

Monte Carlo Simulations of the T₂ relaxation induced by cubic-

Biomedical Physics Unit – 25 Avenue Maistriau 7000 Mons – Pr. Yves Gossuin **Florent.Fritsche@umons.ac.be University of Mons**

shaped superparamagnetic nanoparticles

Florent Fritsche¹, Gilles Rosolen², Alice De Corte², Bjorn Maes², Yves Gossuin¹, and Quoc Lam Vuong¹ ¹Biomedical Physics Unit, UMONS, 25 Avenue Maistriau, 7000 Mons, Belgium ²Micro-and Nanophotonic Materials Group, UMONS, 25 Avenue Maistriau, 7000 Mons, Belgium

**II. Monte Carlo Simulation Methodology II. a. Simulation Setup [1] II. b. Bell Curve Cubic - Spherical
Relative Difference** Cubic Magnetite NP \overline{B}_0 $\sqrt{\frac{8}{12}}$ 15.0 10 000 Water Protons $\overline{\mu}_j$ $\begin{array}{|c|c|}\n\hline\n-10^2\n\end{array}$ MAR **SDR** $\frac{1}{F}$ PRR **SDR PRR** $\sqrt{\hat{\mu}}$ Static magnetic field B_0 \overline{S} ഥ **Random walk diffusion** $\mathbf{\Omega}$ $\overline{11}$ $D = 3.10^{-9}$ m²s⁻¹ Relative Rate ഥ Periodic boundaries **MAR CPMG Sequence** Relaxation $(T_E = 1$ ms) Particle diameter [nm] Constant volume Increase in $1/T₂$ in the MAR for cubes Motional Average Regime (MAR) fraction ($f = 3.14 \; 10^{-6}$ **Static Dephasing Regime (SDR)** ■ Up to 15% for 10 nm cubes Partial Refocusing Regime (PRR) **Magnetic field analysis** Larmor Precession of **Spherical Particle** SDR. $[1/T_2 \propto p(B_z)] [2$ 10^1 **Cubic Particle** proton spins around PRR. $[1/T_2 \propto \sigma^2 = 1/V \int |\nabla B_z|^2 dV] [3$ $10²$ 10^1 cubic B_z magnetic field $MAR.[1/T₂ \propto < B_{z}^{2}>][Redfield]$ Particle diameter [nm]

shaped Np's correlates with simulations results.

I. Introduction and research context

The transverse relaxation (T_2) of water protons induced by cubic-shaped superparamagnetic nanoparticles (NP), used as negative contrast agents in MRI, has been studied with Monte Carlo simulations considering a high static magnetic field (B_0) . The comparison between spherical and cubic-shaped nanoparticles, at equal volumes, revealed minor deviations in the transverse relaxation (T_2) within the Motional Average Regime [d < 30nm] whereas no deviation was observed for larger particles. Magnetic Field Analysis of both cubic and spherical

- Monte Carlo Simulations demonstrate that the NP shape has little to no impact on T_2 for particles larger than 30 nm. However, an increase of up to 15% is observed for small particles below 30 nm within the Motional Average regime.
- The magnetic field analysis correlates with simulation results and provides insight into why differences are observed only in the MAR.
- Future studies will focus on other shapes, starting by cylinder-shaped particles which are believed to strongly impact $1/T_2$.
- Introduction of multiple nanoparticles into the simulation will provide a more accurate representation of the non-uniformity in solutions.
- Vuong, Q. L., Gillis, P., Roch, A., & Gossuin, Y. "Magnetic resonance relaxation induced by superparamagnetic particles used as contrast agents in magnetic resonance imaging: a theoretical review". WIREs Nanomedicine and N
- Brown, R. J. S. "Distribution of Fields from Randomly Placed Dipoles: Free-Precession Signal Decay as Result of Magnetic Grains". Physical Review, 1961, Vol. 121, Issue 5, pp. 1379-1382. doi.org/10.1103/physrev.121.1379
- Majumdar, S., & Gore, J. C. "Studies of diffusion in random fields produced by variations in susceptibility". Journal of Magnetic Resonance, 1987, Vol. 78, Issue 1, pp. 41-55. doi.org/10.1016/0022-2364(88)90155-2
- Engel-Herbert, R., & Hesjedal, T. "Calculation of the Magnetic Stray Field of a Uniaxial Magnetic Domain". *Journal of Applied Physics*, 2005, Vol. 97, Issue 7. doi.org/10.1063/1.1883308

III. Magnetic Field Analysis

IV. Summary and Future Directions

