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1 Introduction

Recent discovery of gravitational waves by LIGO/Virgo collaboration [1] has triggered a lot
of interest in developing efficient techniques to model binary systems taking into account the
gravitational radiation they emit. In addition to the canonical approaches based on solving
Einstein equations one can employ the Effective Field Theory approach, where a compact
object with angular momentum is represented as a massive particle with spin. The latter
allows one to take advantage of numerous scattering amplitudes techniques, see e.g. [2, 3].

Massive higher-spin (non-elementary) particles do exist in nature in the form of hadrons,
nuclei, etc. or can be used to model spinning objects within the effective field theory approach.
As long as electromagnetic and gravitational fields are not strong enough to tear them apart
they can be thought of as elementary higher-spin particles. It is quite amusing that even
such macroscopical objects as black holes, neutron stars etc. can be modeled by massive
higher-spin fields as long as the parameters of dynamics justify the point-like approximation.

At present, it seems plausible that the theory that describes the conservative dynamics
of Kerr black holes is, in some sense, the simplest theory of a massive spin-s field that couples
it to gravity. Via the classical double copy construction [4–7] one can also think about the
simplest theory of a spin-s field interacting with photons/gluons, which bears the name
root-Kerr. The main link between the black hole dynamics and field theory at the lowest
nontrivial order is as follows. In [8] an amplitude s − s − h (AHH-amplitude) with the best
high energy behavior that couples massive spin-s field to gravity, h = 2, or photons/gluons,
h = 1, was constructed. In the language of the massive spinor-helicity [8, 9] it reads

A(s, s, h+) = 1
m2sA(0, 0, h+) ⟨12⟩2s A(s, s, h−) = 1

m2sA(0, 0, h−) [12]2s (1.1)

where A(0, 0, h) is the minimal coupling of the scalar field to the helicity-h massless boson.
This amplitude was shown to reproduce the dynamics of Kerr black holes [10–12] at the lowest
nontrivial order, which sets a challenge to construct a theory that starts with AHH-amplitude.
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While existing in reality, massive higher spin fields have so far been quite resistant to any
theoretical attempts to introduce consistent interactions, the main problem being that almost
any putative vertex activates unphysical degrees of freedom. In particular, the minimal
interaction recipe ∂ → D does not work already for electromagnetic interactions of s = 1 field.

There are several general approaches to the problem that are available at present. (i)
Massive higher-spin gauge symmetry, i.e. massive fields can be described as theories with
Stückelberg gauge symmetries that help to control the number of degrees of freedom. This
approach has systematically been applied in [13–18] and the recent [19, 20]. (ii) Chiral
approach [21] where there is no danger to activate unphysical modes, but the parity is
more difficult to control, see also [19, 20]. (iii) Light-cone approach [22–24]; (iv) other, see
e.g. [25–31] for an incomplete list.

In the literature there are several different ways to represent massive higher-spin symmetry:
(a) it can operate on a set of double-traceless fields Φµ1...µk

, k = 0, . . . , s, [13]; (b) these fields
can be repackaged into a quartet of traceful tensors of ranks s, s − 1, s − 2, s − 3 [32–35]; (c)
massive higher-spin gauge symmetry can also be imposed via Ward identities [19, 20]; (d)
BRST approach [36–41] takes its roots [42–45] in string field theory.

Zinoviev’s and chiral approaches have recently been applied to the root-Kerr problem
in [19, 20] with the main results being the quartic amplitude that passes all tests and
an on-shell cubic action that gives AHH-amplitude. In this paper we implement massive
higher-spin symmetry in a different way, via BRST, (d). Even though there are some b-c
ghosts in the system, there are no fields of opposite statistics present and BRST here is
instrumental in dealing with auxiliary fields that simplify the formulation. The main result
is a completely off-shell gauge-invariant action for Kerr and root-Kerr black holes together
with the deformations of the gauge symmetry.

The main advantage of the BRST approach is some sort of spin universality. The spin
universality is the property of the black hole amplitudes that allows to extract a number
of multipoles constrained from above by s without having to take s → ∞ limit, [20, 46–48].
In other words, the Taylor coefficients of the multipole expansion do not depend on spin,
but a spin-s system can see only a finite number of them. In the BRST approach, to be
precise, the set of consistent interactions for all spins turns out to be an associative algebra
that is generated by a number of simple operators that couple triplets of low-spin fields. In
this sense, the simplest interactions do no depend on spin as a parameter. Another useful
feature is the simplicity of uplifting the on-shell results to off-shell ones. In fact, our starting
point is a generating function of on-shell amplitudes from [49].

The outline of the paper is as follows. In section 2 we review the BRST approach to
free massive and massless higher spin fields. In section 3 we discuss the details of cubic
interactions and the cubic action for a Kerr Black Hole is obtained in section 3.3. Conclusions
and discussion can be found in section 4.

2 BRST approach to massive and massless fields

The BRST approach reduces the problems of free fields and of interactions to Q2 = 0 for
a certain Q. The formalism simplifies a lot if instead of an irreducible spin-s one considers
a direct sum of massless or massive states with spins s, s − 2, . . . 1/0.
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2.1 General formalism

Massless fields. We will need only massless fields with s = 1, 2, photon and graviton, but it
is easier to treat all spins at once. A single spin-s massless field can be described by a symmetric
and traceless rank-s tensor Φµ1...µs(x), Φν

νµ3...µs = 0. On-shell it satisfies □Φµ1...µs = 0 and
the physical states require a quotient by a gauge symmetry δΦµ1...µs = ∂(µ1ξµ2...µs), with
traceless gauge parameter ξµ1...µs−1 being on-shell as well. If we drop the trace constraints we
obviously get degrees of freedom of massless fields with spins s, s − 2, . . . , 1/0.

In order to hide the tensor indices it is often convenient to use an auxiliary Fock space
spanned by oscillators

[αµ, α+
ν ] = −ηµν , ηµν = (+1,−1,− . . . ,−1) , (2.1)

and define the Fock vacuum as

αµ|0⟩α = 0 . (2.2)

A single field ϕµ1µ2...µs(x) or a collection of such fields with ranks from 0 to ∞ is represented
by a Fock-vector

|ϕ⟩ = 1
s!ϕµ1µ2...µs(x)αµ1,+αµ2,+ . . . αµs,+|0⟩α . (2.3)

The d‘Alambertian, divergence and symmetrized gradient operators are given by

□ϕµ1µ2...µs(x) ↔ □|ϕ⟩ , (2.4a)
∂µ ϕµ,µ2...µs(x) ↔ (α · p) |ϕ⟩ , (2.4b)
∂(µ0ϕµ1µ2...µs)(x) ↔ (α+ · p) |ϕ⟩ , (2.4c)

with pµ = ∂µ; also we defined □ = p ·p, and A ·B ≡ AµBµ. In order to construct a Lagrangian,
which gives the mass-shell and transversality conditions as a result of equations of motions
we use the BRST method. We first compute the algebra between the above mentioned
operators, the only nonzero commutator being

[(α · p), (α+ · p)] = −□ . (2.5)

Then we introduce Grassmann — odd nilpotent ghost variables c0, c and c+ with ghost
number +1 and b0, b+ and b, with ghost number −1. The only nonzero anticommutation
relations between these variable are

{c+, b} = {c, b+} = {c0, b0} = 1 . (2.6)

Then one constructs a nilpotent BRST charge

Q = c0□− c(α+ · p) + c+(α · p) − c+cb0, Q2 = 0, (2.7)

which has the ghost number +1. Now one can write a gauge invariant free Lagrangian

L2 = −
∫

dc0⟨Φ|Q|Φ⟩, δ|Φ⟩ = Q|Λ⟩ , (2.8)

where integration over the Grassmann variable c0 is defined as
∫

dc0 c0 = 1.
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To perform a further analysis of the Lagrangian and of the field equations, one considers
an extended Fock space with a total vacuum being

|0⟩ = |0⟩α ⊗ |0⟩gh. c|0⟩gh. = b|0⟩gh. = b0|0⟩gh. = 0 . (2.9)

Therefore a field |Φ⟩ and a parameter of gauge transformations |Λ⟩ in the extended Fock
space are expanded in terms of all creation operators. Requiring the field to have the ghost
number 0 and the parameter of gauge transformations to have the ghost number −1, we
obtain the expansion in terms of the anticommuting operators

|Φ⟩ = |ϕ⟩ + c0b+|C⟩ + c+b+|D⟩, |Λ⟩ = b+|ρ⟩ . (2.10)

Where the component fields |ϕ⟩, |C⟩, |D⟩ and parameters of gauge transformations |ρ⟩ are
in turn expanded in terms of the oscillators α+

µ only. Putting the expansion (2.10) into
the Lagrangian (2.6), and eliminating anti-commuting variables via normal ordering and
Grassmann integration, we get the Lagrangian in terms of the component fields

L2 = −⟨ϕ|□|ϕ⟩ + ⟨D|□|D⟩ − ⟨C|C⟩+ (2.11)
+ ⟨C|(α+ · p)|D⟩ + ⟨C|(α · p)|ϕ⟩ − ⟨D|(α · p)|C⟩ − ⟨ϕ|(α+ · p)|C⟩ .

The equations of motion that follow from this Lagrangian are

□|ϕ⟩ + (α+ · p)|C⟩ = 0 , (2.12a)
□|D⟩ − (α · p)|C⟩ = 0 , (2.12b)

|C⟩ − (α+ · p)|D⟩ − (α · p)|ϕ⟩ = 0 . (2.12c)

Similarly, using the equations (2.8) and (2.10) we get the gauge transformation rules

δ|ϕ⟩ = −(α+ · p)|ρ⟩, δ|D⟩ = (α · p)|ρ⟩, δ|C⟩ = □|ρ⟩ . (2.13)

As it can be seen from the Lagrangian (2.8), fixing the number of the oscillators in the field
|ϕ⟩ to be equal to s, results into |C⟩ and |D⟩ having the number of the oscillators equal to
s − 1 and s − 2 respectively. The field |C⟩ does not have a kinetic term, it is auxiliary. It can
be either expressed in terms of the other two fields via its own equation of motion (2.12c)
and put back into the Lagrangian, or can be gauged away, thus partially fixing the gauge as
□|ρ⟩ = 0. The field |D⟩ is also auxiliary and it can be gauged away. As the result, one is left
with the only physical field |ϕ⟩, which obeys the mass-shell and transversality conditions. Let
us note, that this gauge fixing procedure is not unique. For example, one could choose the
light-cone gauge fixing straight away and reach the same conclusions.

Irreducible fields. One can construct a free Lagrangian for a single irreducible higher spin
mode from the Lagrangian given in (2.8), by imposing an extra off-shell condition

T |Φ⟩ = 0 , T = −1
2α · α − bc , [T, Q] = 0 . (2.14)

This condition implies for the component fields

(α · α)|ϕ⟩ − 2|D⟩ = 0 , (α · α)|D⟩ = 0 , (α · α)|C⟩ = 0 . (2.15)
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The first equation expresses the nonphysical field |D⟩ in terms of the trace of the physical
field |ϕ⟩. The second equation implies that |ϕ⟩ is double-traceless. The third one contains
no new information, because of the equation (2.12c). Now, expressing |C⟩ and |D⟩ in
terms of |ϕ⟩ and putting these expressions back into the Lagrangian, one gets the Fronsdal
Lagrangian [50], for a single higher-spin mode. In a similar manner, acting with the operator
T gauge transformation rule given in (2.8), one can see that the parameter of the gauge
transformations becomes traceless (α · α)|ρ⟩ = 0.

Massive fields. In order to describe the massive triplet, one can use the method of
dimensional reduction as a tool. In particular, one considers a massless triplet in d + 1
dimensions, and decomposes

α±
µ → (α±

µ̂ , ξ±), □ → □ + m2, α± · p → α± · p ± mξ± , (2.16)

to obtain

Qmass. = c0(□ + m2) − c(α+ · p + mξ+) + c+(α · p − mξ) − c+cb0 . (2.17)

All equations for the massive triplet, such as Lagrangian, gauge transformations etc., can
be obtained from the corresponding equations for the massless one, by using the decompo-
sition (2.16), so we shall not present them here (see for the details [37–39]).

Before concluding this section let us make one comment. As it was shown in [51], after
elimination of the field |C⟩ via its own equations of motion, one can also represent the fields
ϕ[s] and D[s] as expansions in terms of double traceless fields Ψ[s−2k] where 0 ≤ k ≤ [ s

2 ] and
of their traces. Substituting these expansions into the Lagrangian (2.8) one obtains a sum of
Fronsdal Lagrangians for the spins s, s− 2, . . . , 1/0. Again, formally doing this decomposition
for a massless triplet in d + 1 dimensions and performing a dimensional reduction of the
obtained sum of Fronsdal Lagrangians, one obtains a gauge invariant description of massive
higher spin modes with spins s, s − 2, . . . , 1/0 in d dimensions.1

2.2 Examples

Massless s = 1. Since the case of a scalar is trivial,2 we start with a massless triplet
with s = 1. The expansion (2.10) has the form

|Φ⟩ = (ϕµ(x)αµ+ + C(x)c0b+)|0⟩, |Λ⟩ = ρ(x)b+|0⟩ . (2.18)

Inserting this expansion into the Lagrangian (2.11) and performing the normal ordering,
one obtains the gauge invariant free Lagrangian

L2 = ϕµ□ϕµ − C2 − 2C∂µϕµ , (2.19)

1It has been shown [32], (see also [39, 52] for details and for [33] an alternative formulation), that one can
obtain Lagrangians for free irreducible massive higher-spin fields in d dimensions by a dimensional reduction
of d + 1 dimensional Fronsdal Lagrangians.

2See [53] for application of the BRST formalism for description of various low spin systems, such as N = 1
Super Yang-Mills and SUGRA’s.
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which is invariant under the transformations

δϕµ = −∂µρ , δC = □ρ . (2.20)

The field equations obtained from the Lagrangian (2.19) are

□ϕµ + 2∂µC = 0, ∂µϕµ + C = 0 (2.21)

If one eliminates the auxilary field C(x) via its own equation of motion, then one gets
the Maxwell Lagrangian. Alternatively, one can eliminate the field C(x) via the gauge
transformations, thus obtaining a Lorentz gauge, or use the light-cone gauge fixing, by
eliminating the component ϕ+ via the gauge transformations (2.21). The field equations (2.21)
then imply, that the massless triplet for s = 1 describes a massless vector field with transverse
polarizations.

Massive s = 1. For the massive s = 1 triplet (see the discussion around the equations
(2.16)–(2.17)) one has

|Φ⟩ = (ϕµ(x)αµ+ + ϕ(x)ξ+ + C(x)c0b+)|0⟩ , |Λ⟩ = ρ(x)b+|0⟩ . (2.22)

After elimination of the oscillators by normal ordering in (2.11), one obtains the gauge
invariant free Lagrangian

L2 = ϕµ(□ + m2)ϕµ − ϕ(□ + m2)ϕ − C2 − 2C(∂µϕµ + mϕ) , (2.23)

which is invariant under the transformations

δϕµ = −∂µρ , δϕ = −mρ , δC = (□ + m2)ρ . (2.24)

The field equations obtained from the Lagrangian (2.23) are

(□ + m2)ϕµ + ∂µC = (□ + m2)ϕ + mC = 0 , (2.25a)
mϕ + ∂µϕµ + C = 0 . (2.25b)

Similarly to the massless case, one can express the field C(x) in terms of the other fields,
and put it back into (2.23), or gauge it away. Next, one can gauge away the field ϕ(x) (the
procedure being consistent due to the equations of motion) thus using up the entire gauge
freedom. Then the transversality condition (2.25b) removes ϕ0(x), whereas the first in the
field equations is the Klein-Gordon equation for the physical components of the vector field.

Alternatively, one can again remove C(x) first, but then instead of gauging away ϕ(x), one
uses the gauge transformations (2.24), to remove ϕ+(x). Then, the transversality condition
removes ϕ−(x), but the field ϕ(x) remains intact and plays the role of the extra degree of
freedom, which distinguishes a massive field from a massless one. This gauge fixing procedure
will be relevant to our discussion of cubic vertices in the next section.
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Massless s = 2. For the massless s = 2 triplet we have (see [37] for the massive one)

|Φ⟩ = (ϕµν(x)α+
µ α+

ν + c0b+Cµ(x)α+
µ + c+b+D(x))|0⟩ , |Λ⟩ = b+ρµ(x)α+

µ |0⟩ . (2.26)

Similarly to the previous examples, we obtain from (2.11) the Lagrangian

L2 = −1
2ϕµν□ϕµν + D□D + CµCµ + 2Cµ∂νϕµν + 2D∂µCµ , (2.27)

which is invariant under gauge transformations

δϕµν = −∂µλν − ∂νρµ, δCµ = □ρµ, δD = −∂µρµ , (2.28)

and gives the equations of motion

□ϕµν + ∂µCν + ∂νCµ = 0 , (2.29a)
□D + ∂µCµ = 0 , (2.29b)

C − ∂µD + ∂νϕµν = 0 . (2.29c)

As in the case of the previous examples on can gauge away the fields Cµ(x) and D(x) (or use
the light-cone gauge fixing) to obtain the Klein-Gordon equations for massless field ϕµν(x).
This field describes simultaneously spins 2 and 0, due to the lack of transversality condition.
This can be also seen by introducing new fields Ψµν(x) and Ψ(x) (see the discussion at
the end of the previous section)

ϕµν = Ψµν + ηµν

d − 2Ψ , ϕµ
µ + 2D = Ψ . (2.30)

Substituting these expressions into (2.27), one can see that it splits into a sum of two Fronsdal
Lagrangians, one for the field Ψµν(x) and one for the field Ψ(x). If one adds an extra off-shell
condition (2.14), which in this case reads Ψ(x) = 0, then one obtains the Fronsdal Lagrangian
for spin-2, thus eliminating the lower spin component.

3 Cubic action

On the way towards the cubic action of a Kerr Black Hole we discuss a well-developed
formalism, see [41], to construct cubic interactions within the BRST approach. The main
advantage is that the vertices can be represented as polynomials in a few atomic structures.
After the preliminaries, we engineer the right cubic action.

3.1 Generators of cubic vertices

In order to construct cubic interactions of two fields with spin-s and mass-m and a massless
field, we take three copies of the auxiliary Fock space spanned by the oscillators

[α(i)
µ , α(j),+

ν ] = −δijηµν , [ξ(i), ξ(j),+] = δij , (3.1a)

{c(i),+, b(j)} = {c(i), b(j),+} = {c
(i)
0 , b

(j)
0 } = δij , (3.1b)

i, j = 1, 2, 3 .
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We put the massive fields into the Fock spaces with i = 1, 2 and massless fields into the
Fock space with i = 3. The fields |Φ(i)⟩ and the parameters of gauge transformations |Λ(i)⟩
have the same expression as (2.10)

|Φ(i)⟩ = |ϕ(i)⟩ + c
(i)
0 b(i),+|C(i)⟩ + c(i),+b(i),+|D(i)⟩ , |Λ(i)⟩ = b(i),+|ρ(i)⟩ , (3.2)

with no summation over i. The component fields |ϕ(i)⟩, |C(i)⟩, |D(i)⟩ and parameters of gauge
transformations |ρ(i)⟩ are in turn expanded in terms of the oscillators α(i),+ and ξ(1,2),+ (for
massive fields). The fields and parameters of gauge transformations can also have indices,
which correspond to an internal symmetry group. We shall not write them explicitly, and
assume their presence when the sum of the spins in a cubic vertex is odd.

Let us consider Lagrangian with cubic interactions included

L3 = −
3∑

i=1

∫
dc

(i)
0 ⟨Φ(i)|Q(i)|Φ(i)⟩+ (3.3)

+ g

(∫
dc

(1)
0 dc

(2)
0 dc

(3)
0 ⟨Φ(1)|⟨Φ(2)|⟨Φ(3)||V ⟩ + h.c.

)
,

where g is a coupling constant. The nilpotent BRST charges are the same as in (2.17) for
massive fields, and (2.7) for massless fields, i.e.,

Q(1,2) = c
(1,2)
0 (□(1,2) + m2) − c(1,2)(α(1,2),+ · p(1,2) + mξ(1,2),+)+ (3.4a)

+ c(1,2),+(α(1,2) · p(1,2) − mξ(1,2)) − c(1,2),+c(1,2)b
(1,2)
0 ,

Q(3) = c
(3)
0 □(3) − c(3)α(3),+ · p(3) + c(3),+α(3), · p(3) − c(3),+c(3),b

(3)
0 . (3.4b)

The cubic vertex which is present in the Lagrangian (3.3) has the form

|V ⟩ = V (p(i)
µ , α(i),+

µ , ξ(i),+c(i),+, b(i),+, b
(i)
0 ) c

(1)
0 c

(2)
0 c

(3)
0 , |0(1)⟩ ⊗ |0(2)⟩ ⊗ |0(3)⟩ , (3.5)

where the function V is restricted to have the ghost number zero, to be a Lorentz invariant
and to be a solution of the BRST invariance condition

(Q(1) + Q(2) + Q(3))|V ⟩ = 0 . (3.6)

This condition is obtained from the requirement of invariance of the Lagrangian (3.3) up
to the terms linear in g under the non-linear gauge transformations

δ|Φ(i)⟩ = Q(i)|Λ(i)⟩+ (3.7)

+ g

∫
dc

(i+1)
0 dc

(i+2)
0

(
(⟨Φ(i+1)|⟨Λ(i+2)| + ⟨Λ(i+1)|⟨Φ(i+2)|)|V ⟩

)
,

where i + 1, i + 2 are understood modulo 3. The condition (3.6) guarantees also that the
group structure of the gauge transformations is preserved up to the first order in g. Using
momentum conservation

p(1)
µ + p(2)

µ + p(3)
µ = 0 , (3.8)
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and the commutation relations (3.1a)–(3.1b), one can show, that the following atomic
expressions are BRST invariant for any values of the spins entering the cubic vertex [41]

K(1) =−(p(2)−p(3))·α(1),++mξ(1),++(b(2)
0 −b

(3)
0 )c(1),+ , (3.9a)

K(2) =−(p(3)−p(1))·α(2),+−mξ(2),++(b(3)
0 −b

(1)
0 )c(2),+ , (3.9b)

K(3) =−(p(1)−p(2))·α(3),++(b(1)
0 −b

(2)
0 )c(3),+ , (3.9c)

Q=−α(1),+ ·α(2),++ ξ(1),+

2m K(2)− ξ(2),+

2m K(1)+ξ(1),+ξ(2),+− 1
2b(1),+c(2),+− 1

2b(2),+c(1),+

(3.9d)

and
Z = Q(1,2)K(3) + Q(2,3)K(1) + Q(3,1)K(2) , (3.9e)

where

Q(12) = −α(1),+ · α(2),+ + ξ(1),+ξ(2),+ − 1
2b(1),+c(2),+ − 1

2b(2),+c(1),+ , (3.10)

Q(i,i+1) = −α(i),+ · α(i+1),+ − 1
2b(i),+c(i+1),+ − 1

2b(i+1),+c(i),+ , i = 2, 3 . (3.11)

One can check, that the vertices (3.9a)–(3.9e) are BRST non-trivial solutions of the equa-
tion (3.6), and therefore they can not be obtained from the free Lagrangian by field redefinition.
An obvious consequence of the BRST invariance of these atomic vertices is that any function
thereof is a valid cubic vertex, unless some extra selection criteria are imposed.

Relation to the light-cone gauge vertices. Before concluding the discussion on cubic
interactions, let us note, that the cubic vertices considered above are actually covariantizations
of the cubic vertices given in the light-cone gauge in [22]. In order to see this let us recall,
that in the light-cone formalism one does not have the fields |C⟩ and |D⟩ (which are artifacts
of the gauge invariant formulation), whereas the physical fields |ϕ⟩ have the form

|ϕ⟩ =
s∑

k=0

1
(s − k)!k!ϕI1...,Is−k

(x)αI1+ . . . αIs−k+(ξ+)k|0⟩ . (3.12)

The light-cone index is I = 1, . . . , d − 2, both for massless and massive fields, whereas
the oscillator ξ+ plays the role of an “extra” degree of freedom, which is present in the
massive representations. Such representation for massive fields allows one to couple them
to massless ones in cubic vertices by contractions of the indices Ik between the fields and
the corresponding momenta.

Going back to the gauge-invariant description, one promotes the index I to the index
µ = 0, . . . , d − 1 at the expense of introducing of the auxiliary fields |C⟩ and |D⟩. Comparing
explicit expressions of the cubic vertices (3.9a)–(3.9e) is with the ones found in the light-cone
gauge [22], can immediately establish the direct correspondence between them [41].

The cubic vertices given above, correspond to interactions of two massive fields with
equal masses with a massless field, where the spins of all three fields can be arbitrary. In
the further discussion we shall restrict our attention to massless triplets with the higher spin
equal to 2 and 1. To this end, we take the form of the fields in the third Fock space as
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in (2.26) and in (2.18) respectively. Also in the case of interactions of massive fields with the
massless spin-2 triplet, we put identical tensor fields (ϕµ1,...,µk

(x), Cµ1,...,µl
(x), Dµ1,...,µm(x))

in the first and the second Fock spaces. Similarly, these fields will get an internal index for
the case of interaction with the massless spin-1 triplet.

3.2 Simple three-point amplitudes

Let us compute three-point amplitudes for two massive fields with spin-s and mass-m with
one massless field with spin-2 or spin-1, by using the cubic vertices given here-above. We
shall confine our attention to the case when the dimension of the space-time is equal to
four and use the spinor-helicity formalism (see, e.g., [8, 9] for the conventions and useful
identities and appendix A).

The asymptotic “in” and “out” states are described by physical fields |ϕ(i)⟩ with the total
number of α

(i),+
µ and ξ(i),+ for i = 1, 2 is equal to s. As we discussed in the section 2, we can

decompose this field into irreducible modes of spins s, s − 2, . . . 1/0. For the massless triplet
with i = 3 and s = 2, we can similarly decompose the physical field into the components with
spins 2 and 0. The massless triplet with s = 1 is already irreducible. First, let us note, that
although the cubic vertices (3.9a)–(3.9e) and massive triplets contain the ξ(1,2),+, one can
use only dependence on α

(1,2,3),+
µ when computing the three point amplitudes. Indeed, this is

the only oscillator that can be contracted with a rank-s polarization tensor.
Let us consider some lower spin examples, which will explain the meaning of the atomic

cubic structures (3.9).

The case 0 − 0 − 1. For this simplest case the fields are

⟨ϕ(1)| = ⟨0|ϕ(1) , ⟨ϕ(2)| = ⟨0|ϕ(2) , ⟨ϕ(3)| = ⟨0|α(3)
µ ϵ−µ , (3.13)

where we have taken the massless vector field with the negative helicity. Apparently, the
relevant cubic vertex has the form

V = − i√
2 K

(3) . (3.14)

Therefore, the three-point amplitude between two massive scalars and a massless vector is

AϕϕA− = 1√
2ϵ− · (p(1) − p(2)) =

√
2ϵ− · p(1) = mx−1 , (3.15)

where we have used the transversality of the vector and introduced the x-factor according
to [8]. For instance, this is an amplitude between the complex scalar field and a photon
induced by the minimal current interaction.

The case 1 − 1 − 1. For two massive and one massless vector fields we have

⟨ϕ(1)| = ⟨0|α(1)
µ ϵ(1)

µ , ⟨ϕ(2)| = ⟨0|α(2)
µ ϵ(2)

µ , ⟨ϕ(3)| = ⟨0|α(3)
µ ϵ(3),−

µ . (3.16)

The relevant cubic vertex is

V = − i√
2Z , (3.17)
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which gives the three-point amplitude as

AW W A = i
√

2
(
(ϵ(1) · ϵ(2))(ϵ(3) · p(2)) + (ϵ(2) · ϵ(3))(ϵ(1) · p(3)) + (ϵ(3) · ϵ(1))(ϵ(2) · p(1))

)
.

(3.18)
Rewriting this amplitude in the spinor-helicity formalism by using the relations from ap-
pendix A, we get

AW W A− = 1
mx

[12]2 . (3.19)

For instance, this is an amplitude between the W-boson and a photon.

The case 1 − 1 − 2. For the case of two massive vector fields and a graviton we have

⟨ϕ(1)| = ⟨0|α(1)
µ ϵ(1)

µ , ⟨ϕ(2)| = ⟨0|α(2)
µ ϵ(2)

µ , ⟨ϕ(3)| = 1
2 ⟨0|α(3)

µ α(3)
ν ϵ(3),−

µ ϵ(3),−
ν . (3.20)

The relevant vertex has the form

V = − i
2K

(3)Z , (3.21)

which gives

A1,1,2 = iAW W AAϕϕA . (3.22)

Using the spinor-helicity formalism, one obtains

A(1, 1, 2−) = i
[12]2

x2 . (3.23)

For instance, this is the usual minimal interaction via the stress-tensor between a massive
vector and a graviton.

The case 2 − 2 − 2. For the case of two massive spin-2 fields and one graviton, we have
⟨ϕ(3)| as before and

⟨ϕ(1,2)| = 1
2 ⟨0|α(1,2)

µ α(1,2)
ν ϵ(1,2)

µ ϵ(1,2)
ν . (3.24)

The relevant vertex has the form

V = − i
2Z

2 . (3.25)

Let us note that there are some other possible combinations of the atomic vertices (3.9a)–
(3.9e), which have the powers of the oscillators equal to (2, 2, 2). The choice (3.25) is singled
out by the requirement that the three-point amplitude has the “minimal form” given by
the AHH-amplitude

A(2, 2, 2−) = i
m2

x2
[12]4

m4 , (3.26)

when written in terms of spinor-helicity variables.
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The case 3 − 3 − 2. The fields in this case are ⟨ϕ(3)| as before and

⟨ϕ(1,2)| = 1
3! ⟨0|α

(1,2)
µ α(1,2)

ν α(1,2)
ρ ϵ(1,2)

µ ϵ(1,2)
ν ϵ(1,2)

ν . (3.27)

Again, in this case there are several possibilities for the cubic interaction vertex, each of
them giving a valid gauge-invariant expression. Therefore, we can take all combinations of
the vertices (3.9a)–(3.9e) with powers of oscillators being (3, 3, 2), and add them up with
arbitrary coefficients. We choose the coefficients from the requirement that the three point
amplitude corresponds to the AHH-amplitude. It turns out that such vertex has the form

V = − i
2

(
Z2Q−ZQ2K(3) + Z2K(1)K(2) 1

2m2

)
. (3.28)

3.3 Action for a Kerr Black Hole

One can generalize the lower spin examples, considered above to an arbitrary spin. While
the relation between the atomic cubic vertices (3.9) and amplitudes has hopefully been made
clear by the examples above, the main advantage of the formalism is that any polynomial
in (3.9) leads automatically to an off-shell gauge-invariant action. This is thanks to the BRST
formulation that relates vertices and gauge transformations via the auxiliary ghost variables
and thanks to the triplet formulation that makes this relation simple.

The general three point amplitude of two massive higher-spin fields with the graviton,
which gives, the AHH-amplitude, was obtained in [49]

∑
s

A(s,s,2) = iAϕϕAAϕϕA+iAW W A

(
AϕϕA+ AW W A−(ϵ1 ·ϵ2)2AϕϕA

(1+ϵ1 ·ϵ2)2+ 2
m2 (ϵ1 ·p2)(ϵ2 ·p1)

)
. (3.29)

Indeed, using the spinor identities, one gets the following expression for the (chiral) three-
point amplitude

A(s, s, 2−) = i
m2

x2
[12]2s

m2s
. (3.30)

With the help of the dictionary between the three-point amplitudes for lower spins and
cubic vertices (3.9a)–(3.9e),

AϕϕA = − i√
2
K(3), AW W A = − i√

2
Z, ϵ1 · ϵ2 = −Q, ϵ1 · p2 = −1

2K
(1), ϵ2 · p1 = 1

2K
(2) ,

established above, one can immediately write the cubic Lagrangian vertex V as

V =
∑

s

V (s, s, 2) = − i
2(K(3))2 − i

2

(
ZK(3) + Z2 −Q2K(3)Z

(1 −Q)2 − 1
2m2K(1)K(2)

)
, (3.31)

which gives the amplitude (3.29) (or, equivalently, the amplitude (3.30)). Similarly, the
cubic vertex, which corresponds to the AHH three-point amplitude for two massive field
with spin-s, mass-m and a massless vector field reads

V =
∑

s

V (s, s, 1) = − i√
2K

(3) − i√
2

Z −Q2K(3)

(1 −Q)2 − 1
2m2K(1)K(2) . (3.32)
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The cubic vertices for Kerr (3.31) and root-Kerr (3.32) theories are the main results of the
paper. Within the BRST formalism they also encode the corrections to the free gauge
transformations via (3.7). Let us note that using the light-cone versions of the vertices (3.9a)–
(3.9e) given in [22], one can write the same Lagrangians in the light-cone gauge. The
free part of the Lagrangian will contain only kinetic terms for the physical fields and the
cubic interactions being (3.31) and (3.32). Let us also note that our result is based on
the generating function of the AHH-amplitudes found in [49], where the individual spin-s
amplitudes were summed with coefficient 1. In view of the coherent state formalism [54]
it would also make sense to sum the amplitudes with weight 1/(2s)! to get the diagonal
part of the spin-coherent amplitude.

4 Conclusions and discussion

In this paper we found an action for Kerr Black Holes up to the cubic order. The cubic
action is rather simple in terms of a generating function and can almost be read off from
the AHH-amplitude, which, on one hand, makes a lot of sense since an amplitude is the only
physical information encoded in a vertex, on the other hand, the simplicity of the off-shell
uplift is striking. As a result, we have at our disposal a cubic Lagrangian L3 together with
the corrections δ1 to the gauge transformations.

As it follows from our consideration, the BRST approach alone does not fix the couplings,
at least at the level of cubic interactions. While translating an amplitude into a gauge-
invariant off-shell action turns out to be easy in the BRST approach, it should be noted that
the minimal interaction, which corresponds to the AHH-amplitude, can also be found by
constraining the number of derivatives, see [19, 20]. The minimal interaction is the unique
consistent interaction with the least number of derivatives.

At the conceptual level the problems of massive and massless higher-spin fields seem
to be rather different from each other. Interactions of massless higher-spins are severely
constrained with a handful of theories making it to be perturbatively local field theories,
see [55]. The massless higher-spin multiplets are usually infinite. On the contrary, massive
higher-spin fields can interact with electromagnetism and gravity individually, they can also
exhibit self-interactions without having to invoke other fields.

Nevertheless, the study of massless higher-spin fields provides some insights into the
problem of massive ones. For example, the higher energy limit of the cubic amplitudes of
massive fields is governed by those of massless. On a different note, via the Stuckelberg
approach a massive spin-s field can be realized as collections of massless fields with spins
from 0 to s, which allows one to employ the usual massless higher-spin gauge symmetry
to control the number of degrees of freedom, which is what has been done in the present
paper, see also [19, 20].

The on-shell Compton amplitude that passes a number of nontrivial tests has recently
been found in [19, 20]. However, extending this result to the action level (i.e. off-shell)
is a challenge. We hope that the approach advocated in the present paper can simplify
the problem and provide an off-shell uplift of the on-shell results of [19, 20]. The BRST
formalism advocated in the present paper is equivalent to all other gauge invariant (à la
Stueckelberg) approaches and should allow one to write down any consistent interaction, as a
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matter of principle. In particular, the complete theory of a single spin-s field interacting with
electromagnetism and gravity should be constructible, at least order by order.

Another feature of the BRST formalism, which may turn out to be useful for applications,
is the reducibility of the multiplet: a single field describes particles with spins s, s − 2, . . . 1/0.
Therefore, one can implement spin-changing interactions directly within the multiplet. How-
ever, mass-changing interactions would require a family of multiplets, see the recent [56–58]
for the first steps towards taking such interactions into account. The atomic building blocks
of the cubic vertices can also be employed to construct spin- and mass-changing interactions.
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A (Massive) spinor-helicity

We mainly follow the conventions of [11, 49]. The massless spinors are λα and λα̇, where
α = 1, 2 and α̇ = 1, 2 are indices of the four dimensional Lorentz group SL(2, C). We
use a notation

|λ⟩ ↔ λα, |λ] ↔ λ
α̇
, ⟨λ| ↔ λα, [λ| ↔ λα̇ (A.1)

Summations over Lorentz indices are defined as

⟨ij⟩ = λ(i),αλ(j)
α , [ij] = λ

(i)
α̇ λ

(j),α̇ ⟨iσµj] = λ(i),ασµ
αα̇λ

(j),α̇ (A.2)

where i, j are numbers of the particles.
The massive spinors are λa

α and λ
a
α̇. The index a = 1, 2 corresponds to the little group

SU(2). For the massive spinors we have

|λa⟩α ⟨aλ|β = mδβ
α, |λa]α [λa|β = mδα

β , [λaλb] = −⟨λaλb⟩ = mεab . (A.3)

Spinorial indices are raised and lowered as λa = εabλb and λa = εabλ
b with ε12 = ε21 = 1,

the same is for α and α̇ indices. The convention for the summation over Lorentz indices
are the same as for the massless ones.

As before, the labels “1” and “2” are for massive fields with the same mass m and the
label “3” is for the massless spin 2 or spin 1 field. In a three-point vertex the momentum
conservation law implies

p
(1)
αα̇ + p

(2)
αα̇ + p

(2)
αα̇ = λ(1),a

α λ
(1)
α̇,a + λ(2),a

α λ
(2)
α̇,a + λ(3)

α λ
(3)
α̇ = 0 . (A.4)

It is helpful to introduce auxiliary commuting spinors za and consider

λα = λa
αza, λα̇ = λ

a
α̇za . (A.5)
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The massive spinors satisfy the Dirac equation

pαα̇λ
α̇ = mλα, pαα̇λα = −mλα̇ . (A.6)

Like massless spinors, they also satisfy Schouten identity

⟨λ1λ2⟩⟨λ3| + ⟨λ3λ1⟩⟨λ2| + ⟨λ2λ3⟩⟨λ1| = 0 (A.7)

as well as ⟨λ1λ1⟩ = [λ1λ1] = 0.
Vector and spinor indices are connected as pαα̇ = pµ(σµ)αα̇ with

tr(σµσν) = 2ηµν , (σµ)αα̇ (σµ)ββ̇ = 2δβ
αδβ̇

α̇ (A.8)

Let us introduce the x-factor as [8]

xm|λ3⟩ = ip1|λ3], −im[λ3| = x⟨λ3|p1 . (A.9)

The polarization vectors for massive fields are defined as

ϵµ = ⟨λ|σµ|λ]√
2m

, ϵ =
√

2 |λ⟩[λ|
m

, (A.10)

and the polarization vectors for massless ones are

ϵ+
µ = 1√

2
⟨q|σµ|λ]
⟨qλ⟩

, ϵ+ =
√

2 |q⟩[λ|
⟨qλ⟩

(A.11)

ϵ−µ = 1√
2
⟨λ|σµ|q]

[λq] , ϵ− =
√

2 |λ⟩[q|[λq] (A.12)

where |q⟩ and |q] are arbitrary reference spinors. Their presence is a consequence of the gauge
invariance. Finally, one can check the following useful identities

√
2i

m
ϵ+
3 · p1 = x ,

√
2i

m
ϵ−3 · p1 = 1

x
, (A.13)

[13] = ix⟨13⟩ , [23] = −ix⟨23⟩ , x⟨23⟩⟨31⟩ = im(⟨21⟩ − [21]) , (A.14)

p1,α̇
α p2,αβ̇ = m2εα̇β̇ + im

x
λ3,α̇λ3,β̇ , (A.15)

[2|p1|3⟩ = −m⟨32⟩ , [1|p2|3⟩ = −m⟨31⟩ . (A.16)

Massive reference spinors. Massive polarization tensors are gauge-invariant, but in
view of the massive higher-spin gauge symmetry it might be useful to define “gauge-variant”
polarization tensors and massive reference spinors. Let us consider as an example the gauge
invariant formulation for a massive spin-1 field. As we discussed in section 2, one can write
the gauge invariant massive vector field ϕ̃αα̇ as a sum

ϕ̃αα̇ = ϕαα̇ − pαα̇

m
ϕ . (A.17)
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The polarization vector for ϕ̃αα̇ is given by (A.10). The polarization vector for ϕαα̇ is
obtained by

ϵ̃αα̇ = ϵαα̇ − 1
2m

pαα̇ϕ (A.18)

with
ϕ = 1

m
(qa,αλa,α + qa

α̇λ
α̇
a ) (A.19)

Since the variation of the reference spinor has the form3 δqa,α = τabλb
α, we see that

δϵ̃αα̇ = pαα̇(τa
a + τa

a). Notice, that when computing the amplitudes, one can fix the reference
spinor to an arbitrary value, for each gauge invariant field separately. Choosing it equal to
λα̇, one can make the field ϕ equal to zero. Therefore, when computing on-shell amplitudes
by using the vertices (3.9a)–(3.9e) one can take into account only the α

(i),+
µ dependence

for the external fields.
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Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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