NMR relaxometry to monitor *in situ* the loading of an ion exchange resin with Ni²⁺ ions during a column experiment **BI** PHYS

M. Bernardi,^a R. De Oliveira-Silva,^b Q. L. Vuong,^a D. Sakellariou,^b Y. Gossuin^a*

^aBiomedical Physics Unit, UMONS, Belgium, ^bCentre for Membrane Separations, Adsorption, Catalysis and Spectroscopy, KULeuven, Belgium, ^{*}presenting author, <u>vves.gossuin@umons.ac.be</u>

The T₂ relaxation curves of water are used to follow, during a column experiment and directly on the resin bed, the gradual loading of an ion exchange resin with Ni²⁺. The column is directly inserted into the bore a low-field benchtop NMR device.

1. Water pollution by Nickel

Nickel found in different industrial wastewaters (metal mining, nickel plating...),
Its concentration in drinking water should be below 0.07 mg/ml (1.2 μM),
Ion exchange resins are often used to remove Ni²⁺ from water.

2. Batch and column experiments

Column experiment

- To evaluate the efficiency of a resin: batch or column experiments,
- Batch = simply shaking the metal containing solution with the resin + measurement of [Ni²⁺] in the supernatant,
- Column = real filtration experiment, the solution flows through the resin bed + measurement of [Ni²⁺] in the effluent.

Figure 1: (a) Sketch of the experimental setup. (b) Picture of the actual experiment. The inset shows a close-up of the column after saturation with Ni²⁺.

3. Why NMR relaxometry to study Ni²⁺ removal by an ion exchange resin?

Batch experiment

■Ni²⁺ is paramagnetic => effect on water relaxation, T_1 and T_2 \> \> ($r_2 \approx 0.65 \text{ s}^{-1}\text{m}\text{M}^{-1}$ at 10 MHz)

Already used to follow Cr³⁺, Cu²⁺ and Ni²⁺ removal by NMR relaxometry in batch experiments¹⁻³,

Relaxation of water present in the intraporosity of the Ni²⁺-loaded resin also much faster.

4. Setup of a column experiment monitored by NMR

STEP 1

Resin: 14 g of amberlite IR120, [Ni²⁺] = 20 mM, flow = 4.3 ml/min, speed of water \approx 14 mm/min,

Column (ø = 2 cm) directly inserted in the bore of a low-field NMR device working at 8.33 MHz,

Height of the resin bed: 5cm, height of the detected zone: 3cm => signal from a part of the bed,

=> choice to study the bottom zone => follow-up of the complete saturation of the column, T_2 relaxation curves measured with a CPMG sequence (16000 echoes, TE = 0.3 ms).

5. Results and interpretation

T₂ relaxation curves clearly multiexponential => biexponential fitting
Three steps observed for the evolution of the slowly relaxing fraction:
step 1: the Ni²⁺ solution hasn't reached the studied zone yet,
al slow fraction = pure water in the intraporosity (between the beads)
fast fraction = water in the intraporosity (in the resin beads)
step 2: the Ni²⁺ solution has reached the zone => loading of the resin,
al slow fraction = pure water + water with small Ni²⁺ concentration in the interporosity
fast fraction = concentrated Ni²⁺ solution (interporosity) + water in intraporosity (missed fraction)
step 3: all resin beads saturated with Ni²⁺, above and in the studied zone,
all resin beads saturated with Ni²⁺ solution (in the interporosity) => T₂ ~ 70 ms
fast fraction = water in the intraporosity of the Ni²⁺-loaded resin beads => ultrafast T₂ ~ 1ms

10000

6000

4000

2000

The T_2 distribution obtained by Inverse Laplace Transform confirms the 3 separate steps.

Transition between steps 1 and 2 (blue arrow) = arrival of the 20mM Ni²⁺ solution in the zone,

а

time (hours)

Figure 2: Evolution with time of $1/T_2$ of the slowly relaxing fraction for the bottom of the resin bed

Figure 3: Evolution with time of the T_2 distribution for the bottom of the resin bed

References

- 1. Gossuin et al, Journal of Water Process Engineering 2020
- 2. Marchesi et al, Dalton Trans. 2022
- 3. Bernardi et al, Int. J. Environ. Sci. Technol. 2024
- Funding from FNRS-F.R.S. (T.0113.20, CDR J.0093.22, CDR J.0025.15) and UMONS

Transition between steps 2 and 3 (blue arrow)

- $\frac{1}{8}$ = saturation of the entire resin bed with Ni²⁺,
- => Detection by NMR of the saturation of the bed is possible
- => Good agreement with the evolution of [Ni²⁺] in the effluent measured by ICP-AES.

6. Perspectives

Figure 4: Comparison of the relaxation results with the evolution of [Ni²⁺] in the effluent measured by ICP-AES

Same experiment with lower paramagnetic ion concentration (<< 1 mM),

- => closer to real life conditions but the fitting and interpretation must be adapted,
- => Follow-up of the water relaxation in the intraporosity, with very short T_2 ?

Study of other adsorbents and other paramagnetic ions (Cu²⁺ already done).

BIOMEDICAL PHYSICS UNIT, UMONS, BELGIUM.