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Aim of the project

~

Walbiopower aims at valorising organic waste, such as food waste, urine and the liquid fraction of effluents.

* The solid fraction of food waste Is transformed into gaseous

* The urea contained in urine can be valorised to produce hydrogen,

biomethane and a solid/liquid waste called digestate. The aim is to ()] either by using It in a reaction of electrocatalysis or by producing

reduce the carbon/environmental footprint of the process by improving
Its yield, allowing its decentralisation and increase the valorisation of its

by-product, digestate.

¥

ammonium in a controlled fashion which will be valorised energetically
at later stages of the project.
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@Psychrophilic anaerobic digestion

Proteins, carbohydrates, fats
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Acidogenesis

Amino acids, Monosaccharides, Long chain fatty acids

Volatile fatty acids, Alcohol
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* V5 = volatile solids

OLR = 19.4gV5" /day
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Figure 1.4. Volatile fatty acids composition
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« can be assimilated by
purple non-sulphur
bacteria (PNSB), such

I
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a as Rs. rubrum.

gas circulation

S00mL Hydrolysis

Figure 1.1. Anaerobic digestion process
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Figure 1.3. Biogas
composition
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* VS = volatile solids
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Anaerobic digestion
IS a process where
microorganisms
break down organic
matter, in the
absence of oxygen,
Into valuable biogas
composed of

methane (50-75%)
@d CO, (25-50%).
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Figure 1.2. Two-stages bioreactor configuration
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Figure 2.3. Characterisation of spx by mass
spectrometry. MS/MS spectra show fragments at
m/z = 295.19 and 597.44, and XIC (extracted ion
chromatogram) corresponding to a peak at 4.245 min.

ce

Ab

© |

(a

503

rb

202

oQb—— ———
960 200 500 600 700 860 900 1000

0.4

0.1

~ 5l
U

Purple non-sulfur

bacteria (PNSB)

| Carotenoids |

’50.5

\ Coenzyme Q10,

Microbial proteins

' Figure 2.1. Photoheterotrophy by Rs.

f 2. Valorisation of digestate by Rhodospirillum rubrum\
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w  + volatile fatty acids (VFAS)
from digestate

vitamin B,
5-Aminolevulinic acid

rubrum resulting in a myriad of high added
value components

Figure 2.2. Molecular structure and
absorbance spectrum of spirilloxanthin
(spx), the main carotenoid in Rs. rubrum
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Figure 2.4. Antioxidant

properties of spx are
evaluated using assays
measuring the reduction of
peroxide production (1) and

a free radical quenching
assay (DPPH, 2,2-Diphenyl-
1-picrylhydrazyl) (2).

Circular and durable valorisation system
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3. Modelling and
optimising control of anaerobic digestion

kz —kg M1X1
1 0 | Llu2X>

Qcoz = kap1 X1 + ks X,

Qcra = kel X

Two-stage model (Henrotin et al. 2023)
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Gradient
estimator

GV =

3

Dither

(3) Qcoz =79 ML

(1) Qco, = 83,5 mL (Extremum seeking)
(2) Qcop = 63 ML
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set up and optimised. Further optimisations will be carried out by feeding the model
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Conclusions and future work

experimental data and with regards to the bacterial cultures.
 Life cycle assessments (LCA) will
decentralisation process.
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be used to evaluate the feasibility of the
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4. Electrocatalysis of urea

-30% of the electrical energy (vs. electrolysis)
No CO, emitted (10 t of CO, avoided per t H,)
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N, (g) + 3 H, + CO, (mineralised) | @

> Water depleted of its nitrogen load
€€
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Less energy than a classical
electrolysis

Further improvement possible by utilising
advanced catalysers (TRL6)

Ecosystem options: Production of
fertilisers and their local utilisation.
Treatiment of other pollutants (e.g., PFAS)

6uaternary NI alloh

—>Increased current
density of the UOR
(urea oxidation reaction)
(x2/Ni)

- Low activation

overpotential
—> Stability of the catalytic
activity over time (/Ni)

- EXxcellent corrosion
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* Anaerobic digestion in the reactor, the growth of Rs. rubrum and the model have been + The quaternary Ni alloy increased the current density of the urea oxidation reaction

00000

and had a higher catalytic stability compared to Ni alone.

 The production of ammonium and its subsequent energetic valorisation will be carried
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out in the coming months.
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