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Abstract: Polybenzoxazine (PBz) resins exhibit excellent mechanical, thermal, and adhesive
properties, making them interesting candidates for coating applications. Moreover, thanks
to the incorporation of exchangeable ester bonds within the PBz network, the coating
presents healable properties that are catalyzed by the intrinsic presence of tertiary amine
within the PBz backbone. Unfortunately, these tertiary amine functions are also respon-
sible for the limited resistance of such systems to acid environments by protonation. To
address this limitation, the protection of tertiary amines inherent to the PBz network was
investigated in this study by incorporating an aromatic group close to the amine function
to minimize its protonation via hindrance/mesomeric effects. More precisely, benzoxazine
precursors based on monoethanolamine (mea) and aminophenylethyl alcohol (Apa) were
synthesized and tested as protective coatings of aluminium alloy substrates (AA1050). The
resins were characterized by NMR, FTIR, rheology, TGA, DSC, and DMA. PBz synthesized
from Apa exhibits enhanced thermal stability, reduced swelling rates in both water and acid,
and shortened relaxation times. After application via solvent casting on AA1050 substrates,
the acid resistance of the coatings was evaluated. Electrochemical impedance spectroscopy
results demonstrated better resistance of the Apa-based resins in 0.1 M sulfuric acid after
one month of immersion.

Keywords: benzoxazine; aluminium alloy; polymer coatings; acid resistance

1. Introduction
In recent years, aluminium (Al) alloys have been used in widespread applications

like aircraft or automobiles [1,2]. Al alloys have a low density, which can reduce the
overall weight of the equipment and consequently the fuel consumption [2]. Moreover,
Al alloys can be used in applications that require high strength and hardness. Aside
from these properties, Al alloys have proper workability, castability, machinability, and
recyclability, as well as fatigue and corrosion resistance [3,4]. In atmospheric conditions, an
oxide layer (Al2O3) can be formed on the surface of Al alloy and decrease the corrosion
rate [5]. However, in the presence of saline, alkaline, or acidic solutions, corrosion can be
considerably increased [6].

The main strategy to limit Al alloy corrosion consists of isolating the metal from
corrosive media. When the use of inorganic corrosion inhibitors such as phosphates,
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chromates, and arsenates is severely limited due to their toxicity [7–9], the application
of a protective organic coating appears to be the best alternative. Such coatings act as a
barrier against aggressive species and reduce environmental damage to the substrate [10].
Although there is extensive literature on improving the corrosion resistance of aluminium
alloys with polybenzoxazine coatings in saline solutions [11,12], there are only a limited
number of studies that have examined the chemical resistance of these coatings to the
aluminium substrate, particularly in the case of acid attacks [13,14].

Acid-resistant coatings are of great interest, as they can be used to protect ceramic
and metallic substrates in industries that produce and consume acids. However, the use
of acid-resistant organic coatings is often limited by industrial process variables such as
temperature, pH, type, and concentration of acid. Thermoset coatings can protect substrates
by forming a 3D network when cured and cross-linked. Therefore, the acid resistance of
thermoset organic coatings depends on the network structure. Although several organic
resins such as polyurethane [15], epoxy [16], polyaniline [17], and polypyrrole [18] have
been used to protect aluminium alloys from salt media, the effect of acids within this
network was poorly explored in the literature to the best of our knowledge. However,
chemical and physical degradation of organic coatings in an acidic environment is known
to occur. In the case of physical degradation, chemicals diffuse through the coating,
while in the case of chemical degradation, chemicals react with the coating. The poor
corrosion resistance of organic coatings is usually due to the diffusion of chemicals (physical
degradation) and the attack of the H+ proton on the alkaline moieties, such as amine, carried
by the macromolecule (chemical degradation). Lim et al. [19] showed the acid degradation
mechanism for an epoxy system. This aggression comes from the plasticization of the
system due to the protonation of tertiary amine present in the macromolecules [19]. Due to
protonation, swelling occurs, leading to physical erosion and structure degradation.

Following this concept, one approach to consider would be the protection against
acid-sensitive groups. Interestingly, benzoxazine (BZX) resins allow for the design of a wide
variety of network structures, making them the best candidates for the development of acid-
resistant organic systems [20]. In addition, BZX is suitable for protecting metallic substrates
because it interacts well with metal and OH phenols [3,11,12,21]. Moreover, the possibility
to tune the flexibility of the benzoxazine backbone serves to enhance its capacity to adhere
to metallic substrates [22]. Their low dielectric constant, thermal stability, alkaline resis-
tance, hydrophobic behavior, and the ease of introducing self-healing and re-processability
features by incorporating dynamic bonding into the network [23,24] have recently attracted
lot of attention for coating applications [25]. Benzoxazine precursors are typically produced
through a simple reaction involving three reagents: a phenol, an amine, and formaldehyde.
This reaction yields high amounts and is known for imparting exceptional properties to the
resulting compounds [26]. Several biobased phenols have already been employed in the
synthesis of benzoxazine precursors for coatings. For example, thymol [27], curcumin [28],
cardanol [29], trihydroxystilbene [30], and lignin-based compounds [31] have been shown
to possess effective anti-corrosive properties and good hydrophobicity. The thermosetting
nature of polybenzoxazine resins has made them difficult to be recycled and repaired, even
though these phenols are bio-based. Interestingly, by incorporating exchangeable bonds
to transform the polybenzoxazine’s three-dimensional structure into a dynamic covalent
network, their durability can be improved. Many dynamic networks have been the subject
of studies about polybenzoxazine resins [24,32–35]. Nevertheless, the transesterification
via the exchange of ester and alcohol functions remains the most extensively researched
and documented approach [24,36,37] due to the intrinsic presence of a tertiary amine in the
network after polymerization, which acts as an internal catalyst [38]. To incorporate ester
functions into the BZX network, it is possible to use phenols that have additional chemi-
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cal functions such as an acid or an alcohol. Recently, our research group has developed
phloretic acid (PA)-based polybenzoxazine networks for the protection of metal substrates,
including aluminium (Al) and magnesium (Mg) alloys [24,37].

Phloretic acid is a naturally occurring phenolic compound that can be produced by
hydrogenation of p-coumaric acid or derived from a by-product of apple tree leaves. It is a
phenol bearing a carboxylic acid function in the para-position. Furthermore, this phenol
is not substituted in the ortho-position, thus favoring the ring-opening polymerization
of the resulting BZX precursors [39]. The ester functions were introduced through a
reaction between the phenolic compound bearing an acid function (i.e., phloretic acid)
and diols of varying molecular weights, specifically ethylene glycol and decandiol. To
achieve transesterification and simultaneously reduce the crosslinking temperature of
the precursors, an excess of hydroxyl functions was also incorporated into the polymer
backbone by the use of monoethanolamine. Indeed, it is well known that hydroxyl functions
accelerate the polymerization of benzoxazine systems [40]. Unfortunately, these resins are
weak in acidic environments despite their good performance such as rapid relaxation and
good corrosion resistance in neutral sodium chloride solution.

This research aims to develop benzoxazine precursors with excellent acid resistance
and fast relaxation features. Inspired by the study by Kim [41], the protection of the tertiary
amine inherent to the polybenzoxazine network was investigated through the mechanisms
of mesomeric effect and steric hindrance. In this regard, two amines were selected for
the synthesis of the aforementioned BZX resins. Initially, monoethanolamine (mea) was
employed as a reference. The second amine, aminophenylethyl alcohol (Apa), was selected
to enhance protection against acidic media. This primary amine contains an aromatic ring
directly attached to the amine, which can protect against acid degradation by mesomeric
effect and/or steric hindrance. In addition to durability enhancement, it is worth noting
that they are also partially biobased, contributing to improved environmental impact.

2. Materials and Methods
2.1. Sample Preparation
2.1.1. Materials

Phloretic acid (>98%) was purchased from TCI. Ethylene glycol (99.8%), para-
toluenesulfonic acid (98.5%), methyl ethyl ketone, paraformaldehyde, and 1.10 de-
candiol (98%) were obtained from VWR. Ethanolamine was acquired from Merck.
Aminophenylethyl alcohol was purchased from Apollo Scientific. All chemicals were
used without further purification.

2.1.2. Synthesis of Phloretic Ester

The synthesis of PA-decandiol (PA-DD) and PA-ethylene glycol (PA-EG) was per-
formed according to Figure 1. The operating conditions were the same for all the samples,
according to the procedures described in an earlier report [38]. The synthesis protocol
for the PA-DD is explained as an example. Phloretic acid (120 mmol), an excess of 1,10-
decandiol (72 mmol), and paratoluenesulfonic acid (1 mmol) were placed into a 250 mL
beaker equipped with a stirring bar. The mixture was stirred at 130 ◦C for 24 h at 150 rpm.
After cooling to room temperature, the crude product was solubilized in 200 mL of methyl
ethyl ketone. Then, the solution was washed with deionized water three times to remove
the catalyst and the excess of diols. The organic solvent was dried under vacuum overnight
to obtain a dark red viscous liquid yield of 95%; 1H-NMR (DMSO-d6, ppm): PA-dd: 9.14
(Ar–OH*), 7.00 (Ar*–OH), 6.65 (Ar*–OH), 3.97 (O=C–O–CH2*), 2.74 (HO–AR–CH2*), 2.53
(HO–AR–CH2–CH2*), 1.50 (O=C–O–CH2–CH2*), 1.25 (DD–CH2*–CH2*–). PA-EG: 9.17
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(Ar–OH*), 7.02 (Ar*–OH), 6.67 (Ar*–OH), 4.19 (O=C–O–CH2*), 2.74 (HO–AR–CH2*), and
2.56 (HO–AR–CH2–CH2*).
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2.1.3. Synthesis of Phloretic Benzoxazine

The syntheses of PA-DD-mea, PA-DD-Apa, PA-EG-mea, and PA-EG-Apa were per-
formed according to Figure 1. The operating conditions were the same for all samples. The
synthesis protocol for the PA-DD-mea is detailed as an example. Phloretic ester (58.5 mmol),
primary amine (117 mmol), and paraformaldehyde (234 mmol) were placed into a 250 mL
beaker equipped with a stirring bar. The mixture was stirred at 85 ◦C for 150 min and
30 min at 90 ◦C at 150 rpm. The resulting product was a dark red viscous liquid. The
assignment of each nuclear magnetic resonance peak and the integral values can be found
in the supplementary information. FTIR (cm−1): PA-dd-mea: 1729 (C=O stretching from
the ester), 1229 (C-O-C stretching asymmetric), 1117 (C-H inplane bending mode 18a and
18b), 1033 (C-O-C stretching symmetric), 937 (C-H out-of-plane bending vibration bands
oxazine mode 10a and trisubstituted benzene). PA-DD-Apa: 1725 (C=O stretching from
the ester), 1227 (C-O-C stretching asymmetric), 1171 (C-H inplane bending mode 18a and
18b), 1043 (C-O-C stretching symmetric), 946 (C-H out-of-plane bending vibration bands
oxazine mode 10a and trisubstituted benzene). PA-EG-mea: 1730 (C=O stretching from
the ester), 1231 (C-O-C stretching asymmetric), 1143 (C-H inplane bending mode 18a and
18b), 1049 (C-O-C stretching symmetric), 934 (C-H out-of-plane bending vibration bands
oxazine mode 10a and trisubstituted benzene). PA-EG-Apa: 1727 (C=O stretching from the
ester), 1226 (C-O-C stretching asymmetric), 1155 (C-H inplane bending mode 18a and 18b),
1043 (C-O-C stretching symmetric), 943 (C-H out-of-plane bending vibration bands oxazine
mode 10a and trisubstituted benzene).

2.1.4. Curing of Benzoxazine Thermoset

All monomers were poured into square Teflon molds (5/5/0.1 cm), then degassed
under pressure in an oven at 100 ◦C (15 min). Afterward, samples were heated at 160 ◦C
for 120 min to obtain the corresponding polymerized products: pPA-DD-mea, pPA-DD-
Apa, pPA-EG-mea, and pPA-EG-Apa. FTIR (cm−1) pPA-DD-mea:1729 (C=O stretching
from the ester), 876 (out-of-plane, out-of-phase hydrogen wagging node for the 1,2,3,5-
tetrasubstituted aromatic ring). pPA-DD-Apa: 1725 (C=O stretching from the ester), 872
(out-of-plane, out-of-phase hydrogen wagging node for the 1,2,3,5-tetrasubstituted aromatic
ring). pPA-EG-mea: 1729 (C=O stretching from the ester), 873 (out-of-plane, out-of-phase
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hydrogen wagging node for the 1,2,3,5-tetrasubstituted aromatic ring). pPA-EG-Apa: 1728
(C=O stretching from the ester), 872 (out-of-plane, out-of-phase hydrogen wagging node
for the 1,2,3,5-tetrasubstituted aromatic ring).

2.1.5. Coating Preparation

AA1050 substrates with dimensions of 50 mm × 50 mm × 1.0 mm and chemical
compositions of (weight percent) <0.40% Fe, <0.25% Si, <0.07% Zn, <0.05% Cu, <0.05% Mg,
<0.05% Ti, and <0.05% Mn balanced with Al [11] were first etched with NaOH 1 M solution
at 60 ◦C for 2 min and with nitric acid for 1 min after being rinsed with deionized water.
These substrates were further washed with deionized water and dried in air.

PA samples were applied on the Al substrates by solvent casting in a 112.5 g/L
chloroform solution at 45 ◦C. All samples were then heated at 160 ◦C for 120 min to obtain
the corresponding polymerized coatings. The thickness of coatings was 100 ± 5 µm, which
was measured using a dualscope MP0.

2.2. Characterization
2.2.1. Chemical and Morphological Characterization

The experimental procedure involved the recording of Fourier transform infrared
(FTIR) spectra. This was achieved through the utilisation of a Fourier transform tensor
27 spectrometer 600–4000 cm−1 (Brüker, Ettlingen, Germany). This instrument boasts a
resolution of 2 cm−1 and an accumulation of 32 scans.

The nuclear magnetic resonance (NMR) experiment was carried out utilising a Bruker
AVANCEII-500 spectrometer manufactured in Karlsruhe, Germany, at ambient temperature.
The solvent used was dimethyl sulfoxide (DMSO).

Gel content (GC) testing was carried out in both water and dioxolane, with 0.3 g
of the dry material (heated to 100–120 ◦C for 100–120 min) being immersed at ambient
temperature in 25 mL of solvent for a 14 day period. The samples were then subjected to a
drying process at 100 ◦C in an oven for a period of 24 h. The gel content was subsequently
determined by employing Equation (1).

GC(%) =
mi − md

mi
∗ 100 (1)

In the following formula, mi and md represent the initial and dried mass, respectively.
The reported values are the average of three measurements.

Swelling ratio water/acid (W) tests were conducted in water and 0.1 M sulfuric acid
by immersion at ambient temperature. A quantity of 0.3 g of the material was immersed in
25 mL of solvent for a period of 14 days. Subsequent to this, the samples were meticulously
wiped clean and weighed. The swelling ratio of water was determined according to
Equation (2).

W(%) =
mi − ms

mi
∗ 100 (2)

The variables mi and ms represent, respectively, the initial mass and the swollen mass
at a given time. The reported values represent an average of three measurements.

2.2.2. Surface Wettability Test

The measurement of contact angles was conducted utilising a DSA 10 Mk2 drop
shape analysis system (Krüss, Hamburg, Germany). The experiment was configured as a
three-phase system, encompassing the coating surface, air, and a water drop. Specifically,
5 µL of water was dispensed onto the surface of each coating, and images were captured at
2× magnification, under white light (5500 K).



Coatings 2025, 15, 67 6 of 19

2.2.3. Thermal Analyses

Thermogravimetric analysis (TGA) was conducted utilising a TGA Q50 TA Instru-
ments (TA Instruments, Zellik, Belgium) apparatus. Approximately 10 milligrams of each
sample was analysed, with a temperature ranging from 25 to 800 ◦C at a heating rate of
10 ◦C per minute. The analysis was conducted under nitrogen gas, with a flow rate of
60 millilitres per minute.

The differential scanning calorimetry (DSC) experimental data were collected via
the Q1000 TA Instruments apparatus (TA Instruments, Zellik, Belgium), operating within
an inert atmosphere (N2) and employing a linear heating ramp from −40 to 250 ◦C at
10 ◦C/min rate on a specimen weighing approximately 10 mg.

2.2.4. Mechanical and Thermo-Mechanical Properties

Dynamic rheological analysis (DRA) was conducted using a compact and modular
MCR 302 instrument from Anton Paar, Graz, Austria. This instrument was equipped with
a temperature control device, as well as a disposable aluminium plate configuration. The
temperature ramp tests were performed using oscillatory mode at a frequency of 1 Hz at a
strain level of 10% using a 2.5 mm diameter plate with a 1 mm gap.

The dynamic mechanical analysis (DMA) was performed using a DMA Q800 TA
Instruments analyser (TA Instruments, Zellik, Belgium). For neat matrices, DMA was
carried out on rectangular samples (40/13/1 mm) in tensile mode with an amplitude
of 2 µm at a frequency of 1 Hz, and a heating rate of 3 ◦C/min from 25 to 200 ◦C. The
crosslinking density (ν′) was determined by applying Equation (3).

νE′ =
E′

R
3 ∗ R ∗ TR

(3)

In this equation, E′
R denotes the storage modulus at the rubber state (MPa), TR repre-

sents the temperature at 60 ◦C above the glass transition temperature (Tg) (K), and R is the
gas constant.

Stress relaxation tests were carried out on specimens that were identical in dimensions
to those utilised for DMA tests. A constant 2% strain was applied for each test, and the
relaxation modulus was obtained. The stress relaxation behavior was then studied at a
range of temperatures between 150 and 180 ◦C. For each system under investigation, the
test was performed on a representative specimen. The results obtained were fitted using a
Maxwell model, according to Equation (4).

τ∗ = τe
Ea
RT (4)

The parameters of this equation are as follows: T denotes the test temperature, τ

signifies the characteristic relaxation time at infinite temperature, R denotes the universal
gas constant, and Ea represents the activation energy of bond exchange reactions.

2.2.5. Electrochemical Measurements

The electrochemical impedance spectroscopy (EIS) measurements were performed in
0.1 M H2SO4 solution with a Parstat (Model 2273) equipment (Princeton Applied Research,
Oak Ridge, TN, USA) controlled by Powersuit® software (version 2.60). A platinum counter
electrode, an Ag/AgCl (sat. KCl) reference electrode, and coated Al alloy substrates, as
working electrodes, were used for these measurements. EIS test was performed on a 7 cm2

exposed area of coated samples (working electrode), in a frequency range from 100 kHz to
0.01 Hz with 60 points using a 30 mV peak-to-peak sinusoidal voltage. Experiments were
carried out in a Faraday cage three times at room temperature (22 ± 2 ◦C).
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2.2.6. Adherence Properties

The cross-cut adhesion test was carried out according to the ISO 2409 standard [42].
The coatings were incised by three parallel knives to produce a grid. An adhesive tape
elcometer ISO 2409 and ISO 8502-3 [43] was applied for 30 s on the coating and quickly
removed. The aspect of the coating was further analysed by microscopy and compared
with the standard class.

3. Results and Discussion
3.1. Characterization and Curing Behavior of Benzoxazine Monomer

Two bi-functional esterified phenols were successfully synthesized in solvent-free
conditions from biobased phloretic acid and decandiol/ethylene glycol in the presence of
a catalytic amount of para-toluenesulfonic acid. Further purification was performed to
remove the catalyst and unconverted diols. As shown in Figure 2, the ester’s characteristic
peaks appeared at 2.74 and 3.97 ppm, corresponding to the methylene protons adjacent to
the carbonyl moieties β- and α-positions. The aromatic ring is associated with chemical
shifts in the range of 6.65–7.00 ppm. Then, the monomer was synthesized by reacting
the purified esters and paraformaldehyde with the aliphatic amine (monoethanolamine)
and the aromatic amine (aminophenyl ethyl alcohol). The obtained monomers were PA-
EG-mea, PA-EG-Apa, PA-DD-mea, and PA-DD-Apa. The chemical structures of the four
benzoxazine resins based on phloretic acid were confirmed using 1H-NMR and FTIR
spectroscopy. The benzoxazine ring proton resonance attributed to O-CH2-N and Ar-CH2-
N appeared at 4.78 and 3.92 ppm for mea-based benzoxazine and 5.36 and 4.53 ppm for
Apa-based benzoxazine, respectively. Furthermore, the disappearance of the phenolic peak
at 9.18 ppm confirms the completion of the reaction. FTIR analyses were performed to verify
the functional groups present in these benzoxazine resins based on phloretic acid. Spectra
of all monomers can be found in SI (SI Figure S1). The sharp peak at 1727 cm−1 indicates the
successful formation of the ester band. The FTIR spectrum showed characteristic oxazine
ring absorbance at 934, 1229, 1116, and 1031 cm−1, corresponding, respectively, to the
out-of-plane bending of H-C-H, C-X stretching mode 13 + C-O-C aromatic asymmetric
stretching, CH inplane bending mode 18a/b, and C-O-C stretching symmetric [44].

The polymerization behaviors of benzoxazine groups were monitored using FTIR,
DSC, and rheological experiments. The results are presented in Figures 3 and 4, and Table 1,
respectively.

Table 1. Thermal and rheological behavior of (a) PA-DD-mea, (b) PA-DD-Apa, (c) PA-EG-mea, and
(d) PA-EG-Apa.

Samples

Onset
Exotherm

DSC
(◦C)

Max
Exotherm

DSC
(◦C)

Enthalpy
(J/g)

Initial Curing
Temperature
(Rheology)

(◦C)

T5%
TGA
(◦C)

PA-DD-mea 163 209 48.4 189 213
PA-DD-Apa 147 228 163.4 206 234
PA-EG-mea 129 170 45.2 154 243
PA-EG-Apa 147 212 188.0 184 236

The rheological analysis was used to track the polymerization progress. All monomers
exhibited a decrease in complex viscosity until reaching a plateau of 0.1 Pa·s at approxi-
mately 50 ◦C. The presence of the aromatic ring in the PA-DD monomer is evident from
the significant increase in complex viscosity at room temperature. The sharp increase
in viscosity for all resins is attributed to the ring-opening polymerization (ROP) of the
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benzoxazine moieties. The curing process for PA-EG-Apa and PA-DD-Apa was slowed
down due to the higher aromatic content. As a result, the initial curing temperature, which
corresponds to the onset of a sharp increase in viscosity, is lower in the presence of the
aliphatic amine. Specifically, the temperature occurs at 154 and 189 ◦C for MEA-based
resins compared to 184 and 206 ◦C for Apa-based monomers.
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The DSC thermograms show that PA-EG-mea has two distinct exothermic peaks,
which distinguishes it from PA-DD-mea and Apa-based monomers. The first peak at
170 ◦C corresponds to the ring-opening polymerization of the resin, while the second
peak is associated with the degradation of the monomer, as confirmed by TGA analysis.
However, in the case of the other three systems, these two exotherms are combined,
which makes it difficult to accurately measure the enthalpy. This is probably due to
the lower temperature resistance of PA-DD-mea and the higher energies needed for the
polymerization of the system in Apa-based resins, as indicated by rheological analysis.
Furthermore, the maximum exothermic peak shifts to a higher value (170 to 212 ◦C for the
PA-EG systems) when an aromatic amine is used, which is consistent with the DSC results.
This finding is in line with previous research by Dogan et al., who demonstrated that the
presence of aromatics tends to increase the polymerization temperature [45]. Additionally,
the catalytic effect of the free hydroxyl group held by the two amines is demonstrated.
Kudoh et al. explained this high reactivity, which is provided by the neighboring group
participation of the hydroxyl group through intramolecular reaction with cationic moieties
of the zwitterionic intermediates formed by the ring-opening reaction of benzoxazine [46].

The polybenzoxazine network formation is confirmed by the typical band of the out-
of-phase hydrogen wagging node for the 1,2,3,5-tetrasubstituted aromatic ring at 872 cm−1

(Figure 3) observed through FTIR. Additionally, the opening of benzoxazine cycles is certified
by the disappearance of the characteristic peaks of benzoxazine at 934 and 1229 cm−1.

These characteristics have confirmed the successful formation of a polybenzoxazine
network.

3.2. Properties of Benzoxazine Polymers

The completeness of cross-linked polymer formation was certified using gel content
tests. The incorporation of aromatic amine into the network increases the soluble fraction
within the macromolecule. This may be due to easier solvent penetration into the network
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resulting from the higher free volume fraction induced by steric hindrance of the aromatic
amine. The gel content of the PA-EG and PA-DD systems decreased by 7% (Table 2).

Table 2. Properties of PA-DD-mea, PA-DD-Apa, PA-EG-mea, and PA-EG-Apa polymers.

Samples
Storage

Modulus at
RT (MPa)

Tg DMA
(◦C)

Storage
Modulus in

Rubber State
(MPa)

Crosslinking
Density
(mol/L)

T5%
(◦C)

Char
Yield
(%)

Gel
Content

(%)

Swelling
Ratio in

Water (%)

Swelling
Ratio in Acid

(%)

pPA-DD-mea 770 57 8.4 0.9 255 23 95.7 ± 0.5 3.2 ± 0.2 53.0 ± 0.2
pPA-DD-Apa 2100 93 6.3 0.6 311 27 88.8 ± 1.2 1.6 ± 0.1 3.8 ± 0.1
pPA-EG-mea 1850 127 20.6 1.8 241 35 98.7 ± 0.5 6.2 ± 0.2 58.0 ± 0.5
pPA-EG-Apa 3110 103 2.4 0.2 292 37 91.6 ± 0.4 2.3 ± 0.1 2.7 ± 0.2

The thermo-mechanical properties and relaxation behavior of the polybenzoxazine
network were analysed using TGA and DMA experiments, respectively, to evaluate the
effect of the aromatic ring directly linked to the tertiary amine. All of the results can be
found in Figure 5 and in Table 2.
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(d) pPA-EG-Apa.

Thermogravimetric analysis was used to study the thermal stability of polymerized
samples. It can be observed in Table 2 that the thermal stability of the macromolecule
increases with a higher content of aromatic rings. In this sense, pPA-DD-Apa and pPA-EG-
Apa showed better thermal behavior with T5% around 311 and 292 ◦C compared to the
aliphatic system around 255 and 241 ◦C, respectively. The same behavior is highlighted
with the char yield. Moreover, a stiffer material can be obtained due to the presence of
aminophenyl ethyl alcohol in the system. In a certain way, pPA-DD-Apa and pPA-EG-Apa
showed higher storage moduli at room temperature (2100 and 3110 MPa, respectively)
compared to the monoethanolamine network (770 and 1850 MPa, respectively). Conversely,
the addition of the benzene ring tends to decrease the cross-linking density (from 1.8 to
0.2 for the pPA-EG network), which is consistent with the gel content measurement. The
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low Apa values could be explained by the conformation of these macromolecules induced
by the higher aromatic content. Therefore, the structure of these polymers would be more
favorable for interactions by hydrogen bridges π–π stacking and fewer covalent bonds,
which could explain the drop in mechanical properties at higher temperatures.

Interestingly, the evolution of the glass temperature does not strictly follow this trend.
While the pPA-DD-Apa system shows a positive Tg evolution (57 to 93 ◦C), the pPA-EG-
Apa network shows a decrease (127 to 103 ◦C). The Tg variation can be explained by several
different structural features, such as crosslink density, steric hindrance, and chain stiffness,
which affect the Tg of a thermoset. On the one hand, a configuration more favorable to
hydrogen bridging π–π stacking may increase the glass transition temperature. On the
other hand, steric hindrance caused by the addition of an aromatic ring can lead to a
decrease in Tg.

Finally, as expected, the hydrophobic and anti-protonation behavior of the Apa-based
system increases as compared with mea networks. For example, the water swelling rate
of the EG-based macromolecule decreases from 6.2 to 2.3% after 14 days of immersion at
room temperature, while the presence of the aromatic ring on the tertiary amine provided
less acid absorption (from 58.0 to 2.7% for EG-based systems).

3.3. Relaxation of Benzoxazine Systems

The dynamic properties of polybenzoxazine resins were studied by a stress relaxation
test performed by DMA in tensile mode applying 2 µm of amplitude at a frequency of 1 Hz
at a higher temperature than Tg’s polymers. Figure 6 and Table 3 show the results of the
normalized stress relaxation E/E0 as a function of time from 130 to 160 ◦C.
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Table 3. Relaxation time of polybenzoxazine network.

Temperature
(◦C)

Relaxation
Time of

pPA-DD-mea
(s)

Relaxation
Time of

pPA-DD-Apa
(s)

Relaxation
Time of

pPA-EG-mea
(s)

Relaxation
Time of

pPA-EG-Apa
(s)

130 605 117 3103 517
135 382 75 2335 284
140 258 53 1646 160
145 170 39 1185 96
150 117 32 873 64
155 84 28 686 46
160 65 25 589 37

Thanks to the Maxwell model for viscoelastic fluids, which is typically employed
in the context of covalent adaptive networks based on the transesterification mecha-
nism, the characteristic relaxation time (T), defined as the time corresponding to 1/e of
E(t)/E0, was obtained for each temperature and the activation energies were calculated
following Arrhenius’ law (Table 4). For example, (T) at 150 ◦C, corresponding to the
relaxation time at 150 ◦C, was 117, 32, 873 and 64 s for pPA-DD-mea, pPA-DD-Apa,
pPA-EG-mea, and pPA-EG-Apa, respectively. The likely free volume provided by the
aromatic amine allows fast transesterification reactions between the ester moieties
and the free hydroxyl group carried by the primary amine [47]. Moreover, the low
relaxation time obtained for all of the systems could be explained by the abundance of
tertiary amine in the network, which may favor the nucleophilic substitution of the
ester [38].

Table 4. Transesterification activation energies of each polybenzoxazine network.

Samples R² Ln Tau Ea Ln Tau (kJ/mol)

pPA-DD-mea 0.9989 113.6
pPA-DD-Apa 0.9845 92.3
pPA-EG-mea 0.9994 96.2
pPA-EG-Apa 0.9917 140.3

The Arrhenius relation of ln (π) versus 1000/T for all systems is shown in Figure 7.
According to the Arrhenius equation, the activation energies were calculated by multiplying
the perfect gas constant with the slope of the obtained line. Surprisingly, the incorporation
of an aromatic amine does not have the same effect on both networks. While its presence
generally lowers the minimum energy required to initiate transesterification in polymers
synthesized from decandiol (from 113.6 to 92.3 kJ/mol), it appears to have the opposite
effect in the ethylene glycol system, i.e., an increase in the required energy (from 96.2 to
140.3 kJ/mol). Nevertheless, the calculated values are consistent with dynamic covalent
bonding mechanisms, especially in the area of transesterification internally catalyzed by
tertiary amine [38,48,49].
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3.4. Adhesion of Polybenzoxazine Coatings

Optimal adherence of all polybenzoxazines onto the metallic substrate was demon-
strated using the cross-cut adhesion test following the ISO 2409 standard. Figure 8 shows
the 5B rating of all systems with any coating detachment and intact edges after the use of
the adhesive.
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3.5. Acid Resistance of Polybenzoxazine Coatings on A1050 Al Alloy

EIS measurements were performed in 0.1 M H2SO4 solution for acid resistance analysis
of polybenzoxazine coatings. Figure 9 shows the Bode plots of blank Al substrates (without
coating) after 14 days of immersion time. After 1 day, the impedance modulus at the low
frequency of 0.01 Hz, as the representative of the whole system resistance [50], decreased
from 1370 to 392 Ω·cm2. There is a capacitive loop at middle frequency, which is attributed
to the charge-transfer process and interfacial reactions due to the oxidation of Al and
reduction of water [51]. Moreover, the inductive loop at low frequency can be associated
with the surface relaxation of intermediate species, as well as the adsorption of H+ and
SO4

2− ions on the surface.
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The Bode plots of samples with polybenzoxazine coatings at various immersion times
are presented in Figure 10. The impedance modulus at low frequency, as indicated by
the graphs, exhibits a notably higher value for the Apa coating in comparison to the mea
coating. The DD-Apa coating demonstrates superior corrosion resistance performance,
maintaining adequate protection after 14 days of immersion, with the impedance modulus
value of 1.8 × 107 Ω·cm2 at 0.01 Hz frequency. However, both DD-mea and EG-mea
coatings display failure after 7 and 1 day of immersion, respectively.

Coatings 2025, 15, x FOR PEER REVIEW 15 of 21 
 

 

 

Figure 10. Bode plots of (a) pPA-DD-Apa, (b) pPA-DD-mea, (c) pPA-EG-Apa, and (d) pPA-EG-mea 
coated, after immersion in 0.1 M H2SO4 solution. 

The assessment of Bode phase diagrams at high frequencies for the samples reveals 
proper barrier properties of the DD-Apa coating after 14 days, evidenced by a phase angle 
at approximately −90° [15]. However, after 1, 7, and 14 days of immersion for EG-mea, 
DD-mea, and EG-Apa coatings, respectively, a reduction in phase angle at high frequency 
was observed, coupled with the emergence of a time constant within the middle-fre-
quency range (100–102 Hz), indicative of a loss in coating protection. 

The electrical equivalent circuits (EECs) depicted in Figure 11 were employed to fit 
the EIS diagrams and for a better visual representation, Figure 12a illustrates the imped-
ance modulus of the samples at low frequency versus immersion time. 

 

Figure 11. Electrical equivalent circuits (EEC) for fitting EIS data of (a) DD-Apa and EG-Apa coat-
ings after 1 day immersion, (b) DD-Apa after 7 and 14 days and DD-mea after 1 day immersion, (c) 
DD-mea after 7 day immersion and EG-Apa after 7 and 14 days of immersion, (d) EG-mea after 1 
day immersion, on Al substrates. 

For the fitting of DD-Apa coating during a 1 day immersion period, the EEC shown 
in Figure 11a was utilised, wherein CPEcoat and Rcoat represent the constant phase ele-
ment and pore resistance of the coatings, respectively. In Figure 12b, it can be observed 
that the resistance of the coatings (Rcoat) was decreased over time, which is attributed to 

Figure 10. Bode plots of (a) pPA-DD-Apa, (b) pPA-DD-mea, (c) pPA-EG-Apa, and (d) pPA-EG-mea
coated, after immersion in 0.1 M H2SO4 solution.

The assessment of Bode phase diagrams at high frequencies for the samples reveals
proper barrier properties of the DD-Apa coating after 14 days, evidenced by a phase angle
at approximately −90◦ [15]. However, after 1, 7, and 14 days of immersion for EG-mea,
DD-mea, and EG-Apa coatings, respectively, a reduction in phase angle at high frequency
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was observed, coupled with the emergence of a time constant within the middle-frequency
range (100–102 Hz), indicative of a loss in coating protection.

The electrical equivalent circuits (EECs) depicted in Figure 11 were employed to fit the
EIS diagrams and for a better visual representation, Figure 12a illustrates the impedance
modulus of the samples at low frequency versus immersion time.
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Figure 11. Electrical equivalent circuits (EEC) for fitting EIS data of (a) DD-Apa and EG-Apa coatings
after 1 day immersion, (b) DD-Apa after 7 and 14 days and DD-mea after 1 day immersion, (c) DD-
mea after 7 day immersion and EG-Apa after 7 and 14 days of immersion, (d) EG-mea after 1 day
immersion, on Al substrates.
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(d) Macroscopic images of the coatings’ surface after immersion in 0.1 M H2SO4 solution for 3 days.

For the fitting of DD-Apa coating during a 1 day immersion period, the EEC shown in
Figure 11a was utilised, wherein CPEcoat and Rcoat represent the constant phase element
and pore resistance of the coatings, respectively. In Figure 12b, it can be observed that
the resistance of the coatings (Rcoat) was decreased over time, which is attributed to the
electrolyte’s diffusion within the coatings [52]. However, the smallest decrease can be
found in DD-Apa coating after 14 days of immersion. After 7 days, another capacitive loop
emerged, indicative of the Al oxidation and the charge-transfer process (Figure 11b). EEC
in Figure 11b was used for the EIS data fitting of DD-Apa for immersion times after 7 days,
in which Rct and CPEdl are the charge-transfer resistance and the double layer capacitance,
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respectively. For DD-mea coatings, Figure 11b was employed for fitting the EIS data after
1 day of immersion. However, for the 7 day immersion period, an inductive loop was added
to the EEC, as illustrated in Figure 11c, denoted by L and RL, representing the inductance
and resistance of inductance, respectively. In the case of sample EG-Apa, Figure 11a was
initially used for fitting EIS data after 1 h and 1 day of immersion. Subsequently, for 7 and
14 days of immersion, with the appearance of a middle-frequency loop and an inductive
loop, Figure 11c was adopted. For sample EG-mea, exhibiting the lowest acid resistance,
Figure 11a,d were applied for fitting EIS data during the 1 h and 1 day immersion periods.

Due to the non-ideal behavior of capacitors, effective capacitance (Ceff) can be deter-
mined using CPE obtained from the fitting of EIS data [53]. The equation Hsu and Mansfeld
(Equation (5)) can be used for this purpose (n is the constant phase element parameter) [54].
Ceff can be also related to the physical properties of the coating using Equation (6), in which
ε0, ε, and d correspond to the permittivity of vacuum, the dielectric constant, and thickness
of the coating, respectively.

Ce f f= C · P · E
1
n
coat·R

(1−n)
n

coat (5)

Ce f f =
ε0 · ε

d
(6)

With passing time, Ceff of the coatings increases, which can be due to the absorption of
electrolyte and an increase in the effective dielectric constant (ε), as the dielectric constant of
water, present in the acid solution, is higher than polymers and there is a direct correlation
between ε and Ceff (Equation (6)) [53]. The graphical representation of Ceff over immersion
time is provided in Figure 12c. As can be seen, Ceff increased at a higher rate for samples
with mea and, more specifically, EG-mea followed by EG-Apa and DD-Apa, respectively.
These results align with the swelling ratio results of samples in H2SO4, which shows a
higher swelling ratio for EG-mea and DD-mea (Table 2). Moreover, the hydrophobic and
anti-protonation of APa-based coatings resulted in better acid resistance behavior. Diffusion
of species in the coating and the swelling can promote electrolyte contact with the Al alloy
substrate, leading to the loss of mechanical properties (physical degradation), as well as
corrosion resistance (chemical and electrochemical degradation) [52].

The performance of the coatings can be also assessed by visual observations in the
search for delamination, blistering, cracks, and/or color change [52]. Figure 12d represents
macroscopic images of the coatings immersed in 0.1 M H2SO4 for 3 days. DD coatings,
regardless of Apa or mea, did not exhibit significant alterations in color and physical
appearance. However, EG coatings demonstrated changes in their visual characteristics,
including delamination in EG-mea coating and a shift in color from light to dark orange in
EG-Apa (Figure 12d).

4. Conclusions
The present study aimed to enhance the acid resistance and healing capacity of two

mea-based polybenzoxazine resins, which feature a covalent adaptive network based on
transesterification chemistry. The objective was achieved by the direct incorporation of an
aromatic group linked to the tertiary amines, which are intrinsic to the system backbone.
This approach limits the protonation of these amines through steric hindrance and/or
mesomeric effects. For that, Apa-based polybenzoxazines resins were synthesized by
replacing alkyl mea with aromatic Apa. The thermal and thermo-mechanical properties
of all of the resulting systems were analysed using TGA/DSC/DMA. It seems that the
presence of aromatic groups in the vicinity of the tertiary amines results in a notable
enhancement of both the thermal and thermomechanical properties of the resins. This
is evidenced by a considerable increase in T5% (255 to 311 ◦C), char yield (23 to 27%),
storage modulus at room temperature (770 to 2100 MPa), and glass temperature (57 to
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93 ◦C). Despite a reduction in gel content and cross-linking density, the incorporation
of Apa into the decandiol benzoxazine system has been observed to result in the most
notable enhancement in thermal and thermomechanical properties, as well as swelling
characteristics. Furthermore, both the Apa systems demonstrated a notable reduction in the
characteristic relaxation time (605 to 117 s at 130 ◦C), indicative of enhanced healing capacity,
in comparison to the homologous mea systems. This could be explained by an increase
in mobility induced by a higher free volume fraction with respect to the crosslinking
density. Finally, the acid resistance of all the polybenzoxazines systems coated on etched
AA1050 substrate was evaluated by EIS. Again, both Apa-based benzoxazine systems
showed the best behavior thanks to the presence of the aromatic ring directly linked to the
tertiary amine, which can act as a barrier against protonation induced by acid species. The
prevention of the plasticization of the system by the proton attacks onto the tertiary amine
moieties induced by the presence of aromatic amine can be directly observed through the
evolution of the coatings’ aspects after three days of immersion in a 0.1 M H2SO4 solution.
Among the Apa-based systems, the best protection was found for the polybenzoxazine
network synthesized with decandiol, a long aliphatic diol, which, thanks to its higher
hydrophobic properties, shows good corrosion in sulfuric acid media even after 35 days
of immersion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/coatings15010067/s1, Figure S1: H NMR spectra of PA-DD-mea,
PA-DD-Apa, PA-EG-mea and PA-EG-Apa.
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