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Abstract 

Synchrony has been proposed as a relevant phenomenon for investigating social neurophysiological and 

psychological processes, with inter-brain synchrony, in particular, presumed to facilitate the functional integration 

of multiple brains. However, the lack of an accepted definition and a cohesive theoretical corpus that allows 

hypothesis-based approaches, often combined with inadequate empirical methods, weakens this area of research. 

To address this, we propose a rigorous definition of inter-brain synchrony and link various theoretical 

contributions to justify the existence of meaningful temporal alignment between different brain activities. This 

article outlines a set of methods to provide valid evidence supporting this neural mechanism. Our approach entails 

extracting instantaneous phase data from Hilbert-transformed EEG time series recorded from individuals under 

different experimental conditions that account for confounding factors such as shared attention, cognitive, and 

motor dependencies. We then describe multiple data analysis approaches, including circular statistics combined 

with permutation testing, and mutual information. Finally, we present an example of a potential application within 

the context of cooperation in nuclear families. We believe that, by employing such methods consistently, the 

concept of inter brain synchrony is falsifiable. Whether this phenomenon is empirically supported or not, it will 

contribute to advancing our understanding of the social brain.  

Keywords: inter-brain synchrony, EEG, social interaction, methods, phase synchronization.  
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1. Introduction 

1.1 A definition of inter-brain synchrony 

Two entities, or independent oscillators, are said to be in a state of synchrony when adjustments in their 

rhythm converge to a common frequency as a result of interactions such as coupling, feedback, mutual 

interference, or communication (Gupta et al., 2018; Pikovsky et al., 2003). Ubiquitous in nature, synchronous 

patterns have been investigated across diverse fields (Hulthén et al., 2022; Provenzano & Baggio, 2021), driven 

by the meta-assumption that studying entities together over time can reveal significant information about the 

system they compose. This is because the behaviours of individual entities by themselves often do not fully 

represent the behaviour of the overall system. The uniqueness of synchrony lies not in the mere co-occurrence of 

the components' behaviours but in the extent of their dynamic adjustments to each other. Considering three 

dimensions—magnitude, time-lag, and the features under investigation—we propose to represent synchrony 

between two entities as a cuboid, as shown in Figure 1. Magnitude refers to the strength of the dynamical 

adjustment of the two entities; time-lag denotes the delay between a change in one entity and the corresponding 

change in the other; and the features are the measures used to investigate the synchronous relationship (e.g., 

synchrony in firefly flashing can be analysed in terms of flash duration, flash density, flash frequency, or flash 

intensity). In this work, we consider synchrony defined not as a stochastic, spurious, or merely concurrent-

correlational phenomenon, but as a certain temporal and functional coordination between two entities in their 

happening and development. Thus, synchrony here reflects a peculiar state of interconnectedness in which 

different entities come together in a harmonious and integrated manner.  

 

Figure 1. A geometrical representation of synchrony considering three dimensions: magnitude, time-lag (k), and the features (n) 

under investigation. Regarding magnitude, two entities(x,y) that are completely independent are in a state of perfect asynchrony. As 

the magnitude of synchrony increases, either positively (synchrony) or negatively (anti-synchrony), two states are approached 

respectively: perfect synchrony (i.e., for every increase in a feature of x, a feature in y also increases) and perfect anti-synchrony 

(i.e., for every increase in a feature x, a feature in y decreases). The second dimension is the time-lag between x and y, denoted as 

k, with an arbitrary sign based on the assigned reference (either x or y). Consequently, given a measured feature (ni) in both x and 

y at a time lag k, we can think of all the states of synchrony represented by the surface of a quadrilateral where the origin (0, 0) is a 

state of perfect asynchrony at a zero-lag. The third dimension represents multiple independent featuren under consideration. While 

this model assumes the same random variable is examined across two different entities (or two different variables in the same 
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system), it can be adapted to represent dependencies between two different random variables. At a theoretical level, the volume of 

a cuboid captures all measurable synchrony states between x and y, at a time-lag bounded by [-k, k], and the features defined by 

featuresn. 

In recent years, social interactions and various forms of synchrony have garnered major attention in 

neuropsychology and neuroscience (Uhlhaas & Singer, 2006; Wheatley et al., 2024). Within interpersonal 

relationships, synchrony is believed to occur on a multi-modal level during social interaction, encompassing both 

physiological (e.g., cardiac) and behavioural (e.g., walking) processes (Coutinho et al., 2021; Delaherche et al., 

2012; Ikeda et al., 2017). The continuous exchange of information in social contexts increases the complexity of 

these interactions, which result from decision-making processes involving mentalization and dynamic predictions 

(Kingsbury & Hong, 2020). Despite extensive review efforts (Atzil-Slonim et al., 2023; Birk et al., 2022; Hale et 

al., 2024; Zhao et al., 2024) that have thoroughly examined these modalities, their integration remains 

incompletely understood. Regardless of the modality through which synchrony manifests, it is evident that these 

patterns would be mediated by brain processes (Holroyd, 2022). Hence, researchers have increasingly directed 

their attention to a phenomenon known as inter-brain synchrony (IBS).  

To the best of our knowledge, regardless of the vast body of research on the subject and the concerns 

previously raised (Burgess, 2013; Holroyd, 2022), no formal definition of IBS accompanied by an appropriate 

theoretical framework  and neuroimaging methods has been proposed to explore or support IBS. Addressing these 

two gaps is crucial for developing a falsifiable and hypothesis-driven approach, particularly in the contexts of 

brain connectivity measures. Conversely, providing an explanation for the neuroanatomical and brain sources of 

IBS is beyond the scope of this study. As recommended by Leist and Hengstler (2018), the current paper is 

structured as follows: first, we describe the essential criteria for properly characterizing IBS, followed by our 

proposed formal definition. Next, we outline the current methodological tools for validly detecting IBS. Given 

the challenges highlighted in the recent literature, we propose a description of procedures and materials, including 

sampling, experimental procedures, signal processing, and statistical analysis. We then present an exemplary case 

of these methods in the context of a nuclear (i.e., triadic) family during cooperation. Finally, we discuss the 

necessary information researchers should share to enable replication and improve the comparability of IBS 

research. Further reflection is dedicated to robustness, accuracy, and quantification of uncertainty. 

When measuring IBS, a sine qua non condition is that the phenomenon should not be explained by 

confounders such as neural entrainment, motor-induced or attention-enhanced neural dependence, as explained 

by Holroyd (2022). Hereafter, we will refer to this alignment as a statistical dependence, as we prefer to treat it 

with no assumptions on the distribution of the variables, or the nature of their relationship (e.g., nonmonotonic). 

In this sense, dependence implies a statistical association but does not necessarily imply causation. Controlling 

these confounding factors is essential to properly measure IBS. Specifically, neural entrainment refers to the share 

of dependence explained by common external sources (e.g., a visual flicker at a certain frequency). Motor-induced 

dependence accounts for the neural component resulting from the behaviour of one agent driving the neural 

activity of both individuals (e.g., eye-gaze). Another element could be due to an intentional motor alignment (e.g., 

imitation). Finally, attention-enhanced dependence is related to factors such as engagement and arousal, which 

could enhance neural entrainment and motor-induced dependence. Additionally, top-down processes due to shared 

memories or cultural factors could be also seen as part of this source of attention-enhanced dependence.  
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Beyond controlling for confounders, the following considerations should be contemplated. First, IBS 

should not exhibit task or environment specificity (i.e., IBS, hypothesized as a mechanism of social interaction, 

should be observable across a range of tasks, though the extent of this generalizability is still unknown) and should 

not be explained by shared behavioural cues. Secondly, IBS, when measured with correlational techniques without 

experimental manipulation, is not directly observable; instead, it should manifest as a difference in explained 

neural dependence relative to a reference condition, reflecting the extent of social adjustment. Third, since 

synchrony results from interaction rather than mere co-occurrence, randomness and spurious correlations must be 

statistically ruled out. Moreover, even if evidence supports IBS, it should not be considered a social cognitive 

mechanism per se but should be tested as a predictor of social interaction outcomes and as a potential causal 

mechanism demonstrated through measurable changes, limiting reliance on untestable cognitive assumptions. 

Fourth, any type of synchrony, requires “energy” transmission across a medium (i.e., the wooden table subject to 

mechanical vibrations for the two pendulums of Huygens). For IBS, the medium should (and must) consist of 

sensory channels that allow information flows between interacting individuals. It is worth noting that if zero-lag 

synchrony is assumed possible, it should be induced by complex (and non-linear) intra-brain synchronizations 

that occurs simultaneously across individuals, based on previously exchanged information. Also, IBS should not 

merely reflect simple coupling or basic information exchange between interacting individuals during a specific 

task (e.g., turn-taking during a conversation could induce dependence at very low frequencies; Nguyen et al., 

2023). Lastly, epistemologically, the assumptions underlying the definition of general synchrony and IBS 

influence the choice of synchrony estimator. Such estimators may only capture partial information or distort it, 

and the interdependence between signals might not be fully represented if the analysis focuses on a certain 

dimension (e.g., phase vs. amplitude dependence) or if the physical properties of the signal do not match the 

synchrony of interest for the selected time window (i.e., when the rate of change in the chosen metric does not 

reflect the actual physical phenomenon). This could lead to false positives (e.g., using an inflating estimator such 

as phase-locking value, e.g., Burgess, 2013) or false negatives (e.g., missing synchrony by focusing on irrelevant 

frequencies, leading to wrongfully equating absence of evidence with evidence of absence).    

Considering the conditions described above, IBS, at a certain time lag and frequency, can be defined as 

neural dependence, in terms of the information one signal provides about another, between the signals of 

interacting individuals, accounting for the putative neural mechanism that promotes social interactions through 

the functional integration of multiple brains, and which cannot be explained by neural entrainment, motor-induced 

dependence, attention-enhanced dependence, or randomness. A graphical representation of IBS is depicted in 

Figure 2.  
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Figure 2. A Venn diagram illustrating the concept of inter-brain synchrony (IBS). IBS is conceptualized as the difference 

between the total neural dependence between signals of interacting individuals and that derived from confounders. 

Randomness, spuriousness and errors are factors that transversally impact all the components ranging from measurement or 

error-inflating techniques. Total neural dependence is potentially not completely explained by the considered factors as their 

computation brings in some assumptions (e.g., a linear or circular dependency or approaches such as mutual information, see 

Fernandes & Gloor, 2010), making hazardous to equating the total theoretical dependency to the other dimensions. IBS is 

represented by the red area. 

1.2 Theoretical perspectives and current state-of-art on inter-brain synchrony 

With this strict definition of IBS, we can now propose a theoretical foundation and develop appropriate 

methods to test this phenomenon. 

The Relational Neuroscience framework suggests that IBS might occur in various social contexts or 

processes (e.g., social learning, co-regulation, cooperation) and across different interaction partners (De Felice et 

al., 2024). Similarly, focusing on affiliative bonds, the biobehavioral model of mutual influences in the formation 

of affiliative bonds (Feldman, 2012) emphasizes biobehavioral synchrony, which encompasses behavioral, 

genetic, hormonal, brain, mental, and autonomic components, as mechanisms for co-regulation between 

attachment partners. This synchrony would significantly impact the development throughout childhood and 

adolescence. According to this model, individuals within a system affect each other's physiology through 

processes such as social synchrony during the formation of affiliative bonds. A related perspective, the multi-brain 

framework for social interaction, directly addresses neural synchrony. It conceptualizes social exchange as an 

interaction between two or more neural systems, coupled through sensory inputs and behaviour (Kingsbury & 

Hong, 2020), a definition that aligns with the concept of generalized synchrony discussed earlier.  

To explain the relationship between informational input and neural phenomena during social interaction, 

the Interactive Alignment Theory (Pickering & Garrod, 2004), as cited in Schoot et al. (2016), builds on Friston 

& Frith's (2015) work. Schoot et al. (2016) argue that such interaction involves a non-static inference about others, 

where individuals continuously update their beliefs about the world and sample sensory information to minimize 

predictive errors. In this context, IBS could be operationalized as a measure of alignment, or statistical 

dependence, in the signals of two interacting individuals. Its magnitude should be inversely proportional to the 

social prediction error, defined as the difference between the expected and actual outcome during interactions with 
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others, achieved through mutual prediction (de Bruin & Michael, 2021). For example, a speaker and a listener 

aligned at a syntactic level should show a neural coupling, or dependence, in cortical areas associated with that 

cognitive process. De Bruin & Michael (2021) noted that a previous study (Stephens et al., 2010) could not 

disentangle neural coupling from specific communicative signals and did not account for the dynamic nature of 

interactions, which contradicts Friston & Frith's theory (2015). This highlights two important considerations: first, 

IBS should be tested in real social interactions where the social unit shares a goal and intentionality, and where 

the situation requires the continuous alignment of the agents’ generative models. Second, IBS should be 

disentangled from potential confounders, as we argued earlier. By integrating the multi-brain and Relational 

Neuroscience frameworks, with the Interactive Alignment Theory and the biobehavioural synchrony model, we 

can hypothesize the existence of IBS in interacting individuals engaged in tasks that require the dynamic alignment 

of their internal models to facilitate information exchange.  

Despite attempts to formulate valid methods to address similar aims (Tamburro et al., 2023), we believe 

that the issues we highlighted above were never properly considered in neuroimaging testing, leading to biased 

evidence. For example, a meta-analysis (Réveillé et al., 2024) on electroencephalographic (EEG) hyperscanning 

(i.e., the term often employed for the conjoint neuroimaging data acquisition) found moderate associations 

between IBS and situation characteristics at an individual, team, and organizational level (g = 0.66, 95% CI [0.50–

0.81], n = 22, k = 78, p < 0.001) and between IBS and affective and behavioural team processes (r = .45, 95% CI 

[.29-.59], n = 9, k = 24, p < 0.001), as well as a small correlation between IBS and team performance (r = 0.16, 

95% CI [0.02–0.29], n = 14, k = 41, p = 0.024). Instead, a meta-analysis on functional near-infrared spectroscopy 

(fNIRS) studies (Czeszumski et al., 2022) compared cooperative and non-cooperative conditions, finding a large 

effect size  (g = 1.98, 95% CI [1.47, 2.49], n = 21, z = 7.68, p < 0.001). However, it is highly probable that these 

results are inflated due to the lack of the considerations we proposed. Among these are the lack of a definition and 

operationalization of IBS, the absence of controls for all confounders, and the use of statistical approaches that do 

not fit the nature of the data.  

Only recently has the testing of the causal role of inter-brain dynamics with non-invasive brain 

stimulation (NIBS) begun. These protocols involve manipulating neural patterns in multiple individuals, using 

transcranial alternating current stimulation (tACS) on dyads. Novembre et al. (2017) showed that in phase 

stimulation at 20 Hz, localized at the motor cortex (i.e., anode placed over C3 and cathode over PZ, according to 

the International 10/20 system; Homan et al., 1987) increased their ability to synchronize tapping. This supports 

the fact that dyads exposed to in-phase stimulation during a preparatory period might have enhanced action 

coordination compared to baseline, a pattern not found in surrogate data. Such approaches are valuable, with 

recent propositions to refine such designs (Semertzidis et al., 2024). However, the mechanisms by which neural 

oscillations couple and maintain such states at an interindividual level remain poorly understood, with many 

temporal, spatial, and frequencies asymmetries within and between dyads (Takeuchi, 2024). So far, in most 

experimental designs, the definition of synchrony often remains unexplicit, and stimulation-induced IBS is still 

an unverified assumption, and brain-to-brain phase coupling during real-life interaction has not been measured. 

In a recent study (Lu et al., 2023), behavioral coordination was investigated in three independent groups 

respectively undergoing tACS (20hz, in-phase), transcranial direct current stimulation (tDCS), and a sham 

condition while measuring oxyhemoglobin through fNIRS. The anode was placed at FC6, and four cathodes were 



9 
 

placed at F6, FT8, C6, and FC4 to cover the right inferior frontal gyrus. In their task, although it does not meet 

the criteria mentioned earlier, the dyads were instructed to press buttons as synchronously as possible after a 

signal. IBS, computed as oxyhemoglobin cross-correlation at the prefrontal cortex (Fpz), was maintained after 

stimulation, only in the tACS group. Interestingly, linear correlations were found between IBS and coordination 

performance metrics of the dyads (i.e., the difference or sum of response times), with significant correlations for 

the tACS group (r = -.437, p = .048) and tDCS group (r = -476, p = .029), supporting the conjecture that IBS 

could facilitate information exchange and positively impact social interaction outcomes, such as lower response 

times. No significant correlation was reported for the sham group. However, as these correlations were found only 

in one task block where no IBS significant differences were observed, further studies are needed. This also raises 

questions about whether fNIRS captures IBS, given its limited temporal resolution. 

Besides the promising reported studies in the literature, more evidence is still required (Carollo & 

Esposito, 2024). A critical question remains, are there proper methods to measure IBS with neuroimaging 

techniques? To address this question, we focus on EEG data for our use case, as suggested in Grootjans et al., 

(2024). EEG may strike the best balance between temporal resolution, necessary for investigating the granularity 

of temporal alignment, and ecological validity, allowing participants to interact with some movement and 

communication, unlike other techniques (Tsoi et al., 2022). Another reason for focusing on EEG brain oscillations 

lies in our definition of IBS that stresses the time-based adjustment phenomenon, with less emphasis on its specific 

brain sources. However, our proposed methods can be conceptually adapted, with necessary adjustments, to other 

time series data that offer different informational advantages (Tsoi et al., 2022). Building on earlier advocacy 

(Newman et al., 2024; Pérez & Davis, 2023; Redcay & Schilbach, 2019) and the ideas outlined previously, the 

aim of this methods paper is to describe analytically the necessary methods for gathering meaningful evidence for 

IBS using EEG data from individuals interacting together and to improve inter-brain methodologies. If further 

confirmed, given the strong relationship between health and social interactions, the understanding of synchrony 

as a medium for inter-individual interactions provides valuable information on the underlying precursors of the 

social brain (Chen et al., 2018). 

2. Methods to investigate IBS 

2.1 Sampling for IBS  

In hyperscanning research, the combination of unknown effects and limited sample sizes represents a 

methodological challenge (Andrea et al., 2022). This concern is further amplified by the need to exclude multiple 

confounders and by arbitrary decisions made by researchers, which can hinder the gathering of replicable evidence 

(Zimmermann et al., 2023). When considering sampling procedures, two factors must be addressed: the 

appropriate number of data points and the overall sample size, specifically in terms of participant dyads or social 

systems.  

Determining the required sample size for testing inter- or intra-group differences can be achieved using 

standard power analysis techniques. For instance, to estimate the minimum sample size in terms of dyads, needed 

to detect a medium standardized mean difference (d = .4) in a dependent samples t-test, assuming standard error 

rates (α = .05; 1- β = .9) and that all assumptions are met, the required sample size is estimated to be n=55. The 
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biological sex of the participants should be considered when assembling the dyads, either by testing only same-

sex dyads or social units, or by ensuring similar group sizes for combinatorial balance. 

Conversely, there are no established guidelines or analyses for determining the sample size, in terms of 

data points, needed to reliably detect IBS. For this reason, researchers investigating inter-brain dependence should 

start by defining a model of connectivity that accurately represents IBS. They should then select appropriate 

models or statistical tests that align with their hypotheses, followed by the applications of Monte Carlo simulations 

to inform their experimental conditions and sampling specifics.  

For exemplary purposes, we propose to operationalize IBS as a shared and independent source equally 

projected onto the distinct signals of two participants. This represents one of the many specific hypotheses 

regarding the operationalization of IBS. In this context, our focus is determining the required sample size to test 

for a significant bivariate relationship between the instantaneous phases of their time series. As we will show in 

the Statistical section (2.5), validly detecting this relationship is achieved using the adjusted circular correlation 

coefficient (Zimmermann et al., 2023), which forms the basic building block of our analysis plan. For these 

reasons, we performed a set of Monte Carlo simulations using the “ft_connectivitysimulation” function from the 

FieldTrip toolbox (version fieldtrip-20240704) on MATLAB (R2022b; The MathWorks, Natick, USA), executed 

on Microsoft Windows 11 (version 23h2). These simulations generated EEG time series data, with a specified 

connectivity structure. Although phase data are often modelled using von Mises distributions, the circular 

equivalent of a Gaussian, we used simulation-based analysis to avoid additional assumptions about the nature of 

the data (Chakraborty & Wong, 2023). The aim was to evaluate the minimum sample size required for each 

experimental condition to detect various IBS magnitudes between two EEG signals, given fixed type 1 and type 

2 error rates (α = .01; 1-β = .9). We adhered to standard reporting practices for simulation studies (Siepe et al., 

2023) and for functional connectivity simulations (Bastos & Schoffelen, 2016). The code is provided in the 

supplementary material. For the simulations, we assumed a generative model consisting of a linear mixture with 

two independent sources (x, y), representing two brain signals from two individuals (e.g., two electrodes placed 

on the prefrontal cortex on a mother and a father). IBS is theoretically conceptualized here as a shared signal 

projected equally into each source, with a certain unknown magnitude, similar to the approach in Zimmermann et 

al. (2023). To maintain a simplified structure, we did not implement any delay matrix. This model (Figure 2a) can 

simulate, for example, two brain signals within the theta frequency (here considered as 4-8 Hz), with varying 

magnitudes of instantaneous IBS. We introduced variance to each source post-linear mixing to simulate white 

noise (.5 standard deviation in the parameter ‘cfg.absnoise’). As explained in the signal processing section (2.4), 

the bandpassed trials (4-8 Hz) were concatenated and the instantaneous phase was extracted via the Hilbert 

transform.  

To test the relationships between phases, we employed the adjusted circular correlation coefficient 

(Equation 2), which tests the null hypothesis of no circular relationship between two time series with biased mean 

direction. Further details are reported in the statistical analysis section (2.5). The null hypothesis is rejected if the 

significance of the CCoradj is less than or equal α. Our performance measures were the powers of the test per 

conditions where the true effect is manipulated across different sample sizes, estimated by ‘P(Test rejectsH0)’. We 

varied the sample size from 1 to 60 seconds of artifact-free data at a sampling rate of 256 Hz (256 data points per 

epoch). Thus, we examined effective data ranges between 256-15360 data points, in steps of 256 data points, 
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performing 10.000 simulations per step to ensure stability and reduce the Monte Carlo Standard Error (MCSE). 

Given the limited knowledge of the real effect size of IBS, we evaluated seven different scenarios for IBS 

magnitude: absence of IBS and six incremental degrees of magnitude (in the parameter cfg.mix, respectively: no 

IBS = 0, then IBS = .6; .7.; .8; .9; 1; 1.5) which can account for small to medium effects. The chosen range 

corresponds to an effective clean recorded data, which is realistic in ecological terms, to which a total percentage 

of 20%, approximating at 70 seconds, has to be added for data removal due to artifacts, noise, and other reasons 

(non-necessarily overlapping between participants). The results, which we believe provide a robust estimate for 

adequately powered IBS detection, are presented in Figure 2b. According to the analysis, an optimal time window 

of analysis is in the order of 55 seconds, assuming a modest IBS magnitude (with a parameter set at cfg.mix=.7). 

No missing values were observed. For each scenario and sample size, we computed the MCSE. Across all 

simulations, the highest observed MCSE was MCSEmax = .005.  

 

 

 

 

 

 

 

 

 

 

Figure 2. a. The model used for simulations in FieldTrip to conduct Monte Carlo simulations. The model generates two time 

series (time series 1 and time series 2, assumed to be from two participants, Participant 1 and Participant 2), from three 

unobserved components: source 1 (x), source 2 (y), and IBS (z). Respectively, x and y represent two separated direct sources 

(the arrows a and b) for the time series 1 and 2. The sources could be representing two electrodes placed on the cortexes of 

two participants, one corresponding to source x and the other to source y. IBS (z) represents a common source for the generated 

time series (the arrows c and d, here assumed c = d). The strength of the connectivity (denoted by ‘?’) is manipulated in the 

form of seven different magnitudes and estimated, after data analysis, with the adjusted circular correlational coefficient 

(CCoradj). b. Power analysis was conducted through Monte Carlo simulations with varying IBS magnitudes, maintaining 1- 



12 
 

β=.9 and α=.01 On the x-axis the sample size needed, in terms of seconds of data acquisition at a sampling rate of 256 Hz. The 

y-axis represents the power, as P(Test rejectsH0). 

2.2 Experimental tasks to measure IBS 

At a general level, the task used to measure IBS should preserve ecological validity to capture natural 

social processes (Babiloni & Astolfi, 2014) while avoiding excessive trial repetition, yet remaining sufficiently 

standardized to minimize inter- and intra-individual differences. It should also ensure sufficient statistical power 

to detect small but significant differences in dependencies. A baseline should be recorded at the beginning of the 

session. Moreover, given the speculated association between neural synchrony and social behaviours, the task 

should involve performance that is replicable alone and with others, involving multiple participants (>1) and 

incorporating social decision-making and shared intentionality, with limited to no learning effect. In addition, the 

task chosen by the researcher to investigate IBS should consist of three pseudorandomized blocks presented 

consecutively: a block with individual performance (alone condition), one involving the real-time observation of 

another social unit’s performance of the same task (observation condition), and one where IBS is hypothesized 

by the researcher (experimental condition). As discussed in prior work (Holroyd, 2022; Zamm et al., 2024), 

including individual performance and observation of real performance serves as conditions to control for 

confounders. Condition characteristics should be established using a data-driven approach, such as the Monte 

Carlo simulations outlined in the previous section, ensuring that the selected task generates a sufficient amount of 

clean and usable data (e.g., in our specific case, within a 70-second range per condition). 

In the alone condition, each participant should be completely isolated to prevent any information transfer 

between subjects. Participants perform the selected task individually, following its specific set of rules. In this 

setup, all inputs should be delivered equally and simultaneously to participants, but separately to each individual 

(e.g., stimuli appearing on personal and separate monitors). Once participants complete their trial, they signal this 

in a way that does not influence the trials of others (e.g., by pressing a button). This condition is designed to isolate 

exogenous factors that are task- and environment-specific (e.g., the sensorial data from the stimuli), as well as any 

motor activity that may induce neural entrainment.  

In the observation condition, the participants are together, observing a group of confederates, composed 

of an equal number of individuals (i.e., two if the research focuses on dyads), performing the selected task. The 

confederates engage in natural social interactions, using verbal and non-verbal communication. The biological 

sex of the confederates either matches that of the participants or alternates to maintain balance. Participants are 

instructed to attentively observe how the task is carried out by the social unit and are allowed to discuss the process 

verbally. This condition is designed to control for the neural entrainment and attention-enhanced components (e.g., 

influence of physical co-presence).  

In the experimental condition, the social behavior that the researcher hypthesizes to be associated with 

IBS should be elicited in participants. It is essential to ensure that all participants engage in the task under 

equivalent conditions (e.g., at equal distances and with similar ease of intervention). Moreover, the task should 

closely mimic a real social situation when executed jointly and incorporate dynamic alignment to facilitate 

information exchange, as theory suggests. For instance, based on the available literature (Czeszumski et al., 2022), 

there is evidence linking cooperative behaviours and IBS. Therefore, cooperation could serve as a proposed 
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experimental condition, as illustrated in our exemplary paradigm in Section 3. Moreover, multiple (but not 

excessive) trials should be conducted for each condition, with stimuli randomized for each condition and order, 

without repetition. As conjectured earlier and based on our definition of IBS, IBS should be observable during the 

experimental condition (e.g., during social cooperation), exhibited as statistical divergence not just from the 

baseline but also from the two other conditions (alone, observation).  

Although necessary, these procedures are not sufficient to fully exclude the confounders we highlighted 

earlier in Section 1.1. As suggested by Holroyd (2022), attention levels to the stimuli typically predict the degree 

of interindividual neural alignment, which does not fall under our definition of IBS. In the experimental condition, 

attention levels are likely to be enhanced compared to the alone or observation condition due to the inherent 

characteristics of this setting. This implies that we cannot confidently rule out the possibility that attention-

enhanced dependence influences our condition comparisons, highlighting inherent limitations in correlational 

approaches. A potential solution is to collect additional data on physiological arousal to account for this factor. 

Such measurement should be compatible with the EEG and minimise disruption to ecological validity. Only by 

establishing significant differences—through the procedures described in the following paragraphs—between the 

experimental condition and the other two conditions, while excluding the influence of attention-enhanced 

dependence, can we conclude that we are measuring a phenomenon likely independent of the assessed 

confounders and associated with the ongoing social processes among the tested participants. 

2.3 Other data 

In the previous section, we emphasized the necessity of three conditions, to compare the condition where 

IBS is expected to manifest (experimental condition) with two control conditions that account for components of 

neural entrainment (alone, observation). We further highlighted that these procedures must be accompanied by 

the collection of additional data accounting for confounding factors, particularly attention-enhanced dependence. 

For this reason, it is essential to include a standard measure of physiological arousal (e.g., heart rate, pupillometry-

based measures, skin conductance, e.g., Bach et al., 2010; Pulopulos et al., 2021). 

Post-trial perceived difficulty and anxiety, perceived levels of engagement, should be gathered using 

visual analogue scales. The task trials can be video recorded, as utilizing videorecording and behavioural coding 

approaches could help quantify the social behaviours that contribute most to IBS and provide further insight into 

the relationship between IBS and behaviour. Additionally, other confounding variables that may influence IBS 

should be considered. For example, assessing intimacy and closeness, empathy levels, anxiety (state and trait), 

emotion regulation, mental health and executive functioning/self-regulation could be relevant. Task-specific 

variables should also be measured.  

2.4 EEG signal processing for IBS: it is not just a phase 

Each subject should be equipped with a set of EEG scalp electrodes, according to the 10-20 system, to 

sufficiently map the areas of interest (e.g., frontal, central, temporal, parietal, and occipital). The analysis should 

focus on specific regions of interest (ROIs) derived from a priori hypotheses. These ROIs are expected to be 

activated in response to the nature of the task, while other areas may be investigated with appropriate precautions. 

For instance, a researcher examining IBS during cooperative behavior (i.e., the experimental condition is a 
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cooperative condition) should particularly consider the prefrontal cortex (PFC) and temporoparietal regions, as 

suggested by the meta-analysis conducted by Czeszumski et al. (2022).  

Aside the specifics of each EEG system, we recommend delay testing and suggest rotating the EEG 

equipment to counterbalance any hardware errors, thus mitigating potential data acquisition biases. Regarding the 

choice of an hyperscanning setup, Barraza et al. (2019) offer a comprehensive description of EEG systems from 

different manufacturers. For each condition, the time windows of interest for the EEG analysis are the performance 

time of the fastest participant for the alone trials, and the actual trial time for the observation and experimental 

trials. Epoching should be defined based on a data-oriented approach, as shown earlier. The data cleaning and 

preparation fall outside the scope of this article. However, general recommendations include down sampling if 

necessary, filtering (0.5 Hz high-pass filter and 30 Hz low-pass filter), removing noise channels, referencing, 

epoching/segmentation, rejecting epoch through visual inspection; performing independent component analysis 

(ICA), and removing ICA components to eliminate nonbrain artifacts (e.g., eye blinks, heartbeats) and electrical 

noise. Finite impulse Response (FIR) filters are often the safest option for avoiding phase distortion and ensuring 

accurate computation of synchrony measures. The common frequencies of interest, delta (.5-4 Hz), theta (4-8Hz), 

alpha (8-12Hz) and beta (13-30 Hz, or further divided into beta1, 14-20 Hz and beta2, 20-30 Hz), can be tested 

separately with a priori hypothesis or exploratively. Conversely, there are several reasons suggesting that detecting 

IBS within the gamma band (>30 Hz) is improbable, including potential contamination by electromyographic 

activity and the gamma band’s faster dynamics compared to the slow dynamics of behaviour (Holroyd, 2022). 

The focus of analysis should be on the instantaneous phase of the signals. Phase is defined as a portion 

of a cycle that a point within a waveform has completed in relation to a reference or a “zero” position (e.g., φ = 

2π * (t - t0) / T) and is generally expressed as an angle in radians. Phase information is particularly well-suited for 

the estimation of inter-brain measures for several reasons (Burgess, 2013; Holroyd, 2022; Zimmermann et al., 

2023). Phase changes occur on a timescale that aligns well with brain dynamics, on the order of milliseconds, and 

are specifically related to the timing of neuronal activity rather than the raw amount of firing neurons or spatial 

information of a neuronal population, which is, for example, better reflected in power measures. In our case, phase 

information is also more reliable since amplitude-based measures can be influenced by factors such as skull 

impedance and motor artefacts (Mezeiová & Paluš, 2012). Moreover, phase synchronization exactly matches our 

definition of IBS and our need for establishing a phase entrainment in terms of a temporal dependency in 

individuals engaging in an interaction together, while the amplitudes of phase-synchronized systems can 

potentially remain uncorrelated (Rosenblum et al., 1996).  

The standard approach to quantify phase synchronization involves determining the instantaneous phase 

value, ϕ(t). Two common methods for this are the Hilbert transform applied to the filtered signal and the complex 

wavelet transform, yielding essentially equivalent results (Le Van Quyen et al., 2001). In this work, we have 

selected the Hilbert transform (Oppenheim, 1999) which converts a real signal, s(t), into a complex-valued 

analytic signal, z(t), by combining it with its Hilbert transform, ŝ(t). From this complex signal, the instantaneous 

phase is extracted, ϕ(t) = arg(z(t)), with its derivative representing the instantaneous frequency. The instantaneous 

phase ranges from 0 to 2π and represents the phase angle’s variation over one cycle. After extracting the time 

series of instantaneous phases (e.g., ϕ(t), φ(t)) for the frequencies of interest, across the different experimental 
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conditions, epochs, and participants, these epochs can be treated separately depending on the assumptions taken. 

Subsequently, we will model these epochs to evaluate their degree of synchrony. 

2.5 Statistical analysis 

This paragraph assumes two phase time series treated as detailed in Section 2.4, for specific frequencies 

(e.g., theta) under the experimental conditions (i.e., alone, observation, and experimental/cooperation), with the 

aim of determining their statistical dependence. The distribution of a phase is inherently circular, suggesting the 

employment of circular statistical approaches (Mardia & Jupp, 2000). To analyse instantaneous phase statistically, 

we will briefly present two approaches: the first approach utilizes an adjusted version of CCorr, which is currently 

recommended for studying phase alignment, while a second approach based on mutual information (MI), where 

time-lags between time series and controlling for other variables is possible. Both CCorr and MI are considered 

more robust measures for detecting IBS compared to commonly used methods in IBS research, such as the Pearson 

correlation coefficient, coherence, phase-locking value, partial directed coherence, and phase-locking index 

(Burgess, 2013). To estimate the phase entrainment of neural time series, the CCorr (Fisher & Lee, 1983) has been 

proposed and subsequently verified to be less susceptible to spurious relations in the context of IBS (Burgess, 

2013). As shown in (1), given two vectors x = ϕ(t) and y = φ(t), with their mean directions ϕ, φ, CCor is the 

product-moment correlation between the sine components of these phase angles. CCorr has several notable 

properties: it is symmetric (CCorr x, y = CCorr y, x), bounded within the range [-1, 1], and tests the null hypothesis 

H0 of significant independence between the circular variables x and y (CCorr x, y = 0).  

𝐶𝐶𝑜𝑟 (𝑥, 𝑦) =
∑ sin ( ϕi−ϕ)sin (φi−φ)𝑛

𝑖=1

√(∑ 𝑠𝑖𝑛2(𝑛
𝑖=1 ϕi−ϕ))(∑ 𝑠𝑖𝑛2(φi−φ))𝑛

𝑖=1

  (1) 

Moreover, it was argued by Zimmermann et al. (2023) that while phase information is theoretically 

independent of amplitude, in practice, estimated phases can be influenced by various factors (van Diepen & 

Mazaheri, 2018) and the mean directions are often arbitrary. Consequently, a modified version of the CCorr has 

been proposed to better accommodate the nuances of EEG data (Zimmermann et al., 2023). In this modification, 

the numerator of (1) is replaced by (𝑅x−y− 𝑅x+y) where R (x ±y) = |ei(1±y) |, hence defining by equation (2)  

𝐶𝐶𝑜𝑟𝑎𝑑𝑗 (𝑥, 𝑦) =
(𝑅x−y −𝑅x+y)

√(∑ 𝑠𝑖𝑛2(𝑛
𝑖=1 ϕi−ϕ))(∑ 𝑠𝑖𝑛2(φi−φ))𝑛

𝑖=1

  (2) 

Based on Equation (2), a set of CCoradj scores are calculated on the dyads for the epochs of the 3 

conditions. This is the measures we employed for our simulation-based power analysis. Such coefficient can then 

be analysed generally with linear models (e.g., van Vugt et al., 2020). For example, we can compute the difference 

(i.e., t-test) between the CCoradj for a sample of dyads by comparing the experimental condition and the alone 

condition, as well as comparing the experimental condition and the observation condition. We can then build 

empirical distributions that represent h0 (i.e., broken synchrony or asynchrony) composed of t-values obtained by 

shuffling the data multiple times (e.g., 1000 times). These null distributions should be constructed using full 

permutation as suggested by Holroyd (2022). This means that, in addition to shuffling condition labels, individuals 

from different dyads are randomly paired. To account for signal auto-dependence in the null distribution, the 

shuffling should be performed over small segments. If the t-value exceeds the chosen significance threshold (e.g., 

.05), it strongly suggests that the synchrony observed during the experimental condition represents a meaningful 

divergence from the alignment seen during the alone and observation conditions. This provides evidence that such 
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synchrony is not merely a result of neural entrainment or motor-induced dependency, or coincidental phase 

alignment.  

The second statistical approach targets the possibility that two time series might be correlated at various 

time-lags, in agreement with the general definition of synchrony at the beginning of this work, potentially arising 

from a rotation relative to each other due to circular patterns—another form of synchronization that would go 

unnoticed with our first proposed approach (i.e., which is equivalent to suppress the dimension of time-lag in the 

cuboid in Figure 1). Generally, cross-correlation is applied to detect peaks in the cross-correlation function using 

peak detection algorithms. As reported in Fallah et al. (2024), a conventional Pearson’s cross-correlation does not 

consider the circularity of the original phases. Therefore, a cross-circular-correlation (CCC) should also be 

employed. However, to the best of our knowledge, no specific work has been carried out on EEG phase data. 

Rybski et al. (2003) compute it by accumulating the phase and calculating the phase difference at a certain time 

lag k, plotting them into a certain number of bins (2π/bins). In the case of no synchronization such differences 

should be constant. Unfortunately, this method likely results in a biased estimation of synchrony in EEG data, as 

a consistent phase difference does not implicate the presence of a statistical dependence (Burgess, 2013).  

The last proposed approach considers mutual information (MI), to test model-free independence of two 

variables. MI (equation 3 for a general formula) is a proxy of the entropy explained by the information of the other 

variable considered. In our case, the pairwise MI between x = ϕ(t) and y = φ(t) will return a near-zero value when 

independency between the variables exists.  

𝐼 (𝑥, 𝑦) = ∑ 𝑃𝑥𝑦(𝑥, 𝑦) log2
𝑃𝑥𝑦(𝑥,𝑦)

𝑃𝑥(𝑥)𝑃𝑦(𝑦)𝑥,𝑦   (3) 

Information-based approaches have the advantage of not having assumptions on the distributions and the 

relationship between the variables under observation. They have been adapted for phase data (Burgess, 2013; 

Kraskov et al., 2004) and they possess high flexibility. For example, a time-lag can be added (Wilmer et al., 2012) 

to account for previous states of the phase time series x in predicting y (phase transfer entropy) to analyse the 

information flow between the two phase time series. Lastly, such approach might be useful if we observe 

significant inter-condition differences in arousal, quantifiable using cardiac, or electrodermal, or pupillometry-

based measures (e.g., Bach et al., 2010; Pulopulos et al., 2021), which could point at attention-enhanced 

component. In that case, it could be useful to compute the conditional mutual information (CMI), that helps 

quantify the relationship between two variables while removing the effect of a third one, in a similar fashion to 

partial correlation, but with no linear constraints (Ince et al., 2017). This statistical approach can help ensure that 

the difference in neural alignment in the experimental condition is not attributable to physiological arousal or 

attentional levels, thereby adhering more closely to our definition of IBS. 

2.6 Transparency and Openness 

All code has been made publicly available on OSF.io and can be accessed at 

[https://osf.io/ecbfg/?view_only=7b3fe35155e9496ba56fc4ca326bd553]. 
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3. Illustrative case of IBS within a nuclear family 

In this section, we briefly outline an exemplary paradigm that employs our proposed methods to 

investigate IBS within nuclear families, specifically comprising three interacting individuals: a mother, a father, 

and their child. Previously, we posited that IBS could be studied in any interacting dyad or group engaged in a 

task that is replicable in both individual and group contexts, involving decision-making and shared intentionality. 

This is supported by, among others, the Relational Neuroscience and the multi-brain frameworks, as well as the 

Interactive Alignment theory  (De Felice et al., 2024; Kingsbury & Hong, 2020; Pickering & Garrod, 2004). We 

argue that IBS research could also focus on populations with clear affiliative bonds, such as nuclear families. 

Previous evidence suggests the existence of synchrony in emotionally close relationships (Blasberg et al., 2023), 

and especially within family units, aligning with the biobehavioral synchrony model (Feldman, 2012). This model 

emphasizes the importance of synchrony across multiple levels during the formation of affiliative bonds in 

childhood and adolescence, particularly between family members and attachment partners. Regarding the 

experimental condition, we propose focusing on social cooperation, which currently presents the strongest 

evidence for the association between IBS and social behaviors, as demonstrated by meta-analysis findings 

(Czeszumski et al., 2022). While investigating synchrony through brain data is not a novel approach (Nguyen et 

al., 2021), our methods offer valuable contributions to enhancing the understanding of IBS, properly measured, 

and advancing applied research in family studies.  

3.1 Research design for a triadic family study 

Among the many cognitive tasks that could meet our requirements in Section 2.2, we chose tangrams. 

Tangram, an ancient game originating from China or Japan (Danesi, 2018), is a cognitive task that requires 

grasping basic geometrical rules and using visuospatial reasoning skills without linguistic representation 

interference. It is characterized by a trial-and-error strategy and creative thinking. Previous evidence shows that 

solving tangrams involves prefrontal cortex activity (Hu et al., 2019) and higher total hemoglobin concentration 

in the right hemisphere, with alterations during failed trials (Ayaz et al., 2012). Additionally, a positive correlation 

has been observed between behavioral performance in a tangram task and activation of the right angular gyrus 

(Hu et al., 2020). This task may be ideal for assessing both individual and cooperative performance. Tangram 

stimuli were previously used in Fishburn et al. (2018), where three participants solved the puzzles individually or 

in dyads while another participant observed, or watched a movie clip of hands solving the puzzles, with 

hemodynamic activation recorded via fNIRS. Also, Li et al. (2024) used it for measuring EEG IBS in mother-

child dyads. Although their objectives are similar to ours, there are significant differences in the task or data 

analysis pipeline. According to our recommendations, a tangram-based paradigm to investigate IBS should 

include three conditions: alone, observation, and the experimental condition, which in this case will involve 

cooperation. Each block comprises multiple trials participants, under the different social conditions, attempt to 

solve a tangram puzzle using seven pieces (or tans, Figure 3a) to recreate a target shape (Figure 3b). Participants 

are instructed not to communicate with experimenters during the task. Each condition is expected to last several 

minutes, consistent with our Monte Carlo analysis where the unit of analysis, or epoch, is suggested to be 

approximately 70 seconds. 
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Figure 3. Details regarding the task. In a) the seven shapes to use to recreate the target stimulus. Their geometrical properties 

allow many combinations, more than 6000 tangrams are available. In b) an example of the target stimulus with its solution. 

Adapted from the above, families consisting of a father, a mother, and their child represent a suitable 

population to investigate IBS. Families are invited into the experiment room, where, as explained in the 

Experimental Task section (2.2), participants are seated equidistantly from one another. The sets of EEG electrodes 

are positioned according to the standard 10-20 layout. After baseline recordings, the three counterbalanced 

conditions—alone, observation, and cooperation—are conducted.  

In the alone condition, participants are isolated and perform their trials simultaneously, with 

communication of any type being impossible. Their aim is to recreate the target shape exactly using all provided 

pieces in the shortest time possible. This condition serves to control exogenous and task-specific factors such as 

visual processing, visuo-spatial reasoning, and motor activity that may influence neural entrainment. In the 

observation trials, the family members are together, observing a group of confederates solving tangram puzzles. 

The biological sex of the confederates may either match that of the child or alternate to maintain balance. This 

condition is designed to control for neural entrainment and attention-enhanced components (e.g., influence of 

physical co-presence). In the cooperation condition (or experimental condition), the family works together to 

recreate the target and selects one member to press the button upon completion. A small, fixed rotating platform 

is positioned on the round table to ensure all participants have an equal view of the puzzle when needed. The 

seven shapes are initially placed on the platform by a researcher and can be accessed by everyone. The three 

conditions are illustrated in Figure 4.  

Regarding additional data to be collected, physiological arousal, attentional levels and measures of 

individuals’ visuospatial abilities (Vandenberg & Kuse, 1978) and cognitive flexibility (Tucha et al., 2012) would 

be beneficial (Tucha et al., 2012), given their involvement in the solution of tangram puzzles. Finally, the 

cooperation condition is expected to elicit IBS, and based on the signal processing and statistical analyses outlined 

in Sections 2.4 and 2.5, we anticipate a difference in neural dependence when comparing it to the other conditions 

(alone, observation). If this difference cannot be attributed to physiological arousal or attentional levels, we have 

reason to believe that the observed neural dependence is not a result of confounders or mere co-occurrence, but is 

likely influenced by social (familial) cooperation. 
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Figure 4. A 3-D rendering of the three pseudo-randomized conditions: alone (a), observation (b), and experimental/cooperation 

(c). The participants depicted are a mother, father and child. The brain activity of each participant is recorded with 

electroencephalography. One electroencephalogram (EEG) is behind each participant (not shown here) and is connected to the 

others through fibre-optic cables (i.e., the orange cable). We imagined a master device connected to two daisy-chained EEG 

that are connected to a trigger box (i.e., the red box) to a data acquisition computer and a task pc. In the alone condition (a), 

the individuals are isolated from each other and have a personal screen positioned on their table. In the observation condition 

(b), the family observes a separate social unit solving puzzles, composed of confederates. Lastly, in the cooperation condition, 

(c), the family collaborates to solve the Tangram puzzle, seated around a table with a rotating platform that holds the puzzle 

pieces. This is our experimental condition where we conjecture to observe inter-brain synchrony, IBS. Renderings were created 

using Sweet Home 3D (https://www.sweethome3d.com/). 

3.2 Signal processing and statistical analysis for triadic purposes 

In our example, the triad can be analysed at a bivariate level, comparing the dyads (mother-child, father-

child, and mother-father), following the procedures outlined in Sections 2.4 and 2.5. It is important to note that 

the frequency boundaries considered should typically be lower in infants and children, who also tend to exhibit 

higher power in lower-frequency bands (Cellier et al., 2021). This comparison between the three experimental 

conditions using the CCoradj scores (i.e., CCoradj xy, CCoradj xz, CCoradj yz) can help determine whether IBS is an 

electrophysiological phenomenon present in family social dynamics. We argue that this analysis can provide 

further information: as previously suggested (Hamilton, 2021), evidence of IBS at dyadic level, in a triadic 

context, strengthens the assertion that the observed phase alignment is not merely due to shared environmental 

stimulation.  

Our paradigm also allows to focus strictly on triadic synchrony by adapting a recent method developed 

specifically for capturing synchronization among three time series (Wang et al., 2024). This measure, referred to 

as the adapted multiplied pairwise correlation (AMPC), is defined by the authors as in Equation (4).  

𝐴𝑀𝑃𝐶 = 𝜏 √|𝑟𝑥𝑦𝑟𝑥𝑧𝑟𝑦𝑧|3   with 𝜏 = {
1 𝑓𝑜𝑟 (𝑟

𝑥𝑦
> 0) ∧ (𝑟𝑥𝑧 > 0) ∧ (𝑟

𝑥𝑧
> 0) 

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (4) 

In Equation (3), the cubic root of the absolute product of the three Pearson’s correlations (rxy, rxz ryz) 

adjust by τ, where τ accounts for the sign of the triadic correlation. As showed by Wang et al. (2024), a key 

characteristic of AMPC is that under the null hypothesis, dyadic synchrony is still allowed, meaning that this 

method can effectively discard dyadic patterns from triadic, resulting in a near-zero magnitude for non-significant 

triadic synchrony. Since CCoradj (or CCor) ceases to be a circular metric, we can derive a version of AMPC that 

takes circular coefficients as input from Equation (2), leading to the formulation in Equation (5).  

𝐶𝐴𝑀𝑃𝐶 = 𝜏 √|𝐶𝐶𝑜𝑟𝑎𝑑𝑗 𝑥𝑦𝐶𝐶𝑜𝑟𝑎𝑑𝑗 𝑥𝑧𝐶𝐶𝑜𝑟𝑎𝑑𝑗 𝑦𝑧|3  (5) 

Once we have calculated the triadic coefficients, we can test the statistical differences between the 

experimental conditions, similarly to the previous dyadic procedure. As suggested by Wang et al. (2024), to build 

a null distribution that incorporates dyadic synchrony, but excludes triadic synchrony and accounts for auto-

dependence to avoid inflated type 1-error, they recommended shuffling the time series not involved in the highest 

correlation in the data. This method ensures that dyadic synchrony is not incorporated into the null distribution. 

Furthermore, the shuffling should be performed on segments rather than individual time points to maintain the 

auto-dependence in the null distribution. 
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4. Discussion 

4.1 Novelty, performance standards, applicability 

In this work, we outlined the principles for conducting research aimed to collect evidence in favour of 

differences in neural dependencies in interacting individuals using neuroimaging techniques. 

Holryod (2022) identified three key challenges related to IBS: issues with definition, theory, and 

methodology. This article addresses the methodological concerns while also considering the first two. Initially, 

we sought to determine an abstract meaning of synchrony, focusing on its dimensions of magnitude, time-lag, and 

features investigated. Then, we reviewed the literature for a psychobiological rationale to support the hypothesis 

of IBS, first in a general social context and then specifically within the framework of cooperation and shared 

intentionality among family members. In this light, we offered theoretical plausibility in multiple ways. We 

aligned metatheory and theory with proper techniques for signal processing and statistical analysis. Our methods 

offer a strategy for investigating synchrony by performing multiple permutated comparisons between a condition 

where IBS should potentially be present and the related confounders. Lastly, our use case was the investigation of 

IBS using EEG data on nuclear families cooperating together.  

At this stage, we believe this represents the best effort to achieve meaningful evidence for IBS using 

correlational techniques. We detailed the theory-informed steps, including task design, signal processing and 

various statistical analyses, and outlined the recommended precautions for collecting reliable evidence of IBS. 

These procedures, which are potentially applicable to any investigation of synchrony in tasks performed alone or 

with others, can be replicated and adapted according to the chosen sociopsychological construct, the target 

population, and the techniques employed. 

4.2 Accuracy, robustness, and quantification of uncertainty 

For accuracy, as discussed, we recommend employing the adjusted CCor and a permutation-based 

analysis for several reasons, including mitigating inflated results. Building a curve of probability under h0 allows 

to control for spuriousness and uncontrolled factors. Moreover, theoretical distributions may not accurately 

represent the sample under investigation. When analysing EEG data with multiple comparisons, especially if not 

hypothesis-driven, classic correction methods should be avoided due to their potential drawbacks. Instead, 

conducting power analyses through simulations is highly advisable to establish a plausible effect of synchrony 

and determine the minimum sample size. Additionally, latency testing should be conducted to account for delays.  

Hyperscanning research should embrace the principles of open science. Given the subjective nature of 

analytical choices and the potential for undisclosed details hindering replication, we advocate for researchers to 

include the following six pieces of information in their supplementary materials: 1) a formal definition of 

synchrony and its operationalization; 2) details of the experimental task; 3) description of the hardware set 

components; 4) methods used for online signal synchronization and verification; 5) complete details of the data 

analysis pipeline and its code (including specifics like simulation seeds or EEG references); and 6) the raw data 

itself. Additionally, we encourage pre-registration of study hypotheses and methods. Only through these practices 

can inter-brain synchrony be rigorously evaluated. 
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5. Conclusion 

 This work has several limitations. Although we can mitigate the influence of engagement using self-

reports and physiological indicators, we cannot entirely eliminate the potential for our experimental conditions to 

inherently increase arousal, which could confound our findings with attention-enhanced dependencies. 

Nevertheless, we believe that our proposed approach represents the best effort for a neuroimaging study to 

investigate IBS without manipulating brain activity directly. Functionally, evidence for the existence of IBS does 

not demonstrate its clinical significance.   

To run the simulations, we employed Fieldtrip Toolbox on MATLAB, many other toolboxes are available. 

It is worth mentioning that in our simulations other factors could be further considered: the lengths of the time 

windows created, the length of the data segments the coefficients are calculated on, introducing different 

coefficients or models for the estimation of IBS, considering different underlying structures of connectivity (e.g., 

multivariate autoregressive models). Although a single simulation has limited generalizability, approaches like the 

Monte Carlo method could guide the design of research studies. Simulations can provide much information within 

a stricter null hypothesis significance-testing environment. Lastly, the costs related to the apparatus we propose 

are extensive, in terms of trained personal, equipment, and expertise across fields ranging from psychology, 

electrophysiology and statistics.  

Our work might be one piece supporting the empirical verification of IBS at a neuroimaging level. Yet, 

further contributions from mathematical-statistical modelling to biological theories of social interaction are 

needed. The latest advancements in non-invasive brain stimulation are encouraging and might help explain parts 

that have not yet fit into the picture. This could initiate a new and stimulating phase of research on social cognition; 

however, we should remember that extraordinary claims demand extraordinary evidence. 
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