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Introduction

From a holographic perspective, theories with massless higher spin fields in anti-de Sitter
(AdS) spacetime should be dual to free conformal field theories (CFT) [1–4]. In all dimensions,
one can distinguish between either the free scalar or the free fermion theory, and in even
dimensions, an additional possibility exists in the guise of the free d−2

2 -form [5]. Giving up
unitarity on the CFT side allows one to consider higher derivative versions of these theories,

S[ϕ] = 1
2

∫
Rd
ddxϕ∗□ℓϕ , S[ψ] = i

∫
Rd
ddxψ /∂

2ℓ−1
ψ ,

where ℓ ≥ 1 is an integer, ϕ∗ denotes the complex conjugate of the scalar field ϕ and ψ

the Dirac adjoint of the spinor field ψ. Although non-unitary, these theories capture some
non-trivial physics, namely they describe a special type of fixed point of the renormalisation
group flow, called the multi-critical isotropic Lifshitz points [6, 7]. Such theories contain
currents of arbitrary integer spin, which are both conserved and partially-conserved. More
precisely, and focusing on the scalar case, the 2ℓ-derivative scalar — also known as order-ℓ
singleton — has currents of the form

J (t)
a1...as

= ϕ∗∂a1 . . . ∂as□
ℓ− t+1

2 ϕ+ . . . ,

for all integers s ≥ 1 and t = 1, 3, . . . , 2ℓ− 1, where the dots stand for additional terms which
ensure that the above tensor is traceless and obey the partial-conservation law

∂b1 . . . ∂btJ
(t)
a1...as−tb1...bt

≈ 0 ,

where ≈ signifies that this holds when the scalar field is on-shell, i.e. □ℓϕ ≈ 0 [6] (see
also [8]). Such currents are dual to spin-s partially-massless fields of depth-t [9], which are
fields propagating an intermediary number of degrees of freedom between those of a massless
field and those of a massive one with the same spin [10–12] (see also [13–18]). These fields
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can be realised as totally symmetric rank-s tensors in AdS, schematically φs,t, subject to
t-derivative gauge symmetry

δξφs,t ∼ ∇tξs−t ,

where ξs−t is any rank-(s− t) symmetric tensor (see also [19] for their frame-like formulation,
and [20, 21] for a recently proposed twistor-inspired formulation in four dimensions). The
number of derivatives t in the gauge transformations is called the ‘depth’ of the partially-
massless, with t = 1 corresponding to the massless case.

Based on the spectrum of partially-conserved currents of the order-ℓ singleton, the dual
higher-spin gravity, usually referred to as the type-Aℓ theory, should contain partially-massless
fields of any integer spins and odd depths from 1 to 2ℓ − 1, i.e. schematically

Type-Aℓ =
⊕

t=1,3,...,2ℓ−1

∞⊕
s=t

φs,t + (· · · ) ,

where the dots stand for finitely many massive fields (i.e. with no gauge symmetry), and
of spin lower than 2ℓ− 1 (see e.g. [6, 22]). The higher spin algebra is the algebra of global
symmetries of such theories, so that its spectrum is given directly by that of massless and
partially-massless fields, namely it is given by gauge parameters which lead to trivial gauge
symmetries. These are known to be generalised Killing tensors [23], which form finite-
dimensional representations of so(2, d) corresponding to Young diagrams with two rows, of
length s− 1 and s− t respectively, so that the type-Aℓ higher spin algebra — denoted by
hsℓ hereafter — admits the decomposition

hsℓ
∼=

⊕
t=1,3,...,2ℓ−1

∞⊕
s=t

s− 1
s− t ,

as an so(2, d)-module. Partially-massless higher spin algebras have been previously considered
in [8, 24–28], and have been characterised both as a quotient of the universal enveloping
algebra of so(2, d) by a specific ideal, and in terms of the Howe duality between so(2, d) and
sp(2,R) in the Weyl algebra generated by 2 × (d + 2) variables [28]. Implementing these
quotients may be cumbersome in practice, even in the case ℓ = 1, i.e. for the ‘massless’
higher spin algebra.

The latter does admit a simple realisation in four dimensions, namely as the even
subalgebra of the Weyl algebra (in two pairs of oscillators). This is due to the existence of the
low-dimensional isomorphism involving the AdS4 isometry algebra, so(2, 3) ∼= sp(4,R), and
the fact that the module of the (ℓ = 1) singleton is realised simply in the Fock space associated
to this Weyl algebra. In this paper, we argue that one can simply append a Clifford algebra
(whose number of generators is related to ℓ) to the Weyl algebra, and recover the type-Aℓ

algebra as a ‘simpler’ quotient, using Howe duality between sp(4,R) and osp
(
1|2(ℓ− 1),R

)
.

Such a realisation, technically easier to work with, could be useful for the introduction of
interactions and the derivation of a partially-massless higher spin gravity.

This paper is organised as follows: in section 1, we start by briefly reviewing the usual
constructions of the type-Aℓ higher spin algebra mentioned previously, and then proceed
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to present our realisation based on extending the Weyl algebra with a Clifford algebra. In
section 2, we propose a construction of the higher order singleton modules using the Fock
space naturally associated with the Weyl-Clifford algebra used to realise the type-Aℓ higher
spin algebra. We discuss in section 3 the possible existence of formal partially-massless higher
spin gravities, and exhibit a cycle of the type-Aℓ algebra in arbitrary dimension as part
of this analysis. We also explicitly verify that some of the Joseph ideal generators vanish
in our oscillator realisation. We conclude the paper in section 4 with a discussion about
the difficulties one may encounter in construction deformations of the type-Aℓ higher spin
algebra using our realisation. Appendix A contains additional details on the structure of
the defining ideal for the type-A2 algebra (as well as some comments for the arbitrary ℓ

case) in arbitrary dimensions.

1 Partially-massless higher spin algebra

1.1 Lightning review in arbitrary dimensions

Quotient of the universal enveloping algebra. First, let us set some notation: we will
denote by MAB the generator of the Lie algebra so(2, d), with indices A,B, . . . taking d+ 2
values, and by ηAB the (components of the diagonal) metric of signature (−,−,+, . . . ,+).
The Lie bracket of these so(2, d) generators reads

[MAB,MCD] = ηBCMAD − ηACMBD − ηBDMAC + ηADMBC , (1.1)

and we will simply denote the associative product in the universal enveloping algebra
U
(
so(2, d)

)
by juxtaposition, for instance we will write

C2 = −1
2 MABM

AB , (1.2)

for the quadratic Casimir operator of so(2, d), where the indices have been raised with the
inverse metric ηAB. The higher spin algebra of type-Aℓ is the quotient [25, 26]

hsℓ = U
(
so(2, d)

)/
Iℓ , (1.3)

of the universal enveloping algebra of so(2, d) by the (two-sided) ideal1

Iℓ =
〈
VABCD ⊕

(
C2 + (d− 2ℓ)(d+ 2ℓ)

4 1
)
⊕ JA(2ℓ)

〉
, (1.4)

where

VABCD := M[ABMCD] , JA(2ℓ) := MA
B1 MAB1 . . .MA

Bℓ MABℓ
− traces , (1.5)

and where we used the convention (standard in the higher spin literature) that symmetrised
indices are denoted by the same letter, with their number being indicated in parenthesis
when necessary, e.g. A(l) = (A1 . . . Al).

1The notation
〈
(· · · )

〉
means that the ideal is generated by the elements inside the brackets.
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Recall that the universal enveloping algebra of a Lie algebra g is isomorphic, as vector
space2, to the symmetric algebra S(g). This space is, by definition, the symmetrised tensor
product of the adjoint representation of so(2, d), and can be decomposed into a direct sum of
finite-dimensional irreducible representations that we will denote by the corresponding Young
diagram. In such terms, the subspace of elements quadratic in the Lie algebra generators reads

⊙2 ∼= ⊕ ⊕ ⊕ • , (1.6)

where in particular

←→ VABCD and • ←→ C2 . (1.7)

When modding out the ideal Iℓ, the totally antisymmetric diagram is removed, whereas
the quadratic Casimir operator is related to a multiple of the identity. More precisely, the
quadratic Casimir operator is set to take the value −1

4(d − 2ℓ)(d + 2ℓ), which is the same
value it takes when acting on the order-ℓ singleton module. Next we can look at the subspace
of the universal enveloping algebra spanned by elements cubic in the Lie algebra,

⊙3 ∼= ⊕ ⊕ ⊕ ⊕ ⊕ , (1.8)

and make the following observations.

(i) First, the three diagrams with more than two rows are contained in the product of the
ideal generators VABCD and the Lie algebra generators MAB, and hence belong to the
ideal Iℓ,

⊕ ⊕ ⊂ Iℓ , (1.9)

so that they are removed once Iℓ is modded out from the universal enveloping algebra
of so(2, d). This is, in fact, a general pattern: Young diagrams with more than two
rows appearing in the decomposition of U

(
so(2, d)

)
all belong to the ideal Iℓ, and more

specifically, to the ideal generated by VABCD. As a consequence, the higher spin algebra
hsℓ contains only Young diagrams with one or two rows.

(ii) Second, the diagram is obtained as the product of the quadratic Casimir operator C2
with the Lie algebra generators MAB. Since, after modding out the ideal Iℓ, the value
of C2 is fixed, the adjoint representation only appears with multiplicity one in hsℓ.

One can immediately extract from the previous item the following lesson: in order for the
quotient algebra hsℓ to admit a multiplicity-free decomposition under so(2, d), i.e. that all
irreducible representations (irreps) appear only once in the decomposition of hsℓ under the
adjoint action of so(2, d), the center of the universal enveloping algebra has to be fixed. In

2Actually as a g-module, and as a (co-commutative) coalgebra.
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other words, modding out the ideal Iℓ should fix the values of all Casimir operators (quadratic
and higher), as the latter form a basis of the center of U

(
so(2, d)

)
.

Finally, since so(2, d)-module appearing in the decomposition of the universal enveloping
algebra U

(
so(2, d)

)
are contained, by definition, in tensor product of its adjoint representation,

all these irreps are characterised by Young diagrams with an even number of boxes. In view
of the previous discussion, this means that they are necessarily of the form , where
difference between the number of boxes in the first and in the second row is even. This
difference equals t− 1 where, as before, t is the depth of the partially massless field. Modding
out by the symmetric diagram 2ℓ effectively removes all diagrams with t > 2ℓ− 1, as
they would belong to the product of the former with another diagram in the spectrum.

Howe duality in the Weyl algebra. Now consider the Weyl algebra A2(d+2) generated
by {Y A

i } where i = ±, and with the Moyal-Weyl star-product

f ⋆ g = f exp
( ←−

∂

∂Y A
i

ηABϵij

−→
∂

∂Y B
j

)
g , (1.10)

where ϵij are the components of the canonical 2× 2 symplectic matrix, as associative product.
Quadratic monomials in Y A

i , i.e. linear combinations of the generators

KAB
ij := 1

2 Y
A

i Y
B

j , (1.11)

span a Lie subalgebra isomorphic to sp
(
2(d + 2),R

)
,

[KAB
ij ,KCD

kl ]⋆ = ηBCϵjk K
AD
il + ηACϵik K

BD
jl + ηBDϵjl K

AC
ik + ηADϵil K

BC
jk , (1.12)

where [−,−]⋆ denotes the commutator with respect to the star-product. The index structure
on display here allows one to easily identify two mutually commuting Lie subalgebras,

so(2, d)⊕ sp(2,R) ⊂ sp
(
2(d+ 2),R

)
, (1.13)

respectively generated by

MAB := 1
2 ϵ

ij Y A
i Y

B
j , and τij := 1

2 ηAB Y
A

i Y
B

j . (1.14)

Such pairs of algebras are usually called reductive dual pairs, or Howe dual pairs [29–31],
and can be used to construct a realisation of the type-Aℓ higher spin algebra in the Weyl
algebra (as used in the case ℓ = 1 to propose nonlinear equations of motions for interacting
massless higher spin fields [32]).

To do so, we will first need to identify the centraliser ZA2(d+2)

(
sp(2,R)

)
of sp(2,R) in

the Weyl algebra A2(d+2), which is the space of elements annihilated by

[τij ,−]⋆ = Y A
(i ϵj)k

∂

∂Y A
k

, (1.15)

or equivalently by the three operators

Y A
+

∂

∂Y A
+
− Y A

−
∂

∂Y A
−
, Y A

+
∂

∂Y A
−
, Y A

−
∂

∂Y A
+
. (1.16)
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The first operator imposes that elements in the centraliser of sp(2,R) be of the same degree in
Y A

+ and Y A
− , while the other two operators both impose that the coefficients of monomials in

Y A
± have the symmetry of a rectangular Young diagram in the so(2, d) indices. In other words,

f(Y ) ∈ ZA2(d+2)

(
sp(2,R)

)
⇐⇒ f(Y ) =

∞∑
s=1

fA(s−1),B(s−1) Y
A(s−1)

+ Y
B(s−1)
− , (1.17)

with fA(s−1),AB(s−2) = 0. Note however that these tensors are still traceful, and hence are
reducible representations of so(2, d). Decomposing them into irreducible representations,
one would find all possible finite-dimensional irreps of so(2, d) labelled by Young diagrams
of the form

s− 1
s− t with s ≥ 1 , t ∈ 2N + 1 , (1.18)

i.e. all Young diagrams with two rows whose lengths differ by an even number of boxes.
Comparing to the universal enveloping algebra construction reviewed previously, we found
ourselves with the same content as we do after modding out U

(
so(2, d)

)
by the ideal generated

by VABCD. We also face the same multiplicity problem: recall that we need to fix the center
of the universal enveloping algebra in order to obtain a multiplicity-free spectrum. Here, the
source of multiplicities is not only the center of the universal enveloping algebra of so(2, d),
but also that of sp(2,R) which is, by definition, also contained in the centraliser of sp(2,R)
in A2(d+2). Fortunately, both problems can be solved at once thanks to the fact that the
quadratic Casimir operators of so(2, d) and sp(2,R) are related via

C2[so(2, d)] + C2[sp(2,R)] = −1
4 (d− 2)(d+ 2) , (1.19)

and similarly for higher order Casimir operator (see e.g. [33–36] and [37, section 9] for more
details). Since sp(2,R) only has one independent Casimir operator, it is sufficient to fix its
value to also fix the values of all Casimir operators of so(2, d). In particular, imposing

C2[sp(2,R)] = −(ℓ− 1)(ℓ+ 1) , (1.20)

sets the quadratic Casimir operator of so(2, d) to

C2[so(2, d)] = −1
4 (d− 2ℓ)(d+ 2ℓ) , (1.21)

as it should in the type-Aℓ algebra hsℓ. Finally, notice that the diagrams of shape (s−1, s− t)
with t = 2k + 1 and k ≥ 0 appear as the kth trace of rectangular diagrams, and that these
traces are proportional to k times the sp(2,R) generators. As a consequence, one can recover
the partially-massless higher spin algebra as the quotient3

hsℓ
∼= ZA2(d+2)

(
sp(2,R)

)/〈
τ(i1j1 . . . τiℓjℓ) ⊕ C2[sp(2,R)]− 1

2 (ℓ− 1)(ℓ+ 1)1
〉
, (1.22)

as modding out the ideal generated by the elements τ(i1j1 . . . τiℓjℓ) guarantees that only so(2, d)
Young diagrams corresponding to partially-massless fields of depth t = 1, 3, . . . , 2ℓ− 1 remain.
See e.g. [28, 38–42] for more details on the construction of higher spin algebras from the
perspective of Howe duality.

3Note that τ(i1j1 . . . τiℓjℓ) generate the annihilator of the finite-dimensional sp(2,R)-irrep of highest weight
ℓ − 1, which is a reflection of the fact that the order-ℓ singleton is Howe dual to this ℓ-dimensional irrep of
sp(2,R) [27, 28].
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1.2 Four-dimensional specificities

Dual pairs and the Weyl-Clifford algebra. Consider a set of bosonic (Y A) and fermionic
(ϕA

i ) where the capital indices A,B, . . . take 2n values and the lower case indices i, j, . . . take
2p values. These oscillators are subject to the commutation and anticommutation relations

[
Ŷ A, Ŷ B] = 2CAB 1 , (1.23a){
ϕ̂A

i , ϕ̂
B
j

}
= 2CABϵij1 , (1.23b)

where CAB = −CBA and ϵij = −ϵji are two antisymmetric, non-degenerate matrices, with
inverses given by

CAC CBC = δA
B , ϵik ϵjk = δi

j . (1.24)

We can therefore use these matrices to raise and lower indices, which we will do using
the convention

CAB XB = XA , XACAB = XB , (1.25)

and similar convention for ϵij . The associative algebra generated by these oscillators modulo
the above anti/commutation relations forms the Weyl-Clifford algebra A2n|4np, which is
simply the tensor product of the Weyl algebra generated by the bosonic oscillators, and the
Clifford algebra generated by the fermionic ones.

The elements quadratic in these oscillators (modulo the previous anti/commutation
relations),

KAB := 1
4
{
Ŷ A, Ŷ B} , MAB

ij := 1
4
[
ϕ̂A

i , ϕ̂
B
j

]
, Q

A|B
i := 1

2 Ŷ
A ϕ̂B

i , (1.26)

form a subalgebra isomorphic to osp(4np|2n,R), whose bosonic subalgebra o(4np)⊕ sp(2n,R)
is generated by MAB

ij and KAB, and the odd/fermionic generators — the supercharges —
correspond to Q

A|B
i . Their anti/commutation relations read

[
KAB,KCD] = CBC KAD + CAC KBD + CBD KAC + CAD KBC , (1.27a)[
MAB

ij ,MCD
kl

]
= CBCϵjk M

AD
il − CACϵik M

BD
jl − CBDϵjl M

AC
ik + CADϵil M

BC
jk , (1.27b)[

KAB, Q
C|D
i

]
= CBC Q

A|D
i + CAC Q

B|D
i , (1.27c)[

MAB
ij , Q

C|D
k

]
= CBDϵjk Q

C|A
i − CADϵik Q

C|B
j , (1.27d){

Q
A|C
i , QB|Dj

}
= CAB MCD

ij + CCDϵij K
AB . (1.27e)

Note that the orthogonal algebra is presented in a slightly unconventional basis here: one
should think of the pair of indices (A, i) on the generators MAB

ij and Q
B|A
i as a single index

for the fundamental representation of o(4np). This is accordance with the fact that only the
first capital index of the fermionic generators QA|B

i (the index ‘A’ here) is rotated by the
sp(2n,R) generators KAB , whereas the second capital index is rotated, along with the lower
case index (the indices ‘B’ and ‘i’ here) are rotated together by the o(4np) generators MAB

ij .
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This unusual structure of indices for the o(4np) generators, which stems from the choice
of indices carried out by the fermionic oscillators ϕA

i , is motivated by the fact that we are
interested in singling out the pair of subalgebras

sp(2n,R)⊕ sp(2p,R) ⊂ o(4np) , (1.28)

generated by

JAB := ϵij MAB
ij , and τij := CAB M

AB
ij , (1.29)

i.e. the generators obtained by contracting those of o(4np) with the invariant tensors ϵij of
sp(2p,R), and CAB of sp(2n,R), respectively. As is clear from the index structure of these
generators, these two subalgebras commute with one another, i.e. they are contained in each
other’s centraliser in o(4np), and in fact they are exactly their respective centralisers.

An interlude on Howe duality. Such pair of subalgebras are usually called ‘dual pairs’
and have particularly interesting applications in representation theory and physics. The
most famous examples come from dual pairs in a symplectic group Sp(2N,R), which are
the central object of study of Howe duality [29, 30]. In this case, one can show that the
oscillator representation of Sp(2N,R), i.e. the Fock space generated by N pairs of bosonic
creation-annihilation operators, admits a decomposition into direct sum of the tensor product
of a representation of each group of the dual pair.

Another variation on the same theme consists in considering dual pairs in an orthogonal
group, say O(2N). This is precisely the case we are presented with above, with the pair(
sp(2n,R), sp(2p,R)

)
⊂ o(4np). For such dual pairs, the natural representation of the

orthogonal group is the Fock space generated by fermionic pairs of creation-annihilation
operators. Indeed, bilinears in these operators define a representation of the orthogonal group
(or the double cover thereof) on the fermionic Fock space, which can then be decomposed
into irreducible representations of the dual pair of interest. See e.g. [43, 44] for more details
on this ‘skew-Howe’ duality.

Since we have both bosonic and fermionic oscillators at hand, we can consider dual
pairs in the orthosymplectic group [45–47]. In our case, the relevant pair is composed of
sp(2n,R), generated by

TAB := KAB − ϵij MAB
ij = 1

4
{
Ŷ A, Ŷ B}− 1

4
[
ϕ̂A

i , ϕ̂
Bi] , (1.30)

and satisfying the commutation relations

[TAB, Ŷ C ] = CAC Ŷ B + CBC Ŷ A , (1.31a)
[TAB, ϕ̂C

i ] = CAC ϕ̂B
i + CBC ϕ̂A

i , (1.31b)
[TAB, TCD] = CAC TBD + CAD TBC + CBD TAC + CBC TAD , (1.31c)

and osp(1|2p,R), generated by

Qi = 1
2 CAB Ŷ

A ϕ̂B
i , and τij ≡

{
Qi, Qj

}
= 1

4 CAB [ϕ̂A
i , ϕ̂

B
j ] , (1.32)
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obeying,

[τij , Qk] = ϵkj Qi + ϵkiQj , (1.33a)
[τij , τkl] = ϵkiτjl + ϵkjτil + ϵliτjk + ϵljτik . (1.33b)

Casimir operators. The quadratic Casimir operators for sp(2n,R) and osp(1|2p,R) are
respectively given by,

C2
[
sp(2n,R)

]
= −1

4 TAB T
AB , C2

[
osp(1|2p,R)

]
= −1

2 QiQ
i − 1

4 τijτ
ij , (1.34)

and a direct computation shows that, in the previously described oscillator realisation, these
Casimir operators are related to one another via

C2
[
sp(2n,R)

]
= n

8 (2p− 1)(2p+ 2n+ 1)− C2
[
osp(1|2p,R)

]
. (1.35)

In particular, for n = 2 and p = ℓ − 1, one finds

C2
[
sp(4,R)

]
+ C2

[
osp(1|2(ℓ− 1),R)

]
= −1

4 (3− 2ℓ)(3 + 2ℓ) , (1.36)

this last number being the values of the quadratic Casimir operator of so(2, 3) ∼= sp(4,R)
on the module of the order-ℓ scalar singleton. This is a first hint that one may recover the
type-Aℓ higher spin algebra as the centraliser of osp(1|2(ℓ−1),R) in the Weyl-Clifford algebra,
modulo osp(1|2(ℓ − 1),R) generators, as we shall prove in the next paragraphs.

Partially-massless higher spin algebra. In order to identify the type-Aℓ higher spin
algebra, let us first give an equivalent presentation of the Weyl-Clifford algebra in terms
of symbols of the previous oscillators, that we will denote by Y A and ϕA

i and which are
commuting and anticommuting respectively. Their product is the graded version of the
previously discussed Moyal-Weyl product4

f ⋆ g = f exp
( ←−

∂

∂Y A
CAB

−→
∂

∂Y B
+
←−
∂

∂ϕA
i

CAB ϵij

−→
∂

∂ϕB
j

)
g , (1.37)

where f and g are arbitrary polynomials in Y A and ϕA
i . The symbols of the sp(2n,R) and

osp(1|2p,R) generators are simply

TAB = 1
2 Y

AY B − 1
2 ϵ

ij ϕA
i ϕ

B
j , Qi = 1

2 CAB Y
AϕB

i , τij = 1
2 CAB ϕ

A
i ϕ

B
j , (1.38)

respectively.
Now let us characterise the centraliser of osp(1|2p,R) in A2n|4np, that is the space of

elements annihilated by

[Qi,−]⋆ = ϕA
i

∂

∂Y A
− ϵij Y A ∂

∂ϕA
j

, (1.39)

4Note that, for a homogeneous element f ∈ A2n|4np of degree |f |, the left and right derivatives with respect
to Y A and ϕA

i are related by f
←−
∂

∂Y A = ∂
∂Y A f and f

←−
∂

∂ϕA
i

= −(−1)|f | ∂

∂ϕA
i

f .
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where [−,−]⋆ should be understood as the graded commutator (i.e. [f, g]⋆ = f⋆g−(−1)|f ||g| g⋆f
for homogeneous elements of the Weyl-Clifford algebra f and g). This condition is solved
by considering any function of the symbol of the sp(2n,R) generators TAB,

f(Y A, ϕB
i ) ∈ ZA2n|4np

(
osp(1|2p,R)

)
⇔ f(Y A, ϕB

i ) = f(TAB) , (1.40)

since the symbols TAB are characteristics of the first order partial differential equations
[Qi, f ]⋆ = 0. Due to the fact that the sp(2n,R) contain a piece quadratic in the anticommuting
variables ϕA

i , the only possible diagram that can appear when decomposing the centraliser
of osp(1|2p,R) are those whose second row (and by extension, all rows except the first one)
are of length smaller than 2p. Indeed, upon splitting the sp(2p,R) indices as i = (+α,−α)
with α = 1, . . . , p, we have

1
2 ϵ

ij ϕA
i ϕ

B
j =

p∑
α=1

φAB
α , φAB

α := ϕ
(A
+α ϕ

B)
−α , (1.41)

where
φ(AB

α φCD)
α = 0 , (1.42)

by virtue of the fact that ϕA
i are anticommuting. Note also that since the ‘building blocks’

of the centraliser of osp(1|2p,R) are rank-2 symmetric tensors of sp(2n,R), all diagrams
appearing will have an even number of boxes, and in particular, each row will be of even
length. This means that, for n = 2, diagrams appearing in the centraliser of osp(1|2p,R)
will be of the form

2s− t− 1
t− 1 , (1.43)

with s ≥ 1 and t = 1, 3, . . . , 2p + 1, so that upon setting p = ℓ − 1 as before, we recover
exactly the spectrum of diagrams expected to appear in the higher spin algebra hsℓ (in
the sp(4,R) basis). However, these diagrams are not traceless in sp(4,R) sense a priori:
consider for instance the product of two sp(4,R) generators, which can be projected onto
a totally symmetric part,

TABCD := T (AB TCD) ←→ , (1.44)

and a piece with the symmetry of a ‘window-shaped’ diagram,

TAB,CD := TAB TCD − TA(C TD)B ←→ . (1.45)

While the first one, the totally symmetric part, is trivially traceless, the second one is not since

CBC T
AB,CD ∝ 2 ϵij ϕ[A

i Y
D]Qj − ϵijϵkl ϕA

i ϕ
D
k τjl , (1.46)

does not vanish identically, but is proportional to the osp(1|2(ℓ− 1),R) generators. This is in
fact a general feature, namely all traces are proportional to these generators. Indeed, taking
a trace in the sp(4,R) sense means contracting the capital latin indices A,B, . . . with the
invariant tensor CAB , which thereby produces the generators Qi and τij . Consequently, we can
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remove traces by modding out the centraliser of osp(1|2(ℓ−1),R) by the ideal generated by Qi

and τij , and thereby obtain the type-Aℓ higher spin algebra in four dimensions as the quotient5

hsℓ
∼= ZA4|8(ℓ−1)

(
osp(1|2(ℓ− 1),R)

)/〈
Qi ⊕ τij

〉
. (1.47)

The main difference compared to the realisation reviewed in the previous section is that here,
the ‘order’ ℓ of the theory is no longer controlled by choosing different ideal to mod out from
the centraliser of the Howe dual algebra, but by the choice of the Howe dual algebra itself.
This allows us to slightly simplify the identification of the type-Aℓ higher spin algebra in
four dimensions with respect to the arbitrary dimension construction.

Given that hsℓ is the symmetry algebra of the order-ℓ scalar singleton, and having found
a realisation of it within the Weyl-Clifford algebra, it is natural to seek a realisation of the
order-ℓ singleton in the Fock space generated by the bosonic and fermionic oscillators used
above, which we will do in the next section.

2 Higher order singleton module

The Weyl-Clifford algebra generated by the oscillators Ŷ A and ϕ̂A
i introduced in section 1

naturally acts on the Fock space generated by n pairs of bosonic creation-annihilation
operators,

[aa, ab] = δb
a 1 , aa := (aa)† , a, b, · · · = 1, . . . , n , (2.1)

and 2np fermionic ones,

{ci
a, cb

j} = δi
j δ

b
a 1 , ca

i := (ci
a)† , i, j, · · · = 1, . . . , 2p . (2.2)

In fact, the Weyl-Clifford algebra is the algebra of endomorphisms of this Fock space. Bilinears
in these creation-annihilation operators form a Lie subalgebra isomorphic to osp(2n|4np,R),
which contain the dual pair sp(2n,R)⊕ osp(1|2p,R) discussed previously. Introducing the
notation,

v · w := ϵij viwj = ϵij v
iwj , (2.3)

for the contraction of the sp(2p,R) indices, the generators of sp(2n,R) are given by

T ab := aa ab − ca · cb , Tab := aa ab − ca · cb , (2.4a)

T a
b := aa ab + ca · cb + 1− 2p

2 δa
b 1 , (2.4b)

while the generators of osp(1|2p,R) read

Qi := 1
2 (ca

i aa − aa ϵij cj
a) , τij := ϵk(i ca

j) ck
a . (2.5)

5Note that this definition also works for ℓ = 1, even though this case may seem degenerate at first glance.
Indeed, in this case the Howe dual algebra becomes trivial, which is simply a consequence of the fact the
relevant Howe dual group is the finite group Z2. This group acts on the Weyl algebra by reflections Y A → −Y A,
so that its centraliser is nothing but the even subalgebra, the subalgebra of polynomials in an even number
of Y A’s.
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Now let us isolate the sp(2n,R) representation dual to the trivial irrep of osp(1|2p,R).
Doing so amounts to finding states in the Fock space which are annihilated by the action
of the osp(1|2p,R) supercharges, i.e.

Qi f(a, c)|0⟩ = 0 , (2.6)

which is solved by

f(a, c) = f(T ab) , (2.7)

that is, any function of the sp(2n,R) raising operators T ab. Since the vacuum |0⟩ of the Fock
space is osp(1|2p,R)-invariant, it defines a lowest weight vector for the dual sp(2n,R)-module,
with weight ( 1− 2p

2 , . . . ,
1− 2p

2︸ ︷︷ ︸
n times

)
, (2.8)

with respect to the Cartan subalgebra spanned by the generators T a
a (no summation implied).

The subspace of homogeneous polynomials of degree k in T ab is preserved by the action of the
u(n) subalgebra generated by T a

b (since the latter preserve the number of creation/annihilation
operators). The decomposition of these subspaces into irreducible representations of u(n)
consists of all Young diagram with 2k boxes, whose rows are all of even length and such
that the second row is of length at most 2p. In particular, for n = 2, the lowest weight
sp(4,R)-module dual to the trivial osp(1|2p,R)-representation admits the decomposition

Dsp(4,R)

(1− 2p
2 ,

1− 2p
2

)
∼=

∞⊕
s=0

p⊕
k=0

[1− 2p
2 + 2s+ 2k, 1− 2p

2 + 2k
]

u(2)
, (2.9)

under the maximal compact subalgebra u(2) ⊂ sp(4,R). Taking into account the isomorphism

[λ1, λ2]u(2) ∼=
[
λ1 + λ2

2 ,
λ1 − λ2

2

]
so(2)⊕so(3)

, (2.10)

between finite-dimensional irreps of u(2) and so(2) ⊕ so(3) and setting p = ℓ − 1, this
decomposition matches the one of the order-ℓ singleton module

Dso(2,3)

(3− 2ℓ
2 , 0

)
∼=

∞⊕
s=0

2ℓ−1⊕
t=1,3,...

[3− 2ℓ
2 + t− 1 + s, s

]
so(2)⊕so(3)

(2.11)

in three dimensions (see e.g. [48, section 3.4.2]).

A word about non-unitarity. Let us conclude this section by commenting on the non-
unitarity of these modules. Recall that higher-order singletons are lowest weight irreps of
so(2, d), which can therefore be described by its lowest weight vector |ϕ⟩, obeying

(D −∆ϕ)|ϕ⟩ = 0 , Jab|ϕ⟩ = 0 , Ka|ϕ⟩ = 0 , (2.12)
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where D, Jab and Ka are the dilation, Lorentz, and special conformal transformation gen-
erators. All states of the modules are obtained by repeated application of the translation
generators Pa on |ϕ⟩. Using the relations

[Ka, Pb] = ηabD −Mab , [D,Pa] = Pa , [Mab, Pc] = 2 ηc[b Pa] , (2.13)

one finds

Ka P
2 |ϕ⟩ = 2

(
∆ϕ −

d− 2
2

)
Pa|ϕ⟩ , (2.14)

and with P †
a = Ka, this implies

∥P 2 |ϕ⟩∥2 = 2d∆ϕ

(
∆ϕ −

d− 2
2

)
⟨ϕ |ϕ⟩ . (2.15)

The above identities tells us that P 2 |ϕ⟩ is singular and null for ∆ϕ = d−2
2 , while for ∆ϕ <

d−2
2

it is not singular but acquires a negative norm. For the order-ℓ singleton, ∆ϕ = d−2ℓ
2 and

hence the presence of P 2|ϕ⟩ is one of the first indications that the module is non-unitary.
Now coming back to our construction, it may be surprising that such a non-unitary module

can be realised in a Fock space, which is usually itself a unitary module (for the Heisenberg
algebra, or its supersymmetric version relevant here). A first consistency check is that this
negative norm state P 2|ϕ⟩ is indeed present, since we recover the correct u(2) decomposition.
More importantly, the Hermitian conjugation does not preserve the osp(1|2p,R) generators
in this realisation, which is why we have a non-unitary module in a Fock space.

Higher order spinor singleton? Note that one could look for other representation of
osp(1|2p,R) than the trivial one. For instance, the ‘next-to-simplest’ representation is of
dimension 2p + 1 ≡ 2ℓ − 1 and splits into a direct sum of sp(2p,R) irreps, the trivial and
the vector (or fundamental) one. It can be realised in the Fock space considered here as
the subspace with basis

aa|0⟩ and ca
i |0⟩ , (2.16)

which are indeed, for osp(1|2p,R), a scalar and a vector respectively. This subspace is
preserved by the action of osp(1|2p,R) since

Qi aa|0⟩ = 1
2 ca

i |0⟩ , Qi ca
j |0⟩ = −1

2 ϵij aa|0⟩ , (2.17)

while the sp(2p,R) generators τij merely rotate this states, as expected. As usual in the
context of Howe duality, this representation appears with a multiplicity, as indicated by the
fact that the above basis vectors also carry an sp(2n,R) index. In fact, as in the case of
the trivial representation, any state obtained from the above basis vectors by the action of
osp(1|2p,R)-invariant operators, which are generated by the Howe dual algebra sp(2n,R),
will not change the representation. In other words, this finite-dimensional representation of
osp(1|2p,R) appears with infinite multiplicity in the Fock space, but this feature is merely
the reflection of the fact that it is Howe dual to a lowest weight module of sp(2n,R), which
is infinite-dimensional.
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The lowest weight sp(2n,R)-module in question is induced by the lowest u(n)-irrep
spanned by the state aa|0⟩ and ca

i |0⟩, and generated by the action of the raising operators
T ab. The lowest weight reads(3− 2p

2 ,
1− 2p

2 , . . . ,
1− 2p

2

)
, (2.18)

which, in the case of sp(4,R) ∼= so(2, 3), corresponds to the lowest weight[3− 2p
2 ,

1− 2p
2

]
u(2)

=
[
2− ℓ, 1

2

]
so(2)⊕so(3)

, (2.19)

whose components are respectively the conformal weight and spin of the spinor singleton of
order ℓ (i.e. a free spinor ψ subject to the higher order Dirac equation /∂

2ℓ−1
ψ ≈ 0 as recalled

in the Introduction). In other words, we find that the higher order spinor singleton

Dsp(4,R)

(3− 2p
2 ,

1− 2p
2

)
∼= Dso(2,3)

(
2− ℓ, 1

2

)
, (2.20)

is Howe dual to the finite-dimensional osp(1|2p,R) representation made out of the trivial
and vector sp(2p,R)-irreps.

This therefore begs the question: can we find the type-Bℓ higher spin algebra in our
construction? To do so, one would need to quotient the centraliser of osp(1|2p,R) in the
Weyl-Clifford algebra by a different ideal than the one generated by osp(1|2p,R). Indeed,
we saw previously that the scalar singleton is Howe dual to the trivial representation of
osp(1|2p,R), and hence the full algebra is the annihilator of this representation. The quotient
by osp(1|2p,R) should be understood as the quotient by the annihilator of this trivial
representation — as recalled above when we discussed the definition of the type-Aℓ algebra
in arbitrary dimensions. Having this framework in mind, we should quotient the centraliser
of osp(1|2p,R) by the annihilator of its (2ℓ − 1)-dimensional irrep in order to obtain the
type-Bℓ higher spin algebra. Schematically, this means modding out by higher powers of
the osp(1|2p,R) generators, which in turn amounts to keeping some of the traces in the
diagrams (1.43), as may be expected to reproduce the spectrum of the type-Bℓ algebra. Such
an analysis is however beyond the scope of this paper, and we leave it for potential future work.

3 Formal partially-massless higher spin gravity

Having build an oscillator realisation of the higher spin algebra hsℓ in four dimensions, we will
now use it to try and construct an interacting theory of partially-massless higher spin fields.

The most common way of constructing formal higher spin gravities is to consider a gauge
connection ω of the relevant higher spin algebra hs, together with a zero-form C taking
value in a module of this algebra (see e.g. [27, 32, 39, 41, 49–54]). This data is associated
with the coordinates on a Q-manifold, which we denote by the same symbols, and whose
(co)homological vector field Q encodes the interactions. More precisely, one is then charged
with constructing equations of motion

dω = V(ω, ω) + V(ω, ω,C) + . . . , (3.1)
dC = U(ω,C) + U(ω,C,C) + . . . , (3.2)
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where V and U are the component of Q, and the initial data for the deformation problem reads

V(a, b) = a ⋆ b , U(a, u) = a ⋆ u− u ⋆ π(a) , (3.3)

where π is an anti-involution of the higher spin algebra. At this point it is convenient to
define Z2hs = hs ⋊ Z2, where Z2 = {1, π}. In practice, one adds an element k such that
k2 = 1 and k ⋆ a ⋆ k = π(a).

Under some fairly general assumptions, one can show that the problem of constructing
the A∞-algebra underlying the Q-manifold reduces to a much simpler problem of deforming
Z2hs as an associative algebra [42, 54–56]. Moreover, often times it is easy to see that Z2hs

can be deformed and even construct such a deformation, which we call AAAu, explicitly. Once
AAAu is available, there is an explicit procedure to construct all vertices. For example,

V(a, b, u) = ϕ1(a, b) ⋆ π(u) , (3.4)

where ϕ1 is a (Hochschild) 2-cocycle that determines the first order deformation of Z2hs to AAAu:

a ◦ b = a ⋆ b+ uϕ1(a, b)k +O(u2) . (3.5)

It has to be noted that the above form of the vertices is non-minimal: the equations, in
general, ‘mix’ different spins even at the free level. One therefore needs to find a suitable
field redefinition to bring the vertex in its ‘minimal’ form wherein such mixing are absent.

The deformed algebra AAAu is defined from hs, the latter being usually obtained via either
one of the following constructions:

(a) A quotient of the universal enveloping algebra U
(
so(d, 2)

)
by a two-sided ideal I (in

most cases called the Joseph ideal), which corresponds to the annihilator of a given
irreducible so(2, d)-module, e.g. [28, 32, 57–60];

(b) Using an oscillator realisation, wherein one embeds so(2, d) and its enveloping algebra
in a Weyl(–Clifford) algebra and typically obtain hs as the quotient of the centraliser of
a Howe dual algebra, as discussed above for the type-Aℓ algebra, as well as in [38, 39,
41, 59, 61, 62] and references therein;

(c) Via the quasi-conformal realisation, which consists in explicitly solving the defining
relations of the (Joseph) ideal mentioned previously, see e.g. [59, 63–65].

The first order deformation defined by the 2-cocycle ϕ1 makes its presence felt already at
the free level. Indeed, linearizing the above equations around an (A)dSd+1 background,

ω0 = ea Pa + 1
2 ϖ

a,b Lab , C0 = 0 , dω0 + 1
2 [ω0, ω0] = 0 , (3.6)

their first order in the field fluctuations should reproduce the free field equations for partially-
massless in the frame-like formalism [19], whose schematic form reads

R[ω1]a(s−1),b(s−t) = ec ∧ edC
a(s−1)c,b(s−t)d
1 , R[ω1]a(s−1−m),b(s−t−n) = 0 , (3.7)

where R[ω1]a(s−1−m),b(s−t−n) = ∇ωa(s−1−m),b(s−t−n)
1 + . . . , with ω1 the first order fluctuations

of a 1-form valued in hsℓ . More specifically, the components of 1-form ω1 takes values in
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the finite-dimensional representations of so(2, d) labelled by the two-row Young diagrams
of the form

s− 1
s− t t = 1, 3, . . . , 2ℓ− 1 , s = t, t+ 1, . . . , (3.8)

which corresponds to generators of the form

MA(s−1),B(s−t) = MAB · · ·MAB︸ ︷︷ ︸
s−t

MA
CMAC · · ·MA

CMAC︸ ︷︷ ︸
t−1

2

+ . . . , (3.9)

where the dots denote terms ensuring that the right hand side has the symmetry of the
above Young diagram, and is traceless. The first order fluctuation of the zero-form takes
values in a representation of hsℓ, usually called the ‘twisted-adjoint representation’.6 This
module of the type-Aℓ algebra is defined on the same vector space as hsℓ, but where the
latter acts via a ‘twisted commutator’

U(ω0, C1) = ω0 ⋆ C1 − C1 ⋆ π(ω0) , (3.10)

hence the name of this representation. The zero-forms can therefore be expanded in a basis
of generators of the (partially-massless) higher spin algebra [32, 48]. Typically, the Weyl
tensor Ca(s),b(s−t+1), for the spin-s and depth-t partially-massless field is the component of
C1 along the generator of hsℓ which schematically reads,

Lab . . . Lab︸ ︷︷ ︸
s−t+1

Pa . . . Pa︸ ︷︷ ︸
t−1

P 2ℓ−t−1 + . . . , (3.11)

where we separated generators of so(2, d) into those of the Lorentz subalgebra so(1, d), denoted
by Lab, and the transvection (or AdS-translation) generators denoted by Pa.

The low spin (s = 1 and 2) components of these fluctuations are given by

ω1 = A · 1 + ha Pa + 1
2 ω

ab Lab + . . . , C1 = 1
2 F

a,bMa,b + . . . , (3.12)

where, to keep this discussion fairly general, we denoted by Ma,b the generator of hs along
which one finds the Maxwell tensor, independently of the higher spin algebra of interest. In
the type-A case, it would simply be Ma,b = Lab, while in the type-Aℓ case, it would be of
the form LabP

2(ℓ−1) + (. . . ) instead. When comparing (3.1) to the previous free equations
of motion, e.g. in the spin-1 sector,

dA = ea ∧ eb F
a,b + . . . , (3.13)

we can deduce that V yields

V(Pa, Pb;Mc,d) = 2 ηa[c ηd]b 1 + . . . , (3.14)

when evaluated on Pa ⊗ Pb ⊗Mc,d. From (3.4), we know that the dots in the previous
equation originate from the expression

ϕ1(Pa, Pb) ⋆Ma,b = 2 ηa[c ηd]b 1 + . . . , (3.15)
6Although it may be more relevant to think of it as a coadjoint module [66, appendix B].
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modulo the field-redefinition bringing the vertex in its ‘minimal’ form. In other words, the
product of ϕ1(Pa, Pb) and the generator that corresponds to the Maxwell tensor must contain
the unit of hs. Let us note that ϕ1(Pa, Pb) is also the simplest term to probe the deformation
since ϕ1(1, •) = 0 and ϕ1(Lab, •) = 0. The first condition means that the unit is not deformed
and the second one protects Lorentz symmetry.

Recalling that hs has an invariant trace tr (defined as the projection onto the unit),
the above condition can also be rewritten as

tr
(
ϕ1(Pa, Pb) ⋆Ma,b

)
̸= 0 . (3.16)

Since the basis of any higher spin algebra hs can be decomposed into finite-dimensional
so(d, 2)-modules, and that the trace respects so(d, 2), different generators are orthogonal
to each other. As a result, we have to have

ϕ1(Pa, Pb) ∝ ηab + Tab + . . . tr
(
Tab ⋆Ma,b) ̸= 0 , (3.17)

where Tab is a generator of AAAu that deforms the commutator [Pa, Pb]. In other words, the
generator Tab of this deformation is a multiple of the dual of the Maxwell tensor generator
Ma,b. In order to define AAAu, one needs to define [Pa, Pb] = Lab + uk Tab and deform the
Joseph ideal accordingly.

The Maxwell tensor (and the whole decomposition) can be found by decomposing the
twisted-adjoint action {Pa, •} of translations on C. The adjoint of the Lorentz algebra may
appear with multiplicity greater than 1 (this happens for instance in the type-B or Type-Aℓ,
ℓ > 1, cases). The Maxwell equations should have the form

∇F a,b = hcF
ac,b (3.18)

∇F ab,c ∝ h(aF b),c − 1
d
h×
(
ηabF c,× − ηc(aF b),×)+ . . . , (3.19)

where the first line comes from the anticommutator {Pm,Mac,b}, where Mab,c is a traceless
and hook-symmetric generator of the form Ma,bPc + (. . . ), and in the second line from
{Pm,Ma,b}. Most importantly, F a,b must not contribute anywhere else. The second equation
means that, at the algebra level, one finds

{P(a,Mb),c} =Mab,c . (3.20)

which implies that {P a,Ma,b} = 0, and hence this anticommutator must be a part of the
two-sided ideal defining hs. This is indeed the case for the Type-A algebra, whose Joseph ideal
contains {Pm, Lmb} = 0. For the type-Aℓ case, Ma,b must be in the adjoint representation
that sits inside the subspace of monomials of order ℓ− 1 in the so(2, d) generator (i.e. one
degree less than the generator JA(2ℓ) of the Joseph ideal).

Probing deformation through cycles. Cocycles are more complicated than cycles to
derive since cocycles are defined on the whole algebra (must be assigned some value for all
possible arguments), while cycles involve few specific elements of the algebra. Nontrivial
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cocycles can be evaluated on nontrivial cycles, the result being nonzero. In the type-A case,
the Maxwell equation probes the cycle [42, appendix B]

c(1) = Lab ⊗ P a ⊗ P b + 1
4 (1⊗ Lab ⊗ Lab)− 1

4 CL(1⊗ 1⊗ 1) , CL = −d(d− 2)
4 , (3.21)

which is closed by virtue of the fact that {Lab, P
b} ∼ 0 and −1

2 LabL
ab ∼ CL 1 due to the

quotient by the Joseph ideal. As it turns out, one can find a counterpart of this cycle
in hsℓ, namely

c(ℓ) =Ma,b⊗P a⊗P b + 1
2
(
1⊗Ma,b⊗Lab−P a⊗P b⊗Ma,b−P a⊗Ma,b⊗P b)+ . . . , (3.22)

which is closed as a consequence of the fact that {Ma,b, P
b} ∼ 0, up to a term 1⊗Ma,bL

ab

(hence the dots). To verify that this is indeed a cycle, first note that

∂(Ma,b ⊗ P a ⊗ P b) = {Ma,b, P
a} ⊗ P b − 1

2Ma,b ⊗ Lab ∼ −1
2Ma,b ⊗ Lab , (3.23)

as we have previously argued that {Ma,b, P
a} belongs to the defining ideal of hsℓ (in fact,

any higher spin algebra containing a massless spin-1 fields in its spectrum), and hence is
modded out. The remaining term is compensated thanks to

∂(1⊗Ma,b ⊗ Lab) =Ma,b ⊗ Lab − 1⊗Ma,b L
ab + Lab ⊗Ma,b , (3.24)

which however brings in two other terms. The last one can be cancelled using

∂(P a ⊗ P b ⊗Ma,b + P a ⊗Ma,b ⊗ P b) ∼ Lab ⊗Ma,b , (3.25)

where we made use of {Ma,b, P
b} ∼ 0 again, which leaves us with the final task of eliminating

the term proportional to 1⊗Ma,b L
ab. In the type-A example, we could take advantage of the

fact that the term LabL
ab is proportional to the identity in hs. This is a simple consequence of

quotienting U
(
so(2, d)

)
by the Joseph ideal.7 We can expect that a similar property also holds

for type-Aℓ algebras, by inspecting its spectrum: since Ma,b = LabP
2(ℓ−1) + (. . . ) belongs to

the so(2, d)-irrep (2ℓ − 1, 1), the contraction Ma,b L
ab belongs to (2ℓ),

Ma,b ∈ 2ℓ− 1 =⇒ Ma,b L
ab ∈ 2ℓ ⊂ Iℓ , (3.26)

since the latter is the only so(2, d) diagram susceptible to contain a Lorentz scalar. In
other words, Ma,b L

ab is related to the scalar part of the generator JA(2ℓ), whose structure
is discussed in appendix A. We can expect that Ma,b L

ab is proportional to P 2(ℓ−1), or a
polynomial in P 2 of degree ℓ − 1 more generally.

This is indeed the case for the type-A2 algebra, where Ma,b L
ab ∼ #P 2, as we show in

appendix A. We can therefore use this identity and compensate the term 1⊗Ma,b L
ab by adding

1⊗ Pa ⊗ P a =⇒ ∂
(
1⊗ Pa ⊗ P a) = −1⊗ P 2 , (3.27)

which, when added with the proper coefficient to c(2) above, defines a cycle of hs2.
7More precisely, the scalar component of the generator JAB , when decomposed under the Lorentz algebra,

relates P 2 to the quadratic Casimir operator of so(2, d) which is itself proportional to the identity. Since
C2 = − 1

2 LabLab + P 2, one therefore concludes that − 1
2 LabLab is also proportional to the identity.
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Oscillator realisation for type-A2. Let us compute the Maxwell generator in our oscillator
realisation. To do so, first recall that the Lorentz generators are embedded in sp(4,R) as

Lαβ = 1
4 {ŷ

α, ŷβ} − 1
4 ϵ

ij [ϕ̂α
i , ϕ̂

β
j ] , Lα′β′ = 1

4 {ŷ
α′ , ŷβ′} − 1

4 ϵ
ij [ϕ̂α′

i , ϕ̂
β′

j ] , (3.28)

where we split the oscillators (1.23a) as Ŷ A = (ŷα, ŷα′) with α, α′ ∈ {1, 2} indices for
two-components spinors. Similarly, the transvection generators read

Pαα′ = 1
4 {ŷ

α, ŷα′} − 1
4 ϵ

ij [ϕ̂α
i , ϕ̂

α′
j ] . (3.29)

Let us also introduce the notation

qi = 1
2 ŷα ϕ̂

α
i , qi = 1

2 ŷα′ ϕ̂
α′
i , tij = 1

4 ϵαβ

[
ϕ̂α

i , ϕ̂
β
j

]
, tij = 1

4 ϵα
′β′
[
ϕ̂α′

i , ϕ̂
β′

j

]
,

(3.30)
in terms of which the osp(1|2p,R) generators read

Qi = qi + qi , τij = tij + tij . (3.31)

Note that qi and tij form an osp(1|2p,R) algebra, and qi and tij as well. The square of
the translation generators can be written as

P 2 = −1
2 Pαα′ P

αα′ = 2p− 1
2 + qi q

i + 1
2 tij t

ij
, (3.32)

where the factor −1
2 comes from the γ-matrices used to convert vector indices into spinor ones.8

The Maxwell generator for p = 1 ⇔ ℓ = 2 therefore becomes

Mαβ = Lαβ

(
qi q

i + 1
2 tij t

ij + 1
2

)
, (3.33)

and similarly for Mα′β′ , upon exchanging Lαβ with Lα′β′ . A direct computation leads to{
Mαβ , P

β
α′
}
∼ 0 , (3.34)

upon using the identities

ϕ̂α
i t

2 = −2 ϕ̂α
j ti

j , tik tj
k = −2 tij + 1

2 ϵij t
2 , and (tij + 2ϵij) t2 = 6 tij , (3.35)

with t2 ≡ tij t
ij , which can be proved thanks to Fierz identities.

Let us conclude this section by pointing a subtlety in the computation of the ideal
generators in our oscillator realisation. Introducing ℏ in the canonical anti/commutation
relations as

[Ŷ A, Ŷ B] = 2ℏCAB , {ϕ̂A
i , ϕ̂

B
j } = 2ℏCAB ϵij , (3.36)

the osp(1|2p,R) anti/commutation relations read

{Qi, Qj} = ℏ τij , [τij , Qk] = 2ℏ ϵk(iQj) , [τij , τkl] = ℏ
(
ϵkj τil + . . .

)
, (3.37)

8This can also be check by comparing [Lab, P b] and [Pa, P 2] with their spinor counterparts, which shows
that one should use La → 1

2

(
ϵαβLα′β′ + ϵα′β′ Lαβ

)
and Pa → i√

2 Pαα′ .
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i.e. the right hand side of any anti/commutator is proportional to ℏ. Contracting the second
relation with ϵjk yields

ℏ qi = − 1
2p+ 1 [tij , Qj ] =⇒ ℏ2 tij = − 1

2p+ 1
{
[tij , Qj ], qj

}
, (3.38)

which could, in the absence of ℏ, lead one to conclude that qi and tij can be set to zero
(and similarly for qi and tij), when taking the quotient by osp(1|2p,R). This would however
be incorrect since it would amount to quotienting by osp(1|2p,R)⊕ osp(1|2p,R), one copy
generated by qi and tij , and another copy by qi and tij . This direct sum is Howe dual to
sp(2,R)⊕ sp(2,R), and not to sp(4,R), as each copy of osp(1|2p,R) does not commute with
the transvection generators Pαα′ . Consequently, it would be inconsistent to mod out qi and
qi separately (and similarly for tij and tij) in the centraliser of sp(4,R) — in the sense that
the resulting algebra would not be related to the type-Aℓ higher spin algebra.

The introduction of ℏ in computation also proves useful when it comes to checking that
the scalar generator of the ideal also vanishes: the expression (3.32) of P 2 can be re-written as

−1
2 Pαα′ P

αα′ = ℏ2 2p− 1
2 + qi q

i + 1
2 tij t

ij = ℏ2 2p− 1
2 + qi (Qi − qi) + 1

2 tij (τ ij − tij) ,

(3.39)

Evaluating J (2)
• , which involves the previous equation for p = 1 and modulo Qi and τij , yields

J (2)
• =

(
P 2−ℏ2

2

)(
P 2−5ℏ2

2

)
∼
(
qi q

i+1
2 tij t

ij
)(

qk q
k+1

2 tkl t
kl+2 ℏ2

)
∼
(
qi q

i+1
2 tij t

ij
)2
,

(3.40)
upon using ℏ qi ∼ 0 ∼ ℏ2 tij . Using again Fierz identity and (3.35), one can show that(

qi q
i + 1

2 tij t
ij
)2
∼ 0 i.e. J (2)

• ∼ 0 , (3.41)

modulo Qi and τij , as required.

4 Discussion

In this paper, we proposed a new realisation of the type-Aℓ higher spin algebra in four
dimensions, based on extending the Weyl algebra with a Clifford algebra. This allows for
an arguably simpler realisation of hsℓ, wherein the limit of the range of values of the depth
of the partially-massless fields is constrained by the dimension of the Clifford algebra. We
also exhibited a Hochschild 3-cycle of hsℓ, which suggests that there should exist non-trivial
deformations of the partially-massless higher spin algebras.

Unfortunately, the usual technique used to construct deformation of higher spin algebra
that consists in using deformed oscillators [67], i.e. trading Ŷ A for q̂A which satisfy

[q̂A, q̂B] = 2CAB (1 + k ν
)
, (4.1)

where k is the generator of the Z2 action on the Weyl algebra, discussed in the previous
section, does not seem to work: we were unable to use this deformation and preserve a
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realisation of the osp(1|2p,R) algebra undeformed. Indeed, note first that, assuming that the
deformed oscillators q̂A still commute with the fermionic oscillators implies

0 =
[
ϕA

i , [q̂B, q̂C ]
]

= 2ν CBC [ϕA
i , k] =⇒ [ϕA

i , k] = 0 , (4.2)

i.e. the fermionic oscillators should also commute with the generator of the Z2 action — also
called the Klein operator. A direct computation yields

{Qi, Qj} = (1 + k ν) τij , with Qi ≡
1
2 CAB q̂

A ϕ̂B
i , τij = 1

4 CAB [ϕ̂A
i , ϕ̂

B
j ] , (4.3)

which deforms the osp(1|2p,R) algebra. One could think of modifying the odd generators as

Qnew
i = f(k, ν)Qi , f(k, ν) = a(ν) 1 + b(ν) k , a(0) = 1 , b(0) = 0 , (4.4)

however, this leads to

{Qnew
i , Qnew

j } = f(k, ν)f(−k, ν) (1 + k ν) τij , (4.5)

which does not allow us to remove the factor 1 + kν by suitably choosing f(k, ν), since the
combination that appears, f(k, ν)f(−k, ν) =

(
a(ν)2 − b(ν)2)1, is only proportional to the

identity. If one could require that the Z2 generator anticommute with the fermionic oscillators,
{k, ϕA

i } = 0, the right hand side of the above equation could be fixed to be the (undeformed)
generators of the sp(2p,R) subalgebra τij by suitably choosing f(k, ν), thereby providing us
with a realisation of osp(1|2p,R) in the deformed oscillator algebra. Unfortunately, we saw
that requiring the Klein operator and the fermionic oscillators to anticommute is inconsistent.

This situation seems surprising since in the case of the type-B algebra, whose realisation
is also based on a quotient of the Weyl-Clifford algebra [38], and are known to admit
deformations of this type [53, 54]. The deformed oscillator algebra, which first appeared
in a paper of Wigner [68], is one of the simplest example of a symplectic reflection algebra
(originally introduced by Etingof and Ginzburg [69], see also [70–72] for more recent reviews).
The algebras are deformations of the smash product of the Weyl algebra with a finite group
(acting on it by automorphisms). The latter naturally contains reductive dual pairs (g, g′)
of bosonic type, which can — at least in some cases [73–75] — be deformed by finding a
realisation of one of the algebra of the pair, say g, in a symplectic reflection algebra. Typically,
the other algebra g′ is deformed to an associative (not Lie) algebra. In any case, both algebras
are mutual centralisers of one another, and hence one again finds a bijection between their
representations (appearing in the appropriate Fock space). Recently, some examples of dual
pairs of Lie superalgebras have been deformed [76, 77] using symplectic reflection algebras.
The difference with respect to the pair

(
sp(2n,R), osp(1|2p,R)

)
of interest for us is that

the superalgebra osp(1|2p,R) that we would like to preserve when using deformed oscillator
has its bosonic subalgebra sp(2p,R) realised using only fermionic oscillators which are not
deformed (since they generate a Clifford algebra which is finite-dimensional, it does not admit
a non-trivial deformation). This seems to be one of the reason why preserving osp(1|2p,R)
appears impossible, at least if we simply replace the bosonic oscillators Ŷ A by deformed ones
q̂A in our realisation. We hope to come back to this issue in the near future.
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A More on the type-A2 algebra

Any higher spin algebra whose spectrum consists of totally symmetric fields only, and defined
as a quotient of U

(
so(2, d)

)
by an ideal I, will necessarily contain the antisymmetric generator9

VABCD = 4M[ABMCD] = M[ABMC]D −M[AB ηC]D , (A.1)

in its defining ideal I. We will therefore start this appendix by reviewing how factoring out
VABDC relates all Casimir operators to the quadratic one (see also [48, section 2.1] and [78]).
Let us illustrate this mechanism in the case of the quartic Casimir operator, defined as10

C4 = 1
2 MA

BMB
CMC

DMD
A , C2 = −1

2 MABM
AB . (A.2)

A direct computation yields11

VABC
•MD• = MABMC

•MD• + 2MC[AMD
•MB]• +MABMCD − 2 (d− 1)MC[AMB]D , (A.3)

which, upon taking a trace in CD and contracting with MAB, gives

VABCD ∼ 0 =⇒ C4 ∼ C2

(
C2 + d(d− 1)

2

)
, (A.4)

in agreement with [48, section 2.1] in the special case of the singleton, and with [79] in
general. Similarly, taking the Lorentz components Vabcd, and contracting them with Lab

(on the left) and Lcd (on the right), one finds

Vabcd ∼ 0 =⇒ CL
4 ∼

(
C2 − P 2)(C2 − P 2 + 1

2 (d− 1)(d− 2)
)
, (A.5)

9The factor 4 in VABCD has been added for simplicity.
10More generally, we follow the convention that the Casimir operator of so(2, d) of order 2n is given by

C2n := 1
2 MA1

A2 MA2
A3 . . . MA2n

A1 .
11For all computations in this appendix, one needs to use a few identities that are specific to orthogonal

algebra, which we will list here. For soN , with generators RIJ = −RJI obeying [RIJ , RKL] = ηJK RIL + (. . . )
with η of arbitrary signature, one has

[RI
•, RJ•] = −(N − 2) RIJ , [V •, RI•] = −(N − 1) VI , RI

J RJ
K RK

I = −N − 2
2 RIJ RIJ ,

where VI is any vector of soN .
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where CL
4 = 1

2 La
b Lb

c Lc
d Ld

a is the quartic Casimir operator of the Lorentz subalgebra. This
is the same type of relation as (A.4) with d→ d−1, upon using the fact the quadratic Casimir
operator CL

2 of so(1, d) is given in terms of that of so(2, d) by CL
2 = C2 − P 2. Contracting

VABCD with more generators produces similar identities, relating Casimir operators of order
2n to lower order ones, and ultimately to C2.

When decomposing the generator VABCD under so(1, d), one finds an additional anti-
symmetric generator of rank 3, namely Vabc0′ . Contracting it with Lab (on the left) and
P c (on the right) yields the identity

Vabc0′ ∼ 0 =⇒ La
• Lb• {P a, P b} ∼ −2

(
C2 − P 2) (P 2 + d− 1

2

)
, (A.6)

which will be useful for us later on.

Type-A2. Let us define

WAB := M(A
CMB)C , (A.7)

and consider the symmetric generator for the ideal defining the partially-massless higher spin
algebra A2, which is the traceless part of W (ABWCD), given by,

JABCD :=W(ABWCD) −
4

d+ 6 η(AB
(
WC

MWD)M − C2WCD)
)

+ 4
(d+ 4)(d+ 6) η(AB ηCD)

(
C4 + C2

[
C2 −

(
d

2

)2])
,

(A.8)

where we used the relation
1
2 WABW

AB = C4 −
(
d

2

)2
C2 , (A.9)

relating the contraction of the generator WAB with itself and the quadratic and quartic
Casimir operators. Note that we can also express this generator of the ideal I2 as

JABCD =J(ABJCD)−
4

d+6 η(ABJC
•JD)•+ 4

(d+4)(d+6) η(ABηCD)

(
C4−

2
d+2 C

2
2 −

(
d

2

)2
C2

)
,

(A.10)
where

JAB := M(A
CMB)C + 2

d+ 2 ηAB C2 , (A.11)

is the traceless part of WAB, which is also one of the generator of the Joseph ideal of the
type-A algebra, and where we used

1
2 JAB J AB = C4 −

2
d+ 2 C

2
2 −

(
d

2

)2
C2 . (A.12)

This generator can be decomposed under the Lorentz subalgebra, and in particular contains
a scalar piece,

J (2)
• = d+ 2

d+ 6 P
4 + 4

(d+ 6)

(1
4 {Lab, P

b} {Lac, Pc} − C2 P
2
)

+ 4
(d+ 4)(d+ 6)

(
C4 + C2

[
C2 −

(
d

2

)2])
,

(A.13)

– 23 –



J
H
E
P
1
2
(
2
0
2
4
)
1
5
2

which can be re-written in terms of C4, C2, P 4 and P 2, using some previously discussed
results. To do so, notice first that

1
4 {Lab, P

b}{Lac, Pc} = 1
2 La

• Lb• {P a, P b}+ d+ 1
2 (C2 − P 2)− d2

4 P 2 , (A.14)

The first term on the right hand side can be eliminated using (A.6), and using the relation (A.4)
between C4 and C2, as well as imposing C2 ∼ −1

4(d − 4)(d + 4), we end up with

J (2)
• =

(
P 2 + d− 4

2

)(
P 2 + d− 8

2

)
. (A.15)

The symmetric generator JA(2ℓ) of the defining ideal for the type-Aℓ higher spin algebra verifies

[MAB,JC(2ℓ)] = 4 ℓ ηC[B JA]C(2ℓ−1) , (A.16)

by definition. Decomposing this identity under the Lorentz subalgebra yields

[Pa,J (ℓ)
b(2ℓ−k)] = (2ℓ− k) ηab J

(ℓ)
b(2ℓ−k−1) + kJ (ℓ)

ab(2ℓ−k) , (A.17)

for k = 0, . . . , 2ℓ. We can use the above equation to express the various Lorentz generators,
obtained by decomposing JA(2ℓ), in terms of the scalar one

J (ℓ)
• =

ℓ∑
k=0

ν2k(C2n)P 2k , (A.18)

where νk are polynomials in the Casimir operators of so(2, d), and ν2ℓ = 1. Indeed, for
k = 2ℓ the equality (A.17) yields

J (ℓ)
a = 1

2ℓ [Pa,J (ℓ)
• ] , (A.19)

while for k = 2ℓ − 1 it gives,

J (ℓ)
ab = 1

2ℓ (2ℓ− 1)
[
Pa, [Pb,J

(ℓ)
• ]
]

+ 1
(2ℓ− 1) ηab J

(ℓ)
• , (A.20)

which can then be used to obtain, recursively, expressions for all generators J (ℓ)
a(2ℓ−k) given by

various linear combinations of nested commutators of Pa and J (ℓ). Schematically,

V
(ℓ)

a(k) =
[k/2]∑
j=0

# ηaa . . . ηaa︸ ︷︷ ︸
j times

[Pa, . . . , [Pa︸ ︷︷ ︸
k−2j times

,J (ℓ)
• ] . . . ] , (A.21)

where # generically denotes combinatorial coefficients that can be obtained by recursion. For
instance, for the ℓ = 1 case, i.e. the usual type-A higher spin algebra, the symmetric generator

JAB = M(A
CMB)C + 2

d+ 2 ηAB C2 , (A.22)

decomposes into three generators,

J (1)
ab = L(a

c Lb)c − P(a Pb) + 2
d+ 2 ηab C2 , J (1)

a = 1
2 {Lab, P

b} , J (1)
• = P 2 − 2

d+ 2 C2 ,

(A.23)
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and one can check that the rank-2 symmetric and the vector generators can be re-written as

J (1)
ab = 1

2
[
Pa, [Pb, P

2]
]

+ ηab

(
P 2 − 2

d+ 2 C2

)
, J (1)

a = 1
2 [Pa, P

2] . (A.24)

For ℓ = 2, one finds

J (2)
a = 1

2
{
Lab

(
P 2 + d− 3

)
, P b

}
, (A.25)

which is similar to the ℓ = 1 case, in that it is given by the anticommutator of P b with
a monomial of order 2ℓ − 1 = 3 in generators, which is an antisymmetric Lorentz tensor.
In light of the discussion in section 3, the generator 1

2 (LabP
2 + d − 3) can be identified

as the Maxwell generator in type-A2. In fact, this pattern holds for arbitrary values of
ℓ: a simple recursion leads to

[Pa, P
2k] =

k∑
j=1

(2− δj,k) dj−1 {Lab P
2(k−j), P b} , k ≥ 1 , (A.26)

which yields

J (ℓ)
a = 1

2ℓ

ℓ−1∑
k=0

a2k

{
Lab P

2k, P b} , with a2k = (2− δk,0)
ℓ∑

j=k+1
dj−k−1 ν2j , (A.27)

where ν2j denote the coefficients in the expression of J (ℓ)
• as a polynomial in P 2 (A.18).
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