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Abstract
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we can decide the existence of a multi-strategy that is a Nash equilibrium or a subgame perfect
equilibrium, while satisfying some upper-bound constraints on the penalties in PSPACE, if the
upper-bound penalties are given in unary. The same holds when we search for multi-strategies where
certain players are asked to win in at least one play or in all plays.

2012 ACM Subject Classification Software and its engineering → Formal methods; Theory of
computation → Logic and verification; Theory of computation → Solution concepts in game theory

Keywords and phrases multiplayer reachability games, penalties, permissive equilibria

Funding Aline Goeminne: Postdoctoral Researcher of the Fonds de la Recherche Scientifique –
FNRS.
Benjamin Monmege: This author was partially funded by ANR JCJC Quasy ANR-23-CE48-0008

1 Introduction

Nowadays, computer systems are ubiquitous and increasingly complex. Errors in such systems
can have dramatic consequences. This is why model checking provides a formal tool to ensure
these systems are correct and meet certain specifications. Synthesis, on the other hand, allows
for the construction of a correct-by-construction system model: concepts from game theory
can be used for this purpose.

Two-player zero-sum games are commonly used to model a system interacting with its
environment. In this model, the system aims to achieve a goal while the environment acts
antagonistically to prevent it. This situation can be abstracted as a game played on a graph
involving two players (the system and the environment). The graph represents the different
possible configurations of the system, and an infinite path in this graph is a sequence of
interactions between the system and the environment. In this model, building a correct
system amounts to synthesizing a winning strategy, that is, a way for the system to play
that ensures its goal is met regardless of the environment’s behavior.

Unlike the purely antagonistic view of two-player zero-sum games, multiplayer games
allow for modeling situations where the environment may have its own goals, or where the
system consists of different interacting components, each with its own specification. In this
context, the notion of a winning strategy is no longer appropriate, hence notions of equilibria
are studied: Nash equilibria or subgame perfect equilibria, which more adequately account for
the sequential aspect of games played on graphs (avoiding non-credible threats). Intuitively,
an equilibrium can be seen as a contract among players such that no player has an incentive
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to unilaterally change his strategy.
It is well known that different equilibria can coexist in the same game. In particular,

a game may include an equilibrium where no player achieves his goal and an equilibrium
where all players achieve their goals. The latter equilibrium is more relevant than the former.
Therefore, it seems appropriate to focus on the existence and synthesis of relevant equilibria
(according to certain relevance criteria).

Even if the synthesis process provides an equilibrium, its implementation may fail. This
can be due to the occurrence of errors; for example, the action prescribed by the equilibrium
may be unavailable. Synthesizing robust equilibria against such perturbations is therefore
essential. To address these robustness issues, the classic notion of a player’s strategy can be
replaced by the notion of a multi-strategy: unlike a classic strategy that provides a single
action at each decision point, a multi-strategy provides a subset of possible actions (see, for
example, [2, 3]).

Intuitively, a multi-strategy is more permissive than another if the first allows more
behaviors than the second. There are different ways to express this permissiveness. A qualit-
ative view of permissiveness is studied in [2], where a multi-strategy is more permissive than
another if the set of resulting plays includes those of the second multi-strategy. A quantitative
view is addressed in [3] via the notion of penalty of multi-strategies, where a cost is associated
with each edge not chosen by the multi-strategy. Thus, the penalty of a multi-strategy is the
highest sum of blocked edges along a play consistent with the multi-strategy.

Related works In [2], permissiveness in parity games (a highly expressive winning condition)
is studied: considering the qualitative view of permissiveness, there does not necessarily exist
a most permissive strategy. However, one exists when restricted to memoryless strategies
(which always make the same decision in any given vertex of the game). By reducing to
safety games, the authors show that it is possible to compute the most permissive strategy.
In [3], the above-mentioned quantitative view of permissiveness is implemented. Several
penalty measures and games are used, and the complexity of computing the most permissive
strategies in this context is given. More general parity objectives are then studied in [5].
Recently, other methods have explored permissiveness in two-player games using templates
to concisely represent multiple strategies in graph games [1]. This approach is also used in
multiplayer games for the synthesis of secure equilibria [16].

Independently, different equilibria (Nash or subgame perfect) have been studied in
multiplayer games to ensure a strategy profile where no player has an incentive to deviate.
Several works have characterized such equilibria and studied the complexity of decision
problems related to the existence of relevant equilibria. Notably, these works have focused on
the study and characterization of (i) Nash equilibria in games where players have classical ω-
regular objectives [17, 11], (ii) weak subgame perfect equilibria (a variant of subgame perfect
equilibria) where players have classical ω-regular objectives [9] (this work also characterizes
subgame perfect equilibria when the studied objectives are either qualitative reachability or
safety objectives); (iii) subgame perfect equilibria for games with quantitative reachability
objectives [10]; (iv) subgame perfect equilibria for games with parity objectives [6] or
(v) mean-payoff objectives [8, 7].

Contribution Our goal is to combine these two research directions by studying permissiveness
in strategy profiles that describe equilibria (Nash or subgame perfect). In this first work,
we focus on reachability games only. We study permissive strategy profiles such that all
the fully described strategy profiles they contain are equilibria. The motivation is to allow
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greater latitude and robustness of equilibrium profiles without losing quality in the final goal
of secure synthesis. With the qualitative view, as in the two-player game framework [2], it is
not difficult to show that there does not necessarily exist most permissive profiles that are
Nash equilibria (or subgame perfect equilibria). We will thus consider a quantitative view of
permissiveness similar to the penalty measures introduced in [3] for two-player games. We
obtain a characterization based on trees, and decision algorithms with penalties bounded by
a given threshold in polynomial space with respect to the size of the game and the maximal
penalty bound (if this is encoded in unary). We also solve the problem of synthesis of robust
and relevant equilibria, where the relevance is the constraint that all derived equilibria ensure
that all players in a fixed subset satisfy their objective (strongly winning), or that at least
one derived equilibrium ensures this guarantee (weakly winning).

All missing proofs can be found in the appendix.

2 Multiplayer reachability games

A (multiplayer) reachability games is a tuple (N, V, (Vi)i∈N, E, (Fi)i∈N, v0), that we denote
(G, v0) to emphasize the v0 component, where N = {1, . . . , n} is a finite set of n players,
(V, E) is a finite directed graph without deadlocks (for all v ∈ V , there exists v′ ∈ V such
that (v, v′) ∈ E), (Vi)i∈N is a partition of V between the players, Fi ⊆ V is the set of target
vertices, called target set, of player i ∈ N, and v0 is an initial vertex. Given a vertex v ∈ V ,
we let Succ(v) = {v′ ∈ V | (v, v′) ∈ E} be the set of all successors of v.

A play in G is an infinite sequence of vertices consistent with the graph structure, i.e.,
if ρ = ρ0ρ1 · · · is a play, then for all k ∈ N, ρk ∈ V and (ρk, ρk+1) ∈ E. The set of plays
is denoted by Plays, while Plays(v) denotes the set of plays beginning in v. Given a play
ρ = ρ0ρ1 · · · and k ∈ N, ρ≥k is the suffix ρkρk+1 · · · of ρ.

For each player i ∈ N, we let Gaini be the gain function that associates with each play
the value 1 if the play is winning for player i, 0 if it is losing. For a reachability game as
above, we have Gaini(ρ) = 1 iff player i reaches his target set in ρ, i.e., ρ = ρ0ρ1 · · · and
there exists k ∈ N with ρk ∈ Fi. In the rest of this article, (G, v0) will always denote
a reachability game associated with these gain functions.

A history is a finite sequence of vertices h = h0h1 · · · hk with k ∈ N defined similarly.
The set of histories is denoted by Hist, while Hist(v) denotes the set of histories beginning
in v. For all i ∈ N, we write Histi to denote the set of histories ending in a vertex owned by
player i. If h = h0 · · · hk with k ∈ N is a history, Last(h) denotes the last vertex hk, while |h|
denotes its length k. Given a history h = h0 · · · hk, Visit(h) = {i ∈ N | ∃1 ≤ ℓ ≤ k hℓ ∈ Fi}
is the set of players who visit their target set along h.

A strategy of player i is a function σi : Histi(v0) → V that assigns to each history
hv ∈ Histi(v0) a vertex v′ such that (v, v′) ∈ E. A play ρ = ρ0ρ1 · · · is consistent with a
strategy σi if for all ρk ∈ Vi, σi(ρ0 · · · ρk) = ρk+1. A strategy profile is a tuple σ = (σi)i∈N
of strategies, one per player: there is a unique play from v0 which is consistent with each
strategy σi, and we call this play the outcome of σ, denoted by ⟨σ⟩v0 . To highlight the role
of player i, we sometimes write σ = (σi, σ−i) where σ−i denotes the strategy profile of the
players other than player i.

The strategy profile σ is a Nash equilibrium (NE) in (G, v0) if no player has an incentive
to deviate unilaterally from his strategy to increase his gain, i.e., if for all players i ∈ N and
all strategies σ′

i of player i, Gaini(⟨σ⟩v0) ≥ Gaini(⟨σ′
i, σ−i⟩v0).

The concept of subgame perfect equilibrium (SPE) takes more into account the sequential
nature of games played on graphs by avoiding non-credible threat, a well-known weakness of



4 Permissive Equilibria in Multiplayer Reachability Games

NEs in this setting. Informally, a strategy profile is an SPE if it is an NE in all subgames.
Given a history hv ∈ Hist(v0), the subgame (G↾h, v) is obtained from G by changing the
initial vertex to v, and by considering the gain functions (Gaini↾h)i∈N taking into account
the players that have won in history h: we thus write, for each i ∈ N, Gaini↾h(ρ) = Gaini(hρ)
for all ρ ∈ Plays(v). Moreover, if σi is a strategy of player i in G, then σi↾h is the strategy of
player i in the subgame (G↾h, v) such that for all h′ ∈ Histi(v), σi↾h(h′) = σi(hh′). In the
same way, from a strategy profile σ in G, we can derive a strategy profile σ↾h in (G↾h, v). We
now define formally the concept of SPEs: a strategy profile σ is an SPE in G if for all i ∈ N,
for all hv ∈ Histi(v0), σ↾h is an NE in (G↾h, v). Notice that an SPE is an NE and that there
always exists an SPE (and thus an NE) in a reachability game [17].

3 Permissiveness in strategies

Our goal is to allow for some permissiveness in strategies of all players, i.e., being able to
underspecify the strategies of the players, while maintaining that they describe an NE or an
SPE.

A multi-strategy of player i is a function Θi : Histi(v0) → 2V \ {∅} that assigns to
each history hv ∈ Histi(v0) a non-empty set of vertices A ⊆ V such that for all v′ ∈ A,
(v, v′) ∈ E. Notice that a strategy σi can be seen as a multi-strategy Θi where, for all
hv ∈ Histi(v0), Θi(hv) is the singleton {σi(hv)}. A multi-strategy profile Θ = (Θi)i∈N is a
tuple of multi-strategies, one per player.

Unlike strategies, when we fix a game G and a multi-strategy profile Θ, there exist several
plays beginning in v0 that are consistent with all the multi-strategies Θi. To describe them,
we say that a strategy σi is consistent with a multi-strategy Θi, written σi ≲ Θi if for
all hv ∈ Histi(v0), σi(hv) ∈ Θi(hv). We extend this notation to profiles of strategies, as
expected. Then, we let ⟨Θ⟩v0 be the set of plays ⟨σ⟩v0 for all profiles σ of strategies consistent
with the multi-strategy Θ. We call this set the outcomes of Θ. We also let ⟨Θ⟩H

v0
be the set

of histories consistent with the multi-strategy Θ, i.e., the finite prefixes of plays in ⟨Θ⟩v0 .
Our goal is to compute profiles of multi-strategies such that all profiles of consistent

strategies are NEs or SPEs: such profiles of multi-strategies are called permissive NEs or
permissive SPEs. By the existence of NEs and SPEs in reachability games, we straightfor-
wardly obtain the existence of permissive NEs and permissive SPEs. We thus want to study
most permissive NEs or SPEs, i.e., profiles of multi-strategies that are permissive NEs or
SPEs, and such that no “more permissive” multi-strategies are still permissive NEs or SPEs.

The natural first attempt would be to look for a notion of “more permissive” that is
set-theoretic, with respect to a given solution concept. We would thus say that a profile of
multi-strategies Θ is at least as permissive as a profile of multi-strategies Θ′ if for all i ∈ N,
for all histories h ∈ Histi(v0), Θi(h) ⊇ Θ′

i(h). Then, Θ would be more permissive than Θ′

if it is at least as permissive, while being different (for at most one history). Finally, Θ
would be a most permissive NE or SPE if it is a permissive NE or SPE, respectively, and no
permissive NE or SPE, respectively, is more permissive than Θ.

This natural definition is very problematic in the realm of reachability games (as already
noticed in the context of winning strategies in parity games by [2]) where no most permissive
NE or SPE could exist, as demonstrated by the game in Figure 1.

We thus propose another way to measure the permissiveness of a multi-strategy, inspired
by the definition of penalty used in [3] to describe permissive winning strategies in two-player
games. To define the notion of penalty in our context, we equip the game with a function
w : E → N assigning a non-negative weight to each edge: if unspecified, we will consider that
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v0 v1

Figure 1 In this game, player 1 owns all vertices and wants to reach v1. For all k ∈ N, we
define the multi-strategy Θk

1 such that for all h ∈ Hist(v0), Θk
1(h) = {v0, v1} if Last(h) = v0 and

|{n ∈ N | hn = v0}| ≤ k, and Θk
1(h) = {v1} otherwise. We have that for all k ∈ N, for all σ1 ≲ Θk

1 ,
Gain1(⟨σ1⟩v0 ) = 1 (and thus Θk

1 is a permissive SPE), but for all k ∈ N, ⟨Θk
1⟩v0 ⊆ ⟨Θk+1

1 ⟩v0 .

every edge has weight 1. The player who owns the vertex at the source of an edge e will pay
the penalty w(e) if he decides to not include the edge e in his multi-strategy. All penalties
are then counted additively. Formally, for a multi-strategy profile Θ, we first define for each
player i ∈ N the penalty of player i w.r.t. Θ in a play ρ = ρ0ρ1 · · · by induction on the length
of its prefixes:

PenaltyΘ
i (ε) = 0 where ε denotes the empty prefix;

for h = ρ0 · · · ρk, PenaltyΘ
i (hv) =


PenaltyΘ

i (h) +
∑

v′∈Succ(v)\Θi(hv)

w(v, v′) if v ∈ Vi

PenaltyΘ
i (h) otherwise

;

PenaltyΘ
i (ρ) = limk→+∞ PenaltyΘ

i (ρ0 · · · ρk): this limit exists (it may be equal to +∞)
since (PenaltyΘ

i (ρ0 · · · ρk))k is a non-decreasing sequence of natural numbers.

There are several ways to associate a penalty with a multi-strategy profile Θ, depending
on how we take into account the non-determinism offered in the multi-strategies. A first
choice consists in considering a worst-case scenario in the outcomes (without considering
the possible deviations). A second choice consists in considering only the deviations of one
player, i.e., to consider that the retaliation of other players with respect to the deviation of a
player will count in the final penalty. It is then possible to combine both types of penalties,
though we will treat them separately in the rest of this article.

▶ Definition 1 (Penalties). Let Θ be a multi-strategy profile in (G, v0). The main penalty
and retaliation penalty of player i with respect to Θ are defined respectively as

MPenaltyi(Θ, v0) = sup
ρ∈⟨Θ⟩v0

PenaltyΘ
i (ρ)

RPenaltyi(Θ, v0) = sup
hv∈Histi(v0)\⟨Θ⟩H

v0

sup{PenaltyΘ
i (ρ) | ρ ∈ ⟨Θ↾hv⟩v}

If there are no histories hv in Histi(v0) \ ⟨Θ⟩H
v0

, we let RPenaltyi(Θ, v0) = 0.

The existence of a multi-strategy profile which satisfies some upper-bounds on penalties
does not provide any certainty about the satisfaction of the reachability objectives of the
players. For this reason, we also consider multi-strategy profiles that satisfy some properties
on the set of players who satisfy their objective. Let Win be a subset of players and Θ be a
multi-strategy profile. Then, Θ is said weakly winning if there exists a strategy profile σ

which is consistent with Θ and such its outcome is winning for all players in Win. Similarly,
Θ is said strongly winning if for each strategy profile σ which is consistent with Θ, its
outcome is winning for all players in Win.

▶ Definition 2 (Weakly and strongly winning). Given a subset of player Win ⊆ N and a
multi-strategy profile Θ,
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v0

v2

v1

v3

v4

v5

v6

v7

v8

v9 10

Figure 2 An example of a reachability game where player 1 (resp. player 2) owns circle (resp.
rectangle) vertices. The initial vertex is v0. Target vertices F1 = {v3, v6, v8, v9} of player 1 and
F2 = {v4, v6} of player 2 are drawn with gray vertices and double-bordered vertices respectively.
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v2

v1
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v6
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(a)

v0

v2

v1

v3

v4

v5

v6

v7

v8

v9 10

(b)

Figure 3 Examples of permissive equilibria: (a) a permissive NE and (b) a permissive SPE

Θ is said weakly winning with respect to Win if there exists a strategy profile σ such that
σ ≲ Θ and for all i ∈ Win, Gaini(⟨σ⟩v0) = 1.
Θ is said strongly winning with respect to Win if for all strategy profiles σ such that
σ ≲ Θ, we have that for all i ∈ Win, Gaini(⟨σ⟩v0) = 1.

▶ Example 3. An example of a reachability game with two players is depicted in Figure 2.
The edge labelled with 10 corresponds to the penalty if player 2 decides not to allow this
edge: all other penalties are set to 1 by default. A multi-strategy is represented with red
edges (black dotted edges are thus the ones that are not selected in the multi-strategy) in
Figure 3(a).1 All strategy profiles that are consistent with this multi-strategy depend on the
choice of successor for v0 among {v1, v2}. It is indeed a permissive NE since the consistent
strategies are NEs: player 1 has no interest in deviating from either v1 or v2 in v0, since all
strategies lead to plays where he visits his target set, while going to v5 make him lose. It
has a main penalty of 2 for player 1 and 0 for player 2. Player 1 can do slightly better by
allowing the edge (v1, v4) in the multi-strategy: this remains a permissive NE (now player 2
wins in certain plays, but he is left with no real choices to make), and player 1 now gets a
main penalty of 1. This modified permissive NE is strongly winning w.r.t. {1}, and weakly
winning w.r.t. {1, 2}. It is not a permissive SPE since player 2 has a profitable deviation
from v5 by going to v6 where he wins. A permissive SPE is depicted in Figure 3(b), that
is strongly winning w.r.t. {1}, but only weakly winning w.r.t {1, 2}. Player 2 has a main
penalty of 11 (because he cuts edges (v5, v5) and (v5, v7)), while player 1 has a retaliation
penalty of 1 (because he cuts edge (v7, v9)). If we want a permissive SPE that is strongly
winning w.r.t. {1, 2}, we need to increase the main penalty of player 1 to 2 by removing
edges (v1, v3) and (v0, v2). However, we may decrease to 0 the retaliation penalty of player 1
by adding the edge (v7, v9) (since it is equally good to him anyway).

1 Notice that, in this example, the set of successors prescribed by multi-strategies only depends on the
current vertex and not on the past history.
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We now define the problems we study in the rest of the article, where we use the word
“equilibrium” to either mean NE or SPE, depending on the solution concept we want to
check. In all these problems, we give different penalty bounds for the main penalty and
the retaliation penalty. Notice though that the bounds can be set to +∞, relaxing the
constraints in this case.

▶ Problem 1 (Constrained penalty problem). Given a reachability game (G, v0), m ∈ (N ∪
{∞})n and r ∈ (N ∪ {∞})n, does there exist a permissive equilibrium Θ in (G, v0) such that
for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and RPenaltyi(Θ, v0) ≤ ri?

▶ Problem 2 (Weakly winning with constrained penalty problem). Given a reachability
game (G, v0), m ∈ (N ∪ {∞})n, r ∈ (N ∪ {∞})n and Win ⊆ N, does there exist a per-
missive equilibrium Θ in (G, v0) such that (i) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and
RPenaltyi(Θ, v0) ≤ ri and (ii) Θ is weakly winning w.r.t. Win?

▶ Problem 3 (Strongly winning with constrained penalty problem). Given a reachability
game (G, v0), m ∈ (N ∪ {∞})n, r ∈ (N ∪ {∞})n and Win ⊆ N, does there exist a per-
missive equilibrium Θ in (G, v0) such that (i) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and
RPenaltyi(Θ, v0) ≤ ri and (ii) Θ is strongly winning w.r.t. Win?

We show in the rest of this article that all these problems, for NEs and SPEs, are decidable
in PSPACE, if the upper-bound penalties are encoded in unary. To do so, we characterize
the permissive equilibria in the various problems in Section 4. In Section 5, we then show
that tree-like witnesses can be found if the according permissive equilibria exist. These
witnesses have a height bounded by a polynomial depending on the size of the game and the
largest upper-bound on penalties. We use these witnesses to obtain the PSPACE decision
procedures.

4 Characterizations of permissive equilibria

We now characterize permissive equilibria of the reachability game (G, v0). This is a first step
towards their computation in the next section. We provide a characterization for permissive
NEs in Section 4.1 and one for permissive SPEs in Section 4.2. These characterizations are
inspired by existing ones for classical NEs (resp. SPEs) [11, 9]. The latter rely on properties
that a play (resp. a set of plays) must satisfy in order to be the outcome of an NE (resp. the
set of subgame outcomes of an SPE). However, the outcomes of permissive equilibria are
a set of plays and not a simple play. For that reason, the characterizations of permissive
equilibria employ trees that we first formally define.

Trees We call tree over G rooted at v (for some v ∈ V ) any subset T of non-empty histories
of G that contains v and such that if hu ∈ T then h ∈ T . All h ∈ T are called nodes of the
tree, the particular node v is called the root of the tree, and for all hu ∈ T , h is called the
parent of hu, and hu a child of h.

As for histories in an arena, for all hu ∈ T , we let Last(hu) = u. The depth of a node
h ∈ T , written depth(h), is equal to |h| and its height, denoted by height(h), is given by
sup{| Last(h)h′| | h′ ∈ Hist and hh′ ∈ T }. The height of the tree corresponds to the height
of its root. A node h ∈ T is called a leaf if height(h) = 0.

We denote by T ↾hu, the subtree of T rooted at u for some hu ∈ T , that is the set of
non-empty histories h′ ∈ Hist(u) such that hh′ ∈ T .
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A (finite or infinite) branch of the tree is a maximal (finite or infinite) sequence of nodes
h0h1 · · · such that for all k ∈ N, hk is the parent of hk+1. Finally, we denote by T ∞ the set
of plays in G represented by infinite branches in T , i.e.,

T ∞ = {ρ0ρ1 · · · ∈ Plays | there exists a branch h0h1 · · · ∈ T st. ∀k ∈ N, ρk = Last(hk)}

In what follows, we consider outcomes of multi-strategies as trees. Indeed, given a
multi-strategy Θ, ⟨Θ⟩H

v0
can be seen as a tree T over G rooted at v0 and ⟨Θ⟩v0 corresponds

to T ∞. In particular, penalties can also be defined on trees, mimicking the definition for
profiles of multi-strategies. The penalty of a tree T for a player i, denoted by Penaltyi(T ), is
the maximal penalty of a branch of T , the penalty of a branch being equal to the penalty of
the associated play ρ w.r.t. any profile of multi-strategies that is consistent with the choices
appearing in T along the play ρ. Formally, let T be a tree and i ∈ N be a player. For each
hv = v1 · · · vkv ∈ T , we define Blocked(h) = {u ∈ Succ(vk) | hu ̸∈ T } as the set of blocked
successors of h in T and

Penaltyi(hv) =


0 if h = ε

Penaltyi(h) +
∑

u∈Blocked(h) w(vk, u) if vk ∈ Vi

Penaltyi(h) otherwise.

Moreover, for all plays ρ = ρ0ρ1 · · · ∈ T ∞, we let Penaltyi(ρ) = limk→+∞ Penaltyi(ρ0 · · · ρk).
Thus, the penalty of a tree T for a player i ∈ N is naturally defined as:

Penaltyi(T ) = sup{Penaltyi(ρ) | ρ ∈ T ∞}.

4.1 Characterization of permissive Nash equilibria
In order to characterize permissive Nash equilibria, we start by defining good trees, by
checking two conditions. The first one, called resistance to internal deviations, means that at
any node h of the tree such that Last(h) belongs to player i, if h has at least two children, the
plays starting with h are either all losing, or all winning, for player i. The second one, called
resistance to external deviations, means that at any node hu of the tree with u belonging to
player i, if player i has the possibility to play to a successor u′ not in the tree from which he
has a winning strategy, then all plays in the subtree from hu must be winning for player i.

▶ Definition 4. Let T be a tree over (G, v0).
1. Given a subset of players D ⊆ N, the tree T is D-resistant to internal deviations if for all

i ∈ D and for all hv ∈ T such that v ∈ Vi and |{hvv′ ∈ T | v′ ∈ V }| ≥ 2, we have that
for all ρ, ρ′ ∈ T ∞

↾hv, Gaini(hρ) = Gaini(hρ′). If D = N, we simply say that T is resistant
to internal deviations.

2. The tree T is resistant to external deviations if for all hu ∈ T with u ∈ Vi and i ̸∈
Visit(hu), if there exists u′ ∈ Succ(u) such that huu′ /∈ T and player i has a winning
strategy from u′ (against the coalition of the other players), then for all plays ρ ∈ T ∞

↾hu,
Gaini(ρ) = 1.

3. The tree T is good if it is resistant to internal and external deviations.

The resistance to internal and external deviations leads to the characterization of outcomes
of permissive NEs (Theorem 5): given a good tree T , there exists a permissive NE such that
its outcomes are the plays corresponding to the infinite branches of T iff T is good.

▶ Theorem 5. Let T be a tree over (G, v0) rooted at v0. The following assertions are
equivalent:
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v0

v ∈ Vi

h

u u′

ρ ρ′

(a)

v0

u ∈ Vi

h

u′
ρ

(b)

Figure 4 Examples of trees that do not respect: (a) the resistance to internal deviations since
Gaini(ρ′) = 0 but Gaini(ρ) = 1; (b) the resistance to external deviations since Gaini(ρ) = 0 but
Player i can win from u′.

1. There exists a permissive NE Θ in (G, v0) such that ⟨Θ⟩H
v0

= T ;
2. The tree T is good.

▶ Remark 6. For all multi-strategies Θ, and all players i ∈ N, the penalty MPenaltyi(Θ, v0) is
equal to the penalty of player i in the good tree ⟨Θ⟩H

v0
, i.e., Penaltyi(⟨Θ⟩H

v0
). The construction

of Theorem 5 thus also preserves the main penalties.

Proof sketch. For (1 ⇒ 2) let us assume that Θ is a permissive NE and that ⟨Θ⟩H
v0

= T .
We have to prove that T is good. If T is not resistant to internal deviations that means
that from some vertex v there exists two plays ρ, crossing u, and ρ′, crossing u′ ≠ u, such
that: ρ is winning for player i and ρ′ is losing for player i, see Figure 4(a). In particular, we
can build a strategy profile σ consistent with Θ such that ⟨σ↾h⟩v = ρ′ and ⟨σ↾hv⟩u = ρ≥1.
Meaning that player i should deviate by choosing u instead of u′ from v, meaning that σ is
not an NE and Θ is not a permissive NE. If T is not resistant to external deviations, that
means that from some vertex u of player i there exists a play ρ such that Gaini(ρ) = 0 and
u′ a successor of u outside T from which player i can win, see Figure 4(b). Thus we can
build a strategy profile σ consistent with Θ such that ⟨σ⟩v0 = hρ. In this way, player i should
choose to go in u′ and then follow a winning strategy meaning that σ is not an NE and Θ
not a permissive NE.

For (2 ⇒ 1), let us assume that T is a good tree. We build a permissive NE Θ such that
its outcomes are the plays corresponding to the infinite branches of T . Additionally, if a
player i deviates from T , the coalition of the other players plays its retaliation2 strategy to
prevent player i from deviating. ◀

4.2 Characterization of permissive subgame perfect equilibria
Permissive subgame perfect equilibria are intrinsically more complex than permissive Nash
equilibria. Thus their characterization cannot only rely on the outcomes from the initial
vertex, it should also take into account the outcomes in all subgames. This is the reason
why, in order to deal with a compact representation of outcomes of a permissive SPE and its
subgames, we introduce the notion of forest. Then, we generalize the definition of good trees
to define good forests needed to characterize SPEs instead of NEs.

2 This retaliation strategy corresponds to the winning strategy of player 2 in a two-player zero-sum
reachability game in which player 1 is player i and wants to reach Fi and player 2 is the coalition of the
other players and wants to avoid visiting Fi [15, Chapter 2].
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Forests and penalties of forests Trees of the forest are indexed by tuples (i, v, I) ∈
N ×V × 2N. More precisely, we let

I = {(0, v0, I0)}∪{(i, v, I) ∈ N ×V ×2N | ∃hv′ ∈ Histi(v0) st. v ∈ Succ(v′) ∧ I = Visit(hv′v)}

where I0 = {i ∈ N | v0 ∈ Fi}. Apart from the special tuple (0, v0, I0), a tuple (i, v, I)
represents the fact that v is a vertex played by player i and reachable from v0, and that all
players in I have already seen their target when v is reached. A forest in (G, v0) is thus a
set of trees F = {T i,v,I | (i, v, I) ∈ I} such that T i,v,I is a tree without leaves over G rooted
at v. The intuition behind this object is that the tree T 0,v0,I0 represents the outcomes of a
multi-strategy Θ and the other trees T i,v,I represent the outcomes of Θ↾hv′ in the subgames
(G↾hv′ , v) for all hv′ ∈ Histi(v0) such that Visit(hv′v) = I.

Moreover the main (resp. retaliation) penalty of a forest F for a player i ∈ N are
respectively given by

MPenaltyi(F) = Penaltyi(T 0,v0,I0) and RPenaltyi(F) = sup
T i,v,I ∈F

(i,v,I)∈Out

Penaltyi(T i,v,I)

where Out = {(i, v, I) ∈ I \ {(0, v0, I0)} | ∃hv ∈ Hist(v0) st. hv ̸∈ T (0,v0,I0) ∧ Last(h) ∈
Vi ∧ I = Visit(hv)} described the indices of trees in the forest that are deviations from the
main tree T 0,v0,I0 . If Out is empty, we let RPenaltyi(F) = 0.

Characterization Following the same philosophy as for permissive NEs, a forest is good if
each tree T i,v,I of the forest satisfies two properties. The first one is that T i,v,I has to be
(N \ I)-resistant to internal deviations, exactly as for permissive NEs except that we take into
account players who have already visited their target set, i.e., players in I. The second one,
called resistance to constrained external deviations, means that at any node hu of the tree
such that u belongs to player j, if player j has the possibility to jump to another tree T j,u′,I′

by playing to a successor u′ not in the tree and if there exists a play in this latter tree which
is winning for player j, then all plays after hu in T i,v,I have to be winning for player j.

▶ Definition 7 (Good forest). Let F be a forest in (G, v0).
1. A tree T i,v,I ∈ F is resistant to constrained external deviations if it satisfies the following

property: for all hu ∈ T i,v,I and j ∈ N such that we have that (i) u ∈ Vj and j ̸∈
I ∪ Visit(hu) and (ii) there exists u′ ∈ Succ(u) such that huu′ ̸∈ T i,v,I, if there exists
ρ′ ∈ T ∞

j,u′,I′ , where I′ = I ∪ Visit(huu′), such that Gainj(ρ′) = 1, then for all ρ ∈ T ∞
i,v,I↾hu,

Gainj(ρ) = 1.
2. The forest F is good if each tree T i,v,I ∈ F is (N \ I)-resistant to internal deviations

(see (1) in Definition 4) and resistant to constrained external deviations.

Thanks to good forests, we are able to characterize the outcomes of permissive SPEs:
given a good tree T ∗, there exists a permissive SPE such that its outcomes correspond to
T ∗ iff there exists a good forest whose “main” tree is T ∗, i.e., T 0,v0,I0 = T ∗. With some
other constraints, this also preserves strongly (resp. weakly) winning and penalty properties.

▶ Theorem 8. Let m ∈ (N ∪ {∞})n and r ∈ (N ∪ {∞})n be upper thresholds. Let T ∗ be a
tree rooted at v0 and Win ⊆ N be a set of players. The following assertions are equivalent:
1. There exists a permissive SPE Θ in (G, v0) such that:

a. ⟨Θ⟩H
v0

= T ∗;
b. Θ is strongly winning w.r.t. Win;
c. for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and RPenaltyi(Θ, v0) ≤ ri.
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v

T i,v,I

u ∈ Vj

h

ρ

u′

T j,u′,I′

ρ′

Figure 5 Example of forest that does not respect the resistance to constrained external deviations
since Gaini(ρ) = 0 but Gaini(ρ′) = 1.

2. There exists a good forest F in (G, v0) such that:
a. T 0,v0,I0 = T ∗;
b. for all ρ ∈ T ∞

0,v0,I0
, for all i ∈ Win, Gaini(ρ) = 1;

c. for all i ∈ N, MPenaltyi(F) ≤ mi and RPenaltyi(F) ≤ ri.
These assertions are still equivalent by replacing 1b by “Θ is weakly winning w.r.t. Win” and
2b by “there exists ρ ∈ T ∞

0,v0,I0
such that for all i ∈ Win, Gaini(ρ) = 1”.

Proof sketch. For (1 ⇒ 2), let us assume that Θ is a permissive SPE. We build a good
forest F such that T 0,v0,I0 is the outcomes of Θ, i.e., T 0,v0,I0 = ⟨Θ⟩H

v0
, and a tree T i,v,I is a

representative of the outcomes of Θ↾hv′ in some subgame (G↾hv′ , v) such that v′ ∈ Vi and
Visit(hv′v) = I. In order to obtain a good forest and since several hv′v could satisfy those
properties, each representative T i,v,I has to be chosen in a proper way: it has to minimize
the maximal gain of player i for plays in T i,v,I. More formally, for each (i, v, I) ∈ I, we let
O(i, v, I) = {⟨Θ↾hv′⟩H

v | hv′v ∈ Hist(v0) ∧ v′ ∈ Vi ∧ I = Visit(hv′v)} and we choose T i,v,I ∈
O(i, v, I) such that max{Gaini(ρ) | ρ ∈ T ∞

i,v,I} = minT ∈O(i,v,I) max{Gaini(ρ) | ρ ∈ T ∞}.
Thanks to this latter property, F is good. Indeed, let T i,v,I be a tree of F . Exactly as

for permissive NEs, if T i,v,I is not (N \ I)-resistant to internal deviations, we can build a
strategy profile σ consistent with Θ such that the restriction of σ is not an NE in a subgame
corresponding to T i,v,I. If T i,v,I is not resistant to constrained external deviations that
means that from some node u, owned by player j, there exists a play ρ losing for player j and
player j could choose to play outside T i,v,I by jumping to a tree T j,u′,I′ in which there exists
a play ρ′ winning for him, see Figure 5. Let g be the history such that T i,v,I represents the
outcomes of Θ↾g in (G↾g, v). Notice that ⟨Θ↾gh⟩u′ may be different from T j,u′,I′ . However
thanks to the way in which this representative is chosen, we have that there exists a play
ρ′′ in ⟨Θ↾gh⟩u′ with Gainj(ρ′′) = 1. Thus, we can build a strategy σ consistent with Θ such
that ⟨σ↾gh⟩u = ρ and ⟨σ↾ghu⟩u′ = ρ′′. This means that player j could deviate by choosing
u′ instead of u from v in the subgame (G↾g, v), thus σ would not be an SPE and Θ not a
permissive SPE.

For (2 ⇒ 1), from a good forest F a multi-strategy is build such that its subgame
outcomes are the trees of F . This forms a permissive SPE because F is good. ◀

For now, good trees and trees in good forests are infinite, but Section 5 will show that we
can represent some trees using a finite representation (intuitively, by supposing that every
branch ends with a lasso in the game). It is this finite representation of good trees and good
forests that will be used to decide the constrained penalty problems for permissive NEs and
permissive SPEs, thanks to the characterizations of Theorems 5 and 8.
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5 Computation of permissive equilibria

Theorems 5 and 8 characterize permissive NEs and SPEs with respect to infinite tree-shaped
objects. In this section, we use these characterizations in order to decide the various penalty
problems defined in Section 3: we check the existence of the good infinite tree-shaped
objects by checking the existence of finite symbolic representations of such objects. We start
by describing for a single tree this symbolic representation, and show that there exists a
polynomial-size such representation (when the penalty upper-bounds are encoded in unary).

5.1 Symbolic trees and forests
▶ Definition 9. A symbolic tree is a pair U = (T , f) with T a finite tree ( i.e., a finite subset
of non-empty histories of G), and f a function mapping each leaf h of U to a non-empty set
of successor nodes h′ that are ancestors of h in U such that (Last(h), Last(h′)) ∈ E.

A symbolic tree can be unfolded into an infinite tree by repeatedly expanding the leaves of
U using as successors the choice prescribed by f . We denote by Ũ the infinite tree obtained
by unfolding the symbolic tree U . Similarly, the notions of symbolic forest F , where every
tree in it is a symbolic tree, and unfolding of symbolic forest F̃ can be defined.

In order to treat simultaneously NEs and SPEs, we introduce a new definition generalizing
the resistance to external deviations and constrained external deviations. For a vector
γ ∈ {0, 1}N ×V ×2N of gains, and a subset D ⊆ N of players (that represent players that did
not already win at the beginning of the tree), we say that a tree T is (γ, D)-resistant if
for all hu ∈ T with u ∈ Vi and u′ ∈ Succ(u) with huu′ /∈ T , if γi,u′,(N \D)∪Visit(huu′) = 1, if
i ̸∈ (N \D) ∪ Visit(hu), then for all plays ρ ∈ T ∞

↾hu, Gaini(ρ) = 1.
▶ Remark 10. The notion of (γ, D)-resistance is close to the resistance to external deviations
and constrained external deviations, so that we directly obtain from Theorems 5 and 8:

Let γG be defined as follows: for all (i, u, I), we let γG
i,u,I equals 1 iff player i belongs to I

or can win from u against the coalition of the other players in G. Let T be a tree. Then,
T is a good tree iff T is resistant to internal deviations and (γG , N)-resistant.
Let F be a forest and let γF defined as follows: for all (j, u, J), we let γF

j,u,J equals 1
iff player j belongs to J or the tree T j,u,J contains at least one branch with a vertex of
Fj . Then, F is a good forest iff each each tree T i,v,I of F is (N \ I)-resistant to internal
deviations and (γF , N \ I)-resistant.

The challenge to make this remark a decision procedure is to make the tree and forest
finitely representable. We treat each tree independently of each other, thus explaining how
to symbolically represent one single tree in the following proposition:

▶ Proposition 11. Let T be a tree that is D-resistant to internal deviations, with D ⊆ N.
We let γ ∈ {0, 1}N ×V ×2N be a vector of gains such that T is (γ, D)-resistant, and (Pi)i∈N′ be
finite constraints on penalties for a subset N′ ⊆ N of players. There exists a symbolic tree U ,
that is a subtree of T , of height polynomial in the number of players and vertices of G, and in
the largest bound on penalty Pi, such that the infinite tree Ũ satisfies the following properties:
1. Ũ is D-resistant to internal deviations;
2. in Ũ , every player i ∈ N′ has a penalty at most Pi;
3. Ũ is (γ, D)-resistant.
Moreover, for a subset Win of players, if we start with T that is strongly (respectively, weakly)
winning w.r.t. Win, then we can make the above construction so that moreover Ũ is strongly
(respectively, weakly) winning w.r.t. Win.
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core

expanded core⋯

⋯ completion of branches

Figure 6 Construction of the symbolic tree

The proof of this result goes by several steps, that we briefly sketch here only in the case
where T is strongly winning w.r.t. Win. Figure 6 depicts the notions used in the construction
of the symbolic tree. First, we consider the smallest subtree of T where leaves are such
that all players of Win have visited their target set: this subtree is finite by König’s lemma,
since all branches of T have such a node where all players of Win have won, and the tree
is finitely branching. This subtree is called the core. We then continue considering the
parts of T outside the core, in order to complete the branches so that: the D-resistance to
internal deviations is fulfilled (if a player has won in a certain branch of a subtree, he must
win in all of them), the (γ, D)-resistance is fulfilled (if γ gives a constraint in the current
node for a player i, all the branches of this subtree should visit a target vertex of i). This
extension of the core is cut into two parts: the expanded core that ends in places where all the
new players that must visit their target because of D-resistance to internal deviations and
(γ, D)-resistance have indeed won; the completion of branches in order to then find leaves of
the symbolic tree where all successors can be replaced (with function f) by similar nodes in
the same branch, and the lassos thus formed are such that the penalty of players that have a
finite penalty threshold does not increase along them. We show that these completions of
branches can be chosen of polynomial length. We then compress the core and expanded core
so that they also have polynomial height.

The symbolic tree U thus built is a subtree of T (even if its unfolding Ũ is not): in
particular, as a corollary, if a player j has no winning play in T , he does not have a winning
play in U neither. In particular, when we apply independently this proposition to all the
trees of a forest F , to obtain a symbolic forest H, this remark allows us to check that the
new vector γH̃ has all its components not above the corresponding ones in γF (if γF

i,v,I = 0
then γH̃

i,v,I = 0). In particular, if the tree T i,v,I of the forest F is (γF , N \ I)-resistant, then
the tree Ũi,v,I of the symbolic forest H is (γH̃, N \ I)-resistant.

Finally, by combining this result with Remark 10, we obtain the following corollaries that
allow us to obtain the PSPACE decision procedures:

▶ Corollary 12. Let m ∈ (N ∪ {∞})n be upper thresholds, and M be the largest such upper
threshold. The following assertions are equivalent:
1. There exists a permissive NE Θ in (G, v0) such that:

(a) Θ is strongly winning w.r.t. Win; (b) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi.
2. There exists a symbolic tree T̃ in (G, v0) of height polynomial in the number of players

and vertices of G and in M , such that
(a) T̃ is resistant to internal deviations, and (γG , N)-resistant, with γG defined in Re-
mark 10; and (b) for all ρ ∈ T̃

∞
and i ∈ Win, Gaini(ρ) = 1; and (c) for all i ∈ N,

Penaltyi(T̃ ) ≤ mi.
These assertions are still equivalent by replacing 1(a) by “Θ is weakly winning w.r.t. Win”
and 2(b) by “there exists ρ ∈ T̃

∞
such that for all i ∈ Win, Gaini(ρ) = 1”.
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▶ Corollary 13. Let m ∈ (N ∪ {∞})n and r ∈ (N ∪ {∞})n be upper thresholds, and M be
the largest such upper threshold. The following assertions are equivalent:
1. There exists a permissive SPE Θ in (G, v0) such that:

(a) Θ is strongly winning w.r.t. Win; and (b) for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and
RPenaltyi(Θ, v0) ≤ ri.

2. There exists a symbolic forest F in (G, v0), where each symbolic tree has a height polynomial
in the number of players and vertices of G and in M , such that (a) each tree T̃ i,v,I is (N \ I)-
resistant to internal deviations, and (γF , N)-resistant, with γF defined in Remark 10; (b)
for all ρ ∈ T̃

∞
0,v0,I0

and i ∈ Win, Gaini(ρ) = 1; and (c) for all i ∈ N, MPenaltyi(F̃) ≤ mi

and RPenaltyi(F̃) ≤ ri.
These assertions are still equivalent by replacing 1(a) by “Θ is weakly winning w.r.t. Win”
and 2(b) by “there exists ρ ∈ T̃

∞
0,v0,I0

such that for all i ∈ Win, Gaini(ρ) = 1”.

5.2 Decision problems over permissive Nash equilibria
For permissive NEs, it makes little sense to take into consideration the retaliation penalties,
since the punishment after a deviation should definitely make the deviator lose whatever the
penalty from now on. We thus obtain the following decision result:

▶ Theorem 14. The constrained penalty problem, the weakly winning with constrained penalty
problem and the strongly winning with constrained penalty problem, all with infinite (and
thus no) constraints on retaliation penalties and for NEs are decidable in PSPACE (when
the penalty bounds are encoded in unary).

Proof. We build upon Corollary 12, looking for a finite symbolic tree with the corresponding
properties. We first explain how to solve the constrained penalty problem, and explain
afterwards the adaptation for the two other problems. The idea is to use an alternating
polynomial time Turing machine (since AP = PSPACE [13]) to guess a symbolic tree, checking
the various constraints over it by using branch per branch. We describe the construction by
supposing that the states of the Turing machine are split between existential states (where
the machine accepts if at least one execution accepts) and universal states (where the machine
accepts if all the executions accept). Existential states thus allow us to non-deterministically
guess the finite symbolic tree node after node. We use a polynomial counter to keep track
of the polynomially bounded height of the tree: if the counter goes over the polynomial
bound, the execution of the alternating machine fails. At each node, existential states guess
non-deterministically the set of successors on the working tape.

Universal states allow us to check several pieces of information on the guessed symbolic
tree: the resistance to internal deviations, the constraint on the penalty for each player, and
the (γG , N)-resistance, with γG as in Remark 10. Notice that this vector has exponential size,
but the index I in a triple (i, v, I) is useless (apart from knowing if i ∈ I), and can thus be
ignored: moreover, this set I will be maintained along the execution of the algorithm. This
vector can thus be precomputed in (deterministic) polynomial time by determining, for each
player, their set of winning vertices (against the coalition of the other players) [15].

The various checks can be performed branch per branch by keeping some pieces of
information in memory, not only for the current node of the symbolic tree, but also for the
whole current branch (this remains in polynomial space). Universal states are thus used to
perform the checks on all the branches of the guessed tree.

Checking the penalty for player i. If we have to check that the main penalty of player i is
bounded by a threshold mi (i.e., that the penalty of player i over each branch is bounded
by mi), we keep in memory the current penalty, forbidding for it to go above mi.
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Checking the resistance to internal deviations and (γG , N)-resistance. At each node of the
guessed tree, if the existential states guessed at least two successors, or depending on the
vector γG (for a vertex v where γG has value 1, and that has not been chosen among the
set of successors), we must remember constraints on the successors: either (a) all plays in
their subtrees must be winning for a certain player i, or (b) none. We could add neither
constraint (a) nor (b) for a certain player (if only one successor has been chosen, and the
γG value of all the other successors is 0). In the case where only the resistance to internal
deviation applies (if at least two successors have been chosen, and the γG value of all the
other successors is 0), the choice of constraint (a) or (b) is guessed non-deterministically.
These constraints are kept all along the guessed branch except if a vertex of the target set
of player i is visited; in this case the constraint (a) is released. Moreover, the constraint
(b) for a player i forbids to select a successor in the future where player i visits one of his
target vertices.
The end of the branches. The existential states decide when to stop the branch of the
symbolic tree (before the counter runs out of the polynomial bound). Notice that the
branch cannot stop if one of the type (a) constraints is not released. Then existential
states provide the set of successors taken in the ancestors so that for players that have a
finite upper threshold on their penalty, ancestors must have the same current penalty as
the leaf (to ensure that their penalty does not raise to +∞ in the long run).

For the strongly winning variants, universal states also check the constraint that every player
of Win must win at the end of each branch. For the weakly winning variant, the existential
states are also used to propose a branch where all players of Win will win. The universal
states moreover check whether this condition is fulfilled for this particular branch. ◀

5.3 Decision problems over permissive subgame perfect equilibria
▶ Theorem 15. The constrained penalty problem, the weakly winning with constrained penalty
problem and the strongly winning with constrained penalty problem for SPEs are decidable in
PSPACE (when the penalty bounds are encoded in unary).

Proof. The proof is the same as for NEs, instead of the fact that we use Corollary 13, with
a vector γF that is partially guessed non-deterministically when it is needed. When the
existential states extend a branch of the tree T from a vertex of player i, the universal states
does not only explore the chosen successors (with constraints (a) or (b) as in the previous
proof), but now also explores the other vertices u by starting a fresh exploration of another
tree T i,u,I of the forest. Existential states also non-deterministically guess if player i is
weakly winning in T i,u,I . If so, this gives new constraints (a) in the tree T . The guessed
weakly winning constraints are then checked in the fresh exploration: if player i must be
weakly winning, this is a constraint of the same type as a weakly winning constraint in the
“main” tree; if player i must not be weakly winning, this is a constraint of type (b) (none of
the play must be winning for player i) that we deal as before.

Main penalties are checked as before. For the retaliation penalties, for each player, we
check that the total penalty of all new symbolic trees T i,u,I is below the given upper threshold.
To ensure polynomial time termination, we maintain a polynomial counter, and the set of
trees (more precisely, the set of triples (i, u, I) used to index the trees of the forest) we jumped
in so far. The polynomial counter again takes care of the depth of the branch we explore in
the current tree (we reset this counter when we jump from a tree to another one). The set of
trees we jumped in so far is maintained to forbid several explorations of the same tree of the
forest. As for NEs, the exploration is losing if the depth of the current branch is longer than
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the polynomial bound. The cardinal of the set of triples (i, u, I) we must maintain is also
polynomial (bounded by | N | × |V | × | N |, even though there are exponentially many trees
in a forest), since the subset I of winning players does not decrease along the jumps from a
tree to the next one. This also implies that the total length of the executions of the Turing
machine is indeed polynomial.

Notice that weakly and strongly winning conditions have only to be checked on the “main”
tree as for permissive NEs. ◀

6 Conclusion

We studied the permissiveness in Nash, and subgame perfect equilibria over multiplayer
reachability games. We showed that several associated problems are decidable in PSPACE:
they ask for the existence of such equilibria with various constraints, both on the set of players
who reach their target set, and on the penalties that allow us to compare the permissiveness
of two equilibria. The polynomial space depends on the size of the game, and the largest
upper threshold on the penalties. We were not able to decrease the space dependency to
be only polynomial in the logarithm of the penalty thresholds: we leave for future work to
investigate if this is possible, or if there is a matching lower bound on complexity.

As other ideas for future works, we would like to extend our study to other objectives than
reachability, like more general ω-regular objectives (e.g., parity games), but also weighted
games like mean-payoff games, discounted-payoff games, or shortest-path games (where the
reachability objective is combined with an objective to reach the target with the smallest
possible total weight). An even more challenging problem is to extend this study to the
setting of timed games, where the permissiveness is not only on the choice of edges, but also
on the choice of delays spent in a given vertex. Work along these lines has been carried out
on timed automata and two-player timed games [4, 14].
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A Proofs of Section 4: Characterizations of permissive equilibria

A.1 Characterization of permissive Nash equilibria
▶ Theorem 5. Let T be a tree over (G, v0) rooted at v0. The following assertions are
equivalent:
1. There exists a permissive NE Θ in (G, v0) such that ⟨Θ⟩H

v0
= T ;

2. The tree T is good.

Proof.
(1 ⇒ 2) Let us assume that there exists a permissive NE Θ in (G, v0) such that ⟨Θ⟩H

v0
= T .

First, let us assume by contradiction that the tree T is not resistant to internal
deviations. Therefore, there exists hv ∈ T with v ∈ Vi (for some i ∈ N) such that
|{hvv′ ∈ T | v′ ∈ V }| ≥ 2, as well as two plays ρ, ρ′ ∈ T ∞

↾hv such that Gaini(hρ) = 0
and Gaini(hρ′) = 1. If ρ and ρ′ start by the same vertex, by using the fact that hv has
at least two children in T , we can find another play ρ′′ in T ∞

↾hv that starts by jumping
in child different from the ones taken in ρ and ρ′. In particular, the play hρ′′ has a
gain for player i different from either ρ or ρ′. If ρ and ρ′ jump in different vertices, we
directly get the same conclusion.
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From now, we thus suppose that ρ and ρ′ do not jump in the same vertex on their
first step. We show that player i has a profitable deviation in Θ, contradicting the fact
that this is a permissive NE. Indeed, let w and w′ be the (different) second vertices in
ρ and ρ′ respectively. Consider a profile σ of strategies consistent with Θ such that
the outcome from v0 is hρ and the outcome from history hvw′ is ρ′

≥1. Consider the
strategy σ′

i of player i that plays according to σ unless in history hv where he chooses
successor w′ instead of w. Then, we have Gaini(⟨σ⟩v0) = 0 and Gaini(⟨σ′

i, σ−i⟩v0) = 1
which contradicts the hypothesis that σ should be an NE (since it is consistent with
the permissive NE Θ). Thus, the tree T is resistant to internal deviations.
Then, let us assume by contradiction that the tree T is not resistant to external
deviations. Thus, there exists hu ∈ T with u ∈ Vi for some i ∈ N \ Visit(hu), and
u′ ∈ Succ(u) with huu′ /∈ T such that player i has a winning strategy from u′, but
there is a play ρ ∈ T ∞

↾hu such that Gaini(ρ) = 0. Consider a profile σ of strategies
consistent with Θ such that the outcome from v0 is hρ. Consider the strategy σ′

i

of player i that plays according to σ unless in history hu where it goes to u′ before
following a winning strategy of player i from now on. Then, we have Gaini(⟨σ⟩v0) = 0
and Gaini(⟨σ′

i, σ−i⟩v0) = 1 which again contradicts the hypothesis that σ should be an
NE. Thus, T is resistant to external deviations, and is thus a good tree.

(2 ⇒ 1) We suppose that T is good, and build a permissive NE Θ by following the
decisions in the tree T , and for histories huh′ such that h ∈ T with the last vertex of h

belonging to player i but hu /∈ T , letting all players j ̸= i play a coalition strategy against
player i maximizing their gain (thus making player i lose if possible, by determinacy of
two-player reachability games). We show that Θ is a permissive NE. To do so, consider
a profile of strategies σ consistent with Θ. Suppose by contradiction that it contains a
profitable deviation for player i, i.e., that there exists σ′

i such that Gaini(⟨σ⟩v0) = 0 and
Gaini(⟨σ′

i, σ−i⟩v0) = 1. Let h be the first history of ⟨σ⟩v0 where σi and σ′
i take different

actions, that we call v and v′. If hv′ ∈ T , since T is resistant to internal deviations, we
know that ⟨σ′

i, σ−i⟩v0 cannot be a play in T ∞. Thus, there exists a longer history h′

of ⟨σ′
i, σ−i⟩v0 with Last(h′) ∈ Vi where σ′

i(h′) plays outside T . If hv′ /∈ T , we directly
obtain such a history h′. Notice that i /∈ Visit(h′) since Gaini(⟨σ⟩v0) = 0. However, this
means that player i has found a way to win after history h′ thus just went outside the
tree. In particular, player i has a winning strategy against the coalition of the other
players from history h′. Moreover, there exists a play inside the tree from h′ such that
player i should win (by resistance to external deviations). Nonetheless this winning play
contradicts the resistance of internal deviations because Gaini(⟨σ⟩v0) = 0. ◀

A.2 Characterization of permissive subgame perfect equilibria
▶ Theorem 8. Let m ∈ (N ∪ {∞})n and r ∈ (N ∪ {∞})n be upper thresholds. Let T ∗ be a
tree rooted at v0 and Win ⊆ N be a set of players. The following assertions are equivalent:
1. There exists a permissive SPE Θ in (G, v0) such that:

a. ⟨Θ⟩H
v0

= T ∗;
b. Θ is strongly winning w.r.t. Win;
c. for all i ∈ N, MPenaltyi(Θ, v0) ≤ mi and RPenaltyi(Θ, v0) ≤ ri.

2. There exists a good forest F in (G, v0) such that:
a. T 0,v0,I0 = T ∗;
b. for all ρ ∈ T ∞

0,v0,I0
, for all i ∈ Win, Gaini(ρ) = 1;

c. for all i ∈ N, MPenaltyi(F) ≤ mi and RPenaltyi(F) ≤ ri.
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These assertions are still equivalent by replacing 1b by “Θ is weakly winning w.r.t. Win” and
2b by “there exists ρ ∈ T ∞

0,v0,I0
such that for all i ∈ Win, Gaini(ρ) = 1”.

The proof of Theorem 8 relies on the fact that in reachability games the notion of SPEs is
equivalent to a weaker notion of equilibrium called weak subgame perfect equilibrium. Given
a strategy σi of player i, a strategy σ′

i of player i such that σi ̸= σ′
i is called a deviating

strategy from σi. Furthermore, if σ′
i differs from σi on a finite number of histories (resp. only

on v0), σ′
i is finitely deviating (resp. one-shot deviating) from σi.

When considering NEs and SPEs the set of possible deviating strategies for a player
is not restricted. One can also consider that a player may only use a finitely (resp. one-
shot) deviating strategy. This restriction leads to the notion of (very) weak NEs and SPEs.
Formally, a strategy profile σ is a weak NE (resp. very weak NE) in (G, v0) if for all i ∈ N and
all σ′

i which is finitely (resp. one-shot) deviating from σi, Gaini(⟨σ⟩v0) ≥ Gaini(⟨σ′
i, σ−i⟩v0).

In the same way, a strategy profile σ is a weak (resp. very weak) SPE in (G, v0) if for all i ∈ N,
for all hv ∈ Histi(v0), for all σ′

i strategy of player i in (G↾h, v), σ↾h is a weak (resp. very weak)
NE in (G↾h, v). Notice that a strategy profile is a weak SPE if and only if it is a very weak
SPE [12]. Even more, in reachability games notions of (very) weak SPEs and SPEs coincide.

▶ Proposition 16 ([12]). A strategy profile σ is a (very) weak SPE in the reachability game
(G, v0) if and only if it is an SPE in (G, v0).

In order to ease the proof of Theorem 8, we first prove an intermediate result about
permissive SPEs.

▶ Proposition 17. Let Θ be a permissive SPE in (G, v0). Then
1. for all i ∈ N and for all hv ∈ Histi(v0), if | Θi(hv)| ≥ 2, then for all ρ, ρ′ ∈ ⟨Θ↾h⟩v,

Gaini(hρ) = Gaini(hρ′);
2. for all i ∈ N and hv ∈ Histi(v0) such that there exists u′ ∈ Succ(v) \ Θi(hv), if there

exists ρ′ ∈ ⟨Θ↾hv⟩u′ such that Gaini(hvρ′) = 1, then for all ρ ∈ ⟨Θ↾h⟩v, Gaini(hρ) = 1.

Proof. 1. Let i ∈ N and hv ∈ Histi(v0) such that | Θi(hv)| ≥ 2. We assume that there exist
ρ, ρ′ ∈ ⟨Θ↾h⟩v such that Gaini(hρ) = 0 and Gaini(hρ′) = 1. Let u and u′ be the first
vertices of ρ and ρ′ respectively.
a. If u ̸= u′ (possible since | Θi(hv)| ≥ 2), we consider a strategy σ in (G, v0) such that

σ ≲ Θ with ⟨σ↾h⟩v = ρ and ⟨σ↾hv⟩u′ = ρ′
≥1. We claim that σ is not a very weak SPE

(and so not an SPE) in (G, v0). Indeed, in the subgame (G↾h, v), the one-shot deviating
strategy σ′

i from σi↾h such that σ′
i(v) = u′ satisfies

Gaini↾h(⟨σ′
i, σ−i↾h⟩v) = Gaini↾h(v⟨σi↾hv, σ−i↾hv⟩u′) = Gaini↾h(ρ′) = 1

and Gaini↾h(⟨σ↾h⟩v) = Gaini↾h(ρ) = 0.
b. If u′ = u, since | Θi(hv)| ≥ 2, there exists u′′ ≠ u such that u′′ ∈ Θi(hv) and there

exists ρ′′ ∈ ⟨Θ↾h⟩v such that u′′ if the first vertex of ρ′′. Thus, either Gaini(ρ′′) = 1
and we repeat the previous argument with ρ and ρ′′ or Gaini(ρ′′) = 0 and we repeat
the argument with ρ′ and ρ′′.

2. Let i ∈ N and hv ∈ Histi(v0) such that there exist u′ ∈ Succ(v)\Θi(hv) and ρ′ ∈ ⟨Θ↾hv⟩u′

with Gaini(hvρ′) = 1. If there exists ρ ∈ ⟨Θ↾h⟩v such that Gaini(hρ) = 0, then any
strategy profile σ ≲ Θ such that ⟨σ↾h⟩v = ρ and ⟨σ↾hv⟩u′ = ρ′ cannot be a very weak SPE.
Indeed, let us consider the subgame (G↾h, v) and the one-shot deviating strategy σ′

i from
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σi↾h such that σ′
i(v) = u′: this is a true deviation since u′ /∈ Θi(hv) and σi(hv) ∈ Θi(hv)

by definition. Then,

Gaini↾h(⟨σ′
i, σ−i↾h⟩v) = Gaini↾h(v⟨σi↾hv, σ−i↾hv⟩u′) = Gaini↾h(ρ′) = 1

and Gaini↾h(⟨σ↾h⟩v) = Gaini↾h(ρ) = 0. ◀

Proof of Theorem 8.
(1 ⇒ 2) Let us assume that there exists a permissive SPE Θ in (G, v0) such that properties
1a, 1b, and 1c hold. We first build a forest F from Θ. For each (i, v, I) ∈ I, we let

O(i, v, I) = {⟨Θ↾h⟩H
v | hv ∈ Hist(v0) ∧ Last(h) ∈ Vi ∧ I = Visit(hv)}

We choose T 0,v0,I0 = ⟨Θ⟩H
v0

= T ∗ and for each (i, v, I) ∈ I such that (i, v, I) ̸= (0, v0, I0), we
choose T i,v,I ∈ O(i, v, I) such that

max{Gaini(ρ) | ρ ∈ T ∞
i,v,I} = min

T ∈O(i,v,I)
max{Gaini(ρ) | ρ ∈ T ∞}. (1)

We have to prove that F is good. Let T i,v,I ∈ F .
(Resistance to internal deviations) Let us prove that T i,v,I is (N \ I)-resistant to
internal deviations. Let j ∈ (N \ I) and gu ∈ T i,v,I be such that u ∈ Vj and |{guu′ ∈
T i,v,I | u′ ∈ V }| ≥ 2. We have to prove that for all ρ, ρ′ ∈ T ∞

i,v,I↾gu, Gainj(gρ) =
Gainj(gρ′).
We have that T ∞

i,v,I = ⟨Θ↾h⟩v for some hv ∈ Hist(v0) such that Last(h) ∈ Vi and
I = Visit(hv). Moreover, since |{guu′ ∈ T i,v,I | u′ ∈ V }| ≥ 2, we have | Θj(hgu)| ≥ 2. By
Proposition 17, we have that for all ρ, ρ′ ∈ ⟨Θ↾hg⟩u = T ∞

i,v,I↾gu, Gainj(hgρ) = Gainj(hgρ′).
We conclude that Gainj(gρ′) = Gainj(gρ) because j ̸∈ I = Visit(hv).
(Resistance to constrained external deviations) Let us prove that T i,v,I is resistant
to constrained external deviations. Let gu ∈ T i,v,I and j ∈ N such that we have
that u ∈ Vj , j ̸∈ I ∪ Visit(gu), and there exists u′ ∈ Succ(u) such that guu′ ̸∈ T i,v,I.
Moreover, let us assume that there exists ρ′ ∈ T ∞

j,u′,I′ , where I′ = I ∪ Visit(guu′), such
that Gainj(ρ′) = 1. Let ρ ∈ T ∞

i,v,I↾gu, we have to prove that Gainj(ρ) = 1.
By construction of F , there exists hv ∈ Hist(v0) such that Last(h) ∈ Vi, Visit(hv) = I
and ⟨Θ↾h⟩v = T ∞

i,v,I. We also have that u′ ̸∈ Θi(hgu) (as guu′ ̸∈ T i,v,I) and ⟨Θ↾hgu⟩H
u′ ∈

O(j, u′, I′). In particular,

max{Gainj(π) | π ∈ ⟨Θ↾hgu⟩u′} ≥ min
T ∈O(j,u′,I′)

max{Gainj(π) | π ∈ T ∞}

= max{Gainj(π) | π ∈ T ∞
j,u′,I′} = Gainj(ρ′) = 1

It follows that there exists π′ ∈ ⟨Θ↾hgu⟩u′ such that Gainj(π′) = 1 and so Gainj(hguπ′) =
1. By Proposition 17, we have that for all π ∈ ⟨Θ↾hg⟩u, Gainj(π) = 1. To conclude, as
ρ ∈ T ∞

i,v I↾gu = ⟨Θ↾hg⟩u, Gainj(ρ) = 1.

We have proved that F is a good forest with T 0,v0,I0 = T ∗. Since Θ is strongly winning
w.r.t. Win, we have that for all σ ≲ Θ, for all i ∈ Win, Gaini(⟨σ⟩v0) = 1. It follows that
for all ρ ∈ ⟨Θ⟩v0 = T ∞

0,v0,I0
and for all i ∈ Win, Gaini(ρ) = 1. The same kind of argument

holds if we replace assertion 1b by “Θ is weakly winning w.r.t. Win” and the assertion 2b by
“there exists ρ ∈ T ∞

i,v0,I0
such that for all i ∈ Win, Gaini(ρ) = 1”.

We finally prove that for all i ∈ N, MPenaltyi(F) ≤ mi and RPenaltyi(F) ≤ ri. For i ∈ N,

MPenaltyi(F) = Penaltyi(T 0,v0,I0) = sup{Penaltyi(ρ) | ρ ∈ T ∞
0,v0,I0

}

= sup{PenaltyΘ
i (ρ) | ρ ∈ ⟨Θ⟩v0} = MPenaltyi(Θ, v0) ≤ mi.
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and since {T j,u,J | (j, u, J) ∈ Out} ⊆ {⟨Θ↾h⟩H
v | hv ∈ Hist(v0) \ ⟨Θ⟩H

v0
},

RPenaltyi(F) = sup
T j,u,J∈F

(j,u,J)∈Out

Penaltyi(T j,u,J) ≤ sup
⟨Θ↾h⟩H

v

hv∈Hist(v0)\⟨Θ⟩H
v0

Penaltyi(⟨Θ↾h⟩H
v )

= sup
hv∈Hist(v0)\⟨Θ⟩H

v0

sup{Penaltyi(ρ) | ρ ∈ ⟨Θ↾h⟩v} = RPenaltyi(Θ, v0) ≤ ri

(2 ⇒ 1) Let us assume that there exists a good forest F in (G, v0) such that properties 2a,
2b, and 2c hold. We start defining a multi-strategy Θ such that ⟨Θ⟩H

v0
= T 0,v0,I0 = T ∗.

Then, we continue building Θ by induction on the length of histories hv. Let us assume
that for all hv ∈ Hist(v0) such that |hv| = k, if v ∈ Vi, then Θi(hv) is already defined. Let
hvv′ ∈ Hist(v0) such that |hvv′| = k + 1, and if v ∈ Vi and v′ ∈ Vj , Θi(hv) is defined but
not yet Θj(hvv′). We then extend the definition of Θ such that ⟨Θ↾hv⟩H

v′ = T i,v′,I′ where
I′ = Visit(hvv′).

Let us prove that Θ is a permissive SPE in (G, v0). Let σ = (σ1, . . . , σn) be a strategy
profile such that for all i ∈ N, σi ≲ Θi. Let us prove that σ is a (very) weak SPE in (G, v0)
(and so an SPE).

Let hv ∈ Hist(v0) with v ∈ Vi for some i ∈ N. Let σ′
i be a one-shot deviating strategy

from σi↾h in (G↾h, v). Let us assume that σ′
i(v) = u′ ̸= u = σi↾h(v) for some u, u′ ∈ Succ(v).

By construction of Θ, there exists h′w ≤ h such that h′ ∈ Histj(v0) for some j ∈ N and
⟨Θ↾h′⟩H

w = T j,w,J where J = Visit(h′w). Moreover, by writing h as h′g for some history
g ∈ Hist(w), we have that g⟨σ↾h⟩v ∈ T ∞

j,w,J . We have to prove that

Gaini↾h(⟨σ↾h⟩v) ≥ Gaini↾h(⟨σ′
i, σ−i↾h⟩v).

Let us first notice that if i ∈ Visit(hv), then Gaini↾h(⟨σ↾h⟩v) = Gaini↾h(⟨σ′
i, σ−i↾h⟩v) = 1.

Thus, we consider that i ̸∈ Visit(hv) and in particular i ̸∈ J . We distinguish two cases,
depending on whether g⟨σ′

i, σ−i↾h⟩v is also in T ∞
j,w,J or not.

If g⟨σ′
i, σ−i↾h⟩v ∈ T ∞

j,w,J , since T ∞
j,w,J is part of F , it is (N \J)-resistant to internal

deviations. Thus, as gvu, gvu′ ∈ T j,w,J and u ̸= u′, we have that |{gvv′′ ∈ T j,w,J | v′′ ∈
V }| ≥ 2. It follows from the definition of being (N \J)-resistant to internal deviations
and the fact that i ̸∈ J that for all ρ, ρ′ ∈ T ∞

j,w,J↾gv, Gaini(gρ) = Gaini(gρ′). In partic-
ular, Gaini(g⟨σ↾h⟩v) = Gaini(g⟨σ′

i, σ−i↾h⟩v) and Gaini↾h(⟨σ↾h⟩v) = Gaini(h′g⟨σ↾h⟩v) =
Gaini(h′g⟨σ′

i, σ−i↾h⟩v) = Gaini↾h(⟨σ′
i, σ−i↾h⟩v). We can conclude that σ′

i is not a profitable
deviation in (G↾h, v).
If g⟨σ′

i, σ−i↾h⟩v ̸∈ T ∞
j,w,J , then ⟨σ′

i↾v, σ−i↾hv⟩u′ ∈ T ∞
i,u′,I′ where I′ = Visit(hvu′) = J ∪

Visit(gvu′). Since T ∞
j,w,J is part of F , it is resistant to constrained external deviations.

If Gaini(⟨σ′
i↾v, σi↾hv⟩u′) = 1, by definition of being resistant to constrained external devi-

ation, we have that Gaini(⟨σ↾h⟩v) = 1. In particular, we obtain that Gaini↾h(⟨σ↾h⟩v) =
1 and Gaini↾h(⟨σ′

i, σ−i↾h⟩v) = Gaini↾h(v⟨σ′
i↾v, σ−i↾hv⟩u′) = Gaini(⟨σ′

i↾v, σ−i↾hv⟩u′) = 1.
If Gaini(⟨σ′

i↾v, σi↾hv⟩u′) = 0, Gaini↾h(⟨σ′
i, σ−i↾h⟩v) = Gaini↾h(v⟨σ′

i↾v, σ−i↾hv⟩u′) =
Gaini(⟨σ′

i↾v, σ−i↾hv⟩u′) = 0 since i ̸∈ Visit(hv). Thus, in particular, as gains are
either 0 or 1, Gaini↾h(⟨σ↾h⟩v) ≥ Gaini↾h(⟨σ′

i, σ−i↾h⟩v).
As in the previous case, we can conclude that σ′

i is not a profitable deviation in (G↾h, v).

We have proved that Θ is a permissive SPE in (G, v0). Let us prove that Θ is strongly
winning w.r.t. Win. Let σ be a strategy such that σ ≲ Θ. Since ⟨Θ⟩H

v0
= T ∗ = T 0,v0,I0 and

⟨σ⟩v0 ∈ T ∞
0,v0,I0

, we have by hypothesis that for all i ∈ Win, Gaini(⟨σ⟩v0) = 1. The same
kind of argument holds for the weakly winning case.
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Let us now consider the penalties. Let i ∈ N,

MPenaltyi(Θ, v0) = sup{PenaltyΘ
i (ρ) | ρ ∈ ⟨Θ⟩v0} = sup{Penaltyi(ρ) | ρ ∈ T ∞

0,v0,I0
}

= Penaltyi(T 0,v0,I0) = MPenaltyi(F) ≤ mi

and, since for all T i,v,I ∈ F , for all j ∈ N and for all gu ∈ T i,v,I, we have that Penaltyj(T i,v,I↾gu) ≤
Penaltyj(T i,v,I). Moreover,

RPenaltyi(Θ, v0) = sup
hv∈Hist(v0)\⟨Θ⟩H

v0

sup{Penaltyi(ρ) | ρ ∈ ⟨Θ↾h⟩v}

= sup
⟨Θ↾h⟩H

v

hv∈Hist(v0)\⟨Θ⟩H
v0

Penaltyi(⟨Θ↾h⟩H
v )

= sup
T j,u,J∈F

(j,u,J)∈Out

Penaltyi(T j,u,J) = RPenaltyi(F) ◀

B Proofs of Section 5: Computation of permissive equilibria

▶ Proposition 11. Let T be a tree that is D-resistant to internal deviations, with D ⊆ N.
We let γ ∈ {0, 1}N ×V ×2N be a vector of gains such that T is (γ, D)-resistant, and (Pi)i∈N′ be
finite constraints on penalties for a subset N′ ⊆ N of players. There exists a symbolic tree U ,
that is a subtree of T , of height polynomial in the number of players and vertices of G, and in
the largest bound on penalty Pi, such that the infinite tree Ũ satisfies the following properties:
1. Ũ is D-resistant to internal deviations;
2. in Ũ , every player i ∈ N′ has a penalty at most Pi;
3. Ũ is (γ, D)-resistant.
Moreover, for a subset Win of players, if we start with T that is strongly (respectively, weakly)
winning w.r.t. Win, then we can make the above construction so that moreover Ũ is strongly
(respectively, weakly) winning w.r.t. Win.

Proof. Let T be a tree D-resistant to internal deviations, and (γ, D)-resistant. The proof
consists in adding information in the nodes of the tree, to be able to safely cut some branches
in order to keep the desired guarantees while reducing the height of the symbolic tree. Besides
the history of play, we thus start by labeling each node of T (and we will keep such a labeling
in all the trees we build after) by a triple (I, (mi)i∈D, (pi)i∈N ′) where

N \ D ⊆ I ⊆ N is the set of players that have already won so far;
mi ∈ {∀, ⊥, ?} represents what player i must guarantee in the future: ∀ if all subsequent
plays must be winning for him (and player i has not already won so far, which is why we
restrict i to be in D, otherwise player i has won already at the beginning of the tree), ⊥
if all must be losing for him, and ? if there are no longer or not yet any constraints;
pi ∈ {0, 1, . . . , Pi} represents the current penalty of player i.

Notice that the signification of ∀ directly implies that we will never have mi = ∀ and a subset
I containing i in the same label.

We label the root of the tree (that contains a vertex v) with a triple (I, (mi)i∈D, (pi)i∈N ′)
in such a way that I = N \ D ∪ {i ∈ D | v ∈ Fi}, for each i ∈ D, mi = ? if v ∈ Fi (and
mi is not constrained yet otherwise), and for each i ∈ N ′, pi = 0. For a player that must
be strongly winning (as it will be the case at some point of this proof) but v /∈ Fi, we let
mi = ∀. For the other part of the proof, where we will have weakly winning constraints, we
let mi = ? for all i ∈ D.
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Knowing the current label of a node, whose history ends in a vertex v owned by player i,
the label (I ′, (m′

i)i∈D, (p′
i)i∈N ′) of a successor v′ can be obtained as follows:

(a) the set of winners is updated to I ′ = I ∪ {j | v′ ∈ Fj};
(b) values m′

j are set as follows:
if j ∈ I ′, we let m′

j = ?. If mj was ∀ in the parent node, this releases the guarantees
that player j had to fulfill. Notice that since T is D-resistant to internal deviations
and (γ, D)-resistant, such an update cannot happen if mj = ⊥ for the parent node;
otherwise,

if j ̸= i, we keep m′
j = mj in the successor;

otherwise,
∗ if mi = ∀ or ⊥, we keep m′

i = mi in the successor;
∗ if mi = ? and there is u′ ∈ Succ(v) that is not a successor of the parent node v

in the tree with γi,u′,I∪{j|u′∈Fj} = 1, we let m′
i = ∀;

∗ otherwise if mi = ?, and there are at least two successors, then we let m′
i = ⊥ if

none of the plays of the subtree of v is winning for i, or m′
i = ∀ if all the plays

of the subtree are winning for i (we are necessarily in one of the two cases since
T is D-resistant to internal deviations);

∗ otherwise, we let m′
i = ? in the successor;

(c) the new penalties are obtained from the previous one, by letting p′
i be the addition of pi

and the number of missing successors in v, while p′
j = pj for j ̸= i.

The way each component of the labels can be updated are restricted: the set of winners I

can only increase for the inclusion; values mj can switch once from ? to ⊥ or ∀, and from ∀
to ? for the rest of the whole branch; values pj are non-decreasing. We moreover require that
a labeled tree fulfills the following validity condition:
(d) every branch ultimately ends with a label where all values mi are ⊥ or ?.

If we obtain a labeled tree (or a labeled symbolic tree) fulfilling the rules (a), (b), (c), and
(d), then the tree is D-resistant to internal deviations, (γ, D)-resistant, and for all i ∈ N ′,
the penalty of i is at most Pi.3

The second step of the proof is to extract from the infinite labeled tree T a finite symbolic
tree fulfilling rules (a), (b), (c), and (d), and thus the desired requirements but the one on its
height. We modify it afterwards so that it also fulfills the requirement on its height. To do so,
we first suppose that the tree T is strongly winning for the subset Win of players (remember
that this implies that we set mi = ∀ for all players i ∈ Win in the label of the root, except
if the root vertex belongs to Fi). The symbolic tree will contain three parts depicted in
Figure 7: a core taking care of the strongly winning part (which will thus ensure that the
symbolic tree is also strongly winning for Win); an expanded core to keep the D-resistance
to internal deviations, the (γ, D)-resistance and the bounded penalty; a closure of branches
to define the mapping f sending leaves of the symbolic tree to ancestor nodes outside of the
core and expanded core.

Since all players of Win match their reachability objectives in all branches, every play in
T ∞ contains a first vertex where all players of Win ∩D have seen one of their target vertices.

3 The reader may have recognized rules (a), (b), and (c) as a way to describe the transition relation of a
top-down tree automaton, and rule (d) as an acceptance condition that every branch of the tree has to
satisfy.
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core

expanded core⋯

⋯ completion of branchesheight ≤ α

Figure 7 Construction of the symbolic tree

Vertices not lower that these last targets form a finite tree that we call the core of T . In
case Win = ∅, the core is reduced to its root.

We then need to complete the core to obtain a symbolic tree. This is done by considering
the branches of T , alternating two steps:

a new player (in particular not in Win) may need to win because of constraints ∀ in the
labels: the expansion of the core because of this reason is performed as before by adding
a subtree in which all branches have reached a target vertex of this player, and we call
expanded core the added subtrees;
other branches must be completed until we reach a node n where all successor nodes
are labeled by a history ending in a vertex v, and by a triple label such that one of its
ancestor outside of the expanded core is labeled by a history h ending in the same vertex
v, and by the same triple label. The mapping f sends node n, which becomes a leaf in
the symbolic tree, to all such h. We call completion of branches these last sections of
branches outside of the expanded core. Successors of (what become a) leaf of the symbolic
tree could be several ancestors of this leaf, as depicted in the green part of Figure 7 with
the dotted back arrows.

Notice that during the completion of branches, some new constraints ∀ may be added, which
would then requires to return to the first step of expansion. But since this is for new players
each time (and there is a finite number of players), this iterative expansion process will stop
after finitely many steps.

Since there are only a finite number of labels, and the three parts of the labels cannot
freely change from a value to another one, the completion of branches leads to a length
bounded by α = |V | × |D| × 2|D| ×

∑
i∈N ′ Pi (in the worst case scenario, at each occurrence

of a new vertex of V , at least one part of the labels has changed): the |D| part is because the
subsets I all contain N \ D and thus can only increase |D| times, the 2|D| part is because of
the switch in the mi label that can go from ? to ∀ and then to ? until the end.

We thus have built a finite symbolic tree U1. The labels are still consistent with the ones
of T which ensures that U1 fulfills properties (a), (b), (c), and (d) and thus:
1. Ũ1 is D-resistant to internal deviations;
2. in Ũ1, each player i ∈ N ′ has a penalty at most Pi;
3. Ũ1 is (γ, D)-resistant.
Moreover, by the core of the symbolic tree, we know that Ũ1 is strongly winning w.r.t. Win.

We now explain how to reduce the height of this symbolic tree, by reducing the height
of the core and expanded core, while maintaining the rules (a), (b), (c), and (d), and not
touching the completion of branches that already have a sufficient bound on its height. The
obtained symbolic tree is called U .

If the core and expanded core contains two histories ending in the same vertex v with the
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same triple label (in particular no players see his objective for the first time in-between the
two occurrences), we can modify U1 by replacing the subtree in the first occurrence of v by
the subtree in the second occurrence of v. This may remove some plays in Ũ∞ but does not
change the set of winners, and does not increase the penalty of plays that remain: indeed
the labels remain consistent which proves that the above properties are maintained. We can
continue doing this simplification step as long as possible. Then, if we can no longer apply
the simplification, we are sure that the length of the branches in the updated expanded core
is bounded by α (with the same parameter α as above). We obtain a symbolic tree U that
fulfills the desired properties. By adding the length of the completion of branches, U has
height at most 2α, that is polynomial in the game and the maximal penalty Pi.

Suppose then that T is weakly winning w.r.t. Win, and let ρ be a branch where players in
Win all win. We consider the same construction as before but letting the core be the shortest
prefix of ρ where all players of Win have visited their target. We build the expanded core
and the rest of the branches of length at most α as before. We then start by reducing the
size of the core independently of the rest, to obtain a new core of length bounded by α. The
expanded core is then also reduced as in the case of strongly winning trees, getting a height
at most α. In total, we obtain a symbolic tree of height at most 3α, once again polynomial
in the game and the maximal penalty (when encoded in unary). ◀
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