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1 Introduction and summary

De Sitter (dS) and anti-de Sitter (AdS) spaces are natural and well-motivated arenas to study
theories of higher-spin gauge fields. Vasiliev theory [1–3] provides a striking example of how
the obstructions one encounters in attempts to construct higher-spin theories in flat space
can be evaded in AdS (see [4, 5] for reviews). On the other hand, observational evidence
indicates that our universe was very approximately a dS space during the pre-hot Big Bang
epoch and will evolve towards a dS space in the future. The high energy scales that could
potentially be probed by cosmological experiments therefore motivate a good understanding
of the dynamics of higher-spin particles in dS. Although this mostly concerns massive fields
rather than gauge fields, one may envisage a Goldstone equivalence regime in which the
massive theory is described by a tower of higher-spin gauge fields, or speculate about higher
spin analogs of the Brout-Englert-Higgs or dynamical symmetry breaking mechanisms —
see [6] and [7], respectively. Additionally, and more to the point of this paper, (A)dS space
allows for the existence of exotic “massive” particles described by gauge fields, that one
calls partially massless (PM) fields [8–11]. While bosonic PM fields are non-unitary in
AdS, in dS they precisely saturate the Higuchi bound [12, 13], meaning that they would
have behaved as light fields during a putative phase of cosmic inflation, with interesting
observational imprints [14–16].

Similarly to their Fronsdal cousins [17], interactions of higher spin PM fields are highly
constrained by their gauge structure, and in fact no fully satisfactory examples of interacting
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higher-spin theories with PM fields are known (see however [18, 19] for an intriguing proposal
of a Vasiliev-like PM theory, and [20] for a proposal in three dimensions). While a few
interesting studies have tackled the problem in the case of PM particles with spin s > 2 [21–
23], the most detailed analyses have been focused on PM fields of spin s = 2 [24–31]. One
reason is that this is of course the most technically tractable case, but there is also the more
physical motivation that PM spin-2 fields may have some connection with theories of massive
gravity [32–37]. Cubic couplings involving PM gravitons have in particular been subject of
several studies [16, 31, 38, 39]. It is by now well established that three-point vertices for PM
spin-2 particles are forbidden, at least if one assumes up to two-derivative interactions and the
absence of “ghost-like” fields, i.e. fields with wrong-sign kinetic term. This no-go result has
been extended in ref. [40] to also include the gravitational coupling with a massless spin-2 field.

Although the assumption of unitarity or, more specifically in the present context, absence
of negative-norm states may seem essential, it is important to bear in mind that a complete
non-linear theory that couples a PM graviton with a massless graviton in fact exists: conformal
gravity [41–43]. More in detail, conformal gravity in D = 4 dimensions, upon linearizing
the theory about an (A)dS background, yields a massless and a PM spin-2 modes, one of
which is necessarily ghostly.1 Although the physical viability of conformal gravity is perhaps
questionable due to this latter property, it is nevertheless a model of obvious theoretical
interest; see [45, 46] for reviews, including its supersymmetric extension. It is therefore a
tantalizing possibility that other non-unitary theories that include PM fields may exist. This
is further motivated by the results of refs. [47–49] on the classification of supersymmetric
multiplets that include PM fields in four dimensions: PM supersymmetric representations
are always non-unitary;2 in particular, the simplest multiplet contains a PM spin-2 and a
massless spin-1 field in its bosonic sector, and these must be relatively ghostly. The fermionic
sector contains a massive and a massless spin-3/2 fields. Cubic couplings for PM spin-2 and
massive spin-3/2 particles have been recently classified in [53] (see also [54] for earlier work).
Interestingly, the system containing relatively ghostly PM spin-2 and a massless spin-1 fields
has been shown to be conformally invariant in D = 4 dimensions [55].

In line with these considerations we mention two works that have studied the consequences
of relaxing the assumption of positivity of kinetic terms in the construction of two-derivative
cubic vertices involving PM spin-2 fields. The first work [44] considered the inclusion of
massive and massless spin-2 fields, finding the cubic vertex of even-dimensional conformal
gravity as a consistent solution, among other candidates. The second work [31] restricted
its attention to only PM fields, showing that there exists a cubic vertex which is unique
and consistent at the full non-linear level. Once again, these results necessitate non-positive-
definite kinetic (or “internal”) matrices, but are otherwise consistent from the point of view of
the gauge structure. Remarkably, the model of [31] is the only consistent, interacting theory
for a multiplet of PM spin-2 fields, although non-unitary at the classical level.

In the analysis of ref. [44] the additional spin-2 fields were introduced in an ad-hoc fashion
so as to ensure consistency of the PM gravitational coupling. This motivates us to revisit the

1This may be generalized to any higher even dimension D: the spectrum contains D/2 spin-2 modes, one
of which is massless, one is PM, and the rest are massive [44].

2Note that unitarity could be restored in dS background, see [50–52] for more explanations.
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problem of classifying interactions for massless and PM spin-2 fields, assuming a more general
starting point in which the number of fields and the signature of their internal metrics are
arbitrary. Furthermore, again prompted by the results on supersymmetric representations
as well as by the related findings of refs. [53, 55], we also consider the inclusion of massless
spin-1 fields in the spectrum. Let us summarize our main results:

• We provide a complete classification of the consistent first-order deformations, in the
sense of the Noether procedure, of the free theory describing an arbitrary collection
of massless spin-1, massless spin-2 and PM spin-2 fields in rigid D-dimensional (A)dS
space. Our classification is completely general in regards to deformations of the gauge
algebra, but is restricted to at most four derivatives in the deformations of the gauge
symmetries and to at most two derivatives in the cubic vertices. A further restriction is
that we focus on parity-even deformations.

Our results confirm the classification of ref. [44] for massless and PM spin-2 fields. We
also find a unique candidate vertex mixing massless spin-1 and PM spin-2 particles.
This vertex is of the Chapline-Manton type, i.e. it is Abelian yet induces a non-linear
gauge transformation of the spin-1 fields. Moreover, it only exists in D = 4 dimensions.

• We analyze the consistency of the candidate deformations at the next order in pertur-
bation, starting with the Jacobi identities for the candidate gauge algebras. We derive
all the quadratic constraints on the structure constants obtained in the previous step.
The results are valid for any choice of the internal metrics that define the kinetic terms
of the fields, thus accommodating any choice of healthy/ghostly field content.

We consider the most general solution of the constraints under the assumption that
each field sector (spin-1, massless spin-2 and PM spin-2) contains no relative ‘healthy/
ghostly’ signs in the kinetic terms, although distinct sectors may do so. We find
the answer to be given by multiple, independent copies of D = 4 conformal gravity
minimally coupled with a Yang-Mills (or possibly Abelian) spin-1 sector.

This outcome again confirms the conclusions of ref. [44] with regards to the spin-2 fields,
although with a more general starting point. Our results also imply that the doubled
spectra model identified in that reference in fact corresponds to two non-interacting
copies of conformal gravity and is therefore not a new theory.3 Moreover, we can rule
out the consistency of the non-geometric vertex identified in [44],4 at least under the
aforementioned assumptions. An additional corollary is that distinct massless graviton
species cannot mutually interact through the exchange of massless spin-1 or PM spin-2
particles, thus further generalizing the well-known no-go theorem of ref. [58].

Finally, we discuss some solutions to the quadratic constraints in the more general set-up
with non-sign-definite internal metrics. Although our analysis is not exhaustive, we are
able to exhibit particular solutions for which all the candidate vertices remain consistent.

3Note that the consistent deformations of (multi-)conformal (or Weyl) gravity were investigated in [56].
4This vertex actually is the contraction of the massless spin-2 field hµν with the PM spin-2 current Jµν

first identified in [57] in the context of PM spin-2 self interactions.
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Field variable Curvature Indices
Massless spin-2 hI

µν KI
µνρσ I, J, . . . ∈ {1, . . . , ng}

PM spin-2 k∆
µν F∆

µνρ ∆, Σ, . . . ∈ {1, . . . , nPM}
Massless spin-1 Aa

µ F a
µν a, b, . . . ∈ {1, . . . , nv}

Table 1. Field content and notations for the system considered in this paper.

Our analysis makes use of the Becchi-Rouet-Stora-Tyutin-Batalin-Vilkovisky (BRST-
BV) [59–62] reformulation of the Noether procedure along the cohomological lines of [63, 64].
This is an ideally well-suited technique to deal with the usual ambiguities related to field and
gauge parameter redefinitions, essentially recasting and generalizing the procedure of [65] in
the form of a well-defined cohomological problem in the presence of antifields. Our results are
thus guaranteed to be general and unambiguous within the stated assumptions. We briefly
review the method and formulate its application to our system in section 2. In section 3 we
present the results of the first-order deformation analysis, continuing in section 4 with the
study of the second-order consistency and derivation of quadratic constraints. Finally in
section 5 we investigate the resolution of the quadratic constraints and briefly summarize
our finding in section 6.

2 BRST-BV formulation

The spectrum of fields considered in this paper consists of an arbitrary collection of ng

tensor fields hI
µν describing massless spin-2 fields, nPM tensor fields k∆

µν describing PM spin-2
fields, and nv vector fields Aa

µ describing massless spin-1 fields. The tensors hI
µν and k∆

µν are
symmetric in their lower indices. See table 1 for a summary of our notations.

Our starting point is the non-interacting action for the free propagation of the fields
on a rigid D-dimensional (A)dS space,

S0
[
hI

µν , k∆
µν , Aa

µ

]
=

∫
dDx

√
−g

[
gIJ

(
− 1

2∇
ρhIµν∇ρhJ

µν + ∇ρhIµν∇µhJρ
ν −∇µhI∇νhJµν

+1
2∇

µhI∇µhJ −
(

D − 1
σL2

)
hIµνhJ

µν + 1
2

(
D − 1
σL2

)
hIhJ

)
+ g∆Ω

(
−1

4F
∆λµνFΩ

λµν + 1
2F

∆λFΩ
λ

)
− 1

4 gab F aµνF b
µν

]
.

(2.1)
Here L is the radius of the (A)dS space and σ is a sign, +1 for AdS and −1 for dS. Spacetime
(greek) indices are moved with the (A)dS metric gµν and ∇ is the corresponding metric-
compatible covariant derivative. We write hI := gµνhI

µν and k∆ := gµνk∆
µν . As explained

in the Introduction, we have allowed for arbitrary (constant) ‘internal’ field space metrics
gIJ , g∆Ω and gab. Through trivial field redefinitions these may be brought to the form
diag(+, . . . , +,−, . . . ,−), and a ‘unitary’ theory corresponds to the case with positive definite
metrics.5 All the internal ‘color’ indices are raised and lowered with these metrics. The above

5We say ‘unitary’ with some abuse of terminology, since actually PM spin-2 fields are anyway non- unitary
in AdS, irrespective of the signature of g∆Ω [9].
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action features the tensors F∆
λµν := 2∇[λk∆

µ]ν and F∆
λ := gµνF∆

λµν , as well as F a
µν := 2∇[µAa

ν] .
The action S0 is invariant under the following gauge transformations

δ0h
I
µν = 2∇(µϵI

ν) ,

δ0k
∆
µν = ∇µ∇νϵ∆ − σ

L2 gµνϵ∆ ,

δ0A
a
µ = ∇µϵa .

(2.2)

The gauge parameters ϵI
µ, ϵ∆ and ϵa are arbitrary functions and the gauge symmetries

are irreducible, i.e. , there is no gauge-for-gauge transformations. The following linearized
curvatures or field strengths are invariant under the above gauge transformations:

KI
µνρσ := − 1

2
(
∇ρ∇[µhI

ν]σ −∇σ∇[µhI
ν]ρ + ∇µ∇[ρhI

σ]ν −∇ν∇[ρhI
σ]µ

)
+ σ

L2

(
gρ[µhI

ν]σ − gσ[µhI
ν]ρ

)
,

F∆
λµν := 2∇[λk∆

µ]ν , F a
µν := 2∇[µAa

ν] .

(2.3)

The Noether procedure, or its generalization given in [65], consists in the construction
of interactions, perturbatively in a set of deformation parameters, under the requirement
of maintaining the number of gauge symmetries. No other restrictions are made a priori,
although eventually we will set limits on the number of derivatives that may appear in the
gauge transformations and in the Lagrangian, therefore ensuring locality. We also assume
covariance of the deformation under the (A)dS background isometry algebra, as explained
in [66], to which we refer the reader for more details. As stated earlier, we actually consider
the reformulation (and further generalization) of the deformation procedure of [65] using
the BRST-BV cohomological approach spelled out in [63, 64].

We begin by defining an enlarged field content through the introduction of ghosts ξI
µ, χ∆

and Ca respectively associated with the gauge parameters ϵI
µ, ϵ∆ and ϵa. We also introduce

antifields and antighosts, collectively denoted by {Φ∗
Ξ} := {h∗µν

I , k∗µν
∆ , A∗µ

a , ξ∗µ
I , χ∗

∆, C∗
a}.

These are canonically conjugate to the fields and ghosts, collectively denoted {ΦΞ} :=
{hI

µν , k∆
µν , Aa

µ, ξI
µ, χ∆, Ca}, through the BV antibracket

(A, B) := δRA

δΦΞ
δLB

δΦ∗
Ξ
− δRA

δΦ∗
Ξ

δLB

δΦΞ , (2.4)

for any local functionals A and B, and where we use De Witt’s condensed notations for
summations over repeated indices that imply integration over spacetime. Note that ghosts
and antifields are Grassmann-odd variables in the present context with only bosonic fields
and gauge symmetries.

The fundamental object of interest in this formalism is the BV functional W [ΦΞ, Φ∗
Ξ],

which encodes all information about the interaction vertices and gauge structure of the
theory. At the free field level it reads

W0 = S0 +
∫

dDx
√
−g

[
h∗µν

I

(
2∇(µξI

ν)

)
+ k∗µν

∆

(
∇µ∇νχ∆ − σ

L2 ḡµνχ∆
)

+ A∗µ
a ∇µCa

]
.

(2.5)
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In our conventions, the antifields h∗µν
I , k∗µν

∆ and A∗µ
a are tensors and not tensorial densities.

The consistency of the theory hinges on the invariance of the action under gauge
symmetries and the existence of a consistent algebraic structure for the latter. In the
BRST-BV formalism this is compactly enforced by the classical master equation

(W, W ) = 0 , (2.6)

and it is easy to verify, through the use of the free-theory Noether identities, that W0 indeed
satisfies this equation.

The reformulation of the Noether procedure continues with the perturbative expansion
of the BV functional,

W = W0 + W1 + W2 + . . . , (2.7)

where, in our set-up, W1 is cubic in the fields and antifields, W2 is quartic, and so on. The
master equation is to be solved in perturbation theory so as to determine the most general
W1, W2 and so on. Thus one determines first W1 by solving (W0, W1) = 0, next W2 by
solving (W0, W2) = −1

2(W1, W1), and so on.
It has proved extremely useful to recast the procedure in the form of a cohomological

problem [63, 64, 67, 68]. To this end one defines the BRST differential s, here given
by s • := (W0, •) as we are interested in deformations of a free theory.6 The first-order
deformation W1 should therefore satisfy sW1 = 0 . Since s is nilpotent, s2 = 0, it follows that
any s-exact contribution sB to W1 (where B is a local functional) is a trivial solution of the
master equation to that order. In fact, such a solution must be discarded since it can be
shown to correspond to a deformation generated from the free theory by trivial redefinition of
the fields and gauge parameters. To sum up, it can be shown that a non-trivial deformation
W1 should satisfy sW1 = 0 and should not be of the form W1 = sB for a local function
B , so that non-trivial cubic deformations are characterized by the cohomology of s in the
space of local functionals with ghost number zero. The ghost number (denoted by gh) is
a useful grading for the purpose of organizing the classification of solutions to the master
equation. In the same vein it is helpful to also define the gradings called pure ghost number
(puregh for short), and antifield number (antifld for short). The rationale for introducing
these numbers will become clearer in the following, and we refer the reader to [58, 69] for
more complete explanations. The values of these gradings for the variables considered in
this paper are given below in table 2.

Another useful ingredient is the decomposition of the BRST differential into s = γ + δ.
Here γ is a differential which acts on the fields in the form of a gauge transformation in
terms of the ghosts; the differential δ acts on the antifields to produce the linear equations of
motion and corresponding Noether identities in terms of the fields and antifields, respectively.
The actions of γ and δ are explicitly shown in table 2 for the system under consideration.
Once the actions of γ and δ are known through table 2 on the fields ΦΞ and antifields Φ∗

Ξ , we
extend their actions on the jet space of the fields, antifields and all their derivatives by asking
γ and δ to be derivations that anticommute with the total exterior differential d . In our

6In particular, note that in our conventions we have s ΦΞ(x) = − 1√
−g

δRW0
δΦ∗

Ξ(x) and s Φ∗
Ξ(x) = 1√

−g
δRW0

δΦΞ(x) .
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| • | gh puregh antifld γ • δ •
hI

µν 0 0 0 0 2∇(µξI
ν) 0

k∆
µν 0 0 0 0 ∇µ∇νχ∆ − σ

L2 gµνχ∆ 0
Aa

µ 0 0 0 0 ∇µCa 0
ξI

µ 1 1 1 0 0 0
χ∆ 1 1 1 0 0 0
Ca 1 1 1 0 0 0

h∗µν
I 1 −1 0 1 0 Eµν

I

k∗µν
∆ 1 −1 0 1 0 Eµν

∆
A∗µ

a 1 −1 0 1 0 gab ∇νF bνµ

ξ∗µ
I 0 −2 0 2 0 −2∇νh∗µν

I

χ∗
∆ 0 −2 0 2 0 ∇µ∇νk∗µν

∆ − σ
L2 k∗

∆
C∗

a 0 −2 0 2 0 −∇µA∗µ
a

Table 2. Gradings of fields and antifields, and the action of γ and δ for the system studied in this
paper. Here | • | denotes the Grassmann parity. For brevity we omit the explicit expressions of the
equations of motion for the spin-2 fields, Eµν

I and Eµν
∆ , which may be straightforwardly inferred from

S0 (see also appendix A).

conventions for the antifields, note that one has (Aa
µ(x), A∗ν

b (y)) = 1√
−g

δa
b δµ

ν δD(x − y) where
δD(x − y) is the Dirac delta density obeying

∫
dDx δD(x − y)f(y) = f(x) . We also note that,

on top of the relations γ2 = 0 = δ2 , one has γδ = −δγ. In our context the cohomology of
γ is easy to work out and will be extensively used in our analysis:

H(γ) ∼=
{

f
(
[KI

µνρσ],
[
F∆

λµν

]
,
[
F a

µν

]
, ξI

µ,∇[µξI
ν], χ∆,∇µχ∆, Ca, [Φ∗

Ξ]
)}

, (2.8)

where f is an arbitrary function of the arguments shown, and by square brackets we mean
the variable and all its (A)dS covariant derivatives.

3 First order deformations: cubic vertices

In this section we consider the classification of non-trivial solutions to the master equation
at first order in the deformation procedure,

sW1 = 0 . (3.1)

Following refs. [56, 58, 67, 68], it proves useful to expand the BV functional W1 in terms
of local functionals with definite antifield number,

W1 =
∫

dDx
√
−g (a0 + a1 + a2) , (3.2)

where antifld(an) = n. As we are focusing on cubic deformations, it is easy to see that one
cannot write terms with antifield number higher than 2 and ghost number zero. Each an

plays a specific role in the gauge structure of the theory: a2 encodes the deformations of the
gauge algebra (in particular, a2 = 0 means that the algebra is Abelian); a1 characterizes the
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deformations of the gauge transformations; and a0 is nothing but the set of cubic vertices
that we seek.

From the master equation (3.1) we infer the following descent equations:

γa2 = 0 , (3.3)
δa2 + γa1 = ∇µjµ

1 , (3.4)
δa1 + γa0 = ∇µjµ

0 . (3.5)

Here jµ
n is some local vector with antifld(jµ

n) = n. Note that our perturbative assumption
implies that a jµ

2 term does not exist with the required quantum numbers (antifield number
2 and ghost number 1). In fact, it is a general result, see [58, 68], that from the equation
γak + ∇µjµ = 0 with k > 0, one can redefine away jµ.

3.1 Gauge algebra

We start by determining the general solution of eq. (3.3). Non-trivial solutions correspond to
the elements of the cohomology of γ at antifield number 2 and ghost number zero, and must be
scalars under the (A)dS isometries and parity-even. A complete basis of solutions is given by

a
(EH)
2 = ξ∗µ

I ξJν∇[µξk
ν]g

I
JK , a

(YM)
2 = 1

2C∗
aCbCcfa

bc,

a
(PM1)
2 = χ∗

∆χΩχΓ m∆
ΩΓ, a

(PM2)
2 = χ∗

∆∇µχΩ∇µχΓ n∆
ΩΓ,

a
(1)
2 = ξ∗µ

I ξJ
µχ∆ f(1)

I
J∆, a

(2)
2 = ξ∗µ

I ξJ
µCa f(2)

I
Ja,

a
(3)
2 = ξ∗µ

I ∇[µξJ
ν]∇

νχ∆ f(3)
I

J∆, a
(4)
2 = ξ∗µ

I Ca∇µχ∆ f(4)
I

a∆,

a
(5)
2 = ξ∗µ

I χ∆∇µχΩ f(5)
I
∆Ω, a

(6)
2 = χ∗

∆χΩCa f(6)
∆
Ωa,

a
(7)
2 = χ∗

∆∇µχΩξI
µ f(7)

∆
ΩI , a

(8)
2 = χ∗

∆CaCb f(8)
∆

ab,

a
(9)
2 = χ∗

∆ξI
µξJµ f(9)

∆
IJ , a

(10)
2 = χ∗

∆∇[µξI
ν]∇

[µξν]J f(10)
∆

IJ ,

a
(11)
2 = C∗

aCbχ∆ f(11)
a

b∆, a
(12)
2 = C∗

aχ∆χΩ f(12)
a
∆Ω,

a
(13)
2 = C∗

a∇µχ∆∇µχΩ f(13)
a
∆Ω, a

(14)
2 = C∗

a∇µχ∆ξI
µ f(14)

a
∆I ,

a
(15)
2 = C∗

aξI
µξJµ f(15)

a
IJ , a

(16)
2 = C∗

a∇[µξI
ν]∇

[µξν]J f(16)
a

IJ .

(3.6)

The structure constants appearing in these expressions satisfy some symmetrization constraints
due to the Grassmann parity of the ghosts,

fa
bc = fa

[bc], m∆
ΩΓ = m∆

[ΩΓ], n∆
ΩΓ = n∆

[ΩΓ], f(8)ab = f(8)[ab] ,

f(9)
∆

IJ = f(9)
∆
[IJ ], f(10)

∆
IJ = f(10)

∆
[IJ ], f(12)

a
∆Ω = f(12)

a
[∆Ω] ,

f(13)
a
∆Ω = f(13)

a
[∆Ω], f(15)

a
IJ = f(15)

a
[IJ ], f(16)

a
IJ = f(16)

a
[IJ ] .

(3.7)

In the list (3.6), a
(EH)
2 is the massless multi-graviton, called Einstein-Hilbert deformation [58],

a
(YM)
2 is the usual Yang-Mills deformation [68], and a

(PM1)
2 , a

(PM2)
2 are the unique candidate

deformations of the PM spin-2 gauge algebra without additional fields [31]. The rest of
the terms correspond to mixings among the gauge variations for different field types. We
emphasize that this list is complete insofar as cubic deformations are concerned, without
any restriction on the number of derivatives.
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Not all among the candidates in (3.6) are admissible at first order in the deformation
procedure. Indeed the second descent equation, eq. (3.4), states that δa2 must be γ-exact
modulo total derivatives. We find the following linear combination of candidates to be
unobstructed at this order:

a2 = κ a
(EH)
2 + g(YM) a

(YM)
2 + κ(2) a

(2)
2 + κ(5) a

(5)
2 + κ(6) a

(6)
2 + κ(7) a

(7)
2

+ κ(13)

(
a
(13)
2 − σ

L2a
(12)
2

)
+ κ(16)

(
a
(16)
2 − σ

L2a
(15)
2

)
,

(3.8)

where κ, gYM and κ(i) are arbitrary coupling coefficients,7 in addition to the following linear
constraints on the structure constants:

f(12)
a
∆Ω = f(13)

a
∆Ω , f(15)

a
IJ = f(16)

a
IJ , f(5)

I
∆Ω = f(5)

I
(∆Ω) . (3.9)

3.2 Gauge symmetries

We have already identified in eq. (3.8) the deformation a2 which is not unobstructed at this
order in the procedure. A particular solution of the descent equation for a1 is given by

â1 = κ â
(EH)
1 + g(YM) â

(YM)
1 + κ(2) â

(2)
1 + κ(5) â

(5)
1 + κ(6) â

(6)
1 + κ(7) â

(7)
1

+ κ(13) â
(12−13)
1 + κ(16) â

(15−16)
1 ,

(3.10)

where each â
(i)
1 solves δa

(i)
2 + γâ

(i)
1 = (total derivative), with the a

(i)
2 as given in (3.8). The

explicit expressions are given by

â
(EH)
1 = h∗µν

I

(
hJ

µσ∇νξKσ −∇µhK
νσξJσ + ∇σhK

µνξJσ
)

gI
JK ,

â
(YM)
1 = A∗µ

a Ab
µCcfa

bc ,

â
(2)
1 = h∗µν

I

(1
2hJ

µνCa − Aa
µξJ

ν

)
f(2)

I
Ja ,

â
(5)
1 = h∗µν

I k∆
µνχΩf(5)

I
∆Ω ,

â
(6)
1 = k∗µν

∆

(
kΩ

µνCa −∇µAa
νχΩ − 2Aa

µ∇νχΩ
)

f(6)
∆
Ωa ,

â
(7)
1 = k∗µν

∆

(
∇µkΩ

νσξIσ + 2kΩ
µσ∇νξIσ −∇µhI

νσ∇σχΩ

+ 1
2∇σhI

µν∇σχΩ − σ

L2hI
µνχΩ

)
f(7)

∆
ΩI ,

â
(12−13)
1 = 2A∗µ

a k∆
µν∇νχΩf(13)

a
∆Ω ,

â
(15−16)
1 = A∗µ

a

(
2∇νhσ

µ
I∇[νξJ

σ] −
σ

L2hI
µνξJν

)
f(16)

a
IJ .

(3.11)

Notice that the PM deformations, a
(PM1)
2 and a

(PM2)
2 , are obstructed at this order [31]. To

the above particular solution one must add the general solution ā1 of the homogeneous equation

γā1 = ∇µȷ̄ µ
1 . (3.12)

7These constants are of course just for bookkeeping since one may choose to absorb them into the
structure constants.
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Since antigh(ā1) = 1 > 0, general results [58, 68] show that one can absorb away the right-
hand side, yielding γā1 = 0 . These correspond to Abelian, but non-linear, deformations of the
gauge symmetries, sometimes referred to as Chapline-Manton type deformations in analogy
to the theories studied in [70–72]. At cubic order, ā1 contains one power of the curvatures
or any number of derivatives thereof (cf. eq. (2.8)). In order to have a bounded number of
solutions, it is therefore necessary at this stage to set a limit on the number of derivatives.
Keeping in mind that our aim is to obtain general cubic vertices with at most two derivatives,
we are thus led to consider at most four derivatives in a1 (because γ increases the number of
derivatives by at most two, cf. table 2). With this restriction, the classification of Abelian
solutions ā1 is straightforward, although quite cumbersome. The full list may be found in [73].

As before, our main objective is to determine which among all these candidate a1 are
unobstructed in the next descent equation, eq. (3.5). At this stage we note that our assumption
on the number of derivatives allowed in the space of solutions presents an issue: it may occur
that a candidate a1 is unobstructed, but the corresponding vertex a0 contains strictly more
than two derivatives. However, one must check that the higher-derivative terms are not
spurious, in the sense that the solution is actually equivalent to a two-derivative vertex via a
field redefinition. In order not to miss such solutions in our classification, it proves useful to
include in our list of a1 trivial terms which are γ-exact, since then the corresponding a0 will
be δ-exact (i.e. it can be removed by a field redefinition). The list of γ-exact a1 candidates
with the required number of derivatives is also given in [73].

3.3 Cubic vertices

In this subsection we present the list of solutions for the cubic vertices consistent with the
last descent equation. At this stage further constraints appear on the structure constants of
the gauge algebra (and also, in some instances, on the spacetime dimension D), and we also
indicate in each case the corresponding deformations of the gauge symmetries and algebra
consistent with the existence of a two-derivative vertex.

Einstein-Hilbert coupling. The deformation a1 = â
(EH)
1 is a consistent solution of eq. (3.5)

provided the structure constants satisfy

gIJK = g(IJK)
(
gIJK := gL

JKgIL

)
. (3.13)

The corresponding vertex a0 is the multi-graviton Einstein-Hilbert solution [58],

a
(EH)
0 = gIJK

[1
2hIµν∇µhJ

ρσ∇νhKρσ − 1
2hIµν∇µhJ∇νhK + hIµν∇µhJ∇σhK

σν

+ hIµν∇µhJ
νσ∇σhK − hIµν∇σhJ

µν∇σhK + 1
4hI∇µhJ∇µhK + hIµν∇σhJ

µν∇ρhKρσ

− 1
2hI∇µhJ∇νhKµν − 2hIµ

ν∇µhJ
ρσ∇ρhKσν − hIµ

ν∇σhJ
ρµ∇ρhKσν

+ hIµ
ν∇σhJ

ρµ∇σhKρν + 1
2hI∇σhJ

µν∇µhKνσ − 1
4hI∇σhJ

µν∇σhKµν

+ σ

L2

(1
2hIhJhK + 4hI

µ
νhJ

ν
ρhK

ρ
µ − 3hIhJ

µνhKµν
)]

.

(3.14)
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Yang-Mills coupling. Similarly the deformation a1 = â
(YM)
1 is a consistent solution of

the master equation provided

fabc = f[abc]
(
fabc := gad fd

bc

)
. (3.15)

The vertex is given by

a
(YM)
0 = −1

2 fabc Aa
µAb

νF cµν . (3.16)

In the BRST-BV formalism the Yang-Mills system was first studied in [68]. See also [74]
for the case of massive Yang-Mills theory.

Partially massless spin-2 self-coupling. We have seen already that the non-Abelian
deformations of the PM spin-2 gauge algebra are obstructed. However, the Abelian term

ā
(PM)
1 := cΣ∆Ω k∗∆µν FΩ

σµν ∇σχΣ ∈ H(γ) (3.17)

leads to a consistent vertex provided the constants cΣ∆Ω satisfy

cΣ∆Ω = cΣ(∆Ω) . (3.18)

Moreover, the spacetime dimension must be D = 4 for the solution to exist. The vertex
is given by [31]

a
(PM)
0 = 1

2 k∆
µνJµν

∆ (3.19)

in terms of the gauge-invariant current

Jµν
∆ := 2 cΣ∆Ω

(
FΩ(µ|ρσFΣ|ν)

ρσ −FΩ(µ|FΣ|ν) + FΩ(µ|σ|ν)FΣ
σ

− 1
4gµνFΩρσλFΣ

ρσλ + 1
2gµνFΩ

λ FΣλ
)

.

(3.20)

A priori, this current should only satisfy the partially-massless conservation law for consistency
of the vertex, but here it happens to obey the stronger constraints ∇µJµν

∆ ≈ 0 (where the
weak equality symbol ≈ stands for an equality that holds on the solutions of the free equations
of motion), as well as gµν Jµν

∆ = 0 since D = 4; see [31] for more details.

Spin-1 gravitational coupling. Another solution is given by the minimal gravitational
coupling of spin-1 fields. This arises from the Abelian deformation of the gauge symmetry

ā
(v−g)
1 = dIabA

∗aµF b
µνξIν , (3.21)

with the requirement

dIab = dI(ab) . (3.22)

The vertex reads

a
(v−g)
0 = −1

2dIabh
I
µν

(
F a

µσF b
ν

σ − 1
4gµνF a

ρσF bρσ
)

, (3.23)

in which we indeed recognize the standard minimal coupling of gravity with the spin-1
energy-momentum tensor of Maxwell’s theory.

– 11 –



J
H
E
P
1
1
(
2
0
2
4
)
0
1
9

It may appear strange that the gravitational coupling of a field arises here from an
Abelian deformation of the gauge symmetry. In fact, we can obtain the more standard Lie
derivative transformation, given in our language by8

a
(Lie)
1 = dIab

(
∇µA∗aµAb

νξIν + A∗aµF b
µνξIν

)
, (3.24)

and we observe that (3.21) and (3.24) differ by a trivial δ-exact term (with a correspondingly
trivial γ-exact gauge algebra term a

(Lie)
2 = dIabC

∗a∇νCbξIν signaling a trival redefinition
of the gauge parameters of Maxwell’s theory). Therefore ā

(v−g)
1 is indeed equivalent to the

expected geometric-type deformation.

Mixed spin-1 and partially massless spin-2 coupling. Spin-1 and PM spin-2 fields
may also interact through a geometric-looking coupling involving the spin-1 energy-mo-
mentum tensor,

a
(v−PM)
0 = −e∆abk

∆µν
(

F a
µσF b

ν
σ − 1

4gµνF a
ρσF bρσ

)
, (3.25)

where the constants e∆ab must satisfy

e∆ab = e∆(ab) , (3.26)

and the spacetime dimension must be D = 4 for the solution to exist. The corresponding
deformation of the gauge transformation is Abelian and reads

ā
(v−PM)
1 = e∆abA

∗µaF b
µν∇νχ∆ . (3.27)

Partially massless spin-2 gravitational coupling. Next we consider couplings between
PM and massless spin-2 fields. We will confirm here the results of ref. [44]. We derive first
the non-Abelian deformation corresponding to the minimal coupling of PM fields to gravity.
It turns out that, in order to have a consistent vertex starting from a

(5)
2 and a

(7)
2 , a precise

linear combination of them should be taken with f(5)
I
∆Ω = f(7)∆Ω

I , yielding

a
(PM−g)
2 = 2a

(7)
2 − (D − 3)σ

2L2 a
(5)
2 , f(5)

I
∆Ω = f(7)∆Ω

I , (3.28)

in terms of the a
(i)
2 deformations given in eq. (3.6). The above linear combination is necessary

but not sufficient to produce a consistent vertex. The corresponding particular solution
â1 still needs to be completed by the addition of a suitable Abelian solution ā1 solution
of γā1 = 0, yielding

a
(PM−g)
1 = 2â

(7)
1 + (D − 3)σ

L2 â
(5)
1 + aI∆Ω

(
h∗IµνF∆

σµν∇σχΩ + 2k∗∆µνFΩ
σµνξIσ

)
, (3.29)

8More explicitly, the Lie derivative of the vector field is

dIabA⋆aµ(−£ξI Ab
µ) = −dIabA∗aµ(ξIν∇νAb

µ + ∇µξIνAb
ν) .

This differs from a
(Lie)
1 in (3.24) by a total derivative. We have chosen the form given in (3.24) in order to

make the equivalence with (3.21) more manifest. Notice also, incidentally, that â
(EH)
1 (cf. eq. (3.11)) also

agrees with the Lie derivative of the massless spin-2 field δξhµν = hµσ∇νξσ + hνσ∇µξσ + ξσ ∇σhµν , modulo
the redefinition ξµ 7→ ξµ − 1

2 hµνξν of the gauge parameter in the Abelian transformation law γhµν = 2∇(µξν).
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where the â
(i)
1 were given above in eq. (3.11), and where

f(5)
I
∆Ω = f(7)∆Ω

I = aI
∆Ω = aI

(∆Ω) . (3.30)

More explicitly, we find

a
(PM−g)
1 = 2 aI∆Ω k∗∆µν

(
ξIσ ∇σkΩ

µν + 2 kΩ
µσ∇νξIσ −∇µhI

νσ∇σχΩ + 1
2 ∇σχΩ∇σhI

µν

− σ

L2hI
µνχΩ

)
+ aI∆Ω h∗Iµν

(
F∆

σµν∇σχΩ + (D − 3)σ
L2 k∆

µνχΩ
)

.

(3.31)

Note that the first two terms correspond to the Lie-derivative transformation of the PM spin-2
field k∆

µν . Lastly we provide the expression for the cubic vertex, which we write in the form

a
(PM−g)
0 = hI

µνT µν
I , (3.32)

with

TI
µν := aI∆Ω

[
2k∆να∇α∇βkΩµβ + 2k∆µα∇α∇βkΩνβ + ∇αkΩ∇αk∆µν + k∆□kΩµν

− 2k∆µν∇α∇βkΩαβ − 2k∆αβ∇β∇αkΩµν + 2k∆µν□kΩ − 2∇αk∆µν∇βkΩαβ

− 3
2k∆να□kΩµ

α − 3
2k∆µα□kΩν

α + 2∇αkΩνβ∇βk∆µα −∇βkΩνα∇βk∆µ
α

−∇αkΩ∇µk∆να + 3
2∇βkΩαβ∇µk∆ν

α − 1
2∇βk∆να∇µkΩβ

α − 2k∆να∇µ∇αkΩ

+ 3
2k∆να∇µ∇βkΩβ

α + 3
2k∆αβ∇µ∇βkΩν

α − k∆∇µ∇βkΩνβ −∇αkΩ∇νk∆µα

+ 3
2∇βkΩαβ∇νk∆µ

α − 1
2∇βk∆µα∇νkΩβ

α − 2k∆µα∇ν∇αkΩ + 3
2k∆µα∇ν∇βkΩβ

α

+ 3
2k∆αβ∇ν∇βkΩµ

α − k∆∇ν∇βkΩµβ − k∆αβ∇µ∇νkΩ
αβ + k∆∇ν∇µkΩ

+ 2gµνk∆αβ∇β∇αkΩ − 3gµνk∆αβ∇β∇γkΩγ
α − 1

2gµν(∇βkΩ)(∇βk∆)

+ 2gµν∇βk∆∇γkΩβγ + gµνk∆∇γ∇βkΩβγ + gµνk∆αβ□kΩ
αβ − gµνk∆□kΩ

− 1
2gµν∇βkΩαγ∇γk∆β

α + 1
2gµν∇γkΩαβ∇γk∆

αβ − 3
2gµν∇αk∆αβ∇γkΩ

γβ

+ σ

L2

(
4k∆µνkΩ + (2D + 3)k∆µαkΩν

α + D + 7
2 gµνk∆αβkΩ

αβ + D − 7
2 gµνk∆kΩ

)]
.

(3.33)
This current satisfies ∇µT µν

I = 0 on the solutions of the PM free-field equations of motion
(see appendix A), implying the consistency of the vertex under linearized diffeomorphisms.
Less trivial is to check the consistency under PM gauge transformations since T µν

I is not
itself gauge invariant.

Partially massless spin-2 non-geometric coupling. Finally we note the existence of
an exotic coupling between massless and PM spin-2 fields, first identified in ref. [44], and
dubbed non-geometric due to the fact that it is Abelian (a2 = 0). The deformation of the
gauge symmetry is encoded in

ā
(non−geo)
1 = bI∆Ω k∗∆µν

[
FΩ

σµνξIσ − σL2

2(D − 2)∇µ

(
FΩ

ρσν∇[ρξσ]I
) ]

, (3.34)
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with a restriction on the structure constants given by

bI∆Ω = bI(∆Ω) . (3.35)

This a1 can be lifted through (3.5) to furnish the vertex

a
(non−geo)
0 = 1

2 hI
µνJµν

I , (3.36)

with the gauge-invariant current-like tensor

Jµν
I := bIΩΣ

(
FΩ(µ|ρσFΣ|ν)

ρσ −FΩ(µ|FΣ|ν) + FΩ(µ|σ|ν)FΣ
σ

− 1
4gµνFΩρσλFΣ

ρσλ + 1
2gµνFΩ

λ FΣλ
)

.

(3.37)

This current is actually identical (up to a coefficient that one may choose to factor out)
to the one found in the PM self-coupling, eq. (3.20). In that context, Jµν

∆ has a physical
interpretation as it is related to a Noether current associated with a global symmetry of
the free PM theory, a property which holds only in D = 4 dimensions [31]. Similarly, in
the present case, we have a Noether current J µ

IJ := √
−gJµν

I ϵJν , where by definition ϵI
µ is a

Killing vector of the background (A)dS space obeying ∇(µϵI
ν) = 0 . Given that ∇µJµν

I ≈ 0 ,
i.e., the (A)dS covariant divergence of Jµν

I vanishes on the solutions of the free equations
of motion (cf. appendix A), it follows immediately that ∂µJ µ

IJ ≈ 0 , without any restriction
on the spacetime dimension. The corresponding global symmetry transformation law can
be read off from the above expression for ā

(non−geo)
1 , where the gauge parameter ϵI

µ must
be replaced by the Killing parameter ϵI

µ .

4 Second order deformations: quadratic constraints

In this section we investigate the master equation at second order. We will not carry out
a classification of the second-order BV functional W2, but rather use the master equation
as a consistency condition on the first order deformations identified in the previous section.
This will lead to a set of quadratic constraints on the structure constants, i.e. generalized
Jacobi identities.

As before we split the second-order BV functional by antifield number,

W2 =
∫

dDx
√
−g (b0 + b1 + b2) . (4.1)

It is again easy to verify that the expansion stops at antifield number 2. The master equation
at this order in the perturbative analysis reads

sW2 = −1
2 (W1, W1) , (4.2)

or, in terms of the local functions an and bn,

γb2 = −1
2 (a2, a2) + ∇µtµ

2 , (4.3)

δb2 + γb1 = −1
2 (a1, a1) − (a2, a1) + ∇µtµ

1 , (4.4)

δb1 + γb0 = − (a1, a0) + ∇µtµ
0 . (4.5)
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4.1 Consistency of the deformed gauge algebra

At antifield number 2, the descent equation (4.3) dictates that (a2, a2) must be γ-exact
modulo a total divergence. We recall here the full expression for the candidate a2 that meets
the consistency requirements at first order,

a2 = a
(EH)
2 + a

(YM)
2 + a

(PM−g)
2 , (4.6)

respectively with structure constants gIJK = g(IJK), fabc = f[abc] and aI
∆Ω = aI

(∆Ω).
Consistency of this a2 with eq. (4.3) yields the following set of quadratic constraints:

0 = gI
M [JgM

K]L , 0 = f c
a[bf

a
de] ,

0 = a[I
∆ΩaJ ]∆

Θ , 0 = aI∆[ΩaI
Θ]Σ , 0 = a(I

∆ΩaJ)∆
Θ + 1

4 gKIJaKΩΘ .
(4.7)

The first among these results states that the multi-graviton algebra is associative (in addition
to being commutative and symmetric as per the constraint gIJK = g(IJK)) [58]. The second
result is the usual Jacobi identity of Yang-Mills theory. The second line contains new results
corresponding to restrictions on the PM gravitational coupling.

4.2 Consistency of the deformed gauge symmetries

Next we analyze the consistency of the gauge symmetry deformation a1 with the second
descent equation, eq. (4.4). Our candidate a1 is given by

a1 = a
(EH)
1 + a

(YM)
1 + a

(PM−g)
1 + ā

(PM)
1 + ā

(v−g)
1 + ā

(v−PM)
1 + ā

(non−geo)
1 . (4.8)

We remind the reader that the last four of these terms correspond to Abelian deformations,
with coefficients cΣ∆Ω, dIab, e∆ab and bI∆Ω, respectively.

Several among the obstructions (i.e. terms in (4.4) which are neither γ-exact nor δ-exact
modulo total derivatives) are eliminated thanks to the constraints derived previously, eq. (4.7).
The remaining obstructions necessitate the following constraints on the Abelian coefficients:

0 = fa
b(cd

I
d)a , 0 = fa

b(ce
∆

d)a ,

0 = dIaba
I∆Ω − 4e(∆ace

Ω)c
b , 0 = e[∆abe

Ω]ac ,

0 = e∆a
(bd

I
c)a + 4eΩbca

I∆Ω , 0 = e∆a
[bd

I
c]a ,

0 = d(I
abdJ)ac − gIJKdKb

c , 0 = d[I
abdJ ]ac ,

0 = c∆Σ
ΩcΘΠΩ + 4 aI∆ΣaI

ΘΠ ,

0 = aIΣ[Πc∆]Ω
Σ , 0 = bI∆ΩbJ∆

Π .

(4.9)

The quadratic constraints on cΣ∆Ω generalize the results derived in ref. [31] to include
gravitational couplings; to our knowledge, the rest are new results.

4.3 Consistency of the cubic vertices

Considering finally the descent equation (4.5), we find that most obstructions are canceled
upon use of the constraints derived above, eqs. (4.7) and (4.9). This is a highly non-trivial
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consistency check given that a priori the antibracket (a1, a0) contains several hundreds of
terms. The offending terms that remain read

(a1, a0) ⊃
(
c∆Σ

ΩcΩΘΠ + 4aI∆ΣaI
ΘΠ

)
FΘµ

ρσFΠνρσFΣλ
µν∇λχ∆

+
(
2eΩabc∆ΣΩ + dI

abaI∆Σ
)

F aµρF b
ρ

νFΣλ
µν∇λχ∆ ,

(4.10)

leading to the following constraints:

0 = c∆Σ
ΩcΩΘΠ + 4aI∆ΣaI

ΘΠ ,

0 = 2eΩabc(∆Σ)Ω + dI
abaI∆Σ , 0 = eΩabc[∆Σ]Ω .

(4.11)

The constraints in the first line were also given previously in ref. [31] with aI∆Σ = 0. However,
in that reference, this result was assumed to hold rather than derived. Here we analyze this
and the other obstruction more closely. The combination FΘµ

ρσFΠνρσFΣλ
µν∇λχ∆ is clearly

not δ-exact since it does not vanish on the free-field equations of motion (even allowing for
total derivatives). That it is also not γ-exact can be seen by considering the flat-space limit,
in which case the subexpression FΘµ

ρσFΠνρσF∆λ
µν would need to be a total derivative in

order to get, upon partial integration, a second derivative acting on the ghost. That this
is not the case can be verified directly by calculating its Euler-Lagrange derivative. The
other obstruction in (4.10) may be analyzed in the same way.

5 Analysis of the results

The list of quadratic constraints given in eqs. (4.7), (4.9) and (4.11) constitute the main
results of this paper. In this section we analyze the resolution of these constraints. Our aim
is not to be exhaustive but rather to understand the implications of assuming versus relaxing
the condition of having sign-definite internal metrics. We will show that this assumption is
inconsistent with the existence of most of the cubic vertices, the unique non-trivial exception
being the case of multiple independent conformal gravity sectors coupled to Yang-Mills
theory in D = 4 dimensions.

Massless spin-1 and PM spin-2. For the sake of clarity, and because it is an interesting
system on its own, we consider first the couplings of massless spin-1 and PM spin-2 fields.
We repeat here the pertinent constraints (omitting the usual Jacobi identity for fabc and
noting that aI∆Σ = 0 as we ignore gravity here):

0 = c∆Σ
ΩcΘΠΩ , 0 = c∆Σ

ΩcΩΘΠ ,

0 = e∆ace
Ωc

b , 0 = fa
b(ce

∆
d)a ,

(5.1)

and recall that D = 4 for the coefficients cΣ∆Ω and e∆ab to be a priori non-zero. Non-
vanishing solutions to these constraints do not exist in the case of sign-definite metrics, i.e.
when gab = ±δab and g∆Ω = ±δ∆Ω. The argument is the same as the one given in ref. [31]:
considering Σ = Θ and ∆ = Π (with no summation), the contraction c∆Σ

ΩcΘΠΩ becomes a
sum of squares, hence cΣ∆Ω = 0. Similarly e∆ab = 0. An obvious corollary is that a single
PM field cannot interact via cubic vertices with a unitary Yang-Mills (or Maxwell) sector.
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The conclusion is different if one allows for ‘healthy/ghostly’ relative signs. Explicit
solutions for the PM spin-2 self-coupling were given in [31]. Here we only consider the mutual
vector-PM interaction. In order to have a non-vanishing e∆ab we need a non-sign-definite
internal metric gab. The most minimal case includes one PM field and two Abelian vector
fields (fabc = 0), with gab = diag(+1,−1). The unique solution (modulo a trivial overall
rescaling) is given by eab := e1ab = 1 ∀ a, b. If we consider three vector fields (the simplest
case that a priori allows for non-zero fabc) with gab = diag(+1, +1,−1), and again a single
PM field, we find a family of non-trivial solutions for eab; however, they all lead to a vanishing
fabc as per the last constraint in (5.1).

To have a non-zero ‘ghostly Yang-Mills’ coupling one needs at least four vectors. We
have found the general solution in this case (still under the assumption of one PM field);
it involves several free parameters and rather lengthy expressions, so for brevity we do not
write here the full result and instead only give a particular solution in the model with metric
gab = diag(+1, +1, +1,−1):

f123 = 1 , f124 = f134 = 1
2 , f234 = 1√

2
, e11 = e34 = −e24 = 1 ,

e12 = −e13 = − 1√
2

, e14 =
√

2 , e22 = e33 = −e23 = 1
2 , e44 = 2 .

(5.2)

Massless spin-1 and massless spin-2. We study next the mutual couplings of massless
spin-2 fields mediated by vector particles. We assume sign-definite metrics gab = ±δab and
gIJ = ±δIJ . We start by recalling the theorem of ref. [58] stating that the unique solution
(modulo overall rescalings) of the constraints on the multi-graviton coefficients gIJK is given
by gIJK = 1 if I = J = K and gIJK = 0 otherwise.

The constraint 0 = d(I
abdJ)ac−gIJKdKb

c (cf. eq. (4.9)) may then be written as (dIdJ)bc =
±δIJ (dI)bc (no sum over I), where (dI) is the matrix with entries dIab. This result shows
that these matrices are ng independent projectors. As a consequence, a basis of solutions
is given by dIab = ±δIaδIb (no sum over I). The other relevant constraints, 0 = d[I

abdJ ]ac

and 0 = fa
b(cd

I
d)a, are then automatically satisfied. It follows that a massless spin-1

particle may only couple to one graviton (or to none), thus forbidding vector-mediated
multi-graviton interactions. This also applies to Yang-Mills theory: if dIab ̸= 0, then the
constraint 0 = fa

b(cd
I

d)a is satisfied, with non-zero fabc, only if the ‘a’ and ‘b’ vector fields
belong to the same Yang-Mills sector. Put another way, while two non-Abelian vectors may
couple to distinct gravitons, they cannot be components of the same Yang-Mills multiplet,
i.e. with a “common” fabc. This precludes the possibility of multi-graviton interactions
through loops of vector particles.

This outcome generalizes the no-go theorem of [58], which considered couplings mediated
by scalar particles, and is also in agreement with the results of ref. [75]. The latter analysis
was however restricted to the Abelian spin-1 case; the present no-go result for Yang-Mills
theory appears to be new to the best of our knowledge. Once again these results are not
expected to uphold in the situation with non-sign-definite internal metrics. In fact, already
for pure multi-gravity non-trivial couplings are known to exist if one allows for ‘ghostly’
massless spin-2 fields [76, 77].
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Massless spin-2 and PM spin-2. Focusing first on the geometric coupling between massless
and PM gravitons, we have the quadratic constraints (cf. eqs. (4.7), (4.9) and (4.11))

0 = a[I
∆ΩaJ ]∆

Θ , 0 = aI∆[ΩaI
Θ]Σ , a(I

∆ΩaJ)∆
Θ = −1

4gKIJaKΩΘ ,

0 = c∆Σ
ΩcΘΠΩ + 4aI∆ΣaI

ΘΠ , 0 = aIΣ[Πc∆]Ω
Σ ,

0 = c∆Σ
ΩcΩΘΠ + 4aI∆ΣaI

ΘΠ .

(5.3)

Assuming sign-definite kinetic metrics, these constraints may be analyzed in a similar fashion
to the vector-graviton interaction of the previous paragraph, although here we need to be more
cautious about the relative kinetic signs between massless and PM sectors. Without loss of
generality, we assume the former to be gIJ = δIJ , and write g∆Σ = σPMδ∆Σ with σPM = ±1.
The constraint a(I

∆ΩaJ)∆
Θ = −1

4gKIJaKΩΘ is then solved by aI∆Ω = −1
4σPMgIδI∆δIΩ (no

sum over I), where gI := gIII . The constraints involving the PM self-coupling c∆ΣΩ may
be manipulated to produce 0 = c[∆Σ]

ΩcΘΠΩ, which implies that c[∆Σ]Ω = 0 if the internal
metric is sign-definite. Thus we reach the conclusion that

c∆ΣΩ = c(∆ΣΩ) . (5.4)

From these results it can be demonstrated that one may choose a basis in which c∆ΣΩ = 0
unless ∆ = Σ = Ω. Indeed, from the constraints 0 = c∆(Σ

ΩcΘ)ΠΩ + 4aI∆(ΣaI
Θ)Π and

0 = c∆[Σ
Ωc|Ω|Θ]Π we infer that c∆∆

ΩcΣΣΩ = 0 (no sum over ∆, Σ) if ∆ ̸= Σ. Thus {c(∆)}nPM
∆=1,

where c(∆) is the vector with components c∆∆
Ω, is an orthogonal set, and we may choose a

basis with (c(∆))Ω ∝ δΩ∆. Then, using this result and the constraints, we find (up to a sign)

c∆∆∆ =
√
−σPM

2 g∆ , (5.5)

where g∆ := gIδI∆ is non-zero only if the ‘∆’ PM field couples to one of the massless gravitons.
Notice furthermore that we are forced to consider a ‘ghostly’ PM sector with σPM = −1 in
order to have a real solution. Finally, we can now use this result once again in the original
constraint to infer that c∆ΣΩ = 0 when ∆ ̸= Σ ̸= Ω. Note that implicit in this analysis is
the assumption that D = 4. If D ̸= 4 then c∆ΣΩ = 0 from the start, and it is then easy to
prove from the above constraints that aI∆Σ = 0 in this case.

In conclusion, a PM spin-2 field may only interact with at most one graviton, and only
in four dimensions, at least if one supposes the existence of a cubic vertex as dictated by the
minimal coupling prescription, while mutual interactions among different PM fields or among
different massless spin-2 fields are excluded. The single PM-graviton system is consistent
with the expectations spelled out in the Introduction, since we know that conformal gravity
precisely includes a massless and a PM spin-2 fields, which must have opposite kinetic signs.
The obstruction to mutual couplings between different conformal gravity sectors is also in
agreement with the general results of [56].

The non-geometric coupling is, on the other hand, fully obstructed in the situation with
sign-definite metrics, since the constraint 0 = bI∆ΩbJ∆

Π then implies bI∆Ω = 0, as we have
explained. An immediate corollary is that a single PM field cannot interact with gravity
through this Abelian vertex. The failure of the non-geometric coupling may be traced back
to the absence of a mixed ‘g − b’ term in the quadratic constraint (as present in the case
of the geometric couplings), which is due to the absence of a non-Abelian (i.e., non-trivial
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a2) deformation for the non-geometric coupling. We find it interesting, in this respect, that
non-Abelian deformations are in some sense less constrained than Abelian ones.

Dropping the hypothesis of sign-definite metrics again changes this no-go result. The
simplest such model requires one massless graviton and two relatively ‘ghostly’ PM spin-2
particles with g∆Ω = diag(+1,−1), leading to the non-trivial solution b∆Ω := b1∆Ω = 1 ∀∆, Ω
(modulo an overall rescaling). More complex models with more than two fields may be
similarly studied, with solutions analogous to those given in ref. [31].

General case with sign-definite kinetic terms. Finally we consider the general case
with massless spin-1, massless spin-2 and PM spin-2 fields, focusing exclusively on the case of
sign-definite internal metrics, although we allow for relative signs between different particle
types. As we have seen, this assumption forbids the PM non-geometric coupling (bI∆Ω = 0).
We write the internal metrics as gIJ = δIJ , g∆Σ = σPMδ∆Σ, gab = σvδab, where σPM and σv

give the relative kinetic signs of the PM and vector sectors.
Consider first, for the sake of clarity, the situation with only one field of each type, so we

omit all indices in the structure coefficients (assuming the convention that all indices have
been lowered with the internal metrics). Normalizing g = 1, we have from (4.7) a = −σPM/4
(we ignore trivial solutions, here a = 0). The PM self-coupling may be analyzed as in the
previous paragraph, with the result c =

√
−σPM/2, so again σPM = −1 for the solution to be

real (and recall that D = 4 is also necessary). We are left to consider the mixed constraints
involving d and e. There are four constraints in total (three in (4.9) and one in (4.11)), i.e. it
is an over-determined system, yet a (unique) solution exists: d = σv, e = σv/4. Notice that
the sign σv remains undetermined, i.e. both ‘healthy/ghostly’ cases for the vector field are
allowed. This outcome agrees with the expectation inferred from the existence of conformal
gravity coupled to a Maxwell field, which maintains conformal invariance in four dimensions.
The strength of this result lies in having established the uniqueness of the solution.

The generalization of this analysis to multiple fields is straightforward upon use of the
previous results in this section. We first use the results of the massless-PM system to infer
that aI∆Ω = 1

4gIδI∆δIΩ and c∆ΣΩ = 1
2gIδI∆δIΣδIΩ, with the requirement that σPM = −1

(and we choose σv = 1 for concreteness), implying in particular that massless-PM spin-2
fields may only couple in independent pairs (or else remain uncoupled). The massless spin-1
gravitational coupling is also studied in the same way as above, i.e. dIab = gIδIaδIb, and
identical conclusions follow. The remaining non-trivial constraints involving e∆ab are

0 = fa
b(ce

∆
d)a , 0 = dIaba

I∆Ω − 4e(∆ace
Ω)c

b , 0 = e[∆abe
Ω]ac ,

0 = e∆a
(bd

I
c)a + 4eΩbca

I∆Ω , 0 = 2eΩabc(∆Σ)Ω + dI
abaI∆Σ .

(5.6)

Consider first the second-to-last of these equations, and fix the free index ‘I’ here to correspond
to a graviton which does not couple to a PM field. It then follows that e∆ab = 0, i.e. the
massless vectors cannot interact with an isolated PM field, in agreement with our previous
findings. If on the other hand we have a non-trivial massless-PM spin-2 pair with ∆ = I

(in a suitable basis), then this constraint allows one to show that e∆ab ∝ δI∆δIaδIb. The
proportionality constant is fixed by the other constraints: e∆ab = 1

4gIδI∆δIaδIb. This
establishes that distinct conformal gravity sectors cannot mutually couple through vector
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particles. This also applies to interactions mediated by loops of spin-1 fields belonging to the
same Yang-Mills multiplet as per the constraint 0 = fa

b(ce
∆

d)a, using the same reasoning
we used previously in the analysis of the vector-graviton system.

6 Conclusions

In this paper, we provided a complete classification of the consistent first-order deformations
of the free theory describing an arbitrary collection of massless spin-1, massless spin-2
and partially-massless (PM) spin-2 fields in rigid D-dimensional (A)dS space. As our sole
assumptions we requested the vertices to be parity-even, to contain no more than two
derivatives and to respect the isometries of the (A)dS background of the free theory.

As far as interactions among massless and PM spin-2 fields are concerned, our results
confirm the classification of ref. [44] with what it called the geometric, non-Abelian cou-
pling (3.32)–(3.33), as well as the non-geometric Abelian coupling (3.36)–(3.37). Under our
assumptions on the number of derivatives in the vertices, we also find a unique candidate
vertex mixing massless spin-1 and PM spin-2 particles, see (3.25). This vertex is of the
Chapline-Manton type, i.e., it is Abelian yet induces a non-linear gauge transformation of
the spin-1 fields. It only exists in D = 4 dimensions and mimics the minimal gravitational
coupling of Maxwell’s fields, now for PM spin-2 fields instead of massless spin-2 fields.

In section 4 we analyzed all the consistency conditions of the candidate deformations at
second order in perturbation, thereby producing the complete set of quadratic constraints on
the structure constants that appear at first order in deformation, see (4.7), (4.9) and (4.11).
We considered, in section 5, the most general solution of these constraints under the assumption
that each field sector contains no relative healthy/ghostly signs in the kinetic terms, although
distinct sectors may do so. The solution is given by multiple, independent copies of D = 4
conformal gravity minimally coupled with a Yang-Mills (or possibly Abelian) spin-1 sector.
Our findings allow us to rule out the non-geometric vertex, at least under the aforementioned
assumptions. We could also generalize the no-go theorem of ref. [58] by showing that distinct
massless graviton species cannot mutually interact through the exchange of massless spin-1
(Abelian or Yang-Mills) or PM spin-2 particles.

Finally, in section 5 we also exhibited some solutions to the quadratic constraints (4.7), (4.9)
and (4.11), in the general set-up with non-sign-definite internal metrics. We were able to ex-
hibit particular solutions for which all the candidate vertices remain consistent. We speculate
that, similarly to what was done for the pure PM spin-2 case studied in [31], these solutions
with non-sign-definite internal metrics give rise to full theories, complete at the cubic order,
consistent as far as the preservation of number of degrees of freedom is concerned. We hope
to be able to report on this point in the near future.
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A Partially massless spin-2 field equations

The classification of non-trivial cubic vertices requires knowledge of the cohomology of the
differential δ. It proves useful to this end to know all the consequences of the free-field
equations of motion for our system, since trivial cubic vertices are precisely ones that vanish
on these equations. In this appendix we analyze the free PM spin-2 theory, the cases of
massless spin-1 and spin-2 being of course very well known.

The equation of motion that derives from the free PM action is

Eµν := 1√
−g

δS0
δkµν

= ∇ρFρ(µν) − gµν∇ρFρ + ∇(µFν) . (A.1)

We omit the color index which obviously plays no role here. The Noether identity that
follows from the PM gauge symmetry is

∇µ∇νEµν − σ

L2 E = 0 , (A.2)

with E := gµνEµν .
The PM field strength and its derivatives satisfy several identities in terms of Eµν :

Fµ = ∇µk −∇νkµν = − σL2

D − 2 ∇νEµν , ∇µFµ = − 1
D − 2 E , (A.3)

∇ρFµνρ = 2σL2

D − 2 ∇[µ∇ρEν]ρ , ∇ρFρµν = Eµν − gµν

D − 2 E + σL2

D − 2 ∇ν∇ρEµρ , (A.4)

□Fµνρ + (2D − 3)σ
L2 Fµνρ = 2∇[µEν]ρ + 2

D − 2 gρ[µ∇ν]E . (A.5)

It follows in particular that the trace and divergences of Fµνρ all vanish on the equations
of motion.

Another identity related to (A.4) is

□kµν −∇µ∇νk − σ

L2 (gµνk − Dkµν) = Eµν − gµν

D − 2 E + 2σL2

D − 2 ∇(µ∇ρEν)ρ . (A.6)

On the equations of motion, and considering specifically the gauge k = 0 (which from (A.3),
incidentally, implies also ∇νkµν = 0), the previous equation reduces to the standard wave
form (see e.g. [10]): (

□ + σD

L2

)
kµν = 0 (Eµν = 0 , k = 0) . (A.7)
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