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Abstract. Recent attention has been directed towards optical bound states in the
continuum (BICs) within photonic crystal slabs. Unidirectional guided resonances
(UGRs) have also garnered interest, an associated phenomenon that involves inten-
tionally broken symmetry and resulting in directional leakage. This study intro-
duces a microscopic semi-analytical model to better understand these resonances.
Building on a multimodal interference method used for BIC exploration, our app-
roach extends to investigatingUGRs, providing valuable insights into their distinct
properties.Using thismodel,we aim to contribute to the design and comprehension
of BICs and UGRs in photonic crystal slabs.

Keywords: BIC · photonic crystal · symmetry breaking

1 Introduction

In the last decade, the investigation of bound states in the continuum (BICs) has garnered
significant attention because of their distinctive characteristics. Unlike typical confined
modes, BICs exist alongside the radiation continuum, decoupling from it, and showcas-
ing potential applications in areas such as spintronics, nanocavities, low-threshold las-
ing, sensing, and communication [1]. A closely related resonance, termed unidirectional
guided resonance (UGR) [2], has recently been investigated. UGRs manifest in similar
structures as BICs but exhibit broken symmetry, allowing radiation to leak exclusively
in only one direction.

Various mechanisms explain the emergence of BICs, with the multimodal interfer-
ence model being one such approach [3]. This model entails the interference of multiple
fundamental modes, leading to destructive interference outside the structure and the cre-
ation of a BIC under specific conditions. This study demonstrates the applicability of the
multimodal interference model to UGRs, offering a semi-analytical description of these
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resonances. This adaptability enables efficient exploration and interpretation of diverse
geometries, providing valuable insights into UGR behavior and potential applications
in photonic devices.

2 Method and Structure

The method employs multiple steps. First, we divide the crystal unit cell (Fig. 1a) into
two halves, a top and bottom half (Fig. 1b), and create an infinite waveguide with the
same dimension as the cell where it was cut (Fig. 1c). Subsequently, we calculate the
dispersion of the infinite waveguide, providing insight into the coexisting modes in the
vertical direction of the structure (Fig. 1d). Using a boundary mode analysis within the
COMSOL simulation software, these modes are introduced into the two halves of the
structure. This process enables the computation of two half-trip matrices, namely Su for
the upper part and Sd for the lower part, illustrating how the modes are reflected and
mixed by the interfaces of the structure.

Fig. 1. a) The full unit cell of a photonic crystal, with period px along the horizontal direction (x).
b) The two halves of the cell used to compute the half-trip matrices. c) A section of the waveguide
that is infinite along the vertical direction (y). px = 408 nm, the width of the largest particle is
140 nm. The width of the smallest particle is varied to possibly break the symmetry between the
two particles. The height is the same for the two particles and can be varied analytically via the
propagation matrices (in this figure L = 360 nm). d) The TE (transverse electric) dispersion for
the structure of c). Depending on the frequency, a different number of guided modes are available.
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By combining the two half-trip matrices, we construct the round-trip matrix Sd × Su
which we then analyze by computing its eigenvalues and eigenvectors, similar as in Ref.
[4]. For a system with 3 modes, one thus obtains:

Sd × Su

⎡
⎣
C1
C2
C3

⎤
⎦ = λ

⎡
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C2
C3

⎤
⎦

This gives valuable information on the interaction of the modes in the structure. To
have a resonance, the imaginary part of the eigenvalue must be zero and the real part
must be positive (and close to 1 for a large quality factor). The associated eigenvector
shows the contributions of each mode that construct this specific resonance. Note that
the dimension of Su, Sd and the number of eigenvalues is equal to the number of modes
to model the structure, which is typically limited to the guided modes only. The number
of guided modes is indicated in Fig. 1d.

3 Q-factor and Results

For true BICs, the eigenvalue alone suffices as we just need λreal = 1 and λimag = 0. For
UGRs, we have losses on one side of the cell, meaning that the real part of the round-trip
eigenvalue is not sufficient to characterize the resonances. To solve this, we separate the
Q-factors of the top and bottom parts of the cell:

Qu = 2ω0L∣∣vg
∣∣Tu

and Qd = 2ω0L∣∣vg
∣∣Td

where ω0 is the angular frequency, L is the height of the particles, vg the (averaged)
group velocity, and Tu,Td the transmission losses of upper and lower half, respectively.
The transmissions are computed via the half-trip matrices and the specific eigenvectors.
Figure 2 shows the results for the array of Fig. 1. We can find the precise position of
BICs and UGRs in any parameter space (here, the angular frequency vs. the height

Fig. 2. (Left) The quality factor for the top and bottom sides of the structure (equal for the
symmetric quasi-BIC). (Right) Placement of the resonances in the parameter space of frequency
versus height (color indicates the Q-factor).



Multimodal Semi-analytical Model for Bound States in the Continuum 363

of the particles), and via the eigenvectors we obtain information e.g. about the near-
field. Figure 3 shows results of the multimodal method for a structure with top-down
asymmetry. We observe a good agreement between the multimodal analysis and an
eigenmode solver, proving the viability of our method for high contrast UGRs.

Fig. 3. Comparison ofQ factors between themultimodalmethod and a rigorous eigenmode solver
for a UGR structure.

4 Extension to 3D

The method is also useful in a 3D context. We are currently analyzing a structure used to
demonstrate quasi-BICs for sensing via symmetry breaking effects [5]. We study a 2D
array of cylindrical silicon particles (Fig. 4). The goal of this study is to understand how
the symmetry breaking in size and position allows tuning the position ofBICs.Connected
with sensing experiments, we also examine the impact of different superstrate refractive
indices on the resonances.

Fig. 4. Illustration of the array. ax = 408 nm and ay = 204 nm. The height of the particles is
90 nm. The radii are varied to tune the resonances.



364 T. Delplace et al.

We have initial results for the multimodal approach in this 3D structure. The electric
field profiles obtained via the multimodal method (Fig. 5b) fit well with the results of a
scattering simulation (Fig. 5a), showing that a decomposition in multiple fundamental
modes can explain the resulting field in the array. The first quasi-BIC (on the left of Fig. 5)
is mainly monomodal, while the second quasi-BIC (right of Fig. 5) is a composition of
around 40% and 60% of 2 interacting modes. This shows that our model works for
different types of BICs.

Fig. 5. Profile of the normalized norm of the electric field. a) Profile obtained by means of a
scattering simulation on COMSOL. b) Profile obtained via the multimodal computation mixing
waveguide simulations and analytical calculations.
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