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Geography of bilinearized Legendrian contact homology

FRÉDÉRIC BOURGEOIS

DAMIEN GALANT

We study the geography of bilinearized Legendrian contact homology for closed connected Legendrian
submanifolds with vanishing Maslov class in 1–jet spaces. We show that this invariant detects whether
the two augmentations used to define it are DGA homotopic or not. We describe a collection of graded
vector spaces containing all possible values for bilinearized Legendrian contact homology and then show
that all these vector spaces can be realized.

53D42, 57R17

1 Introduction

Let ƒ be a closed Legendrian submanifold of the 1–jet space J 1.M/ of a manifold M . Given a generic
complex structure for the canonical contact structure on J 1.M/, one can associate to ƒ its Chekanov–
Eliashberg differential graded algebra .A.ƒ/; @/; see Chekanov [3] and Ekholm, Etnyre and Sullivan [7; 9].
The homology of .A.ƒ/; @/, called Legendrian contact homology, is an invariant of the Legendrian isotopy
class of ƒ, but it is often hard to compute. It is therefore useful to consider augmentations of .A.ƒ/; @/,
because such an augmentation " can be used to define a linearized complex .C.ƒ/; @"/. The homology is
denoted by LCH".ƒ/ and called the linearized Legendrian contact homology of ƒ with respect to ". The
collection of these homologies for all augmentations of .A.ƒ/; @/ is also an invariant of the Legendrian
isotopy class of ƒ. The geography (i.e. the determination of all possible values) of a similar homological
invariant defined using generating families was described by the first author with Sabloff and Traynor [2].
Using the work of Dimitroglou Rizell [4] on the effect of embedded surgeries on Legendrian contact
homology, this geography can be shown to hold for linearized Legendrian contact homology as well. On the
other hand, the first author and Chantraine [1] showed that it is possible to use two augmentations "1 and "2
of the Chekanov–Eliashberg DGA to define a bilinearized differential @"1;"2 on C.ƒ/. The corresponding
homology is called bilinearized Legendrian contact homology and is denoted by LCH"1;"2.ƒ/. Our object
is to describe the geography of bilinearized Legendrian contact homology. In other words, our goal is
to describe a collection of Legendrian submanifolds equipped with two augmentations such that their
bilinearized Legendrian contact homologies realize all possible values for this invariant.

When "1 D "2, bilinearized Legendrian contact homology coincides with linearized Legendrian contact
homology. More generally, if the two augmentations are DGA homotopic, LCH"1;"2.ƒ/ is isomorphic to
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3572 Frédéric Bourgeois and Damien Galant

LCH"1.ƒ/. Our first result describes a crucial difference in the behavior of bilinearized Legendrian contact
homology depending whether the two augmentations are DGA homotopic or not. More precisely, this
different behavior is detected by a map �n WLCH"1;"2

n .ƒ/!Hn.ƒ/ appearing in the duality exact sequence
for Legendrian contact homology (see Ekholm, Etnyre and Sabloff [6]) and described in Sections 2 and 3.

Theorem 1.1 Let ƒ be a closed connected Legendrian submanifold of J 1.M/ with dimM D n. Let "1
and "2 be two augmentations of the Chekanov–Eliashberg DGA of ƒ with coefficients in Z2. Then "1
and "2 are DGA homotopic if and only if the map �n W LCH"1;"2

n .ƒ/!Hn.ƒ/ is surjective.

In other words, the fundamental class of ƒ induces a class in linearized Legendrian contact homology,
while the class of the point in ƒ induces a class in bilinearized Legendrian contact homology with respect
to non-DGA homotopic augmentations.

Corollary 1.2 Bilinearized Legendrian contact homology is a complete invariant for DGA homotopy
classes of augmentations of the Chekanov–Eliashberg DGA.

The strength of this result will be illustrated in Section 3 by revisiting an important example of a Legendrian
knot featuring only a partial study of its augmentations; see Melvin and Shrestha [14]. We complete the
study of this Legendrian knot with a full description of its DGA homotopy classes of augmentations.

Our second result describes the geography of the Laurent polynomials that can be obtained as a Poincaré
polynomial for bilinearized Legendrian contact homology. We will introduce in Definition 4.1 the explicit
notion of a BLCH–admissible Laurent polynomial, and prove that only these polynomials can be obtained
as the Poincaré polynomial of bilinearized Legendrian contact homology.

Theorem 1.3 For any BLCH–admissible Laurent polynomial P , there exists a closed connected Legen-
drian submanifold ƒ of J 1.M/ and there exist two non-DGA homotopic augmentations "1 and "2 of the
Chekanov–Eliashberg DGA of ƒ, with the property that the Poincaré polynomial of LCH"1;"2.ƒ/ with
coefficients in Z2 is equal to P .

We also will establish a similar result, namely Theorem 4.17, in the specific case of Legendrian spheres.

The collection of Poincaré polynomials that is realized by bilinearized Legendrian contact homology
is considerably wider than the corresponding collection for the geography of linearized Legendrian
contact homology [2, Theorem 1.1]. For this reason, the examples of Legendrian submanifolds that are
constructed here in order to realize the geography of bilinearized Legendrian contact homology differ
substantially from those considered in [2] and exhibit new interesting phenomena. In particular, while
connected sums of Legendrian submanifolds played an important role in [2], such constructions cannot be
used here because these tend to produce pairs of unwanted generators in bilinearized Legendrian contact
homology. Moreover, we introduce a completely new construction in order to create pairs of generators
in arbitrary degrees, instead of degrees summing to n� 1 as in linearized Legendrian contact homology.
We also introduce another completely new construction in order to obtain bilinearized Legendrian contact
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homologies of different ranks, depending on the ordering of the two non-DGA homotopic augmentations.
Note that the examples we construct are convenient to work with, as they only have cusp singularities.

This paper is organized as follows. In Section 2 we review the definition of bilinearized Legendrian contact
homology and state its main properties. In Section 3 we study fundamental classes in bilinearized Legen-
drian contact homology, prove Theorem 1.1 and Corollary 1.2 and study the effect of connected sums on
bilinearized Legendrian contact homology. In Section 4 we study the geography of bilinearized Legendrian
contact homology and prove Theorem 1.3 and its counterpart Theorem 4.17 for Legendrian spheres.

Acknowledgments We are indebted to Josh Sabloff for providing us computer code that computes
linearized Legendrian contact homology of Legendrian knots in R3, using techniques of Henry and
Rutherford [11; 12]. Although our exposition is independent from these sources, the generalization of
this computer code by Galant to the calculation of bilinearized Legendrian contact homology played an
essential role at the beginning of this work, before its generalization to higher dimensions. We thank
Georgios Dimitroglou Rizell for a productive discussion of DGA homotopies of augmentations. An
important refinement in the constructions from Section 4 emerged after an interesting conversation with
Sylvain Courte. Special thanks go to Filip Strakoš for spotting a mistake in the proof of Proposition 4.2
impacting other parts of an earlier version of the paper. We also thank Cyril Falcon for his remarks on the
original manuscript. Bourgeois was partially supported by the Institut Universitaire de France and by
the ANR projects Quantact (16-CE40-0017), Microlocal (15-CE40-0007) and COSY (21-CE40-0002).
Galant is an FRS-FNRS research fellow.

2 Bilinearized Legendrian contact homology

The 1–jet space J 1.M/DT �M �R of a smooth n–dimensional manifoldM is equipped with a canonical
contact structure � D ker.dz � �/, where � is the Liouville 1–form on T �M and z is the coordinate
along R. Let ƒ be a closed Legendrian submanifold of this contact manifold, i.e. a closed embedded
submanifold of dimension n such that Tpƒ� �p for any p 2ƒ.

We first describe the definition of a differential graded algebra associated to ƒ, following its construction
by Ekholm, Etnyre and Sullivan [7]. The Reeb vector field associated to the contact form ˛ D dz ��

for � is simply R˛ D @=@z. A Reeb chord of ƒ is a finite nontrivial piece of integral curve for R˛ with
endpoints on ƒ. After performing a Legendrian isotopy, we can assume that all Reeb chords of ƒ are
nondegenerate, i.e. the canonical projections to the tangent space of T �M of the tangent spaces to ƒ
at the endpoints of each chord intersect transversally. Let us assume that the Maslov class �.ƒ/ of ƒ
vanishes; see [7, section 2.2].

We denote by A.ƒ/ the unital noncommutative algebra freely generated over Z2 by the Reeb chords
of ƒ. Each Reeb chord c is graded by its Conley–Zehnder �.c/ 2 Z; when ƒ is connected, this does not
depend on any additional choice since �.ƒ/D 0. The grading of c is defined as jcj D �.c/� 1. Hence,
in this case, the algebra A.ƒ/ is naturally graded.
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Let J be a complex structure on � which is compatible with its conformal symplectic structure. This
complex structure naturally extends to an almost complex structure, which we still denote by J , on the
symplectization .R�J 1.M/; d.et˛// by J@=@t DR˛ . We consider the moduli space zM.aI b1; : : : ; bk/

of J –holomorphic disks in R�J 1.M/ with boundary on R�ƒ and with kC1 punctures on the boundary
that are asymptotic at the first puncture to the Reeb chord a at t DC1 and at the other punctures to the
Reeb chords b1; : : : ; bk at t D�1. For a generic choice of J , this moduli space is a smooth manifold
of dimension jaj �

Pk
iD1 jbi j; see [7, Proposition 2.2]. This moduli space carries a natural R–action

corresponding to the translation of J –holomorphic disks along the t–coordinate. When fb1; : : : ; bkg¤fag,
let us denote by M.aI b1; : : : ; bk/ the quotient of this moduli space by this free action.

We define a differential @ on A.ƒ/ by

@aD
X

b1;:::;bk

dimM.aIb1;:::;bk/D0

#2M.aI b1; : : : ; bk/b1 � � � bk;

where #2M.aI b1; : : : ; bk/ is the number of elements in the corresponding moduli space, modulo 2. This
differential has degree �1 and satisfies @ ı @D 0.

The resulting differential graded algebra .A.ƒ/; @/ is called the Chekanov–Eliashberg DGA, and its
homology is called Legendrian contact homology and denoted by LCH.ƒ/. This graded algebra over Z2
depends only on the Legendrian isotopy class of ƒ.

Let us now turn to the definition of a linearized version of Legendrian contact homology. An augmentation
of .A.ƒ/; @/ is a unital DGA map " W .A.ƒ/; @/! .Z2; 0/. In other words, it is a choice of ".c/ 2Z2 for
all Reeb chords c of ƒ, it satisfies ".1/D 1, it extends to A.ƒ/ multiplicatively and additively, and it
satisfies " ı @D 0.

Such an augmentation can be used to define a linearization of .A.ƒ/; @/. Let C.ƒ/ be the vector space
over Z2 freely generated by all Reeb chords ofƒ. We also define the linearized differential @" on C.ƒ/ by

@"aD
X

b1;:::;bk

dimM.aIb1;:::;bk/D0

#2M.aI b1; : : : ; bk/

kX
iD1

".b1/ � � � ".bi�1/bi".biC1/ � � � ".bk/:

This differential has degree �1 and satisfies @" ı @" D 0. The homology of the resulting linearized
complex .C.ƒ/; @"/ is called linearized Legendrian contact homology (with respect to ") and denoted by
LCH".ƒ/. The collection of these graded modules over Z2 for all augmentations of ƒ depends only on
the Legendrian isotopy class of ƒ.

Linearized Legendrian contact homology fits into a duality long exact sequence [6] together with its
cohomological version LCH".ƒ/ and with the singular homology H.ƒ/ of the underlying n–dimensional
manifold ƒ:

� � � ! LCHn�k�1" .ƒ/! LCH"k.ƒ/
�k
�!Hk.ƒ/! LCHn�k" .ƒ/! � � � :
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Moreover, the map �n in the above exact sequence does not vanish. These properties induce constraints
on the graded modules over Z2 that can be realized as the linearized Legendrian contact homology of
some Legendrian submanifold, with respect to some augmentation. These constraints can be formulated
in terms of the Poincaré polynomial of LCH".ƒ/, which is the Laurent polynomial defined by

Pƒ;".t/D
X
k2Z

dimZ2
LCH"k.ƒ/t

k :

Whenƒ is connected, the duality exact sequence and the nonvanishing of �n imply that the above Poincaré
polynomial has the form

(2-1) Pƒ;".t/D q.t/Cp.t/C t
n�1p.t�1/;

where q is a monic polynomial of degree n with integral coefficients (corresponding to the image of the
maps �k) and p is a Laurent polynomial with integral coefficients (corresponding to the kernel of the
maps �k). We shall say that a Laurent polynomial of this form is LCH–admissible.

The first author together with Sabloff and Traynor [2] studied generating family homology GH.f /, an
invariant for isotopy classes of Legendrian submanifoldsƒ� .J 1.M/; �/ admitting a generating family f .
This invariant is also a graded module over Z2 and satisfies the same duality exact sequence as above. In
this study, the effect of Legendrian ambient surgeries on this invariant was determined and these operations
were used to produce many interesting examples of Legendrian submanifolds admitting generating families.
More precisely, for any LCH–admissible Laurent polynomial P , a connected Legendrian submanifold
ƒP admitting a generating family fP realizing P as the Poincaré polynomial of GH.fP / was constructed
using these operations. On the other hand, Dimitroglou Rizell [4] showed in particular that Legendrian
ambient surgeries have the same effect as above on linearized Legendrian contact homology (for more
details in the case of the connected sum, see the proof of Proposition 3.5). This result can be used step by
step in the constructions of [2] to show that, for any LCH–admissible Laurent polynomial P , there exists
an augmentation "P for ƒP such that LCH"P .ƒP /Š GH.fP /. Therefore, the geography question for
linearized Legendrian contact homology is completely determined by the above LCH–admissible Laurent
polynomials.

Finally, we turn to a generalization of linearized LCH introduced by the first author together with
Chantraine [1]. Using two augmentations "1 and "2 of .A.ƒ/; @/, we can define another differential
@"1;"2 on C.ƒ/, called the bilinearized differential:

@"1;"2aD
X

b1;:::;bk

dimM.aIb1;:::;bk/D0

#2M.aI b1; : : : ; bk/

kX
iD1

"1.b1/ � � � "1.bi�1/bi"2.biC1/ � � � "2.bk/:

As above, this differential has degree �1 and satisfies @"1;"2 ı @"1;"2 D 0. The homology of the resulting
bilinearized complex .C.ƒ/; @"1;"2/ is called bilinearized Legendrian contact homology (with respect to
"1 and "2) and denoted by LCH"1;"2.ƒ/. The collection of these graded modules over Z2 for all pairs of
augmentations of ƒ depends only on the Legendrian isotopy class of ƒ.
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Bilinearized Legendrian contact homology also satisfies a duality exact sequence [1], but one has to take
care of the ordering of the augmentations:

(2-2) � � � ! LCHn�k�1"2;"1
.ƒ/! LCH"1;"2

k
.ƒ/

�k
�!Hk.ƒ/

�n�k
���! LCHn�k"2;"1

.ƒ/! � � � :

Moreover, unlike in the linearized case, there exist [1, Section 5] connected Legendrian submanifolds ƒ
with augmentations "1 and "2 such that the map �n vanishes. Our goal here is to understand when the
map �n vanishes, and to study the geography of the Poincaré polynomials

Pƒ;"1;"2
.t/D

X
k2Z

dimZ2
LCH"1;"2

k
.ƒ/tk

for bilinearized Legendrian contact homology.

3 Fundamental classes in bilinearized Legendrian contact homology

There are several notions of equivalence for augmentations of DGAs that were introduced in the literature
and used in the context of the Chekanov–Eliashberg DGA. As the results of this section will show, it turns
out that the equivalence relation among augmentations that best controls the behavior of bilinearized LCH
is the notion of DGA homotopic augmentations [16, Definition 5.13]. Let "1 and "2 be two augmentations
of the DGA .A; @/ over Z2. Recall that a linear map K WA! Z2 is said to be an ."1; "2/–derivation if
K.ab/ D "1.a/K.b/CK.a/"2.b/ for any a; b 2 A. We say that "1 is DGA homotopic to "2, and we
write "1 � "2, if there exists an ."1; "2/–derivation K WA! Z2 of degree C1 such that "1� "2 DK ı @.
It is a standard fact that DGA homotopy is an equivalence relation [10, Lemma 26.3].

Note that the defining condition for a DGA homotopy admits a beautiful and convenient reformulation in
terms of the bilinearized complex.

Lemma 3.1 Two augmentations "1 and "2 are DGA homotopic if and only if there exists a linear map
K W C.ƒ/! Z2 of degreeC1 such that "1� "2 DK ı @"1;"2 on C.ƒ/.

Proof Suppose first that "1 is DGA homotopic to "2. This implies in particular that "1.c/�"2.c/DKı@c
for any c 2 C.ƒ/. Since K is an ."1; "2/–derivation, it directly follows from the definition of the
bilinearized differential that K ı @c DK ı @"1;"2c. It then suffices to take K to be the restriction of K
to C.ƒ/.

Suppose now that there exists a linear map K W C.ƒ/! Z2 of degree C1 such that "1� "2 DK ı @"1;"2

on C.ƒ/. The map K determines a unique ."1; "2/–derivation K WA! Z2 via the relation

K.a1 � � � an/D

kX
iD1

"1.a1 � � � ai�1/K.ai /"2.aiC1 � � � an/

for all a1; : : : ; an 2A. As above, these maps satisfyK ı@cDK ı@"1;"2c, so that "1�"2DK ı@ on C.ƒ/.
Now observe that "1.ab/� "2.ab/ D "1.a/."1.b/� "2.b//C ."1.a/� "2.a//"2.b/, and on the other
handK ı@.ab/D "1.@a/K.b/C"1.a/K.@b/CK.@a/"2.b/CK.a/"2.@b/D "1.a/K.@b/CK.@a/"2.b/.
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Hence if a and b satisfy the DGA homotopy relation, then ab satisfies it as well. Since this relation holds
on C.ƒ/, it follows that it is also satisfied on A.

Note that, in the above proof, the extension of the linear map K to a unique ."1; "2/–derivation on A as
well as the extension of the homotopy relation from C.ƒ/ to A were first established in a more general
setup by Kálmán in [13, Lemma 2.18].

With this suitable notion of equivalence for augmentations, we can now turn to the study of the fundamental
class in bilinearized LCH, via the maps �0 and �n from the duality long exact sequence. The following
proposition generalizes [6, Theorem 5.5].

Proposition 3.2 Let "1 and "2 be augmentations of the Chekanov–Eliashberg DGA .A; @/ of a closed con-
nected n–dimensional Legendrian submanifold ƒ in .J 1.M/; �/. The map �0 W LCH"1;"2

0 .ƒ/!H0.ƒ/

from the duality long exact sequence vanishes if and only if "1 and "2 are DGA homotopic.

Proof Let f be a Morse function onƒ with a unique minimum at pointm, and g be a Riemannian metric
on ƒ. Since the stable manifold of m is open and dense in ƒ, for a generic choice of the Morse–Smale
pair .f; g/, the endpoints of all Reeb chords of ƒ are in this stable manifold. The vector space H0.ƒ/ is
generated by m and we identify it with Z2. By the results of [6], the map �0 counts rigid J –holomorphic
disks with boundary on ƒ, with a positive puncture on the boundary and with a marked point on the
boundary mapping to the stable manifold of m. This disk can have extra negative punctures on the
boundary; these are augmented by "1 if they sit between the positive puncture and the marked point, and
by "2 if they sit between the marked point and the positive puncture. Since mapping to m is an open
condition on ƒ, such rigid configurations can only occur when the image of the disk boundary is discrete
in ƒ. In other words, the holomorphic disk maps to the symplectization of a Reeb chord c of ƒ. Since
there is a unique positive puncture, this map is not a covering, and there is a unique negative puncture
at c. There is a unique such J –holomorphic disk for any chord c of ƒ. The marked point maps to the
starting point or to the ending point of the chord c in ƒ. If the marked point maps to the starting point
of c, the negative puncture sits between the positive puncture and the marked point on the boundary of
the disk, which therefore contributes "2.c/ to �0.c/ at chain level. If the marked point maps to the ending
point of c, the negative puncture sits between the marked point and the positive puncture on the boundary
of the disk, which therefore contributes "1.c/ to �0.c/. We conclude that the map �0 is given at chain
level by "1� "2.

If "1 and "2 are DGA homotopic, then by Lemma 3.1 the map �0 is nullhomotopic and therefore vanishes
in homology. On the other hand, if "1 and "2 are not DGA homotopic, Lemma 3.1 implies that the
map "1 � "2 W C0.ƒ/! Z2 does not factor through the bilinearized differential @"1;"2 . In other words,
there exists a 2 C0.ƒ/ such that @"1;"2a D 0 but "1.a/ � "2.a/ ¤ 0. But then the homology class
Œa� 2 LCH"1;"2

0 .ƒ/ satisfies �0.Œa�/¤ 0, so that �0 does not vanish in homology.

We are now in position to prove our first main result.
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Proof of Theorem 1.1 In the duality long exact sequence (2-2) for bilinearized LCH, the maps �k and
�k are adjoint in the sense of [6, Proposition 3.9] as in the linearized case. The proof of this fact is
essentially identical in the bilinearized case: the holomorphic disks counted by �k are still in bijective
correspondence with those counted by �k . In the bilinearized case, it is also necessary to use the fact that
the extra negative punctures on corresponding disks are augmented with the same augmentations in order
to reach the conclusion.

In particular, �n vanishes if and only if �n vanishes. Since H0.ƒ/ Š Z2, the exactness of the duality
sequence (2-2) implies that �n vanishes if and only if �0 does not vanish. By Proposition 3.2, this means
that �n vanishes if and only if the augmentations "1 and "2 are not DGA homotopic.

This difference in the behavior of bilinearized LCH can be used to determine DGA homotopy classes of
augmentations. More precisely, the next proposition shows that bilinearized LCH provides an explicit
criterion to decide whether two augmentations are DGA homotopic or not.

Proposition 3.3 Let "1 and "2 be augmentations of the Chekanov–Eliashberg DGA .A; @/ of a closed
connected n–dimensional Legendrian submanifold ƒ in .J 1.M/; �/. Then

dimZ2
LCH"2;"1

n .ƒ/� dimZ2
LCH"1;"2

�1 .ƒ/D

�
0 if "1 œ "2;

1 if "1 � "2:

Proof By the duality exact sequence (2-2), we have

H0.ƒ/Š Z2
�n
�! LCHn"2;"1

.ƒ/! LCH"1;"2

�1 .ƒ/!H�1.ƒ/D 0:

In other words, LCHn"2;"1
.ƒ/= im �n Š LCH"1;"2

�1 .ƒ/. Taking into account that

dimZ2
LCHn"2;"1

.ƒ/D dimZ2
LCH"2;"1

n .ƒ/;

we obtain the desired result since, as in the proof of Theorem 1.1, the rank of �n is 1 when "1 � "2 and
vanishes when "1 œ "2.

Corollary 1.2 follows immediately from the above proposition.

Example 3.4 Let us consider the Legendrian knot K2 studied by Melvin and Shrestha in [14, Section 3],
which is topologically the mirror image of the knot 821, and illustrated in Figure 1.

Figure 1: Front projection of the Legendrian knot K2.
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It is shown in [14, Section 3] that the Chekanov–Eliashberg DGA of this Legendrian knot K2 has exactly
16 augmentations, which split into a set A of 4 augmentations and a set B of 12 augmentations, such that
PK2;".t/D2tC4Ct

�1 if "2A and PK2;".t/D tC2 if "2B . This implies that augmentations inA are not
DGA homotopic to augmentations inB . However, the number of DGA homotopy classes of augmentations
for K2 was not determined in [14], as linearized LCH does not suffice to obtain this information.

Using Proposition 3.3, these DGA homotopy classes can be determined systematically. It turns out
that the augmentations in A are pairwise not DGA homotopic, because the Poincaré polynomial of any
such pair of augmentations is t C 3C t�1. On the other hand, the set B splits into six DGA homotopy
classes C1; : : : ; C6 of augmentations. The BLCH Poincaré polynomials are given by t C 2 for two DGA
homotopic augmentations in B , by 1 for two non-DGA homotopic augmentations both in C1[ C2[ C3 or
in C4[ C5[ C6, and by t C 2 and 2C t�1 otherwise.

These calculations are straightforward but tedious. Suitable Python code gives the above answer instantly.

We conclude our study of the fundamental classes in bilinearized LCH with a useful description of their
behavior when performing a connected sum. To this end, it is convenient to introduce some additional
notation about the map �n in the duality exact sequence (2-2). Its target space Hn.ƒ/ is spanned by the
fundamental classes Œƒi � of the connected components ƒi of the Legendrian submanifold ƒ. We can
therefore decompose �n as

P
i �n;i Œƒi �, where the maps �n;i take their values in Z2.

Proposition 3.5 Let ƒ be a Legendrian link in J 1.M/ equipped with two augmentations "1 and "2.
Let ƒ be the Legendrian submanifold obtained by performing a connected sum between two connected
components ƒ1 and ƒ2 of ƒ, and let N"1 and N"2 be the augmentations induced by "1 and "2.

If the map �n;1 � �n;2 constructed from the map �n in the duality exact sequence (2-2) vanishes , then
Pƒ;N"1;N"2

.t/D Pƒ;"1;"2
.t/C tn�1. Otherwise , Pƒ;N"1;N"2

.t/D Pƒ;"1;"2
.t/� tn.

Proof As explained in [1, Section 3.2.5], the map �n in the duality exact sequence (2-2) for ƒ counts
holomorphic disks in the symplectization of J 1.M/ with boundary on the symplectization of ƒ, having
a positive puncture asymptotic to a chord c of ƒ and a marked point on the boundary mapped to a
fixed generic point pj of a connected component ƒj of ƒ. This disk can also carry negative punc-
tures on the boundary; let us say that those located between the positive puncture and the chord (with
respect to the natural orientation of the boundary) are asymptotic to chords c�1 ; : : : ; c

�
r , while those

between the marked point and the positive puncture are asymptotic to c�rC1; : : : ; c
�
rCs . Let us denote by

M.cI c�1 ; : : : ; c
�
r ; pj ; c

�
rC1; : : : ; c

�
rCs/ the moduli space of such holomorphic disks, modulo translation

in the R direction of the symplectization. The map �n is then given by

�n.c/D
X
j

#2M.cI c�1 ; : : : ; c
�
r ; pj ; c

�
rC1; : : : ; c

�
rCs/"1.c

�
1 / � � � "1.c

�
r /"2.c

�
rC1/ � � � "2.c

�
rCs/Œƒj �:

On the other hand, the effect of a connected sum on bilinearized LCH can be deduced from the results of
Dimitroglou Rizell on the full Chekanov–Eliashberg DGA [4, Theorem 1.6]. There is an isomorphism

Algebraic & Geometric Topology, Volume 24 (2024)



3580 Frédéric Bourgeois and Damien Galant

of DGAs ‰ W .A.ƒ/; @ƒ/! .A.ƒIS/; @S / between the Chekanov–Eliashberg DGA of ƒ and the DGA
.A.ƒIS/; @S / generated by the Reeb chords ofƒ as well as a formal generator s of degree n�1, equipped
with a differential @S satisfying in particular @Ss D 0. In this notation, S stands for the pair of points
fp1 2 ƒ1; p2 2 ƒ2g in a neighborhood of which the connected sum is performed. Any augmentation
" of the Chekanov–Eliashberg DGA of ƒ can be extended to an augmentation of .A.ƒIS/; @S / by
setting ".s/D 0. Moreover, the pullback ‰�" of this extension to the Chekanov–Eliashberg DGA of ƒ
coincides with the augmentation induced on ƒ from the original augmentation " for ƒ via the surgery
Lagrangian cobordism between ƒ and ƒ. In particular, we have N"1 D‰�"1 and N"2 D‰�"2. Applying
the bilinearization procedure to the map ‰, we obtain a chain complex isomorphism ‰"1;"2 between the
bilinearized chain complex for ƒ and the chain complex .C.ƒ; S/; @"1;"2

S / generated by Reeb chords
of ƒ and the formal generator s. Since @"1;"2

S s D 0, the line spanned by s forms a subcomplex of
.C.ƒ; S/; @

"1;"2

S /. Moreover, the quotient complex is exactly the bilinearized chain complex for ƒ. We
therefore obtain a long exact sequence in homology

� � � ! LCHN"1;N"2

k
.ƒ/! LCH"1;"2

k
.ƒ/

�k
�! Z2Œs�k�1! LCHN"1;N"2

k�1
.ƒ/! � � �

that corresponds to the long exact sequence obtained in [2, Theorem 2.1] for generating family homology.
This exact sequence implies that bilinearized LCH remains unchanged by a connected sum, except
possibly in degrees n� 1 and n. The map �n is the part of the bilinearized differential @"1;"2

S from the
bilinearized complex for ƒ to the line spanned by s. According to the definition [4, Section 1.1.3] of @S
and the above description of �n, this map is given by �n D .�n;1� �n;2/s.

If �n D 0, the generator s injects into LCHN"1;N"2

n�1 .ƒ/, resulting in an exact term tn�1 in the Poincaré
polynomial. If �n ¤ 0, the map LCHN"1;N"2

n .ƒ/! LCH"1;"2
n .ƒ/ has a 1–dimensional cokernel, resulting

in the loss of a term tn in the Poincaré polynomial.

4 Geography of bilinearized Legendrian contact homology

In this section we study the possible values for the Poincaré polynomial Pƒ;"1;"2
of the bilinearized

LCH for a closed connected Legendrian submanifold ƒ in J 1.M/ with dimM D n, equipped with two
augmentations "1 and "2 of its Chekanov–Eliashberg DGA.

When "1 D "2, this geography question was completely answered in [2] for generating family homology.
As explained in Section 2, this result extends to linearized LCH via the work of Dimitroglou Rizell [4].
Moreover, bilinearized LCH is invariant under changes of augmentations within their DGA homotopy
classes [16, Section 5.3]. Therefore, the geography of bilinearized LCH is already known when "1 � "2.

4.1 Basic properties of BLCH Poincaré polynomials

We now turn to the case "1 œ "2, and describe the possible Poincaré polynomials for bilinearized LCH.
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Definition 4.1 A BLCH–admissible polynomial is the data of a Laurent polynomial P with nonnegative
integral coefficients together with a splitting P D q C p involving two Laurent polynomials with
nonnegative integral coefficients p and q such that

(i) q is a polynomial of degree at most n� 1 with q.0/D 1, and

(ii) p.�1/ is even if nD 1 and p.�1/� 1
2
.1� q.�1// if nD 2.

We first show that the Poincaré polynomial of bilinearized LCH always has this form.

Proposition 4.2 Let "1 and "2 be augmentations of the Chekanov–Eliashberg DGA .A; @/ of a closed
connected n–dimensional Legendrian submanifold ƒ with vanishing Maslov class in .J 1.M/; �/. If "1
and "2 are not DGA homotopic , then the Poincaré polynomial Pƒ;"1;"2

corresponding to LCH"1;"2.ƒ/ is
BLCH–admissible.

Proof Considering the map �k from the duality exact sequence (2-2), we have dimZ2
LCH"1;"2

k
.ƒ/D

dimZ2
ker �kC dimZ2

im �k . Let p and q be the Poincaré polynomials constructed using the terms in the
right-hand side of this relation: p.t/ D

P
k2Z dimZ2

ker �ktk and q.t/ D
P
k2Z dimZ2

im �kt
k . This

provides the desired splitting Pƒ;"1;"2
D qCp.

Let us prove (i). Since im �k � Hk.ƒ/, q is a polynomial of degree at most n. By Proposition 3.2,
since "1 œ "2, im �0 ¤ 0. But H0.ƒ/D Z2 as ƒ is connected, so that q.0/D 1. On the other hand, by
Theorem 1.1, since "1 œ "2 we have that �n D 0. Therefore the term of degree n in q vanishes and q is a
polynomial of degree at most n� 1.

Let us now prove (ii). Assume first that n is odd. Since the generators of the chain complex C.ƒ/ do not
depend on the augmentations, the Euler characteristic Pƒ;"1;"2

.�1/ does not depend on the augmentations
either. Equation (2-1) then implies that Pƒ;"1;"2

.�1/ has the same parity as 1
2

P
k2Z dimZ2

Hk.ƒ/,
since .�1/n�1 D 1 when n is odd. If n D 1, then condition (i) sets q.t/ D 1 so that q.�1/ D 1 while
1
2

P
k2Z dimZ2

Hk.ƒ/D 1. By subtraction, we deduce that p.�1/ must be even. Note that if n� 3, this
does not impose any condition on p.�1/ since q.�1/ can take arbitrary integer values.

Assume now that n is even. By [8, Proposition 3.3], the Thurston–Bennequin invariant of ƒ is given
by tb.ƒ/ D .�1/.n�1/.n�2/=2Pƒ;"1;"2

.�1/. On the other hand, tb.ƒ/ D .�1/n=2C1 1
2
X .ƒ/ when n is

even by [8, Proposition 3.2]. Hence Pƒ;"1;"2
.�1/ D 1

2
X .ƒ/. When n D 2, we have that 1

2
X .ƒ/ D

1
2
.1�dimZ2

H1.ƒ/C1/�
1
2
.1Cq.�1//. By subtraction, we get that p.�1/� 1

2
.1�q.�1//. Note that

if n� 4, this does not impose any condition on p.�1/ since 1
2
X .ƒ/ can take arbitrary integer values.

Remark 4.3 If we restrict ourselves to Legendrian spheres ƒ, the Laurent polynomials P D qCp that
can arise as the Poincaré polynomial of bilinearized LCH can also be characterized. More precisely,
revisiting the proof of Proposition 4.2 shows that in this case q and p satisfy the more restrictive conditions

(i0) q.t/D 1, and

(ii0) p.�1/ is even if n is odd and p.�1/D 0 if n is even.
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The duality exact sequence imposes fewer restrictions on LCH"1;"2.ƒ/ than in the case of linearized
LCH because it mainly relates this invariant to LCH"2;"1.ƒ/ with exchanged augmentations. This fact,
however, means that one of these invariants determines the other one. In order to formulate this more
precisely, let us consider the duality exact sequence obtained from (2-2) after reversing the ordering of
the augmentations:

(4-1) � � � ! LCHn�k�1"1;"2
.ƒ/! LCH"2;"1

k
.ƒ/

Q�k
�!Hk.ƒ/

Q�n�k
���! LCHn�k"1;"2

.ƒ/! � � � :

In the next proposition, we denote by Pƒ.t/ the Poincaré polynomial for the singular homology of ƒ
with coefficients in Z2.

Proposition 4.4 Let "1 and "2 be non-DGA homotopic augmentations of the Chekanov–Eliashberg
DGA .A; @/ of a closed connected n–dimensional Legendrian submanifold ƒ with vanishing Maslov
class in .J 1.M/; �/. If Pƒ;"1;"2

decomposes as qCp as in Definition 4.1, then Pƒ;"2;"1
decomposes as

QqC Qp with Qq.t/D Pƒ.t/� tnq.t�1/ and Qp.t/D tn�1p.t�1/.

Proof Let us decompose Pƒ;"2;"1
.t/ D Qq.t/ C Qp.t/ as in Definition 4.1. The polynomial p was

defined as p.t/ D
P
k2Z dimZ2

ker �ktk in the proof of Proposition 4.2. But ker �k is the image
of the map LCHn�k�1"2;"1

.ƒ/ ! LCH"1;"2

k
.ƒ/, which is isomorphic to a supplementary subspace of

im �n�k�1 in LCHn�k�1"2;"1
.ƒ/. Since �n�k�1 is the adjoint in the sense of [6, Proposition 3.9] of the map

Q�n�k�1 W LCH"2;"1

n�k�1
.ƒ/! Hn�k�1.ƒ/, the spaces ker �k and ker Q�n�k�1 are isomorphic. Therefore,

the polynomial Qp is given by Qp.t/D
P
k2Z dimZ2

ker �ktn�k�1 D tn�1p.t�1/.

On the other hand, we have Qq.t/ D
P
k2Z dimZ2

im Q�ktk as in the proof of Proposition 4.2. But
im Q�k D ker Q�n�k and since ��n�k is the adjoint in the sense of [6, Proposition 3.9] of the map �n�k , we
have that ker Q�n�k is isomorphic to a supplementary subspace of im �n�k in Hn�k.ƒ/. Hence

Qq.t/D
X
k2Z

.dimZ2
Hn�k.�/� dimZ2

im �n�k/t
k
D Pƒ.t/� t

nq.t�1/;

as announced.

Note that, since the data of Pƒ;"1;"2
and Pƒ;"2;"1

determine Pƒ, the question of finding ƒ, "1 and "2
with prescribed polynomials Pƒ;"1;"2

and Pƒ;"2;"1
is more complicated than our geography question. We

will not address this more complicated question.

4.2 Motivating example

We now describe a fundamental example in view of the construction of Legendrian submanifolds and
augmentations realizing BLCH–admissible polynomials.

Example 4.5 With nD 1, consider the right-handed trefoil knot ƒ with maximal Thurston–Bennequin
invariant, depicted in its front projection in Figure 2. The same Legendrian knot was studied in Section 5.1
of [1]. We consider it this time in the front projection, after applying Ng’s resolution procedure [15].
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b1 b2 b3
a2

a1

Figure 2: Front projection of the maximal tb right-handed trefoil.

The Chekanov–Eliashberg DGA has five generators: a1 and a2 correspond to right cusps and have
grading 1, while b1, b2 and b3 correspond to crossings and have grading 0. The differential is given by

@a1 D 1C b1C b3C b1b2b3 and @a2 D 1C b1C b3C b3b2b1:

This DGA admits 5 augmentations "1; : : : ; "5 given by

b1 b2 b3

"1 1 1 1
"2 1 0 0
"3 1 1 0
"4 0 0 1
"5 0 1 1

A straightforward calculation shows that Pƒ;"i ;"j .t/ D 1 for all i ¤ j . In view of Definition 4.1 and
Proposition 4.2, this is the simplest Poincaré polynomial that can be obtained using bilinearized LCH.

In order to produce other terms in this Poincaré polynomial, let us replace the portion ofƒ contained in the
dotted rectangle in Figure 2 by the fragment represented in Figure 3. This produces a Legendrian link ƒ0.

The additional generator a3 corresponds to a right cusp and has grading 1. The four mixed chords between
the unknot and the trefoil have a grading that depends on a shift k 2 Z between the Maslov potentials of
the trefoil and of the unknot. These gradings are given by

jc1j D k� 1; jc2j D k; jd1j D 1� k and jd2j D �k:

The augmentations "1; : : : ; "5 can be extended to this enlarged DGA by sending all new generators to 0.
The bilinearized differential of the original generators is therefore unchanged. The differential of the new
generators is, on the other hand, given by

@c1 D 0; @c2 D .1C b2b1/c1; @d1 D d2.1C b2b1/; @d2 D 0 and @a3 D d1c1C d2c2:

c1

c2

d1

d2

a3

Figure 3: Replacement for the dotted rectangle in Figure 2.
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9>=>; 1� k
Figure 4: Front projection of the Legendrian knot ƒ00.

If we choose "L D "1 or "3 and "R D "2, "4 or "5, then the bilinearized differential is

@"L;"Rc1 D 0; @"L;"Rc2 D 0; @"L;"Rd1 D d2; @"L;"Rd2 D 0 and @"L;"Ra3 D 0:

The Poincaré polynomial of the resulting homology is therefore Pƒ0;"L;"R
.t/D tkC tk�1C t C 1. We

now perform a connected sum between the right cusps corresponding to a2 and a3 in order to obtain
the connected Legendrian submanifold ƒ00 represented by Figure 4. A Legendrian isotopy involving a
number of first Reidemeister moves is performed before the connected sum in order to ensure that the
Maslov potentials agree on the cusps to be merged. This connected sum induces a Lagrangian cobordism
L from ƒ00 to ƒ0, and we can use this cobordism to pull back the augmentations "L and "R to the
Chekanov–Eliashberg DGA of ƒ00.

By Proposition 3.5, since Œa3� 2 LCH"L;"R

1 .ƒ0/ corresponds to the fundamental class of the Legendrian
unknot depicted in Figure 4, we obtain the Poincaré polynomial Pƒ00;"L;"R

.t/ D tk C tk�1C 1. This
corresponds to q.t/D 1 and p.t/D tkC tk�1 in Definition 4.1.

4.3 A family of Legendrian spheres with a basic BLCH Poincaré polynomial

In order to generalize Example 4.5 to higher dimensions, let us consider the standard Legendrian Hopf
link, or in other words the 2–copy of the standard Legendrian unknot ƒ.2/ � J 1.Rn/. This will lead to a
generalization of the trefoil knot from Figure 2, since it can be obtained from the standard Legendrian
Hopf link in R3 via a connected sum. Let us denote by l the length of the unique Reeb chord of the
standard Legendrian unknot and by " the positive shift (much smaller than l) in the Reeb direction
between the two components ƒ1 and ƒ2 of ƒ.2/. We assume that the top component is perturbed by a
Morse function of amplitude ı much smaller than " with exactly one maximum M and one minimum m.
In particular, among the continuum of Reeb chords of length " between the two components, only two
chords corresponding to these extrema persist after perturbation. We also assume that thanks to this
perturbation, all Reeb chords of ƒ.2/ lie above distinct points of Rn. In order to define the grading of
mixed Reeb chords in this link, we choose the Maslov potential of the upper component ƒ2 to be given
by the Maslov potential of the lower component ƒ1 plus k.
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Proposition 4.6 The Chekanov–Eliashberg DGA of ƒ.2/ � J 1.Rn/ has the following six generators:

grading length

c11 n l

c22 n l

c12 nC k l C "

c21 n� k l � "

m12 k� 1 "� ı

M12 nC k� 1 "C ı

Its differential is given by

@c12 DM12Cm12c11C c22m12; @c11 D c21m12 and @c22 Dm12c21;

and @M12 D @m12 D @c21 D 0.

Proof The front projection of each component in ƒ.2/ consists of two sheets, having parallel tangent
hyperplanes above a single point of Rn before the perturbation by the Morse function. The number
of Reeb chords above that point is the number of pairs of sheets, which is 1

2
4.4� 1/D 6. The chords

between the two highest or the two lowest sheets belong to a continuum of chords of length " between the
two components, which is replaced by two chords M12 for the maximum M and m12 for the minimum
m after the perturbation by the Morse function. Their lengths are therefore "˙ ı. Their gradings are
given by the Morse index of the corresponding critical point plus the difference of Maslov potentials
minus one, so that we obtain nC k� 1 and k� 1.

The four other chords will be denoted by cij , where i numbers the component of origin for the chord
and j numbers the component of the endpoint of the chord. Each of these chords corresponds to a
maximum of the local difference function between the heights of the sheets it joins. We therefore obtain
the announced gradings and lengths.

The link ƒ.2/ and its Reeb chords determine a quiver represented in Figure 5, in which each component of
the link corresponds to a vertex and each Reeb chord corresponds to an oriented edge. When computing
the differential of a generator, the terms to be considered correspond to paths formed by a sequence of
edges in this quiver with the same origin and endpoint as the generator, with total grading one less than
the grading of the generator and with total length strictly smaller than the length of the generator.

For @c12, the only possible terms are M12, m12c11 and c22m12. Such terms cannot contain c21 because
two other chords fromƒ1 toƒ2 would be needed as well. The resulting total length would be smaller than

c11 c22

c12

M12

m12

c21
ƒ1 ƒ2

Figure 5: Quiver corresponding to the standard Hopf link.
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the length of c12 only in the case ofm12c21m12, but this term is of grading 2 lower than c12. The generators
c11 and c22 can appear at most once due to their length, and due to total length constraint, only m12 can
appear (only once) as a factor, leading to the possibilities m12c11 and c22m12. Finally, if M12 appears,
then no other chord can appear as a factor by the previous discussion, leading to the possibility M12.

Let us show that each possible term in @c12 is realized by exactly one Morse flow tree [5], which in turn
corresponds to a unique holomorphic curve. To obtain M12, we start at the chord c12 and follow the
negative gradient of the local height difference function in the unique direction leading to the chord M12.
At this chord, we have a 2–valent puncture of the Morse flow tree and we continue by following the
negative gradient of the local height difference function corresponding to one of the componentsƒ1 orƒ2
(depending on which hemisphere the maximum M is located on). This gradient trajectory will generically
not hit any other Reeb chord and will finally hit the cusp equator of that component, which is the end
of the Morse flow tree. To obtain m12c11, we start at the chord c12 and follow the negative gradient of
the local height difference function in the unique direction leading to the chord c11. At this chord, we
have a 2–valent puncture of the Morse flow tree and we continue by following the negative gradient of
the local height difference function corresponding to the highest two sheets, which is the Morse function
used to perturb the Hopf link. Generically, this gradient trajectory will reach the minimum m so that we
obtain a 1–valent puncture of the Morse flow tree at m12. The term c22m12 is obtained similarly.

For @c11, the only possible term is c21m12. Indeed, when n > 1, the chord c21 is the only one available
to start an admissible path from ƒ1 to itself, because the empty path is not admissible. When nD 1, the
empty path is admissible but there are two holomorphic disks having c11 as a positive puncture and no
negative puncture, which cancel each other. Due to its length, the only chord we can still use is m12,
and after this no other chord can be added. Let us show that this possible term for @c11 is realized by
exactly one Morse flow tree. We start at the chord c11 and follow the negative gradient of the local height
difference function in the unique direction leading to the chord c21. At this chord, we have a 2–valent
puncture of the Morse flow tree and we continue by following the negative gradient of the local height
difference function corresponding to the lowest two sheets, which is the Morse function used to perturb
the Hopf link. Generically, this gradient trajectory will reach the minimum m so that we obtain a 1–valent
puncture of the Morse flow tree at m12. The calculation of @c22 is analogous.

For @c12, there are no possible terms because no other chord can lead from ƒ1 to ƒ2. For @M12, the
only chord which is short enough to appear is m12 but its grading k� 1 is strictly smaller when n > 1
than the necessary grading nCk�2. When nD 1, there are two gradient trajectories from the maximum
to the minimum of a Morse function on the circle, which cancel each other. Finally, @m12 D 0 because it
is the shortest chord and it joins different components.

Corollary 4.7 If k D 1, the Chekanov–Eliashberg DGA of ƒ.2/ � J 1.Rn/ has two augmentations "L
and "R such that "L.m12/D 0 and "R.m12/D 1, and that vanish on the other Reeb chords. When n > 1,
there are no other augmentations.
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Proof When n > 1, m12 is the only generator of degree 0, so that the maps "L and "R are the only two
degree-preserving algebra morphisms A!Z2. In order to show that these are augmentations, we need to
check that 1;m12 … im @. This follows from the fact that there is no term 1 and that m12 always appears
as a factor of another generator in the expression of @ in Proposition 4.6.

The above augmentations "L and "R can be used in order to obtain a bilinearized differential associated
to the differential from Proposition 4.6. We obtain @"L;"Rc12 DM12C c22 and @"L;"Rc11 D c21, while
the differential of the other four generators vanishes. The corresponding homology is therefore generated
by ŒM12�D�Œc22� in degree n and by Œm12� in degree 0. Hence, the Poincaré polynomial Pƒ.2/;"L;"R

.t/

is given by 1C tn.

After this preliminary calculation, let us consider a combination of several such links in view of obtaining
more general Poincaré polynomials than those in Example 4.5. To this end, consider the 2N –copy of the
standard Legendrian unknotƒ.2N/�J 1.Rn/ forN � 1. This link contains the componentsƒ1; : : : ; ƒ2N
numbered from bottom to top. If l denotes the length of the unique Reeb chord of ƒi and " denotes
the positive shift between any two consecutive components, we require that 2N" is much smaller than l .
We perturb the component ƒi for i D 2; : : : ; 2N by a Morse function fi with two critical points and of
amplitude ı much smaller than " such that all differences fi �fj with i ¤ j are Morse functions with two
critical points. In order to define the gradings of mixed Reeb chords in this link, we choose the Maslov
potential of the component ƒi to be given by the Maslov potential of the lowest component ƒ1 plus i �1.

A direct application of Proposition 4.6 to each pair of components ƒi and ƒj gives the chords of ƒ.2N/:

grading length

ci;i n l

ci;j nC j � i l C ".j � i/

cj;i n� j C i l � ".j � i/

mi;j j � i � 1 ".j � i/� ı

Mi;j nC j � i � 1 ".j � i/C ı

Here the indices i and j take all possible values between 1 and 2N such that i < j .

Proposition 4.8 The algebra morphisms "L and "R defined by "L.mi;iC1/ D 1 when i is even ,
"R.mi;iC1/D 1 when i is odd and that vanish on all other chords are augmentations of the Chekanov–
Eliashberg DGA of ƒ.2N/.

Proof Let us show that mi;iC1 … im @ for all i D 1; : : : ; 2N � 1. If mi;iC1 was a term in @a for some
a in the Chekanov–Eliashberg of ƒ.2N/, then a would have to be a linear combination of chords from ƒi

to ƒiC1. Indeed, @c does not contain the term 1 for any chord c of ƒ.2N/, say from ƒi to ƒj , because
it would give rise to a term 1 in Proposition 4.6 for the Legendrian Hopf link composed of ƒi and ƒj .
Therefore @ does not decrease the number of factors in terms it acts on. Since a must be a single chord from
ƒi to ƒiC1, if there were a term mi;iC1 in @a, then there would already be such a term in Proposition 4.6
for the Legendrian Hopf link composed of ƒi and ƒiC1. Hence mi;iC1 … im @, as announced.
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ƒ1 ƒ2 ƒ3
: : :

ƒ2N�2 ƒ2N�1 ƒ2N

Figure 6: Quiver corresponding to the 2N–copy of the standard Legendrian unknot.

This implies that "L and "R are augmentations, because any element of im @ is composed of monomials
having at least one factor which is not of the form mi;iC1, and in particular not augmented, so that "L
and "R vanish on im @.

Proposition 4.9 The bilinearized differential @"L;"R of ƒ.2N/ is given by

@"L;"Rci;i D Nici;i�1C NiciC1;i ; @"L;"Rci;j DMi;j C Nj ci;j�1C NiciC1;j ;

@"L;"Rcj;i D Nicj;i�1C Nj cjC1;i ; @"L;"Rmi;j D Njmi;j�1C NimiC1;j ;

@"L;"RMi;j D NjMi;j�1C NiMiC1;j ;

with i < j and where Ni and Nj are the modulo-2 reductions of i and j . In the above formulas , any
generator with one of its indices equal to 0 or 2NC1 or of the formmi;i orMi;i should be replaced by zero.

Proof The link ƒ.2N/ and its Reeb chords determine a quiver represented in Figure 6, and as in the
proof of Proposition 4.6, the terms in the differential of a chord from ƒi to ƒj must form a path from
vertex i to vertex j .

Let us compute @"L;"Rci;i . The only possible terms in @ci;i that could lead to a nonzero contribution to
@"L;"Rci;i are ciC1;imi;iC1 and mi�1;ici;i�1. Indeed, there are no other chords of ƒi , so a change of
component is needed. Since only chords of the form mi;iC1 are augmented by "L and "R, there must be
exactly one chord from ƒj to ƒk with j > k. Moreover, since neither "L nor "R augment consecutive
chords in the quiver determined by ƒ.2N/, we must have jj � kj D 1 and j D i or k D i . Considering
the Legendrian Hopf link composed of ƒi and ƒiC1, Proposition 4.6 gives the term ciC1;imi;iC1, while
considering the Legendrian Hopf link composed of ƒi�1 and ƒi , it gives the term mi�1;ici;i�1. With
the first term, since mi;iC1 has to be augmented by "R, we obtain the contribution ciC1;i when i is odd.
With the second term, since mi�1;i has to be augmented by "L, we obtain the contribution ci;i�1 when
i � 1 is even. In other words, we obtain @"L;"Rci;i D Nici;i�1C NiciC1;i , as announced.

Let us compute @"L;"Rci;j with i < j . All terms in @ci;j involving a single chord from ƒi to ƒj
correspond to terms with a single factor in the expression for @c12 in Proposition 4.6. We therefore
obtain the term Mi;j . The other terms must involve augmented chords; since "L and "R do not
have consecutive augmented chords, these other terms could come from mj�1;j ci;j�1, ciC1;jmi;iC1,
mj�1;j ciC1;j�1mi;iC1 or analogous terms with ck;l replaced withmk;l orMk;l . The last two possibilities
lead to elements with a too small grading, so that the unaugmented chord is of the type ck;l . The possibili-
ties mj�1;j ci;j�1 and ciC1;jmi;iC1 are each realized by a single holomorphic disk, corresponding to the
contribution m12c11C c22m12 in the expression for @c12 in Proposition 4.6. The remaining possibility
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mj�1;j ciC1;j�1mi;iC1 has a too small grading. Summing up, the possibility mj�1;j ci;j�1 leads to the
term ci;j�1 when j is odd and the possibility ciC1;jmi;iC1 leads to the term ciC1;j when i is odd, so
that we obtain @"L;"Rci;j DMi;j C Nj ci;j�1C NiciC1;j , as announced.

The computation of @"L;"Rcj;i with i < j is similar. Since there are no other chords from ƒi to ƒj ,
the only contributions involve augmented chords and come from mi�1;icjC1;i�1mj;jC1, mi�1;icj;i�1
or cjC1;imj;jC1, The first possibility has a too small grading, while the last two possibilities are each
realized by a single holomorphic disk, corresponding to the contributions c21m12 and m12c21 in the
expressions for @c11 and @c22 in Proposition 4.6. The possibility mi�1;icj;i�1 leads to the term cj;i�1

when i is odd and the possibility cjC1;imj;jC1 leads to the term cjC1;i when j is odd, so that we obtain
@"L;"Rcj;i D Nicj;i�1C Nj cjC1;i , as announced.

The computation of @"L;"Rmi;j and @"L;"RMi;j with i < j �1 involves only chords of the type mk;l and
Mk;l since all other chords are much longer. Let us start with @"L;"Rmi;j . Arguing as above, since mi;j
is the shortest chord from ƒi to ƒj , the only contributions involve augmented chords and come from
mi�1;imj;i�1,mjC1;imj;jC1 ormi�1;imjC1;i�1mj;jC1. The last possibility has a too small grading, and
the first two possibilities are each realized by a unique Morse flow tree [5], which in turn corresponds to a
unique holomorphic curve. Both Morse flow trees start with a constant gradient trajectory at mi;j , which
is the minimum of the difference function fj �fi . The only possibility to leave mi;j is to have a 3–valent
vertex, corresponding to the splitting of the gradient trajectory into two gradient trajectories, for fj�fk and
for fk�fi , for some k strictly between i and j . These trajectories converge to the corresponding minima
mk;j and to mi;k , so we obtain the desired trees for k D i C 1 and k D j � 1. Summing up, we obtain
as above @"L;"Rmj;i D Nimj;i�1C NjmjC1;i , as announced. The computation of @"L;"RMi;j is completely
analogous, except for the description of the Morse flow trees. Both Morse flow trees start with a gradient
trajectory fromMi;j to a priori any point of the sphere. In order to reachMiC1;j orMi;j�1 it is necessary
for the gradient trajectory to end exactly at the maximum of the corresponding height difference function.
There, we have a 2–valent puncture of the Morse flow tree and we continue with a gradient trajectory
converging to the minimummi;iC1 ormj�1;j . Again, @"L;"RMj;iDNiMj;i�1C NjMjC1;i , as announced.

Proposition 4.10 The Poincaré polynomial of ƒ.2N/ with respect to the augmentations "L and "R is
given by Pƒ.2N /;"L;"R

.t/DN.1C tn/.

Proof We need to compute the homology of the complex described in Proposition 4.9.

Let us first consider the subcomplex spanned by the chords mi;j with i < j . For any k; l D 1; : : : ; N with
k < l � 1, the generators m2k�1;2l�1, m2k;2l�1, m2k�1;2l�2 and m2k;2l�2 form an acyclic subcomplex.
When k D l � 1, we just have a subcomplex with the three generators m2l�3;2l�1; m2l�2;2l�1 and
m2l�3;2l�2, which has homology spanned by Œm2l�2;2l�1� D Œm2l�3;2l�2� in degree 0. We therefore
obtain N � 1 such generators. For any k D 1; : : : ; N � 1, the generators m2k�1;2N and m2k;2N form an
acyclic subcomplex. Finally, the generator m2N�1;2N survives in homology and has degree 0. The total
contribution of the chords mi;j to the polynomial Pƒ.2N /;"L;"R

is therefore the term N .
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Consider now the subcomplex spanned by the chordsMi;j with i <j and ci;j for all i; j D1; : : : ; 2N . For
any k; lD1; : : : ; N with k<l�1, the generators c2k�1;2l�1, c2k;2l�1, c2k�1;2l�2, c2k;2l�2,M2k�1;2l�1,
M2k;2l�1, M2k�1;2l�2 and M2k;2l�2 form an acyclic subcomplex. When k D l � 1, we just have a
subcomplex with the seven generators c2k�1;2l�1, c2k;2l�1, c2k�1;2l�2, c2k;2l�2,M2k�1;2l�1,M2k;2l�1

andM2k�1;2l�2, which has homology spanned by c2l�2;2l�2 in degree n. We therefore obtainN �1 such
generators. For any k D 1; : : : ; N � 1, the generators c2k�1;2N ,c2k;2N , M2k�1;2N and M2k;2N form an
acyclic subcomplex. But the subcomplex spanned by the three generators c2N�1;2N , c2N;2N , M2N�1;2N

has homology generated by Œc2N;2N �D ŒM2N�1;2N � in degree n. For any k; l D 1; : : : ; N with k � l and
k > 1, the generators c2l�1;2k�1, c2l;2k�1, c2l�1;2k�2 and c2l;2k�2 form an acyclic subcomplex. When
k D 1, we just have an acyclic subcomplex with the 2 generators c2l�1;1 and c2l;1. The total contribution
of the chords Mi;j with i < j and ci;j to the polynomial Pƒ.2N /;"L;"R

is therefore the term Ntn.

The sum of the above two contributions therefore gives Pƒ.2N /;"L;"R
.t/DN.1C tn/, as announced.

The next step is to perform some type of connected sum on the Legendrian link ƒ.2N/ in order to obtain
a Legendrian sphere zƒ.2N/ � J 1.Rn/. More precisely, for each i D 1; : : : ; N � 1, we consider the
Legendrian link formed by ƒ2i�1; ƒ2i ; ƒ2iC1 and ƒ2iC2 as the 2–copy of the Legendrian link formed
by ƒ2i�1 and ƒ2iC1, and we perform the 2–copy of the connected sum of ƒ2i�1 and ƒ2iC1 as follows:

We deformƒ2i�1 by a Legendrian isotopy corresponding to the spinning of two iterated first Reidemeister
moves on one half of the standard Legendrian unknot in J 1.R/. Since this front in J 0.R/ has a
vertical symmetry axis, we can spin it around this axis to produce a Legendrian surface in J 1.R2/ as
in [2, Section 3.2]. The resulting front has vertical symmetry planes, and hence is spinnable around such a
plane; iterating the spinning construction, we obtain the desired 2–component Legendrian link in J 1.Rn/
with cusp edges from (the deformation of) ƒ2i�1 and ƒ2iC1 facing each other and having the same
Maslov potentials. This is illustrated by Figure 7.

In this figure, we consider the rectangular area limited by a dashed line: its image in J 0.RC/� J 0.Rn/,
i.e. with all spinning angles set to zero, is a rectangular area intersecting ƒ2i�1; ƒ2i ; ƒ2iC1 and ƒ2iC2
in the 2–copy of two cusps facing each other. We then replace a neighborhood of this rectangular area
with the 2–copy of a connecting tube, as shown in Figure 8. This operation is equivalent to the 2–copy of
the connected sum operation described in [2, Section 4].

Figure 7: Isotopy of ƒ2i�1, ƒ2i , ƒ2iC1 and ƒ2iC2.
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Figure 8: Double tube.

Finally, after performing N � 1 times these 2–copies of connected sums, we are left with a Legendrian
link composed of two connected components: ƒodd, resulting from the connected sum of ƒ2i�1 for
i D 1; : : : ; N , and ƒeven, resulting from the connected sum of ƒ2i for i D 1; : : : ; N . We then perform an
(ordinary) connected sum between these components in order to obtain the Legendrian sphere zƒ.2N/.

Proposition 4.11 The augmentations "L and "R of ƒ.2N/ induce augmentations Q"L and Q"R of zƒ.2N/.

Proof It suffices to show that an augmentation induces another augmentation after a single 2–copy of a
connected sum. To this end, we describe this operation differently, in order to gain a better control on the
Reeb chords during this process. Before performing the 2–copy connected sum connecting ƒ2i�1 and
ƒ2i to ƒ2iC1 and ƒ2iC2, respectively, we deform these components by a Legendrian isotopy in order
to create a pair of canceling critical points m02i�1;2i of index 0 and s2i�1;2i of index 1 for the Morse
function f2i �f2i�1, and a similar pair m02iC1;2iC2 and s2iC1;2iC2 for f2iC2�f2iC1 near the attaching
locus of the connecting double tube. More precisely, the chords m02i�1;2i and m02iC1;2iC2 are contained
in the small balls that are removed during the connected sums, while the chords s2i�1;2i and s2iC1;2iC2
are just outside these balls. The connecting double tube is the thickening of an .n�1/–dimensional
standard Legendrian Hopf link, and we shape each tube so that its thickness in the z–direction is minimal
in the middle. We extend the Morse functions f2i �f2i�1 and f2iC2�f2iC1 by a Morse function on
the connecting tube decreasing towards its middle and having exactly two critical points (of index 0
and n�1) in its middle slice. All Reeb chords for the connecting double tube are contained in this middle
slice and correspond to the generators described in Proposition 4.6 with k D 1 and n replaced with n� 1:

grading length

ch2i�1;2i�1 n� 1 l 0 < l

ch2i;2i n� 1 l 0

ch2i�1;2i n l 0C "

ch2i;2i�1 n� 2 l 0� "

mh2i�1;2i 0 "� ı

M h
2i�1;2i n� 1 "C ı

The last two generators correspond to the critical points of the Morse function on the connecting tube
mentioned above. The unital subalgebra Ah generated by these six generators is a subcomplex of the
Chekanov–Eliashberg DGA, because Morse flow trees are pushed towards the middle of the double
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connecting tube due to its shape. By Corollary 4.7, this subcomplex has two augmentations such that only
mh2i�1;2i is possibly augmented. On the other hand, we have @s2i�1;2i Dm2i�1;2i Cm02i�1;2i with no
other terms because the length of s2i�1;2i is very short. Hence, for any augmentation ", we must have
".m02i�1;2i /D ".m2i�1;2i / and this forces the choice of the augmentation for Ah. More precisely, the
map Q" induced by " must satisfy Q".mh2i�1;2i /D ".m2i�1;2i /. Similarly, arguing with s2iC1;2iC2, we also
have Q".mh2i�1;2i /D ".m2iC1;2iC2/. Note that these relations are compatible since each of "L and "R
have the same value on m2i�1;2i and m2iC1;2iC2.

Let us check that the resulting maps Q"L; Q"R W A.zƒ.2N//! Z2 satisfy Q"L ı @D 0D Q"R ı @. We already
saw that these relations are satisfied on Ah as well as on s2i�1;2i and s2iC1;2iC2. On any other chord c,
the relation was satisfied before the 2–copy of connected sum. We claim that the augmented terms in
@c are modified by the 2–copy of connected sum in the following way: all occurrences of m02i�1;2i and
m02iC1;2iC2 are replaced with mh2i�1;2i . In particular, the maps Q"L and Q"R keep the same value on these
terms and the augmentation relation continues to hold after the 2–copy of connected sum.

To verify the claim, note that the region in which the 2–copy of connected sum is taking place is a trap
for Morse flow trees: any portion of such a tree entering this region cannot leave it, because all relevant
gradient vector fields are pointing inwards. We only have to consider augmented terms, since these are the
only ones that could harm the augmentation relation. We first consider an augmented term that contains
neither m02i�1;2i nor m02iC1;2iC2. If the corresponding Morse flow tree enters the region in which the
2–copy of connected sum is taking place, it must end at a cusp edge. Moreover, it cannot contain any
trivalent vertex, otherwise it would not be rigid. Hence, it is a single gradient trajectory ending at a
cusp edge. After the 2–copy of connected sum, it becomes another gradient trajectory, also ending at
a cusp edge. Hence the corresponding term is not affected by the 2–copy of connected sum. Consider
now an augmented term containing m02i�1;2i or m02iC1;2iC2. A rigid Morse flow tree cannot have a
2–valent negative puncture at such a chord, since it is a minimum of the Morse function f2i �f2i�1 or
f2iC2�f2iC1 [5, Lemma 3.7], so that these chords are 1–valent negative punctures. The only other way
a fragment of Morse flow tree contained in the region in which the 2–copy of connected sum is taking
place can end is at a cusp edge. As above, it cannot contain any trivalent vertex, otherwise it would not
be rigid. Hence, it is a single gradient trajectory ending at a minimum m02i�1;2i or m02iC1;2iC2. After
the 2–copy of connected sum, it becomes another gradient trajectory, also ending at a minimum mh2i�1;2i .
Conversely, consider an augmented term containing mh2i�1;2i after the 2–copy of connected sum. In
particular, the corresponding Morse flow tree can only end at the chord mh2i�1;2i (at a 1–valent negative
puncture, as above) or at a cusp edge. For the same reason as above, such a rigid tree cannot contain a
trivalent vertex in the 2–copy of the connecting tube. Hence, it is just a single gradient trajectory ending
at mh2i�1;2i . If we remove the 2–copy of the connecting tube and replace it with the regions containing
the minima m02i�1;2i and m02iC1;2iC2, this gradient trajectory is replaced with a single gradient trajectory
ending at one of these minima. In other words, such an augmented term involving mh2i�1;2i always comes
from the substitution of m02i�1;2i and m02iC1;2iC2 with mh2i�1;2i , proving the claim.
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We are now in position to show that these 2–copies of connected sums destroy almost all terms in the
Poincaré polynomial for bilinearized LCH.

Proposition 4.12 The Poincaré polynomial P zƒ.2N /;Q"L;Q"R
is equal to 1.

Proof Let us show by induction that, after applying i successive 2–copies of connected sums on ƒ.2N/,
its Poincaré polynomial is given by .N � k/.1C tn/. Proposition 4.10 corresponds to the case i D 0. As
shorthand, we denote by C� the BLCH chain complex after i � 1 successive 2–copies of connected sums,
and by zC� the BLCH chain complex after i successive 2–copies of connected sums. Using the description
of the i th 2–copy of connected sum in the proof of Proposition 4.11, we see that this operation has two
effects on the complex C�. First, the generators m02i�1;2i and m02iC1;2iC2 are removed. Second, we
add generators of the BLCH complex C h� of the .n�1/–dimensional standard Legendrian Hopf link with
distinct augmentations. Recall that C h� forms a subcomplex of zC� (see the proof of Proposition 4.11).

Since the 2–copy of connected sum is performed away from rigid holomorphic disks connecting generators
of zC�=C h� , the differential on this quotient complex is directly induced from that of C�. In particular, we
have @s2i�1;2i Dm2i�1;2i and @s2iC1;2iC2 Dm2iC1;2iC2 in zC�=C h� . Hence, its homology coincides
with the homology of C�, except in degree 0, where it has two fewer generators. Hence, its Poincaré
polynomial is .N � i � 1/ C .N � i C 1/tn. On the other hand, the homology of C h� is given by
Proposition 4.10 with N D 1 and n replaced with n� 1. Hence its Poincaré polynomial is 1C tn�1.

In order to deduce the homology of zC�, we consider the long exact sequence

� � � !HkC1. zC�=C
h
� /!Hk.C

h
� /!Hk. zC�/!Hk. zC�=C

h
� /!Hk�1.C

h
� /! � � � :

When k D 0, we see that the generator Œmh2i�1;2i � of H0.C h� / injects into H0. zC�/, as it can only be hit
by s2i�1;2i and s2iC1;2iC2, but these do not survive in the homology of the quotient complex. Hence the
rank of H0. zC�/ is N � i .

When kDn, we see that the generator Œc2iC2;2iC2� inHn. zC�=C h� /, which was not affected by the i�1 first
2–copies of connected sums, hits the generator Œch2i;2i � of Hn�1.C h� /, because there exists a single Morse
flow tree connecting them. Indeed, in Figure 7 the chord c2iC2;2iC2 is in the middle of the uppermost
connected component, and the Morse flow tree starts from there to the right in the plane of the figure
(corresponding to all spinning angles set to zero), then enters the dotted rectangle (hence the upper tube
in Figure 8), until it reaches the chord ch2i;2i sitting in the middle of that tube. Hence, the rank of Hn. zC�/
is N � i . The Poincaré polynomial for the homology of zC� is therefore .N � i/.1C tn/, as announced.

After these N � 1 operations, we are therefore left with the Poincaré polynomial 1C tn. The last
step in the construction of zƒ.2N/ is an ordinary connected sum between the remaining two connected
components ƒeven (the connected sum of ƒ2i for i D 1; : : : ; N ) and ƒodd (the connected sum of ƒ2i�1
for i D 1; : : : ; N ). Let us denote the corresponding 2–component Legendrian link by ƒ0.

As in the proof of Proposition 3.2, the map Q�0 from the duality exact sequence (2-2) with "1 D Q"R and
"2D Q"L is given at chain level by Q"R�Q"L, except that we must refine according to the connected component
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ƒeven or ƒodd which is hit. Note that all chords augmented by Q"L start on ƒodd and all chords augmented
by Q"R end onƒodd. This means that Q�0 necessarily takes its values inH0.ƒodd/. By Proposition 4.4, since
Pƒ0;Q"L;Q"R

.t/D 1C tn and H�.ƒ0/ has rank 4, we must have p D 0, and hence Pƒ0;Q"R;Q"L.t/D 1C t
n as

well. Therefore, the image of the map Q�0 W LCHQ"R;Q"L
0 .ƒ0/!H0.ƒ

0/ is equal to H0.ƒodd/.

We deduce that ker Q�n D H0.ƒodd/ in the duality exact sequence (2-2) with "1 D Q"R and "2 D Q"L.
Consider now the map �n in the duality exact sequence (2-2) with "1 D Q"L and "2 D Q"R. Since Q�n and �n
are adjoint in the sense of [6, Proposition 3.9], im �n is the annihilator of H0.ƒodd/ for the intersection
pairing, which isHn.ƒeven/. In particular, the map �n;1��n;2D �n;odd��n;even from Proposition 3.5 does
not vanish, so that this last connected sum modifies the Poincaré polynomial by �tn. We are therefore
left with P zƒ.2N /;Q"L;Q"R

.t/D 1, as announced.

4.4 Geography of BLCH for Legendrian spheres

The next step in our construction is to add to zƒ.2N/ a standard Legendrian unknot ƒ0 which forms with
the bottom k components ƒ1; : : : ; ƒk a Legendrian link isotopic to the .kC1/–copy of the standard
Legendrian unknot, but which is unlinked with the 2N � k top components ƒkC1; : : : ; ƒ2N . We fix
the Maslov potential of the component ƒ0 to be given by the Maslov potential of ƒ1 plus m� 1, for
some integer m. We can deform this link by a Legendrian isotopy in order to widen the components
ƒ1; : : : ; ƒk � J

1.Rn/ so that their projection to Rn becomes much larger than the projection of the
components ƒkC1; : : : ; ƒ2N . We further narrow the component ƒ0 so that its projection to Rn does
not intersect the projection of the components ƒkC1; : : : ; ƒ2N . We denote the resulting Legendrian link
by zƒ.2N/

.k;m/
.

The addition of ƒ0 to zƒ.2N/ is illustrated by Figure 9 in the case k D 4, where the picture zooms in on
the bottom strata of the k components ƒ1; : : : ; ƒk , which are represented as portions of horizontal planes.

This Legendrian link zƒ.2N/
.k;m/

has several additional Reeb chords compared to zƒ.2N/. These are easily
identified within the .kC1/–copy of the standard Legendrian unknot formed by ƒ0; ƒ1; : : : ; ƒk and are
given by

grading length

c0;0 n l

c0;j nC j �m l C "j

cj;0 n� j Cm l � "j

m0;j j �m� 1 "j � ı

M0;j nC j �m� 1 "j C ı

where the index j takes all possible values between 1 and k.

We extend the augmentations Q"L and Q"R by zero on these additional chords in order to define augmentations,
still denoted by Q"L and Q"R, on the Chekanov–Eliashberg DGA of zƒ.2N/

.k;m/
. Since the mixed chords involving

ƒ0 are not augmented, it follows that the vector space generated by the above chords is a direct summand
of the bilinearized complex with respect to the differential @Q"L;Q"R .
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Figure 9: Additional component ƒ0 with k D 4.

Proposition 4.13 The bilinearized differential @Q"L;Q"R of zƒ.2N/
.k;m/

on the subcomplex generated by the
chords involving the component ƒ0 is given by

@Q"L;Q"Rc0;0 D 0; @Q"L;Q"Rc0;j DM0;j C Nj c0;j�1; @Q"L;Q"Rcj;0 D Nj cjC1;0;

@Q"L;Q"Rm0;j D Njm0;j�1; @Q"L;Q"RM0;j D NjM0;j�1;

for j D 1; : : : ; k, where Nj is the modulo-2 reduction of j and where in the right-hand sides ckC1;0, c0;0,
m0;0 and M0;0 should be replaced by zero.

Proof This result follows from the same computations as in Proposition 4.9, in which we replace 2N
with k, i with 0 and where all terms obtained by changing the index i are omitted since the mixed Reeb
chords involving ƒ0 are not augmented.

Proposition 4.14 Consider the Legendrian link zƒ.2N/
.k;m/

� J 1.Rn/. Its Poincaré polynomial with respect
to the augmentations Q"L and Q"R is given by

P zƒ.2N /

.k;m/
;Q"L;Q"R

.t/D 1C tnC t�mC ta;

where

(4-2) aD

�
k�m� 1 if k is even;
n� kCm if k is odd:

Proof Let us compute the homology of the subcomplex generated by all Reeb chords involving the
componentƒ0. First note that c0;0 is always a generator in homology, leading to the term tn in the Poincaré
polynomial. Moreover, the complex generated by the chords c0;1; : : : ; c0;k and M0;1; : : : ;M0;k is acyclic.

If k is even, the complex generated by the chords c1;0; : : : ; ck;0 is acyclic. On the other hand, the complex
generated by the chords m0;1; : : : ; m0;k has its homology generated by m0;1 and m0;k . These lead to the
terms t�m and tk�m�1 in the Poincaré polynomial.

If k is odd, the complex generated by the chords c1;0; : : : ; ck;0 has its homology generated by ck;0.
This leads to the term tn�kCm in the Poincaré polynomial. On the other hand, the complex generated
by the chords m0;1; : : : ; m0;k has its homology generated by m0;1. This leads to the term t�m in the
Poincaré polynomial.

Adding these contributions to the Poincaré polynomial of zƒ.2N/ from Proposition 4.12, we obtain the
announced result.
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Remark 4.15 As a variant of the above construction, if we chooseƒ0 to be unlinked withƒ1 in addition to
ƒkC1; : : : ; ƒ2N , then we obtain instead the Poincaré polynomial 1CtnCtnCm�2Cta with the same a as
in Proposition 4.14. This is because the subcomplex generated by all Reeb chords involving the component
ƒ0 considered in the above proof does not contain the generators c1;0 andm0;1 anymore. Therefore, when
k is even its homology is generated by c2;0 and m0;k , and when k is odd it is generated by c2;0 and ck;0.
Hence, in the Poincaré polynomial the exponent �mD jm0;1j is replaced with nCm� 2D jc2;0j.

The next step in our construction is to perform a connected sum between the component ƒ0 and the
original knot zƒ.2N/. This can be done after a Legendrian isotopy of ƒ0 similar to the one depicted in
Figure 7, so that a piece of cusp in the deformed ƒ0 faces a piece of cusp from the component ƒ1. In
this case, it will be necessary to use a different number of first Reidemeister moves as in Figure 4 before
spinning the resulting front, so that the Maslov potentials near the facing cusps agree. We denote by
ƒ
.2N/

.k;m/
the resulting Legendrian knot in J 1.Rn/. We denote by N"L and N"R the augmentations induced

from Q"L and Q"R via the exact Lagrangian cobordism between ƒ.2N/
.k;m/

and zƒ.2N/
.k;m/

.

Proposition 4.16 Consider the Legendrian knot ƒ.2N/
.k;m/

� J 1.Rn/. We have

P
ƒ

.2N /

.k;m/
;N"L;N"R

.t/D 1C t�mC ta;

where a is given by (4-2).

Proof By Proposition 4.14, the generator Œc0;0� 2 LCHQ"L;Q"R
n .zƒ

.2N/

.k;m/
/ corresponds to the fundamental

class Œƒ0� of the component ƒ0 of the Legendrian link zƒ.2N/
.k;m/

. By Proposition 3.5, the effect of the
connected sum with this component is to remove the term tn from the Poincaré polynomial, so that we
obtain the announced result.

Note that, instead of adding a single componentƒ0 to the Legendrian knot zƒ.2N/, we can add a collection
of components ƒ0;1; : : : ; ƒ0;r � J 1.Rn/ with similar properties. More precisely, for all i D 1; : : : ; r ,
ƒ0;i forms with the bottom ki components ƒ1; : : : ; ƒki

a Legendrian link isotopic to the .kiC1/–copy
of the standard Legendrian unknot, but the projection of ƒ0;i to Rn is disjoint from the projection of the
other components ƒkiC1; : : : ; ƒ2N . The Maslov potential of ƒ0;i is fixed as the Maslov potential of ƒ1
plus mi �1, for some integer mi . With Nk D .k1; : : : ; kr/ and xmD .m1; : : : ; mr/, we denote the resulting
Legendrian link by zƒ.2N/

. Nk; xm/
.

The addition of ƒ0;1; : : : ; ƒ0;r to zƒ.2N/ is illustrated by Figure 10 in the case r D 3 and fk1; k2; k3g D
f1; 3; 4g, where the picture zooms in on the bottom strata of the k components ƒ1; : : : ; ƒk , which are
represented as portions of horizontal planes.

Each additional component ƒ0;i gives rise to an additional subcomplex in the bilinearized complex as in
Proposition 4.13, and hence to additional terms in the Poincaré polynomial of the form tnC t�mi C tai

with ai given by (4-2). After the connected sum of these components with zƒ.N/, we obtain a Legendrian
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Figure 10: Additional components ƒ0;i with r D 3 and fk1; k2; k3g D f1; 3; 4g.

knot ƒ.2N/
.k;m/

and, arguing as in Proposition 4.16, its Poincaré polynomial is given by

(4-3) P
ƒ

.2N /

. Nk; xm/
;N"L;N"R

.t/D 1C

rX
iD1

.t�mi C tai /:

At this point of our constructions we have realized the geography of BLCH for Legendrian spheres ƒ.

Theorem 4.17 Let P D qCp be the sum of Laurent polynomials with nonnegative integral coefficients
satisfying conditions (i0) and (ii0) from Remark 4.3. Then there exists a Legendrian sphere ƒ in J 1.Rn/
and two non-DGA homotopic augmentations "1 and "2 of the Chekanov–Eliashberg DGA of ƒ, with the
property that the Poincaré polynomial of LCH"1;"2.ƒ/ with coefficients in Z2 is equal to P .

Proof Let us show that the Poincaré polynomials obtained in (4-3) realize all polynomials P D qCp
satisfying conditions (i0) and (ii0).

Indeed, let q.t/ D 1 and p be a Laurent polynomial satisfying (ii0). If n is even, p.�1/ D 0, so the
polynomial p can be expressed as a sum of polynomials of the form

Pr
iD1.t

ui C tvi /, where ui < vi
have different parities. If n is odd, p.�1/ is even, so the polynomial p can be expressed as the sum of
polynomials of the form

Pr
iD1.t

ui C tvi /, with no parity conditions on ui and vi .

In order to realize the polynomial tui C tvi when ui and vi have different parities, we can choose
mi D�ui and ki D vi �ui C 1, which is even. When ui and vi have the same parity, which can happen
only if n is odd, we proceed as follows. If uiCvi � n�1, we can choose mi D�ui and ki D n�ui �vi ,
which is odd. If uiCvi � n�1, we use the variant of the construction with ƒ0 described in Remark 4.15
with mi D ui C 2�n and ki D ui C vi C 3�n, which is even.

Let us define Nk D .k1; : : : ; kr/ and xmD .m1; : : : ; mr/, and let N be the smallest even integer such that
ki � 2N for all i D 1; : : : ; r . Then, in view of (4-3), the Legendrian sphere ƒ.2N/

. Nk; xm/
satisfies

P
ƒ

.2N /

. Nk; xm/
;N"L;N"R

.t/D 1Cp.t/D q.t/Cp.t/;

as desired.

4.5 Geography of BLCH for general Legendrian submanifolds

In order to obtain Poincaré polynomials with all possible polynomials q satisfying condition (i) from
Definition 4.1, we use the following construction from [2, Corollary 6.7]:
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Proposition 4.18 For any monic polynomial Nq of degree n satisfying Nq.0/D 0, there exists a connected
Legendrian submanifold ƒ Nq � J 1.Rn/ equipped with an augmentation " such that Pƒ Nq ;" D Nq.

If q is a polynomial satisfying condition (i) from Definition 4.1, then the polynomial Nq given by Nq.t/D
q.t/C tn� 1 satisfies the assumptions of Proposition 4.18.

Let ƒ.2N/
Nq;. Nk; xm/

be the disjoint union of the Legendrian knots ƒ.2N/
. Nk; xm/

and ƒ Nq such that the projections of
these components to Rn are disjoint. We denote by O"L and O"R the augmentations for ƒ.2N/

Nq;. Nk; xm/
induced

by the augmentation " for ƒ Nq and the augmentations N"L and N"R for ƒ.2N/
. Nk; xm/

. The Poincaré polynomial of
ƒ
.2N/

Nq;. Nk; xm/
is given by the sum of the Poincaré polynomials of its components:

P
ƒ

.2N /

Nq;. Nk; xm/
;N"L;N"R

.t/D tnC q.t/C

rX
iD1

.t�mi C tai /:

We then perform a connected sum on the Legendrian link ƒ.2N/
Nq;. Nk; xm/

in order to obtain a Legendrian knot
zƒ
.2N/

Nq;. Nk; xm/
, equipped with two augmentations still denoted by O"L and O"R. Since the augmentations N"L

and N"R coincide (with ") on the component ƒ Nq , by Proposition 3.2 the fundamental class Œƒ Nq� of this
component is in the image of the map �n in the duality exact sequence (2-2). By Proposition 3.5, the effect
of the connected sum with ƒ Nq is to remove a term tn from the Poincaré polynomial. We therefore obtain

P
ƒ

.2N /

Nq;. Nk; xm/
;N"L;N"R

.t/D q.t/C

rX
iD1

.t�mi C tai /:

Although these Poincaré polynomials realize all polynomials q satisfying condition (i) from Definition 4.1,
we are still missing some Laurent polynomials p, since these can be arbitrary when n > 2. In order to
realize these more general Laurent polynomials p, we describe a generalization of the embedded surgery
construction on which Proposition 4.18 and its proof in [2, Corollary 6.7] are based.

From now on, assume that n� 2. Consider a point on the cusp locus of the componentƒ1 of the 2N –copy
of the standard Legendrian unknot ƒ.2N/ � J 1.Rn/. By a Legendrian isotopy, it is always possible to
arrange so that, in a neighborhood of this point, the front of ƒ.2N/ in J 0.Rn/ with local coordinates
.x1; : : : ; xn; z/ is locally described as follows: the fragment of ƒ1 in this neighborhood is composed of a
bottom stratum z D 0 and of a top stratum satisfying z2 D x3n, both for xn � 0. Moreover, the fragments
of the bottom strata of the components ƒi in this neighborhood satisfy z D .i � 1/" for i D 2; : : : ; 2N ,
and no other parts of the front of ƒ.2N/ lie in this neighborhood. Note that it is possible to arrange so that
this local model still holds for the more sophisticated Legendrian ƒ.2N/

Nq;. Nk; xm/
after our above constructions.

For a given m0 2 f0; : : : ; n � 2g, we consider an embedded sphere Sm
0

of dimension m0 in the cusp
locus fxn D z D 0g of ƒ1. In view of our assumptions on the front of ƒ.2N/, this sphere bounds
an embedded disk of dimension m0C 1 with its interior disjoint from the front of ƒ.2N/. For a given
k02f2; : : : ; 2N g, we define a function f on the cusp locus ofƒ1, equal to

��
k0C 2

3

�
"
�2=3 along Sm

0

, given
by
���
k0C 2

3

�
"
�2=3

=r
1=2
0

�p
r0� r at distance r 2 .0; r0� from Sm

0

and extended by 0 everywhere else. We
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ƒ1

ƒ2

ƒj

ƒk0C1

c01;1

c01;j

c0j;1

Figure 11: Center of a generalized handle.

remove from the front of ƒ1 the region satisfying xn <f .x1; : : : ; xn�1/; the resulting front has boundary
diffeomorphic to the cartesian product of Sm

0

with a standard Legendrian sphere of dimension n�m0�1,
with a flat bottom stratum. We now perform an m0–surgery on ƒ.2N/ by attaching a standard Legendrian
handle diffeomorphic to Dm

0C1�Sn�m
0�1 to the above front along its boundary. By construction, along

the boundary of this handle, the standard Legendrian sphere of dimension n�m0�1 has height
�
k0C 2

3

�
".

We shape the handle so that this height decreases monotonically from the boundary of Dm
0C1 to its

center, where it takes the minimal value
�
k0C 1

3

�
". This is a standard Legendrian surgery on ƒ1, but it is

of a more general nature if we consider the whole ƒ.2N/, since the front of the attached handle intersects
the front of the components ƒ2; : : : ; ƒk0C1 (but not of the components ƒk0C2; : : : ; ƒ2N ). When this
operation is performed on the Legendrian submanifold ƒ.2N/

Nq;. Nk; xm/
, we denote the resulting Legendrian

submanifold by ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

.

In order to minimize the number of Reeb chords created by this operation, we shape the standard Legendrian
sphere of dimension n�m0�1 as shown in Figure 11, with both top and bottom strata being the graphs of
concave functions. Assuming for simplicity that the minima of the perturbing Morse functions fi �fj for
i ¤ j are located in the bottom strata and that the corresponding maxima are located in the top strata, the
bottom strata of the ƒi are slightly moving away from each other in the z–direction as xn decreases to 0.
Hence, the bottom stratum of the standard Legendrian sphere of dimension n�m0� 1 is slightly moving
down from the boundary of Dm

0C1 to its center. In particular, all new Reeb chords are located very close
to the center of the handle: c01;1 with endpoints on the handle, c01;j from the handle toƒj and c0j;1 fromƒj

to the handle, for j D 2; : : : ; k0C1, as shown in Figure 11. On the other hand, we can perturb the resulting
Legendrian submanifold so that there are no Reeb chords between the attached handle and the components
ƒk0C2; : : : ; ƒ2N . Summarizing, the gradings and lengths of the new Reeb chords are given by

grading length

c01;1 n�m0� 1
�
k0C 1

3

�
"

c0j;1 n�m0� j
�
k0� j C 4

3

�
"

c01;j m0C j � 1 .j � 1/"
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Proposition 4.19 The augmentations O"L and O"R can be extended by zero on the new chords to augmenta-
tions of ƒ.2N/

Nq;. Nk; xm/;.k0;m0/
. The vector space spanned by the new chords c01;1, c01;j and c0j;1 is a subcomplex

with respect to the bilinearized differentials @O"L;O"R and @O"R;O"L . These differentials are given by

@O"L;O"Rc01;jC1 D j C 1c
0
1;j ; @O"L;O"Rc0j;1 D

Nj c0jC1;1 and @O"L;O"Rc0k0C1;1 D 0;

and respectively by

@O"R;O"Lc01;jC1 D

�
Nj c01;j if j ¤ 1;

0 if j D 1;
@O"R;O"Lc0j;1 D j C 1c

0
jC1;1 and @O"R;O"Lc0k0C1;1 D 0

for j D 1; : : : ; k0, where Nj is the modulo-2 reduction of j .

Proof We first show that O"L ı @c D O"R ı @c D 0 for any Reeb chord c of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

. If c is a Reeb
chord of ƒ.2N/

Nq;. Nk; xm/
, then @c consists of terms from the differential for ƒ.2N/

Nq;. Nk; xm/
, and hence in the kernel of

O"L and O"R, and of terms involving at least one new chord of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

. Since O"L and O"R vanish on
these new chords, we obtain the desired relations.

If c is a new chord of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

, we claim that any term in @c contains an unaugmented chord as a
factor, and hence is in the kernel of O"L and O"R. Indeed, the only augmented chords go from ƒj to ƒjC1,
with a parity condition on j depending on the augmentation. Moreover, Morse flow trees cannot entirely
go across a connecting tube (since they are attracted to its center), so chords are the only way to jump
from ƒi to ƒj with i ¤ j . Since the new chords have at least one endpoint on ƒ1, if a Morse flow tree
has all negative ends at augmented chords, it must start at c01;1 or at c01;2. But jc01;1j D n�m

0�1 equals 1
if and only if m0D n�2, and in that case a Morse flow tree with endpoints remaining on ƒ1 must remain
in the center of the handle, which is a 1–dimensional standard Legendrian knot, so that there are 2 such
Morse flow trees with no negative end, canceling each other. On the other hand, jc01;2j Dm

0C 1 equals 1
if and only if m0 D 0, and in that case a Morse flow tree with endpoints remaining on ƒ1 and ƒ2 must
connect the critical point c01;2 of f2�f1 of index 1 to the critical point m1;2 of f2�f1 of index 0. There
are two such Morse flow trees, corresponding to the two sides of the 1–dimensional unstable manifold
of c01;2, and these cancel each other.

Let us now compute the bilinearized differentials. If a rigid Morse flow tree starting at c01;j with
j D 1; : : : ; k0C1, has only one negative end, it will leave the handle radially and then flow to the minimum
m1;j of fj � f1. Such a configuration is rigid if and only if jm1;j j D j � 2D jc01;j j � 1Dm

0C j � 2,
but when m0 D 0 there are two such Morse flow trees as above, canceling each other. If it has more
negative ends and contributes to the bilinearized differential of c01;j , it can only have a negative end at
mj�1;j , and the other one must then be at c01;j�1. There is a unique such Morse flow tree, flowing from
c01;j to the position of c01;j�1 in the Dm

0C1–factor of the handle, then splitting at the bottom stratum of
ƒj�1, so that one part flows in the Sn�m

0�1–factor of the handle to c01;j�1 and the other part flows to
the minimum mj�1;j of fj � fj�1. This term mj�1;j c

0
1;j�1 gives rise to the term c01;j�1 in @O"L;O"Rc01;j

if and only if O"L.mj�1;j /D 1, i.e. when j is odd and > 1. It gives rise to the term c01;j�1 in @O"R;O"Lc01;j
if and only if O"R.mj�1;j /D 1, i.e. when j is even.
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Let us now consider a rigid Morse flow tree starting at c0j;1 with j D 2; : : : ; k0C 1. Such a tree cannot
have only one negative end, and if it contributes to the bilinearized differential of c0j;1, it must have two
negative ends, one at mj;jC1 and the other one at c0jC1;1. There is a unique such Morse flow tree, flowing
from c0j;1 to the position of c0jC1;1 in the Sn�m

0�1–factor of the handle, then splitting at the bottom
stratum of ƒjC1, so that one part flows in the Dm

0C1–factor of the handle to c0jC1;1 and the other part
flows to the minimum mj;jC1 of fjC1 � fj . This term c0jC1;1mj;jC1 gives rise to the term c0jC1;1 in
@O"L;O"Rc0j;1 if and only if O"R.mj;jC1/D 1, i.e. when j is odd and < k0C1. It gives rise to the term c0jC1;1
in @O"R;O"Lc0j;1 if and only if O"L.mj;jC1/D 1, i.e. when j is even and < k0C 1.

As an immediate consequence of Proposition 4.19, the homology with respect to @O"L;O"R of the subcomplex
generated by the new Reeb chords is generated by Œc0

k0C1;1
� in degree n�m0�k0�1 if k0 is even, and by

Œc0
1;k0C1

� in degree m0Ck0 if k0 is odd. Similarly, the homology with respect to @O"R;O"L of this subcomplex
is generated by Œc01;1� in degree n�m0� 1, Œc01;2� in degree m0C 1, and by Œc0

1;k0C1
� in degree m0C k0 if

k0 is even, and by Œc0
k0C1;1

� in degree n�m0� k0� 1 if k0 is odd.

Proposition 4.20 The BLCH Poincaré polynomials of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

are given by

P
ƒ

.2N /

Nq;. Nk; xm/;.k0;m0/
;O"L;O"R

.t/D P
ƒ

.2N /

Nq;. Nk; xm/
;O"L;O"R

.t/C tb

and by
P
ƒ

.2N /

Nq;. Nk; xm/;.k0;m0/
;O"R;O"L

.t/D P
ƒ

.2N /

Nq;. Nk; xm/
;O"R;O"L

.t/C tn�m
0�1
C tm

0C1
C tn�1�b;

where b D n�m0� k0� 1 if k0 is even and b Dm0C k0 if k0 is odd.

Proof Observe that the image of Œc01;1� by the map

Q�n�m0�1 W LCHO"R;O"L
n�m0�1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/!Hn�m0�1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/

from the duality exact sequence (4-1) is the homology class of the cocore sphere of the attached handle.
Indeed, all Morse flow trees starting at c01;1 and with no negative end must remain in the cocore sphere of
the handle, since it is narrowest there. The resulting Morse flow trees start at c01;1 in any direction and
finish at the cusp of the cocore sphere. The boundary of the corresponding holomorphic disks foliate the
cocore sphere minus the endpoints of c01;1 so that the image of the cycle c01;1 in the bilinearized complex
is the cycle corresponding to the cocore sphere in the singular complex of ƒ.2N/

Nq;. Nk; xm/;.k0;m0/
. Since the

corresponding homology class does not vanish in Hn�m0�1.ƒ
.2N/

Nq;. Nk; xm/;.k0;m0/
/, it follows that Œc01;1� does

not vanish in bilinearized homology either.

Similarly, observe that the image of Œc01;2� by the map

Q�m0C1 W LCHO"R;O"L
m0C1 .ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/!Hm0C1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/

from the duality exact sequence (4-1) is the Poincaré dual of the homology class of the cocore sphere
of the attached handle. Indeed, all Morse flow trees starting at c01;2 and with no negative end must follow
radii of the disk factor Dm

0C1 for the handle. Once such a Morse flow tree exits the handle, it will flow
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down the chord m1;2 corresponding to the minimum of the perturbing Morse function f2�f1. The chord
m1;2 is augmented for O"R so that the image by Q�m0C1 is obtained by considering the part of the boundary
of the corresponding holomorphic disks lying in ƒ1. This is a sphere of dimension m0C 1, intersecting
the cocore sphere at the endpoint of c01;2 in ƒ1. Since the corresponding homology class does not vanish
in Hm0C1.ƒ

.2N/

Nq;. Nk; xm/;.k0;m0/
/, it follows that Œc01;2� does not vanish in bilinearized homology either.

In view of the long exact sequence relating the bilinearized homology of our subcomplex with the
bilinearized homologies of our Legendrian submanifold before and after the generalized handle attachment,
the effect of Œc0

k0C1;1
� or Œc0

1;k0C1
� could either be to add a term in the BLCH Poincaré polynomial in the

degree of this generator, or to remove a term in the degree of this generator, plus one.

In terms of Proposition 4.4, we have just shown that the polynomial Qq gains the terms tn�m
0�1C tm

0C1

as an effect of this generalized handle attachment. Since the dimension of the singular homology of the
Legendrian submanifold increased by 2, it follows that the modifications due to Œc0

k0C1;1
� and Œc0

1;k0C1
�

are affecting the polynomials p and Qp. Since the relation Qp.t/D tn�1p.t�1/ must hold at all times, it
follows that the changes to both BLCH Poincaré polynomials must occur in degrees that add up to n� 1.
But since the sum of the gradings of Œc0

k0C1;1
� and of Œc0

1;k0C1
� is n� 1, it follows that the effect of these

generators is necessarily to add a term in their corresponding BLCH Poincaré polynomial.

Since the four generators

Œc01;1�; Œc01;2�; Œc0k0C1;1� and Œc01;k0C1�

each give rise to an additional term in one of the BLCH Poincaré polynomials of ƒ.2N/
Nq;. Nk; xm/;.k0;m0/

, the
announced relations follow.

We can repeat the above generalized handle attachment as many times as we want, with different values
of k0 and m0. Repeating it s times with parameters k0i and m0i , let us define Nk0 D .k01; : : : ; k

0
s/ and

xm0 D .m01; : : : ; m
0
s/, and after choosing N so that k0i C 1 � 2N for all i D 1; : : : ; s. Applying these

operations on ƒ.2N/
Nq;. Nk; xm/

, we denote the resulting Legendrian submanifold by ƒ.2N/
Nq;. Nk; xm/;. Nk0; xm0/

.

Corollary 4.21 The BLCH Poincaré polynomial of ƒ.2N/
Nq;. Nk; xm/;. Nk0; xm0/

is given by

P
ƒ

.2N /

Nq;. Nk; xm/;. Nk0; xm0/
;O"L;O"R

.t/D q.t/C

rX
iD1

.t�mi C tai /C

sX
iD1

tbi ;

where

ai D

�
ki �mi � 1 if ki is even ,
n� ki Cmi if ki is odd ,

and bi D

�
n� k0i �m

0
i � 1 if k0i is even ,

k0i Cm
0
i if k0i is odd.

Proof of Theorem 1.3 Note that if nD 1, any connected Legendrian submanifold ƒ is a circle. Since
we already showed that the BLCH geography for spheres is realized by the submanifolds ƒ.2N/

. Nk; xm/
with

Poincaré polynomial given by (4-3) with q.t/D 1 and p.�1/ even, we can assume that n� 2.
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Assume first that n > 2. Let qC p be a BLCH–admissible polynomial in the sense of Definition 4.1.
Writing p.t/D

Ps
iD1 t

wi , for any term i D 1; : : : ; s we can find k0i � 1 and 0 �m0i � n� 2 such that
bi D wi as in Corollary 4.21: if wi > 0 is odd we can choose m0i D 0 and k0i D wi , if wi > 0 is even
we can choose m0i D 1 and k0i D wi � 1, if wi � 0 has the same parity as n we can choose m0i D 1 and
k0i D n� 2�wi , and if wi � 0 has the same parity as n� 1 we can choose m0i D 0 and k0i D n� 1�wi .
Then the Legendrian submanifold ƒ.2N/

Nq;. Nk0; xm0/
has the desired BLCH Poincaré polynomial qCp.

Finally, in the case nD 2, we cannot use the above choices of parameters since we must have m0i D 0
for all i D 1; : : : ; s. Let qCp be a BLCH–admissible polynomial in the sense of Definition 4.1. Let us
decompose p as p0Cp1 where p0 and p1 are Laurent polynomials with nonnegative integral coefficients,
p0.�1/D 0 and p1.1/ is minimal with respect to these properties. We have already showed that there
exists a Legendrian sphere ƒ.2N/

. Nk; xm/
with BLCH Poincaré polynomial given by 1Cp0 in view of (4-3).

Since p1.1/ is minimal, it follows that all terms in p1 have degrees of the same parity.

If this parity is odd, all terms in p1 are of the form twi with wi odd. If wi � 1, we choose k0i D wi
odd, and if wi � �1, we choose k0i D 1 � wi even, as in Corollary 4.21. Therefore, using as many
generalized handle attachments as needed, we can realize the BLCH Poincaré polynomial 1Cp0Cp1,
regardless of the value of p1.�1/� 0. Then, by a connected sum with the Legendrian submanifold ƒ Nq
from Proposition 4.18, we realize the BLCH Poincaré polynomial qCp as desired.

If the terms in p1 have degrees of even parity, we use generalized handle attachments on ƒ2 instead
of ƒ1: the effect of this modified operation will be as described by Proposition 4.20, with the ordering of
the augmentations reversed. In other words, each such generalized handle attachment will add 2t C t1�bi

to the BLCH Poincaré polynomial of our Legendrian submanifold, with 1 � bi D 1 � k0i even, as in
Corollary 4.21. If q.t/D 1C at then we can perform up to

�
1
2
a
˘

such attachments. Therefore, for any
polynomial p1 such that p1.�1/ D p1.1/ � 1

2
a D 1

2
.1� q.�1//, we can realize the BLCH Poincaré

polynomial 1C 2p1.1/t Cp0Cp1. Setting q0.t/D q.t/� 2p1.1/t , we then perform a connected sum
with the Legendrian submanifold ƒ Nq0

from Proposition 4.18 in order to realize the BLCH Poincaré
polynomial qCp, as desired.
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