Original Heteroaryl Azobenzenes anchored on Peptoids as Solar Thermal Fuel

<u>Gwendal Henrard^{1,2}</u>, Thomas Robert¹, Benjamin Tassignon^{1,2}, Julien De Winter¹, Jérôme Cornil², Pascal Gerbaux¹

gwendal.henrard@umons.ac.be

Organic Synthesis and Mass Spectrometry laboratory¹ (S^2MOs) & Laboratory for Chemistry of Novel Materials² (CMN) University of Mons, 23 Place du Parc, B-7000 Mons – Belgium

Energy challenges: a matter of storage?

MOlecular Solar Thermal systems (MOST)

To store solar energy, chemical storage appears to be a promising approach with systems known as MOST [1]. The working principle of those systems is based on iterative closed cycles of photoisomerization and back-isomerization between a parent compound and its metastable isomer (*Figure 1*). Energy is stored within the metastable isomer which possesses a certain half-life time and thermal energy is released during the thermal back-isomerization process [2] [3].

Azobenzenes with their $E \rightarrow Z$ photoisomerization are the studied molecular widelv among most photoswitches and appear as good candidates. However, properties such as the storage enthalpy, spectroscopic properties and the half-life time need to be improved.

Improving azobenzene MOST properties: our strategy

At UMONS, two strategies are considered to optimize azobenzene-based chromophores for MOST applications; (i) the replacement of one phenyl group by a thiazolyl moiety is envisaged to red shift the absorption of the chromophores in the visible region [5], and (ii) the grafting of several azobenzene residues at selected positions all along a polymer backbone appears as an elegant strategy to enhance the storage enthalpy and the metastable isomer half-life time upon cooperating effects [6-7].

Figure 2. Primary structure of a peptoid. Exemple of helical secondary structure with (S)-1-phenylethyl side chain [8].

Figure 3. (E)-4-(thiazol-2-yldiazenyl) aniline [5].

Figure 1. Working principle of MOST system: the azobenzene case: i) stable isomer absorbs sunlight and goes from ground state to excited state, ii) metastable isomer absorbs sunlight and goes from ground state to excited state, iii) deexcitation from the excited state to the metastable isomer ground state, iv) thermal or catalytic back-isomerization, v) repeat cycle [4].

LC-MS analysis: position effect

Azobenzene derivative solutions were irradiated with a lightningcure LC8 L9588-03 Visible lamp (ca. 350 - 800 nm) to induce azobenzene isomerization in MeOH at 20°C. Solutions were analyzed by liquid chromatography (Waters Alliance 2695) coupled to mass spectrometry (Waters QToF Premier, ESI (+)) in order to discriminate stereoisomers and to quantify the photostationnary state distribution (PSD).

Back-isomerization at 20°C: LC-MS monitoring

Conclusions

With this work combining synthesis and LC-MS characterization, we demonstrated that heteroaryl azobenzene enhances spectroscopic properties with a bathochromic shift but not enough to reach visible wavelengths. Visible range of wavelengths could be reached with heterocyclic substitutions. We also demonstrate that peptoids can be a good template to improve azobenzene MOST properties, peptoids with azobenzene in centre position and C_{ter} position enhance MOST properties and more specifically the half-life time of the cis-isomer which goes from none observable to measurable with LC-MS analysis. With LC-MS kinetic analyses performed at different temperatures we were able to determine kinetic parameters. The next step in this study is to perform theoretical modelling to observe the possible interactions between the different side chains and understand how peptoids stabilize cis isomer.

Acknowledgments

The S²MOs lab thanks the FRS-FNRS for the financial support in the frame of the PDR project T.0095.22. G.H. thanks the FRS-FNRS for his PhD grant.

References

[1] T.J. Kucharski, Y. Tian, S. Akbulatov, R. Boulatov, *Energy Environ. Sci.* **2011**, *4*, 4449–4472. [2] A. Lennartson, A. Roffey, K. Moth-Poulsen, *Tetrahedron Lett.* **2015**, *56*, 1457–1465. [3] L. Dong, Y. Feng, L. Wang, W. Feng, Chem. Soc. Rev. 2018, 47, 7339–7368. [4] Z. Wang, P. Erhart, L. Tao, Z. Y. Zhang, *Joule* **2021**, 5 (12), 3116–3136. [5] R. Lin, P. K. Hashim, S. Sahu, J Am Chem Soc, **2023**, 145, 9072-9080 [6] D. Zhitomirsky, E. Cho, J.C. Grossman, Adv. Energy Mater. 2016, 6, 1–8 [7] N.H. Shah, K. Kirshenbaum, Org. Biomol. Chem, 2008, 6, 2516–2521. [8] A.S. Knight, E.Y. Zhou, M.B. Francis, R.N. Zuckermann, Adv. Mater. 2015, 27, 5665–5691.

