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Different Strokes in Randomised Strategies:

Revisiting Kuhn’s Theorem under Finite-Memory Assumptions⋆

James C. A. Main and Mickael Randour

F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Abstract. Two-player (antagonistic) games on (possibly stochastic) graphs are a prevalent model
in theoretical computer science, notably as a framework for reactive synthesis.

Optimal strategies may require randomisation when dealing with inherently probabilistic goals,
balancing multiple objectives, or in contexts of partial information. There is no unique way to
define randomised strategies. For instance, one can use so-called mixed strategies or behavioural

ones. In the most general setting, these two classes do not share the same expressiveness. A seminal
result in game theory — Kuhn’s theorem — asserts their equivalence in games of perfect recall.

This result crucially relies on the possibility for strategies to use infinite memory, i.e., unlimited
knowledge of all past observations. However, computer systems are finite in practice. Hence it is
pertinent to restrict our attention to finite-memory strategies, defined as automata with outputs.
Randomisation can be implemented in these in different ways: the initialisation, outputs or transi-

tions can be randomised or deterministic respectively. Depending on which aspects are randomised,
the expressiveness of the corresponding class of finite-memory strategies differs.

In this work, we study two-player concurrent stochastic games and provide a complete taxonomy
of the classes of finite-memory strategies obtained by varying which of the three aforementioned
components are randomised. Our taxonomy holds in games of perfect and imperfect information
with perfect recall, and in games with more than two players. We also provide an adapted taxonomy
for games with imperfect recall.

Keywords: two-player games on graphs · stochastic games · Markov decision processes · finite-memory
strategies · randomised strategies

1 Introduction

Games on graphs. Games on (possibly stochastic) graphs have been studied for decades, both for their
own interest (e.g., [1, 2, 3]) and for their value as a framework for reactive synthesis (e.g., [4, 5, 6, 7]). The
core problem is almost always to find optimal strategies for the players: strategies that guarantee winning
for Boolean winning conditions (e.g., [8, 9, 10, 11]), or strategies that achieve the best possible payoff
in quantitative contexts (e.g., [1, 12, 13]). In multi-objective settings, one is interested in Pareto-optimal
strategies (e.g., [14, 15, 16, 17]), but the bottom line is the same: players are looking for strategies that
guarantee the best possible results.

In reactive synthesis, we model the interaction between a system and its uncontrollable environment
as a two-player antagonistic game, and we represent the specification to ensure as a winning objective.
An optimal strategy for the system in this game then constitutes a formal blueprint for a controller to
implement in the real world [7].

Randomness in strategies. In essence, a pure strategy is simply a function mapping histories (i.e., the
past and present of a play) to an action deterministically.

Optimal strategies may require randomisation when dealing with inherently probabilistic goals, bal-
ancing multiple objectives, or in contexts of partial information: see, e.g., [18, 16, 19, 17]. There are
different ways of randomising strategies. For instance, a mixed strategy is essentially a probability distri-
bution over a set of pure strategies. That is, the player randomly selects a pure strategy at the beginning
of the game and then follows it for the entirety of the play without resorting to randomness ever again.
By contrast, a behavioural strategy randomly selects an action at each step: it thus maps histories to
probability distributions over actions.

⋆ James C. A. Main is an F.R.S.-FNRS Research Fellow and Mickael Randour is an F.R.S.-FNRS Research
Associate. Both authors are members of the TRAIL institute. This work has been supported by the Fonds de
la Recherche Scientifique – FNRS under Grant n° T.0188.23 (PDR ControlleRS).
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Kuhn’s theorem. In full generality, these two definitions yield different classes of strategies (e.g., [20]
or [21, Chapter 11]). Nonetheless, Kuhn’s theorem [22] proves their equivalence under a mild hypothesis:
in games of perfect recall, for any mixed strategy there is an equivalent behavioural strategy and vice-
versa. A game is said to be of perfect recall for a given player if said player never forgets their previous
knowledge and the actions they have played (i.e., they can observe their own actions). Let us note that
perfect recall and perfect information are two different notions: perfect information is not required to
have perfect recall.

Let us highlight that Kuhn’s theorem crucially relies on two elements. First, mixed strategies can be
distributions over an infinite set of pure strategies. Second, strategies can use infinite memory, i.e., they
are able to remember the past completely, however long it might be. Indeed, consider a game in which a
player can choose one of two actions in each round. One could define a (memoryless) behavioural strategy
that selects one of the two actions by flipping a coin each round. This strategy generates infinitely many
sequences of actions, therefore any equivalent mixed strategy needs the ability to randomise between
infinitely many different sequences, and thus, infinitely many pure strategies. Moreover, infinitely many
of these sequences require infinite memory to be generated (due to their non-regularity).

Finite-memory strategies. From the point of view of reactive synthesis, infinite-memory strategies,
along with randomised ones relying on infinite supports, are undesirable for implementation. This is why
a plethora of recent advances has focused on finite-memory strategies, usually represented as (a variation
on) Mealy machines, i.e., finite automata with outputs. See, e.g., [3, 14, 23, 17, 24, 25]. Randomisation
can be implemented in these finite-memory strategies in different ways: the initialisation, outputs or
transitions can be randomised or deterministic respectively.

Depending on which aspects are randomised, the expressiveness of the corresponding class of finite-
memory strategies differs: in a nutshell, Kuhn’s theorem crumbles when restricting ourselves to finite
memory. For instance, we show that some finite-memory strategies with only randomised outputs (i.e.,
the natural equivalent of behavioural strategies) cannot be emulated by finite-memory strategies with only
randomised initialisation (i.e., the natural equivalent of mixed strategies) — see Lemma 5.3. Similarly, it
is known that some finite-memory strategies that are encoded by Mealy machines using randomisation
in all three components admit no equivalent using randomisation only in outputs [26, 20].

DRR = RRR = RDR
(Thm. 4.2, 4.3)

DDR RRD

DRD (behavioural)

RDD (mixed)

DDD (pure)

Lem. 5.1 (strictness) Lem. 5.5 (strictness)

Lem. 5.4 (strictness)

Thm. 4.1, Lem. 5.3
Direct

Lem. 5.1 (strictness)
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Fig. 1.1: Lattice of strategy classes in terms of expressible probability distributions over plays against all
strategies of the other player. In the three-letter acronyms, the letters, in order, refer to the initialisation,
outputs and updates of the Mealy machines: D and R respectively denote deterministic and randomised
components. Each line in the figure indicates that the class above is strictly more expressive than the
class below.

Our contributions. We consider two-player zero-sum concurrent stochastic games of perfect information
(e.g., [27, 28]), encompassing two-player turn-based (deterministic) games and Markov decision processes
as particular subcases. We establish a Kuhn-like taxonomy of the classes of finite-memory strategies
obtained by varying which of the three aforementioned Mealy machine components are randomised: we
illustrate it in Figure 1.1, and describe it fully in Section 3.
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Let us highlight a few elements. Naturally, the least expressive model corresponds to pure strategies.
In contrast to what happens with infinite memory, and as noted in the previous paragraph, we see
that mixed strategies are strictly less expressive than behavioural ones. We also observe that allowing
randomness both in initialisation and in outputs (RRD strategies) yields an even more expressive class
— and incomparable to what is obtained by allowing randomness in updates only. Finally, the most
expressive class is obviously obtained when allowing randomness in all components; yet it may be dropped
in initialisation or in outputs without reducing the expressiveness — but not in both simultaneously.

To compare the expressiveness of strategy classes, we consider outcome-equivalence, as defined in
Section 2. Intuitively, two strategies are outcome-equivalent if, against any strategy of the opponent,
they yield identical probability distributions (i.e., they induce identical Markov chains). Hence we are
agnostic with regard to the objective, winning condition, payoff function, or preference relation of the
game, and with regard to how they are defined (e.g., colours on actions, states, transitions, etc).

Finally, let us note that in our setting of two-player concurrent stochastic games, the perfect recall
hypothesis holds. Most importantly, we assume that actions are visible. Lifting this hypothesis drastically
changes the relationships between the different models. While our main presentation considers two-player
perfect-information games for the sake of simplicity, we show in Section 6 that our results hold in games
with more than two players and, in Section 7, that our results hold in games of imperfect information too,
assuming visible actions. We provide an adapted taxonomy for games in which actions are not visible in
Section 7.

Related work. We discuss several axes of research related to our work.

The first one deals with the various types of randomness one can inject in strategies and their
consequences. Obviously, Kuhn’s theorem [22] is a major inspiration, as well as the examples of differences
between strategy models presented in [20]. On a different but related note, [29] studies when randomness
is not helpful in games nor strategies (as it can be simulated by other means or does not intervene).

A second direction focuses on trying to characterise the power of finite-memory strategies, with or
without randomness. One can notably cite [3] for memoryless strategies, and [30, 24], [25], and [31] for
finite-memory ones in deterministic, stochastic, and infinite-arena games respectively.

The power of strategies also depends on the information they are allowed to register to update their
memory: colours, as in the papers of the previous paragraph, or the sequence of states [32, 33, 34],
observations [35] or sequences of actions or labels [33].

The last axis concentrates on the use of randomness as a means to simplify strategies and/or reduce
their memory requirements. Examples of this endeavour can be found in [36, 37, 38, 14, 39]. These
are further motivations to understand randomised strategies even in contexts where randomness is not
needed a priori to play optimally.

Outline. Section 2 summarises all preliminary notions. In Section 3, we present the taxonomy illustrated
in Figure 1.1 and comment on it. We divide its proofs into two sections: Section 4 establishes the inclusions,
and Section 5 establishes the separation of distinct strategy classes. Finally, Sections 6 and 7 present how
we transfer our results to the richer settings of multi-player games and of games of imperfect information
respectively. We conclude in Section 8. Appendix A is a technical appendix dedicated to the details of
an equation introduced in Section 2.

A preliminary version of this work has been previously published as a conference paper [40]. This
version presents in detail the contributions of the conference paper with full proofs and extends the results
of the conference paper by considering a broader class of games; only turn-based games are considered
in [40], whereas we consider concurrent games here. The separation of strategy classes presented in
Section 5 has been enriched with examples derived from specifications, to complement the examples
provided on a one-player games with one state and two actions (this is arguably the simplest possible
setting in which we can consider non-trivial strategies). Finally, the generalisation to games of imperfect
information presented in Section 7 has been extended to consider the case of games with imperfect recall.

2 Preliminaries

Set-theoretic notation. We let N and Q denote the sets of natural and rational numbers respectively.
Given sets A and B′ ⊆ B, and a function f : A → B, we let f−1(B′) = {a ∈ A | f(a) ∈ B′} denote the
inverse image of B′ by f . For the inverse image of singleton sets, we write f−1(b) instead of f−1({b}) for
any b ∈ B.
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Probability. Given any countable set A, we write D(A) for the set of probability distributions over A,
i.e., the set of functions µ : A → [0, 1] such that

∑

a∈A µ(a) = 1. Given such a probability distribution µ,
we let supp(µ) = {a ∈ A | µ(a) > 0} be the support of µ.

Given a set A and a σ-algebra F over A, we denote by D(A,F) the set of probability distributions
over the measurable space (A,F).

Games. We consider two-player concurrent stochastic games of perfect information played on graphs.
We denote the two players by P1 and P2. At the start of a play, a pebble is placed on some initial state.
In each round, both players simultaneously select an action available in said state and the next state is
chosen randomly following a distribution depending on the current state and the actions chosen by the
players. The game proceeds for an infinite number of rounds, yielding an infinite play.

Formally, a two-player concurrent stochastic game of perfect information, or simply a game, is a tuple
G = (S,A(1), A(2), δ) where S is a non-empty finite set of states, A(1) and A(2) are finite sets of actions
for each player and δ : S × A(1) ×A(2) → D(S) is a (partial) probabilistic transition function. We write
Ā = A(1) ×A(2) in the following. Elements of Ā are denoted with a bar to emphasise that they are pairs
of actions. Given ā ∈ Ā, we adopt the convention that ā is given by the pair (a(1), a(2)).

For any state s ∈ S, we let Ā(s) = {ā ∈ Ā | δ(s, ā) is defined} and require that Ā(s) is of the form
A(1)(s)×A(2)(s) for some subsets A(i)(s) of A(i), i.e., the actions available to a player in a state are not
constrained by the choices of the other. We assume that for all s ∈ S, Ā(s) is non-empty, i.e., there are
no deadlocks in the game.

A play of G is an infinite sequence s0ā0s1 . . . ∈ (SĀ)ω such that for all k ∈ N, δ(sk, āk)(sk+1) > 0. A
history is a finite prefix of a play ending in a state. Given a play π = s0ā0s1ā1 . . . and k ∈ N, we write
π|k for the history s0ā0 . . . āk−1sk. For any history h = s0ā0 . . . āk−1sk, we let last(h) = sk. We write
Plays(G) to denote the set of plays of G, Hist(G) to denote the set of histories of G. Given some initial
state sinit ∈ S, we write Hist(G, sinit) for the set of histories starting in state sinit.

There exist several classes of games that have been studied in their own right. A game is turn-based
if at each round, only one player can influence the next transition. In other words, G = (S,A(1), A(2), δ)
is turn-based if for all states s ∈ S, there exists i ∈ {1, 2} such that |A(i)(s)| = 1 (in which case P3−i

controls s). Turn-based games are traditionally described via a partition of the state space into states
controlled by P1 and states controlled by P2. A game is deterministic if its transitions are not subject
to randomness; a game G = (S,A(1), A(2), δ) is a deterministic game if for all s ∈ S and ā ∈ Ā(s), δ(s, ā)
is a Dirac distribution.

An interesting subclass of turn-based games is that of one-player games. A game is a one-player game
if only one player controls all transitions. A game G = (S,A(1), A(2), δ) is a one-player game if there exists
i ∈ {1, 2} such that for all s ∈ S, |A(i)(s)| = 1. A one-player game in the sense above is the equivalent
of a Markov decision process (MDP) in our context, and will be referred to as such. When dealing with
MDPs, we lighten notation and drop information related to the inactive player. We view MDPs as tuples
(S,A, δ) where S is a finite set of states, A is a finite set of actions and δ : S×A → D(S) is the transition
function. Notions defined for two-player concurrent games can be directly adapted to MDPs, e.g., a play
is a sequence in (SA)ω instead of a sequence in (SĀ)ω.

We fix a game G = (S,A(1), A(2), δ) for the remainder of the section.

Strategies and outcomes. A strategy is a function that describes how a player should act based on a
history. Players need not act in a deterministic fashion: they can use randomisation to select an action.
Formally, a (behavioural) strategy of Pi is a function σi : Hist(G) → D(A(i)) such that for all histories
h ∈ Hist(G), supp(σi(h)) ⊆ A(i)(last(h)). In other words, a strategy assigns to any history a distribution
over the actions available to Pi in this state.

When both players fix a strategy and an initial state is decided, we obtain a purely stochastic process,
i.e., a Markov chain. Let us recall the relevant σ-algebra for the definition of probabilities over plays.
For any history h ∈ Hist(G), we define Cyl(h) = {π ∈ Plays(G) | h is a prefix of π}, the cylinder of h,
consisting of plays that extend h. Let us denote by FG the σ-algebra generated by all cylinder sets.

Let σ1 and σ2 be strategies of P1 and P2 respectively and sinit ∈ S be an initial state. We define the
probability measure (over (Plays(G),FG)) induced by playing σ1 and σ2 from sinit in G, written Pσ1,σ2

sinit
, as

follows. For any history h = s0ā0 . . . sn ∈ Hist(G, sinit), the probability Pσ1,σ2
sinit

(Cyl(h)) assigned to Cyl(h)
is given by the product

n−1
∏

k=0

σ1(s0ā0 . . . sk)(a
(1)
k ) · σ2(s0ā0 . . . sk)(a

(2)
k ) · δ(sk, āk)(sk+1).
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For any history h ∈ Hist(G) \ Hist(G, sinit), we set Pσ1,σ2
sinit

(Cyl(h)) = 0. By Carathéodory’s extension
theorem [41, Theorem A.1.3], the measure described above can be extended in a unique fashion to
(Plays(G),FG). For MDPs, we drop the strategy of the absent player in the notation of this distribution
and write Pσ1

sinit
.

Let σi be a strategy of Pi. A play or play prefix s0ā0s1 . . . is said to be consistent with σi if for all

action indices k, it holds that σi(s0ā0 . . . sk)(a
(i)
k ) > 0.1

Outcome-equivalence of strategies. In later sections, we study the expressiveness of finite-memory
strategy models depending on the type of randomisation allowed. Two strategies may yield the same
outcomes despite being different: the actions suggested by a strategy in an inconsistent history can
be changed without affecting which probability distributions are induced by the strategy. Therefore,
instead of using the equality of strategies as a measure of equivalence, we consider some weaker notion
of equivalence, referred to as outcome-equivalence.

We say that two strategies σ1 and τ1 of P1 are outcome-equivalent if for any strategy σ2 of P2 and
for any initial state sinit, the probability distributions Pσ1,σ2

sinit
and Pτ1,σ2

sinit
coincide.

We now provide the criterion used in our proofs to establish the outcome-equivalence of strategies.
This criterion does not invoke the probability distributions induced by strategies directly. The idea is
that when comparing two strategies of a player, we need only be concerned with the suggestions these
strategies provide in histories that are consistent with them. In other words, any deviation in unreachable
histories does not affect the outcome. Hence, one could reformulate outcome-equivalence as having to
suggest the same distributions over actions in histories that are consistent with (one of) the strategies. In
the sequel, we prove that this reformulation is indeed equivalent to the definition of outcome-equivalence.
We rely on this reformulation to prove the outcome-equivalence of two strategies.

Lemma 2.1 (Strategic criterion for outcome-equivalence). Let σi and τi be two strategies of Pi.
These two strategies are outcome-equivalent if and only if for all histories h ∈ Hist(G), h consistent with
σi implies σi(h) = τi(h).

Proof. To aid with notation, we assume that i = 1; the proof of the other case is done by exchanging
the players below. First, we assume that σ1 and τ1 are outcome-equivalent. Let h ∈ Hist(G) be a history
that is consistent with σ1. Let sinit denote the first state of h and let σ2 be a strategy of P2 consistent
with h. Let a(1) ∈ A(1)(s) and a(2) ∈ supp(σ2(h)), and write ā = (a(1), a(2)). Let s ∈ supp(δ(last(h)), ā)).
By definition of the probability of a cylinder set and consistency of h with both σ1 and σ2, we have

σ1(h)(a
(1)) =

Pσ1,σ2
sinit

(Cyl(hās))

Pσ1,σ2
sinit (Cyl(h)) · σ2(h)(a(2)) · δ(last(h), ā)(s)

.

Furthermore, the outcome-equivalence of σ1 and τ1 implies that Pτ1,σ2
sinit

(Cyl(h)) = Pσ1,σ2
sinit

(Cyl(h)) > 0.
Therefore, we have

τ1(h)(a
(1)) =

Pτ1,σ2
sinit

(Cyl(hās))

Pτ1,σ2
sinit (Cyl(h)) · σ2(h)(a(2)) · δ(last(h), ā)(s)

.

It follows from the equations above and the outcome-equivalence of σ1 and τ1 that σ1(h)(a
(1)) =

τ1(h)(a
(1)). We have shown that σ1(h) = τ1(h), which ends the proof of the first direction.

Let us now assume that σ1 and τ1 coincide over histories consistent with σ1. Let σ2 be a strategy of P2

and sinit ∈ S be an initial state. It suffices to study the probability of cylinder sets. Let h ∈ Hist(G) be a
history starting in sinit. If h is consistent with σ1, then all prefixes of h also are, therefore the definition of
the probability of a cylinder ensures that Pσ1,σ2

sinit
(Cyl(h)) = Pτ1,σ2

sinit
(Cyl(h)). Otherwise, if h is not consistent

with σ1, then h is necessarily of the form h′āh′′ with h′ consistent with σ1 and σ1(h
′)(a(1)) = 0. It follows

that τ1(h
′)(a(1)) = 0, thus Pσ1,σ2

sinit
(h) = Pτ1,σ2

sinit
(h) = 0. This shows that σ1 and τ1 are outcome-equivalent,

ending the proof.

Subclasses of strategies. A strategy is called pure if it does not use randomisation; a pure strategy
of Pi can be viewed as a function Hist(G) → A(i). A strategy that only uses information on the current
state of the play is called memoryless : a strategy σi of Pi is memoryless if for all histories h, h′ ∈ Hist(G),
last(h) = last(h′) implies σi(h) = σi(h

′). Memoryless strategies can be viewed as functions S → D(A(i)).
Strategies that are both memoryless and pure can be viewed as functions S → A(i).

1 We use the terminology of consistency not only for plays and histories, but also for prefixes of plays that end
with an action pair.
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A strategy is said to be finite-memory (FM) if it can be encoded by a Mealy machine, i.e., an
automaton with outputs along its edges. We can include randomisation in the initialisation, outputs and
updates (i.e., transitions) of the Mealy machine. Formally, a stochastic Mealy machine of Pi is a tuple
M = (M,µinit, αnxt, αup), where M is a finite set of memory states, µinit ∈ D(M) is an initial distribution,
αnxt : M × S → D(A(i)) is the (stochastic) next-move function and αup : M × S × A(i) → D(M) is the
(stochastic) update function.

Before we explain how to define the strategy induced by a Mealy machine, let us first describe how
these machines work. Fix a Mealy machine M = (M,µinit, αnxt, αup). Let s0 ∈ S. At the start of a play,
an initial memory state m0 is selected randomly following µinit. Then, at each step of the play, the action

a
(i)
k of Pi is chosen following the distribution αnxt(mk, sk), whereas the action a(3−i) is independently

chosen according to the strategy of P3−i. The memory state mk+1 is then randomly updated following
the distribution αup(mk, sk, āk) and the game state sk+1 is chosen following the distribution δ(sk, āk),
both choices being made independently.

Let us now explain how a strategy can be derived from a Mealy machine. As explained previously,
when in a certain memory state m ∈ M and game state s ∈ S, the probability of an action a(i) ∈ A(i)(s)
being chosen is given by αnxt(m, s)(a(i)). Therefore, the probability of choosing the action a(i) ∈ A(i)

after some history h = ws (where w ∈ (SĀ)∗ and s = last(h)) is given by the sum, for each memory
state m ∈ M , of the probability that m was reached after w has taken place (i.e., after M processes w),
multiplied by αnxt(m, s)(a(i)).

To provide a formal definition of the strategy induced by M, we first describe the distribution over
memory states of M after elements of (SĀ)∗ take place (under the strategy induced by M). We formally
define this distribution inductively. Details for the derivation of the inductive formula, which rely on
conditional probabilities, are deferred to Appendix A.

The distribution µε over memory states after the empty word ε (i.e., nothing) has taken place is
by definition µinit. Assume inductively that we know the distribution µw for w = s0ā0 . . . sk−1āk−1. We
explain how to derive µwsk āk

from µw for any state sk ∈ supp(δ(sk−1, āk−1)) and for any pair of actions
āk ∈ Ā(sk).

In general, the choice of an action by Pi conditions what the predecessor memory states could be.

First, we note that if αnxt(m
′, sk)(a

(i)
k ) = 0 holds for all memory states m′ ∈ supp(µw), then the action

a
(i)
k is actually never chosen. We leave this case undefined (the related conditional probabilities are ill-

defined) and assume a
(i)
k ∈ supp(αnxt(m

′, sk)) for some m′ ∈ supp(µw). The equation for µwskāk
uses the

likelihood of being in a memory state knowing that the action a
(i)
k was chosen, and not µw directly. We

have, for any memory state m ∈ M ,

µwskāk
(m) =

∑

m′∈M µw(m
′) · αup(m

′, sk, āk)(m) · αnxt(m
′, sk)(a

(i)
k )

∑

m′∈M µw(m′) · αnxt(m′, sk)(a
(i)
k )

.

We remark that this quotient is not well-defined whenever for all m′ ∈ supp(µw), αnxt(m
′, sk)(a

(i)
k ) = 0,

further justifying the distinction above.
Using these distributions, we formally define the (partial) strategy σM

i induced by the Mealy machine
M = (M,µinit, αnxt, αup) as the strategy σM

i : Hist(G) → D(A(i)) such that for all histories h = ws, for
all actions a(i) ∈ A(i)(s),

σM
i (h)(a(i)) =

∑

m∈M

µw(m) · αnxt(m, s)(a(i)).

This strategy is only partially defined because distributions µw are not defined for all w ∈ (SĀ)∗. All
histories for which σM

i is undefined can be shown to be of the form hāh′ such that σM
i is defined for h

and σM
i (h)(a(i)) = 0. Therefore, no matter how the partial definition of σM

i given above is extended, it
does not influence the induced probability distribution over plays involving this strategy.

Classifying finite-memory strategies. In the sequel, we investigate the relationships between different
classes of finite-memory strategies with respect to expressive power. We classify finite-memory strategies
following the type of stochastic Mealy machines that can induce them. We introduce a concise notation
for each class: we use three-letter acronyms of the form XXX with X ∈ {D,R}, where the letters, in
order, refer to the initialisation, outputs and updates of the Mealy machines, with D and R respectively
denoting deterministic and randomised components. For instance, we will write RRD to denote the class
of Mealy machines that have randomised initialisation and outputs, but deterministic updates. We also
apply this terminology to FM strategies: we will say that an FM strategy is in the class XXX — i.e., it
is an XXX strategy — if it is induced by an XXX Mealy machine.
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Moreover, in the remainder of the paper, we will abusively identify Mealy machines and their induced
FM strategies. For instance, we will say that M is an XXX strategy to mean that M is an XXX
Mealy machine (thus inducing an XXX strategy). As a by-product of this identification, we apply the
terminology introduced previously for strategies to Mealy machines, without explicitly referring to the
strategy they induce. For instance, we may say a history is consistent with some Mealy machine, or that
two Mealy machines are outcome-equivalent. Let us note however that we will not use a Mealy machine
in lieu of its induced strategy whenever we are interested in the strategy itself as a function. This choice
lightens notations; the strategy induced by a Mealy machine need not be introduced unless it is required
as a function.

We close this section by commenting on some of the classes, and discuss previous appearances in the
literature, under different names. Pure strategies use no randomisation: hence, the class DDD corresponds
to pure FM strategies, which can be represented by Mealy machines that do not rely on randomisation.

Strategies in the class DRD have been referred to as behavioural FM strategies in [20]. The name
comes from the randomised outputs, reminiscent of behavioural strategies that output a distribution over
actions after a history. We note that stochastic Mealy machines that induce DRD strategies are such
that their distributions over memory states are Dirac due to the deterministic initialisation and updates.

Similarly, RDD strategies have been referred to as mixed FM strategies [20]. The general definition
of a mixed strategy is a distribution over pure strategies: under a mixed strategy, a player randomly
selects a pure strategy at the start of a play and plays according to it for the whole play. RDD strategies
are similar in the way that the random initialisation can be viewed as randomly selecting some DDD
strategy (i.e., a pure FM strategy) among a finite selection of such strategies.

The elements of RRR, the broadest class of FM strategies, have been referred to as general FM
strategies [20] and stochastic-update FM strategies [42, 43]. The latter name highlights the random
nature of updates and insists on the difference with models that rely on deterministic updates, more
common in the literature.

3 Taxonomy of finite-memory strategies

In this section, we comment on the relationships between the classes of finite-memory strategies in terms
of expressiveness. We say that a class C1 of FM strategies is no less expressive than a class C2 if for all
games G, for all FM strategies M ∈ C2 in G, one can find some FM strategy M′ ∈ C1 of G such that M
and M′ are outcome-equivalent strategies. For the sake of brevity, we will say that C2 is included in C1,
and write C2 ⊆ C1.

Figure 1.1 summarises our results. Each line representing an inclusion is decorated with a reference
to the relevant results. The strictness results hold in one-player deterministic games. In particular, there
are no collapses in the diagram in the turn-based setting, which subsumes two-player deterministic turn-
based games and Markov decision processes.

Some inclusions follow directly from some classes having more randomisation power than others: a
deterministic component can be emulated using Dirac distributions. For instance, the inclusion DRD ⊆
RRD follows from the fact that RRD Mealy machines have both randomised initialisation and outputs
whereas DRD ones only have randomised outputs. The inclusions RDD ⊆ DRD, RRR ⊆ DRR and
RRR ⊆ RDR, which do not follow from such arguments, are covered in Section 4.

Pure strategies are strictly less expressive than any other class of FM strategies; pure strategies cannot
induce any non-Dirac distributions on plays in deterministic one-player games. Other arguments for the
separation of classes of strategies are provided in Section 5.

We close this section by comparing our results with Kuhn’s theorem. Kuhn’s theorem asserts that
the classes of behavioural strategies and mixed strategies in games of perfect recall share the same
expressiveness. Games of perfect recall have two traits: players never forget the sequence of histories
controlled by them that have taken place and they can see their own actions. In particular, stochastic
games of perfect information are a special case of games of perfect recall. Recall that mixed strategies
are distributions over pure strategies. We comment briefly on the techniques used in the proof of Kuhn’s
theorem, and compare them with the finite-memory setting. Let us fix a game G = (S,A(1), A(2), δ).

On the one hand, the emulation of mixed strategies with behavioural strategies is performed as
follows. Let pi be a mixed strategy of Pi, i.e., a distribution over pure strategies of G. An outcome-
equivalent behavioural strategy σi is constructed such that, for all histories h ∈ Hist(G) and actions
a(i) ∈ A(i)(last(h)), the probability σi(h)(a

(i)) is defined as

pi({τi pure strategy | τi consistent with h and τi(h) = a(i)})

pi({τi pure strategy | τi consistent with h})
.
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In the finite-memory case, similar ideas can be used to show that RDD ⊆ DRD. In the proof of Theo-
rem 4.1, from some RDD strategy (i.e., a so-called mixed FM strategy), we construct a DRD strategy
(i.e., a so-called behavioural FM strategy) that keeps track of the finitely many pure FM strategies that
the RDD strategy mixes and that are consistent with the current history. An adaption of the quotient
above is used in the next-move function of the DRD strategy.

On the other hand, the emulation of behavioural strategies by mixed strategies exploits the fact
that mixed strategies may randomise over infinite sets. In a finite-memory setting, the same techniques
cannot be applied. As a consequence, the class of RDD strategies is strictly included in the class of DRD
strategies. In a certain sense, one could say that Kuhn’s theorem only partially holds in the case of FM
strategies.

4 Non-trivial inclusions

This section covers the non-trivial inclusions that are asserted in the lattice of Figure 1.1. The structure
of this section is as follows. Section 4.1 covers the inclusion RDD ⊆ DRD. The inclusion RRR ⊆ DRR
is presented in Section 4.2. Finally, we close this section by proving the inclusion RRR ⊆ RDR in
Section 4.3.

4.1 Simulating RDD strategies with DRD ones

In this section, we focus on the classes RDD and DRD. We prove that for all RDD strategies in any
game, one can find some outcome-equivalent DRD strategy (Theorem 4.1). Let us note that the converse
inclusion is not true, and this discussion is relegated to Section 5.2. The construction provided in the
proof of Theorem 4.1 yields a DRD strategy that has a state space of size exponential in the size of the
state space of the original RDD strategy. We complement Theorem 4.1 by proving that there are some
RDD strategies for which this exponential blow-up in the number of states is necessary for any outcome-
equivalent DRD strategy (Lemma 4.1). We show that this blow-up is unavoidable in both deterministic
turn-based two-player games and MDPs.

Let G = (S,A(1), A(2), δ) be a game. Fix an RDD strategy M = (M,µinit, αnxt, αup) of Pi. Let us
sketch how to emulate M with a DRD strategy N = (N,ninit, βnxt, βup) built with a subset construction-
like approach. The memory states of N are functions f : supp(µinit) → M ∪ {⊥}. A memory state f is
interpreted as follows. For all initial memory states m0 ∈ supp(µinit), we have f(m0) = ⊥ if the history
seen up to now is not consistent with the pure FM strategy (M,m0, αnxt, αup), and otherwise f(m0) is
the memory state reached in the same pure FM strategy after processing the current history. Updates
are naturally derived from these semantics.

Using this state space and update scheme, we can compute the likelihood of each memory state of
the mixed FM strategy M after some sequence w ∈ (SĀ)∗ has taken place. Indeed, we keep track of each
initial memory state from which it was possible to be consistent with w, and, for each such initial memory
state m0, the memory state reached after w was processed starting in m0. Therefore, this likelihood can
be inferred from µinit; the probability of M being in m ∈ M after w has been processed is given by the
(normalised) sum of the probability of each initial memory state m0 ∈ supp(µinit) such that f(m0) = m.

The definition of the next-move function of N is directly based on the distribution over states of M
described in the previous paragraph, and ensures that the two strategies select actions with the same
probabilities at any given state. For any action a(i) ∈ A(i)(s), the probability of a(i) being chosen in
game state s and in memory state f is determined by the probability of M being in some memory state
m such that αnxt(m, s) = a(i), where this probability is inferred from f .

Intuitively, we postpone the initial randomisation and instead randomise at each step in an attempt of
replicating the initial distribution in the long run. In the sequel, we formalise the DRD strategy outlined
above and prove its outcome-equivalence with the RDD strategy it is based on.

Theorem 4.1. Let G = (S,A(1), A(2), δ) be a game. Let M = (M,µinit, αnxt, αup) be an RDD strategy of
Pi. There exists a DRD strategy N = (N,ninit, βnxt, βup) such that N and M are outcome-equivalent.

Proof. We formalise the strategy described above. Let us write M0 for the support of the initial distri-
bution µinit of M. We define the set of memory states N to be the set of functions M0 → M ∪ {⊥}. The
initial memory state of N is given by the identity function ninit : m0 7→ m0 over M0. The update function
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βup is as follows. For any f ∈ N , any s ∈ S and ā ∈ Ā(s), we let βup(f, s, ā) be the function f ′ such that
for all m0 ∈ M0, we have

f ′(m0) =

{

αup(f(m0), s, ā) if f(m0) ∈ M and αnxt(f(m0), s) = a(i)

⊥ otherwise.

Whenever we perform an update of the memory, we refine our knowledge on what the initial memory state
could have been according to the actions selected by Pi prior to the update. This refinement proceeds by
mapping to ⊥ any initial memory states m0 such that the played action would not have been selected in
the memory state f(m0) ∈ M , effectively removing m0 from the set of initial memory states from which
we could have started.

The next-move function βnxt is defined as follows: for any memory state f ∈ N and s ∈ S, we let
βnxt(f, s) be arbitrary if f maps ⊥ to all memory states, and otherwise βnxt(f, s) is the distribution over
A(i) such that, for all a(i) ∈ A(i)(s), we have

βnxt(f, s)(a
(i)) =

∑

m0∈M0

αnxt(f(m0),s)=a(i)

µinit(m0)
∑

m′
0∈f−1(M) µinit(m′

0)
.

We note that the memory state f ∈ N mapping ⊥ to all initial memory states is only reached
whenever a history inconsistent with M has taken place under M. Thanks to Lemma 2.1, we need not
take in account histories inconsistent with M to establish the outcome-equivalence of M and N . This
explains why the next-move function is left arbitrary in that case.

We now show that M and N are outcome-equivalent via Lemma 2.1. To this end, we first show
a relation, for each w ∈ (SĀ)∗ consistent with M, between the distribution µw ∈ D(M) over the
memory states of M after processing w and the function fw reached after N reads w (recall that for a
DRD strategy, the distribution over its states after processing w is a Dirac distribution). Formally, this
relation is as follows: for any w ∈ (SĀ)∗ consistent with M and any memory state m ∈ M , we have

µw(m) =

∑

m0∈f
−1
w (m) µinit(m0)

∑

m0∈f
−1
w (M) µinit(m0)

. (4.1)

In the above, f−1
w (M) is the set of potential initial m0 ∈ M0 of M that are compatible with w taking

place. This equation intuitively expresses that N accurately keeps track of the current distribution over
memory states of M along a play. A corollary of the above is that whenever we follow histories consistent
with M, we are assured to never reach the memory state of N that assigns ⊥ to all states in M0.

We prove Equation (4.1) with an inductive argument. The case of w = ε is trivial: by definition
µε = µinit and fε is the identity function over M0. Now, let us assume that Equation (4.1) holds for
w′ ∈ (SĀ)∗ consistent with M, and let us prove it for w = w′sā consistent with M.

When writing relations between µw′ and µw in the remainder of the proof, we adopt notation slightly
different to Section 2. In this case, the update function αup and next-move αnxt of M are deterministic.
Thus, instead considering sums weighted by Dirac distributions, we only sum over relevant states for
clarity.

First, we remark that it may be the case that f−1
w (M) 6= f−1

w′ (M). In light of this, we must take care
not to have f−1

w (M) = ∅, in which case the denominator of the right-hand side of Equation (4.1) evaluates
to zero. From the definition of βup, it follows that f−1

w (M) is formed of the memory elements m0 ∈ f−1
w′ (M)

such that αnxt(fw′(m0), s) = a(i). We know that w = w′sā is consistent with M. This implies there is
some m ∈ M such that αnxt(m, s) = a(i) and µw′(m) > 0. From the inductive hypothesis (Equation (4.1)
with w′), we obtain that there is some m0 ∈ f−1

w′ (M) such that fw′(m0) = m, otherwise the right-hand
side of the equation would evaluate to zero. The equality fw′(m0) = m implies m0 ∈ f−1

w (M), thus we
have shown that M0(m) is non-empty.

Now that we have shown that Equation (4.1) is well-defined for w, we move on to its proof. Let us
write αnxt(·, s)−1(a(i)) for the set {m ∈ M | αnxt(m, s) = a(i)}. By definition, we have

µw(m) =

∑

m′∈αnxt(·,s)
−1(a(i))

αup(m
′,s,ā)=m

µw′(m′)

∑

m′∈αnxt(·,s)−1(a(i)) µw′(m′)
.
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For the numerator, we obtain from the inductive hypothesis that

∑

m′∈αnxt(·,s)
−1(a(i))

αup(m
′,s,ā)=m

µw′(m′) =
∑

m′∈αnxt(·,s)
−1(a(i))

αup(m
′,s,ā)=m

∑

m0∈f
−1

w′ (m
′)

µinit(m0)
∑

m′
0∈f

−1

w′ (M) µinit(m′
0)

=
∑

m0∈f
−1
w (m)

µinit(m0)
∑

m′
0∈f

−1

w′ (M) µinit(m′
0)
.

To derive the simple sum from the double sum, we rely on the fact that fw(m0) = m holds if and only
if αup(fw′(m0), s, ā) = m and αnxt(fw′(m0), s) = a(i), by definition of βup.

For the denominator, we obtain from the inductive hypothesis,

∑

m′∈αnxt(·,s)−1(a(i))

µw′(m′) =
∑

m′∈αnxt(·,s)−1(a(i))

∑

m0∈f
−1

w′ (m
′)

µinit(m0)
∑

m′
0∈f

−1

w′ (M) µinit(m′
0)

=
∑

m0∈f
−1
w (M)

µinit(m0)
∑

m′
0∈f

−1

w′ (M) µinit(m′
0)
.

The last equality is a consequence of the definition of βup: recall that f−1
w (M) consists of the elements

m0 of M0(w
′) such that αnxt(fw′(m0), s) = a(i). By combining the two equations above, we immediately

obtain Equation (4.1), ending the inductive argument.
We now establish the outcome-equivalence of M and N . Let h = ws ∈ Hist(G) be a history of G

consistent with M. Let a(i) ∈ A(i)(s) be an action enabled in s. The probability of a(i) being played
after h under M is given by the weighted sum

∑

m∈αnxt(·,s)−1(a(i)) µw(m). Under N , the probability of

a(i) being played is βnxt(fw, s)(a
(i)). It follows from Equation (4.1) that these two probabilities coincide.

We have shown the outcome-equivalence of strategies M and N , ending the proof.

The construction of a DRD strategy provided in the proof of Theorem 4.1 leads to an exponential
blow-up of the memory state space. For an RDD strategy M = (M,µinit, αnxt, αup), we have constructed
an outcome-equivalent DRD strategy with a state space consisting of functions supp(µinit) → M ∪
{⊥}, therefore with a state space of size (|M | + 1)|supp(µinit)|. In the upcoming lemma, we state that
an exponential blow-up in the number of initial memory states cannot be avoided in general, even in the
turn-based setting.

Lemma 4.1. Let k ∈ N0. There exist a two-player turn-based deterministic game (respectively an MDP)
Gk with k+2 states, 4k+2 transitions, k+2 actions, and an RDD strategy Mk of P1 with k states such
that any outcome-equivalent DRD strategy must have at least 2k − 1 states.

Proof. We construct a two-player turn-based deterministic game Gk = (Sk, A
(1)
k , A

(2)
k , δk) as follows. We

let Sk = {sj | 1 ≤ j ≤ k} ∪ {t, s⋆}. The sets of actions, common to the two players, are Ak := A
(1)
k =

A
(2)
k = {ai | 1 ≤ i ≤ k} ∪ {b,⊥}. All states besides t are controlled by P1 in the following sense. For all

1 ≤ j ≤ k, we let A
(1)
k (sj) = {aj, b} and A

(2)
k (sj) = {⊥}. Next, we let A

(1)
k (s⋆) = {aj | 1 ≤ j ≤ k} and

A
(2)
k (s⋆) = {⊥}. Finally, for state t, we have A

(1)
k (t) = {⊥} and A

(1)
k (t) = Ak \ {⊥}.

We define the deterministic transition function δk as a function Sk × Āk → Sk (instead of dealing
with Dirac distributions over successor states). For each j ∈ {1, . . . , k}, all transitions from sj move
back to t, i.e., δk(sj , aj ,⊥) = δk(sj , b,⊥) = t. In state t, we set for all j ∈ {1, . . . , k}, δk(t,⊥, aj) = sj
and δk(t,⊥, b) = s⋆. In state s⋆, for all j ∈ {1, . . . , k}, the action aj labels a self-loop, i.e., we have
δk(s

⋆, aj ,⊥) = s⋆. We illustrate the game G3 in Figure 4.1. We omit ⊥ actions from edge labels to lighten
the figure.

We define an RDD strategy Mk = (M,µinit, αnxt, αup) of P1 as follows. We let M = {1, . . . , k}, and
µinit is taken to be the uniform distribution over M . The memory update function is taken to be trivial:
we set αup(m, s, ā) = m for all m ∈ M , s ∈ Sk and ā ∈ Āk. For each memory state m ∈ M , we let
αnxt(m, sm) = αnxt(m, s⋆) = am and, for all j 6= m, we let αnxt(m, sj) = b, and we let αnxt(m, t) = ⊥.
In M, once the initial state is decided, it no longer changes. In the memory state m ∈ M , the strategy
prescribes action am in the states sm and s⋆, and in states sj with j 6= m, the strategy prescribes action
b.
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Fig. 4.1: The game G3 from the proof of Lemma 4.1. Circles and squares respectively represent states
controlled by P1 and P2.

We now establish that all DRD strategies that are outcome-equivalent to M must have at least 2k−1
memory states. Let N = (N,ninit, βnxt, βup) be one such FM strategy. We give a lower bound on |N | by
showing that there must be at least 2k − 1 distinct distributions of the form βnxt(·, s⋆).

Let E = {j1, . . . , jℓ} ( M be a proper subset of M . Consider the history (⊥ actions are omitted
and parentheses are provided to improve readability) hE = (t aj1 sj1 b)(t aj2 sj2 b) . . . (t ajℓ sjℓ b)t b s

⋆. Let
m ∈ E. We see that along the history hE , the action b is used in state sm. Therefore, hE is not consistent
with the pure FM strategy (M,m,αnxt, αup) derived from M by setting its initial state to m. Similarly,
we see that for m /∈ E, the history hE is consistent with the pure FM strategy (M,m,αnxt, αup). Thus, the
set of actions that can be played after hE when following Mn is exactly the set {am | m ∈ M \ E} 6= ∅.
Due to the deterministic initialisation and updates of DRD strategies, there must be some nE ∈ N
such that supp(βnxt(nE , s

⋆)) = {am | m ∈ M \ E}. Necessarily, we must have supp(βnxt(nE , s
⋆)) 6=

supp(βnxt(nE′ , s⋆)) whenever E 6= E′, hence nE 6= nE′ . Consequently, we must have at least one memory
state in N per proper subset of M , i.e., |N | ≥ 2k − 1.

The proof of the existence of a suitable MDP remains. We explain how to adapt the deterministic
game Gk. To change Gk to a suitable MDP G′

k, keep the same state space and remove all actions of P2.
All transitions are left unchanged except the transitions from state t, which are altered as follows. When
using ⊥ in t, we let there be a uniform probability of reaching a state other than t in G′

k. The only
(formal) change to be made to Mk to obtain a suitable RDD strategy M′

k of G′
k is to remove the actions

of P2 from updates.

By performing these changes, we can reuse the argument above for the two-player case to conclude
that any DRD strategy that is outcome-equivalent to M′

k in G′
k requires at least 2k − 1 memory states.

This concludes our explanation of how to adapt the game and strategy above to the context of MDPs.

4.2 Simulating RRR strategies with DRR ones

In this section, we establish that DRR strategies are as expressive as RRR strategies, i.e., randomness
in the initialisation can be removed. We outline the ideas behind the construction of a DRR strategy
that is outcome-equivalent to a given RRR strategy. The general idea is to simulate the behaviour of
the RRR strategy at the start of the play using a new initial memory state and then move back into the
RRR strategy we simulate.

We substitute the random selection of an initial memory element in two stages. To ensure the first
action is selected in the same way under both the supplied strategy and the strategy we construct, we
rely on randomised outputs. The probability of selecting an action a(i) in a given state s of the game in
our new initial memory state is given as the sum of selecting action a(i) in state s in each memory state
m weighed by the initial probability of m.

We then leverage the stochastic updates to simulate that we had been using the original RRR strategy
from the start. To achieve this, we base the update function of the constructed Mealy machine on the
equations for the update of the distribution over memory states after a some sequence in w ∈ (SĀ)∗

takes place (denoted by µw in Section 2).

We now state our expressiveness result and formalise the construction outlined above.
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Theorem 4.2. Let G = (S,A(1), A(2), δ) be a game. Let M = (M,µinit, αnxt, αup) be an RRR strategy
of Pi. There exists a DRR strategy N = (N,ninit, βnxt, βup) such that N and M are outcome-equivalent,
and such that |N | = |M |+ 1.

Proof. Let us define N = (N,ninit, βnxt, βup) as follows. Let ninit be such that ninit /∈ M . We set N =
M ∪ {ninit}. We let βup and βnxt coincide with αup and αnxt over M × S × Ā and M × S respectively
(for the update function, we identify distributions over M to distributions over N that assign probability
zero to ninit). It remains to define these two functions over {ninit} × S × Ā and {ninit} × S respectively.

First, we complete the definition of the memory update function βup. Let s ∈ S and ā ∈ Ā. We
let βup(ninit, s, ā)(ninit) = 0. We assume that there exists some m0 ∈ M such that µinit(m0) > 0 and
αnxt(m0, s)(a

(i)) > 0 (i.e., the action a(i) has a positive probability of being played in s at the start of a
play under the strategy M). We set, for all m ∈ M ,

βup(ninit, s, ā)(m) =

∑

m′∈M µinit(m
′) · αup(m

′, s, ā)(m) · αnxt(m
′, s)(a(i))

∑

m′∈M µinit(m′) · αnxt(m′, s)(a(i))
.

Whenever we have αnxt(m0, s)(a
(i)) = 0 for all m0 ∈ M such that µinit(m0) > 0, we let βup(ninit, s, ā) be

arbitrary.
For the next-move function βnxt, we define, for all states s ∈ S and actions a(i) ∈ A(i)(s),

βnxt(ninit, s)(a
(i)) =

∑

m∈M

µinit(m) · αnxt(m, s)(a(i)).

It remains to prove that M and N are outcome-equivalent. By Lemma 2.1, it suffices to show that
both strategies suggest the same distributions over actions along histories consistent with M. We provide
a proof in two steps. First, we consider histories with a single state. Second, we show that the distributions
over memory states coincide in both Mealy machines after any w ∈ SĀ that is consistent with M takes
place. We conclude from this and the construction of N that M and N map all histories that are
consistent with M and have more than one state to the same distribution over actions of Pi, ending the
proof.

We show the first claim above. Let s ∈ S and a(i) ∈ A(i)(s). On the one hand, the probability of the
action a(i) being played after the history s under M is given by

∑

m∈M

µinit(m) · αnxt(m, s)(a(i)).

On the other hand, the probability of this same action a(i) being played after the history s under N is
given by βnxt(ninit, s)(a

(i)). These two probabilities coincide by construction.
Second, let w = sā ∈ SĀ be consistent with M. Let µw and νw denote the distribution over memory

states after w takes place under M and N respectively. Fix some m ∈ M , and let us prove that
µw(m) = νw(m). On the one hand, we have

µw(m) =

∑

m′∈M µinit(m
′) · αup(m

′, s, ā)(m) · αnxt(m
′, s)(a(i))

∑

m′∈M µinit(m′) · αnxt(m′, s)(a(i))

= βup(ninit, s, a
(i))(m),

and on the other hand, we have (because ninit is the sole initial state of N ),

νw(m) =
βup(ninit, s, ā)(m) · βnxt(ninit, s)(a

(i))

βnxt(ninit, s)(a(i))
= βup(ninit, s, ā)(m).

We have shown that µw = νw. Furthermore, because αnxt and βnxt agree over M × S, and that αup

and βup agree over M × S × Ā, this equality generalises to all w ∈ (SĀ)+ that are consistent with M.
It follows that for any history h ∈ (SĀ)+S that is consistent with M, the images of h by the strategies
induced by M and N match. We conclude that M and N are outcome-equivalent by Lemma 2.1.

4.3 Simulating RRR strategies with RDR ones

We are concerned in this section with the simulation of RRR strategies by RDR strategies, i.e., with sub-
stituting randomised outputs with deterministic outputs. The idea behind the removal of randomisation
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in outputs is to simulate said randomisation by means of both stochastic initialisation and updates. These
are used to preemptively perform the random selection of an action, simultaneously with the selection
of an initial or successor memory state.

Let G = (S,A(1), A(2), δ) be a game and let M = (M,µinit, αnxt, αup) be an RRR strategy of Pi.
We construct an RDR strategy N = (N, νinit, βnxt, βup) that is outcome-equivalent to M and such that
|N | ≤ |M | · |S| · |A(i)|. The state space of N consists of pairs (m,σi) where m ∈ M and σi : S → A(i)

is a pure memoryless strategy of Pi. To achieve our bound on the size of N , we cannot consider all
pure memoryless strategies of Pi, as there are exponentially many. We illustrate how we select pure
memoryless strategies to achieve the aforementioned bound through the following example. We apply
the upcoming construction on a DRD strategy (which is a special case of RRR strategies) with a single
memory state (i.e., a memoryless randomised strategy).

Example 4.1. We consider a game G = (S,A(1), A(2), δ) where S = {s1, s2, s3}, A(1) = {a1, a2, a3} and all
actions are enabled in all states. We need not specify A(2) and δ for this example. For our construction,
we fix an order on the actions of G: a1 < a2 < a3.

Let M = ({m},m, αnxt, αup) be the DRD strategy such that αnxt(m, s1) and αnxt(m, s2) are uni-
form distributions over {a1, a2} and A(1) respectively, and αnxt(m, s3) is defined by αnxt(m, s3)(a1) =

1
3 ,

αnxt(m, s3)(a2) =
1
6 and αnxt(m, s3)(a3) =

1
2 .

Figure 4.2 illustrates the probability of each action being chosen in each state as the length of a
segment. Let us write 0 = x1 < x2 < x3 < x4 < x5 = 1 for all of the endpoints of the segments appearing
in the illustration. For each index k ∈ {1, . . . , 4}, we define a pure memoryless strategy σk that assigns to
each state the action lying in the segment above it in the figure. For instance, σ2 is such that σ2(s1) = a1
and σ2(s2) = σ2(s3) = a2. Furthermore, for all k ∈ {1, . . . , 4}, the length xk+1 − xk of its corresponding
interval denotes the probability of the strategy being chosen during stochastic updates.

s1 a1 a2

s2 a1 a2 a3

s3 a1 a2 a3

σk σ1 σ2 σ3 σ4

x1 = 0 x2 = 1

3
x3 = 1

2
x4 = 2

3
x5 = 1

Fig. 4.2: Representation of cumulative probability of actions under strategy M and derived memoryless
strategies.

We construct an RDR strategy N = (N, νinit, βnxt, βup) that is outcome-equivalent to M in the
following way. We let N = {m} × {σ1, σ2, σ3, σ4}. The initial distribution is given by νinit(m,σk) =
xk+1 − xk, i.e., the probability of σk in the illustration. We set, for any j, k ∈ {1, . . . , 4}, s ∈ S and
a(1) ∈ A(1), βup((m,σk), s, a

(1))((m,σj)) = xj+1 − xj . Finally, we let βnxt((m,σk), s) = σk(s) for all
k ∈ {1, . . . , 4} and s ∈ S.

The argument for the outcome-equivalence of N and M is the following; for any state s ∈ S, the
probability of moving into a memory state (m,σk) such that σk(s) = a is by construction the probability
αnxt(m, s). ⊳

In the previous example, we had a unique memory state m and we defined some memoryless strategies
from the next-move function partially evaluated in this state (i.e., from αnxt(m, ·)). In general, each
memory state may have a different partially evaluated next-move function, and therefore we must define
some memoryless strategies for each individual memory state. For each memory state, we can bound the
number of derived memoryless strategies by |S| · |A(i)|; we look at cumulative probabilities over actions
(of which there are at most |A(i)|) for each state. This explains our announced bound on |N |.

Furthermore, in general, the memory update function is not trivial. Generalising the construction
above can be done in a straightforward manner to handle updates. Intuitively, the probability to move
to some memory state of the form (m,σi) is given by the probability of moving into m multiplied by the
probability of σ (in the sense of Figure 4.2).
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We now formally state our result in the general setting and provide its proof. The Mealy machine
we construct has updates that do not depend on the actions of the player who owns it; this property is
useful when we study games of imperfect information in Section 7.

Theorem 4.3. Let G = (S,A(1), A(2), δ) be a game. Let M = (M,µinit, αnxt, αup) be an RRR strategy of
Pi. There exists an RDR strategy N = (N, νinit, βnxt, βup) such that N and M are outcome-equivalent,
and such that |N | ≤ |M | · (|S| · (|A(i)| − 1) + 1). Furthermore, the updates of N do not depend on the
actions of Pi.

Proof. Let us fix a linear order on the set of actions A(i), denoted by <. Fix some m ∈ M . We let
xm
1 < . . . < xm

ℓ(m) denote the elements of the set







∑

b(i)<a(i)

αnxt(m, s)(b(i)) | s ∈ S, a(i) ∈ A(i)







that are strictly inferior to 1, and let xm
ℓ(m)+1 = 1. These xm

j represent the cumulative probability provided

by αnxt(m, ·) over actions of Pi taken in order, for each state of G. For each j ∈ {1, . . . , ℓ(m)}, we define
a memoryless strategy σm

j : S → A(i) as follows: we have σm
j (s) = a(i) if

∑

b(i)<a(i) αnxt(m, s)(b(i)) ≤

xm
j <

∑

b(i)≤a(i) αnxt(m, s)(b(i)). In other words, for any state s ∈ S, we have σm
j (s) = a(i) whenever

xm
j is at least the cumulative probability of actions strictly inferior to a(i) in αnxt(m, s) and at most the

cumulative probability of actions up to action a(i) included. Refer to Figure 4.2 of Example 4.1 for an
explicit illustration. We refer to xm

j+1 − xm
j as the probability of σm

j in the sequel.

Let m ∈ M , s ∈ S and a(i) ∈ A(i)(s). We show that we can relate αnxt(m, s)(a(i)) and the sum of
the probabilities of each σm

j such that σm
j (s) = a(i) as follows. First, we introduce some notation. Let

I(m, s, a(i)) denote the set of indices j such that σm
j (s) = a(i), i.e., the indices such that the jth strategy

related to m prescribes action a(i) in s. It holds that
∑

j∈I(m,s,a(i))

(xm
j+1 − xm

j ) = αnxt(m, s)(a(i)). (4.2)

Let s ∈ S and a(i) ∈ A(i)(s). Equation (4.2) can be proven as follows. First, note that all indices j
appearing in the sum are consecutive by construction. Therefore, the sum above is telescoping and is
equal to xm

j++1 − xm
j−

, where j+ and j− denote the largest and smallest indices in the sum respectively.

By construction, we have xm
j−

=
∑

b(i)<a(i) αnxt(m, s)(b(i)) and xm
j++1 =

∑

b(i)≤a(i) αnxt(m, s)(b(i)). We

conclude that xm
j++1 − xm

j−
= αnxt(m, s)(a(i)), proving Equation (4.2). This equation is used to establish

the outcome-equivalence of M with the strategy defined below.
We now define an RDR strategy N = (N, νinit, βnxt, βup). We define

N = {(m,σm
j ) | m ∈ M, 1 ≤ j ≤ ℓ(m)}.

The initial distribution and update function of N are derived from those of M multiplied with the
probability of the memoryless strategy that appears in the second component of the memory state of N
into which we move. The initial distribution νinit is defined as νinit((m,σm

j )) = µinit(m) ·(xm
j+1−xm

j ) for all

(m,σm
j ) ∈ N . The update function is defined as βup((m,σm

j ), s, ā)((m′, σm′

k )) = αup(m, s, b̄)(m′) · (xm′

k+1 −

xm′

k ), where b̄ = (σm
j (s), a(2)) if i = 1 (respectively b̄ = (a(1), σm

j (s)) if i = 2), for all (m,σm
j ), (m′, σm′

k ) ∈

N , s ∈ S and ā ∈ Ā. We remark that this update function does not depend on the action of Pi given as
input. Finally, the deterministic next-move function of N is defined as βnxt((m,σm

j ), s) = σm
j (s) for all

(m,σm
j ) ∈ N and all s ∈ S.

We now prove the outcome-equivalence of M and N . For any w ∈ (SĀ)∗, let µw (resp. νw) denote
the distribution over M (resp. N) after w has occurred under strategy M (resp. N ). It follows from
Lemma 2.1 and the definition of strategies derived from FM strategies that it suffices to establish, for all
histories h = ws consistent with M, that the following holds:

∑

m∈M

µw(m) · αnxt(m, s)(a(i)) =
∑

m∈M

∑

j∈I(m,s,a(i))

νw((m,σm
j )). (4.3)

To prove Equation (4.3), we rely on the following property: for any w ∈ (SĀ)∗ consistent with M,
µw(m) is proportional to νw((m,σm

j )). To be precise, for any w ∈ (SĀ)∗ consistent with M, we have

νw((m,σm
j )) = (xm

j+1 − xm
j ) · µw(m). (4.4)
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To show Equation (4.4), we proceed by induction. Consider the empty word w = ε. Because µinit = µε

and νinit = νε, Equation (4.4) follows from the definition of νinit. Let us now assume inductively that for
w′ ∈ (SĀ)∗ consistent with M, we have Equation (4.4) and let us prove it for w = w′sā consistent with
M. Fix (m,σm

j ) ∈ N .
To invoke the inductive relation between νw and νw′ , we must have that w is consistent with N . There

exist m′ ∈ supp(µw′) such that αnxt(m
′, s)(a(i)) > 0 and k ∈ I(m′, s, a(i)) (this set is non-empty due to

αnxt(m
′, s)(a(i)) > 0). By the induction hypothesis, we obtain νw′((m′, σm′

k )) > 0, which is sufficient to
conclude that w is consistent with N . We thus obtain, from the equation relating νw and νw′ ,

νw((m,σm
j )) =

∑

m′∈M

∑

k∈I(m′,s,a(i)) νw′((m′, σm′

k )) · βup((m
′, σm′

k ), s, ā)((m,σm
j ))

∑

m′∈M

∑

k∈I(m′,s,a(i)) νw′((m′, σm′

k ))
.

The numerator of the above can be rewritten as follows, by successively using the definition of βup followed
by the inductive hypothesis and Equation (4.2):

∑

m′∈M

∑

k∈I(m′,s,a(i))

νw′((m′, σm′

k )) · αup(m
′, s, ā)(m) · (xm

j+1 − xm
j )

=(xm
j+1 − xm

j ) ·
∑

m′∈M



αup(m
′, s, ā)(m) · µw′(m′) ·

∑

k∈I(m′,s,a(i))

(xm′

k+1 − xm′

k )





=(xm
j+1 − xm

j ) ·
∑

m′∈M

αup(m
′, s, ā)(m) · µw′(m′) · αnxt(m

′, s)(a(i)).

Following the same reasoning, the denominator can be rewritten as
∑

m′∈M

µw′(m′) · αnxt(m
′, s)(a(i)).

By combining the equations above and the formula for the update of µw, we obtain νw((m,σm
j )) =

(xm
j+1 − xm

j ) · µw(m), ending the proof of Equation (4.4).
We show that Equation (4.4) implies Equation (4.3), which will prove that M and N are outcome-

equivalent. Let h = ws ∈ Hist(G) be a history consistent with M. Let a(i) ∈ A(i)(s). The probability
that the action a(i) is chosen after history h under M is given by

∑

m∈M µw(m) · αnxt(m, s)(a(i)). The

probability that a(i) is selected after h under N , on the other hand, is given by

∑

m∈M

∑

j∈I(m,s,a(i))

νw((m,σm
j )) =

∑

m∈M



µw(m) ·
∑

j∈I(m,s,a(i))

(xm
j+1 − xm

j )





=
∑

m∈M

µw(m) · αnxt(m, s)(a(i)).

In the above, the first equation is obtained from Equation (4.4) and the second equation follows from
Equation (4.2). This concludes the argument for the outcome-equivalence of our two FM strategies.

To end the proof of this theorem, we prove the upper bound on |N | given in the statement of the result.
For any memory state m ∈ M , ℓ(m) is bounded by |S|·(|A(i)|−1)+1: by definition of the numbers xm

j , we

see that we must have ℓ(m) ≤ |S| · |A(i)|. To obtain the aforementioned bound, observe that for all s ∈ S,
we have

∑

b(i)<minA(i) αnxt(m, s)(b(i)) = 0, i.e., 0 admits (at least) |S| different writings in the set of the

xm
j s, hence ℓ(m) ≤ |S|·|A(i)|−(|S|−1) = |S|·(|A(i)|−1)+1. Therefore, we have at most |S|·(|A(i)|−1)+1

pairs of the form (m,σm
j ) per memory state m ∈ M . It follows that |N | ≤ |M | · (|S| · (|A(i)|− 1)+1).

Remark 4.1. The choice of the order on the set of actions fixed at the start of the previous proof influences
the size of the constructed strategy. It is not necessary to use the same ordering of actions for all memory
states. The order is used to define all memoryless strategies of the form σm

j , which do not interact with
strategies associated to other memory states. For this reason, it is possible to use different orderings on
actions depending on the memory state m that is considered. ⊳

Remark 4.2. The upper bound on the number of memory states given in the statement of Theorem 4.3
can be slightly improved in a turn-based setting. In general, we can replace the term |S| in the bound
by the number of states that Pi controls (more precisely, by the number of Pi-controlled states with at
least two enabled actions). ⊳
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5 Separating classes of strategies

We now discuss the separation of strategies given in the lattice of Figure 1.1, and in particular we consider
the strictness of inclusions. All separation results hold in one-player deterministic games with a single
state and two actions. This is one of the simplest possible settings to show that strategy classes are
distinct. Indeed, in a game with a single state and a single action, the only strategy is to always play the
unique action, and therefore all strategy classes collapse into one. For the entirety of this section, we let
Ga,b denote the game depicted in Figure 5.1, and we provide strategies of Ga,b to show that strategy classes
differ. We complement the separating strategies from Ga,b with problem instances from the literature for
which strategies from some class suffice whereas strategies from the compared class do not.

sa b

Fig. 5.1: The MDP Ga,b with a single state and two actions.

We illustrate FM strategies witnessing non-inclusions asserted in the lattice of Figure 1.1 in Figures 5.2
and 5.4. The Mealy machines are interpreted as follows. Edges that exit memory states read a game state
(omitted in these figures due to s being the sole involved game state) and split into edges labelled by an
action and a probability of this action being played, e.g., for c ∈ {a, b} and p ∈ [0, 1], the notation c | p
indicates that the probability of playing action c in the current memory state is p. In Figure 5.4, the
edges are further split after the choice of an action for randomised updates. The edge labels following
this second split represent the probabilities of stochastic updates. This second split is omitted whenever
an update is deterministic.

m1

1

2

m2

1

2

a | 1 b | 1

(a) DDR * RDD.

m

a | 1

2
b | 1

2

(b) RDD ( DRD.

m1

1

2

m2

1

2

a | 1

2
b | 1

2
b | 1

(c) DRD ( RRD.

Fig. 5.2: Depictions of Mealy machines witnessing the strictness of three inclusions asserted in Figure 1.1.
For the sake of readability, we do not label transitions by s as it is the sole state the Mealy machines
can read in Ga,b, and the only state with a choice in the games of Figure 5.3.

The rest of the section is structured as follows. We discuss the strict inclusion of DDD in RDD and
show that RDD is not included in DDR in Section 5.1. Section 5.2 complements the previous Section 4.1
and presents a DRD strategy that has no outcome-equivalent RDD counterpart. The strict inclusion of
the class DRD in the class of RRD strategies is covered in Section 5.3. Finally, we prove that DDR is not
included in RRD in Section 5.4, which implies that DDR is incomparable to the strategy classes RDD,
DRD and RRD.

5.1 DDD strategies are strictly less expressive than RDD ones

Pure FM strategies are less powerful than RDD strategies. The latter class of strategies can induce
non-Dirac distributions over the plays of Ga,b, whereas the former cannot. We illustrate a strategy that
has no outcome-equivalent DDD strategy in Figure 5.2a. Furthermore, there is no DDR strategy that is
outcome equivalent to the strategy depicted in Figure 5.2a: DDR strategies lack the ability to provide a
randomised action at the first step of a game. We obtain the following result.

Lemma 5.1. There exists an RDD strategy of P1 in Ga,b such that there is no outcome-equivalent DDR
strategy (in particular, there is no outcome-equivalent DDD strategy).
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We now provide a setting and example from [44, 16] in which RDD strategies can satisfy a specification
that pure strategies cannot. We consider MDPs with several reachability objectives with absorbing
targets.

Let G = (S,A, δ) be an MDP and let k ≥ 1. Given T ⊆ S, we let Reach(T ) denote the set of plays in
which a state of T occurs; this set of plays is the reachability objective for target T . For all 1 ≤ j ≤ k,
we let Tj ⊆ S be a set of absorbing states, i.e., for all s ∈ Tj and all a ∈ A(s), δ(s, a)(s) = 1. Given a
vector q = (qj)1≤j≤k ∈ ([0, 1]∩Q)k and an initial state sinit ∈ S, we consider the problem of determining
the existence of a strategy σ1 such that for all 1 ≤ j ≤ k, Pσ1

sinit
(Reach(Tj)) ≥ qj . If there exists such a

strategy, we say that q is achievable (from sinit). We give an instance of the problem that illustrates that
pure strategies do not suffice below.

st1 t2
a b

(a) An MDP with two reachability ob-
jectives.

s t

(a, a)
(b, b)

(a, b)
(b, a)

(b) A concurrent reachability
game.

s

u

s′

(a, a)
(b, b)

(a, b)

(b, a)

(c) A concurrent safety game (snowball
game [26]).

Fig. 5.3: Games we use to further illustrate the separation of classes of strategies via example specifications.
States depicted without outgoing transitions have outgoing self-loops that are omitted to lighten figures.

Example 5.1. Consider the MDP depicted in Figure 5.3a and let s be the initial state. We consider the
two targets T1 = {t1} and T2 = {t2} and the vector q = (12 ,

1
2 ). It is clear that no pure strategy witnesses

the achievability of q; any pure strategy achieves the vector (1, 0) or (0, 1) if it chooses action a or b in
s respectively. However, there is an RDD strategy that witnesses the achievability of q; any extension of
the strategy depicted in Figure 5.2a that accounts for the new game states t1 and t2 achieves q. ⊳

It turns out that RDD strategies suffice to witness that a vector is achievable no matter the considered
instance of the problem. We provide a short proof of this statement below.

Lemma 5.2. Let q be an achievable vector in the MDP G with respect to the reachability objectives
Reach(T1), . . . , Reach(Tk) for absorbing targets T1, . . . , Tk ⊆ S. There exists an RDD strategy witnessing
the achievability of q.

Proof. It is shown in [44] that the set of achievable vectors is a polyhedral set. Furthermore, the vertices
of this set are achievable by pure memoryless strategies. It follows that any achievable vector is dominated
by a convex combination of vectors achievable by pure memoryless strategies. We conclude that RDD
strategies suffice to achieve q.

5.2 RDD strategies are strictly less expressive than DRD ones

The goal of this section is to show that there exists a DRD strategy that cannot be emulated by any
RDD strategy. Let us first explain some intuition behind this statement. Intuitively, an RDD strategy
can only randomise once at the start between a finite number of pure FM (DDD) strategies. After this
initial randomisation, the sequence of actions prescribed by the RDD strategy is fixed relative to the
play in progress. Any DRD strategy that chooses an action randomly at each step, such as the strategy
depicted in Figure 5.2b, i.e., the strategy playing actions a and b with uniform probability at each step in
Ga,b, cannot be reproduced by an RDD strategy. Indeed, this randomisation generates an infinite number
of patterns of actions. These patterns cannot all be captured by an RDD strategy due to the fact that
its initial randomisation is over a finite set.

Lemma 5.3. There exists a DRD strategy of P1 in Ga,b such that there is no outcome-equivalent RDD
strategy.
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Proof. Let σ1 : {s} → D({a, b}) be the memoryless strategy in Ga,b induced by the Mealy machine
depicted in Figure 5.2b. The distribution σ1(s) is the uniform distribution over {a, b}. The strategy σ1

induces a probability distribution over plays of Ga,b such that all plays have a probability of zero. Indeed,
let π be a play of Ga,b. One can view the singleton {π} as the decreasing intersection

⋂

k∈N
Cyl(π|k).

Hence, the probability of {π} is the limit of the probability of Cyl(π|k) when k goes to infinity. One can

easily show that the probability under σ1 of Cyl(π|k) is 1
2k

. It follows that the probability of {π} is zero.
We now establish that there is no outcome-equivalent RDD strategy. First, let us recall that any RDD

strategy can be presented as a distribution over a finite number of pure FM strategies. Given that there
are no probabilities on the transitions of Ga,b, for any pure strategy σpure

1 , there is a single outcome under
σpure

1 . We can infer that, for any RDD strategy of Ga,b, there must be at least one play that has a non-zero
probability, and therefore this strategy cannot be outcome-equivalent to σ1, ending the proof.

We present a setting in which RDD strategies do not suffice, whereas DRD strategies suffice. We study
concurrent reachability games. Let G = (S,A(1), A(2), δ) be a game, sinit ∈ S be an initial state and T ⊆ S
be a set of target vertices. We consider the reachability objective Reach(T ) again. In a concurrent zero-
sum reachability game, the goal of P1 is to maximise the worst-case probability of Reach(T ). Formally,
we say that a strategy σ1 of P1 ensures the threshold q ∈ [0, 1] from sinit if infσ2 P

σ1,σ2
sinit

(Reach(T )) ≥ q,
where σ2 ranges over strategies of P2. The goal of P1 is to ensure the greatest possible threshold.

The supremum of the thresholds that can be ensured from sinit is called the value of sinit. A strategy
is optimal from sinit if it ensures the value of sinit. If there exists an optimal strategy from a state sinit of
value 1, we say that P1 wins almost-surely from sinit.

We illustrate in the following example that RDD strategies may be unable to ensure thresholds that
DRD strategies can in concurrent reachability games.

Example 5.2. Consider the game depicted in Figure 5.3b and let s be the initial state. Let T = {t} be
the target.

We first claim that there are no RDD strategies of P1 that win almost-surely from s. We fix an
RDD Mealy machine M = (M,µinit, αnxt, αup) of P1 and let σM

1 denote the strategy it induces. For
all minit ∈ supp(µinit), we consider the pure FM strategy σminit

1 induced by (M,minit, αnxt, αup). We fix
minit ∈ supp(µinit) and a pure strategy σ2 of P2 such that for all histories h ending in s, σ2(h) 6= σminit

1 (h).

It follows that P
σ
minit
1 ,σ2

s (Reach(T )) = 0. This implies that M is not almost-surely winning from s because,
by the law of total probability, we have

PσM

1 ,σ2
s (Reach(T )) =

∑

m∈M

µinit(m) · Pσm
1 ,σ2

s (Reach(T )).

On the other hand, the memoryless randomised strategy depicted in Figure 5.2b is almost-surely
winning. At each round prior to a visit of t, no matter the choices of P2, this strategy ensures a probability
of 1

2 of matching the action of P2. It follows that this strategy is almost-surely winning. ⊳

In full generality, there need not exist optimal strategies in concurrent reachability games [26].
Nonetheless, memoryless randomised strategies (which are a restricted class of DRD strategies) can
be used to ensure any possible threshold in these games. In particular, if there exists an optimal strategy,
there always exists one that is memoryless. We summarise these results in the following theorem.

Theorem 5.1 ([26, 45]). In all concurrent reachability games, if a threshold q can be ensured by P1,
then there exists a memoryless strategy that ensures q.

5.3 DRD strategies are strictly less expressive than RRD ones

In this section, we show that there exists an RRD strategy that has no outcome-equivalent DRD strategy.
The example we provide is based on existing results for concurrent safety games, i.e., games where the
goal is the complement of a reachability objective. Given a game G = (S,A(1), A(2), δ), we let T ⊆ S be
a set of states and let Safe(T ) be the safety objective, which is the set of plays that do not traverse T .
A strategy σ1 of P1 in G is said to be positively winning for the safety objective Safe(T ) from an initial
state sinit if for all strategies σ2 of P2, Pσ1,σ2

sinit
(Safe(T )) > 0.

Consider the game depicted in Figure 5.3c with the safety objective Safe({u}) and consider s to be
its initial state. It is shown in [26] that P1 does not have a positively winning DRD strategy in this game.
The authors of [20] show however there exists a positively winning RRD strategy. The Mealy machine
of Figure 5.2c matches their positively winning RRD Mealy machine.



Revisiting Kuhn’s Theorem Under Finite-Memory Assumptions 19

The main idea underlying the strategy induced by this Mealy machine is the following. It attempts
the action a at all steps with a positive probability due to memory state m1. It also has a positive
probability of never playing a due to memory state m2. Therefore, a is played after a history s(bs)k with
a probability that decreases to zero as k increases, as otherwise a would eventually occur almost-surely.

This behaviour cannot be achieved with a DRD strategy. The distribution over memory states of
a DRD strategy following a history is a Dirac distribution due to the deterministic initialisation and
deterministic updates. It follows that DRD strategies suggest actions with probabilities given directly
by the next-move function, i.e., the image of a DRD strategy is finite. It follows that there is no DRD
strategy that is outcome-equivalent to the strategy depicted in Figure 5.2c. We formalise this argument
in the proof of the following lemma.

Lemma 5.4. There exists an RRD strategy of P1 in Ga,b such that there is no outcome-equivalent DRD
strategy.

Proof. We consider the RRD strategy σ1 induced by the Mealy machine M = (M,m1, αnxt, αup) depicted
in Figure 5.2c. For any w ∈ ({s}{a, b})∗, let µw denote the distribution over M after w as taken place
under M. It can be shown by induction that for any k ∈ N, µ(sb)k(m1) = 1 − µ(sb)k(m2) =

1
2k+1

and
for any w ∈ ({s}{a, b})∗ with at least one occurrence of a, µw(m1) = 1. It follows that for any k ∈ N,

σ1((sb)
ks)(a) = 1

2(2k+1) and σ1((sb)
ks)(b) = 2k+1+1

2(2k+1) , and for any history h containing an occurrence of

a, σ1(h)(a) = σ1(h)(b) =
1
2 . We obtain that σ1 plays the action a with positive probabilities that can be

arbitrarily small and that all histories of Ga,b are consistent with σ1.
We now show that no DRD strategy is outcome-equivalent to σ1. Let N = (N,ninit, βnxt, βup) denote

a DRD strategy and let τ1 denote its induced strategy. By Lemma 2.1, τ1 is outcome-equivalent to σ1 if
and only if both strategies are equal, as all histories are consistent with σ1. For all h ∈ Hist(Ga,b), due
to the deterministic initialisation and updates of N , we have τ1(h) = βnxt(n, last(h)) for some n ∈ N . In
particular, τ1 cannot play the action a with arbitrarily small positive probabilities as it can only assign
finitely many distributions to histories. We conclude that τ1 6= σ1, which ends the proof.

We return to positively winning strategies in concurrent safety games. It is argued in [20] that RRR
strategies are sufficient to win positively in any concurrent safety game. We build on their argument to
show that RRD strategies suffice to win positively in any concurrent safety game.

Each state in a concurrent safety game can be assigned a rank. States of highest rank are those from
which P2 wins almost-surely for their dual reachability objective. States of minimal rank, if they are
not simultaneously of maximal rank, are those from which P1 can surely enforce the safety objective no
matter the strategy of P2, i.e., P1 has a (memoryless) strategy such that all plays consistent with this
strategy that start from a state of minimal rank satisfy the safety objective.

Let s ∈ S be a state that is positively winning. There exists an action of P1, which we will call a

sound action, and a set A
(2)
⋆ (s) ⊆ A(2)(s) of actions of P2 such that the sound action surely prevents

moving to states of higher rank against all actions in A
(2)
⋆ (s). Furthermore, for actions of P2 outside of

A
(2)
⋆ (s), there is an action of P1 that moves to a state of strictly lower rank with positive probability.

For instance, in the snowball game depicted in Figure 5.3c, for state s, the action b is a sound action for

s with respect to A
(2)
⋆ (s) = {a}.

The property we require on our strategy to win positively is to use a strategy much like that of
Figure 5.2c. On the one hand, it must have a positive probability of only using sound actions from any
point: this way, the safety objective is ensured whenever P2 only uses actions in the sets of the form

A
(2)
⋆ (s) in the remainder of the play. On the other hand, to account for the possibility of P2 taking

an action outside of A
(2)
⋆ (s) in state s, all actions should have a positive probability of occurring in all

rounds, so a vertex of lower rank can be reached with positive probability in this case.
Because the state space is finite, one of two cases occurs. If P2 only resorts to actions compatible

with sound actions from some point on, then the safety objective is satisfied with positive probability
because sound actions are guaranteed to be always played from some point on with positive probability.
Otherwise, states of minimal ranks are reached with positive probability, from which P1 can surely avoid
T .

The idea of the RRR strategy proposed in [20] to obtain the behaviour described above is to rely on
pairs of memory states. In a pair, one memory state only proposes sound actions and the other memory
state suggests all actions uniformly at random. When initialising the Mealy machine and each time there
is a change in the rank of states, to ensure the resulting strategy has the property above, a stochastic
memory update is used to give a uniform probability over such a pair of states.
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We show that it suffices to randomise once at the start, for each rank (besides the maximum and
minimum one), whether only sound actions should be suggested or whether we should play uniformly at
random. This allows us to avoid stochastic updates and obtain an RRD strategy.

Theorem 5.2. Let G = (S,A(1), A(2), δ) be a game and T ⊆ S be a set of states. There exists an RRD
strategy M such that, for all sinit ∈ S, if there exists a positively winning strategy from sinit for the
objective Safe(T ), then M is positively winning from sinit.

Proof. We assume that there exists at least some state from which P1 wins positively, otherwise the
result is immediate. We use properties of [26, Algorithm 3], which computes the set of almost-surely
winning states in a concurrent reachability game, i.e., the complement of the set of positively winning
states for the player with a safety objective. Each iteration of this algorithm computes two sets of states
that are positively winning for P1 and (essentially) removes them from the state space. Therefore, it
yields a non-increasing sequence S = U0 ⊇ U1 . . . ⊇ Uk of sets of states (k + 2 being double the number
of iterations of the algorithm) such that S \Uk is the set of positively winning states for P1. In particular,
note that T ⊆ Uk. Let, for all s ∈ S, rk(s) be the greatest j such that s ∈ Uj.

The sequence of sets (Uj)1≤j≤k has the following property. For all states s ∈ S such that rk(s) < k,

there exists a sound action a
(1)
sd (s) ∈ A(1)(s) and a subset A

(2)
⋆ (s) ⊆ A(2)(s) such that (i) for all a(2) ∈

A
(2)
⋆ (s) and all s′ ∈ supp(δ(s, a

(1)
sd (s), a(2))), rk(s′) ≤ rk(s), and (ii) for all a(2) ∈ A(2)(s) \ A

(2)
⋆ (s), there

exists an action a(1) ∈ A(1)(s) and a state s′ ∈ supp(δ(s, a(1), a(2))) such that rk(s′) < rk(s). These
conditions follow from the structure of the algorithm. In particular, the pure memoryless strategy of P1

that only plays sound actions, when played from states of rank 0, is such that all of its outcomes satisfy
Safe(T ) (i.e., states of rank 0 are surely winning for P1).

We now define an RRD strategy. Let M = (M,µinit, αnxt, αup) such that M = {sd, un}k−1 (sd and
un respectively stand for sound and uniform). We let µinit be a uniform distribution over M . Let m =
(mj)1≤j≤k−1 ∈ M and s ∈ S. If rk(s) = k, we let αnxt(m, s) be arbitrary. Otherwise, if rk(s) = 0

or mrk(s) = sd, we let αnxt(m, s) be a Dirac distribution on a
(1)
sd (s). Otherwise (if 0 < rk(s) < k and

mrk(s) = un), we let αnxt(m, s) be a uniform distribution over A(1)(s). The deterministic memory updates
are trivial: for all m ∈ M , s ∈ S and ā ∈ Ā(s), we let αup(m, s, ā) = m. Given w ∈ (SĀ)∗, we let µw

denote the distribution over memory states of M after w has taken place. For m ∈ M , we let σm
1 be the

strategy induced by the Mealy machine obtained by fixing the initial state of M to m.
We now prove that M induces a positively winning strategy from any state from which P1 has

a positively winning strategy. Let s0 be such a state and let σ2 be an arbitrary strategy of P2. We
use an inductive argument on histories, starting with the history h0 = s0. At step j of the induction,
we assume that we have some history hj = wjsj consistent with σ2 such that rk(sj) < k − j and
supp(µwj

) = {sd, un}rk(sj) × Mj for some Mj ⊆ {sd, un}k−rk(sj) (this last hypothesis implies that hj is
consistent with M, otherwise µwj

would not be defined). This induction hypothesis is clearly satisfied
at step 0 of the induction (positively winning states have rank at most k − 1).

We consider two cases. First, we assume that, for all extensions wjh of hj , if they are consistent

with σ2 and only sound actions are used by P1 in the suffix h, then supp(σ2(wjh)) ⊆ A
(2)
⋆ (last(h)). We

remark that if rk(sj) = 0, we are necessarily in this case. We claim that for all extensions wjh of hj

consistent with σ2 in which only sound P1 actions occur in h, it holds that all states in h have rank at
most rk(sj). This follows by a straightforward induction using the definition of sound actions and actions

in sets A
(2)
⋆ (s′) (informally, the rank of states cannot increase at each step in this setting).

By the induction hypothesis, there exists some m ∈ supp(µwj
) such that mℓ = sd for all ℓ ≤ rk(sj). In

particular, hj is consistent with σm
1 due to the definition of updates in M. It follows from the above that

all extensions of hj that are consistent with both σm
1 and σ2 satisfy Safe(T ) (because all targets have

rank k). Therefore, only a subset of Cyl(hj) of Pσm
1 ,σ2

s -measure zero is not included in Safe(T ). Therefore,

Pσm
1 ,σ2

s (Safe(T )) ≥ Pσm
1 ,σ2

s (Cyl(hj)) > 0. We conclude that Pσ1,σ2
s (Safe(T )) > 0 as Pσm

1 ,σ2
s (Safe(T )) is the

conditional probability of Safe(T ) with respect to Pσ1,σ2
s assuming that the initial memory state is m.

Next, assume that there exists a history wjh extending hj that is consistent with σ2, in which only

sound actions are used by P1 in the suffix h and such that supp(σ2(wjh)) * A
(2)
⋆ (last(h)). We assume

that wjh is the shortest such extension of hj . We fix a(2) ∈ supp(σ2)(wjh) \ A
(2)
⋆ (last(h)), and a(1) ∈

A(1)(last(h)) and sj+1 ∈ supp(δ(last(h), a(1), a(2))) such that rk(sj+1) < rk(last(h)). We let ā = (a(1), a(2)).
We define hj+1 = wjhāsj+1 and show that it satisfies the induction hypothesis above. First, by

construction, hj+1 is consistent with σ2. Second, it holds that rk(last(h)) ≤ rk(sj). This can be shown
by the same argument as in the first case, as only sound actions occur in h and all P2 actions taken in
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any state s in h are in A
(2)
⋆ (s). It follows that rk(sj+1) < rk(sj), implying that rk(sj+1) < k − (j + 1).

Third, it can be shown by a straightforward induction that supp(µw) = supp(µwj
) for w such that

wjh = wlast(h). The omitted inductive argument is based on the fact that all P1 actions are sound in
h, are taken in states of rank at most rk(sj) and supp(µwj

) = {sd, un}rk(sj) ×Mj . Finally, it holds that

supp(µwjhā) = {m ∈ supp(µwj
) | mrk(last(h)) = un} if a(1) 6= a

(1)
sd (last(h)) and supp(µwjhā) = supp(µwj

)
otherwise. By the inductive hypothesis, we obtain that

supp(µwjhā) = {sd, un}rk(last(h))−1 × I × {sd, un}rk(sj)−rk(last(h)) ×Mj,

where I = {un} in the first case, and I = {sd, un} otherwise. This shows that we can continue the
inductive argument with hj+1.

The second case can occur in the worst case only in the k − 1 first steps of the induction: at step k,
sk has rank 0, which guarantees we find ourselves in the first case. This concludes the proof that M is
positively winning from s0.

5.4 RRD and DDR strategies are incomparable

We prove in this section that the classes RRD and DDR of finite-memory strategies are incomparable.
We have previously shown Lemma 5.1, which states that RDD * DDR and therefore implies that
DRD * DDR and RRD * DDR. It remains to show that DDR * RRD.

We illustrate a DDR strategy of Ga,b that has no outcome-equivalent RRD strategy in Figure 5.4a. For
ease of analysis, we illustrate in Figure 5.4b a DRR strategy with fewer states that is outcome-equivalent
to the Mealy machine depicted in Figure 5.4a. The DDR strategy of Figure 5.4a can be obtained by
applying the construction of Theorem 4.3 to the Mealy machine of Figure 5.4b.

m1(m2, a)

(m2, b) m3

b

1

4

1

4

1

2

b
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1

2

1

2

b

(a) A DDR strategy witnessing DDR * RRD.

m1

m2 m3

b | 1

1

2

1

2

a | 1

2

b | 1

2

b | 1

(b) An outcome-equivalent RRR strategy
with fewer states.

Fig. 5.4: Outcome-equivalent strategies witnessing the non-inclusion DDR * RRD. For the sake of read-
ability, we do not label transitions by s as it is the sole state the Mealy machines can read in Ga,b. We
omit the probability of actions in Figure 5.4a as outputs are deterministic.

Intuitively, these strategies have a non-zero probability of never using action a after any history, while
they have a positive probability of using action a at any time besides the first round and right after the
action a occurs. The behaviour described above cannot be reproduced by an RRD strategy. There are
two reasons to this.

First, along any play consistent with an RRD strategy, the support of the distribution over memory
states cannot increase in size. Because of deterministic updates, the probability carried by a memory
state m can only be transferred to at most one state, and may be lost if the used action cannot be used
while in m. This property does not hold for strategies that have stochastic updates, such as those of
Figure 5.4.

Second, one can force situations in which the size of the support of the distribution over memory
states of an RRD strategy must decrease. If after a given history h, the action a has a positive probability
of never being used despite being assigned a positive probability at each round after h, then at some
point there must be some memory state of the RRD strategy that has positive probability and that
assigns (via the next-move function) probability zero to action a. For instance, this is the case from the
start with the RRD strategy depicted in Figure 5.2c. Intuitively, if at all times all memory states in the
support of the distribution over memory states after the current history assign a positive probability to
action a, the probability of using a at each round after h would be bounded from below by the smallest
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positive probability assigned to a by the next-move function. Therefore a would eventually be played
almost-surely assuming h has taken place, contradicting the fact that there was a positive probability of
never using action a after h. By using action a at a point in which some memory state in the support of
the distribution over memory states assigns probability zero to a, the size of the support of the memory
state distribution decreases.

By design of our DDR strategy, if one assumes the existence of an outcome-equivalent RRD strategy,
then it is possible to construct a play along which the size of the support of the distribution over memory
states of the RRD strategy decreases infinitely often. Because this size cannot increase along a play, this
is not possible, i.e., there is no such RRD strategy. We formalise the sketch above in the proof of the
following lemma.

Lemma 5.5. There exists a DDR strategy of P1 in Ga,b such that there is no outcome-equivalent RRD
strategy.

Proof. Consider the Mealy machine M = (M,m1, αnxt, αup) depicted in Figure 5.4b. We recall that M
is a DRR Mealy machine that is outcome-equivalent to the DDR strategy illustrated in Figure 5.4a. It
therefore suffices to show that there are no RRD strategies that are outcome-equivalent to M to end
this proof.

Let σ1 denote the strategy induced by M. Intuitively, σ1 operates as follows. It always uses b in the
first round and otherwise has a positive probability of never using action a while always having a positive
probability of playing a at any round. Whenever the action a is used, the behaviour of the strategy resets
in the following sense: witnessing action a ensures that M finds itself in memory state m1 after the
update, thus the strategy repeats its behaviour from the initial state of M.

Lemma 2.1 ensures that we need only study plays consistent with σ1 for matters related to outcome-
equivalence. The finite sequences of actions that can be suggested by this strategy can be described by
the regular expression (b+a)∗b∗. Therefore, we require only the definition of σ1 over histories in which
the underlying sequence of actions is in this language. For any w ∈ ({s}{a, b})∗, let µw denote the
distribution over memory states of M after w has taken place. It can be shown by induction that for any
w ∈ (({s}{b})+{s}{a})∗ and k ≥ 1, we have µw(m1) = 1 and µw(sb)k(m2) = 1 − µw(sb)k(m3) =

1
2k−1+1

.
It follows that for any history h consistent with σ1 of the form s or h′as and k ≥ 1, we have σ1(h)(b) = 1
and σ1(h(bs)

k)(a) = 1− σ1(h(bs)
k)(b) = 1

2k+2
.

We show that for any history h consistent with σ1 in which the last used action is a, it holds that
Pσ1
s ({h(bs)ω}) > 0, i.e., there is a positive probability of a never being played again after any occurrence

of a. Let h be one such history.

We first show that Pσ1
s ({h(bs)ω}) = Pσ1

s (Cyl(h))·Pσ1
s ({(sb)ω}). We have, for any k ∈ N, σ1(h(bs)

k)(b) =
σ1(s(bs)

k)(b) by definition of σ1. Furthermore, the sequences (Cyl(s(bs)k))k∈N and (Cyl(h(bs)k))k∈N re-
spectively decrease when taking their intersections to the singletons {(sb)ω} and {h(bs)ω}. We obtain
the following equations from the definition of Pσ1

s :

Pσ1
s ({h(bs)ω}) = lim

k→∞
Pσ1
s (Cyl(h(bs)k))

= lim
k→∞

Pσ1
s (Cyl(h)) ·

k−1
∏

ℓ=0

σ1(h(bs)
ℓ)(b)

=Pσ1
s (Cyl(h)) · lim

k→∞
·
k−1
∏

ℓ=0

σ1(s(bs)
ℓ)(b)

=Pσ1
s (Cyl(h)) · lim

k→∞
Pσ1
s (Cyl(s(bs)k))

=Pσ1
s (Cyl(h)) · Pσ1

s ({(sb)ω)}).
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In light of the above, to show that Pσ1
s ({h(bs)ω}) > 0, it suffices to establish that Pσ1

s ({(sb)ω}) > 0
because h is assumed to be consistent with σ1. It can be shown that Pσ1

s ({(sb)ω}) = 1
2 as follows:

Pσ1
s ({(sb)ω}) = lim

k→∞
Pσ1
s (Cyl(s(bs)k))

= lim
k→∞

1 ·
k−1
∏

j=1

2j + 1

2j + 2

= lim
k→∞

1

2k−1
·
k−1
∏

j=1

2j + 1

2j−1 + 1

= lim
k→∞

1

2k−1
·
2k−1 + 1

21−1 + 1
=

1

2
;

the product of the probabilities of b being played in each round is simplified using the fact that the
denominator of a term is double the numerator of the previous one. This closes the proof of our claimed
inequality.

We now show that no RRD strategy is outcome-equivalent to σ1. Let N = (N, νinit, βnxt, βup) be an
RRD Mealy machine and let τ1 be the strategy it induces. For any w ∈ ({s}{a, b})∗, let νw denote the
distribution over memory states in N after w has taken place under N .

The remainder of the proof is structured as follows; we prove two properties of RRD strategies and
use them to show that τ1 cannot be outcome-equivalent to σ1. The first claim if that for any history
h = ws consistent with τ1 and action c ∈ {a, b} such that τ1(h)(c) > 0, we have |supp(νw)| ≥ |supp(νwsc)|,
i.e., the size of the support of the distribution over memory states of N does not increase as the play
progresses. The second claim is that for any history h consistent with τ1, if the probability of a never
appearing again after h is non-zero, i.e., Pτ1

s ({h(bs)ω}) > 0, and for any k ∈ N, we have τ1(h(bs)
k)(a) > 0,

then there exists some k0 ∈ N such that |supp(νh(bs)k0 b)| > |supp(νh(bs)k0+1a)|.
Let us first prove the first claim. It follows from a careful inspection of how the distribution over

memory states is updated from one step to the next. Let h = ws be consistent with σ1 and c ∈ {a, b}
such that τ1(h)(c) > 0. For any memory state n ∈ N , recall that

νwsc(n) =

∑

n′∈N νw(n
′) · βup(n

′, s, c)(n) · βnxt(n
′, s)(c)

∑

m′∈M νw(n′) · βnxt(n′, s)(c)
.

Because updates are deterministic, for any given n′ ∈ N , there is a unique n ∈ N such that βup(n
′, s, c)(n) =

1. Therefore any element in supp(νw) transfers its probability to at most one memory state when deriv-
ing νwsc. This ends the proof of the first claim. We note (for the proof of the second claim) that if
n′ ∈ supp(νw) is such that βnxt(n

′, s)(c) = 0, then n′ does not transfer its probability to any state, and
in this case, we have |supp(νw)| > |supp(νwsc)|.

We now move on to the second claim. Let h be consistent with τ1 and assume that Pτ1
s ({h(bs)ω}) > 0,

and for any k ∈ N, we have τ1(h(bs)
k)(a) > 0. In light of the comment above regarding the second claim,

it suffices to show that for some k0 ∈ N, we have some n ∈ supp(νh(bs)k0 b) such that βnxt(n, s)(a) = 0.
Assume towards a contradiction that this is not the case, i.e., for all k ∈ N and all n ∈ supp(νh(bs)kb),

we have βnxt(n, s)(a) > 0. Let k ∈ N. We show that the probability τ1(h(bs)
k+1)(a) is bounded below

by a positive constant independent of k. This follows from the assumption that βnxt(n, s)(a) > 0 for all
n ∈ supp(νh(bs)kb) via the relations

τ1(h(bs)
k+1)(a) =

∑

n∈N

νh(bs)kb(n) · βnxt(n, s)(a)

≥
∑

n∈N

νh(bs)kb(n) · min
n′∈Na>0

βnxt(n
′, s)(a)

= min
n′∈Na>0

βnxt(n
′, s)(a) > 0,

where Na>0 = {n ∈ N | βnxt(n, s)(a) > 0}. It follows that the action a must be used almost-surely
assuming h has taken place, contradicting the fact that Pτ1

s ({h(bs)ω}) > 0. This ends the proof of the
second claim.

We now show that τ1 cannot be outcome-equivalent to σ1 by contradiction. Assume τ1 is outcome-
equivalent to σ1. Due to the properties of σ1 shown above, we can repeatedly use the two claims above
to construct a sequence of non-zero natural numbers (kℓ)ℓ∈N such that (|supp(νwℓ

)|)ℓ∈N is an infinite
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Fig. 5.5: A turn-based stochastic game with multiple reachability objectives [46]. Circles and squares
respectively represent states controlled by P1 and P2. The only action enabled for players who do not
control a state is ⊥. States t1, t2 and t3 are drawn repeatedly for clarity (duplicates all represent the
same state). Actions P and C of P2 stand for proceed and check respectively.

decreasing sequence of natural numbers, where w0 = ε and for all ℓ ∈ N, wℓ+1 = wℓ(sb)
kℓsa. This

contradicts the well-order of N. This shows that there are no RRD strategies that are outcome-equivalent
to σ1.

As in the previous sections, we provide a game and a specification that cannot be accomplished using
an RRD strategy, but can be accomplished using a DDR strategy. In the following example, we consider
a two-player turn-based game with several reachability objectives with absorbing targets. The goal is to
construct, if it exists, a strategy that ensures given thresholds for several reachability objectives at once.

Example 5.3. We consider the two-player turn-based game G = (S,A(1), A(2), δ) depicted in Figure 5.5
(ownership of vertices is distinguished by their shape), originating from [46]. As G is turn-based, we
lighten the notation of histories and plays by only indicating the action of the player in control of the
state. We also simplify notations for updates of Mealy machines by only taking in account the actions
we keep in plays. We let A = A(1) ∪A(2) denote the set of actions. We consider three targets: Tj = {tj}
for j ∈ {1, 2, 3}.

m0 m1 m2

s0 s0

1

2

1

2

Fig. 5.6: A Mealy machine update scheme for the game of Figure 5.5. Updates that do not change the
memory state are not depicted.

In [46], it is shown that there is no DRD strategy σ1 of P1 such that for all strategies σ2 of P2,
Pσ1,σ2
s0

(Reach(Tj)) ≥
1
3 for all j ∈ {1, 2, 3}, despite there existing an infinite-memory one. We prove that

(i) there is no RRD strategy that satisfies this specification and (ii) there exists a DDR strategy that
does.

We let, for k ∈ N, hk = s0(⊥s1Ps2Ps0)
k. A description of satisfactory strategies is provided in

the technical report [47, Appendix B]. A strategy σ1 of P1 ensures that all targets are each visited with
probability 1

3 if for all k ∈ N, σ1(hk⊥s3)(ℓ) = 1− 1
3·2k−1 , σ1(hk⊥s1Cs4)(ℓ) = 1− 1

2k+2 , σ1(hk⊥s1Ps5)(ℓ) =

1 − 1
3·2k

and σ1(hk⊥s1Cs6)(ℓ) = 1 − 1
2k+2 , and for all k ∈ N, the first two equations are necessary to

comply with the specification.
Let M be an RRD strategy and let τM1 be its induced strategy. We show that τM1 cannot satisfy the

multi-objective query by showing that the set of distributions {τM1 (hk⊥s3) | k ∈ N} must be a finite set,
which is incompatible with the requirements given above.
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Let µw denote the distribution over memory states after w ∈ (SA)∗ has taken place under M. For
all k ∈ N and m ∈ M , it holds that µhk⊥s3(m) =

∑

m′∈M ′ µinit(m
′) for some M ′ ⊆ M (which depends

on both k and m). This follows from the equations for the updates of the distributions µw. In all states
along hk⊥, P1 only has a single action. Furthermore, M has deterministic updates. Therefore, if w and
wsa are prefixes of hk⊥, for all memory states m ∈ M , we obtain µwsa(m) is the sum of µw(m

′) for all
memory states m′ such that αup(m

′, s, a) = m. In particular, this implies that the set of distributions
{µhk⊥ | k ∈ N} is finite, which shows that {τM1 (hk⊥s3) | k ∈ N} is a finite set by definition of the
strategy induced by a Mealy machine.

We now describe a Mealy machine N that induces a strategy that coincides with σ1 over Cyl(s0), i.e.,
that ensures a probability of 1

3 for all three reachability objectives. Once more, we provide a DRR strategy
that can be transformed into an outcome-equivalent DDR strategy via the construction underlying
Theorem 4.3. We depict the relevant update scheme in Figure 5.6; updates that do not change the
current memory state are omitted from the figure. Let νw denote the distribution over memory states of
N after w ∈ (SA)∗ has taken place under N . Let k ∈ N. Below, we are interested in the distribution over
memory states only for wk ∈ {hk⊥, hk⊥s1C, hk⊥s1P, hk⊥s1Ps2C}: it can be shown by a straightforward
induction that we have νwk

(m1) = 1− νwk
(m2) =

1
2k

.
We now specify the next-move function of N and describe the strategy σN

1 induced by N . We let
αnxt(m0, s) be an arbitrary Dirac distribution for all states s ∈ {s3, s4, s5, s6} (we require Dirac distribu-
tions so our Mealy machine has an outcome-equivalent DDR strategy). For s3, we let αnxt(m1, s3)(r) =

2
3

and αnxt(m2, s3)(ℓ) = 1. It follows that for all k ∈ N, we have σN
1 (hk⊥s3)(r) =

2
3·2k

= 1
3·2k−1 . For s4, we let

αnxt(m1, s4)(r) =
1
4 and αnxt(m2, s4)(ℓ) = 1. We obtain that for all k ∈ N, we have σN

1 (hk⊥s2Cs4)(r) =
1

4·2k = 1
2k+2 . For s5, we let αnxt(m1, s5)(r) = 1

3 and αnxt(m2, s5)(ℓ) = 1. For all k ∈ N, it holds that

σN
1 (hk⊥s2Ps5)(r) = 1

3·2k . Finally, for s6, we let αnxt(m1, s6)(r) = 1
4 and αnxt(m2, s6)(ℓ) = 1. We con-

clude that for all k ∈ N, σN
1 (hk⊥s2Ps2Cs6)(r) =

1
4·2k

= 1
2k+2 . This shows that σN

1 ensures all reachability

objectives are satisfied with probability at least 1
3 . ⊳

Consider a turn-based stochastic game G = (S,A(1), A(2), δ) and targets T1, . . . , Tk ⊆ S. The general
form of the problem treated in the example above is to decide, given an initial state sinit ∈ S and a
threshold vector q ∈ ([0, 1] ∩Q)k whether there exists a strategy σ1 of P1 such that for all strategies σ2

of P2, we have Pσ1,σ2
sinit

(Reach(Tj)) ≥ qj for all j ∈ {1, . . . , k}. It is not known whether RRR strategies of
P1 suffice to provide a positive answer whenever possible in general. However, finite-memory strategies
suffice to approximate any vector for which the problem has a positive answer. More precisely, if P1 can
ensure q from sinit ∈ S, then for all ε > 0, P1 has an DRD strategy such that for all strategies σ2 of P2

and all j ∈ {1, . . . , k}, it holds that Pσ1,σ2
sinit

(Reach(Tj)) ≥ qj − ε [46, 48].

6 Extension: multiplayer games

In the previous sections, we have only considered two-player games. We show that the lattice of Figure 1.1
extends to games with more than two players.

Let n ≥ 1 be a number of players. Formally, an n-player concurrent stochastic game is a tuple
G = (S, (A(i))1≤i≤n, δ) where S is a non-empty finite set of states, A(i) is a finite set of actions for each
player and δ : S ×A(1) × . . .×A(n) → D(S) is a probabilistic transition function. We reuse the notation
Ā = A(1)× . . .×A(n). We impose the same constraints as in the two-player case regarding actions enabled
in states, i.e., whether an action is available to a player is independent of the choices of others. Plays,
histories, strategies, Mealy machines and probability distributions over plays induced by strategies are
defined in a similar way as in the two-player setting.

The definition of outcome-equivalence can be naturally extended to multi-player games. Instead
of quantifying universally over strategies of the other player as is done in the two-player setting, one
quantifies universally over strategies of all other players in the definition of outcome-equivalence. Formally,
two strategies σ1 and τ1 of P1 are outcome-equivalent if for all strategies σi of Pi for 2 ≤ i ≤ n and all
s ∈ S, Pσ1,σ2,...,σn

s = Pτ1,σ2,...,σn
s .

A single (fictitious) player derived from a coalition of players has access to more behaviours than
the coalition, as the single player can randomise over action profiles whereas individual players can only
randomise over their own set of actions. This implies that all probability distributions over action profiles
that can be induced by strategies of the players of the coalition playing individually can be simulated
by the fictitious player, but the inverse is not true. This is the crux of the argument showing that our
results carry over to the multi-player setting.
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Theorem 6.1. The taxonomy of Figure 1.1 established in two-player games extends to multiplayer
games.

Proof. All results that witness that two classes in the lattice of Figure 1.1 are separated (i.e., Lem-
mas 5.1, 5.3, 5.4 and 5.5) hold in one-player games, which are a subclass of multiplayer games.

We now prove that the inclusion results extend to this setting. Let C1 and C2 be two classes of
finite-memory strategies referred to in Figure 1.1 such that the lattice asserts that C1 ⊆ C2. Let G =
(S, (A(i))1≤i≤n, δ) be an n-player game. In the following argument, we only consider strategies of P1 to
simplify notation. We let G′ = (S,A(1),

∏

2≤i≤n A
(i), δ) be the two-player (coalition) game in which the

players other than P1 are grouped together. Although the sets of histories and plays of G and G′ differ
syntactically (due to the nature of action tuples), there is a natural bijection between these sets. For this
reason, we identify them. Therefore, all strategies of P1 in G are strategies of P1 in G′ and vice-versa.

Let σ1 ∈ C1 be a strategy of P1. Because C1 ⊆ C2 holds for two-player games, there exists a strategy
τ1 ∈ C2 such that σ1 and τ1 are outcome-equivalent in G′. We claim that σ1 and τ1 are outcome-
equivalent in G. Let σ2, . . . , σn be strategies of players other than P1 and s ∈ S be an initial state.
Consider the strategy τ2 of the second player in G′ defined by τ2(h)(a

(2), . . . , a(n)) =
∏

2≤i≤n σi(h)(a
(i))

for all h ∈ Hist(G) and all a(i) ∈ A(i) for 2 ≤ i ≤ n. By definition of distributions induced by plays and
outcome-equivalence of σ1 and τ1 in G′, we obtain Pσ1,σ2,...,σn

G,s = Pσ1,τ2
G′,s = Pτ1,τ2

G′,s = Pτ1,σ2,...,σn

G,s (where the
subscript also indicates the relevant game), ending the proof.

7 Extension: imperfect information

This section discusses games of imperfect information, and how our results transfer to this setting. In
Section 7.1, we introduce definitions and terminology for games of imperfect information. We discuss
finite-memory strategies in this setting in Section 7.2. Finally, we close with Section 7.3, in which we
argue that the lattice of Figure 1.1 transfers to games with perfect recall and provide an adaptation for
games of imperfect recall.

7.1 Games of imperfect information

We consider two-player stochastic games of imperfect information played on graphs. Unlike games of
perfect information, the players are not fully informed of the current state of the play and the actions
that are used along the play. Instead, they perceive an observation for each state and action, and this
observation may be shared between different states and actions, making them indistinguishable. These
observations are not shared between the players; each player perceives the ongoing play differently.

We formalise this game model. A concurrent stochastic game of imperfect information is defined as
a tuple Γ = (S,A(1), A(2), δ,Z1,Obs1,Z2,Obs2) where (S,A(1), A(2), δ) is a game of perfect information,
Zi is a finite set of observations of Pi for i ∈ {1, 2} and Obsi : S ∪ A(1) ∪ A(2) → Zi is the observation
function of Pi, which assigns an observation to each state and action. We require that for any i ∈ {1, 2},
for any two states s, s′ ∈ S, Obsi(s) = Obsi(s

′) implies Ā(s) = Ā(s′), i.e., in two indistinguishable states,
the same actions are available to both players. We fix Γ for the remainder of the section and let G denote
the underlying game of perfect information.

Plays and histories of Γ are respectively defined as plays and histories of G. We reuse the nota-
tions Plays(Γ ) and Hist(Γ ) for the sets of plays of Γ and histories of Γ respectively. We extend the
observation functions to pairs of actions and to histories. For any ā = (a(1), a(2)) ∈ Ā, we let Obsi(ā) =
(Obsi(a

(1)),Obsi(a
(2))) and for all histories h = s0ā0 . . . sk of Γ , we let Obsi(h) = Obsi(s0)Obsi(ā0) . . .Obsi(sk).

This extension is used to define strategies in games of imperfect information.
In our setting, Pi has perfect recall if Pi can distinguish their own actions. Formally, Pi has perfect

recall if the set of actions A(i) is included in the set Zi and that for all a(i) ∈ A(i) and x ∈ S∪A(1)∪A(2),
Obsi(x) = a(i) if and only if x = a(i).

In Γ , players can only rely on the observations they perceive to select actions. A pure (observation-
based) strategy of Γ is a function σi : Obsi(Hist(Γ )) → A(i). Randomised strategies can be defined as
mixed strategies (i.e., distributions over pure observation-based strategies) or behavioural strategies.
Specifically, an observation-based behavioural strategy is a function σi : Obsi(Hist(Γ )) → D(A(i)). We
will refer to (behavioural) strategies of the underlying game of perfect information G as history-based
strategies to distinguish them from observation-based ones.

In contrast to the perfect information setting, if we do not assume perfect recall, there need not be
an equivalence between behavioural and mixed strategies. Thankfully, randomised strategies (be they
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mixed or behavioural) of Γ are a subclass of history-based strategies. This allows us to directly reuse
notions previously defined for history-based strategies. For instance, the probability distributions over
plays of Γ induced by a pair of strategies from an initial state is the corresponding distribution in G.
Furthermore, we avoid the need to consider mixed strategies explicitly this way.

We remark that the equivalent definition of outcome-equivalence for two strategies of P1 formulated
in Lemma 2.1 also extends to the imperfect information setting. On the one hand, P2 has access to fewer
strategies, therefore the condition given in the lemma implies outcome-equivalence (the proof establishes
a stronger statement). On the other hand, the other direction requires strategies of P2 that are consistent
with the histories considered in the proof; it suffices to consider a strategy of P2 that selects all available
actions at random at all times for the argument to work.

7.2 Finite-memory strategies

A strategy is finite-memory if it is induced by a (stochastic) Mealy machine that reads observations
instead of states and actions. Formally, we define an observation-based Mealy machine of Pi as a tuple
M = (M,µinit, αnxt, αup) where M is a finite set of memory states, µinit is an initial distribution over M ,
αup : M ×Z3

i → D(M) is the update function and αnxt : M ×Zi → D(A(i)) is the next-move function.
An observation-based Mealy machine is a special case of a Mealy machine whose updates and outputs

must coincide given inputs with the same observations. We can thus derive a history-based strategy from
an observation-based Mealy machine in the same way as in the perfect information setting.

To transfer our results on games of perfect information to games of imperfect information, we reuse the
same classification of Mealy machines with three-letter acronyms for observation-based Mealy machines.
As was the case in the earlier sections, we will abusively say, e.g., M is an RRR observation-based
strategy to mean that M is an observation-based Mealy machine with stochastic initialisation, outputs
and updates, and avoid referring to the observation-based strategy it induces in this way.

In general, an observation-based Mealy machine may not induce a behavioural strategy of Γ . This
can be illustrated with a simple RDD strategy.

Example 7.1. We build a one-player game of imperfect information Γa,b from the game Ga,b of Figure 5.1.
We assign to s, a and b a shared observation o. We consider the Mealy machine depicted in Figure 5.2a;
note that its updates only depend on the memory state and not on the input and outputs. The strategy
it induces, which we will denote by σ1, has a uniform probability of only playing a or only playing b.

No observation-based behavioural strategy is outcome-equivalent to σ1. Let τ1 : {o}({o}2)∗ → D({a, b})
be a behavioural strategy. For it to be outcome-equivalent to σ1, τ1 has differentiate between the histo-
ries sas and sbs and play action a and b respectively following these histories. However, because both
strategies share the same sequence of observations, τ1 cannot be outcome-equivalent to σ1. ⊳

We provide two sufficient conditions that ensure that observation-based Mealy machine induce a
behavioural strategy. The first one we present introduces a restriction on the games. The second one
involves no assumptions on games, but instead considers a restricted class of Mealy machines.

First, we show that all finite-memory strategies are behavioural in games with perfect recall. Intu-
itively, the distribution over memory states depends heavily on the sequence of actions used by the
considered player; the choice of actions conditions the distribution over memory states at each time it is
updated. The visibility of actions makes it so the distribution over memory states depends only on the
observations fed to the Mealy machine.

Lemma 7.1. Let M = (M,µinit, αnxt, αup) be an observation-based Mealy machine of Pi. Assume that
Pi has perfect recall in Γ . Then the strategy induced by M is an observation-based behavioural strategy.

Proof. Let µw denote the distribution over memory states of M after w has taken place, for w ∈ (SĀ)∗.
By definition of the strategy induced by a Mealy machine, it suffices to show the following: for all
w, v ∈ (SĀ)∗ that are mapped to the same sequence of observations, we have µw = µv.

Let w, v ∈ (SĀ)∗ such that w and v are mapped to the same sequence of observations. We proceed
by induction on the length of the considered sequence w (which matches that of v). At the start of a
play, an initial memory state is drawn following µinit. Hence the distribution over memory states after
the empty word ε is µε = µinit. In this case, there is nothing to show for the uniformity argument.

We now assume the following by induction: for w = s0ā0 . . . skāk, the distribution µw over M is
well-defined and coincides with µv for v = t0b̄0 . . . tk b̄k that can be mapped to the same sequence of
observations as w. We consider w′ = wsk+1āk+1 and v′ = vtk+1 b̄k+1 that share the same sequence of
observations. We describe µw′ , then infer that µw′ = µv′ .
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Due to the visibility of actions, we have a
(i)
k+1 = Obsi(a

(i)
k+1) = b

(i)
k+1. We distinguish two cases: µw′ is

well-defined or it is not. First, if for all m ∈ supp(µw), we have αnxt(m,Obsi(sk+1))(a
(i)
k+1) = 0, then µw′

and µv′ are both undefined (i.e., w′ and v′ are inconsistent with M). Therefore, we assume that there

is m ∈ supp(µw) such that αnxt(m,Obsi(sk+1))(a
(i)
k+1) > 0. In this case, we have, for any memory state

m ∈ M ,

µw′(m) =

∑

m′∈M µw(m
′) · αup(m

′,Obsi(sk+1),Obsi(āk+1))(m) · αnxt(m
′,Obsi(sk+1))(a

(i)
k+1)

∑

m′∈M µw(m′) · αnxt(m,Obsi(sk+1))(a
(i)
k+1)

.

The equation for µv′ is the same as above, except sk+1 and a
(3−i)
k+1 are respectively replaced with tk+1

and b
(3−i)
k+1 . It follows immediately from Obsi(sk+1) = Obsi(tk+1) and Obsi(a

(3−i)
k+1 ) = Obsi(b

(3−i)
k+1 ) that

µw′ = µv′ . This ends the inductive argument and the proof.

We have seen through Example 7.1 that when lifting the perfect recall hypothesis, Mealy machines
with randomised initialisation need not induce behavioural strategies. A similar claim can be shown for
strategies with randomised updates, e.g., by adapting the RDD example so the randomised initialisation
is emulated by a stochastic memory update after the first round of the game. On the other hand, DRD
strategies always induce behavioural strategies.

Lemma 7.2. Let M = (M,minit, αnxt, αup) be a DRD strategy of Pi in Γ . Then the strategy induced by
M is a behavioural strategy.

Proof. For a DRD strategy, the distribution over memory states at any point is a Dirac distribution. More
precisely, the memory state mw reached after w ∈ (SĀ)∗ is defined by induction. We have mε = minit

and for wsā ∈ (SĀ)+, we have mwsā = αup(mw,Obsi(s),Obsi(ā)). It is easy to see that mw depends only
on the observations assigned to w, which is sufficient to end the proof.

7.3 Transferring our taxonomy to imperfect information

We are now concerned with transferring our taxonomy of finite-memory strategies in games of perfect
information to games of imperfect information. We remark that all non-inclusions witnessed in the perfect
information case hold in the imperfect information case.

On the one hand, if a player cannot perceive their own actions, some inclusions of the lattice in
Figure 1.1 fail. This is already suggested by Example 7.1 and Lemma 7.2, which imply together that
RDD ⊆ DRD does not hold without perfect recall. On the other hand, it can be argued that the lattice
of Figure 1.1 stays unchanged in games where a player can see their actions.

Imperfect recall. We illustrate the lattice for general games of imperfect information in Figure 7.1. We
first discuss the non-trivial inclusion that is preserved in this broader setting, then we explain why the
others fail.

RRR = RDR

DRR RRD

DDR DRD RDD

DDD

Lem. 7.3
(strictness)

Fig. 7.1: Lattice of finite-memory strategy classes in games of imperfect information with imperfect recall.
We decorate edges with relevant results introduced in this section.

Of the three non-trivial inclusions shown in Section 4, only RRR ⊆ RDR still holds in this setting.
The idea is that Theorem 4.3, unlike the other two inclusion theorems, does not rely on the visibility of
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actions in the construction of the Mealy machine. It even provides a Mealy machine that is agnostic to
a player’s own actions. Because states and the actions of the other player only serve the role of inputs
(i.e., their nature does not matter), we can adapt the proof of the theorem directly to obtain its direct
reformulation in games of imperfect information.

The other two non-trivial inclusions, RDD ⊆ RDR and RRR ⊆ DRR fail in this setting. As explained
previously, Example 7.1 and Lemma 7.2 show that the first inclusion cannot hold. Furthermore, we
obtain that DRR and RDD (and RRD) are incomparable. To illustrate this, we prove that the strategy
introduced in Example 7.1 has no DRR equivalent.

Lemma 7.3. Let Γa,b denote the game of imperfect information derived from Ga,b (Figure 5.1) by as-
signing observation o to everything. There exists an RDD strategy in Γa,b such that there is no outcome-
equivalent DRR strategy.

Proof. We consider the Mealy machine depicted in Figure 5.2a as in Example 7.1 and let σ1 denote
the history-based strategy it induces. Let M = (M,minit, αnxt, αup) be a DRR strategy of Γa,b and let
τM1 be the history-based strategy it induces. We assume towards a contradiction that τM1 and σ1 are
outcome-equivalent.

We have αnxt(minit, o)(a) = τM1 (s)(a) = σ1(s)(a) = 1
2 . It follows that the distributions µsa and µsb

over M after sa and sb have respectively occurred are, by definition, for all m ∈ M ,

µsa(m) =
αup(minit, o, o)(m) · 1

2
1
2

= µsb(m).

We conclude that τM1 (sas) = τM1 (sbs). However, the outcome-equivalence of σ1 and τM1 implies that
τM1 (sas)(a) = σ1(sas)(a) = 1 and τM1 (sbs)(b) = σ1(sbs)(b) = 1, which constitutes a contradiction.

Perfect recall. We now consider games where the player we study can see their own actions. In this
case, we have the following theorem.

Theorem 7.1. The taxonomy of Figure 1.1 for Pi established in games of perfect information extends
to games with imperfect information with perfect recall.

Proof. We have previously explained that Theorem 4.3 holds even without perfect recall. Therefore, we
need only generalise the statements of Theorems 4.1 and 4.2 to games with imperfect information and
perfect recall. As we did with Theorem 4.3, we briefly argument how to adapt their proofs when replacing
states and actions with observations in a setting with perfect recall.

In Theorem 4.1, we simulate RDD strategies by means of DRD strategies. We keep track of a finite
set of pure FM strategies and remove one whenever we perceive an action that is inconsistent with it.
The visibility of actions makes this approach viable in games of imperfect information. Furthermore,
the RDD strategy that is simulated and all of the pure FM strategies encoded in the simulating DRD
strategy all use the exact same observation-based update scheme. Therefore, any RDD strategy has an
outcome-equivalent DRD counterpart in games of imperfect information with perfect recall.

Theorem 4.2 claims that any RRR strategy admits some outcome-equivalent DRR strategy. The
approach consists in adding a new initial memory state, and then leverage stochastic updates to enter
the supplied RRR strategy from the second step of the game and proceed as though we had been using it
from the start. We designed the updates from the new initial memory state so that, from the second step
in the game, the distribution over memory states was the same in the RRR strategy and the constructed
DRR one. More precisely, the update probability distribution from the new initial state is defined as
the probability over the memory states of the RRR strategy after one step. The main argument of the
proof of Lemma 7.1 ensures that this distribution is robust to the passage to imperfect information and
justifies that the proof approach generalises to this setting.

8 Conclusion

We have provided a complete classification of randomised finite-memory strategies based on the notion
of outcome-equivalence in concurrent games of perfect and imperfect information. We have shown that
all inclusions of the studied strategy classes can be witnessed by effective constructions. Regarding the
separation of strategy classes, we have provided examples on the simplest possible game and, additionally,
illustrated the separation of classes on games that use specifications from the literature.
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Outcome-equivalence is a specification-agnostic means of comparing strategies; two strategies that are
outcome-equivalent provide the same performance against any specification no matter the strategy of the
other player (or players in a multiplayer setting). In particular, the established inclusions are universal
in a sense, as they hold no matter the means of comparing the behaviour of strategies. Nonetheless,
outcome-equivalence is a very strong criterion for the comparison of strategies. Given some specification
and a strategy in a class, even if there is no outcome-equivalent strategy in another class, there may be
a strategy of the second class that performs just as well, or even better with respect to the specification.
This suggests further work, where, given a family of games or specifications, we use some alternative
means of comparing strategies and attempt to provide a similar taxonomy in this setting, or to attempt
to understand the simplest strategies required to satisfy relevant families of specifications.
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A Probability over memory states in stochastic-update Mealy machines

A.1 Inductive relation for the distribution over memory states

We fix a game G = (S,A(1), A(2), δ). In this section, we derive the formula for updates of the distribution
over memory states of a Mealy machine after a word in (SĀ)∗ takes place under its induced strategy. We
build our reasoning on conditional probabilities. We show the equations for a Mealy machine of P1; the
reasoning for P2 is analogous. We fix a Mealy machine M = (M,µinit, αnxt, αup) of P1.

Let w = s0ā0s1ā1 . . . skāk ∈ (SĀ)∗. We study the distribution over M after w takes place. This
distribution is well-defined only under specific assumptions on w. The probability of being in some
memory state m after w is formally the conditional probability of being in m at step k + 1 given w. We
must therefore require that w is of positive probability under M and (at least) one strategy of P2, i.e.,
w must be consistent with M.

We reuse the notation µw introduced in Section 2. The main goal of this section is to prove the induc-
tive relation for µw recalled below. Assume w is not the empty word and let w′ = s0ā0s1ā1 . . . sk−1āk−1.
We prove the equation:

µw(m) =

∑

m′∈M µw′(m′) · αup(m
′, sk, āk)(m) · αnxt(m

′, sk)(a
(1)
k )

∑

m′∈M µw′(m′) · αnxt(m′, sk)(a
(1)
k )

. (A.1)

We derive this equation by studying the Markov chain induced in G by M and a strategy of P2 from
an initial state. We fix a strategy σ2 of P2 and an initial state sinit ∈ S. In the sequel, we prove that the
equations above hold for any w ∈ (SĀ)∗ that starts in sinit and is consistent with M and σ2. As indicated
by Equation (A.1), the choice of σ2 has no impact on µw (this strategy is required so the Markov chain
is well-defined).

A.2 Description of the Markov chain

First, we describe the Markov chain induced by playing M and σ2 from sinit in G. Formally, it is an
infinite Markov chain where states are non-empty sequences (s0,m0, ā0) . . . (sk,mk, āk) in (S ×M × Ā)∗

where s0ā0 . . . āk−1sk is a history of G and āk ∈ Ā(sk). The initial probability of a state (sinit,m, ā) is
given as the product µinit(m) · αnxt(m, sinit)(a

(1)) · σ2(sinit)(a
(2)); we multiply the probability that m is

drawn as the initial memory state, that a(1) is selected in memory state m and that a(2) is selected by
σ2. The initial distribution assigns 0 to any other state of the Markov chain.

Let t = (s0,m0, ā0) . . . (sk,mk, āk) and t′ = t(sk+1,mk+1, āk+1) be two states of the Markov chain.
The transition probability from t to t′ is defined by the product

δ(sk, āk)(sk+1) · αup(mk, sk, āk)(mk+1) · αnxt(mk+1, sk+1)(a
(1)
k+1) · σ2(s0ā0 . . . āksk+1)(a

(2)
k+1).

We define a probability measure over infinite sequences of states of the Markov chain described
above in the standard way, using cylinders. Initial infinite sequences of this Markov chain belong in
((S×M × Ā)∗)ω and are of the form t0(t0t1)(t0t1t2) . . . where tk ∈ S×M × Ā. We identify these infinite
initial sequences to elements of (S × M × Ā)ω . We will write P for the probability distribution over
(S ×M × Ā)ω obtained this way.

In the sequel, we use random variables defined over (S ×M × Ā)ω to refer to components or parts
of these sequences and derive Equation (A.1). We introduce some notation. Let B denote a set. For any
random variable X : (S×M × Ā)ω → B and b ∈ B, we write {X = b} for X−1({b}) and omit the braces
when evaluating P over such sets, e.g., we write P(X = b) for P({X = b}).

We use the following random variables. We denote by Sk (resp. Mk, Āk = (A
(1)
k , A

(2)
k )) the ran-

dom variable that describes the state of the game (resp. memory state, pair of actions) at position
k of a sequence in (S × M × Ā)ω . We write Wk for the random variable describing the sequence
Wk = S0Ā0S1Ā1 . . . Sk−1Āk−1 which is the sequence read by M prior to step k. Similarly, we write
Hk (resp. Mk) for the random variable Hk = WkSk (resp. Mk = M0M1 . . .Mk) that describes the
history at step k (resp. the sequence of memory states up to step k).

We now list properties of these random variables we refer to in the proof of Equation (A.1). We will
be concerned with conditional probabilities, and therefore all upcoming equations will assume that some
event has a positive probability. We mainly rely on the properties listed below.

First, memory updates only depend on the latest memory state, game state and pair of actions.
Formally, let us take a non-empty sequence w = s0ā0 . . . sk−1āk−1 ∈ (SĀ)+ such that P(Wk = w) > 0.
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For any sequence of memory states m = m0m1 . . .mk−1 ∈ Mk such that P(Mk−1 = m | Wk = w) > 0,
we have, for every state m ∈ M ,

P(Mk = m |Wk = w ∧Mk−1 = m)

= P(Mk = m | Sk−1 = sk−1 ∧Mk−1 = mk−1 ∧ Āk−1 = āk−1)

= αup(mk−1, sk−1, āk−1)(m).

Next, memory updates are independent from game state updates. In particular, for any history
h = s0ā0 . . . āk−1sk ∈ Hist(G) such that P(Hk = h) > 0, we have for any m ∈ M ,

P(Mk = m | Hk = h) = P(Mk = m | Wk = w),

where w denotes s0ā0 . . . sk−1āk−1.

The last three properties are related to the probability of actions following a history. To formulate
these properties, we fix h = s0ā0 . . . sk ∈ Hist(G) such that P(Hk = h) > 0 and a sequence of memory
states m = m0m1 . . .mk ∈ Mk+1 that is compatible with h, i.e., such that P(Mk = m | Hk = h) > 0.
First, we note that the actions choices of the players are independent given h and m, i.e., for all ā ∈ Ā(sk),
we have

P(Āk = ā |Hk = h ∧Mk = m)

=P(A(1)
k = a(1) | Hk = h ∧Mk = m) · P(A(2)

k = a(2) | Hk = h ∧Mk = m).

Second, we remark that the next action of P1 at any point depends only on the last state of the history
and the last memory state. In other words, for any sequence of memory states m = m0m1 . . .mk ∈ Mk+1

such that P(Mk = m | Hk = h) > 0 (i.e., any sequence of memory states likely to occur by processing h)
and action a(1) ∈ A(1)(sk),

P(A(1)
k = a(1) | Hk = h ∧Mk = m) = P(A(1)

k = a(1) | Sk = sk ∧Mk = mk)

= αnxt(mk, sk)(a
(1)).

Finally, we remark that the probability of the next action of P2 is given by σ2(h) and is independent of
the sequence of memory states m. Formally, we have,

P(A(2)
k = a(2) | Hk = h ∧Mk = m) = P(A(2)

k = a(2) | Hk = h) = σ2(h)(a
(2)).

A.3 Proving Equation (A.1)

Let w = s0ā0s1ā1 . . . skāk ∈ (SĀ)∗ such that P(Wk+1 = w) > 0. For any m ∈ M , the probability µw(m)
is formalised by the conditional probability P(Mk+1 = m | Wk+1 = w). Henceforth, we assume that w is
non-empty. Let w′ = s0ā0 . . . sk−1āk−1 be the prefix of w without its last state and last action. To prove
Equation (A.1), we must express µw as a function of µw′ .

We fix m ∈ M for the remainder of the section. The first step in our approach is to consider all possible
paths in M that reach m and have a positive probability of occurring whenever w is processed by M.
Considering these paths will allow us to exhibit the term in which αup appears within Equation (A.1).
We use the notation Pathsmw for the set of sequences m0m1 . . .mk such that the path m0m1 . . .mkm in
M is compatible with w, i.e., we let

Pathsmw = {m0m1 . . .mk ∈ Mk+1 | P(Mk+1 = m0 . . .mkm | Wk+1 = w) > 0}.
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We define, for any memory state m′ ∈ M , the set Pathsm
′

w′ as a subset of Mk in the same fashion. It
follows from the law of total probability (formulated for conditional probabilities), that

µw(m) = P(Mk+1 = m | Wk+1 = w)

=
∑

mm′∈Pathsmw

P(Mk+1 = m | Wk+1 = w ∧Mk = mm′) · P(Mk = mm′ | Wk+1 = w)

=
∑

mm′∈Pathsmw

αup(m
′, sk, āk)(m) · P(Mk = mm′ | Wk+1 = w)

=
∑

m′∈M

∑

m∈Pathsm
′

w′

αup(m
′, sk, āk)(m) · P(Mk = mm′ | Wk+1 = w)

=
∑

m′∈M






αup(m

′, sk, āk)(m) ·
∑

m∈Pathsm
′

w′

P(Mk = mm′ | Wk+1 = w)






.

We now shift our focus to the inner sum. Let us fix m′ ∈ M . This sum is indexed by all paths in M
that reach m′ and have positive probability. Therefore, it follows from the law of total probability that

∑

m∈Pathsm
′

w′

P(Mk = mm′ | Wk+1 = w) = P(Mk = m′ | Wk+1 = w).

We underscore that this probability is not µw′(m′) = P(Mk = m′ | Wk = w′). Up to this point, we
have established that

µw(m) =
∑

m′∈M

αup(m
′, sk, āk)(m) · P(Mk = m′ | Wk+1 = w). (A.2)

Using Bayes’ theorem, we can show a relation between the probability P(Mk = m′ | Wk+1 = w) and
µw′(m′). Let us write h′ in the following for the history w′sk given by w without its last action. We note
that {Wk+1 = w} and {Hk = h′} ∩ {Āk = āk} both denote the same set. We have the following chain of
equations:

P(Mk = m′ |Wk+1 = w)

= P(Mk = m′ ∧Hk = h′ | Wk+1 = w)

=
P(Wk+1 = w | Mk = m′ ∧Hk = h′) · P(Mk = m′ ∧Hk = h′)

P(Wk+1 = w)

=
P(Āk = āk | Mk = m′ ∧Hk = h′) · P(Mk = m′ | Hk = h′)

P(Āk = āk | Hk = h′)
.

The first equality is a consequence of Wk+1 = w implying Hk = h′. Bayes’ theorem is used between
lines two and three. To go from the third to the fourth line, both the numerator and denominator of
the fraction have been multiplied by P(Hk = h′) and the definition of conditional probabilities has been
used to rewrite the denominator and the rightmost factor of the numerator.

We now analyse the three terms of the fraction above. The probability P(Mk = m′ | Hk = h′) is
equal to the probability P(Mk = m′ | Wk = w′). This is exactly µw′(m′).

Next, we obtain from the independence of the action choices of both players and how the action
probabilities are computed that

P(Āk = āk | Mk = m′ ∧Hk = h′) = αnxt(m
′, sk)(a

(1)) · σ2(h
′)(a(2)).

We use the previous equation to analyse the final term of the quotient. We have

P(Āk = āk | Hk = h′)

=
∑

m′′∈M
P(Mk=m′′|Hk=h′)>0

P(Āk = āk | Mk = m′′ ∧Hk = h′) · P(Mk = m′′ | Hk = h′)

= σ2(h
′)(a

(2)
k ) ·

∑

m′′∈M

αnxt(m
′′, sk)(a

(1)
k ) · µw′(m′′).
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By injecting the above in Equation (A.2), we directly obtain Equation (A.1) (note that any term
appearing in a denominator is non-zero by the assumption P(Wk+1 = w) > 0). This concludes the
explanation on how to derive the formula to update the distribution over memory states following a
state transition and the choice of a pair of actions.
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