Controllers in Reactive Synthesis: A Strategic Perspective

Mickael Randour

F.R.S.-FNRS & UMONS - Université de Mons, Belgium

November 21, 2024

Journées annuelles du GT Vérif 2024

Randomness 0000000000 Beyond Mealy machines

The talk in one slide

Controllers in Reactive Synthesis: A Strategic Perspective

Strategies = formal blueprints for real-world controllers.

Strategies = formal blueprints for real-world controllers.

Simpler is better:

- ▷ easier to understand,
- ▷ cheaper to produce and maintain.

Strategies = formal blueprints for real-world controllers.

Simpler is better:

- ▷ easier to understand,
- ▷ cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

Strategies = formal blueprints for real-world controllers.

Simpler is better:

- ▷ easier to understand,
- ▷ cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

But how to define complexity and how to measure it?

Strategies = formal blueprints for real-world controllers.

Simpler is better:

- ▷ easier to understand,
- ▷ cheaper to produce and maintain.

Aim of this survey talk

Understanding how complex strategies need to be.

But how to define complexity and how to measure it?

\hookrightarrow That is our topic of the today.

Randomness 0000000000 Beyond Mealy machines

The talk in one more slide

Controllers in Reactive Synthesis: A Strategic Perspective

The talk in one more slide

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- ▷ game models,
- ▷ strategy models,
- ▷ objectives,
- ▷ decision problems...

The talk in one more slide

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- ▷ game models,
- ▷ strategy models,
- ▷ objectives,
- ▷ decision problems...

There will be some hand-waving and approximations to keep the talk high level.

The talk in one more slide

Yes, I lied, and I will lie even more. The results I will survey span numerous combinations of

- ▷ game models,
- ▷ strategy models,
- ▷ objectives,
- ▷ decision problems...

There will be some hand-waving and approximations to keep the talk high level.

\hookrightarrow I will focus on recent work with marvelous co-authors.

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines

1 Controller synthesis

2 Memory

3 Randomness

4 Beyond Mealy machines

Controller synthesis	Memory	Randomness	Beyond Mealy machines
●○○○○○○○	0000000000	000000000	

1 Controller synthesis

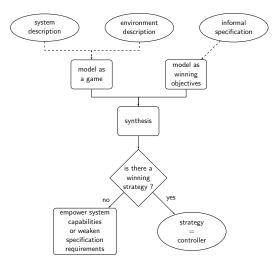
2 Memory

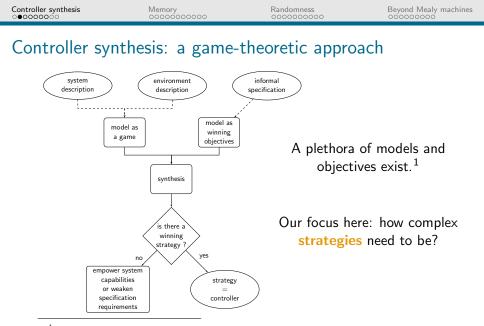
3 Randomness

4 Beyond Mealy machines

Beyond Mealy machines

Controller synthesis: a game-theoretic approach



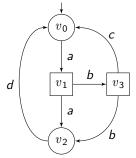


¹Randour, "Automated Synthesis of Reliable and Efficient Systems Through Game Theory: A Case Study", 2013; Clarke et al., Handbook of Model Checking, 2018; Fijalkow et al., Games on Graphs, 2023.

Randomness

Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

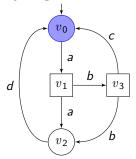
 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Randomness

Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

 → Players move a pebble along the edges creating an infinite play.

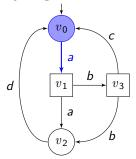
 \hookrightarrow Behavior of the system = sequence of colors.

Sample play:

Randomness

Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

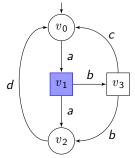
 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: a

Randomness 0000000000 Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

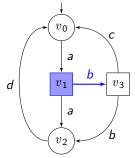
 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: a

Randomness 0000000000 Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

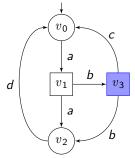
 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: ab

Randomness 0000000000 Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: ab

Randomness 0000000000 Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

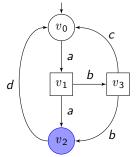
 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abb

Randomness 0000000000 Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

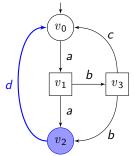
 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abb

Bevond Mealy machines

Two-player games



A two-player turn-based finite arena $\mathcal{A} = (V_{\Box}, V_{\Box}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

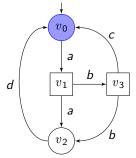
 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abbd

Bevond Mealy machines

Two-player games



A two-player turn-based finite arena $\mathcal{A} = (V_{\odot}, V_{\Box}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

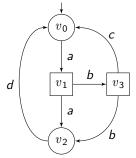
 \hookrightarrow Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: abbd

Randomness 0000000000 Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

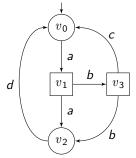
 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Sample play: *abbd* . . . $\in C^{\omega}$

Randomness 0000000000 Beyond Mealy machines

Two-player games



A two-player turn-based finite **arena** $\mathcal{A} = (V_{\bigcirc}, V_{\square}, E)$ with no deadlock.

Color function $\mathfrak{c} \colon E \to C$.

 → Players move a pebble along the edges creating an infinite play.

 \hookrightarrow Behavior of the system = sequence of colors.

Usual interpretation

 \mathcal{P}_{\bigcirc} (the system to control) tries to satisfy its **specification** while \mathcal{P}_{\square} (the environment) tries to prevent it from doing so.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

They are encoded as some kind of *objective* defined using colors. Three main flavors:

1 A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0 c_1 c_2 \dots | t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0 c_1 c_2 \dots \mid t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.
- **2** A payoff function to optimize, assuming $C \subset \mathbb{Q}$. E.g., the *discounted sum* function, defined as $DS(\pi) = \sum_{i=0}^{\infty} \gamma^i c_i$ for some discount factor $\gamma \in]0, 1[$.

They are encoded as some kind of *objective* defined using colors. Three main flavors:

- **1** A winning condition: a set of winning plays that \mathcal{P}_{\bigcirc} tries to realize. E.g., Reach $(t) = \{\pi = c_0 c_1 c_2 \dots | t \in \pi\}$, for $t \in C$ a given color, a *reachability* objective.
- 2 A payoff function to optimize, assuming C ⊂ Q. E.g., the discounted sum function, defined as DS(π) = ∑_{i=0}[∞] γⁱc_i for some discount factor γ ∈]0, 1[.
- **3** A preference relation defines a total preorder over sequences of colors, thus generalizing both previous concepts.

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines
_			

Strategies

Player \mathcal{P}_∇ chooses outgoing edges following a strategy

$$\sigma_{\nabla} \colon V^* V_{\nabla} \to V$$

consistent with the underlying graph.

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines
Strategies			

Player \mathcal{P}_∇ chooses outgoing edges following a strategy

 $\sigma_{\nabla} \colon V^* V_{\nabla} \to V$

consistent with the underlying graph.

 \hookrightarrow We are interested in the complexity of **optimal strategies.**

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines
· ·			

Player \mathcal{P}_∇ chooses outgoing edges following a strategy

 $\sigma_{\nabla} \colon V^* V_{\nabla} \to V$

consistent with the underlying graph.

Strategies

 \hookrightarrow We are interested in the complexity of **optimal strategies.**

Optimal strategies (using a preference relation \sqsubseteq)

A strategy σ_{\bigcirc} of \mathcal{P}_{\bigcirc} is optimal if it guarantees (i.e., against an optimal adversary \mathcal{P}_{\square}) a play at least as good as any other strategy σ'_{\bigcirc} with respect to \sqsubseteq .

MDPs & stochastic games

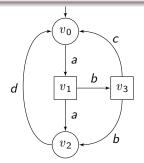
Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.

MDPs & stochastic games

Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



Two-player (deterministic) game.

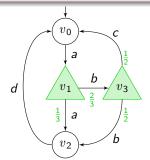
 $V = V_{\bigcirc} \biguplus V_{\square}.$

Randomness 0000000000 Beyond Mealy machines

MDPs & stochastic games

Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



Markov decision process.

$$V = V_{\bigcirc} \biguplus V_{\triangle}.$$

Either \mathcal{P}_{\bigcirc} aims to maximize

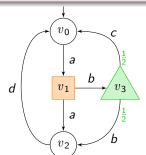
 $\triangleright \mathbb{P}^{\sigma_{\bigcirc}}[W]$ for some winning condition W,

 \triangleright or $\mathbb{E}^{\sigma_{\bigcirc}}[f]$ for some payoff function f.

MDPs & stochastic games

Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



Stochastic game.

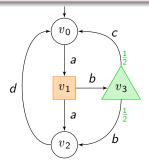
$$V = V_{\bigcirc} \biguplus V_{\bigtriangleup} \biguplus V_{\square}.$$

Either \mathcal{P}_{\bigcirc} aims to maximize, against the adversary \mathcal{P}_{\Box} , $\triangleright \mathbb{P}^{\sigma_{\bigcirc},\sigma_{\Box}}[W]$ for some winning condition W, \triangleright or $\mathbb{E}^{\sigma_{\bigcirc},\sigma_{\Box}}[f]$ for some payoff function f.

MDPs & stochastic games

Why?

In many real scenarios, the environment is not fully antagonistic, but exhibits stochastic behaviors.



Stochastic game.

 $V = V_{\bigcirc} \biguplus V_{\bigtriangleup} \biguplus V_{\square}.$

Actions

We often use actions instead of stochastic vertices.

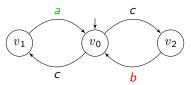
Controllers in Reactive Synthesis: A Strategic Perspective

M. Randour

Multiple objectives

Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.

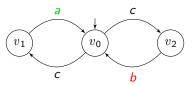


Seeing *a* **and** *b* infinitely often requires memory, but seeing only one does not (Büchi objective).

Multiple objectives

Combining objectives

Complex objectives arise when combining simple objectives, and usually require more complex strategies to play optimally.



Seeing *a* **and** *b* infinitely often requires memory, but seeing only one does not (Büchi objective).

 $\hookrightarrow \text{We are often interested in the Pareto front, i.e., all payoff} \\ \text{vectors not dominated by another.}$

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

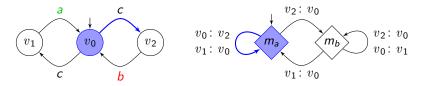
 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.



Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.



Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

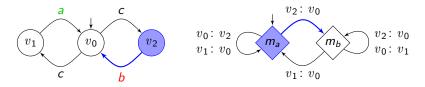
- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.



Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

 $\triangleright \ \alpha_{up} \colon M \times V \to M$ is the *update function*.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \ \alpha_{nxt} \colon M \times V \to V$ is the *next-action function*,

 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.



Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.

Mealy machine $\mathcal{M} = \{M, m_{init}, \alpha_{nxt}, \alpha_{up}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \ \alpha_{nxt} \colon M \times V \to V$ is the *next-action function*,

 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.

Mealy machine $\mathcal{M} = \{M, m_{init}, \alpha_{nxt}, \alpha_{up}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.



Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

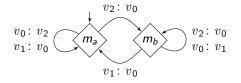
 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- ▷ *M* is the set of *memory states*,
- \triangleright *m*_{init} is the *initial state*,
- $\triangleright \alpha_{nxt}: M \times V \rightarrow V$ is the *next-action function*,

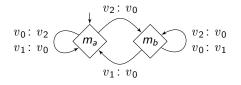
 $\triangleright \alpha_{up} \colon M \times V \to M$ is the *update function*.

The ice cream conundrum



This Mealy machine uses chaotic (or general) memory: it looks at the actual vertices of the game to update its memory.

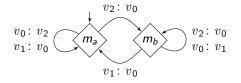
The ice cream conundrum



This Mealy machine uses chaotic (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: chromatic memory, with or without ε -transitions, with different types of randomness, etc.

The ice cream conundrum



This Mealy machine uses **chaotic** (or general) memory: it looks at the actual vertices of the game to update its memory.

Many other flavors exist: **chromatic** memory, with or without ε -transitions, with different types of randomness, etc.

 \hookrightarrow We will discuss some of these.

Controller synthesis	Memory ●000000000	Randomness 000000000	Beyond Mealy machines

1 Controller synthesis

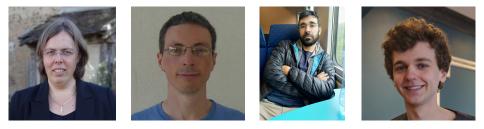
2 Memory

3 Randomness

4 Beyond Mealy machines

 Randomness 0000000000 Beyond Mealy machines

Some amazing co-authors



Section mostly based on joint work with Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, and Pierre Vandenhove.²

Controllers in Reactive Synthesis: A Strategic Perspective

²Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022; Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2023; Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

Memoryless strategies

Functions $\sigma_{\nabla} \colon V_{\nabla} \to V$.

- ▷ Equivalently, Mealy machines with one state.
- > Arguably, the simplest kind of strategies.

Memoryless strategies

Functions $\sigma_{\nabla} \colon V_{\nabla} \to V$.

- ▷ Equivalently, Mealy machines with one state.
- > Arguably, the simplest kind of strategies.
- Sufficient to play optimally for most *single* objectives in (stochastic) games: reachability, parity, mean-payoff, discounted sum, etc.

Starting point of our journey: deterministic games

Gimbert and Zielonka's characterization³

Memoryless strategies suffice (for both players) for a preference relation \sqsubseteq iff it is **monotone** and **selective**.

³Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005. Controllers in Reactive Synthesis: A Strategic Perspective M. Randour

Starting point of our journey: deterministic games

Gimbert and Zielonka's characterization³

Memoryless strategies suffice (for both players) for a preference relation \sqsubseteq iff it is **monotone** and **selective**.

Corollary: one-to-two-player lift

If \sqsubseteq is such that

- ${f I}$ in all ${\cal P}_{igodot}$ -arenas, ${\cal P}_{igodot}$ has optimal memoryless strategies,
- 2 in all \mathcal{P}_{\Box} -arenas, \mathcal{P}_{\Box} has optimal memoryless strategies,

then **both** players have optimal memoryless strategies in all **two-player** arenas.

\Rightarrow Extremely useful as analyzing one-player games (i.e., graphs) is much easier.

³Gimbert and Zielonka, "Games Where You Can Play Optimally Without Any Memory", 2005.

Why?

More complex objectives may require finite (multi-Büchi) or infinite memory (multi-mean-payoff).

Why?

More complex objectives may require finite (multi-Büchi) or infinite memory (multi-mean-payoff).

 $\hookrightarrow \text{One would hope for an equivalent of Gimbert and} \\ \text{Zielonka's result for finite memory.}$

Why?

More complex objectives may require finite (multi-Büchi) or infinite memory (multi-mean-payoff).

$\hookrightarrow \text{One would hope for an equivalent of Gimbert and} \\ \text{Zielonka's result for finite memory.}$

Unfortunately, it does not hold.

Let $\mathcal{C}\subseteq\mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Let $C \subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

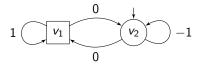
$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Both one-player variants are finite-memory determined.

Let $C\subseteq \mathbb{Z}$ and the winning condition for \mathcal{P}_{\bigcirc} be

$$\overline{TP}(\pi) = \infty \quad \lor \quad \exists^{\infty} n \in \mathbb{N}, \ \sum_{i=0}^{n} c_i = 0$$

Both one-player variants are finite-memory determined.



But the two-player one is not! $\implies \mathcal{P}_{\bigcirc}$ needs infinite memory to win.

M. Randour

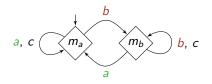
A new frontier

We focus on arena-independent chromatic memory structures.

A new frontier

We focus on arena-independent chromatic memory structures.

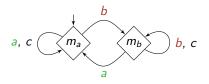
Example for $C = \{a, b, c\}$ and objective $Büchi(a) \cap Büchi(b)$.



A new frontier

We focus on arena-independent chromatic memory structures.

Example for $C = \{a, b, c\}$ and objective $Büchi(a) \cap Büchi(b)$.



This memory structure suffices in all arenas, i.e., it is always possible to find a suitable α_{nxt} to build an optimal Mealy machine.

A new frontier

We focus on arena-independent chromatic memory structures.

Our characterization⁴

We obtain an equivalent to Gimbert and Zielonka's for finite memory:

a characterization through the concepts of *M*-monotony and *M*-selectivity,

2 a one-to-two-player lift.

Controllers in Reactive Synthesis: A Strategic Perspective

 $^{^{\}rm 4}$ Bouyer, Le Roux, et al., "Games Where You Can Play Optimally with Arena-Independent Finite Memory", 2022.

Randomness 0000000000

Extension to stochastic games

We lift⁵ this result to pure arena-independent finite-memory strategies in stochastic games:

- characterization based on generalizations of *M*-monotony and *M*-selectivity,
- **2** one-to-two-player lift, from MDPs to stochastic games.

⁵Bouyer, Oualhadj, et al., "Arena-Independent Finite-Memory Determinacy in Stochastic Games", 2023. Controllers in Reactive Synthesis: A Strategic Perspective M. Randour

Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

Observation

Memory requirements can be **higher in infinite arenas**: e.g., mean-payoff objectives require infinite memory.

Extension to infinite (deterministic) arenas (1/2)

We consider arenas of arbitrary cardinality and allow infinite branching.

Observation

Memory requirements can be **higher in infinite arenas**: e.g., mean-payoff objectives require infinite memory.

The case of ω -regular objectives⁶

If a victory condition W is ω -regular, then it admits finite-memory optimal strategies in all (infinite) arenas.

⁶Mostowski, "Regular expressions for infinite trees and a standard form of automata", 1985; W. Zielonka, "Infinite games on finitely coloured graphs with applications to automata on infinite trees", 1998.

Extension to infinite (deterministic) arenas (2/2)

The converse⁷

If a chromatic finite-memory structure \mathcal{M} suffices for W in all infinite arenas, then W is ω -regular.

 \hookrightarrow We build a parity automaton for W, based on \mathcal{M} and \mathcal{S}_W , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

⁷Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

Extension to infinite (deterministic) arenas (2/2)

The converse⁷

If a chromatic finite-memory structure \mathcal{M} suffices for W in all infinite arenas, then W is ω -regular.

 \hookrightarrow We build a parity automaton for W, based on \mathcal{M} and \mathcal{S}_W , the *prefix-classifier* of W (recognizing its Myhill-Nerode classes).

Corollaries

- **1** Game-theoretical characterization of ω -regularity.
- **2 One-to-two-player lift** for infinite arenas.

Controllers in Reactive Synthesis: A Strategic Perspective

⁷Bouyer, Randour, and Vandenhove, "Characterizing Omega-Regularity through Finite-Memory Determinacy of Games on Infinite Graphs", 2023.

Other criteria and characterizations

There is a plethora of results related to memory (models vary). Non-exhaustive list:

- ▷ characterizations through universal graphs,⁸
- ▷ tight memory bounds for sub-classes of objectives,⁹
- ▷ criteria for half-positionality,¹⁰
- ▷ one-to-multi-objective lift,¹¹
- ▷ two-to-multi-player lift.¹²

\hookrightarrow Find more about chromatic memory in our survey.¹³

⁸Casares and Ohlmann, "Characterising Memory in Infinite Games", 2023.

 $^{^{9}}$ Bouyer, Casares, et al., "Half-Positional Objectives Recognized by Deterministic Büchi Automata", 2024; Bouyer, Fijalkow, et al., "How to Play Optimally for Regular Objectives?", 2023; Casares and Ohlmann, "Positional ω-regular languages", 2024.

¹⁰Aminof and Rubin, "First-cycle games", 2017.

¹¹Le Roux, Pauly, and Randour, "Extending Finite-Memory Determinacy by Boolean Combination of Winning Conditions", 2018.

¹²Le Roux and Pauly, "Extending Finite Memory Determinacy to Multiplayer Games", 2016.

¹³Bouyer, Randour, and Vandenhove, "The True Colors of Memory: A Tour of Chromatic-Memory Strategies in Zero-Sum Games on Graphs (Invited Talk)", 2022.

Controller synthesis	Memory 0000000000	Randomness ●00000000	Beyond Mealy machines

1 Controller synthesis

2 Memory

3 Randomness

4 Beyond Mealy machines

Memory 00000000000 Randomness 0000000000 Beyond Mealy machines

The amazing Mr. Main

Section mostly based on (ongoing) joint work with James C. A. Main. $^{\rm 14}$

¹⁴Main and Randour, "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024.

Introducing randomness in strategies (1/2) A pure strategy is a function $\sigma_{\nabla} : V^* V_{\nabla} \to V$.

Controllers in Reactive Synthesis: A Strategic Perspective

Introducing randomness in strategies (1/2)

A **pure** strategy is a function $\sigma_{\nabla} \colon V^* V_{\nabla} \to V$.

We may need randomness to deal with, e.g.,

- multiple objectives,
- ▷ concurrent games,
- ▷ imperfect information.

$$a \underbrace{(v_1)}_{c} \underbrace{(v_0)}_{c} \underbrace{(v_2)}_{b} b$$

Objective: \mathbb{P}^{σ} [Reach(a)] $\geq \frac{1}{2} \land \mathbb{P}^{\sigma}$ [Reach(b)] $\geq \frac{1}{2}$

\hookrightarrow Achievable by tossing a coin in v_0 .

Behavioral strategies $\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$

Behavioral strategies $\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$

Mixed strategies $\mathcal{D}(\sigma_{\nabla} \colon V^* V_{\nabla} \to V)$

> Behavioral strategies $\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$

Mixed strategies $\mathcal{D}(\sigma_{\nabla} \colon V^* V_{\nabla} \to V)$

General strategies $\mathcal{D}(\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V))$

> Behavioral strategies $\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V)$

Mixed strategies $\mathcal{D}(\sigma_{\nabla} \colon V^* V_{\nabla} \to V)$

General strategies $\mathcal{D}(\sigma_{\nabla} \colon V^* V_{\nabla} \to \mathcal{D}(V))$

Kuhn's theorem¹⁵

All three classes are equivalent in games of *perfect recall*.

\hookrightarrow Requires access to infinite memory and infinite support for distributions.

¹⁵Aumann, "Mixed and Behavior Strategies in Infinite Extensive Games", 1964.

What about finite-memory strategies?

Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of memory states,
- \triangleright *m*_{init} is the initial state,
- $\triangleright \ \alpha_{\mathsf{nxt}} \colon M \times V \to V$ is the next-action function,
- $\triangleright \ \alpha_{up} \colon M \times V \to M$ is the update function.

What about finite-memory strategies?

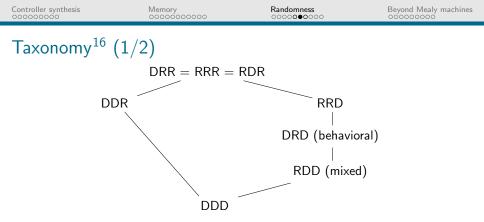
Mealy machine $\mathcal{M} = \{M, m_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of memory states,
- \triangleright *m*_{init} is the initial state,
- $\triangleright \ \alpha_{nxt} \colon M \times V \to V$ is the next-action function,
- $\triangleright \ \alpha_{up} \colon M \times V \to M$ is the update function.

Stochastic Mealy machine $\mathcal{M} = \{M, \mu_{\text{init}}, \alpha_{\text{nxt}}, \alpha_{\text{up}}\}$:

- \triangleright *M* is the set of memory states,
- $\triangleright \ \mu_{\text{init}} \in \mathcal{D}(M)$ is the initial distribution,
- $\triangleright \ \alpha_{nxt} \colon M \times V \to \mathcal{D}(V)$ is the next-action function,
- $\triangleright \ \alpha_{up} \colon M \times V \to \mathcal{D}(M)$ is the update function.

\implies Three ways to add randomness: initialization, outputs, and updates.



Classes XYZ where X, Y, Z \in {D, R} where D stands for deterministic and R for random, and

- X characterizes the initialization,
- Y characterizes the next-action function,
- Z characterizes the update function.

 $^{^{16}\}mbox{Main}$ and Randour, "Different Strokes in Randomised Strategies: Revisiting Kuhn's Theorem Under Finite-Memory Assumptions", 2024.

Memory 0000000000 Randomness

Beyond Mealy machines

Taxonomy (2/2)

This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

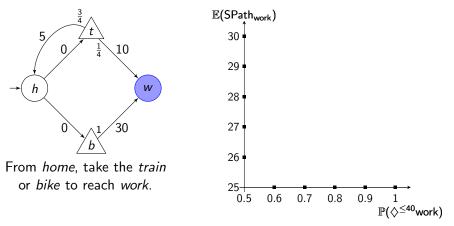
Taxonomy (2/2)

This taxonomy holds from one-player deterministic games (no collapse) up to concurrent partial-information multi-player games (equivalences hold).

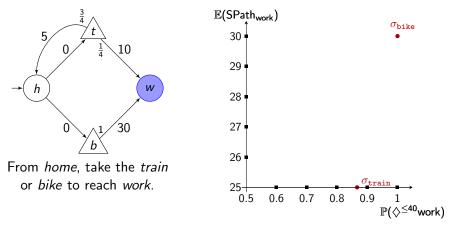
 \hookrightarrow Collapses may arise for restricted classes of objectives (WiP).

We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.

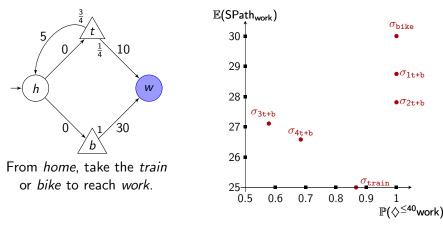


- We consider two goals:
 - reaching work under 40 minutes with high probability;
 - minimizing the expectancy of the time to reach work.



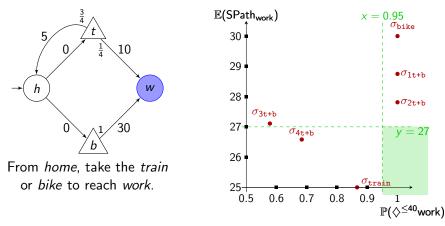
We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.



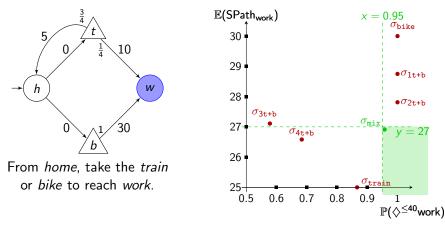
We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.



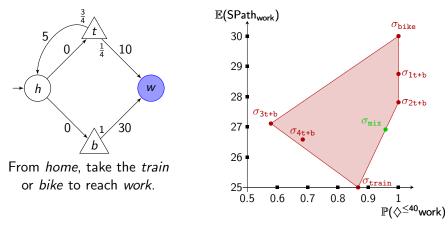
We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.



We consider two goals:

- reaching work under 40 minutes with high probability;
- minimizing the expectancy of the time to reach work.



We are interested in the structure of this **payoff set**.

We are interested in the structure of this payoff set.

Our result (WiP)

For good payoff functions (\sim expectancy is well-defined),

- the set of achievable payoffs coincide with the convex hull of pure payoffs;
- 2 we can approximate any strategy ε-closely by mixing a bounded number of pure strategies.

We are interested in the structure of this payoff set.

Our result (WiP)

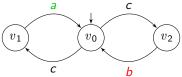
For good payoff functions (\sim expectancy is well-defined),

- the set of achievable payoffs coincide with the convex hull of pure payoffs;
- 2 we can approximate any strategy ε-closely by mixing a bounded number of pure strategies.

\Rightarrow RDD-randomization is sufficient in most multi-objective MDPs.

Trading memory for randomness

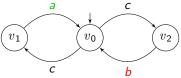
Recall this generalized Büchi game asking to see a and b infinitely often:



We need (a two-state) memory to win it with *pure* strategies.

Trading memory for randomness

Recall this generalized Büchi game asking to see a and b infinitely often:

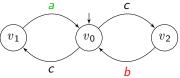


We need (a two-state) memory to win it with *pure* strategies.

But a (behavioral) randomized memoryless strategy suffices to win with probability one: playing v_1 and v_2 with non-zero probability ensures it.

Trading memory for randomness

Recall this generalized Büchi game asking to see a and b infinitely often:



We need (a two-state) memory to win it with *pure* strategies.

But a (behavioral) randomized memoryless strategy suffices to win with probability one: playing v_1 and v_2 with non-zero probability ensures it.

\hookrightarrow Memory can be traded for randomness for some classes of games/objectives. 17

¹⁷Chatterjee, de Alfaro, and Henzinger, "Trading Memory for Randomness", 2004; Chatterjee, Randour, and Raskin, "Strategy synthesis for multi-dimensional quantitative objectives", 2014.

Controller synthesis	Memory 0000000000	COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Beyond Mealy machines
00000000	0000000000	000000000	€00000000

1 Controller synthesis

2 Memory

3 Randomness

4 Beyond Mealy machines

Randomness 0000000000 Beyond Mealy machines

An incomplete story

Leitmotiv

Simpler strategies are better (for controller synthesis).

Randomness 0000000000 Beyond Mealy machines

An incomplete story

Leitmotiv

Simpler strategies are better (for controller synthesis).

But what is simple?

Randomness 0000000000 Beyond Mealy machines

An incomplete story

Leitmotiv

Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

Memory

Beyond Mealy machines 0000000

An incomplete story

Leitmotiv

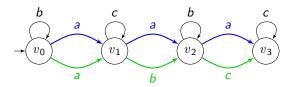
Simpler strategies are better (for controller synthesis).

But what is simple?

Usual answer: small memory, no randomness.

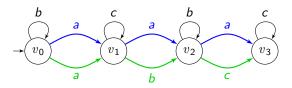
 \hookrightarrow Let us question that.

We want to reach v_3 .



Intuitively, the blue strategy seems simpler than the green one.

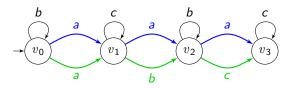
We want to reach v_3 .



Intuitively, the blue strategy seems simpler than the green one.

> Yet both are represented as a trivial Mealy machine with a single memory state.

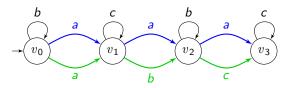
We want to reach v_3 .



Intuitively, the blue strategy seems simpler than the green one.

- Yet both are represented as a trivial Mealy machine with a single memory state.
- ▷ The representation of the next-action function is mostly overlooked (basically a huge table).

We want to reach v_3 .

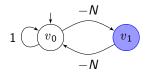


Intuitively, the blue strategy seems simpler than the green one.

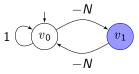
- > Yet both are represented as a trivial Mealy machine with a single memory state.
- ▶ The representation of the next-action function is mostly overlooked (basically a huge table).

 \hookrightarrow Memoryless strategies can already be too large to represent in practice!

Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

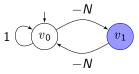


Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.



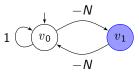
▷ We need a pseudo-polynomial Mealy machine because it lacks structure.

Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.



- We need a pseudo-polynomial Mealy machine because it lacks structure.
- \hookrightarrow Polynomial representation if we allow the use of counters.

Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.

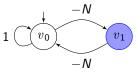


- ▷ We need a pseudo-polynomial Mealy machine because it lacks structure.
- \hookrightarrow Polynomial representation if we allow the use of counters.

Hot take

We should explore novel notions of **simplicity**, and consider *alternative representations* of strategies/controllers.

Multi-objectives games involving payoffs often require **exponential memory**. E.g., energy-Büchi objective with $N \in \mathbb{N}$.



- ▷ We need a pseudo-polynomial Mealy machine because it lacks structure.
- \hookrightarrow Polynomial representation if we allow the use of counters.

Hot take

We should explore novel notions of **simplicity**, and consider *alternative representations* of strategies/controllers.

\hookrightarrow We quickly survey a few ones in the next slides.

Structurally-enriched Mealy machines

Idea:

- Augment Mealy machines with data structures: e.g., counters.¹⁸
- Avoid "flattening" structural information about the strategy: better understandability and closer to actual controllers.
- ▷ Link with James's talk about interval strategies in OC-MDPs.

\implies Changes our way of thinking which strategies are complex or not.

¹⁸Blahoudek et al., "Qualitative Controller Synthesis for Consumption Markov Decision Processes", 2020.
Controllers in Reactive Synthesis: A Strategic Perspective M. Randour

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines

Decision trees

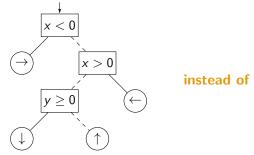
- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- \triangleright Learn a (possibly approximative) decision tree from a given memoryless strategy.
- More understandable and compact than huge action tables. \triangleright
- More complex tests may reduce size but hinder readability. \triangleright

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines

Decision trees

- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▷ More understandable and compact than huge action tables.
- > More complex tests may reduce size but hinder readability.

Toy example: trying to reach the center (0,0) of a 2D-grid.



X	y	action
0	1	\downarrow
0	2	\downarrow
		\downarrow
-1	0	\rightarrow
-1	1	\rightarrow

Controllers in Reactive Synthesis: A Strategic Perspective

M. Randour

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines ○○○○●○○○

Decision trees

- \triangleright Structured state-space (e.g., $\subset \mathbb{Z}^n$) and action-space.
- Learn a (possibly approximative) decision tree from a given memoryless strategy.
- ▷ More understandable and compact than huge action tables.
- ▷ More complex tests may reduce size but hinder readability.

Works well in practice...¹⁹

... starting from a given memoryless strategy.

¹⁹Brazdil, Chatterjee, Chmelik, et al., "Counterexample Explanation by Learning Small Strategies in Markov Decision Processes", 2015; Brazdil, Chatterjee, Kretinsky, et al., "Strategy Representation by Decision Trees in Reactive Synthesis", 2018.

Other alternatives

Programmatic representations.

- ▷ Closer to realistic code, understandable.
- Strongly linked to the input format of the problem (e.g., PRISM code²⁰), hard to generalize.

Models inspired by Turing machines.

- ▷ Powerful but hard to work with.
- ▷ Tentative notion of decision speed.²¹

Neural networks.

- \triangleright Prevalent in RL.
- ▷ Hard to understand and verify.
- \triangleright Can be coupled with finite-state-machine abstractions.²²

²²Shabadi, Fijalkow, and Matricon, "Theoretical foundations for programmatic reinforcement learning", 2024.

²²Gelderie, "Strategy machines: representation and complexity of strategies in infinite games", 2014.

²²Carr, Jansen, and Topcu, "Verifiable RNN-Based Policies for POMDPs Under Temporal Logic Constraints", 2020.

Controller synthesis	Memory	Randomness	Beyond Mealy machines
	0000000000	000000000	○○○○○○●○
Wran-un			

v ap-up

Focus

Complexity of strategies in controller synthesis.

Controller synthesis	Memory	Randomness	Beyond Mealy machines
	0000000000	000000000	○○○○○●○

Wrap-up

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

▶ High-level picture w.r.t. **memory** and **randomness**.

Controller synthesis	Memory	Randomness	Beyond Mealy machines
	0000000000	000000000	○○○○○●○

Wrap-up

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

▷ High-level picture w.r.t. memory and randomness.

 \hookrightarrow Many questions are still open!

Controller synthesis	Memory	Randomness	Beyond Mealy machines
	0000000000	000000000	○○○○○○●○
Wrap-up			

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

▷ High-level picture w.r.t. memory and randomness.

 \hookrightarrow Many questions are still open!

Strategy complexity \neq representation complexity.

Controller synthesis	Memory 0000000000	Randomness 000000000	Beyond Mealy machines
Wrap-up			

Focus

Complexity of strategies in controller synthesis.

Mealy machines are a powerful tool from a theoretical standpoint.

▷ High-level picture w.r.t. memory and randomness.

 \hookrightarrow Many questions are still open!

Strategy complexity \neq representation complexity.

Take-home message

We need a proper theory of complexity, and a toolbox of different representations.

\hookrightarrow Ongoing project ControlleRS.

Thank you! Any question?

Controllers in Reactive Synthesis: A Strategic Perspective

M. Randour