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Abstract—Edge computing allows for the deployment of ap-
plications near end-users, resulting in low-latency real-time
applications. The adoption of the microservices architecture
in modern applications has made this possible. Microservices
architecture describes an application as a collection of separate
but interconnected entities that can be built, tested, and deployed
individually. Each microservice runs in its own process and
exchanges data with others. Instead, edge nodes can indepen-
dently deploy microservices-based IoT applications. Consistently
meeting application service level objectives while also optimizing
service placement delay and resource utilization in an edge envi-
ronment is non-trivial. The present paper introduces a dynamic
placement strategy that aims to fulfill application constraints and
minimize infrastructure resource usage while ensuring service
availability to all end-users of the UE in the edge network.

Index Terms—Dynamic service placement, Microservice-based
IoT application, Reinforcement learning, Edge computing.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) has developed
quickly, and the ever-increasing number and variety of con-
nected devices generate massive amounts of data related to
a wide range of smart applications including smart agricul-
ture, smart power grid, smart cities, smart health, and smart
transportation, which offer seamless services that enhance our
daily lives. Recently, IoT application development is adapting
microservices Architecture (MSA) to support the fast evolution
of IoT application development toward growing an IoT envi-
ronment. MSA builds applications as collections of modules
known as microservices that are independently deployable and
scalable [3].

Meanwhile, Edge computing is emerging as a powerful
distributed computing paradigm for hosting latency-critical
and real-time IoT applications (e.g. self-driving cars, smart
manufacturing, driving assistant service) through its proximity

characteristic. Edge computing extends cloud-like services to-
ward the edge of the network by using computing, networking,
and storage resources. Indeed, Cloud computing cannot satisfy
the low latency requirement of such applications due to high
end-to-end transmission latency [1].

While Edge computing offers numerous benefits to
contemporary applications, it faces several challenges
in delivering services, including limited processing and
storage capabilities, as well as battery power in the
edge network, geo-dispersed Edge nodes, heterogeneous
application requirements, and dynamic service demands [1].
In this context, an important consideration is selecting the
appropriate Edge nodes with sufficient hosting capacity to
deploy and run multiple applications based on their respective
demands, constraints, and performance criteria. As Edge
nodes may not possess adequate resources to handle all
end-users service requests, another significant challenge is
optimizing the utilization of edge servers’ resources while
deploying the requested applications efficiently. Given that
modern IoT applications have adopted the MSA architecture,
the present paper proposes a dynamic MAS-based IoT
application placement strategy across multiple edge nodes
that aims to satisfy application requirements in terms of
service latency while minimizing edge servers’ resource
utilization in hosting the requested application.

To solve the problem, the stochastic traffic and
communication uncertainty in the Edge environment
should be carefully addressed. Q-learning is a model-free
reinforcement learning approach that works well in contexts
with unknown and dynamic models. Such a feature makes
the Q-learning method suitable for solving the problem of
microservices-based application placement in edge network



environments, where network circumstances and workload
patterns are very dynamic and unclear. our study contributes
to the dynamic MSA-based service placement problem by
employing a reinforcement learning-based dynamic strategy
to provide services with a low delay while keeping the
node’s resource utilization low. Q-learning’s most important
component is estimating future benefits accurately and
efficiently to optimize long-term decisions. Our aim is to
find a placement approach that maximizes performance
while considering latency, resource utilization, and user
pleasure. Therefore, Q-Learning’s reward prediction fits our
optimization goals.

The present paper contributes in the following ways:

• Firstly, it addresses online MSA-based service placement
problem in edge environment and proposes a learning-
based approach that can efficiently solve the joint op-
timization of the requested service delay and resource
utilization of the edge nodes that hosting the application
with dynamic service requests arrivals.

• Secondly, the solution presented in this paper uses Q-
learning in a novel way and implements an MSA-based
service placement strategy that decouples the problem
and recursively applies Q-learning to place a set of
application services.

This paper is organized as follows. In the “Related work”
section, we provide a comprehensive overview and discuss the
most relevant studies conducted earlier on the same subject
and their results. Details about the Edge environment used in
our research study are presented in the “Edge Architecture”
section. In addition, service problems, models, and network
models are described in the “Service Statement Problem”
section. Then, our proposed RL-Dynamic Service Placement
approach is introduced in the next section. Finally, the paper
concludes in the ”Conclusion and Future Works” section,
which presents a forward-looking vision and insight into future
works.

II. RELATED WORKS

Several studies in the literature that address service place-
ment in the context of Edge computing to optimize network
resource utilization [6], [9], reducing latency [7], [10], [13],
[15], Computing resource utilization [13], deployment cost [8],
[10], [11].

The Reinforcement and deep learning methods have gained
considerable attention as an alternative approach to solv-
ing service placement problems in Edge computing such
as Q-learning, deep Q-network (DQN) parameterized deep
Q networks (P-DQN), and Deep Neural Networks (DNN).
Authors in [8] applied Reinforcement Q-learning to minimize
deployment costs while placing the requested services. In [6],
authors propose a deep reinforcement Q-learning algorithm
to place service in the edge network to optimize the overall
network utility. They assume that the requested service could

be modeled as a tree of sub-task with data flows to satisfy data
analytics applications requirements. In [7], authors proposed
an approach based on parameterized deep Q networks to
make the joint service placement and computation resource
allocation decisions, to minimize the total latency of tasks in
terms of allocated memory. Also, authors in [9] proposed DQN
based strategy to optimize the network system utility while
placing service tasks.

Heuristic methods (e.g. genetic algorithms) have also been
investigated to deal with service placement problems in the
context of Edge computing. Authors of [10] proposed a genetic
algorithm and RL-based method to address the imp12*act of
service migration on request response time while considering
resource capacity. Most of the existing works deal with the
service placement problem focusing on monolithic application
services.

Different from the existing works, our study contributes
to the dynamic MSA-based service placement problem by
employing a reinforcement learning-based dynamic strategy to
provide services with a low delay while keeping the node’s re-
source utilization low. The primary component of our proposed
strategy is the integration of deep reinforcement Q-learning,
which has been successfully utilized in addressing numerous
network optimization problems, including scheduling [16],
caching [18], and security in the edge network [17]. Our
proposed approach involves a Q-learning agent that interacts
with the system environment, selects placement decisions
(i.e., actions), and enhances the decision-making of service
placement based on experience, without previous information
of the state transition stochastic in the environment. Moreover,
the approach can adapt to the dynamic nature of environmental
changes during online training.

Table I summarizes the recent existing work providing
a brief overview of the used methodology, the application
request model, and performance metrics.

TABLE I
SUMMARY OF THE RECENT RELATED WORK. COLUMN ABBREVIATIONS:
DEPLOYMENT COST (D.), LATENCY (L.), NETWORK RESOURCE USAGE,

(N.), COMPUTING RESOURCE UTILIZATION (C.).

Study Methodology Application Metrics
D L N C

[6] DRL Tree × × ✓ ×
[7] P-DQN monolithic × ✓ × ×
[8] Q-learning, Heuristic MSA-based × ✓ × ×
[9] DQN monolithic × × ✓ ×
[10] Heuristic, RL monolithic × ✓ × ✓
[11] Genetic algorithm monolithic ✓ × × ×
[12] Genetic algorithm monolithic × ✓ × ✓
[13] DNN monolithic × ✓ × ✓
[14] DRL monolithic × ✓ × ✓
[15] P-DPN monolithic × ✓ × ×
Proposed Proposed approach MSA-based × ✓ × ✓

III. EDGE ARCHITECTURE

Figure 1 presents the edge computing architecture, which
uses four layers: the IoT layer, the edge network layer, the fog



layer, and the cloud layer and each layer in the architecture
has distinct roles and responsibilities.

Fig. 1. IoT-to-Cloud architecture layers

A. IoT Layer

This tier consists of all the IoT devices connected to the
internet including several types of devices such as sensor
nodes, smart vehicles, smartphones, tablets, and others. These
IoT devices are known as unintelligent devices since they only
generate data and cannot process it. The primary purpose of
this tier is to acquire, measure and collect data from these
devices and send it to the following layer. In addition, the
computation resources of IoT devices assigned to user devices
are limited, they have low computational power, constrained
by battery life and low processing capacity. Hence, devices can
request the closest fog node to offload tasks that require many
computation resources to run and accelerate the computation.
This offloading request is placed in the output queue at the
edge layer to be transferred to either the fog layer or the cloud
layer.

B. Edge Layer

Edge computing refers to a new computing model which
implements the computation of tasks at the periphery of the
network known as the edge layer. Based on this concept,
certain applications that may not require a significant amount
of computing resources can be processed in the edge layer and
not needed to be offloaded in the fog or the cloud. However,
if resources at the edge layer are not available, the sensors
will request to offload their tasks in the fog layer or the cloud
layer for processing.

C. Fog Layer

The tier commonly known as the fog computing layer,
serves to bring networking resources closer to the underlying
networks. It acts as a mediator between the cloud and the edge
layer, allowing for the deployment of latency-aware services
and applications. This layer consists of several fog nodes
(virtual or physical) with high processing capabilities. The
fog nodes within this layer include network devices such as
routers, switches, and Access Points (APs). The main objective

of this layer is to handle the closest and most time-sensitive
requests from nodes, while also enabling collaborative sharing
of storage and computing facilities.

Both fog computing and edge computing aim to bring
computing resources closer to end-user devices. However,
fog computing uses intermediate fog nodes to collect and
pre-process data before sending it to the cloud, while edge
computing directly places computational capabilities close to
the end devices, allowing real-time processing and decision-
making without relying heavily on the cloud infrastructure.

D. Cloud Layer

The topmost layer of the edge-fog computing architecture
is known as the Cloud Layer, it is the layer that includes
various cloud servers and cloud Data centers with significantly
more computation power, efficient storage, and processing
capabilities than the fog layer. In addition, Cloud computing
is an internet-based computing approach that offers a set of
several resources such as services, processors, and storage to
run the application. Although the cloud computing strategy
can handle a substantial volume of offloaded tasks from the
end devices, the cloud layer poses challenges due to limited
bandwidth and the remote location of resources from end
devices. As a result, it is essential to offload tasks close to
the sources, and fog nodes can be used for service placement.

IV. SERVICE PLACEMENT PROBLEM

In the context of edge computing, we address the challenge
of online service placement for micro-service-based appli-
cations. Specifically, the objective of the service placement
problem is twofold: (i) identifying a suitable set of edge
nodes that possess available computing resources to process
the requested service and (ii) identifying a set of links to
connect the sources with destinations for efficient data transfer.
This problem presents a joint online optimization challenge
due to the tight coupling of computing and network resources,
which must be allocated for each incoming edge computing
request in a challenging online environment.

A. Service request model

Let A be a microservices-based IoT applications where
consists of a set of independently deployable and scalable mi-
croservices Ma. They communicate to create a set of services
Sa provided to the application users. We use the term ”service”
to denote end-user-requested business functionalities, which
can be either an atomic service (consisting of only a single
microservice) or a composite service (composed of multiple
microservices). An application A can be modeled using Di-
rected Acyclic Graphs (DAG) [19] where the vertices represent
microservices m ∈ Ma. Edges in DAG represent microservice
invocations. Microservices are independently packaged and
have heterogeneous resource requirements (RAM, CPU, stor-
age, etc.) with performance requirements that can be defined
at the service level. Each edge in the graph represents the
required data flow f ∈ Fa between microservices. Each



application can be denoted as a tuple of (Ma, Sa, Fa, Rs, Ds)
where each s ∈ Sa is depicted by a tuple (rm, dm).
rm is the required computing resource and dm the required

delay. For a micro-service to be assigned to an edge node, the
computing resource capacity of the node must be sufficient.
If the available computing resources on an edge node can
accommodate multiple micro-services, then these services can
be mapped to the same node.

B. Network model

We consider edge computing denoted as a graph, G =
(V,E), where each vertex v ∈ V represents an edge node,
and each edge e ∈ E represents a physical link in the edge
computing. For each edge node e, the residual computing
resources (available resources) are denoted by Ce. The amount
of resources

We group multiple resources into containers on individual
edge nodes to optimize edge computing resources. These
containers are then tracked using a vector Ct, which represents
the number of available containers on each edge node for
allocating new computing sub-tasks.

C. Computing model

The total service delay refers to the whole time from
when an IoT device sends a service request s to when the
corresponding response is received. This delay is estimated
based on the propagation delay, the waiting time, and the
processing time of a service s as follows:

dse = Tpro + Tt + Tq + Tp (1)

We define QE as the incoming traffic flow in the edge. The
waiting time in QE is calculated based on the time between
IoT services reaching the edge nodes, where the input rate is
assumed by the Poisson distribution. Let λ be the input rate
of requests and µ is the rate of distribution of IoT services.
The waiting time for service s will be estimated as follows:

T s
q =

1

µ− λ
− 1

µ
(2)

The average propagation delay required to transfer data is
calculated based on the ratio between the distance between the
IoT device and the edge node e and the propagation speed c
over the communication medium:

Tp =
dist(s)

c
(3)

Where dist(s) is the Euclidean distance between the IoT
device and the receiving edge node v.

The edge resource utilization ϕe is defined as the ratio
between the resources that the service s will consume and
the remaining resources at the edge node hosting the service:

ϕe =
rs
Ce

∀e ∈ E,∀s ∈ S (4)

V. PROPOSED RL-DYNAMIC SERVICE PLACEMENT
APPROACH

This section introduces our proposed RL-Dynamic service
placement method. A brief overview of the design of the state
space, action space, policy, and reward function employed in
our RL-based approach is provided.

A. State space

In the context of service graph placement, we adopt a
discrete-time model where the time slots are designed to be
sufficiently short. Specifically, each time slot accommodates
at most one request arrival to enable efficient management of
the service graph placement problem. The state space of the
RL model represents the network environment at a specific
time slot, denoted as t. The agent of the RL model observes
the environment and constructs the set of data ωt(g) from the
service request model.

ωt(g) =[(UE1, g1, Rs,1, Ds,1, t)], [(UE2, g2, Rs,2, Ds,2, t)]

, ..., [(UEn, gn, Rs,n, Ds,n, t)]
(5)

For the graph g ∈ G describing micro-services in a given
application to be deployed at time slot t, UE1, UE2, ..., UEn

is the set of UE requesting for service g. The target micro-
services graph is defined by its topology as well as resource
and delay requirements associated with each vertex.

B. Action space

The action space in our proposed RL-based service place-
ment approach represents the set of possible actions that can
be taken by the policy module for the placement of micro-
services on a set of available edge nodes. The action space
is illustrated in Fig. 2. Let a denote the action space, then
the action taken by the policy module for the placement of
micro-services at time slot t can be defined as:

a = π(γ) = xs,∀s ∈ S, (6)

where π is the policy called for generate an action over the
observation set of γ at time slot t, and xs refers to the decision
matrix indicating the service placement s on the set of edge
nodes V . A high Q-value means a high-quality decision.

C. Policy function

The policy function π is responsible for mapping the state
space to an action space a. In our RL dynamic-based approach,
the policy module aims to optimize the objective function
while considering various constraints, as depicted in Fig. 2.
The objective function of the proposed approach aims to
balance the utilization of edge resources and the service delay.
By minimizing the maximum edge resource utilization and
service delay, the approach can efficiently utilize the limited
edge resources and satisfy the delay requirements of users. The
parameter α controls the relative importance of resource usage
versus service delay. The policy function π is formulated as
follows:



Fig. 2. The proposed DRL- Service placement approach system.

ϕ =minmaxs∈S,e∈E [α
∑
e∈E

ϕe + (1− α)
∑
e∈E

xs
ed

s
e ⩽ Ds];

∀s ∈ S
(7)

where st is the state at time slot t, A(st) is the set of feasible
actions in state st, ut−1

i is the resource utilization of edge node
i in the previous time slot t−1, Ci is the capacity of edge node
i, ωt(gij) is the demand of micro-service j in service group
gij at time slot t, aij is a binary decision variable indicating
whether micro-service j is placed on edge node i or not, N is
the set of all edge nodes, M is the set of all micro-services,
Dij is the maximum tolerable delay for service group gij ,
and α is a parameter that controls the relative importance of
resource usage vs. service delay. The policy function selects
an action that minimizes the objective function, which is a
weighted sum of the maximum edge resource utilization and
service delay.

The goal of this problem is to minimize the total service
delay experienced by the UE while also minimizing the
maximum utilization of edge resources.

the placement of a micro-service s at edge node e is given
by xs

e, where xs
e is a binary variable. If the micro-service s

is placed onto e, xs
e = 1. Otherwise is 0. The placement of

micro-service is subjective to the following constraints:

Mapping constraints: Ensures that each micro-service
should be deployed onto exactly one edge node:∑

e∈E

xs
e = 1;∀s ∈ G (8)

Each data flow between two micro-services is mapped to
exactly one network link:∑

l∈L

xd
l = 1;∀d ∈ G (9)

Where xs
i is a binary variable used to indicate the placement

of service s at node i. If edge node i deploys service s, xs
i is

1. Otherwise, it is 0.

Delay constraint: this constraint ensures that the micro-
service delay should be less than the micro-services maximum
delay threshold Ds∑

s∈G

xs
ed

s
e ⩽ Ds;∀e ∈ E (10)

Where Tpro is processing time; Tt is transmission delay;
Tq is queuing delay and Tp is propagation

Resource constraint: ensure that the available resource at
the edge node is not exhausted while deploying micro-service
s.



D. Reward function

At each time slot t, in response to the action taken by
the RLD agent, an immediate reward r(ω, a) is sent by
the environment. The primary goal of the DRL agent is to
maximize the reward. However, the objective of our service
placement problem is to minimize the service delay requested
by the end user from from the corresponding edge node.
Hence, the reward function is estimated as:

r(ω, a) = dss(t) (11)

E. RLD agent

The RLD agent has direct interaction with the environment.
From the environment, the request for service s is initiated by
UE following the service request model. In return, considering
the demand for service s at time slot t and location l of EU
requesting for service s, the policy function module selects the
edge servers for the placement services based on the action
selection strategy π, as discussed in Section IV-C. The task
of the value function module is to critique the performance
of the policy module based on the action taken and rewards
received. It is responsible for calculating the quality value
Q(wt(s), at) of the decision taken by the policy module. A
high Q(wt(s), at) means a high-quality decision. Therefore,
the policy module has to select actions with the maximum
quality value :

a = maxQ(wt(s), at) (12)

The Q-value of a state at a given time is calculated as:

Q′(wt(s), at) =r(wt(s), at)

+ γ(maxQ(wt+1)(s), at))

+ (α− 1)(Q(wt)(s), at))

(13)

Where (wt(s), at) is a state action pair at time t and
r(wt(s), at) is the reward of applying action at at state wt(s).
The value γ and α are the learning rate and discount factor,
respectively.

VI. DISCUSSION AND CONCLUSION

In this study, we present a service placement strategy for
a microservice-based IoT application in an edge environment
where the user sends a service request, and the placement algo-
rithm guarantees the availability of the requested service under
constraints including service latency and resource utilization
to satisfy the end user experiences. We use Machine learning
techniques, such as Reinforcement Learning, that can adapt to
the highly dynamic nature of Edge environments and micro-
services. To the best of our knowledge, no other related studies
have focused on optimizing these two aspects while dealing
with service placement problems in an edge environment. In
future research, we plan to implement the proposed approach
and compare it with several optimization methods with our
proposed approach. We will also explore adding constraints to
our study (e.g., deadlines).
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