

FOR ENERGY

Methodological evaluation of demixing solvents used for carbon capture by absorption-regeneration process

Damien VERDONCK*, Lionel DUBOIS, Guy DE WEIRELD and Diane THOMAS Chemical & Biochemical Process Engineering and Thermodynamics Units, Faculty of Engineering, University of Mons, 20 Place du Parc, 7000 Mons, Belgium - *damien.verdonck@umons.ac.be

University of Mons

GHGT-17 – 20th-24th October 2024, Calgary, Canada

University of Mons

GHGT-17 – 20th-24th October 2024, Calgary, Canada

University of Mons

Bibliographic review

GHGT-17 – 20th-24th October 2024, Calgary, Canada

University of Mons

GHGT-17 – 20th-24th October 2024, Calgary, Canada

Evaluation methodology

S

University of Mons

GHGT-17 – 20th-24th October 2024, Calgary, Canada

Results and discussion

Selection of the solvents for further investigation

Triethylenetetramine (30 wt.%) Propan-1-ol (50 wt.%) Water (20 wt.%)

With 2 reference solvents

Monoethanolamine (30 wt.%) Propan-1-ol (40 wt.%) Water (30 wt.%)

Monoethanolamine (30 wt.%) Water (70 wt.%)

Demixing

Non-demixing Benchmark in CO₂ absorption sector

		TETA – PROP	MEA – PROP	Ν
Indicators of the	RE	2.06 GJ/tCO ₂	2.87 GJ/tCO ₂	3.99
techno-economic	AR	$2.04.V_{MEA}$	1.28.V _{MEA}	١
evaluation of the	DR	0.68	1.29	Not-a
analysis for the	AC	2.77 molCO ₂ /kg	2.32 molCO ₂ /kg	2.46 m
selected blends	OV	0.928	1.006	0
	SC	27.60 €/kg	10.24 €/kg	4.4

[1] IEA (2024), CO2 Emissions in 2023, IEA, Paris https://www.iea.org/reports/co2-emissions-in-2023	[5] Liu S
[3] Wang R, et al. CO ₂ capture performance and mechanism of blended amine solvents regulated by N-	Ind Eng
methylcyclohexyamine, Energy, 2021; 215, 119209. [4] Borhani T, Wang M. Role of solvents in CO2 capture processes: The review of selection and design	[6] Chau method
methods. Renewable and Sustainable Energy Reviews 2019;114.	[7] Kella Manage

University of Mons

GHGT-17 – 20th-24th October 2024, Calgary, Canada

Conclusions and Perspectives

References and Acknowledgments

, et al. New Insights and Assessment of Primary Alkanolamine/Sulfolane Biphasic Solutions for ombustion CO₂ Capture: Absorption, Desorption, Phase Separation, and Technological Process. Chem Res 2019;58:20461–71.

uvy R, Lepore R, Fortemps P, De Weireld G. Comparison of multi-criteria decision analysis ds for selecting carbon dioxide utilization products. Sustain Prod Consum 2020;24:194–210. and MA. Tailored Amine Oxides–Synergists, Surfactants, and Polymers for Gas Hydrate ement, a Minireview. Energy and Fuels 2023;37:8919–34.

The authors would also like to express their gratitude to the SPF Economie (Belgium) for funding the DRIVER project in the framework of the Energy Transition Fund program.

Damien Verdonck is a Research Fellow of the Fonds de la Recherche Scientifique – FNRS (Belgium).

6