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Introduction  

Despite recent progress in purple non-sulfur bacteria (PNSB) technology, further research regarding process 

design and efficiency (Capson-Tojo et al., 2020) is required to realize its full potential. Mathematical modeling 

emerges as a key asset, enhancing process comprehension and serving as a tool for model-based control and 

optimization. The relevance of this topic is justified by the substantial number of contributions focused on 

modeling PNSB, notably Puyol et al. (2017) and Cabecas Segura et al. (2022). Although the complexity of the 

former may limit its use for control/optimization, the latter is likely to be a suitable alternative. The fact that it is 

directed to another PNSB strain with different carbon sources distinguishes it from our study. In this work, we 

propose a macroscopic model to predict Rh. capsulatus growth on sucrose, fructose, and glucose. The model 

is obtained by employing measurements from batch experiments on synthetic conditions that mimic PNSB 

growth on molasses for microbial protein production. Considering the need to optimize production conditions, 

we aim to provide a model to predict the dynamic behavior of PNSB cultures while having potential control and 

optimization applications in mind. To this end, we evaluate the fit quality and parameter sensitivity. 

Materials and Methods   

The mathematical model is derived following a procedure inspired by Bastin and Dochain (1990). Based on 

prior knowledge, the biological reactions and Contois-like reaction rates are described in Tab.1, as well as the 

ordinary differential equations representing the evolution of each component, which are obtained by applying 

mass balance. Fructose and glucose are directly consumed, and sucrose is assumed to be hydrolyzed by the 

cells at a reaction rate that follows the Michaelis-Menten equation. 

Tab. 1. Model description. 

Macro-reactions Rate equations Mass balances 

𝑠𝑢𝑐 
𝜑ℎ
→ 𝑓𝑟𝑢 +  𝑔𝑙𝑢 

𝑌𝑓𝑟𝑢 𝑓𝑟𝑢 
𝜑1
→ 𝑋 

𝑌𝑔𝑙𝑢 𝑔𝑙𝑢 
𝜑2
→ 𝑋 

𝜑1 = 𝜇𝑚𝑎𝑥1𝑋
𝑓𝑟𝑢

𝐾1 𝑋 + 𝑓𝑟𝑢
 

𝜑2 = 𝜇𝑚𝑎𝑥2𝑋
𝑔𝑙𝑢

𝐾2 𝑋 + 𝑔𝑙𝑢
 

𝜑ℎ =
𝑉ℎ 𝑠𝑢𝑐

𝐾ℎ + 𝑠𝑢𝑐
 

𝑑𝑋
𝑑𝑡⁄ = 𝜑1 + 𝜑2 

𝑑𝑓𝑟𝑢
𝑑𝑡
⁄ = −𝑌1𝜑1 + 𝜑ℎ 

𝑑𝑔𝑙𝑢
𝑑𝑡
⁄ = −𝑌2𝜑2 +𝜑ℎ 

𝑑𝑠𝑢𝑐
𝑑𝑡⁄ = −𝜑ℎ 

 

where 𝑋  is the biomass optical density (OD) and  𝑓𝑟𝑢   𝑔𝑙𝑢 , and 𝑠𝑢𝑐  are, respectively, the concentrations of 

fructose, glucose, and sucrose in mmol/L. 𝜑1  and 𝜑2  are the respective reaction rates for the fructose and 

glucose consumptions, while 𝜑ℎ is the hydrolysis rate.  The parameter sets [𝜇𝑚𝑎𝑥1, 𝐾1 𝑌1] and [𝜇𝑚𝑎𝑥2, 𝐾2 𝑌3] 
contain the corresponding specific growth rate (h-1), half-saturation constant (mmol/L), and yield coefficient 

(mmol/OD.L) for fructose and glucose, respectively. Lastly, 𝑉ℎ is the maximum hydrolysis rate (mmol/L.h) and 

𝐾ℎ(mmol/L) is the Michaelis-Menten half-saturation constant. 

Parameter identification and sensitivity analysis comparable to Fekih-Salem et al. (2019) are performed on a 

set of 4 batch experiments with various initial biomass and nutrient source concentrations, as well as constant 

nitrogen (provided in excess) levels and artificial light intensity. Parameter estimation considers the minimization 

of a weighted least-squares criterion describing the distance between the experimental data and the model 

predictions. Parametric sensitivities are also computed to build the Fisher Information Matrix (FIM). Its inverse 

form is then employed to obtain an estimation of the parameter estimation error covariance matrix. Confidence 

intervals (CI) at a 95% are retrieved from the diagonal of this matrix for each parameter.  



Given that knowledge about the metabolic network is subject to ongoing research and thus not entirely 

comprehended, various scenarios, such as inhibition terms and modified rate structures, are tested to select 

the best model. To assess model fitting performance, we adopt a root-mean-square (RMSE) criterion.   

Results and discussion  

Model predictions’ results and the experimental data are shown in Fig.1. The model is visually consistent with 

the measurements, which is confirmed by the low RMSE criteria values presented in Tab.2. Although the 

calculated CI’s of the estimated parameters are slightly larger than desired, the model predictions are 

satisfactory, considering the limited amount of data used to identify such a complex bioprocess. Indeed, further 

improvement is possible by obtaining additional data, but the potential benefit should be carefully evaluated, 

with time and cost as decision factors. Moreover, implementing a robust control strategy could also address the 

parametric uncertainty. In conclusion, the results confirm the proposed model’s predictive accuracy and 

suitability for future advanced control applications. 

 
Fig. 1. Blue continuous lines represent the model predictions for the concentrations of biomass, fructose, glucose, 

and sucrose and experimental data is indicated by black dots. The bars correspond to a posteriori calculations of the 

95% confidence intervals. 

 

Tab. 2. Parameter identification and sensitivity analysis results.  

Stoichiometric and kinetic parameters (%CI) RMSE results 

𝑌1 = 11.2 (113%); 𝑌2 = 34.9 (433%) 
𝐾1 = 1.46 (182%);𝐾2 = 13.5 (165%); 

𝜇𝑚𝑎𝑥1 = 0.0185 (126%); 𝜇𝑚𝑎𝑥2 = 0.0100 (440%); 
𝑉ℎ = 0.129 (145%); 𝐾ℎ = 5.99 (259%) 

𝑅𝑀𝑆𝐸𝑋 = 0.232 
𝑅𝑀𝑆𝐸𝑓𝑟𝑢 = 0.878 

𝑅𝑀𝑆𝐸𝑔𝑙𝑢 = 0.967 

𝑅𝑀𝑆𝐸𝑠𝑢𝑐 = 0.987 
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