

# Monte Carlo Simulations of the $T_2$ relaxation induced by cubic-

# shaped superparamagnetic nanoparticles

Florent Fritsche<sup>1</sup>, Gilles Rosolen<sup>2</sup>, Alice De Corte<sup>2</sup>, Bjorn Maes<sup>2</sup>, Yves Gossuin<sup>1</sup>, and Quoc Lam Vuong<sup>1</sup> <sup>1</sup>Biomedical Physics Unit, UMONS, 25 Avenue Maistriau, 7000 Mons, Belgium <sup>2</sup>Micro-and Nanophotonic Materials Group, UMONS, 25 Avenue Maistriau, 7000 Mons, Belgium

### I. Introduction and research context

The transverse relaxation  $(T_2)$  of water protons induced by cubic-shaped superparamagnetic nanoparticles (NP), used as negative contrast agents in MRI, has been studied with Monte Carlo simulations considering a high static magnetic field  $(B_0)$ . The comparison between spherical and cubic-shaped nanoparticles, at equal volumes, revealed minor deviations in the transverse relaxation  $(T_2)$  within the Motional Average Regime [d < 30nm] whereas no deviation was observed for larger particles. Magnetic Field Analysis of both cubic and spherical

#### shaped Np's correlates with simulations results.

**II. Monte Carlo Simulation Methodology** II. a. Simulation Setup [1] II. b. Bell Curve Cubic - Spherical Relative Difference Cubic Magnetite NP  $\overline{\mathbf{B}}_{\mathbf{0}}$ **17/1** 15.0 **11/1** 12.5 **0** 10 000 Water Protons **SDR** PRR MAR **SDR** PRR  $\hat{\mu}_j$ Static magnetic field **B**<sub>0</sub> വ Random walk diffusion  $\sim$ Diffe 11  $(D = 3.10^{-9} \text{ m}^2 \text{s}^{-1})$ 5.0 Selective Rate  $\mathbf{v}_{\mathbf{\mu}_{k}}$ Periodic boundaries MAR **CPMG Sequence** Relaxation  $(T_{\rm E} = 1 \, {\rm ms})$ Particle diameter [nm] Constant volume Increase in  $1/T_2$  in the MAR for cubes Motional Average Regime (MAR) fraction (f =  $3.14 \ 10^{-6}$ ) Static Dephasing Regime (SDR) Up to 15% for 10 nm cubes Partial Refocusing Regime (PRR) Magnetic field analysis Larmor Precession of **Spherical Particle**  $SDR.[1/T_2 \propto p(B_z)][2]$  $10^{1}$ Cubic Particle proton spins around PRR.  $\left[1/T_2 \propto \sigma^2 = 1/V \int |\vec{\nabla}B_z|^2 dV\right]$ [3]  $10^{2}$  $10^{1}$ cubic  $B_z$  magnetic field MAR. $[1/T_2 \propto \langle B_z^2 \rangle]$ [Redfield] Particle diameter [nm]

**III. Magnetic Field Analysis** 



## **IV. Summary and Future Directions**

- Monte Carlo Simulations demonstrate that the NP shape has little to no impact on T<sub>2</sub> for particles larger than 30 nm. However, an increase
  of up to 15% is observed for small particles below 30 nm within the Motional Average regime.
- The magnetic field analysis correlates with simulation results and provides insight into why differences are observed only in the MAR.
- Future studies will focus on other shapes, starting by cylinder-shaped particles which are believed to strongly impact  $1/T_2$ .
- Introduction of multiple nanoparticles into the simulation will provide a more accurate representation of the non-uniformity in solutions.
- Vuong, Q. L., Gillis, P., Roch, A., & Gossuin, Y. "Magnetic resonance relaxation induced by superparamagnetic resonance imaging: a theoretical review". WIREs Nanomedicine and Nanobiotechnology, 2017, Vol. 9, Issue 6. doi.org/10.1002/wnan.1468
- Brown, R. J. S. "Distribution of Fields from Randomly Placed Dipoles: Free-Precession Signal Decay as Result of Magnetic Grains". Physical Review, 1961, Vol. 121, Issue 5, pp. 1379–1382. doi.org/10.1103/physrev.121.1379
- Majumdar, S., & Gore, J. C. "Studies of diffusion in random fields produced by variations in susceptibility". Journal of Magnetic Resonance, 1987, Vol. 78, Issue 1, pp. 41–55. doi.org/10.1016/0022-2364(88)90155-2
- Engel-Herbert, R., & Hesjedal, T. "Calculation of the Magnetic Stray Field of a Uniaxial Magnetic Domain". Journal of Applied Physics, 2005, Vol. 97, Issue 7. doi.org/10.1063/1.1883308

# University of Mons

## Biomedical Physics Unit – 25 Avenue Maistriau 7000 Mons – Pr. Yves Gossuin Florent.Fritsche@umons.ac.be