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Abstract

Higher spin gravities do not have a low energy limit where higher-spin fields decouple

from gravity. Nevertheless, it is possible to construct fine-tuned exact solutions that

activate low-spin fields without sourcing the higher-spin fields. We show that BPST

(Belavin-Polyakov-Schwartz-Tyupkin) instanton is an exact solution of Chiral Higher Spin

Gravity, i.e. it is also a solution of the holographic dual of Chern-Simons matter theories.

This gives an example of a low-spin solution. The instanton sources the opposite helicity

spin-one field and a scalar field. We derive an Effective Field Theory that describes the

coupling between an instanton and the other two fields, whose action starts with the

Chalmers-Siegel action and has certain higher derivative couplings.
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1 Introduction

Higher Spin Gravities (HiSGRA) are theories with massless higher-spin fields, which, as a

matter of fact, also include low-spin fields, in particular, the graviton as spin-two (the highest

low-spin field), see e.g. [1] for an overview. Masslessness is in a long-term tension with having

higher-spin fields in the spectrum, which resolves in having either somewhat peculiar HiSGRAs

or somewhat incomplete models.1 Perturbatively local HiSGRAs are: topological 3d theories

that extend 3d (conformal) gravity to higher spins [2–9], conformal HiSGRA [10–13] and Chiral

HiSGRA [14–18]. Very close to the latter two is a higher spin extension of IKKT [19–21].2

One of the fundamental questions about any theory is the structure of the solution space.

The only set-up where constructing exact solutions is not hampered by non-locality and studied

in the literature has so far been in three dimensions [22–25] where the matter-free HiSGRAs

can always be formulated as Chern-Simons theories. Therefore, the solutions are characterized

by holonomies. Some exact solutions have also been studied for the HS-IKKT model [26–28].

One of the general features of HiSGRAs is “spin democracy”, i.e. fields of all spins s =

0, ...,∞ are equally important members of a single higher spin multiplet. No preference is

made even for spin-two, which within general relativity and its low-spin extensions is the one to

determine spacetime geometry. A higher spin transformation can activate/deactivate individual

spins, e.g. one can nullify any given one. This can lead to confusing effects, e.g. what looks

like a black hole metric with a horizon can be mapped to something that is not [22]. Therefore,

any physical interpretation of solutions should rely on observables that are stable under higher

spin transformations (at least the small ones). Such a characterization has been achieved in

3d with the help of holonomies. However, extension to higher dimensions is not obvious, but a

natural idea is to rely on the invariants of higher spin symmetry [29, 30].

A related property is that HiSGRAs do not have a dedicated coupling constant to measure

the strength at which the higher spins couple to low spins including gravity. As a result, it is

not obvious that low-spin solutions can even exist. By default, any spin can serve as a source

to any other spin, which is also the case for Chiral HiSGRA.

There can be several reasons to look for solutions of Chiral theory: (i) this is the only

1This can be argued to be related to the complexity of the quantum gravity problem since any higher spin

gravity should be free of UV divergences thanks to the higher symmetry associated with massless higher spin

fields. Therefore, such models should not be too easy to construct. It seems that all perturbatively local

HiSGRA are consistent with this folklore at present.
2Its gauge symmetry is the same as for 4d conformal HiSGRA and it features certain truncations that overlap

with those of Chiral HiSGRA. It is a non-commutative field theory, though.
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perturbatively local theory with propagating massless fields, i.e. the usual field theory concepts

apply; (ii) it should be a consistent truncation of the dual of Chern-Simons matter theories [31]

and, hence, all solutions of Chiral theory are also solutions of this bigger yet unknown theory;

(iii) the relation to twistors, to self-dual Yang-Mills and self-dual gravity theories as well as the

integrability of Chiral theory [32–35] should allow for a complete description of the solution

space.

In the present paper we ask whether the famous BPST instanton [36] is an exact solution

of Chiral theory. The answer is yes and we show how to embed the BPST instanton into u(2)-

gauged Chiral theory. The spectrum of Chiral theory is given by massless fields of all spins.

It can be extended by gauging u(N) Yang-Mills symmetry, after which all fields take values in

u(N). Note that there is no su(N)-gauging in Chiral theory. Restricting to N = 2 one can see

that the BPST instanton solves one of the Chiral theory’s equations provided all higher-spin

fields are set to zero. We can assign ’helicity’ +1 to the instanton. It is clear from the action in

the light-cone gauge and from the equations of motion that it should source the su(2)-singlet

scalar field and an su(2) helicity −1 field. Thanks to the so(4) symmetry of the solution all

sources to higher-spin fields vanish.

We also construct a simple Effective Field Theory (low-spin truncation) for su(2) helicity ±1

fields and a singlet scalar that begins with the Chalmers-Siegel action for self-dual Yang-Mills

theory [37] and features two higher derivative couplings between them. The exact solution of

Chiral HiSGRA we found is also a solution of this simple EFT. The EFT has one coupling

constant whose value is fixed by the higher-spin symmetry.

The outline is as follows. A short introduction into BPST instanton is in Section 2. In

Section 3 we discuss the EFT and its solutions, which will be shown only later, in Section 6, to

result from Chiral HiSGRA. The self-dual Yang-Mills theory, whose solution the instanton is,

is recast into a specific language of Free Differential Algebras in Section 4, which is needed to

facilitate its embedding into Chiral theory. After a brief overview of the gears of Chiral theory

in Section 5 we proceed to embedding BPST instanton into the theory in Section 6. Discussion

and conclusions can be found in Section 7.

2 BPST instanton

In this Section we review the BPST instanton [36] to recast it into the form most suitable for

embedding into chiral higher spin gravity. We will use capital letters from the middle-end of the

alphabet P,Q,R to denote the su(2)-indices and the usual A,B,C, . . . and A′, B′, C ′, . . . for the
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two representations of the Lorentz algebra, which is sl(2,C), su(2)⊕su(2) and sl(2,R)⊕sl(2,R)

for the Minkowski, Euclidian and split signatures.3

Let A ≡ AP
Q ≡ dxBB′

AP
Q
|BB′ be an su(2)-connection.4 The field strength F = dA−AA ≡

dAP
R −AP

Q ∧AQ
R can be decomposed into self-dual and anti-self-dual components

F = FAA′|BB′dxAA′

∧ dxBB′

, FAA′|BB′ = 1
2
ǫABFA′B′ + 1

2
ǫA′B′FAB , (2.1)

where FAB ≡ FAC′|B
C′

, idem. for FA′B′ . The simplest possibility to get su(2)-indices entangled

with the spacetime ones reads

APP = f(x2) xP
C′ dxPC′

. (2.2)

One can also check that the ansatz satisfies the Lorentz gauge ∂AA′ABB|AA′

= 0. The same can

be rewritten as

APP = ∂P
C′ g(x2) dxPC′

, (2.3)

and it is also convenient to think that g = log p. Thanks to the translation invariance one can

replace x with r = x− a in these formulas. We will often use ρ ≡ r2 ≡ 1
2
rAA′rAA′

. This way, in

components, we find APP |AA′ = −ǫPArPA′g′. For the two terms in the field strength we find

dAPP = 1
2
�g d2xPP − 1

2
∂P

M ′ ∂P
M ′ g d2xM ′M ′

, (2.4)

APQAQ
P = −1

2
(∂g)2 d2xPP − 1

2
∂P

M ′ g∂P
M ′ g d2xM ′M ′

. (2.5)

Therefore, the self-duality condition is equivalent to

�g + (∂g)2 = 0 , (2.6)

and with g = log p becomes simply �p = 0. One of the standard choices is

p = 1 +
L2

r2
, (2.7)

3Most of the formulas look the same in all signatures, but the BPST instanton is a solution of the Euclidian

Yang-Mills theory.
4We use the same rules to raise/lower su(2) indices as for the space-time indices, e.g. vA = ǫABvB, vB =

vAǫAB. If we raise the index on AP
Q we find APQ = AQP . We sometimes suppress the su(2)-indices whenever

no confusion can arise. We also use/define ∂AC′∂B
C′

= ǫAB�, i.e. ∂CC′∂CC′

= 2�. The indices in which a

tensor is symmetric or that are to be symmetrized are often denoted by the same letter. The symmetrization

is defined to be a projector, i.e. one needs to divide by the number of permutations. Lastly, thanks to A = 1, 2

we have dxAA′

∧ dxBB′

= 1
2ǫ

A′B′

d2xAB + 1
2ǫ

ABd2xA′B′

, where d2xAB ≡ dxA
C′ ∧ dxBC′

.
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where L is the size of the instanton. This is usually called a solution in the singular gauge.

Now, we can check what is left in the field strength

F = 1
2
d2xBBFBB + 1

2
d2xB′B′

FB′B′ . (2.8)

The anti-self-dual component is the only survivor and it reads

F PP
|M ′M ′ = −∂P

M ′ ∂P
M ′ g + ∂P

M ′ g∂P
M ′ g = rPM ′ rPM ′ χ0 , (2.9)

where we defined χ0 = (−g′′ + (g′)2). Now, one can compute the Yang-Mills action

−

∫

Tr[FM ′M ′FM ′M ′

] =

∫

FPP |M ′M ′F PP |M ′M ′

=

∫

2πr3 dr 3(r2)2(χ0)
2 = 2π . (2.10)

This summarizes what one needs to embed the instanton into Chiral theory.

3 EFT of BPST instanton from HiSGRA

Chiral theory’s spectrum contains massless fields of all spins, i.e. the degrees of freedom that

correspond to massless fields with helicities from −∞ to +∞. We consider its u(2)-gauged

version where all fields take values in u(2). The BPST instanton activates, say, the helicity +1

component of the higher spin multiplet, which is associated with APP . We will also find that

it induces some source for the helicity −1 field and for the scalar field that is an su(2)-singlet.

Therefore, at least these two fields must not vanish. We can ask what kind of an effective

theory (EFT) describes this subsector of Chiral theory. The answer to this question, given in

this Section, will be justified later. Let us add also that the EFT here is a truncation of Chiral

theory in the sense of dropping all higher-spin fields (including the low-spin sources). It will also

have more coupling constants since various interactions can now be considered independent.

Let us start with the Chalmers-Siegel action for self-dual Yang-Mills theory (SDYM). The

dynamical fields are: a zero-form ΨAB = ΨBA that takes values in the adjoint of su(2), i.e.

ΨAA ≡ ΨPP |AA if we reveal the su(2)-indices; the familiar one-form su(2)-connection A ≡ APP .

The Lagrangian reads

L[A,Ψ] = Tr[ΨABFAB(A)] , (3.1)

where Tr[XY ] ≡ XP
Q Y Q

P for some su(2)-valued X and Y . Upon varying with respect to

ΨAB we get the self-duality condition FAB = 0, whose solutions are instantons. Upon varying

with respect to A we get

∇M
A′

ΨAM = 0 , (3.2)
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where ∇ = d − A is the su(2)-covariant derivative, e.g. [A,Ψ]PP = 2APQΨQ
P . The the

Chalmers-Siegel action describes propagation of the helicity −1 field over the background cre-

ated by the positive helicity field A.

The EFT that describes a subsector of Chiral theory relevant for the BPST instanton

contains in addition to ΨAB and A an su(2)-singlet scalar field φ. The complete Lagrangian

reads

L[A,Ψ, φ] = Tr[ΨABFAB(A)] +
1
2
φ�φ+

+ κ1φTr[FA′B′(A)FA′B′

(A)] + κ2Tr[FA′

B′

FA′B′

FB′B′ ] .
(3.3)

Here κ1,2 are two coupling constants. Having color indices is very important for the last term

to exist. The equations of motion read

FAB(A) = 0 , (3.4a)

�φ = −κ1Tr[FA′B′FA′B′

] , (3.4b)

∇B
A′

ΨAB = 2κ1∇
AB′

φFA′

B′ + 3κ2[FB′B′(A),∇AA′

FB′B′

(A)] . (3.4c)

Note that ∇AA′

FB′B′

(A) is symmetric in all primed indices thanks to the Bianchi identities.

The commutator, [•, •], means the matrix commutator, [X, Y ] ≡ XP
Q Y Q

R − Y P
QXQ

R . If

we keep the output indices on the same level and both X , Y are in the adjoint of su(2) (no

singlet), we get [X, Y ]PR ≡ 2X(P |QY Q
R) .

If the EFT equations (3.4) are considered non-Lagrangian, then we have three coupling

constants, of which two can be fixed at will by rescaling Ψ and φ. Restricting to the Lagrangian

case, one cannot change the ratio κ = κ2
1/κ2, so this is the genuine parameter of the model. In

Chiral theory the value of κ is fixed by the higher-spin symmetry, but it makes sense to unlock

it for the time being.

Solution. Let us solve the EFT starting with the BPST instanton. The scalar equation

acquires the following form

�φ = −κ1Tr[FA′B′FA′B′

] = 3κ1(r
2)2(χ0)

2 . (3.5)

Assuming φ = φ(ρ ≡ r2), the most general solution is

φ =
2κ1L

4

ρ (L2 + ρ)2
−

cs
ρ
+ c2 . (3.6)

It has especially nice form for cs,2 = 0 and c2 = 0, cs = 2κ1

φ =
2κ1L

4

ρ (L2 + ρ)2
, φ = −

2κ1 (2L
2 + ρ)

(L2 + ρ)2
. (3.7)
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To proceed further, we need

∇MM ′FPP |A′A′ = ∂MM ′FPP |A′A′ − 2AP
Q
|MM ′ FQP |A′A′ = rPA′

rPA′

rMM ′

χ1 , (3.8)

where χ1 = χ′
0 − g′χ0 and we used

APP |AA′ = −εPArPA′g′ . (3.9)

With ∇MM ′

φ(ρ ≡ r2) = rMM ′

φ′ and assuming ΨPP |AA = ǫPAǫPAf2(ρ) we get for (3.4c)

ǫPArPA′

: f ′
2 − 2g′f2 = 2κ1r

2φ′χ0 − 4κ2(r
2)2χ0χ1 , (3.10)

which is a scalar equation since all terms feature the same spin-tensor structure displayed on

the left. The general solution reads

f2 =
4κ1csL

2

3ρ2 (L2 + ρ)
−

8κ2
1L

6 (4L2 + 9ρ)

15ρ2 (L2 + ρ)4
−

4κ2L
4 (6L2ρ+ L4 + 15ρ2)

5ρ2 (L2 + ρ)4
+

c1 (L
2 + ρ)

2

ρ2
. (3.11)

There is a special point in the parameter space, c1 = 0, cs = 2κ1, κ2 = κ2
1/3, where the solution

drastically simplifies:

f2 =
8κ2

1L
2ρ

3 (L2 + ρ)4
. (3.12)

Light-cone gauge/spinor-helicity. It is not hard to derive this EFT, (3.3), by looking at

the action of Chiral theory in the light-cone gauge and assuming that only helicities 0, ±1 can

participate. In flat space and in the light-cone gauge the action has cubic interactions only and

reads

S =
∑

s≥0

∫

Φ−s�Φs +
∑

λ1,2,3

lλ1+λ2+λ3−1
p

Γ[λ1 + λ2 + λ3]

∫

Vλ1,λ2,λ3Φλ1Φλ2Φλ3 , (3.13)

where Φλ is a ’scalar’ representing the helicity λ degree of freedom. Here, lp is a coupling

constant with the dimension of length. On-shell the vertices reduce to the well-known spinor-

helicity expression

Vλ1,λ2,λ3

∣

∣

∣

on-shell
∼ [12]λ1+λ2−λ3 [23]λ2+λ3−λ1 [13]λ1+λ3−λ2 . (3.14)

Restricting to ±1 and 0 subsector we find the following in (3.14) that matches (3.3). The

vertices must have the total helicity positive and, hence, we can have V0,0,1, V0,1,1, V1,1,−1 and

V1,1,1. The first option, V0,0,1, which is the current interaction, cannot be realized for a singlet

6



scalar field. V1,1,−1 is the half of the Yang-Mills vertex that is present in SDYM, it is captured

by the cubic part of the first term in L (3.3). V0,1,1 is the κ1-term and V1,1,1 is the κ2-term. Note

that the kinetic term of the Chalmers-Siegel action contracts +1 to −1, i.e. the equation for Ψ

are obtained by varying with respect to A and other way around. Also, sum of the helicities in

a vertex is equal to the number of derivatives in the corresponding covariant vertex.

It is important to realize that low-spin fields do source higher-spin fields, in general. The

sources, as we will show later, vanish on the BPST instanton, but do not have to vanish on other

solutions of the EFT. It would be interesting to probe the EFT with a generic ADHM-instanton

[38].

4 BPST as a Free Differential Algebra

Chiral theory’s covariant equations of motion are formulated as a Free Differential Algebra

(FDA) [39–42] or in the AKSZ-form [43]. Any (gauge) theory can be written in such a form

[44, 45], but usually it is not needed and is also hard to do explicitly. The price to pay is to

introduce infinitely-many auxiliary fields. The FDA for SDYM was found in [46] and we repeat

some of the main steps in the derivation to make the paper self-contained.5

As the first step the self-duality condition can be rewritten as6

dAPP − APM ∧AM
P = −1

2
dxBA′ ∧ dxB

A′ CPP |A′A′

. (4.1)

It implies that FAB = 0, but has an auxiliary fields CA′A′ as a plug to account for the fact that

FA′B′ does not have to vanish. Basically, CA′A′ ∼ FA′A′ , to be precise CA′A′ = −FA′A′ . As a

result, CA′A′ satisfies the Bianchi identities ∇A
M ′ CA′M ′

= 0, which can be reformulated in a

more positive way as

∇CA′A′

= dxMM ′CM,A′A′M ′

, (4.2)

where CA,A′A′A′

is an irreducible spin-tensor, as the notation suggests. This is a consequence

of the Bianchi identity. One can hit the last formula with ∇ to get a constraint on ∇CA,A′A′A′

,

which can be solved with the help of another auxiliary field and so on. Starting from this point

the equations become nonlinear, but the nonlinearities do not get worse than bilinear in the

5Another example is the self-interacting scalar field [47, 48].
6The numerical factor of −1/2 does not have any physical significance and is only there to agree with what

emerges from Chiral theory.
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fields C. The final result of this procedure [46] reads (see Appendix A for more details)

dCA(k),A′(k+2) =
[

A,CA(k),A′(k+2)

]

+ dxBB′

CA(k)B,A′(k+2)B′

+

k−1
∑

n=0

(k+2)!
(n+1)!(k−n−1)!(k+1)(k−n+1)

dxA
B′

[

CA(n),A′(n+1)B′ , CA(k−n−1),A′(k−n+1)

]

. (4.3)

The complete set of fields is thereby given by A and CA(k),A′(k+2). Sticking to the free limit, i.e.

dropping the bilinear terms, we simply get

dCA(k),A′(k+2) = dxBB′

CA(k)B,A′(k+2)B′ (4.4)

or, in components,

∂MM ′CA(k),A′(k+2) = CA(k)M,A′(k+2)M ′ . (4.5)

Therefore, the k > 0 auxiliary fields parameterize higher derivatives of the anti-self-dual field

strength CA′A′, i.e. CA(k),A′(k+2) = ∂AA′ ...∂AA′CA′A′, which, hopefully demystifies the specific

choice of auxiliary fields. All other derivatives of CA′A′ , e.g. �CA′A′, vanish on-shell.

In order to solve (4.3) we rewrite it as components for dxBB′

:

∂BB′CCC|A(k),A′(k+2) = 2AC
D
|BB′ CCD|A(k),A′(k+2) + CCC|A(k)B,A′(k+2)B′

+ 2

k−1
∑

n=0

(k+2)!
(n+1)!(k−n−1)!(k+1)(k−n+1)

εBACC
D
|A(n),A′(n+1)B′ CCD|A(k−n−1),A′(k−n+1) .

At this point it is useful to introduce a generating function for all CPP |A(k),A′(k+2) as

CPP =
∞
∑

k=0

lk+2

k! (k + 2)!
CPP |A(k),A′(k+2) y

A...yA ȳA
′

...ȳA
′

, (4.6)

where l has the unit of length to account for the fact that the k-th field is the k-th order

derivative of CPP |A′A′. With the help of the symmetries of the BPST instanton it is easy to

conclude that

CAA|A(k),A′(k+2) = (k + 2)! (rAA′)k+2 hk . (4.7)

for some hk(r
2). The over-determined system for hk that follows from (4.3) can be solved, see

Appendix A, to give

CAA|A(k),A′(k+2) = (rAA′)k+2 (−1)k+1 (k + 2)!
L2

r2 (L2 + r2)k+2
, (4.8)

and, hence, the generating function reads

CPP = −l2L2

r2(L2+r2)2

(

rPB′ ȳB
′
) (

rPC′ ȳC
′
)

e
−l

L2+r2
rBB′yB ȳB

′

. (4.9)

A simpler way of solving this system will be presented in Section 6 and relies on some higher-spin

techniques, which can, in principle, be avoided here.
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5 Chiral Higher Spin Gravity

To begin with, the main difference is that the standard approach to higher spin fields where the

main field variables are Fronsdal fields, Φµ1...µs
, should be replaced with the chiral description

that originates naturally from twistor theory [49, 50]. In the latter approach positive and

negative helicities are treated in a different way. Free massless fields with s > 0 require a one-

form ωA(2s−2) ≡ ω
A(2s−2)
µ dxµ that is a totally symmetric rank-(2s−2) spin-tensor of the Lorentz

algebra and a zero-form ΨA(2s) that is a symmetric rank-2s spin-tensor. The free action can

be thought of as a straightforward generalization of the Chalmers-Siegel action [37] to higher

spins and it reads [51]

S =

∫

ΨA(2s) ∧ eAB′ ∧ eA
B′

∧ ∇ωA(2s−2) , (5.1)

where eAA′

≡ eAA′

µ dxµ is the background vierbein. The action enjoys a gauge symmetry

δωA(2s−2) = ∇ξA(2s−2) + eAC′ ηA(2s−3),C′

, δΨA(2s) = 0 , (5.2)

where ξA(2s−2) and ηA(2s−3),C′

are zero-forms. ∇ is the Lorentz covariant derivative on any

self-dual background. The equations of motion obtained from (5.1) read

∇ΨA(2s) ∧HAA = 0 , HAA ∧ ∇ωA(2s−2) = 0 , (5.3)

where we defined HAA = eAB′ ∧ eA
B′

.

Free FDA. The equations of motion resulting from the action (5.1) can be rewritten in the

FDA form, which requires an appropriate set of auxiliary fields. The latter can be packaged

into two generating functions7

ω(y, ȳ) =
∑

n+m=even

1
n!m!

ωA(n),A′(m) y
A...yA ȳA

′

...ȳA
′

,

for one-forms and

C(y, ȳ) =
∑

n+m=even

1
n!m!

CA(n),A′(m) y
A...yA ȳA

′

...ȳA
′

,

7This set of fields was proposed in [52] to describe FDA of Fronsdal fields. Even though the dynamical fields

and the equations are different now, the set of auxiliary fields covers the same space, which is not surprising

since it is determined by the physical degrees of freedom.
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for zero-forms. The dynamical fields ΨA(2s) (together with the scalar field φ = ΨA(0)), ωA(2s−2)

are identified with C(y, ȳ = 0) and ω(y, ȳ = 0), respectively. The free equations read [53]

∇ω = −2eBB′

yB∂̄B′ ω − 2eA
B′

∧ eAB′

∂̄B′ ∂̄B′C(y = 0, ȳ) , (5.4a)

∇C = 2eBB′

∂B ∂̄B′ C , (5.4b)

where ∇eAA′

= 0 is the background vierbein and ∇2 = 0, i.e. it describes the flat space. Note

that the fluctuation ω does also contain the spin-two sector, which includes a perturbation of

the vierbein, ωA,A′. To some extent the Fronsdal fields are still present in the system and are

associated with the totally-symmetric component of the higher-spin vierbein

Φµ1...µs
= ω

A(s−1),A′(s−1)
(µ1

eµ2|AA′...eµs)|AA′ . (5.5)

The following diagram shows how fields ’talk’ to each other at the free level

#A

#A′

one-forms, ω

zero-forms, C

ωA(2s−2)

ΨA(2s), λ = −s Weyl tensor

CA′(2s), λ = +s Weyl tensor

ωA′(2s−2)

V(e, e, C)-cocycle

Figure 1: The picture illustrates where positive/negative helicity fields reside together with

their auxiliary fields. The dynamical fields are zero form ΨA(2s) and one-form ωA(2s−2). The

former has an infinite set of zero-form auxiliary fields denoted by the red boxes. The latter has

a finite set of auxiliary one-forms denoted by the green bullets that is later joined by an infinite

set of zero-forms denoted by the green boxes. Conventionally, positive helicity fields, λ = +s,

are shown in green and the negative helicity fields are shown in red. The links between fields

are due to the free equations of motion that relate derivative of one to another one.

Interactions correspond to certain deformations of these free equations that are formally

consistent (hence, gauge invariant) and obey locality (hence, make sense). The most general
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ansatz reads

dω = V(ω, ω) + V(ω, ω, C) + V(ω, ω, C, C) + ... , (5.6a)

dC = U(ω,C) + U(ω,C, C) + ... . (5.6b)

Here, we assumed that the free equations (5.4) result from linearization of the equations above,

hence, for example, the background vierbein eAA′

can be absorbed into the full master-field ω.

The free equations (5.4) impose certain boundary conditions on the first three vertices:

V(e, ω) + V(ω, e) ∼ eBB′

yB ∂̄B′ω , (5.7a)

U(e, C) + U(C, e) ∼ eBB′

∂B ∂̄B′C , (5.7b)

V(e, e, C) ∼ eB
C′

eBC′

∂C′∂C′C(y = 0, ȳ) . (5.7c)

Here, e = eAA′

yAȳA′. In order to systematically introduce interactions we need the efficient

language of symbols of operators.

Poly-differential operators. Vertices V and U encode certain contractions of indices of

their arguments, e.g.

V(ω, ω, C, ..., C) =
∑

yA...yA ωA(...)
B(...)M(...)... ∧ ωA(...)B(...)

N(...)C
A(...)N(...)...... , (5.8)

where we omitted ȳ. It is convenient to represent such structures via poly-differential operators

V(f1, ..., fn) = V(y, ∂1, ..., ∂n) f1(y1)...fn(yn)
∣

∣

∣

yi=0
. (5.9)

We prefer to work with the corresponding symbols, obtained by replacing the arguments ac-

cording to yA ≡ pA0 , ∂
yi
A ≡ piA. The Lorentz symmetry requires the symbols to depend only on

pij ≡ pi ·pj ≡ −ǫABp
A
i p

B
j = pAi pjA. These scalars are defined so that exp[p0 ·pi]f(yi) = f(yi+y)

represents the translation operator. We will also use q’s for poly-differential operators in ȳ, e.g.

ȳA
′

≡ qA
′

0 , ∂ȳi
A′ ≡ qiA′ . We usually omit |yi=0 and the arguments of the vertices, writing down

only the corresponding symbols.

For example, the boundary conditions (5.7) can be rewritten in the full form as

V(e, ω) + V(ω, e) ∼ (p01q12) e
p02+q02 (eCC′

y1C ȳ
1
C′)ω(y2, ȳ2)

∣

∣

∣

y1,2=ȳ1,2=0
, (5.10a)

U(e, C) + U(C, e) ∼ (q12p12) e
p02+q02 (eCC′

y1C ȳ
1
C′)C(y2, ȳ2)

∣

∣

∣

y1,2=ȳ1,2=0
, (5.10b)

V(e, e, C) ∼ q13q23p12 e
q03 (eBB′

y1Bȳ
1
B′)(eCC′

y2C ȳ
2
C′)C(y3, ȳ3)

∣

∣

∣

y1,2,3=ȳ1,2,3=0
, (5.10c)

where ∼ implies an unessential numerical coefficient. Here we used the fact that there are no

matrix factors (see below) to bring several components of each vertex into the same ordering.

In what follows we usually display the symbols of operators, but not the arguments.
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Higher Spin Algebra. The first bilinear map defines the higher spin algebra hs

V(f, g) = exp [p01 + p02] exp [q01 + q02 + q12]f(y1) g(y2)
∣

∣

∣

yi=0
≡ (f ⋆ g)(y) . (5.11)

This is just the star-product in ȳ and the commutative product in y.

One feature of Chiral FDA is that we always have just star-product over ȳ variables. More

generally, one can think of fields ω, C as taking values in C[y]⊗B, where B is some associative

algebra. In other words, all vertices have a factorized form

V(f1, ..., fn) = v(f ′
1(y), ..., f

′
n(y))⊗ f ′′

1 ⋆ ... ⋆ f ′′
n , (5.12)

where fi = f ′
i(y) ⊗ f ′′

i , f
′′
i ∈ B. An option to enrich the vertices by any associative algebra

is thanks to the underlying structure being an A∞-algebra, but we will not need any further

details. For ungauged Chiral theory we choose B = A1[ȳ], where A1 is the Weyl algebra. As is

well-known, A1 can be realized as functions in ȳ equipped with the Moyal-Weyl star product, as

above. Yang-Mills gaugings can be added via an additional matrix factor, B = A1[ȳ]⊗MatM .

One can also add supersymmetry via a factor of Clifford algebra, see [54–56].

The dual module. The next bilinear vertex splits into two vertices

U(ω,C) = U1(ω,C) + U2(C, ω) . (5.13)

The A∞-relations imply that zero-forms take values in some bimodule of hs. It turns out that

the zero-forms take values in the dual module. To define the dual action we need to pick some

non-degenerate bilinear form

〈a|u〉 = exp[p12] a(y1) u(y2)
∣

∣

yi=0
. (5.14)

between an hs bi-module M where C takes values and higher spin algebra hs. Then, the dual

module action reads

U1(ω,C) = + exp [p02 + p12] exp [q01 + q02 + q12]ω(y1)C(y2)
∣

∣

∣

yi,ȳi=0
,

U2(C, ω) = − exp [p01 − p12] exp [q01 + q02 + q12]C(y1)ω(y2)
∣

∣

∣

yi,ȳi=0
.

(5.15)

We note that we consider the bosonic theory, i.e. ω and C are even functions. U(ω,C) is just

the action of the commutative algebra on the dual space U1(ω,C)(y) = ω(∂y)C(y), which is by

differential operators.
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V(ω,ω, C). We will not need vertices beyond the cubic ones, see Section 5.2, and those can

be just written down directly. There are 3 structure maps hidden in V(ω, ω, C)8

V(ω, ω, C) = V1(ω, ω, C) + V2(ω,C, ω) + V3(C, ω, ω) . (5.16)

They have a very simple form

V1(ω, ω, C) = +p12

∫

∆2

exp[(1− t1) p01 + (1− t2) p02 + t1p13 + t2p23] ,

V2(ω,C, ω) = −p13

∫

∆2

exp[(1− t2) p01 + (1− t1) p03 + t2p12 − t1p23]

− p13

∫

∆2

exp[(1− t1) p01 + (1− t2) p03 + t1p12 − t2p23] ,

V3(C, ω, ω) = +p23

∫

∆2

exp[(1− t2) p02 + (1− t1) p03 − t2p12 − t1p13] .

where ∆2 is the simplex 0 < t1 < t2 < 1. We have also dropped here the star-product factor

over ȳ, which is

exp [q01 + q02 + q03 + q12 + q13 + q23] . (5.17)

If u(N)-symmetry is gauged, ω and C are considered as matrix-valued fields, ω ≡ ω(y, ȳ)P
R ,

C ≡ C(y, ȳ)P
R , where the matrix factors are multiplied in the way the arguments of the vertices

are written.

U(ω,C,C). Similarly, we have three maps for the second type of cubic vertices

U(ω,C, C) = U1(ω,C, C) + U2(C, ω, C) + U3(C,C, ω) . (5.18)

These maps are not independent of V(ω, ω, C): the A∞-algebra turns out to be of pre-Calabi–

Yau type, which means, in practice, that many structure maps are related via certain duality.

For example, we find

U1(p0, p1, p2, p3) = +V1(−p3, p0, p1, p2) , (5.19a)

U2(p0, p1, p2, p3) = −V2(−p1, p2, p3, p0) , (5.19b)

U3(p0, p1, p2, p3) = −V3(−p1, p2, p3, p0) . (5.19c)

8We slightly abuse notation here: since the structure maps are A∞-maps, the order of the arguments is

important (in case we have Yang-Mills gaugings we cannot permute ω and C at all). Here, V(ω, ω, C) is just

a shorthand notation for all ω2C-type vertices, while the individual structure maps with specific ordering of

arguments are displayed on the right.
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Explicitly we have

U1 = p01

∫

∆2

exp [t1p02 + (1− t1) p03 + t2p12 + (1− t2) p13] , (5.20)

U2 = −p02

∫

∆2

exp [(1− t2) p01 + t2p03 − (1− t1) p12 + t1p23] (5.21)

− p02

∫

∆2

exp [(1− t1) p01 + t1p03 − (1− t2) p12 + t2p23] , (5.22)

U3 = +p03

∫

∆2

exp [(1− t1) p01 + t1p02 − (1− t2) p13 − t2p23] . (5.23)

Note that, for instance, there is no p23 in U1, which implies locality.

5.1 Comments on higher orders

Let us discuss the general structure of higher order vertices, which will help later, in Section

5.2, to explain why they are not needed. Local vertices of Chiral HiSGRA have a very special

form. The V-vertices read

V(ω, ω, C, ..., C) = (p12)
n exp[∗p01 + ∗p02 +

∑

2<i≤n+2

∗p1i +
∑

2<i≤n+2

∗p2i] , (5.24)

where n is the number of zero-form arguments C. Here ∗ denote some functions of the ’times’

ti that are integrated over a compact domain. The prefactor pn12 means that all higher order

vertices vanish for low-spin ω. An interesting effect is that for every fixed spin in ω there is

always some maximal order where its contribution stops. Therefore, it might be possible to

have a class of solutions where ω has a bounded number of spins activated. The U-vertices are

obtained via the duality map

U(p0, p1, ..., pn+2) = V(−pn+2, p0, p1, ..., pn+1) =

(p01)
n exp[∗p0,n+2 + ∗p1,n+2 +

∑

1<i≤n+1

∗p0,i +
∑

1<i≤n+1

∗p1,i] .

The locality is encoded in the fact that there are no pij in the exponent that contract indices on

any two zero-forms. It should be remembered that there is always ⋆-star product in ȳ, which

is implicit. At the free level it is clear that auxiliary fields express higher derivatives in the

form of yA∂AA′ ȳA
′

. Therefore, having pij (i, j connect zero-forms) in the exponent would imply

nonlocality since we already have qij due to the star-product in ȳ. Indeed, taking a derivative

∂AA′ produces a pair of indices contracted with yAȳA
′

in generating function C. Given that

there is exp[q23] already present in the vertex, it is easy to see that exp[∗p23 + q23] will produce

an infinite series of contracted derivatives, i.e. such a vertex is non-local.
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5.2 Low-spin (de)coupling

Let us consider the u(2)-gauged Chiral theory. In this theory ω = ω(y, ȳ)P
Q and C =

C(y, ȳ)P
Q . Let us further consider solutions that activate only the low-spin subsector of Chiral

theory, i.e. we have the following potentially nonvanishing components of ω and C:

ωPQ = APQ + ǫPQ
[

1
2
ωAAyAyA + 1

2
ωA′A′

ȳA′ȳA′ + eAA′

yAȳA′

]

, (5.25a)

CPQ =
∑

s=0,1,2

∑

k

CPQ|
A(k),A′(2s+k) y

A(k) ȳA
′(2s+k) + CPQ|

A(2s+k),A′(k) y
A(2s+k) ȳA

′(k) , (5.25b)

where in the last line we did not include the factorials as we will work with the generating

functions as the whole. The gravitational subsector of ω and C must be an su(2)-singlet, i.e.

is a multiple of ǫPQ. In practice, we will see that the spin-two will be in its vacuum, i.e. the

corresponding components of C vanish.

A simple calculation with the lower order vertices evaluated on the low-spin ansatz with

non-abelian A and C, but abelian gravitational sector, leads to

dA = AA− 2eMB′ ∧ eMB′ CB′B′

, (5.26a)

dωAA = −2eAC′ ∧ eAC′

, (5.26b)

deAA′

= −ωA′

C′ ∧ eAC′

, (5.26c)

dωA′A′

= −2ωA′

C′ ∧ ωA′C′

− 2eMB′ ∧ eMB′ CA′A′B′B′

, (5.26d)

dC = [A,C]− ωA′A′

ȳA′∂A′C + 2eAA′

∂A∂A′C + U(e, C, C) , (5.26e)

where [A,C]PR ≡ AP
QCQR + AR

QCPQ. The source U(e, C, C) has the following form

U(e, C, C) = p01e
q02+q03+q23

∫

(

q12e
t1p02−t1p03+p03 + q12e

−t2p02+p02+t2p03

−q13e
t2p02−t2p03+p03 − q13e

−t1p02+p02+t1p03

)

e(1)C(2)C(3) ,

where e(1), C(2, 3) means, e.g. C = C(y2, ȳ2), and |yi=ȳi=0 is omitted. In deriving this expres-

sion we moved e to the first argument since it does not get entangled with the color indices.

Z2-symmetry of the integration domain was also used, i.e. one can replace t1 → 1 − t2,

t2 → 1− t1. In a less symmetric but more compact form we have

U(e, C, C) = 2 p01e
q02+q03+q23

∫

(

q12e
t1p02+(1−t1)p03 − q13e

(1−t1)p02+t1p03

)

e(1)C(2)C(3) . (5.27)

If we drop exp q23 then the expression is antisymmetric under 2 ↔ 3 swap. Let us make few

comments to explain the structure of the equations. Eq. (5.26a) imposes the familiar self-

duality relation on A. Eq. (5.26b) tells us that ωAA is not a (half of) spin-connection, but it
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is the right variable to be a dynamical field in self-dual gravity [57]. Nevertheless, ωA′A′

does

behave as (half of) the spin-connection and Eq. (5.26c) is a torsion constraint. Eq. (5.26d) sets

the self-dual component of the Weyl tensor to zero and imposes Einstein equations. Similarly

to (5.26a), the nonvanishing component of the Riemann tensor is encoded in CA′A′A′A′ . The

equations of motion for the negative helicity fields ΨA(2s) and Bianchi identities for CA′A′ and

CA′A′A′A′ are hidden in Eq. (5.26e). The equation for the scalar field is also in Eq. (5.26e).

Light-cone glasses. Let us pack all non-positive helicity fields into Ψ (including the scalar)

and all positive helicity fields into Φ. Then the action of Chiral theory in the light-cone gauge

reads, schematically

L = Ψ0�Ψ0 +
∑

s>0

Ψ−s�Φ+s + c+++ΦΦΦ + c++−ΦΦΨ+ c+−−ΦΨΨ , (5.28)

where we singled out the kinetic term of the scalar field since it does not have Ψ�Φ-form. Also,

c+±± keeps track of what kind of a cubic vertex we have in the action. This form can easily be

obtained from (3.13). The associated equations of motion are

�Φ = c++−ΦΦ + c+−−ΦΨ , �Ψ = c+++ΦΦ + c++−ΦΨ+ c+−−ΨΨ . (5.29)

The vertices in the light-cone gauge have a very simple structure: any three fields can interact

as long as the sum of their helicities is positive. Therefore, vertices of type 00+, 0 + +, + ++

exist for all values of spin (the instanton is associated with helicity +1). In particular, we have

0 − 0 − s+, 0 − 1+ − s+, 1+ − 2+ − s+, ... up to 2+ − 2+ − s+. The only + +− vertex where

positive-helicity lower spins source a higher spin is 2+ − 2+ − 3−. It is of Yang-Mills type and

require colored graviton. The problematic terms, where low-spin fields source higher-spin fields,

are now identified as

�Φ+3 = c++−Φ+2Φ+2 , �Ψ−s =
∑

s′,s′′

c+++Φ+s′Φ+s′′ . (5.30)

where s′, s′′ ∈ [0, 2]. The light-cone analysis is only preliminary since it does not take into

account the higher order vertices required by the covariantization. The source to spin-three

vanishes as long as we do not have colored gravitons and we forget about it from now on since

colored graviton cannot be a part of the closed low-spin system [58]. In general we observe

that low-spin fields can source higher-spin fields and one needs to check whether these sources

vanish to claim a consistent low-spin solution.
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Back to covariant formulation. We can compare this structure with the covariant equa-

tions of motion. We need to choose some background ω0. If the spin-two sector is taken to

define an empty spacetime, then in Cartesian coordinates we can take ω0 to consist of

eAA′

= α dxAA′

, ωAA = α2 xA
C′ dxAC′

, ωA′A′

= 0 , (5.31)

where α is some parameter with the dimension of inverse length, which was taken α = 1/(2l)

in Section 4. Let us assemble D ≡ d− ω0. The equations (5.26) give

Dω = V(ω, ω) + V(ω0, ω, C) + V(ω0, ω0, C) , (5.32a)

DC = U(ω,C) + U(ω0, C, C) . (5.32b)

The system above is complete under three assumptions:9 (i) the fluctuations ω, C contain low

spins s = 0, 1, 2 only, see (5.25); (ii) the gravitational sector (both in ω and in ω0) is abelian,

see (5.25) again; (iii) the low-spin fields do not source higher-spin ones. Indeed, it is easy to see

from (5.24) that on the low-spin solutions already V(ω0, ω0, C, C) = 0 and the higher vertices

V(ω0, ω0, C
k) = 0, k > 2 vanish as well. Likewise, with (5.25a) one observed that U(ω0, C

k) = 0

for k > 2. Similarly, V(ω0, A, C
k) = 0 since A is y-independent. Concerning (iii), in general

low-spin fields will source higher-spin ones. We will give an argument at the end of Section (6)

that this does not happen for a solution with such a high symmetry as BPST-instanton.

6 HiSGRA BPST instanton

After the preliminary work done in the previous Section we restrict ourselves to the truncation

of Chiral theory that covers the BPST instanton solution. Therefore, we set the spin-two

fluctuations to zero. In Cartesian coordinates the equations simplify to

dA = AA− 2α2d2xB′B′CB′B′

, (6.1a)

dC = [A,C] + 2αdxAA′

∂A∂A′C + U(e, C, C) , (6.1b)

where [A,C]PR ≡ AP
QCQR +AR

Q CPQ. It is useful to write down the source in more detail as

U(e, C, C) = −2α yBdx
BB′

eq23
∫

[

∂̄2
B′C(t1y, ȳ2 + ȳ)C((1− t1)y, ȳ3 + ȳ)

− C((1− t1)y, ȳ2 + ȳ)∂̄3
B′C(t1y, ȳ3 + ȳ)

]

,

(6.2)

9Covariant equations of motion contain vertices of arbitrarily high order, which is, perhaps, the price for

covariantization. Therefore, we displayed only the part that is relevant for the (consistent) low-spin solutions.
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This is the system we need to find a solution of. Note that there is no backreaction onto the

spin-two sector. As with the EFT of Section 3, finding the solution can be split into three

steps: BPST instanton, scalar field, helicity −1 field. We also need to make sure that the

source U(e, C, C) does not activate any higher-spin fields.

BPST instanton again. We have already found the FDA form of the BPST instanton.

Let us reconsider the problem by taking advantage of the generating functions language. The

ansatz for the BPST instanton reads

CPP = f3(r
2)
(

kPB′ ȳB
′

kPC′ȳC
′

)

exp
[

yMkMM ′ ȳM
′

]

= f3 zP zP eσ , (6.3)

where we defined kAA′

= w(r2)rAA′

, σ = yMkMM ′ ȳM
′

, zP = kPB′ ȳB
′

. It is straightforward to

compute10

dCPP = zP zPf
′
3(dx · r) + 2zP

(

w dxPM ′ ȳM
′

+ w′

w
zP (dx · r)

)

f3e
σ+

+ zP zP
(

w(ydxȳ) + w′

w
σ(dx · r)

)

f3e
σ ,

[A,C]PP = g′f3

(

zP zP (dx · r)− 2r2w zPdxPM ′ ȳM
′

)

eσ ,

2eAA′

∂A∂
′
ACPP = 2αzPzP

(

(dx · r)(3w + σw)− (ydxȳ)k2
)

f3e
σ+

− 4αk2 zPdxPM ′ ȳM
′

f3e
σ ,

where (ydxȳ) = yMdxMM ′

ȳM ′, (dx · r) = dxMM ′

rMM ′ and dkAA′

= w′(dx · r) + wdxAA′

. One

also needs to use

yM ȳM
′

kMA′kAM ′ = kAA′σ − k2yAȳA′ (6.4)

which is a consequence of TA|B = TB|A + ǫABTC
C for any spin-tensor TA|B. The last ingredient

is the source U(e, C, C), for which it is convenient to rewrite C as

CPP = f3(r
2) ∂ξ

A∂
ξ
A exp

[

(yM + ξM)kMM ′ ȳM
′

]
∣

∣

∣

ξ=0
, (6.5)

and we omit |ξ=0 in what follows. A simple calculation gives

1
2
U(e, C, C)PRǫ

PR = 2α(ydxȳ)(k2)2(3 + σ)(f3)
2eσ , (6.6)

U(e, C, C)PP = αk2
[

(yPyP (dx · r)w − dxP
B′

yMkMB′yP )
2
3
k2(4 + σ)+

+ 1
3
(ydxȳ)yPyP (k

2)2 − 2(ydxȳ)zP zP

]

(f3)
2eσ . (6.7)

10Some of the formulas below are given in a raw form to make it easier to track down the origin of various

terms.
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We see that the instanton contributes both to the su(2)-singlet (u(1)-factor of u(2)) and to

the su(2) sectors of u(2). It is an important feature of (6.2) that it preserves eσ, i.e., roughly

speaking,

U(dx, •eσ, •eσ) = •eσ , (6.8)

where • denotes some polynomial prefactors. The source reveals three types of structures: (a)

the singlet one, which contributes to the scalar field; (b) a source for the helicity −1 field that

is proportional to y•y•; (c) a source for the helicity +1 field itself. The latter is not an actual

source since it does not contribute to the Yang-Mills equations. It accounts for the nonlinearities

in (4.3) that are due to the Bianchi identities. Indeed, the source for the Yang-Mills equation

that is contained in

1
2
ȳA′ ȳA′ : ∇CPP |A′A′

= 2eBB′CPP |B,A′B′B′

+ ... (6.9)

is the coefficient of ȳȳ and there is no such term in U(e, C, C), the lowest relevant for helicity

+1 being ȳȳ(ykȳ). Collecting all the relevant terms we have

(dx · r)zP zP :
f ′
3 + 2f3w

′/w = g′f + 3 + 6αwf3 ,

w′ = 2αw2 ,
(6.10)

(ydxȳ)zP zP : f3w = −2αk2f3 − 2αk2bf 2
3 , (6.11)

dxPM ′ ȳM
′

zP : 2f3w = −2g′f3r
2w − 4αk2f3 , (6.12)

of which a unique solution is given by (recall that ρ ≡ r2)

w(ρ) = −
1

2α (L2 + ρ)
, f3(ρ) =

L2

ρb
. (6.13)

Here, we have introduced a higher-spin coupling constant b that weights the contribution of

the source. This coupling just counts nonlinearities in C and, hence, its effect is easy to track

down.

Scalar field. As the first step towards the EFT of Section 3, we notice that the projection

of U(e, C, C) onto the scalar sector (functions that have equal number of y and ȳ) is an su(2)-

singlet. Therefore, we take the following ansatz

CPR = ǫPRf(ρ, σ) , f = f̃(ρ, σ)eσ . (6.14)
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A simple calculation gives (note that [A,C] ≡ 0 here)

dCPR = ǫPR

[

(dx · r)f ′ +
(

w′

w
(dx · r)σ + w(ydxȳ)

)

∂σf
]

, (6.15)

2eAA′

∂A∂A′CPR = 2αǫPR

[

w(dx · r)∂σf + (σw(dx · r)− k2(ydxȳ))∂2
σf

]

. (6.16)

Adding the scalar source (6.6) to all of the above we find

(dx · r) : f ′ + w′

w
σ∂σf = 2αw∂σf + 2ασw∂2

σf , (6.17)

(ydxȳ) : ∂σfw = −2αxw2∂2
σf + 2αbx2w4(3 + σ)f 2

3 e
σ . (6.18)

Making ansatz f̃ = f1(ρ) + σh1(ρ) we arrive at

(dx · r) :

σ2 : w′

w
h1 = 2αwh1 ,

σ1 : h′
1 +

w′

w
(f1 + h1) = 2αwh1 + 2αw(f1 + 2h1) ,

σ0 : f ′
1 = 2αw(f1 + h1) ,

(6.19)

(ydxȳ) :
σ1 : h1w = −2αxw2h1 + 2αbx2w4f 2

3 ,

σ0 : (f1 + h1)w = −2αxw2(f1 + 2h1) + 6αbx2w4f 2
3 .

(6.20)

A unique solution is given by

f1(ρ) = −
2L2 + ρ

b
w2 , h1(ρ) = −

L2

b
w2 . (6.21)

Note that in the free limit, b = 0, the right solution is h1 = f1 = 0. The most general solution

to (6.18) is

f = h1σe
σ + f1e

σ +
c1ρe

σ+L2σ
ρ

L2 + ρ
+ c2 . (6.22)

This agrees, of course, with the general solution of the EFT induced by the BPST instanton.

In what follows we restrict ourselves to c1,2 = 0. Note that the second exponent is simply

σ(1 + L2/ρ) = (2ρα)−1(yrȳ).

Helicity −1 field. The helicity −1 part of the system is the most complicated one because

there are two sources: one bilinear in the BPST instanton and another one of type scalar ×

instanton. The most general ansatz reads

CPP = yPyPf(ρ, σ) . (6.23)
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As before, we easily find that

dCPP = yPyP

(

f ′(dx · r) +
(

w′

w
σ(dx · r) + w(ydxȳ)

)

∂σf
)

, (6.24)

[A,C] = −g′f (2TPP − (dx · r)yPyP ) , (6.25)

2eAA′

∂A∂A′C = 4αw(TPP )∂σf + 2αw(dx · r)yPyP∂σf+ (6.26)

+ 2αyPyP
(

w(dx · r)σ − (ydxȳ)k2
)

∂2
σf , (6.27)

where we introduced TPP = dxP
M ′

yCrCM ′yP . Next, we need to add the instanton-instanton

contribution

U(e, C+1, C+1)PP = αk2
[

(yPyP (dx · r)w − wTPP )
2
3
k2(4 + σ)+

+ 1
3
(ydxȳ)yPyP (k

2)2
]

(f3)
2eσ .

The last but one, we need to compute the scalar-instanton contribution. In order to do that

one can represent the polynomial in σ prefactor in the scalar part as

f(σ)eσ = f(∂τ )e
τσ
∣

∣

∣

τ=1
. (6.28)

The result is

U(e, C0, C+1) + U(e, C+1, C0) = −yP yP (ydxȳ)
2
3
αb(k2)2h1f3e

σ+

+ αb
(

w(dx · r)yPyP − wTPP

)

(

−8
3
k2(f1 + h1)−

4
3
k2σh1

)

f3e
σ .

Lastly, there is also a plus-minus contribution. It does not source the equations for the physical

fields, but is there to account for Bianchi identities. It can be decomposed into three different

structures (some details can be found in Appendix B)

U(e, C−1, C+1) + U(e, C+1, C−1) = W1(dx · r)yPyP +W2(ydxȳ)yPyP +W3TPP . (6.29)

Adding up all contributions we find

(dx · r)yPyP :

f ′ + w′

w
σ∂σf = g′f + 2α(w∂σf + σw∂2

σf)+

+ bα(k2)2 2
3
(4 + σ)wf 2

3 e
σ+

+ wαb
(

−8
3
k2(f1 + h1)−

4
3
k2σh1

)

f3e
σ +W1 ,

(6.30)

(ydxȳ)yPyP : w∂σf = −2αk2∂2
σf − 2

3
αb(k2)2h1f3e

σ + 1
3
αb(k2)3f 2

3 e
σ +W2 , (6.31)

TPP :

0 = −2g′f + 4αw∂σf+

− αbw
(

−8
3
k2(f1 + h1)−

4
3
k2σh1

)

f3e
σ+

− 2
3
αbw(k2)2(4 + σ)f 2

3 e
σ +W3 .

(6.32)
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There is a simpler way to solve this system than just to solve it directly. Indeed, we can proceed

along the EFT lines of Section 3 and derive the source for the physical field ΨAB. This is done

by replacing dxAA′

with ȳA
′

∂A and setting σ = 0. Indeed, this operation leads to

yAȳA′∇C
A′

ΨPP |AC = ... (6.33)

The equation for the dynamical field is

f ′ = g′f + 4αb(k2)2wf 2
3 − 4bαw(k2)f3(f1 + h1) (6.34)

By comparing its solution to (3.11) we find that κ1 = − 1
8α2

√
b
and κ2 = − 1

384α4b
. Now, the

complete equations of motion are linear in f and only its f(ρ, σ = 0) component is the actual

solution determined by the source. The expansion in σ is to express the auxiliary fields

CPP |A(k+2),A′(k) (6.35)

as derivatives of the dynamical one CPP |AA. Thanks to the rotation invariance we know that

CPP =
∑

k

fk(ρ)yP yP (yrȳ)
k (6.36)

It is easy to see that on replacing dxAA′

with yAȳA
′

we annihilate the whole U(e, C, C) and get

an equation that relates neighboring fk (σ̃ = yrȳ)

f ′(ρ, σ̃) + g′(ρ)f(ρ, σ̃)− 6α∂σ̃f(ρ, σ̃)− 2ασ∂2
σ̃f(ρ, σ̃) = 0 . (6.37)

The first two terms represent (y∇ȳ)C and the last two 2αyAȳA
′

∂A∂
′
A. An explicit solution can

be found in Appendix B. It is then possible to check that other equations are satisfied as well.

The most important information are the values of κ1,2. Their invariant ratio is κ2
1/κ2 = −6,

which is what higher-spin symmetry does.

No sources for higher spin fields! Now that the solution to the EFT is obtained we can

check if it sources the higher spin fields (including the gravity sector, which we would like to

stay frozen to the Minkowski space). The worst possible (in other words, the most interesting)

scenario is that the EFT sources higher-spin fields, which can then backreact onto the low spins

and so on.

A heuristic argument for why BPST instanton cannot induce any higher spins is the fact

that with the data we have it is impossible to write down an ansatz. Indeed, we have rAA′ and
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can afford rotation-invariant functions of type f(ρ ≡ r2). As a result, we can only write

φPR = ǫPRf1(r
2) , (6.38a)

ΨPP |AA = ǫPAǫPAf2(r
2) , (6.38b)

CPP |A′A′ = rPA′rPA′f3(r
2) , (6.38c)

ΨPP |A(2s) = 0 , s 6= 1 , (6.38d)

CPP |A′(2s) = 0 , s 6= 1 . (6.38e)

One can also check directly that the solution found above, when plugged into U(e, C, C), does

not generate any higher-spin sources. Technically, this is thanks to the fact that all derivatives

are of the special ykȳ-form, i.e. save for rAA′ there are no other vectors involved. If, for example,

we have two independent vectors rAA′

1,2 , we could form rAA′

1 r2
A
A′ to be used to construct CA(2s).

Therefore, multi-instanton solutions could generate sources for higher-spin fields.

7 Discussion and Conclusions

To sum up first, the BPST instanton turns out to be an exact solution of Chiral theory and its

embedding thereinto activates two other fields: the opposite helicity spin-one field and a singlet

scalar field. The self-duality condition is not modified by the presence of these two fields. There

is a simple EFT that couples these three fields and can be extracted either directly from the

equations or by comparing with the known action in the light-cone gauge. What higher-spin

symmetry does is to fix the coupling constant in the EFT.11

Some obvious extensions of the present work include. (a) deformation of the solutions to

(Euclidian) anti-de Sitter space. Indeed, Chiral theory smoothly depends on the cosmological

constant. In fact, there are no new couplings that can affect the EFT, the only modification

being in that the scalar field acquires the mass such that it is dual to ∆ = 1, 2 operators on the

CFT side, depending on the boundary conditions. (b) It looks challenging to embed general

ADHM-instantons, i.e. multi-instanton solutions, since they can also activate higher spin fields.

(c) It would be interesting to find genuine higher spin instantons, i.e. exact solutions extending

the BPST one with higher spin fields.

Another natural question is what is the moduli space of instantons in Chiral theory? It

looks plausible that the ADHM construction is a part of it, but it may not cover the genuine

11Let us note that there exists a higher-spin extension of SDYM that is a contraction of Chiral theory [32],

which also admits a covariant action [51]. In this theory the BPST instanton is an exact solution that does not

activate any other field. We are grateful to Dmitry Ponomarev for this remark.
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higher spin instantons.

In this regard, there is a simple procedure to get new instanton solutions [59]. One can

take su(N) Yang-Mills theory and consider various embeddings of su(2) into su(N), from the

fundamental one to the principal one. Each embedding dressed with the basic BPST instanton

becomes an instanton as well, however, with a different charge in general. There is little doubt

it is still true within u(N)-gauged Chiral theory. The option to play with different embeddings

of su(2) into su(N) is similar to the one for 3d higher spin gravities.

In the paper we restricted ourselves to the flat space, which, in fact, does not make much

difference for the instanton. Within AdS/CFT correspondence Chiral theory is dual to a closed

subsector of Chern-Simons matter theories [31] and a natural question is what is the CFT

interpretation of the instanton, which is an exact solution of the full dual of Chern-Simons

matter theories as well.

Chiral HiSGRA should have a twistor formulation, which is perhaps the best way to for-

mulate self-dual theories and extensions thereof, see [33–35] for the first steps in this direction.

What is the twistor geometric characterization of higher-spin instantons? For the truncations

of Chiral theory that lead to higher-spin extensions of SDYM and SDGR analogs of Penrose

and Wald theorems were obtained in [35].

We should also make a comment regarding formal solutions of formal HiSGRAs. Here, by

formal HiSGRA [60] we mean FDAs, dΦ = Q(Φ), where Q is only constrained by Q2 = 0 and

not by locality. In other words, such Q defines an L∞-algebra. The L∞-structure maps begin

with some higher-spin algebra’s structure constants. Such L∞-algebras are easy to construct

[60], in general. The first example dates back to [61] and several others are known, see e.g.

[60]. However, a generic Q from the same equivalence class, does not lead to a well-defined

field theory, the reason being is that canonical equivalences on the Q-manifold/L∞ side result

in non-local field redefinitions from the field theory vantage point. Therefore, only a very

limited set of reference frames on the Q-manifold side corresponds to well-defined equations.

For all formal HiSGRAs this frame is not known,12 except for Chiral HiSGRA, which was also

formulated as an FDA.

Nevertheless, formal HiSGRAs give some nontrivial L∞-structure, which is stable even under

very nonlocal field-redefinitions from the field theory point of view. They can be viewed as

ansatze for gauge-invariant interactions with infinitely-many free coefficients left unfixed. One

can still look for exact solutions of formal HiSGRAs. In practice, solutions are Q-morphisms

12There are arguments that this frame may not even exist, see e.g. [62–65] and [66, 67] for a different view

on the problem. It well may be that one needs concepts that go beyond the usual local field theory approach

to construct the dual of Chern-Simons matter theories.
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from simple field theories to a given one.13 The first such exact solution was found by Sezgin

and Sundell in [29]. Few other solutions were also found, see e.g. [68–70]. However, all solutions

are found in the field frame where the interactions are clearly different from actual (holographic)

HiSGRAs, see e.g. [71]. The first steps in adjusting the field frame while constructing solutions

were taken in [72].

Therefore, Chiral HiSGRA provides a unique playground where the solutions can be trusted

to all orders. Another useful feature is that Chiral theory does not require nonvanishing cos-

mological constant and the calculation in the flat space are simpler. In this regard, it should

be relatively easy to bring the chiral solutions of [73] into the local frame.14

Concerning other solutions, it is quite easy to see that Sezgin-Sundell solution [29] has a

simple Chiral theory’s counterpart in the flat space: a plane wave of the free massless scalar

field (including the zero momentum, i.e. just a constant) on the Minkowski background is an

exact solution, which is also of low-spin type. Also, the 4d BTZ-type solutions discussed in [74]

do not have any locality problem since the zero-form vanishes. It would also be interesting to

generalize the very recent observations in the light-cone gauge [75, 76] to Chiral theory. Lastly,

since Chiral theory seems to be a natural candidate for celestial holography in view of [77–81]

it would be important to study the asymptotic structure of solutions in flat space.
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A BPST instanton, technicalities

With the help of Chiral theory’s vertices given in Section 5 one can derive (this is, of course,
consistent with [46])

1
k!(k+2)!

[

(p02)
k
(q02)

k+2
ωC − (p01)

k
(q01)

k+2
Cω

]

=
1

k! (k + 2)!

[

A, lk+2CA(k),A′(k+2)

] (

yA
)k

(

ȳA
′

)k+2

,

1
k!(k+2)!

[

p12q12 (p02)
k
(q02)

k+2
ωC + p12q12 (p01)

k
(q01)

k+2
Cω

]

= 1
k!(k+2)! l

−1eBB′

lk+3CA(k)B,A′(k+2)B′

(

yA
)k

(

ȳA
′

)k+2

.

Here we also replaced eAA′

with 1
2l
eAA′

to consistently introduce dimensionful parameter l.
Likewise, for the cubic vertices we have

2
(n+1)!(k−n−1)!(k+1)!(k−n+1)

[

p01q12 (p02)
n
(q02)

n+1
(p03)

k−n−1
(q03)

k−n+1

−p01q13 (p03)
n (q03)

n+1 (p02)
k−n−1 (q02)

k−n+1
]

ωCC

= 1
(n+1)!(k−n−1)!(k+1)!(k−n+1) l

−1eA
B′ [

ln+2CA(n),A′(n+1)B′ , lk−n+1CA(k−n−1),A′(k−n+1)

] (

yA
)k

(

ȳA
′

)k+2

.

We substitute:

AAA|BB′ = −εABrAB′g′ ,

CCC|A(k),A′(k+2) = (rCA′)2 (rAA′)k fk i.e. CAA|A(k),A′(k+2) = (rAA′)k+2 fk ,

where g and fk are functions of ρ ≡ r2, and g is already obtained in Section 2.15 Then we get

the following system of equations by projecting the equations of motion onto various irreducible

components

f ′
k = g′fk + fk+1 ,

0 = −
k + 3

k + 2
g′fk + 2 (k + 3) (k − 1)!

k−1
∑

n=0

(k − n)

(k − n + 1)! (n+ 2)!
fnfk−n−1 ,

−
k + 3

k + 2

[

(k + 3)
1

r2
fk + f ′

k

]

=
k + 3

k + 2
g′fk +

2 (k + 3) (k + 1)!

k

k−1
∑

n=0

(k − n)

(k − n + 1)! (n+ 2)!
fnfk−n−1 ,

−
k + 3

k + 2

[

(k + 3)
1

r2
fk + f ′

k

]

= 2
k + 3

k + 2
g′fk + 2 (k + 3) k!

k−1
∑

n=0

(k − n)

(k − n + 1)! (n+ 2)!
fnfk−n−1 .

15We slightly abuse the notation here that fk in this appendix is different from elsewhere e.g. (6.36).
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It is obvious that the last three equations are not independent. The above four equations can

be simplified as (it is assumed k ≥ 1)

hk+1 =
1

k + 3
(h′

k − g′hk) , (A.1)

−g′ =
1

k + 2

h′
k

hk

+
k + 3

k + 2

1

r2
, (A.2)

(k + 3)
1

r2
hk + h′

k = −
k + 2

k

k−1
∑

n=0

hnhk−n−1 , (A.3)

where hk ≡
1

(k+2)!
fk. As it can be checked, the solution is given by

hk = (−1)k+1 L2

r2 (L2 + r2)k+2
, for k = 0, 1, 2, · · · , (A.4)

which leads to the generating function (4.8).

B Negative helicity, auxiliary fields

In this Section we collect some technicalities that are needed to solve the complete FDA equa-

tions for the helicity −1 field. This is also a good illustration of how simple it is to just solve

for the dynamical fields, see Section 3 as compared to solving for the full package of auxiliary

fields. First, we present the generating functions that correspond to all four parts of the solution

(3.11). Which one is which can be seen from the dependence on c1, c2 and κ1,2.

f

αc1
=

12L2w

ρ

∫

∆2

exp

[

−
σt1

2αwρ

]

[

(

L2 − ρ
)

− δ(t2 − t1)L
2
]

− 2L6w
ρ2

e−
σ

2αwρ − 2wρ .

Here, we recall that ∆2 is the two-dimensional simplex, 0 ≤ t1 ≤ t2 ≤ 1. Other three solutions

read

f = −ακ1cs
8L2w

3ρ2
exp

[

−
σ

2αwρ

]

,

f

κ2
1

= 128
5
α3L2w3

∫

∆2

eσt1−
σ(1−t1)
2αwρ

[

−
L2 − ρ

ρ
− 2δ(t2 − t1)

]

+ 64αL2w
15ρ2

e−
σ

2αwρ − 128
3
α4L2eσw4ρ ,

f

κ2

= 128
5
α3L2w3

∫

∆2

eσt1−
σ(1−t1)
2αwρ

[3(L2 − ρ)

2ρ
+ 3δ(t2 − t1)

]

+ 8αL2w
5ρ2

e−
σ

2αwρ + 128α4L2eσw4ρ .
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In order to compute the contribution from U(e, C, C) of type plus-minus, we can utilize the

same trick

f(σ)eσ = f(∂τ )e
τσ
∣

∣

∣

τ=1
. (B.1)

This way, we get the following projections onto the three tensor structures

W1 = 4ασw
(

(t1 − 1) 2 (σt1 + 2) eσ(τ−(τ−1)t1) − στt31e
σ+σ(τ−1)t1

)

,

W2 = 4αw2ρ
(

στt31e
σ+σ(τ−1)t1 − (t1 − 1) 2 (σt1 + 1) eσ(τ−(τ−1)t1)

)

,

W3 = −W1 ,

This still needs to be multiplied by f3 and the integral over ∆2 is implied. It is a straightforward

but lengthy calculation to check that each of the four solutions above solves the equations for

the negative helicity field.
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