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Energy challenges: a matter of storage?
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MOlecular Solar Thermal systems (MOST)

To store solar energy, chemical storage appears to be a promising approach with systems known as MOST [1]. The working principle of

Sun as renewable energy source \ & those systems is based on iterative closed cycles of photoisomerization and back-isomerization between a parent compound and its

metastable isomer (Figure 1). Energy is stored within the metastable isomer which possesses a certain half-life time and thermal energy
is released during the thermal back-isomerization process [2] [3].

Azobenzenes with their E - Z photoisomerization are
among the most widely studied molecular
photoswitches and appear as good candidates.
However, properties such as the storage enthalpy,
spectroscopic properties and the half-life time need to
be improved.

Improving azobenzene MOST properties: our strategy

At UMONS, two strategies are considered to
optimize azobenzene-based chromophores for
MOST applications; (i) the replacement of one
phenyl group by a thiazolyl moiety is envisaged

Figure 2. Primary structure of a peptoid.
Exemple of helical secondary structure with (S)-1-phenylethyl side chain [8].
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h hal h N Figure 1. Working principle of MOST system: the azobenzene case: i) stable isomer absorbs
the storage enthalpy and the \ / sunlight and goes from ground state to excited state, ii) metastable isomer absorbs sunlight and
— goes from ground state to excited state, iii) deexcitation from the excited state to the

cooperating effects [6-7]. Figure 3. (E)-4-(thiazol-2-yldiazenyl) aniline [5]. metastable isomer ground state, iv) thermal or catalytic back-isomerization, v) repeat cycle [4].
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LC-MS analysis: position effect Back-isomerization at 20°C: LC-MS monitoring
Azobenzene derivative solutions were irradiated with a lightningcure LC8 L9588-03 Visible lamp (ca. 350 - 800 nm) to induce azobenzene isomerization in “‘ “‘
MeOH at 20°C. Solutions were analyzed by liquid chromatography (Waters Alliance 2695) coupled to mass spectrometry (Waters QToF Premier, ESI (+)) in Z-isomer Z-lsomer |
order to discriminate stereocisomers and to quantify the photostationnary state distribution (PSD). 2.3 E-i 2.3 E-iIsomer
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Figure 3. Thermal back-isomerization of NspeNthiaNspe and NspeNspeNthia at 20 °C in MeOH.
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