMT. Let H be the complete hypothesis provided to EQs(H). Notice that
we don’t even need to use a concrete equivalence query. Indeed, we can imple-
ment a symbolic equivalence algorithm (similar to the reachability algorithm [7]
for automata with timers) which will satisfy the required specification. As an
alternative, we could use the contrapositive of Lemma 4 and make use of a con-
crete equivalence query (in case one is already available) to construct a witness
of symbolic nonequivalence. Importantly, when using this alternative solution,
the implemented symbolic equivalence query will return yes if the hypothesis is
timed equivalent to the hidden MMT (as opposed to when they are symbolically
equivalent, cf. Lemma 4). If they are not timed equivalent, it will construct a
counterexample of symbolic equivalence from the counterexample of timed equiv-
alence. This is not exactly the specification of the symbolic equivalence query as
in the rest of the paper, but it suffices for our learning algorithm to terminate
and return an MMT that is timed equivalent to the hidden one we are trying to
learn.

Note that we only need at most one concrete equivalence query to implement
the symbolic version of the query.

Proposition 6. We need at most one concrete equivalence query to perform
one symbolic equivalence query.

In conclusion, each symbolic query can be done via a polynomial number of
concrete queries. Hence, we proved Lemma 2.

D More details on observation trees

Let M be the s-learnable MMT of the teacher. In this section, we give more
details on observation trees and their properties. We first formalize how one
can map each state (resp. timer) of T to a state (resp. timer) of M. Then, in
Appendix D.2, we prove Theorem 2. In Appendix D.3, we show that if w is
a witness of p0 #m p′0 and w can be read from a state r (i.e., readm

p0
w−→
(r) is

defined), then r must be apart from p0 or p′0 under some matchings derived
from m. This property is used in the learning algorithm to reduce the number
of possible hypotheses that can be constructed. See Appendix E.3.

38 V. Bruyère et al.

D.1 Functional simulation

In order to link (the finitely many) runs of T to runs of M, we need a function
f : QT → QM that maps states of T to states of M such that every outgoing
transition from a state q ∈ QT can be reproduced from f(q) while producing
the same output. In addition, since T and M may use different timers, we need
a function g : XT → XM that maps active timers of T to timers of M. We
require that when a timer x is active in q, the corresponding timer g(x) is active
in f(q). When x and y are distinct timers that are both active in some state q,
we do not allow g to map x and y to the same timer of M. These conditions
imply that the number of timers that are active in f(q) is at least as large as

the number of timers active in q. Furthermore, for any transition q
i/o
−−→
u

q′ in

T , there exists a transition f(q)
i′/o
−−→
u′

f(q′) in M such that i′ = i if i ∈ I, or

i′ = to[g(x)] if i = to[x], i.e., we read a corresponding action, output the same
symbol and reach the state corresponding to q′. Moreover, if u = (x, c), then
u′ = (g(x), c), i.e., we do the same update. However, if u = ⊥, we may not have
found the actual update yet, so we do not impose anything on u′ (it can be any
update in U(M)). Then, for a run π of T , we can consider its corresponding run
in M via f and g, noted 〈f, g〉(π), which must preserve the spanning sub-runs.

Definition 7 (Functional simulation). Let T be an observation tree and M
be a s-learnable MMT. A functional simulation 〈f, g〉 : T → M is a pair of a
map f : QT → QM and a map g : ∪q∈QT χT (q) → XM. Let g be lifted to actions
such that g(i) = i for every i ∈ I, and g(to[x]) = to[g(x)] for every x ∈ dom(g).
We require that 〈f, g〉 preserves initial states, active timers, and transitions:

f(qT0) = qM0 (FS0)

∀q ∈ QT , ∀x ∈ χT (q) : g(x) ∈ χM(f(q)) (FS1)

∀q ∈ QT , ∀x, y ∈ χT (q) : x 6= y ⇒ g(x) 6= g(y) (FS2)

∀q
i/o

−−−→
(x,c)

q′ : f(q)
g(i)/o

−−−−−→
(g(x),c)

f(q′) (FS3)

∀q
i/o
−−→
⊥

q′ : f(q)
g(i)/o
−−−−→ f(q′) (FS4)

Thanks to (FS3) and (FS4), we lift 〈f, g〉 to runs in a straightforward manner.
We require:

∀π ∈ runs(T) : 〈f, g〉(π) is y-spanning ⇒ ∃x : π is x-spanning ∧ g(x) = y
(FS5)

We say that T is an observation tree for M if there exists 〈f, g〉 : T → M.

Example 9. Let M be the MMT of Figure 1. Then, the observation tree T of
Figure 2 is an observation tree for M with the functional simulation 〈f, g〉 such
that

f(t0) = f(t8) = f(t10) = q0 f(t1) = f(t2) = f(t4) = q1 f(t3) = q2

Active Learning of Mealy Machines with Timers 39

q0 q1 q2
i/o, x := 2

to[x]/o, x := 2

i/o′, y := 3

i/o′, x := 2

to[x]/o, x := 2
to[y]/o

Fig. 6: An MMT with χ(q0) = ∅, χ(q1) = {x}, and χ(q2) = {x, y}.

f(t5) = f(t6) = q3 f(t7) = f(t9) = q5,

and

g(x1) = g(x6) = x g(x3) = y.

Let π = t1
i·to[x1]·to[x3]
−−−−−−−−−→. So, 〈f, g〉(π) = q1

i·to[x]·to[y]
−−−−−−−→. Observe that π is x3-

spanning and 〈f, g〉(π) is y-spanning. As g(x3) = y, (FS5) is satisfied.

Observe that for fixed T and M there exists at most one functional simula-
tion. Further properties can be deduced from the definition of 〈f, g〉.

Corollary 3. Let T be an observation tree for a s-learnable M with 〈f, g〉.
Then, for all states q ∈ QT we have:

|χT (q)| ≤ |χM(f(q))| and ∀x ∈ χT
0 (q) : g(x) ∈ χM

0 (f(q)).

Proof. We start with the first part, i.e., |χT (q)| ≤ |χM(f(q))|. By (FS1), we
have that any timer x that is active in q is such that g(x) is active in f(x).
Moreover, by (FS2), g(x) 6= g(y) for any x 6= y ∈ χT (q). So, it is not possible
for q to have more active timers than f(q).

Now, the second part, i.e., ∀x ∈ χT
0 (q) : g(x) ∈ χM

0 (f(q)). Let x ∈ χT
0 (q).

By definition of T , it follows that q
to[x]
−−−→ is defined. So, by (FS3) and (FS4), we

have f(q)
to[g(x)]
−−−−−→, meaning that g(x) ∈ χM

0 (f(q)), as M is complete. ⊓⊔

Finally, let us highlight that the notion of explored states only makes sense
when M is s-learnable. Let T be the observation tree of Figure 2 and N be the
not-s-learnable MMT of Figure 6. We can still define the maps f : QT → QN

and g : XT → XN :

f(t0) = f(t8) = f(t10) = q0 f(t1) = f(t2) = f(t4) = q1

f(t3) = f(t5) = f(t6) = f(t7) = f(t9) = q2

g(x1) = g(x6) = x g(x3) = y.

We have |χT
0 (t3)| = 1 but |χN

0 (f(t3))| = |χN
0 (q2)| = 2. However, as every run

of T must be feasible and x3 cannot time out in t3, it is impossible to get the
equality. Therefore, in order to define explored states, we must require that M
is s-learnable.

40 V. Bruyère et al.

D.2 Proof of Theorem 2

We now show Theorem 2, which we repeat for convenience.

Theorem 2. Let T be an observation tree for an s-learnable MMT with func-
tional simulation 〈f, g〉, p, p′ ∈ QT , and m,m′ : p ↔ p′ matchings. Then,

– w ⊢ p#m p′ ∧m ⊆ m′ ⇒ w ⊢ p#m′

p′, and
– p#m p′ ⇒ f(p) 6= f(p′) ∨ ∃x ∈ dom(m) : g(x) 6= g(m(x)).

Let us show each part separately.

Lemma 8. w ⊢ p#m p′ ∧m ⊆ m′ ⇒ w ⊢ p#m′

p′.

Proof. Let w ⊢ p#m p′ and m ⊆ m′. Moreover, let p0 = p, p′0 = p′,

π = p0
i1−→ p1

i2−→ · · ·
in/o
−−−→

u
pn, and

π′ = readm

p
w−→
(p′) = p′0

i′1−→ p′1
i′2−→ · · ·

i′n/o′

−−−→
u′

p′n

with mπ
π′ : π ↔ π′. By definition, each ij is either an input, or to[x] with x ∈

dom(mπ
π′). Thus, since m ⊆ m′, it follows that readm′

p
w−→
(p′) uses exactly the same

actions and takes the same transitions as readm

p
w−→
(p′). That is, readm′

p
w−→
(p′) =

readm

p
w−→
(p′). There are five cases:

– There exists x ∈ dom(mπ
π′) such that x t#mπ

π′(x). If x t#m(x), then x t#m′(x)
since m ⊆ m′. If there exists k ∈ {1, . . . , n} such that xpk

t# xp′
k
, this does

not change when extending m. Hence, x ∈ dom(m′π
π′) and x t#m′π

π′(x), i.e.,
we have w ⊢ p#m′

p′.
– o 6= o′, which, clearly, does not depend on m. So, w ⊢ p#m′

p′.
– Likewise if u = (x, c) and u′ = (x′, c′) with c 6= c′.
– pn, p

′
n ∈ ET and |χ0(pn)| 6= |χ0(p

′
n)|, which, again, does not depend on m.

So, w ⊢ p#m′

p′.
– pn, p

′
n ∈ ET and there is x ∈ dom(mπ

π′) such that x ∈ χ0(pn) ⇔ mπ
π′(x) /∈

χ0(p
′
n). If x ∈ dom(m) and as m ⊆ m′, we still have x ∈ χ0(pn) ⇔ m′(x) /∈

χ0(p
′
n). Likewise if there is a k ∈ {1, . . . , n} such that xpk

∈ χ0(pn) ⇔ xp′
k
/∈

χ0(p
′
n). Therefore, we have again w ⊢ p#m′

p′.

In every case, we obtain that w ⊢ p#m′

p′. ⊓⊔

Hence, the first part of Theorem 2 holds. We now focus on the second part,

which requires an intermediate result. Recall that, given two runs π = p0
i1−→

· · ·
in−→ pn and π′ = p′0

i′1−→ · · ·
i′n−→ p′n, m

π
π′ : π ↔ π′ denotes the matching

such that mπ
π′ = m ∪ {(xpj

, xp′
j
) | j ∈ {1, . . . , n}} and i′j = mπ

π′(ij) for all

j ∈ {1, . . . , n}. Given such a matching mπ
π′ : π ↔ π′, the next lemma states

that if f(p0) = f(p′0) and m agrees with g, then 〈f, g〉(π) = 〈f, g〉(π′) and mπ
π′

(restricted to the started timers, ensuring that g is defined over those timers)
also agrees with g.

Active Learning of Mealy Machines with Timers 41

Lemma 9. Let p0, p
′
0 ∈ QT and a matching m : p0 ↔ p′0 such that f(p0) =

f(p′0) and g(x) = g(m(x)) for all x ∈ dom(m). Moreover, let w = i1 · · · in be a
word such that

π = p0
i1−→ p1

i2−→ · · ·
in−→ pn ∈ runs(T), and

π′ = readm
π (p′0) = p′0

i′1−→ p′1
i′2−→ · · ·

i′n−→ p′n ∈ runs(T).

Then, 〈f, g〉(π) = 〈f, g〉(π′) and g(x) = g(mπ
π′(x)) for all x ∈ dom(mπ

π′) with
x ∈ dom(m) or x = xpk

, k ∈ {1, · · · , n}, such that xpk
is started along π and

x′
pk

is started along π′.

Proof. We prove the lemma by induction over n, the length of w.
Base case: |w| = 0, i.e., w = ε. We thus have

π = p0
ε
−→ p0 and π′ = p′0

ε
−→ p′0

which means that we have the following runs in M

f(p0)
ε
−→ f(p0) and f(p′0)

ε
−→ f(p′0).

As f(p0) = f(p′0), these runs of M are equal. Moreover, as mπ
π′ = m, the second

part of the lemma holds.
Induction step: Let ℓ ∈ N and assume the lemma holds for length ℓ. Let

v = i1 · · · iℓ+1 = w · iℓ+1 be a word of length ℓ+ 1 such that

p0
i1−→ · · ·

iℓ−→ pℓ
iℓ+1
−−−→ pℓ+1 ∈ runs(T) and

readm

p0

w·iℓ+1
−−−−→pℓ+1

(p′0) = p′0
i′1−→ · · ·

i′ℓ−→ p′n
i′ℓ+1
−−−→ p′ℓ+1 ∈ runs(T).

Let π = p0
w
−→ pℓ and π′ = readm

π (p′0) = p′0
w′

−→ p′ℓ. By the induction hypothesis
with w, it holds that

– the runs 〈f, g〉(π) and 〈f, g〉(π′) are equal, and
– g(x) = g(mπ

π′(x)) for all started timers x ∈ dom(mπ
π′).

It is thus sufficient to show that

– 〈f, g〉(pℓ
i
−→ pℓ+1) = 〈f, g〉(p′ℓ

i′
−→ p′ℓ+1), and

– g(xpℓ+1
) = g(xp′

ℓ+1
) if both xpℓ+1

and xp′
ℓ+1

are started, i.e., if xpℓ+1
∈ χ(pℓ+1)

and xp′
ℓ+1

∈ χ(p′ℓ+1).

By definition of readm

p0

w·iℓ+1
−−−−→pℓ+1

(p′0), we have

i′ℓ+1 =

iℓ+1 if iℓ+1 ∈ I

to[m(x)] if iℓ+1 = to[x] with x ∈ dom(m)

to[xp′
k
] if iℓ+1 = to[xpk

] with k ∈ {1, . . . , ℓ}

42 V. Bruyère et al.

We can be more precise for the last case, i.e., when iℓ+1 = to[xpk
] with k ∈

{1, . . . , ℓ}. As pℓ
to[xpk

]
−−−−→ ∈ runs(T), it must be that xpk

∈ χ(pℓ). Hence, by

definition of an observation tree, xpk
∈ χ(pk). Likewise, as p

′
ℓ

to[xp′
k
]

−−−−→ ∈ runs(T),
it follows that xp′

k
∈ χ(xp′

k
). Hence, g(xpk

) and g(xp′
k
) are both defined when

the third case holds.
By definition of g, it holds that

g(iℓ+1) =

iℓ+1 if iℓ+1 ∈ I

to[g(x)] if iℓ+1 = to[x] with x ∈ dom(m)

to[g(xpk
)] if iℓ+1 = to[xpk

] with k ∈ {1, . . . , ℓ}

and

g(i′ℓ+1) =

i′ℓ+1 if i′ℓ+1 ∈ I

to[g(m(x))] if i′ℓ+1 = to[m(x)] with x ∈ dom(m)

to[g(xp′
k
)] if i′ℓ+1 = to[xp′

k
] with k ∈ {1, . . . , ℓ}.

We have

– i′ℓ+1 = iℓ+1 if iℓ+1 ∈ I,
– g(m(x)) = g(x) for all x ∈ dom(m) by the lemma statement, and
– by the induction hypothesis, g(xp′

k
) = g(xpk

) for all k ∈ {1, . . . , ℓ} such that
xpk

∈ χ(pk) and xp′
k
∈ χ(p′k).

It follows that g(i′ℓ+1) = g(iℓ+1).
As f(pℓ) = f(p′ℓ) by induction hypothesis and g(iℓ+1) = g(i′ℓ+1), it holds by

determinism of M that 〈f, g〉(pℓ
i
−→ pℓ+1) = 〈f, g〉(p′ℓ

i′
−→ p′ℓ+1).

To complete the proof of the lemma, it remains to prove that if xpℓ+1
∈

χ(pℓ+1) and xp′
ℓ+1

∈ χ(p′ℓ+1), then g(xpℓ+1
) = g(xp′

ℓ+1
). We have xpℓ+1

∈ χ(pℓ+1)

(resp. xp′
ℓ+1

∈ χ(p′ℓ+1)) if the update of the transition pℓ
i
−→ pℓ+1 (resp. p′ℓ

i′
−→

p′ℓ+1) is equal to (xpℓ+1
, c) for some c (resp. (xp′

ℓ+1
, c′) for some c′). As 〈f, g〉(pℓ

i
−→

pℓ+1) = 〈f, g〉(p′ℓ
i′
−→ p′ℓ+1) and 〈f, g〉 is a functional simulation, by (FS3), we get

that g(xpℓ+1
) = g(xp′

ℓ+1
) and c = c′. ⊓⊔

We are now ready the second part of Theorem 2.

Theorem 3 (Soundness). Let T be an observation tree for a s-learnable MMT
M with the functional simulation 〈f, g〉, p, p′ ∈ QT , and m : p ↔ p′ be a
matching. Then, p#m p′ ⇒ f(p) 6= f(p′) ∨ ∃x ∈ dom(m) : g(x) 6= g(m(x)).

Proof. Towards a contradiction, assume w = i1 · · · in ⊢ p #m p′, f(p) = f(p′)
and ∀x ∈ dom(m) : g(x) = g(m(x)). Let

π = p0
i1−→ · · ·

in−→ pn and π′ = readm
π (p′0) = p′0

i′1−→ · · ·
i′n−→ p′n

Active Learning of Mealy Machines with Timers 43

with p0 = p and p′0 = p′. Both runs exist in T as w ⊢ p0 #
m p′0. By Lemma 9,

we thus have 〈f, g〉(π) = 〈f, g〉(π′) and g(x) = g(mπ
π′(x)) for all started timers

x ∈ dom(mπ
π′). In particular, the equality of the runs holds for the last transition:

f(pn−1)
g(in)/o
−−−−−→

u
f(pn) = f(p′n−1)

g(i′n)/o
−−−−−→

u
f(p′n). (2)

Notice the same output and update, by determinism of M.

First, if w ⊢ p0 #m p′0 is structural, then there must exist a timer x ∈
dom(mπ

π′) such that xt#mπ
π′(x). By definition of the timer apartness, x 6= mπ

π′(x)
and there must exist a state q such that x,mπ

π′(x) ∈ χ(q). By (FS2), g(x) 6=
g(mπ

π′(x)), which is a contradiction.
Hence, assume w ⊢ p0 #

m p′0 is behavioral. Let us study the different cases.

– Assume (outputs) holds, i.e.,

pn−1
in/on
−−−−→ pn and p′n−1

i′n/o
′
n−−−−→ p′n

with on 6= o′n. By (FS3), (FS4), and (2), we have on = o and o′n = o, which
is a contradiction.

– Assume (constants) holds, i.e.,

pn−1
in−−−→

(x,c)
pn and p′n−1

i′n−−−−→
(x′,c′)

p′n

with c 6= c′. By (FS3),

f(pn−1)
g(in)

−−−−−→
(g(x),c)

f(pn) and f(p′n−1)
g(i′n)

−−−−−−→
(g(x′),c′)

f(p′n).

By (2), we get (g(x), c) = (g(x′), c′), which is a contradiction with c 6= c′.
– Assume (sizes) holds, i.e., pn, p

′
n ∈ ET and |χT

0 (pn)| 6= |χT
0 (p

′
n)|. By the

definition of explored states (see Section 3.1), we have

|χT
0 (pn)| = |χM

0 (f(pn))| and |χT
0 (p

′
n)| = |χM

0 (f(p′n))|.

It follows that |χM
0 (f(pn))| 6= |χM

0 (f(p′n))|, which is in contradiction with
f(pn) = f(p′n).

– Assume (enabled) holds, i.e., pn, p
′
n ∈ ET and there exists x ∈ dom(mπ

π′)
such that

x ∈ χT
0 (pn) ⇔ mπ

π′(x) /∈ χT
0 (p

′
n).

Without loss of generality, suppose x ∈ χT
0 (pn) and mπ

π′(x) /∈ χT
0 (p

′
n). Recall

that, by (FS2) and the second part of Corollary 3, we have y ∈ χT
0 (q) ⇔

g(y) ∈ χM
0 (f(q)) for all q ∈ ET and y ∈ dom(g) (see Section 3.1), In order

to leverage this, we thus need to argue that mπ
π′(x) ∈ dom(g), i.e., the timer

is started at some point. There are two cases:

44 V. Bruyère et al.

• If x ∈ dom(m), then, by definition, x ∈ χT (p0) and mπ
π′ = m(x) ∈

χT (p′0). Hence,

g(x) ∈ χM
0 (f(pn)) and g(mπ

π′(x)) /∈ χM
0 (f(p′n)).

As g(mπ
π′(x)) = g(x) and f(p′n) = f(pn), we have g(x) /∈ χM

0 (f(pn)),
which is a contradiction.

• If x /∈ dom(m), then it must be that x = xpk
for some k ∈ {1, . . . , n}.

Let k be the smallest such index. We can assume that y ∈ χT
0 (pn) ⇔

m(y) ∈ χT
0 (p

′
n) for each y ∈ dom(m). That is, we have

xpk
∈ χT

0 (pn) ⇔ xp′
k
/∈ χT

0 (p
′
n).

This means that xpj
∈ χT

0 (pn) ⇔ xp′
j
∈ χT

0 (p
′
n) for every j ∈ {1, . . . , k−

1}. Recall that we assumed xpk
∈ χT

0 (pn) and xp′
k
/∈ χT

0 (p
′
n).

By definition of an observation tree, this means that pn
to[xpk

]
−−−−→ pn+1 ∈

runs(T) for some state pn+1. Moreover, as f(pn) = f(p′n), pn, p
′
n ∈ ET

and |χT
0 (pn)| = |χT

0 (p
′
n)|, there exist x′ ∈ χT

0 (p
′
n) and y ∈ χM

0 (f(pn))
such that

g(x′) = g(xpk
) = y, p′n

to[x′]
−−−→ p′n+1, and

〈f, g〉(pn
to[xpk

]
−−−−→ pn+1) = 〈f, g〉(p′n

to[x′]
−−−→ p′n+1).

That is,

(f(pn) = f(p′n))
to[y]
−−−→ (f(pn+1) = f(p′n+1)).

Let ℓ ∈ {k, . . . , n} be the largest index such that f(pℓ−1)
g(iℓ)
−−−→
(y,c)

f(pℓ),

i.e., ℓ is the index of the last transition before f(pn) that (re)starts y.

In other words, 〈f, g〉(pℓ−1

iℓ···in·to[xpk
]

−−−−−−−−−→ pn+1) is y-spanning. (Observe
that we may have ℓ = k.) As

〈f, g〉(pℓ−1

iℓ···in·to[xpk
]

−−−−−−−−−→ pn+1) = 〈f, g〉(p′ℓ−1

i′ℓ···i
′
n·to[x

′]
−−−−−−−−→ p′n+1),

it follows by (FS5) and (FS2) that p′ℓ−1

i′ℓ···i
′
n·to[x′]

−−−−−−−−→ p′n+1 is x′-spanning,

and thus p′ℓ−1

i′ℓ−−−→
(x′,c)

p′ℓ.

In order to obtain a contradiction, let us argue that x′ = xp′
k
. Once we

have this equality, we can deduce that xp′
k
∈ χT

0 (p
′
n) (as x′ ∈ χT

0 (p
′
n)),

which is a contradiction with our assumption that xp′
k
/∈ χT

0 (p
′
n). To do

so, we start from the g(iℓ)-transition of the run f(pk−1)
g(ik···in)·to[y]
−−−−−−−−−→

f(pn+1) and backtrack until we identify the transition that initially starts
y.
When we consider g(iℓ), we have two cases:

Active Learning of Mealy Machines with Timers 45

∗ g(iℓ) ∈ I, meaning that iℓ = i′ℓ = g(iℓ) ∈ I and the corresponding
transitions in T start a fresh timer. Hence, by definition of T , it must

be that pℓ−1
iℓ−−−−→

(xpk
,c)

pℓ for some c ∈ N
>0. That is, ℓ = k. Moreover,

p′ℓ−1

i′ℓ−−−→
(x′,c)

p′ℓ as the sub-run starting with that transition must be

x′-spanning. Hence, x′ = xp′
k
.

∗ g(iℓ) /∈ I, i.e., g(iℓ) = to[y] meaning that iℓ = to[z] with g(z) =
y = g(xpk

). Since xpk
and z are both active in pℓ and g(xpk

) = g(z),
it must be that xpk

= z by the contrapositive of (FS2). Likewise,
i′ℓ = to[x′]. We can thus seek a new y-spanning run that ends by

the transition
to[y]
−−−→ f(pℓ). Let j ∈ {1, . . . , ℓ− 1} be the index of the

first transition of this y-spanning run. Observe that j ≥ k. Indeed, if
j < k, then it is not possible for xpk

to be enabled in pℓ (by definition
of an observation tree). That is, j ∈ {k, . . . , ℓ− 1}.
When considering the transitions at indices ℓ and n, and those at
indices j and ℓ− 1, we have similar situations:

· pℓ−1

to[xpk
]

−−−−→ and pn
to[xpk

]
−−−−→,

· p′ℓ−1

to[x′]
−−−→ and p′n

to[x′]
−−−→,

· (f(pℓ−1) = f(p′ℓ−1))
to[y]
−−−→ and (f(pn) = f(p′n))

to[y]
−−−→, and

· none of the updates between f(pℓ) and f(pn) restarts y, and
likewise between f(pj) and f(pℓ−1).

Hence, we can repeat the same arguments using j and ℓ− 1, instead
of ℓ and n.

That is, we can keep backtracking in T until we find a transition reading
a symbol in I. As we argued, this transition must necessarily read ik (so,
ℓ = k) and we conclude that x′ = xpk

.
In every case, we obtain that x′ = xpk

. As said above, this is enough to
deduce a contradiction.

In every case, we obtain a contradiction. So, f(p) 6= f(p′) or g(x) 6= g(m(x)) for
some x ∈ dom(m). ⊓⊔

D.3 Weak co-transitivity

In L# [32], the learner can reduce the number of hypotheses that can be con-
structed from a tree by exploiting the weak co-transitivity lemma, stating that, if
we can read a witness w of the apartness (defined for classical Mealy machines)
p# p′ from some state r, then p# r or p′ # r (or both). Hence, before folding
the tree to obtain a hypothesis, it is possible to ensure that each frontier state
can be mapped to a single basis state.

For MMTs, this is trickier, as we have to take into account the timers and
the mappings. That is, our version of the weak co-transitivity lemma states that
if we can read a witness w of the behavioral apartness p0 #

m p′0 from a third
state r0 via some matching µ : p0 ↔ r0, then we can conclude that p0 and r0

46 V. Bruyère et al.

χ(r0)

χ(p0)

χ(p′0)

(a) Well-defined.

? x
χ(r0)

χ(p0)

χ(p′0)

(b) Ill-defined: (µ ◦m−1)(x) has no value.

Fig. 7: Visualizations of compositions µ◦m−1 where m is drawn with solid lines,
µ with dashed lines, and µ ◦m−1 with dotted lines.

are µ-apart or that p′0 and r0 are (µ ◦m−1)-apart. However, when p0 #
m p′0 is

due to (constants), we need to extend the witness. In this case, since x is active

in pn (as u = (x, c)), there must exist an x-spanning run pn−1
in/o
−−−→

u
pn

wx

−−→ (by

definition of an observation tree, see Definition 4). Hence, we actually “read”
w · wx from r0, in order to ensure that an update (x′, c′) is present on the last
transition of readµ

p0
w−→
(r0).

Notice that the lemma requires that dom(m) ⊆ dom(µ) for the matching
µ ◦m−1. See Figure 7 for illustrations of a well- and an ill-defined µ ◦m−1.

Lemma 10 (Weak co-transitivity). Let p0, p
′
0, r0 ∈ QT , m : p0 ↔ p′0 and

µ : p0 ↔ r0 be two matchings such that dom(m) ⊆ dom(µ). Let w = i1 . . . in be

a witness of the behavioral apartness p0 #
m p′0 and readm

p0
w−→pn

(p′0) = p′0
w′

−→ p′n.

Let wx be defined as follows:

– if p0 #
m p′0 due to (constants), wx is a word such that pn−1

in−→ pn
wx

−−→ is
x-spanning,

– otherwise, wx = ε.

If readµ

p0
w·wx

−−−→
(r0) ∈ runs(T) with rn ∈ ET , then p0 #

µ r0 or p′0 #
µ◦m−1

r0.

Proof. Let p0, p
′
0, r0 ∈ QT , and m : p0 ↔ p′0 and µ : p0 ↔ r0 be two matchings

such that dom(m) ⊆ dom(µ). Let w · wx, w′, and the runs as described in the
statement, n = |w|, and ℓ = |w · wx|. Moreover, let v be the word labeling the

run from p0, i.e., such that readµ

p0
w·wx

−−−→
(r0) = r0

v
−→ rℓ. We write wj (resp. w′

j ,

vj) for a symbol of w · wx (resp. w′, v). (So, n = ℓ whenever w ⊢ p0 #
m p′0 due

to a condition that is not (constants), and n < ℓ otherwise.) We then have

p0
w1−−→ p1

w2−−→ · · ·
wn−−→ pn

wn+1
−−−→ · · ·

wℓ−−→ pℓ,

readm

p0
w−→pn

(p′0) = p′0
w′

1−−→ p′1
w′

2−−→ · · ·
w′

n−−→ p′n,

readµ

p0
w·wx

−−−→pℓ

(r0) = r0
v1−→ r1

v2−→ · · ·
vn−→ rn

vn+1
−−−→ · · ·

vℓ−→ rℓ,

readµ◦m−1

p′
0

w′

−→p′
n

(r0) = readµ

p0
w−→pn

(r0) = r0
v1−→ r1

v2−→ · · ·
vn−→ rn

Active Learning of Mealy Machines with Timers 47

with rn ∈ ET , by hypothesis. The run from p′0 does not read wx after p′n.

A first possibility is that p0#
µ r0 or p′0#

µ◦m−1

r0 due to structural apartness
(with w ·wx or w′ as witness). If this does not happen, from w being a witness of

the behavioral apartness p0#
mp′0, we have to show that p0#

µ r0 or p′0#
µ◦m−1

r0
for one case among (outputs), (constants), (sizes), or (enabled). We do it by a

case analysis. Let o, o′, ω ∈ O such that pn−1
wn/o
−−−→ pn, p

′
n−1

w′
n/o

′

−−−−→ p′n, and

rn−1
vn/ω
−−−→ rn.

– If o 6= o′, then, necessarily, ω 6= o or ω 6= o′ and we can apply (outputs) to

obtain p0 #
µ r0 or p′0 #

µ◦m−1

r0.

– If |χ0(pn)| 6= |χ0(p
′
n)|, then, necessarily, |χ0(rn)| 6= |χ0(pn)| or |χ0(rn)| 6=

|χ0(p
′
n)|. As pn, p

′
n, rn ∈ ET , we can apply (sizes) and get p0 #µ r0 or

p′0 #
µ◦m−1

r0.

– Suppose now that p0 #
m p′0 is due to (enabled).

• If x ∈ dom(m) and x ∈ χ0(pn) ⇔ m(x) /∈ χ0(p
′
n), then x ∈ dom(µ)

and, necessarily, depending on whether µ(x) ∈ χ0(rn) or µ(x) /∈ χ0(rn),
we have either x ∈ χ0(pn) ⇔ µ(x) /∈ χ0(rn) or m(x) ∈ χ0(p

′
n) ⇔

µ(m−1(m(x))) = µ(x) /∈ χ0(rn). Hence, (enabled) applies (as pn, p
′
n, rn ∈

ET).

• If xpk
∈ χ0(pn) ⇔ xp′

k
/∈ χ0(p

′
n) for some k ∈ {1, . . . , n}, we conclude

with arguments similar to the previous case that (enabled) is also satis-
fied.

– Finally, if none of the above holds, p0 #
m p′0 is due to (constants). We thus

have

pn−1
wn−−−→
(x,c)

pn
wn+1
−−−→ · · ·

wℓ−−→ pℓ,

p′n−1

w′
n−−−−→

(x′,c′)
p′n, and

rn−1
vn−→
u

rn
vn+1
−−−→ · · ·

vℓ−→ rℓ

with c 6= c′ and wℓ = to[x]. Finally, let

y =

{

µ(x) if x ∈ dom(m)

xrk if x = xpk
for some k ∈ {1, . . . , n}

which means that

vℓ = to[y] =

{

to[µ(x)] if x ∈ dom(m)

to[xrk] if x = xpk
for some k ∈ {1, . . . , n}.

We argue that u = (y, d) for some constant d that is distinct from either c or
c′. Once we have this, (constants) applies and we obtain the desired result.
We have three cases:

48 V. Bruyère et al.

• If wn ∈ I, it must be that x = xpn
as an input transition can only start

a fresh timer in T . Then, vn = wn as wn ∈ I, wℓ = to[xpn
], and y = xrn .

So, vℓ = to[xrn]. Moreover, as the only transition that can start xrn for

the first time is rn−1
vn−→
u

rn, we conclude that u = (y, d) = (xrn , d).

• If wn = to[x] with x ∈ dom(m), then x ∈ dom(µ), wn = wℓ = to[x],
and vn = vℓ = to[y] = to[µ(x)]. Assume u = ⊥, i.e., we do not restart
y from rn−1 to rn. In other words, y is not active in rn. Recall that,
in an observation tree, it is impossible to start again a timer that was
previously active (as, for every timer z, there is a unique transition that
can start z for the first time). So, y can not be active in rℓ−1. But, then, vℓ
can not be to[y], which is a contradiction. Hence, u = (y, d) = (µ(x), d).

• If wn = to[xpk
] with k ∈ {1, . . . , n − 1}, then wn = wℓ = to[xpk

] and
vn = vℓ = to[xrk]. With arguments similar to the previous case, we
conclude that u = (y, d) = (xrk , d).

⊓⊔

E More details on the learning algorithm

In this section, we give further details on the ideas introduced in Sections 3.2
and 3.3. We first clarify the notion of replaying a run from Example 6 and state
a useful property. We then introduce generalized MMTs and explain how to
construct one from T in Appendix E.2. Finally, we prove Theorem 1 in Ap-
pendix E.3.

E.1 Replaying a run

Recall that (C) requires that, for every r ∈ FT and (p,m) ∈ compatT(r),
|χT (p)| = |χT (r)| holds. In Example 6, we introduced the idea of replaying
a run to ensure that (C) is satisfied: if p and r do not have the same number
of active timers, we extend the tree by mimicking the run showing that some
timer is active in p (i.e., a run starting from p and ending in the timeout of that
timer) from r, using and extending some matching.

Let us first formalize this algorithm. Let p0, p
′
0 ∈ QT ,m : p0 ↔ p′0 be a match-

ing, and w = i1 · · · in be a word such that p0
i1−→ p1

i2−→ · · ·
in−→ pn ∈ runs(T).

We provide a function replaym

p0
w−→pn

(p′0) that extends the tree by replaying the

run p0
w
−→ pn from p′0 as much as possible, or we discover a new apartness pair

p0#
m p′0, or we discover a new active timer. Intuitively, we replay the run transi-

tion by transition while performing symbolic wait queries in every reached state
in order to determine the enabled timers (which extends ET). This may modify
the number of active timers of p′0, meaning that m may become non-maximal.
As we are only interested in maximal matchings, we stop early. This may also
induce a new apartness pair p0 #

m p′0, and we also stop early (notice that this
may already hold without adding any state in T). If the number of active timers
of p′0 remains unchanged and no new apartness pair is discovered, we consider

Active Learning of Mealy Machines with Timers 49

the next symbol i of w and try to replay it. Determining the next symbol i′ to
use in the run from p′0 follows the same idea as for readm

p0
w−→pn

(p′0). If i ∈ I, then

i′ = i (recall that it is always possible to replay i as M is complete, since it is
s-learnable). If i = to[x], we have three cases:

– x ∈ dom(m), in which case i′ = to[m(x)];
– x = xpk

is a fresh timer, i.e., pk appears on the run from p0, in which
case we consider the timer started on the corresponding transition from p′0:
i′ = to[xp′

k
];

– none of the previous case holds: x ∈ χT (p0) \ dom(m) and we cannot replay
i.

To avoid this last case, we consider the longest prefix v of w where each action
i of v is an input or is such that m(i) is defined or i = to[xpk

] for some state pk.

Formally, assume that we already replayed p0
i1−→ p1

i2−→ · · ·
ij−1
−−−→ pj−1 and

obtained the run p′0
i′1−→ p′1

i′2−→ · · ·
i′j−1
−−−→ p′j−1, and we try to replay ij from p′j−1.

We extend the tree with a symbolic output query when ij ∈ I and a symbolic
wait query in every case. If the wait query leads to a discovery of new active
timers of p′0, we stop and return ACTIVE. If we can already deduce p0 #

m p′0
from the replayed part, we also stop and return APART. Since ¬(p0 #m p′0) and

by the output and wait queries, there must exist pj−1

i′j
−→ such that

– i′j = ij if ij ∈ I,
– i′j = to[m(x)] if ij = to[x] (m(x) is well-defined by the considered prefix v

of w), or
– i′j = to[xp′

k
].

Indeed, if the timeout-transition is not defined, then p0 #m p′0 by (enabled).
Hence, we continue the procedure with the next symbol of w. If we completely
replayed w and did not discover any new timer or apartness pair, we return
DONE. Otherwise, we perform one last wait query and check whether we obtain
apartness (by the following lemma, we return ACTIVE otherwise).

We now give a lemma stating some properties of the replay function. Namely,
when replaym

π (p0) successfully replays the complete run, it follows that readm
π (p0)

is well-defined and yields a run in T . From that, we can deduce that, when π ends
with a transition reading the timeout of x and cannot be completely reproduced
from p′0 (that has less active timers than p0), we either have a new apartness
pair or a new timer in p′0. These properties are enough to conclude that one can
obtain (C) by successively replaying some runs, as the set of compatible states
of any frontier state r will eventually only contain basis states with the same
number of active timers as r.

Lemma 11. Let π = p0
w
−→ ∈ runs(T), p′0 ∈ QT , and m : p0 ↔ p′0 be a

maximal matching:

– replaym
π (p′0) = DONE implies that readm

π (p′0) is now a run of T .

50 V. Bruyère et al.

– replaym
π (p′0) returns APART or ACTIVE when |χT (p0)| > |χT (p′0)| and w

ends with to[x] for some x ∈ χT (p0) \ dom(m).

Proof. Observe that the second item follows immediately from the first, given
the fact that we process a proper prefix of w in that case. That is, it is sufficient
to show the first item.

Let w = i1 · · · in and π = p0
i1−→ p1

i2−→ · · ·
in−→ pn. Towards a contradiction,

assume that replaym
π (p′0) = DONE but readm

π (p′0) is not a run of T . Then, let
ℓ ∈ {1, . . . , n− 1} be the largest index such that

readm

p0

i1···iℓ−−−→
(p′0) = p′0

i′1−→ p′1
i′2−→ · · ·

i′ℓ−→ p′ℓ ∈ runs(T).

Hence, p0
i1−→ p1

i2−→ · · ·
iℓ−→ pℓ

iℓ+1
−−−→ ∈ runs(T) and readm

p0

i1···iℓ·iℓ+1
−−−−−−−→

(p′0) =

p′0
i′1−→ p′1

i′2−→ · · ·
i′ℓ−→ p′ℓ

i′ℓ+1
−−−→ /∈ runs(T). First, if iℓ+1 ∈ I, then we must have

performed a symbolic output query in p′ℓ, i.e., p
′
ℓ

i′ℓ+1
−−−→ ∈ runs(T). Second, if

iℓ+1 = to[xpk
] for some k ∈ {1, . . . , ℓ}, then we have that p0#

m p′0 by (enabled).
Likewise when iℓ+1 = to[x] with x ∈ dom(m).

Therefore, assume iℓ+1 is the timeout of some timer in χT (p0) /∈ dom(m).
Since replaym

π (p′0) = DONE, we have that ¬(p0 #m p′0) and we did not discover
a new active timer in p′0. Hence,

|χT
0 (pℓ)| = |χT

0 (p
′
ℓ)| (3)

∀y ∈ dom(m) : y ∈ χT
0 (pℓ) ⇔ m(y) ∈ χT

0 (p
′
ℓ), (4)

∀k ∈ {1, . . . , ℓ} : xpk
∈ χT

0 (pℓ) ⇔ xp′
k
∈ χT

0 (p
′
ℓ), (5)

As m is maximal, we deduce from (4) and (5) that all enabled timers in p′ℓ have
their corresponding enabled timer in pℓ. However, x is an enabled timer in pℓ
that does not appear among those corresponding timers as x 6∈ dom(m). This is
in contradiction with (3). We thus conclude that replaym

π (p′0) 6= DONE. ⊓⊔

E.2 Generalized MMTs and hypothesis construction

In this section, we introduce generalized MMTs (that allow timer renamings
alongside the transitions), and show that a symbolically equivalent MMT al-
ways exists. This MMT suffers a factorial blowup, in general. We then give the
construction of a generalized MMT from T , and give an example where the con-
struction of an MMT as explained in Example 7 fails, as the equivalence relation
groups together timers that are known to be apart.

Generalized MMTs. In short, a generalized MMT is similar to an MMT,

except that the update of a transition q
i
−→ q′ is now a function instead of a

value in (X×N
>0)∪{⊥}. For the gMMT to be well-formed, we request that the

Active Learning of Mealy Machines with Timers 51

domain of such a function is exactly the set of active timers of q′. Moreover, its
range must be the set of active timers of q or a natural constant. That is, each
timer x′ of q′ must either come from an active timer x of q (we rename x into
x′), or be (re)started with a constant. We also require that at most one timer
is started per transition, as in MMTs. Finally, if i = to[x], we forbid to rename
x into x′, i.e., x′ cannot be obtained from x: it must be the renaming of some
other timer or be explicitly started by the transition. An example is given below.

Definition 8 (gMMT). A generalized Mealy machine with timers (gMMT,
for short) is a tuple M = (X,Q, q0, χ, δ) where:

– X is a finite set of timers (we assume X ∩ N
>0 = ∅),

– Q is a finite set of states, with q0 ∈ Q the initial state,
– χ : Q → P(X) is a total function that assigns a finite set of active timers to

each state, and
– δ : Q×A(M) ⇀ Q×O × (X → (X ∪ N

>0)) is a partial transition function
that assigns a state-output-update triple to a state-action pair.

We write q
i/o
−−→
r

q′ if δ(q, i) = (q′, o, r). We require the following:

– In the initial state, no timer is active, i.e., χ(q0) = ∅.
– For any transition q −→

r

q′, r must be an injective function whose domain is

exactly the set of active timers of q′ (i.e., dom(r) = χ), and whose range
is composed of timers that were active in q or constants from N

>0 (i.e.,
ran(r) ⊂ χ(q) ∪ N

>0). Finally, there is at most one (re)started timer, i.e.,
there is at most one x ∈ dom(r) such that r(x) ∈ N

>0.

– For any transition q
to[x]
−−−→

r

q′, it must be that x was active in q and x cannot

be used as a value of r, i.e., x ∈ χ(q) and x /∈ ran(r).

Observe that an MMT is in fact a gMMT where all renaming maps on transitions
coincide with the identity function (except for those mapping to an integer, which
are regular updates).

We now adapt the timed semantics of the model via the following rules.
Again, they are similar to the rules for MMTs, except that we use r to rename
and start timers. Let (q, κ), (q′, κ′) be two configurations of a gMMT:

∀x : κ(x) ≥ d

(q, κ)
d
−→ (q, κ− d)

q
i/o
−−→
r

q′, i = to[x] ⇒ κ(x) = 0, ∀x ∈ χ(q′) : κ′(x) =

{

r(x) if r(x) ∈ N
>0

κ(r(x)) otherwise

(q, κ)
i/o
−−→
r

(q′, κ′)

We immediately obtain the definitions of enabled timers and complete gMMT.
Moreover, it is clear that the notion of timed equivalence from Section 2.2 can
be applied to two complete gMMTs, or a gMMT and an MMT, both complete.

52 V. Bruyère et al.

q0 q1

q2

q3 q4
i/o

x := 2

to[x]/o, y := 2

i/o

y := 1

i/o, y := 2 to[y]/o, y := 2

i/o, y := x, x := 2
to[x]/o, y := 1

to[y]/o, y := 1

i/o, y := 1

to[y]/o, y := 1

Fig. 8: A generalized MMT with χ(q0) = ∅, χ(q1) = {x}, χ(q2) = χ(q4) = {y},
and χ(q3) = {x, y}.

Example 10. Let M be the gMMT of Figure 8 with timers X = {x, y}. Update
functions are shown along each transition. For instance, x is started to 2 by the
transition from q0 to q1, while the self-loop over q3 renames x into y (i.e., y
copies the current value of x) and then restarts x to 2. Let us illustrate this with
the following timed run:

(q0, ∅)
1
−→ (q0, ∅)

i
−→ (q1, x = 2)

0.5
−−→ (q1, x = 1.5)

i
−→ (q3, x = 1.5, y = 1)

1
−→ (q3, x = 0.5, y = 0)

i
−→ (q3, x = 2, y = 0.5)

0.5
−−→ (q4, y = 1)

0
−→ (q4, y = 1).

Observe that y takes the value of x when taking the i-loop of q3.
We also highlight that some of the timeout transitions restart a timer that

is not the one timing out, as illustrated by the timed run

(q0, ∅)
1
−→ (q0, ∅)

i
−→ (q1, x = 2)

2
−→ (q1, x = 0)

to[x]
−−−→ (q2, y = 2)

0
−→ (q2, y = 2).

It is not hard to see that we have the following enabled timers per state:
χ0(q0) = ∅, χ0(q1) = {x}, χ0(q2) = χ0(q4) = {y}, and χ0(q3) = {x, y}. From
there, we conclude that M is complete.

Let us move towards providing a definition of symbolic equivalence (Defini-
tion 2) between a gMMT and an MMT. First, we adapt the notion of x-spanning

runs. Recall that a run π of an MMT is said x-spanning if π = p0
i1−→
u1

p1
i2−→
u2

· · ·
in−→ pn with

– u1 = (x, c) for some c ∈ N
>0,

– uj 6= (x, c′) for every j ∈ {2, . . . , n− 1} and c′ ∈ N
>0,

– x ∈ χ(pj) for all j ∈ {2, . . . , n− 1}, and
– in = to[x].

The adaptation to gMMTs is straightforward: the first transition must start a
timer x, each update function renames the timer (in a way, x remains active but
under a different name), and the final transition reads the timeout of the timer
corresponding to x. We say that a run π of a gMMT is spanning if

π = p0
i1−→
r1

p1
i2−→
r2

· · ·
in−→ pn

and there exist timers x1, . . . , xn such that

Active Learning of Mealy Machines with Timers 53

– r1(x1) = c for some c ∈ N
>0,

– rj(xj) = xj−1 for every j ∈ {2, . . . , n−1} (this implies that xj ∈ χ(pj)), and
– in = to[xn−1].

Observe that the notion of symbolic words (Section 2.2) still holds using this
definition of spanning runs.

We can thus obtain a definition of symbolic equivalence between a complete
gMMT and a complete MMT. In short, we impose the same constraints as in
Definition 2:

– a run reading a symbolic word exists in the gMMT if and only if one exists
in the MMT,

– if they both exist, we must see the same outputs and for transitions starting a
timer that eventually times out during the run (i.e., the sub-run is spanning),
we must have the same constants.

Definition 9 (Symbolic equivalence between gMMT and MMT). Let
M be a complete gMMT and N be a complete MMT. We say that M and N
are symbolically equivalent, also noted M

sym
≈ N , if for every symbolic word

w = i1 · · ·in over I ∪ TO [N>0]:

– qM0
i1/o1
−−−→

r1

q1 · · ·
in/on
−−−→

rn

qn is a feasible run in M if and only if qN0
i1/o

′
1−−−→

u′
1

q′1 · · ·
in/o

′
n−−−→

u′
n

q′n is a feasible run in N .

– Moreover,
• oj = o′j for all j ∈ {1, . . . , n}, and

• qj−1
ij···ik
−−−−→ qk is spanning implies that there is timer x such that rj(x) =

c, u′
j = (x′, c′), and c = c′.

We then obtain that M
sym
≈ N implies that M

time
≈ N , with arguments similar to

those presented in Appendix A.

Existence of a symbolically equivalent MMT. Let M be a complete
gMMT. We give a construction of a complete MMT N such that M

sym
≈ N .

Intuitively, we rename the timers of M, on the fly, into the timers of N and
keep track in the states of N of the current renaming. Due to the fact that each
transition of M can freely rename timers, it is possible that x is mapped to xj

in a state of N , but mapped to xk (with k 6= j) in some other state. That is,
we sometimes need to split states of M into multiple states in N , accordingly
to the update functions. An example is given below.

Formally, we define N = (XN , QN , qN0 , χN , δN) with

– XN = {x1, . . . , xn} with n = maxq∈QM |χM(q)|.
– QN = {(q, µ) ∈ QM × (χM(q) ↔ XN) | |ran(µ)| = |χM(q)|}. The idea

is that µ dictates how to rename a timer from M into a timer of N , for
this specific state. As said above, the renaming may change transition by
transition.

54 V. Bruyère et al.

– qN0 = (qM0 , ∅).
– χM((q, µ)) = ran(µ) for all (q, µ) ∈ QN . Then, |χN ((q, µ))| = |χM(q)|.
– The function δN : QN ×A(N) → QN ×O×U(N) is defined as follows. Let

q
i/o
−−→
r

q′ be a run of M and (q, µ) ∈ QN .

• If i ∈ I, we have two different cases depending on whether r (re)starts
a fresh timer or does not (re)start anything. That is, let δN ((q, µ), i) =
((q′, µ′), o, u) with u and µ′ defined as follows.

∗ If r(x) = c ∈ N
>0 for a timer x, i.e., the transition of M (re)starts a

fresh timer, then, in N , we want to start a timer that is not already
tied to some timer. Let ν = µ◦(r\{(x, c)}), i.e., the matching telling
us how to rename every timer, except x, after taking the transition.
As |XN | = maxp∈QM |χM(q)| = max(p,ν)∈QN |χN ((q, ν))|, it follows

that |XN | > |ran(ν)|. Hence, there exists a timer xj ∈ XN such that
xj /∈ ran(ν). We then say that x is mapped to xj and follow ν for
the other timers. That is,

u = (xj , c) and µ′ = ν ∪ {(x, xj)}.

∗ If r(x) /∈ N
>0 for any timer x, i.e., the transition does not (re)start

anything, then, in N , we also do not restart anything. Hence,

u = ⊥ and µ′ = µ ◦ r.

• If i = to[x], we have two cases depending on whether the transition start
a timer, or not. That is, we define δN ((q, µ), to[µ(x)]) = ((q′, µ′), o, u)
with u and µ′ defined as follows.

∗ If r(y) = c ∈ N
>0 for some timer y, then, in N , we want to restart x.

That is, we restart the timer that times out. Again, the remaining
timers simply follow r. Hence,

u = (µ(x), c) and µ′ = (µ ◦ (r \ {(y, c)})) ∪ {(y, µ(x))}.

∗ If r(y) /∈ N
>0 for any timer y, then, in N , we do not restart anything.

Hence,

u = ⊥ and µ′ = µ ◦ r.

In order to obtain a deterministic procedure, let us assume that the fresh timer
xj is picked with the smallest possible j. Figure 9 gives the MMT constructed
from the gMMT of Figure 8.

It should be clear that M is complete since N is complete (and one can
obtain M back from N as a sort of homomorphic image of N).

Lemma 12. Let M be a complete gMMT and N be the MMT constructed as
explained above. Then, N is complete and its number of states is in O

(

n! · |QM|
)

with n = maxq∈QM |χM(q)|.

Active Learning of Mealy Machines with Timers 55

(q0, ∅) (q1, {(x, x1)}) (q2, {(y, x1)})

(q3, {(x, x1), (y, x2)})

(q3, {(x, x2), (y, x1)})

(q4, {(y, x1)}) (q4, {(y, x2)})

i/o

x1 := 2

to[x1]/o

x1 := 2

i/o, x2 := 1

i/o, x1 := 2

to[x1]/o, x1 := 2

i/o, x2 := 2

to[x1]/o

x1 := 1

to[x2]/o

x2 := 1

i/o, x1 := 1

to[x1]/o, x1 := 1 to[x2]/o, x2 := 1

i/o, x1 := 1

to[x1]/o, x1 := 1

i/o, x2 := 1

to[x2]/o, x2 := 1

Fig. 9: The MMT obtained from the gMMT of Figure 8.

The following lemma highlights the relation between a transition of M and
a corresponding transition in N . It holds by construction of N .

Lemma 13. Let (q, µ) ∈ QN and q
i/o
−−→
r

q′ ∈ runs(M). Then, we have the

transition (q, µ)
i′/o′

−−−→
u

(q′, µ′) ∈ runs(N) with o = o′, and i′ and u as follows.

– If i ∈ I, then i′ = i and

u =

{

(x, c) for some x /∈ ran(µ ◦ r), if r(y) = c ∈ N
>0 for some y

⊥ if for all x, r(x) /∈ N
>0.

– If ij = to[x], then i′ = to[µ(x)] and

uj =

{

(µ(x), c) if there exists a timer y such that r(y) = c

⊥ if for all x, rj(x) /∈ N
>0.

Then, by applying this lemma over and over on each transition along a run,
we obtain that we always see the same outputs and the same updates in both
machines.

Corollary 4. For every symbolic word w = i1 · · · in, we have

qM0
i1/o1
−−−→

r1

q1
i2/o2
−−−→

r2

· · ·
in/on
−−−→

rn

qn ∈ runs(M)

⇔ (qM0 , ∅)
i1/o1
−−−→

u1

(q1, µ1)
i2/o2
−−−→

u2

· · ·
in/on
−−−→

un

(qn, µn) ∈ runs(N)

with uj defined as follows for every j:

56 V. Bruyère et al.

– If ij ∈ I, then

uj =

(xk, c) for some xk /∈ ran(µj−1 ◦ rj), if there exists x such that
rj(x) = c ∈ N

>0

⊥ if for all x, rj(x) /∈ N
>0.

– If ij = to[k], then

uj =

(x, c) if there exists x such that rj(x) = c ∈ N
>0 and

(qk−1, µk−1)
ik−−−→

(x,c′)

⊥ if for all x, rj(x) /∈ N
>0.

This directly implies that if a run is feasible in M, the corresponding run is
also feasible in N , and vice-versa.

Corollary 5. For any symbolic word w, qM0
w
−→ ∈ runs(M) is feasible if and

only if qN0
w
−→ ∈ runs(N) is feasible.

This is enough to obtain the desired result: M
sym
≈ N , as any run in one can be

reproduced in the other, and we see the same outputs and updates (for spanning
sub-runs) along these runs.

Corollary 6. M
sym
≈ N .

Construction of a gMMT hypothesis. Let us now describe how a complete
gMMT H is constructed from T . We assume that (C) holds, i.e.,

– compatT(r) 6= ∅ for every frontier state r, and
– |χT (r)| = |χT (p)| for each r ∈ FT and (p,m) ∈ compatT(r).

Hence, m is bijective. The idea is to use the set of basis states as the states of

H, with exactly the same active timers per state. Then, for any transition q
i/o
−−→
u

q′ ∈ runs(T) with q, q′ ∈ BT , we do not rename anything in H. If u = (x, c),
then the update function of H also (re)starts x to c. Finally, for a transition

q
i/o
−−→
u

r ∈ runs(T) with r ∈ BT , we arbitrarily select a pair (p,m) ∈ compatT(r)

and define a transition q
i/o
−−→
r

p where r renames every timer according to m. In

other words, the only functions that actually rename timers come from folding
the tree, i.e., when we exit the basis in T .

Definition 10 (Generalized MMT hypothesis). We define the gMMT H =
(XH, QH, qH0 , χH, δH) where:

– XH =
⋃

q∈BT χT (q),

– QH = BT, with qH0 = qT0 ,
– χH(q) = χT (q) for each q ∈ BT, and

Active Learning of Mealy Machines with Timers 57

– δH is constructed as follows. Let q
i/o
−−→
u

q′ be a transition in T with q ∈ BT.

We have four cases:
• If q′ ∈ BT (i.e., the transition remains within the basis) and u = ⊥, then
we define δH(q, i) = (q′, o, r) with, for all x ∈ χT (q′), r(x) = x.

• If q′ ∈ BT and u = (y, c), then we define δH(q, i) = (q′, o, r) with r(y) = c
and, for all x ∈ χT (q′) \ {y}, r(x) = x.

• If q′ ∈ FT (i.e., the transition leaves the basis) and u = ⊥, then we select
an arbitrary (p,m) ∈ compatT(r) and define δH(q, i) = (p, o, r) with, for
all x ∈ χT (q′), r(m−1(x)) = x.

• If q′ ∈ FT and u = (y, c), then we select an arbitrary (p,m) ∈ compatT(r)
and define δH(q, i) = (p, o, r) with r(m−1(y)) = c and, for all x ∈ χT (q′)\
{y}, r(m−1(x)) = x

It is not hard to see that H is well-formed and complete, as it is constructed

from T . Indeed, recall that q
i
−→ ∈ runs(T) is defined for each q ∈ BT if and

only if i ∈ I ∪ TO [χT
0 (q)], i.e., the basis is complete.

Example 11. Let T be the observation tree of Figure 3. We can observe that

compatT6(t2) = {(t1, x1 7→ x1)} compatT6(t10) = {(t0, ∅)}

compatT6(t5) = {(t6, x6 7→ x1, x3 7→ x3)} compatT6(t12) = {(t0, ∅)}

compatT6(t11) = {(t6, x6 7→ x11, x3 7→ x3)} compatT6(t15) = {(t9, x3 7→ x3)}.

We thus construct a gMMT H as follows.

– The states of H are t0, t1, t3, t6, and t9.
– The i-transition from t0 to t1 ∈ BT starts the timer x1 to 2.
– The i-transition from t1 to t3 ∈ BT keeps x1 as-is and starts a new timer x3.
– The i-transition from t3 to t6 ∈ BT stops x1 and starts x6. The timer x3 is

unchanged. Observe that, so far, we followed exactly the transitions defined
within the basis of T .

– We consider the to[x1]-transition from t3 to t5 in T . As t5 ∈ FT , we select
a pair (p,m) in compatT(t5). Here, the only possibility is (t6, x6 7→ x1, x3 7→
x3). So, we define the renaming function r57→6 such that r57→6(x6) = 2 and

r57→6(x3) = x3. Hence, we have the transition t3
to[x1]/o
−−−−−→

r57→6

t6.

And so on for the remaining transitions. The resulting gMMT is given in Fig-
ure 10. A more complex example is provided in the next section.

Finally, while one can then convert the gMMT hypothesis H into an MMT
hypothesis, it is not required. Indeed, in order to avoid the factorial blowup,
one can simply give H to the teacher who then has to check whether H and
its hidden MMT M are symbolically equivalent. For instance, the teacher may
construct the zone gMMT of H and the zone MMT of M (see Appendix B) and
then check the equivalence between those models. This does not necessitate to
construct an MMT.

58 V. Bruyère et al.

t0 t1 t3 t6 t9
i/o

x1 := 2

i/o′

x1 := x1,
x3 := 3

to[x1]/o, x1 := 2

i/o′

x6 := 2, x3 := x3

to[x1]/o

x6 := 2,
x3 := x3

to[x6]/o

x3 := x3

i/o′, x6 := 2,
x3 := x3 i/o′, x3 := x3

to[x3]/o,⊥ to[x3]/o,⊥

Fig. 10: A gMMT constructed from the observation tree of Figure 3.

Example of a case where gMMTs are required. Finally, we give an exam-
ple of an observation tree from which the construction of ≡ (as explained earlier)
fails. That is, we obtain x ≡ y but x t# y. Let M be the MMT of Figure 11. For
simplicity, we omit all outputs in this section.

Observe that replacing the transition q0
j

−−−→
(y,1)

q4 by q0
j

−−−→
(x,1)

q3 would yield

an MMT symbolically equivalent to M. Indeed, both q3 and q4 have the same
behavior, up to a renaming of the timer. So, the j-transition from q0 can freely
go to q3 or q4, under the condition that it starts respectively x or y. Here, we fix
that it goes to q4 and starts y. However, the learning algorithm may construct
a hypothesis where it instead goes to q3. In short, this uncertainty will lead us
to an invalid ≡.

Let T be the observation tree of Figure 11. One can check that T is an
observation tree for M, i.e., there exists a functional simulation 〈f, g〉 : T → M.
We have the following compatible sets:

compatT(t2) = compatT(t14) = {(t1, x1 7→ x1)}

compatT(t4) = compatT(t5) = compatT(t6) = {(t3, x2 7→ x2)}

compatT(t12) = {(t3, x2 7→ x1)}

compatT(t13) = {(t3, x2 7→ x11)}

compatT(t18) = {(t11, x1 7→ x1, x11 7→ x11)}

By constructing the equivalence relation ≡ ⊆ {x1, x2, x11} × {x1, x2, x11}, we
obtain that

x1 ≡ x2 due to (t3, x2 7→ x1) ∈ compatT(t12), and

x2 ≡ x11 due to (t3, x2 7→ x11) ∈ compatT(t13).

So, x1 ≡ x11. However, notice that x1
t#x11, as both timers are active in t11. Since

that relation is the only possibility, we conclude that it is not always possible to
construct a relation that does not put together two apart timers.

E.3 Proof of Theorem 1

Let us now show Theorem 1, which gives the termination and complexity of
L#
MMT. Before that, we introduce an optimization of our learning algorithm

Active Learning of Mealy Machines with Timers 59

q0 q1 q2 q3

q4

i

x := 2

j/⊥
to[x]/x := 2

i

y := 1

i/⊥
j/⊥

to[x]

x := 1
to[y], y := 1

i/⊥
j/⊥

to[x]/x := 1

i/⊥
j/⊥

to[y]/y := 1

j/y := 1

t0t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11t12

t13

t14 t15

t16

t17

t18

t19 t20

t21 t22

t23

t24

t25

t26

t27

t28

t29

to[x11]/⊥

i

x1 := 2

j

x3 := 1

i

x11 := 1

i

⊥

to[x1]

x1 := 1

to[x1]

x1 := 2

to[x1]

⊥

to[x1]/x1 := 2

j/⊥

to[x2]/x2 := 1

j/⊥

to[x2]/x2 := 1

to[x2]/x2 := 1

to[x2]/x2 := 1

to[x1]/x1 := 2

to[x1]/x1 := 2

to[x11]/⊥

to[x1]/⊥

j/⊥

to[x11]/x11 := 1

i/⊥

to[x2]/⊥

to[x2]/⊥

to[x2]/⊥

to[x1]/⊥

to[x1]/⊥

to[x1]/⊥

to[x11]/⊥

Fig. 11: An MMT with χ(q0) = ∅, χ(q1) = χ(q3) = {x}, χ(q2) = {x, y}, χ(q4) =
{y}, and an observation tree in which basis states are highlighted in gray. For
simplicity, the output o of each transition is omitted.

60 V. Bruyère et al.

t0 t1
t2

t3

t4

t5

t6

t7

t8

t9

t10

t11 t12 t13

t14
i/o

x1 := 2 i/o′, x3 := 3

to[x1]/o, x1 := 2 to[x1]/o,⊥

to[x1]/o, x1 := 2

i/o′, x6 := 2

to[x3]/o,⊥

to[x6]/o,⊥

to[x1]/o, x1 := 2

to[x11]/o,⊥

to[x1]/o,⊥

to[x1]/o,⊥

to[x3]/o,⊥

i/o′, x11 := 3

Fig. 12: Extension of the observation tree of Figure 2 obtained by calling

replayx1 7→x1
π (t2), where π = t1

i·to[x1]·to[x3]
−−−−−−−−−→. New states and transitions are

highlighted with dashed lines.

that reduces the size of each compatible set, by leveraging weak co-transitivity
(Lemma 10). In turn, this diminishes the number of hypotheses that can be
constructed and, thus, helps the learner to converge towards the target MMT
while reducing the number of equivalence queries needed.

Let r ∈ FT and assume we have (p, µ) ∈ compatT(r) and (p′, µ′) ∈ compatT(r)
with p 6= p′ and maximal matchings µ : p ↔ r and µ′ : p′ ↔ r. These
matchings are necessarily valid by definition of compatT . We also assume that
|χT (p)| = |χT (r)| = |χT (p′)| (by applying the above idea). As p, p′ ∈ BT , it
must be that p #m p′ for any maximal matching m : p ↔ p′. In particular,
take m : p ↔ p′ such that m = µ′−1 ◦ µ. Notice that dom(m) ⊆ dom(µ) and
µ′ = µ ◦ m−1 (see Figure 7 for a visualization). It always exists and is unique
as the three states have the same number of active timers. There are two cases:
either any witness w ⊢ p#m p′ is such that the apartness is structural, in which
case we cannot apply Lemma 10, or there is a witness w ⊢ p #m p′ where the
apartness is behavioral. In that case, let also wx be as described in Lemma 10.

We then replay the run p
w·wx

−−−→ from r using µ. We have three cases:

– replayµ

p
w·wx

−−−→
(r) = APART, meaning that p #µ r. Then, (p, µ) is no longer

in compatT(r).
– replayµ

p
w·wx

−−−→
(r) = ACTIVE, in which case we discovered a new active timer

in r. Hence, we now have that |χT (p)| 6= |χT (r)| and we can reapply the
idea of replaying runs showcasing timeouts (see Example 6) to obtain the
equality again, or that p and r are not compatible anymore.

– replayµ

p
w·wx

−−−→
(r) = DONE, meaning that we could fully replay p

w·wx

−−−→ and

thus did not obtain p#µ r. By Lemma 10, it follows that p′ #µ′

r.

Hence, it is sufficient to call replayµ

p
w·wx

−−−→
(r) when w ⊢ p#µ′−1◦µ p′ is behavioral.

Unlike in [32], we cannot always obtain |compatT(r)| = 1, as Lemma 10
cannot be applied when the considered apartness pairs are structural.

Example 12. Let the MMT of Figure 1 be the MMT of the teacher and T be the
observation tree of Figure 2. As explained in Example 6, we have compatT(t2) =

Active Learning of Mealy Machines with Timers 61

{(t1, x1 7→ x1), (t3, x1 7→ x1)}. Let us extend the tree in order to apply weak
co-transitivity to deduce that t1 #x1 7→x1 t2 or t1 #x1 7→x1 t3. We have that i ⊢

t1 #
x1 7→x1 t3 due to (constants). Hence, we replay the run π = t1

i·to[x1]·to[x3]
−−−−−−−−−→

from t2 using the matching x1 7→ x1 (i.e., we have wx = to[x1] · to[x3]). That is,
we call replayx1 7→x1

π (t2). The resulting tree is given in Figure 12. Recall that the
function returned DONE. So, ¬(t1 #m1 7→x1 t2). By Lemma 10, it must be that
t3 #

x1 7→x1 t2. It is indeed the case as i ⊢ t3 #
x1 7→x1 t2 by (constants). Hence, we

now have compatT(t2) = {(t1, x1 7→ x1)}.

Using this idea, we then add a new step inside the refinement loop, taking
place after Active timers:

WCT where WCT stands for Weak Co-Transitivity. As explained above, we
minimize each compatible set by extending the tree to leverage Lemma 10
as much as possible.

We require several intermediate results. First, we argue that the refinement
loop of our algorithm eventually terminates, i.e., a hypothesis is eventually con-
structed. Under the assumption that the basis is finite, observe that the frontier
is then finite (as I ∪ TO [∪p∈BTχT (p)] is finite). Hence, we can apply Comple-
tion, Active timers, WCT only a finite number of times. It is thus sufficient
to show that the basis cannot grow forever, i.e., that Promotion is applied a
finite number of times, which implies that Seismic is also applied a finite num-
ber of times. The next lemma states an upper bound over the number of basis
states. In short, if this does not hold, one can construct a matching mg : p ↔ p′

such that g(x) = g(m(x)) for all x ∈ dom(mg) for two states p, p′ such that
f(p) = f(p′). By the contrapositive of Theorem 3, we conclude that either p or
p′ cannot be in the basis.

Lemma 14. |BT | ≤ |QM| · 2|X
M|.

Proof. In order to distinguish the theoretical definition of BT and its computa-
tion, let us denote by B the basis as computed in the refinement loop of L#

MMT.
We highlight that B may not always satisfy the definition of BT during the re-
finement loop. Indeed, as explained in Section 3.3, when a new active timer is
found in a basis state, we may have ¬(p#m p′) for some p 6= p′ ∈ BT and max-
imal matching m : p ↔ p′. We thus need to perform Seismic and recompute

B. Below, we will establish that B ≤ |QM| · 2|X
M|. The same (or even simpler)

arguments yield the bound for BT .
Let us assume we already treated the pending Seismic (if there is one), i.e.,

∀p, p′ ∈ B : p 6= p′ ⇒ p#m p′ for all maximal matchings m : p ↔ p′ (6)

Towards a contradiction, assume |B| > |QM| · 2|X
M|. By Pigeonhole principle,

there must exist two states p 6= p′ ∈ B such that f(p) = f(p′) (as |B| >
|QM|) and which furthermore satisfy g(χT (p)) = g(χT (p′)). This implies that
|χT (p)| = |χT (p′)|. Let mg : p ↔ p′ be the matching such that g(x) = g(mg(x))

62 V. Bruyère et al.

for all x ∈ dom(mg). It necessarily exists as g(χT (p)) = g(χT (p′)). Moreover,
mg is maximal. Hence, we have p#mg p′ by (6). However, as f(p) = f(p′) and
g(x) = g(mg(x)) for all x ∈ dom(mg), and by the contrapositive of Theorem 3,
it then follows that ¬(p#mg p′). We thus obtain a contradiction, meaning that

both p and p′ cannot be in B at the same time. Hence, |B| ≤ |QM| · 2|X
M|. ⊓⊔

We immediately get bounds on the size of the frontier and the compatible
sets. For the former, note that the number of immediate successors of each state
is bounded by |I| + |XM| = |A(M)|; for the latter, the number of maximal
matchings is at most |XM|! since the number of active timers in any state from
the observation tree is bounded by the same value from the hidden MMT M.

Corollary 7.

|FT | ≤ |QM| · 2|X
M| · (|A(M)|)

max
r∈FT

|compatT(r)| ≤ |QM| · 2|X
M| · |XM|! .

Finally, we give an upper bound over the length of the minimal words ending
in to[x] for any q ∈ QT and x ∈ χT (q). That is, when applying WCT, one can
seek a short run to be replayed (typically, via a BFS).

Lemma 15. maxq∈QT maxx∈χT (q) min
q

w·to[x]
−−−−→∈runs(T)

|w · to[x]| ≤ |QM|.

Proof. Towards a contradiction, assume that

max
q∈QT

max
x∈χT (q)

min
q

w·to[x]
−−−−→∈runs(T)

|w · to[x]| > |QM|.

Then, there must exist a state p0 and a timer x ∈ χT (p0) such that the length
of w · to[x] is strictly greater than the number of states of M, i.e., we have a run

π = p0
i1−→ · · ·

iℓ−→ pℓ
to[x]
−−−→∈ runs(T)

with ℓ > |QM|. Observe that pℓ ∈ ET , as pℓ
to[x]
−−−→ is defined. By Pigeonhole

principle, we thus have f(pj) = f(pℓ) for some j ∈ {1, . . . , ℓ − 1}. As ET is
tree-shaped, it follows that pj ∈ ET (since j < ℓ).

We thus need to argue that pj
to[x]
−−−→ ∈ runs(T) to obtain our contradiction.

Since f(pj) = f(pℓ), it naturally follows that χM
0 (f(pj)) = χM

0 (f(pℓ)). More-
over, x ∈ χT (pj) as x is active in both p0 and pℓ. Hence, g(x) ∈ χM

0 (f(pj)) as

g(x) ∈ χM
0 (f(pℓ)). So, it must be that pj

to[x]
−−−→ ∈ runs(T) since pj ∈ ET . We

thus have a contradiction as p0
i1···ij ·to[x]
−−−−−−−→ ∈ runs(T) and j < ℓ. ⊓⊔

Let us now prove Theorem 1, which we repeat.

Active Learning of Mealy Machines with Timers 63

Theorem 1. The L#
MMT algorithm terminates and returns an MMT N

sym
≈ M of

size polynomial in |QM| and factorial in |XM|, in time and number of symbolic
queries polynomial in |QM|, |I| and the length of the longest counterexample
returned by the teacher, and factorial in |XM|.

Proof. Let us start with showing that the algorithm eventually terminates. First,
we formally prove that the refinement loop always finishes, i.e., that the basis
and the frontier always stabilize. By Lemma 14 and Corollary 7, we have

|BT | ≤ |QM| · 2|X
M| (7)

|FT | ≤ |QM| · 2|X
M| · (|A(M)|) (8)

max
r∈FT

|compatT(r)| ≤ |QM| · 2|X
M| · |XM|! (9)

Furthermore, by the first part of Corollary 3

max
q∈QT

|χT (q)| ≤ |χT (f(q))| ≤ |XM|. (10)

Let us argue that each part of the refinement loop is applied finitely many times.
We write |Seismic| for the number of times Seismic (see Section 3.3) is applied.

– The maximal number of applied Seismic per basis state is bounded by |XM|,
by (10). Indeed, each Seismic event is due to the discovery of a new active
timer in a basis state. Hence, by (7),

|Seismic| ≤ |BT | · |XM| ≤ |QM| · |XM| · 2|X
M|. (11)

– By (7), the number of times Promotion is applied between two instances

of Seismic is bounded by |QM| · 2|X
M|. So,

|Promotion| ≤ |BT | · |Seismic| ≤ |QM|
2
· |XM| · 22|X

M|. (12)

– Between two cases of Seismic, the number of Completion is bounded by
|I| · |BT |, as, in the worst case, each input-transition is missing from each ba-
sis state. In general, we may have multiple frontier states r1, . . . , rn such that
f(r1) = · · · = f(rn). Thus, compatT(r1) = · · · = compatT(rn), after mini-

mizing each set. Due to Seismic, L#
MMT potentially has to choose multiple

times one of those states. So, in the worst case, we select a different rj each
time. As each new basis state may not have all of its outgoing transitions,

|Completion| ≤ |I| · |BT | · |Seismic| = |I| · |Promotion|

≤ |I| · |QM|
2
· |XM| · 22|X

M |.
(13)

– Between two instances of Seismic, the number of pairs (p,m) ∈ compatT(r)
such that |χT (p)| 6= |χT (r)| is directly given by (9) for each frontier state r:

|Active timers| ≤ |FT | · max
r∈FT

|compatT(r)| · |Seismic|

≤ |A(M)| · |QM|
3
· |XM| · 23|X

M| · |XM|! .
(14)

64 V. Bruyère et al.

– With similar arguments,

|WCT| ≤ |FT | ·

(

max
r∈FT

|compatT(r)|

)2

· |Seismic|

≤ |A(M)| · |QM|
4
· |XM|

2
· 24|X

M| ·
(

|XM|!
)2
.

(15)

Since each part of the refinement loop can only be applied a finite number of
times, it follows that the loop always terminates. Thus, it remains to prove
that L#

MMT constructs finitely many hypotheses. Given how a counterexample is
processed, it is now hard to see that any counterexample results in a new timer
being discovered for a state in the basis (leading to an occurrence of Seismic), or
a compatibility set decreasing in size (potentially leading to a Promotion). We
already know that |Seismic| and |Promotion| are bounded by a finite constant.
Moreover, by (9), each compatible set contains finitely many pairs. So, there can
only be finitely many counterexamples, and, thus, hypotheses. More precisely,
the number of hypotheses is bounded by

|Seismic| · |Promotion| · max
r∈FT

|compatT(r)| ≤ |QM|
4
· |XM|

2
· 24|X

M| · |XM|! .

(16)
To establish that N is equivalent to M, we observe that the last equiva-

lence query to the teacher confirmed they are symbolically equivalent. Hence, by
Lemma 4, they are also timed equivalent, i.e., N time≈ M. From our construction
of an MMT hypothesis based on an gMMT (see Appendix E.2), we get that the

intermediate gMMT has at most |QM| · 2|X
M| states (by (7)). Hence, the final

MMT has at most |QM| · 2|X
M| · |XM|! states by Lemma 12, i.e., a number that

is polynomial in |QM| and factorial in |XM|, as announced.
We now prove the claimed number of queries. We start with the number of

queries per step of the refinement loop and to process a counterexample.

Seismic Applying Seismic does not require any symbolic queries.
Promotion Let r be the state newly added to BT . We thus need to do a wait

query in each r′ such that r
i
−→ r′ for some i ∈ A(T). By (10), there are at

most |A(M)| wait queries.
Completion A single application of Completion requires a single symbolic

output query and a single wait query.
Active timers Each occurrence of Active timers necessitates to replay a run

π from state q. Let n be the number of transitions in π. In the worst case,
we have to perform n symbolic output queries and n symbolic wait queries.
By Lemma 15, n ≤ |QM|, if we always select a minimal run ending in the
timeout of the desired timer.

WCT Likewise, applying WCT requires to replay a run of length n, i.e., we
do n symbolic output queries and n wait queries. This time, let us argue
that we can always select a run such that: n ≤ |BT |+1+ |QM|+ ℓ+(|BT |+
1) · |Seismic|. (Recall that ℓ is the length of the longest counterexample.)
Let us decompose the summands appearing on the right piece by piece:

Active Learning of Mealy Machines with Timers 65

– |BT |+ 1 denotes the worst possible depth for a frontier state. Indeed, it
may be that all basis states are on a single branch. So, the frontier states
of the last basis state of that branch are at depth |BT |+ 1.

– |QM| comes from Lemma 15, as (enabled) requires to see the timeout of
some timer.

– ℓ comes from the counterexample processing (see next item).
– When we previously replayed a witness of apartness due to some oc-

currences of WCT, we had to copy runs from a frontier state. Since
the worst possible depth of a frontier state is |BT | + 1, this means we
added (at most) that length of the copied run when counted from the
root of the observation tree. Since these replays may have triggered some
instances of Seismic, the basis must have been recomputed each time.
As explained above, we may not obtain the same exact basis, but the
bound over the number of states is still (7). So, in the worst case, we
add |Seismic| many times (|BT |+ 1) to the longest branch of the tree.

Processing a counterexample First, in the worst case, we have to add the
complete counterexample to observe what is needed, creating a new run in
the tree, whose length is thus ℓ. Recall that each iteration of the counterex-

ample processing splits a run p
v
−→ with p ∈ BT into p

v′

−→ r
v′′

−→ such that
v = v′ · v′′ and r ∈ FT . It may be that every v′ is of length 1, meaning that

we replay runs of lengths ℓ, ℓ− 1, . . . , 1. So, we do ℓ+ ℓ− 1 + · · ·+ 1 = ℓ2+ℓ
2

symbolic output queries and the same number of wait queries.

By combining with the bounds of (11) to (15), we obtain the following bounds.

– The number of symbolic output queries is bounded by

1 · |Completion|+ |QM| · |Active timers|

+
(

|BT |+ 1 + |QM|+ ℓ+ (|BT |+ 1) · |Seismic|
)

· |WCT|

Clearly, (ℓ + |BT | · |Seismic|) · |WCT| is bigger than the other operands
(observe that ℓ is independent from |QM|, |I|, and |XM|). Hence, the number
of symbolic output queries is in

O
(

(ℓ+ |QM|
2
· |XM| · 22|X

M|)·|A(M)|·|QM|
4
·|XM|

2
·24|X

M| ·(|XM|!)
2
)

.

– The number of symbolic wait queries is bounded by

|A(M)| · |Promotion|+ 1 · |Completion|+ |QM| · |Active timers|

+
(

|BT |+ 1 + |QM|+ ℓ+ (|BT |+ 1) · |Seismic|
)

· |WCT|.

Again, (ℓ+ |BT| · |Seismic|) · |WCT| is bigger than the other operands. That
is, we obtain the same complexity results as for symbolic output queries.

– The number of symbolic equivalence queries is exactly the number of con-
structed hypothesis. It is thus bounded by (16).

We thus obtain the announced complexity results. ⊓⊔

66 V. Bruyère et al.

Idle Idlex

STxySTy ATxy

TT/BS, y := SA

to[x]/o,⊥

TT/BS, y := SA

to[x]/o,⊥ to[y]/ES+BA, y := TTRT

to[x]/EA+RT, x := y

EA/RT, x := yto[y]/ES+RT, x := TTRT

Fig. 13: A gMMT model of one FDDI station.

F FDDI protocol

By far the largest benchmark that is learned by Waga [33] is an fragment of the
FDDI communication protocol [24], based on a timed automata model described
in [9]. FDDI (Fiber Distributed Data Interface) is a protocol for a token ring
that is composed of N identical stations. Figure 13 shows a gMMT-translation
of the timed automata model for a single station from [9]. (See Definition 8 for
the definition of gMMTs.) In the initial state Idle, the station is waiting for
the token. When the token arrives (TT), the station begins with transmission
of synchronous messages (BS). A timer y ensures that synchronous transmission
ends (ES) after exactly SA time units, for some constant SA (= Synchronous
Allocation). The station also maintains a timer x, that expires exactly TTRT+SA

time units after the previous receipt of the token, for some constant TTRT (=
Target Token Rotation Timer). When synchronous transmission ends and timer
x has not expired yet, the station has the possibility to begin transmission of
asynchronous messages (BA). Asynchronous transmission must end (EA) and the
token must be returned (RT) at the latest when x expires.15 Upon entering
location Idlex, we ensure that timer x will expire exactly TTRT+SA time units
after the previous TT event. In a FDDI token ring of size N , an RT event of
station i will instantly trigger a TT event of station (i + 1) mod N . Waga [33]
considered the instance with 2 stations, SA = 20, and TTRT = 100.

15 In location ATxy, timer x will expire before timer y (we may formally prove this by
computing the zone graph): (1) The value of y in location ATxy is at most TTRT. (2)
Hence, the value of x in location Idlex is at most TTRT. (3) So x is at most TTRT

upon arrival in location STxy, and at most TTRT−SA upon arrival in location ATxy.
(4) Thus x is smaller than y in location ATxy and will expire first.

	Active Learning of Mealy Machines with Timers
	Introduction
	Mealy Machines with Timers
	Timed Semantics
	Symbolic equivalence of MMTs
	Learning framework

	Learning algorithm
	Observation tree
	Functional simulation.
	Apartness.

	Hypothesis construction
	Main loop

	Implementation and Experiments
	Future work
	More details on equivalence of two MMTs
	Timed equivalence
	Symbolic equivalence refines timed equivalence
	Timed equivalence does not refine symbolic equivalence

	Proof of Lemma 1
	Zones
	Zone MMT
	Proof of Lemma 1

	Proof of Lemma 2
	Race-avoiding MMT
	Construction of a timed run reaching a state
	Now, with partial knowledge
	Concrete queries and proof of Lemma 2
	Symbolic output query.
	Symbolic wait query.
	Symbolic equivalence query.

	More details on observation trees
	Functional simulation
	Proof of Theorem 2
	Weak co-transitivity

	More details on the learning algorithm
	Replaying a run
	Generalized MMTs and hypothesis construction
	Generalized MMTs.
	Existence of a symbolically equivalent MMT.
	Construction of a gMMT hypothesis.
	Example of a case where gMMTs are required.

	Proof of Theorem 1

	FDDI protocol

