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Abstract—Many decision-making applications in modern
power systems involve solving two sequential problems: (i) pre-
dicting unknown parameters and (ii) optimizing decisions under
prediction uncertainty. Conventionally, the prediction model is
learned by minimizing a statistical error (with respect to the true
observations), without considering the impact of the predictions
on the quality of decisions. In contrast, this paper aims to improve
this gap by investigating Decision-Focused Learning wherein the
optimization model is integrated into the training pipeline of
the prediction model. The goal is to learn a predictor that
endogenously identifies the salient features (e.g., timing of peaks,
duration of valleys, etc.) that lead to the best downstream deci-
sions. This end-to-end learning approach is applied to the day-
ahead scheduling problem of a flexible consumer participating
in both energy-only and reserve markets. A machine learning
model is used to forecast the day-ahead energy prices, which
has been trained with a value-oriented loss function, referred to
as regret that evaluates the quality of the operation decisions.
Results demonstrate the ability of Decision-Focused Learning
to improve decision quality, leading to economic benefits for
the consumer. Outcomes also reveal initializing training with a
conventional least-squared-error, before using the regret, enhance
model performance.

Index Terms—Decision-Focused Learning, Optimization under
Uncertainty, Power Systems, Flexibility

I. INTRODUCTION

Energy transition and environmental objectives have raised
major challenges for the actors of the energy sector. In
particular, the deployment of renewable technologies has in-
creased the uncertainty in power grids, creating the need for
increasingly efficient prediction tools to optimize the operation
of the system. To that end, Machine Learning (ML) is often
used to predict unknown variables, which are then fed into
Constrained Optimization (CO) models for decision-making,
as represented in Fig. 1. Together, these tools facilitate the
optimal management of power systems – including consumers,
generation plants, and storage systems – by effectively han-
dling the different sources of uncertainty (e.g., from prices and
renewable generation).

This paper focuses on enhancing the training framework of
the forecaster. Traditionally, a Predict-Then-Optimize (PTO)
approach is adopted: the training of the ML model is per-
formed independently from the downstream CO problem [1].
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Fig. 1. Block diagram of the two stages process

However, predictions are often imperfect, and this lack of
accuracy can lead to suboptimal decisions by the CO model.
Traditional metrics, such as mean-squared error, assess the
statistical accuracy of forecasts but often fail to capture the
critical information (e.g., timing and number of peaks, delay
between peaks and valleys, etc.) that lead to improved deci-
sions. Identifying this critical information is specific to each
problem and can be extremely challenging, even for experts
in the field. Consequently, translating this information into an
adequate statistical error metric is even more elusive.

In light of this context, we propose a Decision-Focused
Learning (DFL) approach, wherein the prediction model is
learned in light of the quality of the downstream decisions,
which is achieved by integrating the optimization model into
the training pipeline. It should be noted that, when the pre-
diction model is trained, it can be used in the traditional two-
step process of Fig. 1. This training paradigm is implemented
through the definition of a specific metric called the regret,
which directly integrates the quality of downstream decisions
within the loss function. The parameters of the forecaster are
learned through a gradient-based optimization.

However, the partial derivative of the regret with respect
to the prediction model parameters is not straightforward
as linear and mixed-integer linear programs have a zero
gradient almost everywhere. This results in a more complex
back-propagation phase. Various methods were developed to
overcome the computational challenges posed by DFL and
the regret loss function, each involving specific assumptions
about the associated optimization problem [2]. Some works
have managed the discontinuity introduced by the regret in
the training phase through analytical smoothing for convex
optimization problems [3] or by using unrolled solvers [4].
Further research implemented a smoothing by adding random
perturbations and used blackbox combinatorial solvers [5]
or a perturbed optimizer [6]. The above-described methods
can be associated with the implementation of differentiable



optimization layers and they can thus be introduced anywhere
in a neural network architecture.

The approach adopted in this work is based on the definition
of a surrogate function of the regret: the Smart Predict, then
Optimize (SPO+) function defined in [7]. The SPO+ loss
applies to any CO problems if the predicted parameter appears
linearly in the objective function which is the case of the day-
ahead prices in the scheduling problem, as detailed in Section
II. Among the real-world applications of DFL, little research
has been conducted in the field of power systems, and new
research is therefore needed to fully investigate its potential.
DFL was applied to wind power predictions for energy system
cost minimization in [8]. Then, the SPO+ framework was used
to learn an electricity price prediction model dedicated for
energy storage system arbitrage in [9].

This paper investigates the benefits of the DFL approach for
a day-ahead scheduling problem of a consumer minimizing its
energy costs. A ML model is used to forecast the electricity
prices of the day-ahead market. Then, a linear optimization
problem is solved to schedule the energy consumption and the
reserve participation of the consumer. The SPO+ loss is used to
train the ML model in an end-to-end process, considering the
impact of forecast inaccuracies on the downstream decisions.
This paper brings the following contributions :

1) We propose a DFL framework for the day-ahead
scheduling of a consumer optimizing jointly its partic-
ipation to the day-ahead energy-only market and the
reserve capacity market. The prices of the energy-only
market are predicted by a Recurrent Neural Network
(RNN) using Long-Short Term Memory (LSTM) units.
In contrast to the conventional PTO approach, the fore-
caster, i.e., the RNN, considers the downstream opti-
mization problem during its training thanks to the SPO+
loss, which represents an upper-bound of the regret, to
lead to better decisions.

2) We show that initializing the predictor training with a
conventional least-squared-error approach, before start-
ing the Decision-Focused Learning (DFL) method, en-
hances model performance by reducing computation
time and increasing forecast accuracy while maintaining
the quality of decision-making improvements.

The remaining of the paper is organized as follows. Section
II presents the optimization problem and the implementation of
DFL. Then, the performances of DFL are evaluated in Section
III on a realistic case-study using historical data from the
Belgian electricity markets. Section IV concludes the paper
and gives some perspectives for future work.

II. METHODOLOGY

The end-to-end model used by a factory owner for the day-
ahead scheduling of its plant is made up of two parts: (i) the
ML architecture used to forecast the prices for the energy-
only spot market and (ii) the CO problem which optimizes
the consumption profile and the reserve participation. We
start by describing in Subsection II-A the formulation of the
optimization problem. Then, in Subsection II-B, we explain

how it is embedded into the learning of the forecaster thanks
to the SPO+ loss.

A. Optimization problem

A factory owner wants to minimize its electricity cost by
optimizing the power demand of the company and the power
capacity allocated to the secondary reserve, also referred to
as automatic Frequency Restoration Reserve (aFRR). The
objective function of the scheduling problem (1) is made up
of (i) the cost of purchasing electrical power pDA

t for a time
interval ∆t at a price cDA

t as predicted by the forecaster; (ii)
the benefits earned by providing upward and/or downward
power capacity pRPu,d

t at a price cRPu,d
t for the reserve. The

company is assumed to be a price taker, i.e., its actions do not
impact the market clearing prices. An hourly time step (t) is
used to align with the market granularity and the time horizon
of the problem (T ) is 24 hours.

Π = Min
Θ

∑
t∈T

[cDA
t pDA

t ∆t︸ ︷︷ ︸
(i)

− cRPu
t pRPu

t − cRPd
t pRPd

t︸ ︷︷ ︸
(ii)

] ∀t (1)

The objective function (1) involves several assumptions.
First, the day-ahead energy and reserve markets are jointly
cleared for the 24 hours of the next day. While the day-
ahead electricity prices cDA

t are predicted with a forecaster, the
reserve capacity procurement prices cRPu,d

t are assumed to be
perfectly known. Lastly, the reserve activation remuneration is
supposed to offset exactly the operating costs associated with
this reserve activation.

The feasible region Θ of the decision variables is subject
to a set of market-based and technical constraints.∑

t∈T

(
pDA
t − P exp

t

)
= 0 (2)

∑
t∈T

(
pRPu
t − pRPd

t

)
= 0 (3)

0 ≤ pRPu,d
t ≤ PRPmax ∀t (4)

Pmin
t + pRPu

t < pDA
t < Pmax

t − pRPd
t ∀t (5)

pDA
t−1 − pDA

t ≤ ∆down ∀t (6)

pDA
t − pDA

t−1 ≤ ∆up ∀t (7)

First, the total power consumption over the day pDA
t must

match the expected consumption P exp
t (2) which is associated

with a production target of the factory that must be fulfilled.
In the same perspective, the symmetrical participation in both
reserve products is enforced by (3). The capacity allocated to
the reserve markets is limited by PRPmax (4), ensuring that
the power offer complies with the technical requirements of
the factory (i.e., 7.5 min for the secondary reserve). Then,
the power demand pDA

t must respect the flexibility bounds
(Pmax

t and Pmin
t ) while considering the reserve participation

(5). Finally, the ramping capabilities (∆up and ∆down ) of
the factory limit the changes in power demand between two
consecutive time steps (6) and (7).



B. DFL implementation

In order to predict the prices of the spot market cDA for
the following day, a ML tool m with parameters ω is used.
From a DFL perspective, any ML architecture can be used as
long as the relationship between its output and its parameters
is differentiable. This is not limiting since it includes all the
neural networks. The general form of the prediction model can
be written as :

ĉDA = mω(z) (8)

The predictions ĉDA are made using past day-ahead prices
z as input features. The ML model m can be trained and
its parameters ω tuned with an appropriate loss function and
a stochastic gradient descent. The key change introduced by
DFL — compared to conventional PTO methods — lies in
the definition of the loss function, sometimes referred to as
the regret r (9). It incorporates the influence of the predicted
parameters ĉDA on the decisions of the optimization problem.
For the sake of simplicity, ĉ denotes the parameters of the CO
objective, including the predicted electricity prices ĉDA and the
other known costs cRPu,d, while c represents the true prices
of both markets. Then, p∗(ĉ) represents the optimal value of
the decision variables (pDA

t , pRPu,d
t ) based on predicted prices

and p∗(c) corresponds to the optimal decisions based on true
prices. Finally, f(·) is the objective function minimized in the
optimization problem (1).

r (p∗(ĉ), c) = f (p∗(ĉ), c)− f (p∗(c), c) (9)

The regret is defined as the degradation of the objective due
to the inaccuracies on the predicted parameters ĉ compared to
the fully informed case f(p∗(c), c). Fig. 2 illustrates the use
of the regret r in a DFL approach (red) to train the ML model
compared to PTO (orange), which is based on a MSE loss.

To update the ML model parameters ω via stochastic gradi-
ent descent, the partial derivative of the regret with respect to ω
must be computed. As depicted in equation (10), this derivative
can be expressed using the chain rule of differentiation.

∂ r (p∗(ĉ), c)

∂ω
=

∂ r (p∗(ĉ), c)

∂p∗(ĉ)

∂p∗(ĉ)

∂ĉ

∂ĉ

∂ω
(10)

The challenge of this operation lies in the second factor of
the right-hand side. The derivation of the optimal decision
p∗(ĉ) with respect to the predicted parameter ĉ is not straight-
forward. The optimization problem generates this mapping
ĉ→p∗(ĉ), which may be discontinuous or non-differentiable,
for instance, in linear programs. One suggestion to overcome
this difficulty is to differentiate a surrogate loss function which
constitutes an upper bound of the regret. Elmachtoub and
Grigas defined such a function entitled ”Smart Predict, then
Optimize” (SPO+) [7] :

SPO+(ĉ, c) = max
p∈Θ

{c ⊤p− 2ĉ ⊤p}+ 2ĉ ⊤p∗(c)− c ⊤p∗(c)

(11)
Minimizing the SPO+ loss corresponds to minimizing an
upper bound of the regret. This framework applies to any
CO problem whose predicted parameters appear linearly in

Fig. 2. Training process as decision-focus learning (red) or predict-then-
optimize (orange).

the objective function. In this definition, Θ is a compact (i.e.,
closed and bounded) and convex feasible region. The SPO+
definition relies on the fact that the regret is impervious to the
scaling of ĉ, which can be replaced by αĉ ∀α. To update the
ML model parameters, the derivative of the SPO+ function is
required. To that end, a subgradient of the SPO+ loss is used :

−2 p∗(2ĉ− c) + 2 p∗(c) ∈ ∂SPO+(ĉ, c)

∂ĉ
(12)

III. CASE STUDY

In this paper, a large electricity consumer aims at optimizing
its power demand by predicting the electricity prices and
solving a day-ahead scheduling problem. The company has
a daily production target which requires a precisely defined
amount of energy. Nevertheless, the hourly load can be shifted
throughout the day as long as it lies within the flexibility
range centered around the expected consumption profile. Sub-
section III-A first presents the key data of the study, then
the performances of the proposed DFL framework relying
on SPO+ are discussed in Subsection III-B. The conventional
PTO method is used as benchmark. Finally, the relevance of
warm-starting the training of the DFL model with conventional
error minimization training is demonstrated empirically in
Subsection III-C.

A. Data Description

The day-ahead market prices are retrieved from EPEX (Eu-
ropean Power Exchange) SPOT for the year 2023. Over that
period, electricity prices fluctuate hourly from -120 C/MWh to
330.36 C/MWh with an average of 97.27 C/MWh. Remuner-
ation for allocating upward or downward reserve capacity is
retrieved from the Belgian TSO website, Elia [10]. The upward
reserve prices range from 0 C/MW to 172.11 C/MW, hovering
around 39.01 C/MW on average. The downward reserve prices
fluctuate between 0 C/MW and 153.17 C/MW with an average
of 11.46 C/MW. The maximum power demand of the company
is 50 MW and the consumption flexibility involves reducing
or increasing planned consumption within a range of 20 to
30%.



The forecaster is an LSTM network, built with PyTorch
and trained via stochastic gradient descent using the Adam
optimizer [11]. The network is made up of one hidden layer
of 20 neurons. The ML tool aims at predicting the electricity
prices for the coming day based on observation data available
at the time of prediction (i.e., past day-ahead prices), using
a look-back window of 3 days. In this application, LSTM
is used as it can efficiently capture temporal dependencies
[12]. The optimization model is implemented in Python, using
Pyomo, and is solved with Gurobi. The PyEPO library is used
to implement SPO+ loss [13]. The simulations were conducted
on a personal computer setup running Windows 11 with RAM
32Go, CPU Intel Core I7-13700HX (2.1GHz).

B. Model Performances

The performances of the model trained in a DFL fashion
with the SPO+ loss are compared to a PTO approach. The
latter uses a MSE loss to train the forecaster without consider-
ing the downstream optimization problem. For both methods,
the dataset is randomly split into 80% of training data and
20% of test data. The quality of the decisions made by the
optimization model is evaluated over the 76-day test set using
a relative regret score. The regret assesses the degradation of
the objective due to inaccuracies in predicting the parameter
ĉ compared to the fully informed case (i.e., perfect forecast)
where the actual parameter c is known.

Rel regret(ĉ, c) =
c⊤p⋆(ĉ)− c⊤p⋆(c)

c⊤p⋆(c)
(13)

The statistical accuracy of the predictions ĉ made by the ML
model is evaluated with the relative mean-absolute-error (Rel
MAE) while the quality of the decisions p is evaluated with
the relative regret. The results are reported in Table I.

First, PTO and DFL approaches are compared at their best
training duration, 28 epochs for PTO and 35 for DFL. As
expected, the accuracy of the DFL model, with a Rel MAE of
34.01 %, is lower than the PTO approach (20.58 %). However,
the DFL generates the smallest relative regret (1.61%), reflect-
ing enhanced decision-making compared to the PTO approach
(1.74%). Therefore, DFL allows to take better decisions at the
expense of the statistical accuracy of the uncertain parameter
forecast. Regarding training time, the DFL is significantly

TABLE I
COMPARISON OF DFL AND PTO APPROACHES

Epochs Rel MAE [%] Rel regret [%] Time [s]

PTO

5 23.68 2.65 1
15 21.54 2.14 3
25 20.87 1.85 5
28 20.66 1.74 6
35 20.58 1.80 7

DFL

5 34.65 2.82 30
15 34.68 1.86 171
25 34.28 1.65 209
35 34.01 1.61 242
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Fig. 3. Electricity price predictions using PTO (left) and DFL (right)

Fig. 4. Optimization problem decisions using PTO (left) and DFL (right)

longer (242 s) than the PTO (6 s). This is due to the higher
complexity of the DFL since, for each sample, the optimization
problem must be solved.

Fig. 3 and 4 illustrate these observations for a particular
day of the test set, i.e., December 20, 2023. On the one hand,
the electricity price predictions (blue line) are more accurate
with the PTO approach in Fig. 3. On the other hand, DFL
better captures the changing trend (peaks and valleys) of the
real price (orange line), which is essential to proper decision-
making. Fig. 4 confirms that the model decisions (blue line) are
closer to the optimal ones (orange line) when DFL is applied.
The company can adapt its consumption within flexibility
limits (red lines). For example, the day-ahead electricity price
peaks around 9 am that day. This is precisely identified by
the prediction tool using DFL in Fig. 3, and the downstream
optimization model minimizes the company’s consumption at
this time, as shown in Fig. 4. This is not the case with the
PTO approach, which, due to a prediction error, anticipated
this decrease in the electricity price. On that day, the electricity
bill associated with a perfect price forecast (i.e., oracle) would
be 25,829 C. The classical PTO method results in a 513 C
higher bill (1.95%) while DFL leads to 259 C (1%) more. The
DFL would save 254 C, i.e. almost 1% of the PTO bill.

Table I also displays the performances of both approaches
along the training process. This highlights the limited perfor-
mances of DFL in the early training steps. Indeed, after 5
epochs, in addition to providing more accurate predictions,
the PTO approach gives better decisions. The regret stands
at 2.65 % compared to 2.82 % for DFL. Fig. 5 displays
the evolution of the two training metrics (MSE for the PTO
and regret for the DFL) during the training (red) and testing
(blue) phases as a function of the number of epochs. These
graphs illustrate the slower convergence of the regret in the
early stages of training compared to the MSE loss of the
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Fig. 5. Loss of PTO training (left) and regret of DFL training (right)

traditional PTO method. Table I also highlights the optimal
number of epochs necessary in the training phase. The DFL
method requires more epochs (35) than the PTO approach (28).
In addition, as this integrated approach is more complex, the
training time is considerably longer (242 s) than when training
is based on a classic loss (6 s). These unfavorable indicators
to DFL (Rel MAE, number of epochs and training time) pave
the way for further improving the training strategy, which is
discussed in Subsection III-C.

C. Impact of a Warm Start

Even though better decisions can be achieved thanks to the
DFL, it suffers major drawbacks such as a decrease in the
forecast precision of the uncertain parameters and a higher
training time. A potential strategy to improve the model train-
ing is to perform a Warm Start (WS). Rather than randomly
initializing the parameters of the ML model at the beginning
of the DFL, an initial pre-training phase using a MSE loss
can be employed to initialize the parameters before a fine-
tuning performed by the DFL. To evaluate the influence of a
WS on the performance of the DFL model, Table II shows the
evolution of the training metrics depending on the number of
epochs spent in conventional MSE-based training. The training
phase using the SPO+ loss is proportionally reduced to prevent
overfitting. The first contribution of the WS is a reduction
in the relative MAE from an initial value of 34.01 % to
22.12 % when allocating 25 epochs to the pre-training phase.
This improvement is achieved at the expense of a very slight
increase (from 1.61% to 1.65%) in the regret compared to the
best model using the SPO+ loss alone. However, this increase
is minor and the newly obtained regret (1.65%) remains clearly
below the values of the PTO approach (1.74 %). WS also
positively impacts the computation times, decreasing it up to
one-fourth of the original value (from 242 s to 62 s). Indeed,
the WS combines the advantages of both losses: keeping a
low regret reflecting optimal decisions, while improving the
prediction accuracy and reducing the computation time.

IV. CONCLUSION

DFL is a promising concept for power systems applications.
This paper presents a DFL approach for an electricity price
forecaster feeding the day-ahead scheduling of a consumer
participating in both energy-only and reserve markets. The
company’s electricity demand is flexible and, based on predic-
tions of the day-ahead market, the factory owner can optimize

TABLE II
IMPACT OF A WARM START ON DFL

WS Epochs DFL Epochs Rel MAE [%] Regret [%] Time [s]

0 35 34.01 1.61 242
5 30 29.48 1.69 181
10 25 28.37 1.66 154
15 20 25.57 1.66 128
20 15 22.89 1.64 92
25 10 22.12 1.65 62

its consumption and reserve participation. We use the SPO+
loss to train the ML model while considering the impact
of forecast inaccuracies on the scheduling tool decisions.
Compared to a classical PTO approach, the end-to-end training
introduced by DFL enhances the decisions of the optimization
problem to the detriment of prediction accuracy. With DFL,
the forecaster focuses on the overall trend of the predicted
parameters and captures its peaks and valleys accurately thus
leading to better decisions. We demonstrate that warm-starting
the training of the DFL model with conventional MSE training
improves the model performances in terms of prediction
quality and computation speed with a minor impact on the
decision enhancement. Our future research will investigate
other methods combining prediction and optimization tools
to overcome the limiting assumptions of SPO+ loss such as
the linearity of the objective function and the inability to have
predicted parameters in the constraints.

REFERENCES

[1] D. den Hertog and K. Postek, ”Bridging the gap between predictive
and prescriptive analytics-new optimization methodology needed,” 2016.
[Online]. Available: https://optimization-online.org/2016/12/5779/

[2] J. Mandi, J. Kotary, et al., ”Decision-focused learning: Foundations, state
of the art, benchmark and future opportunities,”, Report, arXiv preprint
arXiv:2307.13565, 2023.

[3] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond and J. Z.
Kolter, ”Differentiable convex optimization layers,” Advances in neural
information processing systems, 32, 2019.

[4] J. Kotary, M. Dinh and F. Fioretto, ”Backpropagation of unrolled solvers
with folded optimization,” Report, arXiv preprint arXiv:2301.12047,
2023.

[5] M. Vlastelica, A. Paulus, V. Musil, G. Martius and M. Rolinek, ”Differ-
entiation of blackbox combinatorial solvers”, International Conference
on Learning Representations, p.1, 2019.

[6] Q. Berthet, M. Blondel, O. Teboul, M. Cuturi, J.PI Vert, F. Bach,
”Learning with differentiable perturbed optimizers,” Advances in neural
information processing systems 33, p.9508–9519, 2020

[7] A. N. Elmachtoub and P. Grigas, ”Smart “predict, then optimize,”
Management Science, 68(1), p.9–26, 2022.

[8] D. Wahdany, C. Schmitt and J.L. Cremer, ”More than accuracy: end-to-
end wind power forecasting that optimises the energy system,” Electric
Power Systems Research, 221:109384, 2023.

[9] L. Sang, Y. Xu, H. Long, Q. Hu and H. Sun, ”Electricity price prediction
for energy storage system arbitrage: a Decision-Focused approach,”
IEEE Transactions on Smart Grid, vol. 13, no. 4, p.2822-2832, 2022.

[10] Open Data Elia, 2024. [Online], https://opendata.elia.be/pages/home/
[Accessed: 19-Feb-2024].

[11] D.P. Kingma and J. Ba, ”Adam: a method for stochastic optimization,”
Report, arXiv preprint arXiv:1412.6980, 2014.

[12] E. Popovska and G. Georgieva-Tsaneva, ”Day-ahead electricity price
forecasting using long-short term memory recurrent neural network,”
Innovative STEM Educ, 4: 139–148, 2022.

[13] B. Tang and E.B. Khalil, ”Pyepo: A pytorch-based end-toend predict-
then-optimize library for linear and integer programming,” Report, arXiv
preprint arXiv:2206.14234, 2022.


