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Mass spectrometry represents a powerful tool to measure the activation energies of MOST systems in

solution thanks to the coupling with liquid chromatography. But this technique has some limitations,

especially due to its time scale. We therefore turned to another tool offered by mass spectrometry with the

use of ion mobility devices. First, we induce the back-isomerization of the studied systems by direct heating

or "thermal activation" within an original tandem IMS instrument at Ulyon [3]. Collisional activation is then

investigated using a method recently proposed by Donor et al. to calibrate the Synapt G2-Si in temperature

[2] using reference values measured in the gas phase by thermal activation.
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Figure 1. Principle of a MOST system consisting of two photoisomers [1].
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Features of an ideal MOST system:

A. Absorption

The system’s main absorption band must close to the

maximum of the solar irradiation wavelength (~ 500 nm)

A’. Absorption bands overlap

Absorption bands must not overlap to avoid the

photochemical back-isomerization

B. Photoconversion efficiency

The quantum yield of the photoconversion process must

be as close as possible to 1

C. Thermal back-conversion

The metastable isomer must be thermally stable at

ambient temperature for storage purpose

D. Cyclability

The system must withstand numerous charge/discharge

cycles

Peptoid backbone

Photoswitching unit

How to measure thermal back-isomerization rates quickly and efficiently?
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Kinetics parameters measured by collisional activation
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Temperature calibration as proposed by 
Donor et al. [2]
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𝛂 q Trap CV
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Back-isomerization

ΔH‡ = 101, 6 ± 1,8 kJ. mol−1

ΔS‡ = −25,4 ± 0,5 J. mol−1. K−1

ΔH‡ = 96,8 kJ. mol−1

ΔS‡ = −34 J. mol−1. K−1

In solution
(MeOH)

In gas phase
(protonated)

ΔH‡ = 93,1 ± 0,5 kJ. mol−1

ΔS‡ = 9,85 ± 0,05 J. mol−1. K−1

ΔH‡ = 96,9 kJ. mol−1

ΔS‡ = 3,9 J. mol−1. K−1
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Kinetics in the gas phase using thermal activation

Figure 2. Schematic of the UMons Waters Synapt G2-Si and the ULyon Tandem IMS [3] used 
respectively for collisional and thermal induced back-isomerization.

∆G


	Slide 2

