
ConsistentQuery Answering for Primary Keys on Rooted
TreeQueries
PARASCHOS KOUTRIS, University of Wisconsin–Madison, USA
XIATING OUYANG, University of Wisconsin–Madison, USA
JEF WIJSEN, University of Mons, Belgium

We study the data complexity of consistent query answering (CQA) on databases that may violate the primary
key constraints. A repair is a maximal subset of the database satisfying the primary key constraints. For
a Boolean query 𝑞, the problem CERTAINTY(𝑞) takes a database as input, and asks whether or not each
repair satisfies 𝑞. The computational complexity of CERTAINTY(𝑞) has been established whenever 𝑞 is a
self-join-free Boolean conjunctive query, or a (not necessarily self-join-free) Boolean path query. In this paper,
we take one more step towards a general classification for all Boolean conjunctive queries by considering the
class of rooted tree queries. In particular, we show that for every rooted tree query 𝑞, CERTAINTY(𝑞) is in
FO, NL-hard ∩ LFP, or coNP-complete, and it is decidable (in polynomial time), given 𝑞, which of the three
cases applies. We also extend our classification to larger classes of queries with simple primary keys. Our
classification criteria rely on query homomorphisms and our polynomial-time fixpoint algorithm is based on
a novel use of context-free grammar (CFG).

CCS Concepts: • Information systems → Relational database query languages; • Theory of computa-
tion → Incomplete, inconsistent, and uncertain databases.

Additional Key Words and Phrases: consistent query answering, complexity classification, homomorphism,
context-free gramma

ACM Reference Format:
Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. 2024. Consistent Query Answering for Primary Keys on
Rooted Tree Queries. Proc. ACM Manag. Data 2, 2 (PODS), Article 76 (May 2024), 26 pages. https://doi.org/10.
1145/3651139

1 INTRODUCTION
A relational database is inconsistent if it violates one or more integrity constraints that are sup-
posed to be satisfied. Database inconsistency is a common issue when integrating datasets from
heterogeneous sources. In this paper, we focus on what are probably the most commonly imposed
integrity constraints on relational databases: primary keys. A primary key constraint enforces that
no two distinct tuples in the same relation agree on all primary key attributes.
A repair of such an inconsistent database instance is naturally defined as a maximal consistent

subinstance of the database. Two approaches are then possible. In data cleaning, the objective is
to single out the “best” repair, which however may not be practically possible. In consistent query
answering (CQA) [2], instead of cleaning the inconsistent database instance, we attempt to query
every possible repair of the database and obtain the consistent (or certain) answers that are returned
across all repairs. In computational complexity studies, consistent query answering is commonly

Authors’ addresses: Paraschos Koutris, University of Wisconsin–Madison, Madison, USA, paris@cs.wisc.edu; Xiating
Ouyang, University of Wisconsin–Madison, Madison, USA, xouyang@cs.wisc.edu; Jef Wijsen, University of Mons, Mons,
Belgium, jef.wijsen@umons.ac.be.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/5-ART76
https://doi.org/10.1145/3651139

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

HTTPS://ORCID.ORG/0000-0001-6309-1702
HTTPS://ORCID.ORG/0000-0001-5214-4688
HTTPS://ORCID.ORG/0000-0001-8216-273X
https://doi.org/10.1145/3651139
https://doi.org/10.1145/3651139
https://orcid.org/0000-0001-6309-1702
https://orcid.org/0000-0001-5214-4688
https://orcid.org/0000-0001-5214-4688
https://orcid.org/0000-0001-8216-273X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3651139

76:2 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

defined as the following decision problem, for a fixed Boolean query 𝑞 and fixed primary keys for
all relation names occurring in 𝑞:

PROBLEM CERTAINTY(𝑞)
Input: A database instance db.
Question: Does 𝑞 evaluate to true on every repair of db?

The CQA problem for queries 𝑞(®𝑥) with free variables is to find all sequences of constants ®𝑐 , of the
same length as ®𝑥 , such that 𝑞(®𝑐) is true in every repair. We often do not need separate treatment
for different constants, in which case we can handle 𝑞(®𝑥) as Boolean by treating free variables as if
they were constants [17, 27].

The problem CERTAINTY(𝑞) is obviously in coNP for every Boolean first-order query 𝑞. It has
been extensively studied for 𝑞 in the class of Boolean conjunctive queries, denoted BCQ . Despite
significant research efforts (see Section 2), the following dichotomy conjecture remains notoriously
open.

Conjecture 1.1. For every query 𝑞 in BCQ , CERTAINTY(𝑞) is either in PTIME or coNP-complete.

An ever stronger conjecture is that the dichotomy of Conjecture 1.1 extends to unions of
conjunctive queries. Fontaine [19] showed that this stronger conjecture implies the dichotomy
theorem for conservative Constraint Satisfaction Problems (CSP) [7, 56].

On the other hand, for self-join-free queries 𝑞 in BCQ , the complexity of CERTAINTY(𝑞) is well
established by the next theorem.

Theorem 1.2 ([40]). For every self-join-free query 𝑞 in BCQ , CERTAINTY(𝑞) is in FO, L-complete,
or coNP-complete, and it is decidable in polynomial time in the size of 𝑞 which of the three cases
applies.

Past research has indicated that the tools for proving Theorem 1.2 largely fall short in dealing
with difficulties caused by self-joins. A notable example concerns path queries, i.e., queries of
the form ∃𝑥1 · · · ∃𝑥𝑘+1 (𝑅1 (𝑥1, 𝑥2) ∧ 𝑅2 (𝑥2, 𝑥3) ∧ · · · ∧ 𝑅𝑘 (𝑥𝑘 , 𝑥𝑘+1)). If a query of this form is self-
join-free (i.e., if 𝑅𝑖 ≠ 𝑅 𝑗 whenever 𝑖 ≠ 𝑗), then the “attack graph” tool [40] immediately tells us
that CERTAINTY(𝑞) is in FO. However, for path queries 𝑞 with self-joins, CERTAINTY(𝑞) exhibits
a tetrachotomy between FO, NL-complete, PTIME-complete, and coNP-complete [32], and the
complexity classification requires sophisticated tools. Note incidentally that self-join-freeness is a
simplifying assumption that is also frequent outside CQA (e.g., [1, 5, 20, 21]).

A natural question is to extend the complexity classification for path queries to queries that are
syntactically less constrained. In particular, while path queries are restricted to binary relation
names, we aim for unrestricted arities, as in practical database systems, which brings us to the
construct of tree queries.
A query 𝑞 in BCQ is a rooted (ordered) tree query if it is uniquely (up to a variable renaming)

representable by a rooted ordered tree in which each non-leaf vertex is labeled by a relation name,
and each leaf vertex is labeled by a unary relation name, a constant, or ⊥. The query 𝑞 is read
from this tree as follows: each vertex labeled by either a relation name or ⊥ is first associated
with a fresh variable, and each vertex labeled by a constant is associated with that same constant;
then, a vertex labeled with relation name 𝑅 and associated with variable 𝑥 represents the query
atom 𝑅(𝑥,𝑦1, . . . , 𝑦𝑛), where 𝑦1, . . . , 𝑦𝑛 are the symbols (variables or constants) associated with the
left-to-right ordered children of the vertex 𝑥 . The underlined position is the primary key. Note that
a vertex labeled with a relation name of arity 𝑛 + 1 must have 𝑛 children. For example, consider the
rooted tree in Fig. 1(a) and associate fresh variables to its vertices as depicted in Fig. 1(b). The rooted
tree thus represents a query 𝑞1 that contains, among others, the atoms 𝐶 (𝑥,𝑦, 𝑧) and 𝑅(𝑦,𝑢1, 𝑣1). It

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:3

C

R

A B

R

B A

(a) A rooted or-
dered tree repre-
senting 𝑞1.

x

y

u1 v1

z

u2 v2

(b) Each vertex is
associated with a
fresh variable.

C

R

A B

R

A B

(c) A rooted or-
dered tree repre-
senting 𝑞2.

Fig. 1. The left rooted ordered tree represents (up to a variable renaming) the Boolean conjunctive query 𝑞1
with atoms 𝐶 (𝑥,𝑦, 𝑧), 𝑅(𝑦,𝑢1, 𝑣1), 𝐴(𝑢1), 𝐵(𝑣1), 𝑅(𝑧,𝑢2, 𝑣2), 𝐵(𝑢2), 𝐴(𝑣2). The right rooted ordered tree repre-
sents 𝑞2 with atoms 𝐶 (𝑥,𝑦, 𝑧), 𝑅(𝑦,𝑢1, 𝑣1), 𝐴(𝑢1), 𝐵(𝑣1), 𝑅(𝑧,𝑢2, 𝑣2), 𝐴(𝑢2), 𝐵(𝑣2).

is easy to see that every path query is a rooted tree query. The class of all rooted tree queries is
denoted TreeBCQ . We can now present our main results.

Theorem 1.3. For every query 𝑞 in TreeBCQ , CERTAINTY(𝑞) is in FO, NL-hard ∩ LFP, or coNP-
complete, and it is decidable in polynomial time in the size of 𝑞 which of the three cases applies.

Here LFP denotes least fixed point logic as defined in [41, p. 181] (a.k.a. FO[LFP]), andNL denotes
the class of problems decidable by a non-deterministic Turing machine using only logarithmic
space. The classification criteria implied in Theorem 1.3 are explicitly stated in Theorem 4.5.

It will turn out that subtree homomorphisms play a crucial role in the complexity classification
of CERTAINTY(𝑞) for queries 𝑞 in TreeBCQ . For example, our results show that for the queries 𝑞1
and 𝑞2 represented in, respectively, Fig. 1(a) and (c), CERTAINTY(𝑞1) is coNP-complete, while
CERTAINTY(𝑞2) is in FO. The difference occurs because the two ordered subtrees rooted at 𝑅 are
isomorphic in 𝑞2 (𝐴 precedes 𝐵 in both subtrees), but not in 𝑞1. Another novel and useful tool in
the complexity classification is a context-free grammar (CFG) that generalizes the NFA for path
queries used in [32].
Once Theorem 1.3 is proved, it is natural to generalize rooted tree queries further by allow-

ing queries that can be represented by graphs that are not trees. We thereto define GraphBCQ
(Definition 9.1), a subclass of BCQ that extends TreeBCQ . In GraphBCQ queries, two distinct
atoms can share a variable occurring at non-primary-key positions, which requires representa-
tions by DAGs rather than trees. Moreover, GraphBCQ gives up on the acyclicity requirement
that is cooked into TreeBCQ . Significantly, we were able to establish the FO-boundary in the set
{CERTAINTY(𝑞) | 𝑞 ∈ GraphBCQ}.

Theorem 1.4. For every query 𝑞 in GraphBCQ , it is decidable whether or not CERTAINTY(𝑞) is
in FO; and when it is, a first-order rewriting can be effectively constructed.

Wehave not achieved a fine-grained complexity classification of all problems in {CERTAINTY(𝑞) |
𝑞 ∈ GraphBCQ}. However, we were able to do so for the set of Berge-acyclic queries inGraphBCQ ,
denoted GraphBergeBCQ . Recall that a conjunctive query is Berge-acyclic if its incidence graph (i.e.,
the undirected bipartite graph that connects every variable 𝑥 to all query atoms in which 𝑥 occurs)
is acyclic.

Theorem 1.5. For every query 𝑞 in GraphBergeBCQ , CERTAINTY(𝑞) is in FO, NL-hard ∩ LFP, or
coNP-complete, and it is decidable in polynomial time in the size of 𝑞 which of the three cases applies.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:4 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

Since TreeBCQ ⊊ GraphBergeBCQ ⊊ GraphBCQ , Theorem 1.3 is subsumed by Theorem 1.5. We
nevertheless provide Theorem 1.3 explicitly, because its proof makes up the main part of this paper.
In Section 9.2, we will discuss the challenges in extending Theorem 1.5 beyond GraphBergeBCQ .
The full version of this paper is available in arXiv [33].

2 RELATEDWORK
Inconsistencymanagement has been studied in various database contexts (e.g., graph databases [3, 4],
medical databases [25], online databases [26], spatial databases [49]), and under different repair
semantics (e.g., [13, 42, 52]). Arenas, Bertossi, and Chomicki initiated Consistent Query Answering
(CQA) in 1999 [2]. Twenty years later, their contribution was acknowledged in a Gems of PODS
session [6]. An overview of complexity classification results in CQA appeared in the Database
Principles column of SIGMOD Record [55].

The term CERTAINTY(𝑞) was coined in [53] to refer to CQA for Boolean queries 𝑞 on databases
that violate primary keys, one per relation, which are fixed by 𝑞’s schema. The complexity classifica-
tion ofCERTAINTY(𝑞) for the class of self-join-free Boolean conjunctive queries underwent a series
of efforts [22, 30, 34, 35, 38], until it was revealed that the complexity of CERTAINTY(𝑞) for self-
join-free conjunctive queries displays a trichotomy between FO, L-complete, and coNP-complete
[36, 40]. A few extensions beyond this trichotomy result are known. Under the requirement of
self-join-freeness, it remains decidable whether or not CERTAINTY(𝑞) is in FO in the presence of
negated atoms [37], multiple keys [39], and unary foreign keys [24].

Little is known concerning the complexity classification of the problem CERTAINTY(𝑞) beyond
self-join-free conjunctive queries. For the restricted class of Boolean path queries 𝑞, the complexity
classification ofCERTAINTY(𝑞) already exhibits a tetrachotomy between FO,NL-complete, PTIME-
complete and coNP-complete [32]. Padmanabha et al. [48] recently established a dichotomy between
PTIME and coNP-complete forCERTAINTY(𝑞) when 𝑞 contains only two atoms allowing self-joins.
Figueira et al. [18] have recently discovered a simple fixpoint algorithm that solves CERTAINTY(𝑞)
when 𝑞 is a self-join free conjunctive query or a path query such that CERTAINTY(𝑞) is in PTIME.
As already discussed in Section 1, relationships have been found between CQA and CSP [19, 43].

The counting variant of the problemCERTAINTY(𝑞), denoted ♯CERTAINTY(𝑞), asks to count the
number of repairs that satisfy some Boolean query 𝑞. For self-join-free Boolean conjunctive queries,
♯CERTAINTY(𝑞) exhibits a dichotomy between FP and ♯PTIME-complete [46]. This dichotomy has
been shown to extend to queries with self-joins if primary keys are singletons [47], and to functional
dependencies [11]. Calautti, Console, and Pieris present in [8] a complexity analysis of these
counting problems under many-one logspace reductions and conducted an experimental evaluation
of randomized approximation schemes for approximating the percentage of repairs that satisfy
a given query [9]. CQA is also studied under different notions of repairs like operational repairs
[10, 12] and preferred repairs [29, 50]. CQA has also been studied for queries with aggregation, in
both theory and practice [16, 28].
Theoretical research in CQA has stimulated implementations and experiments in prototype

systems, using different target languages and engines: SAT [15], ASP [27, 44, 45], BIP [31], SQL [17],
logic programming [23], and hypergraph algorithms [14].

3 PRELIMINARIES
We assume disjoint sets of variables and constants. A valuation over a set𝑈 of variables is a total
mapping 𝜃 from𝑈 to the set of constants.

Atoms and key-equal facts. Every relation name has a fixed arity, and a fixed set of primary-
key positions. We will underline primary-key positions and assume w.l.o.g. that all primary-key

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:5

positions precede all other positions. An atom is then an expression 𝑅(𝑠1, . . . , 𝑠𝑘 , 𝑠𝑘+1, . . . , 𝑠𝑛) where
each 𝑠𝑖 is a variable or a constant for 1 ≤ 𝑖 ≤ 𝑛. The sequence 𝑠1, . . . , 𝑠𝑘 is called the primary key (of
the atom). This primary key is called simple if 𝑘 = 1, and constant-free if no constant occurs in it.
An atom without variables is a fact. Two facts are key-equal if they use the same relation name and
agree on the primary key.
Database instances, blocks, and repairs. A database schema is a finite set of relation names.

All constructs that follow are defined relative to a fixed database schema. A database instance (or
database for short) is a finite set db of facts using only the relation names of the schema. We write
adom(db) for the active domain of db (i.e., the set of constants that occur in db). A block of db is a
maximal set of key-equal facts of db. Whenever a database instance db is understood, we write
𝑅(®𝑐, ∗) for the block that contains all facts with relation name 𝑅 and primary-key value ®𝑐 , where
®𝑐 is a sequence of constants. A database instance db is consistent if it contains no two distinct
facts that are key-equal (i.e., if no block of db contains more than one fact). A repair of db is an
inclusion-maximal consistent subset of db.
Boolean conjunctive queries. A Boolean conjunctive query is a finite set 𝑞 = {𝑅1 (®𝑥1, ®𝑦1), . . . ,

𝑅𝑛 (®𝑥𝑛, ®𝑦𝑛)} of atoms, representing the first-order sentence∃𝑢1 · · · ∃𝑢𝑘 (𝑅1 (®𝑥1, ®𝑦1) ∧ · · · ∧ 𝑅𝑛 (®𝑥𝑛, ®𝑦𝑛)).
We denote vars(𝑞) = {𝑢1, . . . , 𝑢𝑘 }, the set of variables that occur in 𝑞, and write const(𝑞) for the
set of constants that occur in 𝑞. We write BCQ for the class of Boolean conjunctive queries.

Let 𝑞 be a query in BCQ . We say that 𝑞 has a self-join if some relation name occurs more than once
in 𝑞. If 𝑞 has no self-joins, it is called self-join-free. We say that 𝑞 is minimal if it is not equivalent to
a query in BCQ with a strictly smaller number of atoms.

Consistent query answering. For every query 𝑞 in BCQ , the decision problem CERTAINTY(𝑞)
takes as input a database instance db, and asks whether 𝑞 is satisfied by every repair of db. It is
straightforward that CERTAINTY(𝑞) is in coNP for every 𝑞 ∈ BCQ .
Rooted relation trees. A rooted relation tree is a (directed) rooted ordered tree where each

internal vertex is labeled by a relation name, and each leaf vertex is labeled with either a unary
relation name, a constant, or ⊥, such that every two vertices sharing the same label have the same
number of children. We denote by 𝜏𝑢△ the subtree rooted at vertex 𝑢 in 𝜏 . Any rooted relation
tree 𝜏 has a string representation recursively defined as follows: the string representation of a tree
with only one vertex is the label of that vertex; otherwise, if the root of 𝜏 is labeled 𝑅 and has the
following ordered children 𝑣1, 𝑣2, . . . , 𝑣𝑛 , then 𝜏 ’s string representation is 𝑅(𝑠1, 𝑠2, . . . , 𝑠𝑛), where
𝑠𝑖 is the string representation of 𝜏𝑣𝑖△ . For example, the tree in Fig. 1(a) has string representation
𝐶 (𝑅(𝐴, 𝐵), 𝑅(𝐵,𝐴)). We will often blur the distinction between rooted relation trees and their string
representation.
Rooted tree query and rooted tree sets. A querification of a rooted relation tree 𝜏 is a total

function 𝑓 with domain 𝜏 ’s vertex set that maps each vertex labeled by a constant to that same
constant, and injectively maps all other vertices to variables. Such a querification naturally extends
to a mapping 𝑓 (𝜏) of the entire tree: if 𝑢 is a vertex in 𝜏 with label 𝑅 and children 𝑣1, 𝑣2, . . . , 𝑣𝑛 , then
𝑓 (𝜏) contains the atom 𝑅(𝑓 (𝑢), 𝑓 (𝑣1), 𝑓 (𝑣2), . . . , 𝑓 (𝑣𝑛)). A Boolean conjunctive query is a rooted
tree query if it is equal to 𝑓 (𝜏) for some querification 𝑓 of some rooted relation tree 𝜏 . If 𝑞 = 𝑓 (𝜏),
we also say that 𝑞 is represented by 𝜏 , in which case we often blur the distinction between 𝑞 and 𝜏 .
We write 𝑅 [𝑥] for the unique 𝑅-atom in 𝑞 with primary key variable 𝑥 . TreeBCQ denotes the class
of rooted tree queries. It can be verified that every rooted tree query is minimal.
Every query 𝑞 in TreeBCQ is represented by a unique rooted relation tree. Conversely, every

rooted relation tree represents a query in TreeBCQ that is unique up to a variable renaming. When
𝑓 (𝜏) = 𝑞, by a slight abuse of terminology, we may use 𝑞 to refer to 𝜏 , and use the query variable 𝑥
(or the expression 𝑅 [𝑥]) to refer to the vertex 𝑢 in 𝜏 that satisfies 𝑓 (𝑢) = 𝑥 and whose label is 𝑅. The

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:6 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

variable 𝑟 is the root variable of a query 𝑞 in TreeBCQ if 𝑟 is the root vertex of 𝑞’s rooted relation
tree. For two distinct vertices 𝑥 and 𝑦, we write 𝑥 <𝑞 𝑦 if the vertex 𝑥 is an ancestor of 𝑦 in 𝑞, and
write 𝑥 ∥𝑞 𝑦 if neither 𝑥 <𝑞 𝑦 nor 𝑦 <𝑞 𝑥 . When 𝑥 and 𝑦 have the same label 𝑅, we can also write
𝑅 [𝑥] <𝑞 𝑅 [𝑦] and 𝑅 [𝑥] ∥𝑞 𝑅 [𝑦] instead of 𝑥 <𝑞 𝑦 and 𝑥 ∥𝑞 𝑦 respectively. For every variable 𝑥 in a
rooted tree query 𝑞, we write 𝑞𝑥△ for the subquery of 𝑞 whose rooted relation tree is the subtree
rooted at vertex 𝑥 in 𝑞. A variable 𝑥 is a leaf variable in 𝑞 if 𝑞𝑥△ = ⊥, 𝑞𝑥△ = 𝑐 , or 𝑞𝑥△ = 𝐴, for some
constant 𝑐 or unary relation name 𝐴.
An instantiation of a rooted relation tree 𝜏 is a total function 𝑔 from 𝜏 ’s vertex set to constants

such that each vertex labeled by a constant 𝑐 is mapped to 𝑐 . Such an instantiation naturally extends
to a mapping 𝑔(𝜏) of the entire tree: if 𝑢 is a vertex in 𝜏 with label 𝑅 and children 𝑣1, 𝑣2, . . . , 𝑣𝑛 ,
then 𝑔(𝜏) contains the fact 𝑅(𝑔(𝑢), 𝑔(𝑣1), 𝑔(𝑣2), . . . , 𝑔(𝑣𝑛)). A subset 𝑆 of db is a rooted tree set in db
starting in 𝑐 if 𝑆 = 𝑔(𝜏) for some instantiation 𝑔 of 𝜏 that maps 𝜏 ’s root to 𝑐 . A case of particular
interest is when db is consistent, in particular, when db is a repair. It can be verified that a rooted
tree set in a repair r is uniquely determined by a constant 𝑐 and a rooted tree 𝜏 (because only one
instantiation is possible); by overloading terminology, 𝜏 is also called a rooted tree set in r starting
in 𝑐 . For convenience, an empty rooted tree set, denoted by ⊥, starts in any constant 𝑐 .
Homomorphism. Let 𝑝, 𝑞 ∈ BCQ . We write 𝑝 ≤→ 𝑞 if there exists a homomorphism from

𝑝 to 𝑞, i.e., a mapping ℎ : vars(𝑝) → vars(𝑞) ∪ const(𝑞) that acts as identity when applied on
constants, such that for every atom 𝑅(®𝑥, ®𝑦) in 𝑝 , 𝑅(ℎ(®𝑥), ℎ(®𝑦)) is an atom of 𝑞. For 𝑢 ∈ vars(𝑝) and
𝑣 ∈ vars(𝑞), we write 𝑝 ≤𝑢→𝑣 𝑞 if there exists a homomorphism ℎ from 𝑝 to 𝑞 with ℎ(𝑢) = 𝑣 . It can
now be verified that for rooted tree queries 𝑝 and 𝑞, there is a homomorphism ℎ from 𝑝 to 𝑞 if and
only if there is a label-preserving graph homomorphism from the rooted relation tree of 𝑝 to that
of 𝑞 (we assume that a leaf vertex with label ⊥ can map to a vertex with any label). Since rooted
relation trees are ordered trees, graph homomorphisms must evidently be order-preserving. For
example, there is no homomorphism between the trees 𝑅(𝐴, 𝐵) and 𝑅(𝐵,𝐴).

Example 3.1. The following rooted tree query and its rooted relation tree are depicted in Fig. 2:

𝑞 = {𝐴(𝑥0, 𝑥1, 𝑥2), 𝑅(𝑥1, 𝑥3, 𝑥4), 𝑅(𝑥2, 𝑥5, 𝑥6), 𝑅(𝑥3, 𝑥7, 𝑥8),𝑈 (𝑥7), 𝑋 (𝑥4, 𝑐1), 𝑌 (𝑥5, 𝑥9), 𝑍 (𝑥6, 𝑐2, 𝑥10)}.

We have:

𝑞
𝑥1
△ = 𝑅(𝑥1, 𝑥3, 𝑥4), 𝑅(𝑥3, 𝑥7, 𝑥8),𝑈 (𝑥7), 𝑋 (𝑥4, 𝑐1)

= 𝑅(𝑅(𝑈 ,⊥), 𝑋 (𝑐1)),
𝑞
𝑥2
△ = 𝑅(𝑥2, 𝑥5, 𝑥6), 𝑌 (𝑥5, 𝑥9), 𝑍 (𝑥6, 𝑐2, 𝑥10)

= 𝑅(𝑌 (⊥), 𝑍 (𝑐2,⊥)),
𝑞
𝑥3
△ = 𝑅(𝑥3, 𝑥7, 𝑥8),𝑈 (𝑥7)

= 𝑅(𝑈 ,⊥).

In this query 𝑞, we have 𝑅 [𝑥1] ∥𝑞 𝑅 [𝑥2], 𝑅 [𝑥1] <𝑞 𝑅 [𝑥3], and 𝑅 [𝑥2] ∥𝑞 𝑅 [𝑥3].

4 THE COMPLEXITY CLASSIFICATION
Our classification focuses on rooted tree queries (TreeBCQ). We will extend to GraphBergeBCQ and
GraphBCQ in Section 9. The classification of path queries in [32] uses a notion of “rewinding” to
deal with self-joins: a path query 𝑢 · 𝑅𝑣 · 𝑅𝑤 rewinds to 𝑢 · 𝑅𝑣 · 𝑅𝑣 · 𝑅𝑤 . Very informally, rewinding
captures that query atoms with the same relation name can be “confused” with one another (or
“rewind” to one another in our terminology) during query evaluation: in 𝑢 · 𝑅𝑣 · 𝑅𝑤 , once we have
evaluated the prefix 𝑢 · 𝑅𝑣 · 𝑅, the last 𝑅 can be confused with the first one, in which case we

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:7

A

R

R

U ⊥

X

c1

R

Y

⊥

Z

c2 ⊥
(a) A rooted relation tree 𝜏

x0

x1

x3

x7 x8

x4

c1

x2

x5

x9

x6

c2 x10

(b) A mapping 𝑓 from vertices
in 𝜏 to variables in 𝑞

Fig. 2. An example rooted relation tree, where 𝑐1 and 𝑐2 are constants.

A

R

Y

⊥

Z

c2 ⊥

R

Y

⊥

Z

c2 ⊥
(a) 𝑞𝑅:𝑥1↬𝑥2

A

R

R

U ⊥

X

c1

R

R

U ⊥

X

c1

(b) 𝑞𝑅:𝑥2↬𝑥1

A

R

R

R

U ⊥

X

c1

X

c1

R

Y

⊥

Z

c2 ⊥

(c) 𝑞𝑅:𝑥3↬𝑥1

Fig. 3. An illustration of rewinding for the query of Fig. 2; the modified subtrees are highlighted in red.

continue with the suffix 𝑅𝑣 · 𝑅𝑤 (instead of merely 𝑅𝑤). We generalize the notion of rewinding
from path queries to rooted tree queries.

Definition 4.1 (Rewinding). Let 𝑞 be a query in TreeBCQ . Let 𝑅(𝑥, . . .) and 𝑅(𝑦, . . .) be two (not
necessarily distinct) atoms in 𝑞. We define 𝑞𝑅:𝑦↬𝑥 as the following rooted tree query

𝑞𝑅:𝑦↬𝑥 :=
(
𝑞 \ 𝑞𝑦△

)
∪ 𝑓 (𝑞𝑥△),

for some isomorphism 𝑓 that maps 𝑥 to 𝑦 (i.e., 𝑓 (𝑥) = 𝑦), and maps every other variable in 𝑞𝑥△ to a
fresh variable.

Intuitively, the rooted tree query 𝑞𝑅:𝑦↬𝑥 can be obtained by replacing 𝑞𝑦△ with a fresh copy of 𝑞𝑥△.
Fig. 3 presents some rooted tree queries obtained from rewinding on the rooted tree 𝑞 in Fig. 2.

The classification criteria in [32] uses the notions of factors and prefixes that are specific to words,
which can be generalized using homomorphism on rooted tree queries. Consider the following
syntactic conditions on a rooted tree query 𝑞 with root variable 𝑟 :

• C2 : for every two atoms 𝑅(𝑥, . . .) and 𝑅(𝑦, . . .) in 𝑞, either 𝑞 ≤→ 𝑞𝑅:𝑦↬𝑥 or 𝑞 ≤→ 𝑞𝑅:𝑥↬𝑦 .
• C1 : for every two atoms 𝑅(𝑥, . . .) and 𝑅(𝑦, . . .) in 𝑞, either 𝑞 ≤𝑟→𝑟 𝑞

𝑅:𝑦↬𝑥 or 𝑞 ≤𝑟→𝑟 𝑞
𝑅:𝑥↬𝑦 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:8 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

R

R

⊥ A

A

(a) C1

R

R

A ⊥

A

(b) C2,¬Cprefix

A

R

X

R

Y

(c) ¬Cbranch

A

R

⊥

R

c

(d) C1

A

R

c

R

c

(e) C1

A

R

c

R

c′

(f) ¬Cbranch

A

R

R

X

(g) ¬Cfactor

Fig. 4. Examples of rooted relation trees. Trees annotated with ¬C violate syntactic condition C, while trees
annotated with C satisfy C. For example, the tree in (a) satisfies C1; and the tree (b) satisfies C2 but violates
Cprefix.

It is easy to see that conditions C1 and C2 are decidable in polynomial time in the size of the
query. We may restate C2 and C1 using more fine-grained syntactic conditions below.

• Cbranch : for every two atoms 𝑅 [𝑥] ∥𝑞 𝑅 [𝑦] in 𝑞, either 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△ or 𝑞𝑥△ ≤𝑥→𝑦 𝑞
𝑦
△.

• Cfactor : for every two atoms 𝑅 [𝑥] <𝑞 𝑅 [𝑦] in 𝑞, we have 𝑞 ≤→ 𝑞𝑅:𝑦↬𝑥 .
• Cprefix : for every two atoms 𝑅 [𝑥] <𝑞 𝑅 [𝑦] in 𝑞, we have 𝑞 ≤𝑟→𝑟 𝑞

𝑅:𝑦↬𝑥 .

Lemma 4.2. For every two atoms 𝑅 [𝑥] ∥𝑞 𝑅 [𝑦] in a rooted tree query 𝑞, we have 𝑞 ≤→ 𝑞𝑅:𝑦↬𝑥 if
and only if 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△.

For the sake of simplicity, we postpone the proof of Lemma 4.2 to Appendix A. Lemma 4.2 implies
the following connections among the syntactic conditions.

Proposition 4.3. C2 = Cfactor ∧ Cbranch, C1 = Cprefix ∧ Cbranch.

Example 4.4. Let 𝑞 be as in Fig. 2. We have that 𝑞 violates Cbranch (and therefore C2), since there
is no homomorphism from 𝑞 to neither 𝑞𝑅:𝑥1↬𝑥2 nor 𝑞𝑅:𝑥2↬𝑥1 .
Fig. 4 shows some example rooted relation trees annotated with the syntactic conditions they

satisfy or violate.

Our main classification result can now be stated.

Theorem 4.5 (Trichotomy Theorem). For every query 𝑞 in TreeBCQ ,
• if 𝑞 satisfies C2, then the problem CERTAINTY(𝑞) is in LFP; otherwise it is coNP-complete; and
• if 𝑞 satisfies C1, then the problem CERTAINTY(𝑞) is in FO; otherwise it is NL-hard.

Let us provide some intuitions behind Theorem 4.5. Both Cprefix and Cfactor concern the homo-
morphism from 𝑞 to the rooted tree query obtained by rewinding from a subtree to its ancestor
subtree, which resembles the case on path queries. The condition Cbranch is vacuously satisfied for
path queries, but is crucial to the classification of rooted tree queries.
For the complexity lower bound, if 𝑞 violates Cbranch, then CERTAINTY(𝑞) is coNP-hard. Intu-

itively, this is because if 𝑞𝑥△ and 𝑞
𝑦
△ are not homomorphically comparable and appear in different

branches, then the facts in their common ancestor relation may “choose” which branch to satisfy,
which allows us to reduce from SAT in item (1) of Proposition 8.1. For example, consider the query 𝑞1
as in Fig. 1(a) and the example database instance db in Fig. 5. It can be shown that there is a repair
of db that falsifies 𝑞1 if and only if the following CNF formula is satisfiable:

(𝑥1 ∨ 𝑥2)︸ ︷︷ ︸
𝐶1

∧ (𝑥1 ∨ 𝑥2)︸ ︷︷ ︸
𝐶2

.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:9

𝐶 1 2 3
∗ 𝑐1 𝑥1 𝑧−

𝑐1 𝑥2 𝑧−
𝑐2 𝑧+ 𝑥1

∗ 𝑐2 𝑧+ 𝑥2

𝑅 1 2 3
𝑥1 𝑎 𝑏

∗ 𝑥1 𝑏 𝑎

∗ 𝑥2 𝑎 𝑏

𝑥2 𝑏 𝑎

∗ 𝑧+ 𝑎 𝑏

∗ 𝑧− 𝑏 𝑎

𝐴 1
∗ 𝑎

𝐵 1
∗ 𝑏

Fig. 5. An inconsistent database instance db for CERTAINTY(𝑞1), where 𝑞1 is represented in Fig. 1(a). Blocks
are separated by dashed lines. The facts with ∗ form a repair that falsifies 𝑞1, corresponding to a satisfying
truth assignment 𝑥1 = 1 and 𝑥2 = 0.

For the complexity upper bound, if 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△, the arguments above fail because the facts
in their common ancestor relation cannot “choose” which branch to satisfy anymore: informally,
whenever 𝑞𝑥△ is satisfied, 𝑞

𝑦
△ will be satisfied due to the homomorphism. This crucial observation

from Cbranch also leads to a total preorder on all self-joining atoms, which allows us to deal with
self-joining atoms in different branches as if they were on a path.

Definition 4.6 (Relation ⪯𝑞). Let 𝑞 be a query in TreeBCQ . Let 𝑅 [𝑥] and 𝑅 [𝑦] be two atoms in 𝑞.
We write 𝑅 [𝑥] ⪯𝑞 𝑅 [𝑦] if either 𝑅 [𝑥] <𝑞 𝑅 [𝑦] or 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△.

Proposition 4.7. Let 𝑞 be a query in TreeBCQ satisfying Cbranch. For every relation name 𝑅, the
relation ⪯𝑞 is a total preorder on all 𝑅-atoms in 𝑞.

Proof Sketch. We first show that every two distinct atoms 𝑅 [𝑥] and 𝑅 [𝑦] are comparable by ⪯𝑞 .
Let 𝑅 [𝑥] and 𝑅 [𝑦] be two distinct atoms in 𝑞. The claim holds if 𝑅 [𝑥] <𝑞 𝑅 [𝑦] or 𝑅 [𝑦] <𝑞 𝑅 [𝑥].
Otherwise, we have 𝑅 [𝑥] ∥𝑞 𝑅 [𝑦], and since 𝑞 satisfies Cbranch, we have either 𝑞𝑥△ ≤𝑥→𝑦 𝑞

𝑦
△ or

𝑞
𝑦
△ ≤𝑦→𝑥 𝑞𝑥△, as desired. In Appendix A, we show that ⪯𝑞 is transitive. □

The remainder of this paper is organized as follows. Section 5 defines a context-free grammar
CFG♣ (𝑞) for each𝑞 ∈ TreeBCQ , and the problemCERTAINtr (𝑞) that concernsCFG♣ (𝑞). Lemma 5.4
concludes the equivalence ofCERTAINTY(𝑞) andCERTAINtr (𝑞) if𝑞 satisfiesC2 (orC1). In Section 6,
we show that CERTAINtr (𝑞) is in LFP (and in PTIME) if 𝑞 satisfies Cbranch. In Sections 7 and 8, we
show the upper bounds and lower bounds in Theorem 4.5 respectively. In Section 9, we prove
Theorems 1.4 and 1.5.

5 CONTEXT-FREE GRAMMAR
We first generalize NFAs used in the study of path queries [32] to context-free grammars (CFGs).

Definition 5.1 (CFG♣ (𝑞)). Let 𝑞 be a query in TreeBCQ with root variable 𝑟 . We define a context-
free grammar CFG♣ (𝑞) over the string representations of rooted relation trees for each rooted tree
query 𝑞. The alphabet Σ of CFG♣ (𝑞) contains every relation symbol and constant in 𝑞, open/close
parentheses, ⊥ and comma.

Whenever 𝑣 is a variable or a constant in 𝑞, there is a nonterminal symbol 𝑆𝑣 . Every symbol in Σ
is a terminal symbol. The rules of CFG♣ (𝑞) are as follows:

• for each atom 𝑅 [𝑦] = 𝑅(𝑦,𝑦1, 𝑦2, . . . , 𝑦𝑛) in 𝑞, there is a forward production rule

𝑆𝑦 →𝑞 𝑅(𝑆𝑦1 , 𝑆𝑦2 , . . . , 𝑆𝑦𝑛) (1)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:10 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

• whenever 𝑅 [𝑥] and 𝑅 [𝑦] are atoms in 𝑞 such that 𝑅 [𝑥] <𝑞 𝑅 [𝑦], there is a backward produc-
tion rule

𝑆𝑦 →𝑞 𝑆𝑥 (2)
• for every leaf variable 𝑢 whose label 𝐿 is either ⊥ or a unary relation name, there is a rule

𝑆𝑢 →𝑞 𝐿 (3)

• for each constant 𝑐 in 𝑞, there is a rule

𝑆𝑐 →𝑞 𝑐 (4)

The starting symbol of CFG♣ (𝑞) is 𝑆𝑟 where 𝑟 is the root variable of 𝑞. A rooted relation tree 𝜏
is accepted by CFG♣ (𝑞), denoted as 𝜏 ∈ CFG♣ (𝑞), if the string representation of 𝜏 can be derived
from 𝑆𝑟 , written as 𝑆𝑟

∗→𝑞 𝜏 .

Example 5.2. Let 𝑞 be as in Fig. 2(a) with variables labeled as in Fig. 2(b). The rooted relation
tree 𝜏 in Fig. 3(c) has string representation 𝜏 = 𝐴(𝜏1, 𝜏2) where

𝜏1 = 𝑅(𝑅(𝑅(𝑈 ,⊥), 𝑋 (𝑐1)), 𝑋 (𝑐1)),
𝜏2 = 𝑅(𝑌 (⊥), 𝑍 (𝑐2,⊥)).

We have 𝑆𝑥2
∗→𝑞 𝜏2 by applying only forward rewrite rules. We show next 𝑆𝑥1

∗→𝑞 𝜏1, using the
backward rewrite rule 𝑆𝑥3 →𝑞 𝑆𝑥1 at some point, highlighted in red:

𝑆𝑥1 →𝑞 𝑅(𝑆𝑥3 , 𝑆𝑥4)
→𝑞 𝑅(𝑆𝑥1 , 𝑋 (𝑆𝑐1))
→𝑞 𝑅(𝑅(𝑆𝑥3 , 𝑆𝑥4), 𝑋 (𝑐1))
→𝑞 𝑅(𝑅(𝑅(𝑆𝑥7 , 𝑆𝑥8), 𝑋 (𝑆𝑐1)), 𝑋 (𝑐1))
→𝑞 𝑅(𝑅(𝑅(𝑈 ,⊥), 𝑋 (𝑐1)), 𝑋 (𝑐1))
= 𝜏1.

Thus 𝑆𝑥0 →𝑞 𝐴(𝑆𝑥1 , 𝑆𝑥2)
∗→𝑞 𝐴(𝜏1, 𝜏2) = 𝜏 . Consequently, 𝜏 is accepted by CFG♣ (𝑞).

Recall from Section 3 that a rooted tree set in a repair r is uniquely determined by a rooted tree 𝜏
and a constant 𝑐; such a rooted tree set is said to be accepted by CFG♣ (𝑞) if 𝜏 ∈ CFG♣ (𝑞). For
our technical treatment later, we next define modifications of CFG♣ (𝑞) by changing its starting
terminal.

Definition 5.3 (S-CFG♣ (𝑞,𝑢)). For a query 𝑞 in TreeBCQ and a variable or constant 𝑢 in 𝑞, we
define S-CFG♣ (𝑞,𝑢) as the context-free grammar that accepts a rooted relation tree 𝜏 if and only
if 𝑆𝑢

∗→𝑞 𝜏 .

We now introduce the certain trace problem. For each 𝑞 in TreeBCQ , CERTAINtr (𝑞) is defined as
the following decision problem:

PROBLEM CERTAINtr (𝑞)
Input: A database instance db.
Question: Is there a constant 𝑐 ∈ adom(db) such that for every repair r of db, there is a
rooted tree set 𝜏 in r starting in 𝑐 with 𝜏 ∈ CFG♣ (𝑞)?

The problems CERTAINTY(𝑞) and CERTAINtr (𝑞) reduce to each other if 𝑞 satisfies C2.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:11

Initialization Step: for every 𝑐 ∈ adom(db) and leaf variable or constant 𝑢 in 𝑞
add ⟨𝑐,𝑢⟩ to 𝐵 if 𝑢 = 𝑐 is a constant,

or the label of variable 𝑢 in 𝑞 is either ⊥,
or 𝐿 with 𝐿(𝑐) ∈ db.

Iterative Rule: for every 𝑐 ∈ adom(db) and atom 𝑅(𝑦,𝑦1, 𝑦2, . . . , 𝑦𝑛) in 𝑞
add ⟨𝑐,𝑦⟩ to 𝐵 if the following formula holds:

∃ ®𝑑 : 𝑅(𝑐, ®𝑑) ∈ db ∧ ∀®𝑑 :
(
𝑅(𝑐, ®𝑑) ∈ db → fact(𝑅(𝑐, ®𝑑), 𝑦)

)
,

where

fact(𝑅(𝑐, ®𝑑), 𝑦) =
(∧
1≤𝑖≤𝑛

⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵

)
︸ ︷︷ ︸

forward production

∨ ©­«
∨

𝑅 [𝑥]<𝑞𝑅 [𝑦]
fact(𝑅(𝑐, ®𝑑), 𝑥)ª®¬︸ ︷︷ ︸

backward production

and ®𝑑 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑛⟩.

Fig. 6. A fixpoint algorithm for computing a set 𝐵, for a fixed rooted tree 𝑞.

Lemma 5.4. Let 𝑞 be a query in TreeBCQ satisfying C2. Let db be a database instance. Then, db is
a “yes”-instance of CERTAINTY(𝑞) if and only if db is a “yes”-instance of CERTAINtr (𝑞).

The proof of Lemma 5.4 is deferred to Section 7; it uses results developed in the next section.

6 MEMBERSHIP OF CERTAINtr (𝑞) IN LFP
In this section, we show that the problem CERTAINtr (𝑞) is expressible in LFP (and thus in PTIME)
if 𝑞 satisfies Cbranch. Let db be a database instance. Consider the algorithm in Fig. 6, following a
dynamic programming fashion. The algorithm iteratively computes a set 𝐵 of pairs ⟨𝑐,𝑦⟩ until it
reaches a fixpoint, ensuring that

whenever ⟨𝑐,𝑦⟩ is added to 𝐵, then every repair of db contains a rooted tree set starting
in 𝑐 that is accepted by S-CFG♣ (𝑞,𝑦).

Intuitively, this holds true because ⟨𝑐,𝑦⟩ is added to 𝐵 if for every possible fact 𝑓 = 𝑅(𝑐, ®𝑑) that can
be chosen by a repair of db, the context-free grammar S-CFG♣ (𝑞,𝑦) can proceed by firing forward
rule with nonterminal 𝑆𝑦 that consumes 𝑓 from the rooted tree set, or by non-deterministically
firing some backward rule of the form 𝑆𝑦 →𝑞 𝑆𝑥 .

The formal semantics for each pair ⟨𝑐,𝑦⟩ is stated in Lemma 6.1.

Lemma 6.1. Let 𝑞 be a query in TreeBCQ satisfying Cbranch. Let db be a database instance. Let 𝐵
be the output of the algorithm in Fig. 6. Then for every constant 𝑐 ∈ adom(db) and every variable or
constant 𝑦 in 𝑞, the following statements are equivalent:

(1) ⟨𝑐,𝑦⟩ ∈ 𝐵; and
(2) for every repair r of db, there exists a rooted tree set 𝜏 in r starting in 𝑐 such that 𝜏 ∈ S-CFG♣ (𝑞,𝑦).

The crux in the proof of Lemma 6.1 relies on the existence of repairs called frugal: to show
item (2) of Lemma 6.1, it will be sufficient to show that it holds true for frugal repairs. Frugal
repairs also turn out to be useful in proving Lemma 5.4 and offer an alternative perspective to the
algorithm, as stated in Corollary 7.5.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:12 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

6.1 Frugal repairs
We first show that the evaluation result of the predicate “fact” and the membership in 𝐵 in the
algorithm of Fig. 6 propagate along the total preorder ⪯𝑞 .

Lemma 6.2. Let 𝑞 be a query in TreeBCQ satisfying Cbranch, and db a database instance. Let
𝑅 [𝑥], 𝑅 [𝑦] be two atoms of 𝑞. Then for every fact 𝑅(𝑐, ®𝑑) in db and two atoms 𝑅 [𝑥] ⪯𝑞 𝑅 [𝑦],

(1) if fact(𝑅(𝑐, ®𝑑), 𝑥) is true, then fact(𝑅(𝑐, ®𝑑), 𝑦) is true, with fact as defined in Fig. 6; and
(2) if ⟨𝑐, 𝑥⟩ ∈ 𝐵, then ⟨𝑐,𝑦⟩ ∈ 𝐵, where 𝐵 is the output of the algorithm of Fig. 6.

The technical proof of Lemma 6.2 is deferred to Appendix B.

Definition 6.3 (Frugal Set). Let 𝑞 be a query in TreeBCQ satisfying Cbranch, and db a database
instance. Let 𝑓 = 𝑅(𝑐, ®𝑑) be an 𝑅-fact in db. We define the frugal set of 𝑓 in db with respect to 𝑞 as

FrugalSet𝑞 (𝑓 , db) = {𝑅 [𝑥] ∈ 𝑞 | fact(𝑅(𝑐, ®𝑑), 𝑥) is true}.

Lemma 6.4. Let 𝑞 be a query in TreeBCQ satisfying Cbranch, and db a database instance. For every
two key-equal facts 𝑓 and 𝑔 in db, the sets FrugalSet𝑞 (𝑓 , db) and FrugalSet𝑞 (𝑔, db) are comparable
by ⊆.

Proof. Suppose for contradiction that there exist two key-equal facts 𝑓 = 𝑅(𝑐, ®𝑑1) and 𝑔 =

𝑅(𝑐, ®𝑑2) in db such that 𝑅 [𝑥] ∈ FrugalSet𝑞 (𝑓 , db) \FrugalSet𝑞 (𝑔, db) and 𝑅 [𝑦] ∈ FrugalSet𝑞 (𝑔, db) \
FrugalSet𝑞 (𝑓 , db). By Proposition 4.7, assume without loss of generality that 𝑅 [𝑥] ⪯𝑞 𝑅 [𝑦]. Then
since 𝑅 [𝑥] ∈ FrugalSet𝑞 (𝑓 , db), we have fact(𝑅(𝑐, ®𝑑1), 𝑥) is true, and thus fact(𝑅(𝑐, ®𝑑1), 𝑦) is true
by Lemma 6.2, and hence 𝑅 [𝑦] ∈ FrugalSet𝑞 (𝑓 , db), a contradiction. A similar contradiction can
also be reached if 𝑅 [𝑦] ⪯𝑞 𝑅 [𝑥]. This completes the proof. □

Informally, by Lemma 6.4, among all facts of a non-empty block 𝑅(𝑐, ∗) in db, there is a (not
necessarily unique) fact 𝑅(𝑐, ®𝑑) with a ⊆-minimal frugal set in db. The repair r∗ of db containing
all such facts is frugal in the sense that each fact in it satisfies as few 𝑅-atoms as possible; and if r∗
contains a rooted tree set 𝜏 starting in 𝑐 accepted by S-CFG♣ (𝑞,𝑦), so will every repair of db. We
now formalize this idea, and then show Lemma 6.6 as an easy consequence.

Definition 6.5 (Frugal repair). Let 𝑞 be a query in TreeBCQ satisfying Cbranch. Let db be a database
instance. A frugal repair r∗ of dbwith respect to 𝑞 is constructed by picking, from each block 𝑅(𝑐, ∗)
of db, a fact 𝑅(𝑐, ®𝑑) which ⊆-minimizes FrugalSet𝑞 (𝑅(𝑐, ®𝑑), db).

Lemma 6.6. Let 𝑞 be a rooted tree query satisfying Cbranch. Let db be a database instance. Let r∗ be
a frugal repair of db with respect to 𝑞 and let 𝑅(𝑐, ®𝑑) ∈ r∗. Let 𝑅 [𝑢] be an atom in 𝑞. If fact(𝑅(𝑐, ®𝑑), 𝑢)
is true, then ⟨𝑐,𝑢⟩ ∈ 𝐵.

Proof. Let 𝑅(𝑐, ®𝑏) be an arbitrary fact in the block 𝑅(𝑐, ∗) in db. By construction of a fru-
gal repair, we have that FrugalSet𝑞 (𝑅(𝑐, ®𝑑), db) ⊆ FrugalSet𝑞 (𝑅(𝑐, ®𝑏), db). Since 𝑅(𝑐, ®𝑑) ∈ r∗ and
fact(𝑅(𝑐, ®𝑑), 𝑢) is true, we have𝑅 [𝑢] ∈ FrugalSet𝑞 (𝑅(𝑐, ®𝑑), db). Thus,𝑅 [𝑢] ∈ FrugalSet𝑞 (𝑅(𝑐, ®𝑏), db)
and fact(𝑅(𝑐, ®𝑏), 𝑢) is true. Hence ⟨𝑐,𝑢⟩ ∈ 𝐵. □

Lemma 6.7 shows a desirable property of frugal repairs.

Lemma 6.7. Let 𝑞 be a query in TreeBCQ satisfying Cbranch. Let db be a database instance. Let r∗

be a frugal repair of db with respect to 𝑞. If there is a rooted tree set 𝜏 in r∗ starting in 𝑐 such that
𝜏 ∈ S-CFG♣ (𝑞,𝑦), then ⟨𝑐,𝑦⟩ ∈ 𝐵.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:13

Proof. Let 𝜏 be a rooted tree set starting in 𝑐 in r∗ such that 𝜏 ∈ S-CFG♣ (𝑞,𝑦). We recursively
define a tree trace T on nodes of the form (𝑐, 𝑥, 𝜏), where 𝑐 ∈ adom(r∗), 𝑥 is a variable in 𝑞, and 𝜏
is a rooted relation tree, as follows:

• the root node of T is (𝑐,𝑦, 𝜏); and
• whenever (𝑎,𝑢, 𝜎) is a node in T with a rooted tree set 𝜎 starting in 𝑎 in r∗ for an atom
𝑅(𝑢,𝑢1, 𝑢2, . . . , 𝑢𝑛) in 𝑞 and fact 𝑅(𝑎, 𝑏1, 𝑏2, . . . , 𝑏𝑛) in r∗,
(i) if S-CFG♣ (𝑞,𝑦) invokes a forward production rule 𝑆𝑢 →𝑞 𝑅(𝑆𝑢1 , 𝑆𝑢2 , . . . , 𝑆𝑢𝑛), then the

node (𝑎,𝑢, 𝜎) has 𝑛 outgoing 𝑅-edges to its children (𝑏1, 𝑢1, 𝜏1), (𝑏2, 𝑢2, 𝜏2), . . . , (𝑏𝑛, 𝑢𝑛, 𝜏𝑛);
or

(ii) if S-CFG♣ (𝑞,𝑦) invokes a backward production rule 𝑆𝑢 →𝑞 𝑆𝑣 , then the node (𝑎,𝑢, 𝜎) has
a single outgoing 𝜀-edge to its only child (𝑎, 𝑣, 𝜎).

The tree trace T succinctly records the rule productions that witness 𝜏 ∈ S-CFG♣ (𝑞,𝑦) in r∗. We
use a structural induction to show that for every node (𝑎,𝑢, 𝜎) in T , ⟨𝑎,𝑢⟩ ∈ 𝐵.

• Basis. Let (𝑎,𝑢, 𝜎) be a leaf node in T . If 𝜎 = ⊥, then ⟨𝑎,𝑢⟩ ∈ 𝐵. If 𝜎 = 𝐿 starting in 𝑎

in r∗ for some unary relation name 𝐿, then 𝐿(𝑎) is in db and thus ⟨𝑎,𝑢⟩ ∈ 𝐵. If 𝜎 = 𝑐 for
some constant 𝑐 , since 𝜏 ∈ S-CFG♣ (𝑞,𝑦), we must have 𝑢 = 𝑐 = 𝑎 at the leaf, and thus
⟨𝑎,𝑢⟩ = ⟨𝑎, 𝑎⟩ ∈ 𝐵. Hence the claim holds for every leaf node (𝑎,𝑢, 𝜎) in T .

• Inductive step. Let (𝑎,𝑢, 𝜎) be a node in T . Assume that for every child node (𝑏,𝑤, 𝜎 ′)
of (𝑎,𝑢) in T (possibly 𝑏 = 𝑎), ⟨𝑏,𝑤⟩ ∈ 𝐵. It suffices to argue that for the atom 𝑅 [𝑢] =

𝑅(𝑢,𝑢1, 𝑢2, . . . , 𝑢𝑛) in 𝑞, ⟨𝑎,𝑢⟩ ∈ 𝐵.
(i) Case that (𝑎,𝑢, 𝜎) has child nodes (𝑏1, 𝑢1, 𝜏1), (𝑏2, 𝑢2, 𝜏2), . . . , (𝑏𝑛, 𝑢𝑛, 𝜏𝑛) in T with 𝜎 =

𝑅(𝜏1, 𝜏2, . . . , 𝜏𝑛). By the inductive hypothesis ⟨𝑏𝑖 , 𝑢𝑖⟩ ∈ 𝐵 for every 1 ≤ 𝑖 ≤ 𝑛, which yields
that fact(𝑅(𝑎, ®𝑏), 𝑢) is true, where ®𝑏 = ⟨𝑏1, 𝑏2, . . . , 𝑏𝑛⟩. Then by Lemma 6.6, ⟨𝑎,𝑢⟩ ∈ 𝐵.

(ii) Case that (𝑎,𝑢, 𝜎) has a child node (𝑎, 𝑣, 𝜎) in T connected with an 𝜀-edge. Then there
is some atom 𝑅 [𝑣] with 𝑅 [𝑣] <𝑞 𝑅 [𝑢]. By the inductive hypothesis on the child (𝑎, 𝑣, 𝜎),
⟨𝑎, 𝑣⟩ ∈ 𝐵. Hence ⟨𝑎,𝑢⟩ ∈ 𝐵 by Lemma 6.2.

This completes the proof. □

The proof of Lemma 6.1 can now be given.

Proof of Lemma 6.1. 2 =⇒ 1 Let r∗ be a frugal repair of db with respect to 𝑞. Then there is a
rooted tree set 𝜏 starting in 𝑐 in r∗ with 𝜏 ∈ S-CFG♣ (𝑞,𝑦). The claim follows by Lemma 6.7.

1 =⇒ 2 Assume that ⟨𝑐,𝑦⟩ ∈ 𝐵. We use induction on 𝑘 to show that if ⟨𝑐,𝑦⟩ is added to 𝐵 at the
𝑘-th iteration, then for every repair r of db, there exists a rooted tree set 𝜏 starting in 𝑐 in 𝜏 with
𝜏 ∈ S-CFG♣ (𝑞,𝑦).

• Basis 𝑘 = 0. Then ⟨𝑐,𝑢⟩ is added to 𝐵 for every leaf variable 𝑢 of 𝑞 such that either the label
of𝑢 in 𝑞 is⊥, or a unary relation name 𝐿, or𝑢 = 𝑐 is a constant. If the label of𝑢 is⊥, the empty
rooted tree set 𝜏 = ∅ starting in 𝑐 with string representation ⊥ is accepted by S-CFG♣ (𝑞,𝑢).
If the label of 𝑢 is 𝐿, then we must have 𝐿(𝑐) ∈ db, and the rooted tree set 𝜏 = 𝐿 starting in 𝑐
is accepted by S-CFG♣ (𝑞,𝑢). If 𝑢 = 𝑐 is a constant, then the rooted tree set 𝜏 = 𝑐 starting in 𝑐
is accepted by S-CFG♣ (𝑞, 𝑐).

• Inductive step. Assume that ⟨𝑐,𝑦⟩ is added to 𝐵 in the 𝑘-th iteration, and for every tuple
⟨𝑏, 𝑥⟩ added to 𝐵 prior to the addition of ⟨𝑐,𝑦⟩, any repair of db contains a rooted tree set
𝜏 ∈ S-CFG♣ (𝑞, 𝑥) starting in 𝑏. Let r be any repair of db. It suffices to construct a rooted
tree set 𝜏 in r starting in 𝑐 such that 𝜏 ∈ S-CFG♣ (𝑞,𝑦). Let 𝑅 [𝑦] = 𝑅(𝑦,𝑦1, 𝑦2, . . . , 𝑦𝑛). Let
𝑅(𝑐, 𝑑1, 𝑑2, . . . , 𝑑𝑛) ∈ r and let ®𝑑 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑛⟩. Since ⟨𝑐,𝑦⟩ ∈ 𝐵, fact(𝑅(𝑐, ®𝑑), 𝑦) is true.
Consider two cases.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:14 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

– Case that ⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵 for every 1 ≤ 𝑖 ≤ 𝑛. Since each ⟨𝑑𝑖 , 𝑦𝑖⟩ was added to 𝐵 in an iteration
< 𝑘 , by the inductive hypothesis, there is a rooted tree set 𝜏𝑖 starting in 𝑑𝑖 in r with
𝜏𝑖 ∈ S-CFG♣ (𝑞,𝑦𝑖), i.e., 𝑆𝑦𝑖

∗→𝑞 𝜏𝑖 . Consider the rooted tree set 𝜏 = {𝑅(𝑐, ®𝑑)} ∪ ⋃
1≤𝑖≤𝑛 𝜏𝑖 ,

starting in 𝑐 in r with a string representation 𝜏 = 𝑅(𝜏1, 𝜏2, . . . , 𝜏𝑛). From

𝑆𝑦 →𝑞 𝑅(𝑆𝑦1 , 𝑆𝑦2 , . . . , 𝑆𝑦𝑛)
∗→𝑞 𝑅(𝜏1, 𝜏2, . . . , 𝜏𝑛) = 𝜏,

we conclude that 𝜏 ∈ S-CFG♣ (𝑞,𝑦).
– Case that fact(𝑅(𝑐, ®𝑑), 𝑥) is true for some 𝑅 [𝑥] <𝑞 𝑅 [𝑦]. Without loss of generality, we
assume that 𝑥 is the smallest with respect to <𝑞 for the atom 𝑅(𝑥, 𝑥1, 𝑥2, . . . , 𝑥𝑛). Hence we
must have ⟨𝑑𝑖 , 𝑥𝑖⟩ ∈ 𝐵 for every 1 ≤ 𝑖 ≤ 𝑛, and by the previous case, there exists a rooted
tree set 𝜏𝑖 starting in 𝑑𝑖 such that 𝜏𝑖 ∈ S-CFG♣ (𝑞, 𝑥𝑖), i.e., 𝑆𝑥𝑖

∗→𝑞 𝜏𝑖 . Since 𝑅 [𝑥] <𝑞 𝑅 [𝑦],
we have

𝑆𝑦 →𝑞 𝑆𝑥 →𝑞 𝑅(𝑆𝑥1 , 𝑆𝑥2 , . . . , 𝑆𝑥𝑛)
∗→𝑞 𝑅(𝜏1, 𝜏2, . . . , 𝜏𝑛) = 𝜏,

and therefore 𝜏 ∈ S-CFG♣ (𝑞,𝑦).
The proof is now complete. □

6.2 Expressibility in LFP and FO
Lemma 6.8. For every query 𝑞 in TreeBCQ that satisfies Cbranch, CERTAINtr (𝑞) is expressible in

LFP (and thus is in PTIME).

Proof. Let 𝑟 be the root variable of 𝑞. Our algorithm first computes the set 𝐵, and then checks
∃𝑐 : ⟨𝑐, 𝑟 ⟩ ∈ 𝐵. The algorithm is correct by Lemma 6.1. The following query (5) in LFP [41]
straightforwardly captures the computation of the set 𝐵 of Fig. 6. Herein, 𝛼 (𝑥) denotes a first-order
query that computes the active domain, and ⊥(𝑢) denotes that 𝑢 is a leaf variable corresponding to
a leaf vertex labeled ⊥. We write “y” for a variable 𝑦 in vars(𝑞) that becomes a constant in 𝜑𝑞 . The
first and second rows in the definition of 𝜑𝑞 (𝐵, 𝑣, 𝑧) correspond, respectively, to the initialization
step and the iterative rule of the algorithm of Fig. 6:

𝜓𝑞 (𝑠, 𝑡) :=
[
lfp𝐵,𝑣,𝑧𝜑𝑞 (𝐵, 𝑣, 𝑧)

]
(𝑠, 𝑡), (5)

where 𝜑𝑞 (𝐵, 𝑣, 𝑧) :=

(𝛼 (𝑣) ∧ 𝑧 = 𝑣) ∨
(∨

𝑦∈vars(𝑞),⊥(𝑦) (𝛼 (𝑣) ∧ 𝑧 = “y”)
)
∨

(∨
𝐿 (𝑦) ∈𝑞 (𝐿(𝑣) ∧ 𝑧 = “y”)

)
∨©­«∨𝑅 (𝑦,𝑦1,...,𝑦𝑛) ∈𝑞

©­«
𝑧 = “y”∧
∃𝑤1 . . . ∃𝑤𝑛

(
𝑅(𝑣,𝑤1, . . . ,𝑤𝑛)

)
∧

∀𝑤1 . . .∀𝑤𝑛

(
𝑅(𝑣,𝑤1, . . . ,𝑤𝑛) → 𝑓𝑅 [𝑦] (𝑣,𝑤1, . . . ,𝑤𝑛)

) ª®¬ª®¬ ,
and 𝑓𝑅 [𝑦] is defined as follows:

𝑓𝑅 [𝑦] (𝑣,𝑤1, . . . ,𝑤𝑛) :=
(∧
1≤𝑖≤𝑛

𝐵(𝑤𝑖 , “yi”)
)
∨ ©­«

∨
𝑅 [𝑥]<𝑞𝑅 [𝑦]

𝑓𝑅 [𝑥] (𝑣,𝑤1, . . . ,𝑤𝑛)
ª®¬ ,

in which 𝑓𝑅 [𝑥] is recursively expanded using the same definition, eventually reaching a vertex
labeled 𝑅 without ancestor labeled 𝑅. This concludes the proof. □

We now show that if 𝑞 satisfies C1, we can safely remove the recursion from the algorithm in
Fig. 6.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:15

Lemma 6.9. Let 𝑞 be a rooted tree query satisfying C1, and let 𝑅 [𝑦] = 𝑅(𝑦,𝑦1, 𝑦2, . . . , 𝑦𝑛) be an
atom in 𝑞. Let db be a database containing a fact 𝑅(𝑐, ®𝑑) = 𝑅(𝑐, 𝑑1, 𝑑2, . . . , 𝑑𝑛). Then, fact(𝑅(𝑐, ®𝑑), 𝑦)
is true if and only if for every atom 𝑇𝑖 [𝑦𝑖] in 𝑞, ⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵.

Proof. ⇐= Immediate by definition of fact(𝑅(𝑐, ®𝑑), 𝑦). =⇒ Assume that fact(𝑅(𝑐, ®𝑑), 𝑦) is
true. Let 𝑅 [𝑥] be a minimal atom with respect to <𝑞 such that 𝑅 [𝑥] <𝑞 𝑅 [𝑦] and fact(𝑅(𝑐, ®𝑑), 𝑥) is
true. If such an atom 𝑅 [𝑥] does not exist, then the claim follows by definition of fact(𝑅(𝑐, ®𝑑), 𝑦).
Otherwise, since 𝑅 [𝑥] is minimal with respect to <𝑞 , for every atom 𝑇𝑖 [𝑥𝑖] in 𝑞, ⟨𝑑𝑖 , 𝑥𝑖⟩ ∈ 𝐵,
where 𝑅(𝑥, ®𝑥) = 𝑅(𝑥, 𝑥1, 𝑥2, . . . , 𝑥𝑛). It suffices to show that ⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵 for every 𝑖 . From C1 and
𝑅 [𝑥] <𝑞 𝑅 [𝑦], 𝑞𝑦𝑖△ ≤𝑦𝑖→𝑥𝑖 𝑞

𝑥𝑖
△ . If both 𝑦𝑖 and 𝑥𝑖 are variables, let 𝑇𝑖 [𝑦𝑖] be an atom in 𝑞. Then there

is some atom 𝑇𝑖 [𝑥𝑖] in 𝑞 with 𝑇𝑖 [𝑥𝑖] <𝑞 𝑇𝑖 [𝑦𝑖]. Since ⟨𝑑𝑖 , 𝑥𝑖⟩ ∈ 𝐵, by Lemma 6.2, ⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵. If
𝑦𝑖 = 𝑥𝑖 = 𝑐 for some constant 𝑐 , then we have ⟨𝑑𝑖 , 𝑦𝑖⟩ = ⟨𝑑𝑖 , 𝑥𝑖⟩ ∈ 𝐵. □

Lemma 6.10. For every 𝑞 in TreeBCQ that satisfies C1, CERTAINtr (𝑞) is in FO .

Proof. Consider the following variant of the algorithm in Fig. 6, where we simply have

fact(𝑅(𝑐, ®𝑑), 𝑦) =
∧

1≤𝑖≤𝑛
⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵.

The variant algorithm is correct for CERTAINtr (𝑞) by Lemma 6.9. Since the size of the query 𝑞

is fixed, for every constant 𝑐 and variable 𝑦 in 𝑞, deciding whether ⟨𝑐,𝑦⟩ ∈ 𝐵 is in FO since the
algorithm in Fig. 6 can be expanded into a sentence of fixed size. So is our algorithm, which checks
∃𝑐 : ⟨𝑐, 𝑟 ⟩ ∈ 𝐵, where 𝑟 is the root variable of 𝑞. □

7 COMPLEXITY UPPER BOUNDS
In this section, we prove the upper bound results in Theorem 4.5. First, we shall prove Lemma 5.4.

Lemma 7.1. Let 𝑞 be a rooted tree query. Then 𝑞 satisfies Cfactor if and only if 𝑞 ≤→ 𝜏 for every
𝜏 ∈ CFG♣ (𝑞).

Proof. Consider two directions.
⇐= Let 𝑅 [𝑥] and 𝑅 [𝑦] be two atoms in 𝑞 with 𝑅 [𝑥] <𝑞 𝑅 [𝑦]. It suffices to show that 𝑞𝑅:𝑦↬𝑥 ∈

CFG♣ (𝑞). Indeed, there is an execution of 𝑆𝑟 (𝑞𝑅:𝑦↬𝑥) that follows exactly 𝑆𝑟 (𝑞), until it invokes
𝑆𝑦 (𝑞𝑥△), instead of 𝑆𝑦 (𝑞𝑦△) in 𝑆𝑟 (𝑞). Note that 𝑆𝑦 →𝑞 𝑆𝑥

∗→𝑞 𝑞𝑥△. Thus 𝑆𝑟
∗→𝑞 𝑞𝑅:𝑦↬𝑥 , concluding

that 𝑞𝑅:𝑦↬𝑥 ∈ CFG♣ (𝑞).
=⇒ Let 𝜏 ∈ CFG♣ (𝑞) with 𝑆𝑟

∗→𝑞 𝜏 . We use an induction on the number 𝑘 of backward
transitions in 𝑆𝑟

∗→𝑞 𝜏 to show that 𝑞 ≤→ 𝜏 .
• Basis 𝑘 = 0. We have 𝜏 = 𝑞, and the claim follows.
• Inductive step 𝑘 → 𝑘 + 1. Assume that if 𝑆𝑟

∗→𝑞 𝜎 uses 𝑘 backward transitions, then 𝑞 ≤→ 𝜎 .
Let 𝜏 ∈ CFG♣ (𝑞) such that 𝑆𝑟

∗→𝑞 𝜏 uses𝑘+1 backward transitions. Let𝜎 be a subtree of 𝜏 such
that the execution of 𝑆𝑟 (𝜎) invokes exactly 1 backward transition 𝑆𝑦 →𝑞 𝑆𝑥

∗→𝑞 𝜎 . Hence
𝜎 = 𝑞𝑥△. Consider the rooted tree 𝜏∗, obtained by replacing 𝜎 = 𝑞𝑥△ with 𝜎∗ = 𝑞

𝑦
△. We have

𝜏∗ ∈ CFG♣ (𝑞), since 𝑆𝑟
∗→𝑞 𝜏 would invoke 𝑆𝑦

∗→𝑞 𝜎∗ and use exactly 𝑘 backward transitions.
By the inductive hypothesis, there is a homomorphism ℎ from 𝑞 to 𝜏∗. If ℎ(𝑞) ∩ 𝜎∗ = ∅,
then ℎ(𝑞) is still present in 𝜏 , and thus 𝑞 ≤→ 𝜏 . Otherwise, assume that the homomorphism
ℎ maps 𝑞𝑧△ in 𝑞 to 𝜎∗. Hence 𝑅 [𝑥] <𝑞 𝑅 [𝑦] <𝑞 𝑅 [𝑧]. Since 𝑞 satisfies Cfactor, there is a
homomorphism 𝑔 from 𝑞 to 𝑞𝑅:𝑧↬𝑥 , and thus a homomorphism from 𝑞 to 𝜏 .

The proof is now complete. □

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:16 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

The following definition is helpful in our exposition.

Definition 7.2. Let 𝑞 be a rooted tree query. Let db be a database. For each repair r of db, we
define start(𝑞, r) as the set containing all (and only) constants 𝑐 ∈ adom(r) such that there is a
rooted tree set 𝜏 in r starting in 𝑐 with 𝜏 ∈ CFG♣ (𝑞).

The problem CERTAINtr (𝑞) essentially asks whether there is some constant 𝑐 such that for every
repair r of db, 𝑐 ∈ start(𝑞, 𝑟). Surprisingly, the frugal repair r∗ of db minimizes start(𝑞, ·) across all
repairs of db.

Lemma 7.3. Let 𝑞 be a rooted tree query satisfying Cbranch. Let db be a database. Let r∗ be a frugal
repair of db. Then for every repair r of db, start(𝑞, r∗) ⊆ start(𝑞, r).

Proof. Let 𝐵 be the output of the algorithm in Fig. 6. Let r∗ be a frugal repair of db. Let r be
any repair of db. We show that start(𝑞, r∗) ⊆ start(𝑞, r). Let 𝑟 be the root variable of 𝑞. Assume
that 𝑐 ∈ start(𝑞, r∗). Then there exists a rooted tree set 𝜏 starting in 𝑐 in r∗ with 𝜏 ∈ CFG♣ (𝑞) =
S-CFG♣ (𝑞, 𝑟). By Lemma 6.7, we have ⟨𝑐, 𝑟 ⟩ ∈ 𝐵. By Lemma 6.1, there exists a rooted tree set 𝜏 ′
starting in 𝑐 in r with 𝜏 ′ ∈ S-CFG♣ (𝑞, 𝑟) = CFG♣ (𝑞). Thus 𝑐 ∈ start(𝑞, r). □

The proof of Lemma 5.4 can now be given.

Proof of Lemma 5.4. =⇒ Let db be a “yes”-instance of CERTAINTY(𝑞). Let r∗ be a frugal
repair of db. Since r∗ satisfies 𝑞, there is a rooted tree set starting in 𝑐 that is isomorphic to
𝑞 in r∗. Since 𝑞 ∈ CFG♣ (𝑞), we have 𝑐 ∈ start(𝑞, r∗). By Lemma 7.3, for every repair r of db,
start(𝑞, r∗) ⊆ start(𝑞, r). It follows that 𝑐 ∈ start(𝑞, r) for every repair r of db. ⇐= Let r be any
repair of db. By the hypothesis that db is a “yes”-instance of CERTAINtr (𝑞), there is some constant
𝑐 ∈ start(𝑞, r). Let 𝜏 be a rooted tree set in r starting in 𝑐 with 𝜏 ∈ CFG♣ (𝑞). Since 𝑞 satisfies C2
by the hypothesis of the current lemma, it follows by Lemma 7.1 that 𝑞 ≤→ 𝜏 . Consequently, r
satisfies 𝑞. □

The upper bounds in Theorem 4.5 thus follow.

Proposition 7.4. For every 𝑞 in TreeBCQ ,

(1) if 𝑞 satisfies C2, then CERTAINTY(𝑞) is in LFP; and
(2) if 𝑞 satisfies C1, then CERTAINTY(𝑞) is in FO.

Proof. Immediate from Lemmas 5.4, 6.8, and 6.10 by noting that C1 implies C2. □

Interestingly, for each query 𝑞 in TreeBCQ satisfying C2, “checking the frugal repair is all you
need”. A repair with this property is known as a “universal repair” in [51].

Corollary 7.5. Let 𝑞 be a query in TreeBCQ that satisfies C2, and let db be a database instance.
Let r∗ be a frugal repair of db with respect to 𝑞. Then, db is a “yes”-instance of CERTAINTY(𝑞) if and
only if r∗ satisfies 𝑞.

Proof. =⇒ Straightforward. ⇐= Assume that r∗ satisfies 𝑞. Let 𝑟 be the root variable
of 𝑞. Hence there is a constant 𝑐 in db such that there exists a rooted relation tree 𝜏 in r∗ that
is isomorphic to 𝑞 and accepted by S-CFG♣ (𝑞, 𝑟). Then by Lemma 6.7, ⟨𝑐, 𝑟 ⟩ ∈ 𝐵, where 𝐵 is the
output of the algorithm in Fig. 6. Hence db is a “yes”-instance for CERTAINtr (𝑞), and by Lemma 5.4,
a “yes”-instance of CERTAINTY(𝑞). □

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:17

8 COMPLEXITY LOWER BOUNDS
In this section, we present the hardness results in Theorem 4.5. The following proposition is proved
in Appendix C through reductions from Monotone SAT and REACHABILITY.

Proposition 8.1. For every 𝑞 in TreeBCQ ,
(1) if 𝑞 violates C2, then CERTAINTY(𝑞) is coNP-hard; and
(2) if 𝑞 violates C1, then CERTAINTY(𝑞) is NL-hard.

9 EXTENDING THE TRICHOTOMY
In this section, we extend the complexity classification for rooted tree queries to larger classes of
Boolean conjunctive queries. We postpone most proofs to Appendix D.

9.1 From TreeBCQ to GraphBCQ

We define GraphBCQ , a subclass of BCQ that extends TreeBCQ .

Definition 9.1 (GraphBCQ). GraphBCQ is the class of Boolean conjunctive queries 𝑞 satisfying
the following conditions:
(1) every atom in 𝑞 is of the form 𝑅(𝑥,𝑦1, . . . , 𝑦𝑛) where 𝑥 is a variable and 𝑦1, . . . , 𝑦𝑛 are symbols

(variables or constants) such that no variable occurs twice in the atom; and
(2) if 𝑅(𝑥,𝑦1, . . . , 𝑦𝑛) and 𝑆 (𝑢, 𝑣1, . . . , 𝑣𝑚) are distinct atoms of 𝑞, then 𝑥 ≠ 𝑢. Note that 𝑅 and 𝑆

need not be distinct.

For a query 𝑞 in BCQ , we define G(𝑞) as the undirected graph whose vertices are the atoms
of 𝑞; two atoms are adjacent if they have a variable in common. The connected components of 𝑞
are the connected components of G(𝑞). Note that queries in GraphBCQ , unlike TreeBCQ , can
have more than one connected component. The following lemma implies that the complexity
of CERTAINTY(𝑞) is equal to the highest complexity of CERTAINTY(𝑞′) over every connected
component 𝑞′ of 𝑞. The proof of Lemma 9.2 is in Appendix C of [33].

Lemma 9.2. Let 𝑞 be a minimal query in BCQ with connected components 𝑞1, 𝑞2, . . . , 𝑞𝑛 . Then:
(1) for every 1 ≤ 𝑖 ≤ 𝑛, there exists a first-order reduction from the problem CERTAINTY(𝑞𝑖) to

CERTAINTY(𝑞); and
(2) for every database instance db, db is a “yes”-instance of the problem CERTAINTY(𝑞) if and

only if for every 1 ≤ 𝑖 ≤ 𝑛, db is a “yes”-instance of CERTAINTY(𝑞𝑖).

Proposition 9.3. If 𝑞 is a connected minimal conjunctive query in GraphBCQ \ TreeBCQ , then
CERTAINTY(𝑞) is L-hard (and not in FO); if 𝑞 is also Berge-acyclic, then CERTAINTY(𝑞) is coNP-
hard.

We can now give the proof of Theorems 1.4 and 1.5.

Proof of Theorems 1.4 and 1.5. Let 𝑞 be a query in GraphBCQ . Then the minimal query 𝑞∗

of 𝑞 is also in GraphBCQ . If every connected component of 𝑞∗ is in TreeBCQ and satisfies C1,
then CERTAINTY(𝑞) is in FO. Otherwise, there exists some connected component 𝑞′ of 𝑞∗ that is
either not in TreeBCQ , or violates C1, and CERTAINTY(𝑞) is L-hard or NL-hard by Lemma 9.2,
Proposition 9.3, and Theorem 4.5. Assume that 𝑞 is also Berge-acyclic. If some connected component
𝑞′ of 𝑞∗ is not in TreeBCQ , then CERTAINTY(𝑞) is coNP-complete; or otherwise, CERTAINTY(𝑞)
exhibits a trichotomy by Theorem 4.5. □

Lemma 9.4 (adapted from [54]) is essential to the proof of Proposition 9.3, but is of independent
interest. Given a query 𝑞 in BCQ , a self-join-free version of 𝑞, denoted 𝑞sjf , is any self-join-free

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:18 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

Boolean conjunctive query obtained from 𝑞 by (only) renaming relation names. For example, a
self-join-free version of {𝑅(𝑥,𝑦), 𝑅(𝑦, 𝑥)} is {𝑅(𝑥,𝑦), 𝑆 (𝑦, 𝑥)}.
Lemma 9.4 (Bridging Lemma). Let 𝑞 be a minimal query in BCQ that contains no two distinct

atoms 𝑅1 (®𝑥1, ®𝑦1) and 𝑅2 (®𝑥2, ®𝑦2) such that 𝑅1 = 𝑅2 and ®𝑥1 = ®𝑥2. Then, there is a first-order reduction
from CERTAINTY(𝑞sjf) to CERTAINTY(𝑞).

The use of the Bridging Lemma is illustrated by Example 9.5.
Example 9.5. For 𝑞1 = {𝑅(𝑥,𝑦, 𝑧), 𝑅(𝑧, 𝑥,𝑦)}, we have 𝑞1sjf = {𝑅1 (𝑥,𝑦, 𝑧), 𝑅2 (𝑧, 𝑥,𝑦)}. By Theo-

rem 1.2 [35], CERTAINTY(𝑞1sjf) is L-complete, and thus CERTAINTY(𝑞1) is L-hard by Lemma 9.4.
For 𝑞2 = {𝑅(𝑥, 𝑧), 𝑅(𝑦, 𝑧)}, we have 𝑞2sjf = {𝑅1 (𝑥, 𝑧), 𝑅2 (𝑦, 𝑧)}. Although by Theorem 1.2 [35],

CERTAINTY(𝑞2sjf) is coNP-complete, CERTAINTY(𝑞2) is in FO because 𝑞2 ≡ 𝑞′2 where 𝑞′2 =

{𝑅(𝑥, 𝑧)}. Lemma 9.4 does not apply here because 𝑞2 is not minimal.

9.2 Open Challenges
So far, we have established the FO-boundary of CERTAINTY(𝑞) for all queries 𝑞 in GraphBCQ ,
and a fine-grained complexity classification for all Berge-acyclic queries in GraphBCQ , which
include all rooted tree queries. We briefly discuss the remaining syntactic restrictions.

The complexity classification of CERTAINTY(𝑞) for queries 𝑞 in GraphBCQ that are not Berge-
acyclic is likely to impose new challenges. In particular, Figueira et al. [18] showed that for 𝑞1
in Example 9.5 (that is not Berge-acyclic), the complement of CERTAINTY(𝑞1) is complete for
Bipartite Matching under LOGSPACE-reductions.

The restriction imposed by GraphBCQ that every variable occurs at most once at a primary-key
position allows for an elegant graph representation. We found that dropping this requirement
imposes serious challenges. The following Proposition 9.6 hints at the difficulty of having to
“correlate two rooted tree branches” that share the same primary-key variable.

Proposition 9.6. Consider the following queries:
• 𝑞1 = {𝑅(𝑢, 𝑥1), 𝑅(𝑥1, 𝑥2), 𝑆 (𝑢,𝑦1), 𝑆 (𝑦1, 𝑦2)};
• 𝑞2 = 𝑞1 ∪ {𝑋 (𝑥2, 𝑥3)}; and
• 𝑞3 = 𝑞1 ∪ {𝑋 (𝑥2, 𝑥3), 𝑌 (𝑦2, 𝑦3)}.

Then we haveCERTAINTY(𝑞1) is in FO,CERTAINTY(𝑞2) is inNL-hard∩ LFP, andCERTAINTY(𝑞3)
is coNP-complete.

The proof of Proposition 9.6 is in Appendix C of [33]. The restrictions that no atom contains
repeated variables, and that no constant occurs at a primary-key position ease the technical
treatment, but it is likely that they can be dropped at the price of some technical involvement.
On the other hand, all our techniques fundamentally rely on the restriction that primary keys are
simple.

10 CONCLUSION
We established a fine-grained complexity classification of the problemCERTAINTY(𝑞) for all rooted
tree queries 𝑞. We then lifted our complexity classification to a larger class of queries. A notorious
open problem in consistent query answering is Conjecture 1.1, which conjectures that for every
query 𝑞 in BCQ , CERTAINTY(𝑞) is either in PTIME or coNP-complete. Despite our progress, this
problem remains open even under the restriction that all primary keys are simple.
Acknowledgements. The authors thank the anonymous reviewers for their constructive feedback
and comments. This work is supported by the National Science Foundation under grant IIS-1910014
and the Anthony C. Klug NCR Fellowship.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:19

REFERENCES
[1] Marcelo Arenas, Pablo Barceló, and Mikaël Monet. 2021. The Complexity of Counting Problems Over Incomplete

Databases. ACM Trans. Comput. Log. 22, 4 (2021), 21:1–21:52.
[2] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query Answers in Inconsistent Databases.

In PODS. ACM Press, 68–79.
[3] Pablo Barceló and Gaëlle Fontaine. 2015. On the Data Complexity of Consistent Query Answering over Graph

Databases. In ICDT (LIPIcs, Vol. 31). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 380–397.
[4] Pablo Barceló and Gaëlle Fontaine. 2017. On the data complexity of consistent query answering over graph databases.

J. Comput. Syst. Sci. 88 (2017), 164–194.
[5] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering Conjunctive Queries under Updates. In

PODS. ACM, 303–318.
[6] Leopoldo E. Bertossi. 2019. Database Repairs and Consistent Query Answering: Origins and Further Developments. In

PODS. ACM, 48–58.
[7] Andrei A. Bulatov. 2011. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log. 12, 4

(2011), 24:1–24:66.
[8] Marco Calautti, Marco Console, and Andreas Pieris. 2019. Counting Database Repairs under Primary Keys Revisited.

In PODS. ACM, 104–118.
[9] Marco Calautti, Marco Console, and Andreas Pieris. 2021. Benchmarking Approximate Consistent Query Answering.

In PODS. ACM, 233–246.
[10] Marco Calautti, Leonid Libkin, and Andreas Pieris. 2018. An Operational Approach to Consistent Query Answering.

In PODS. ACM, 239–251.
[11] Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. 2022. Counting Database Repairs Entailing a

Query: The Case of Functional Dependencies. In PODS. ACM, 403–412.
[12] Marco Calautti, Ester Livshits, Andreas Pieris, and Markus Schneider. 2022. Uniform Operational Consistent Query

Answering. In PODS. ACM, 393–402.
[13] Jan Chomicki and Jerzy Marcinkowski. 2005. Minimal-change integrity maintenance using tuple deletions. Inf. Comput.

197, 1-2 (2005), 90–121. https://doi.org/10.1016/j.ic.2004.04.007
[14] Jan Chomicki, Jerzy Marcinkowski, and Slawomir Staworko. 2004. Hippo: A System for Computing Consistent Answers

to a Class of SQL Queries. In EDBT (Lecture Notes in Computer Science, Vol. 2992). Springer, 841–844.
[15] Akhil A. Dixit and Phokion G. Kolaitis. 2019. A SAT-Based System for Consistent Query Answering. In SAT (Lecture

Notes in Computer Science, Vol. 11628). Springer, 117–135.
[16] Akhil A. Dixit and Phokion G. Kolaitis. 2021. CAvSAT: Answering Aggregation Queries over Inconsistent Databases

via SAT Solving. In SIGMOD Conference. ACM, 2701–2705.
[17] Zhiwei Fan, Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. 2023. LinCQA: Faster Consistent Query Answering

with Linear Time Guarantees. Proc. ACM Manag. Data 1, 1 (2023), 38:1–38:25.
[18] Diego Figueira, Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo. 2023. A Simple Algorithm for Consistent

Query Answering Under Primary Keys. In ICDT (LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
24:1–24:18.

[19] Gaëlle Fontaine. 2015. Why Is It Hard to Obtain a Dichotomy for Consistent Query Answering? ACM Trans. Comput.
Log. 16, 1 (2015), 7:1–7:24.

[20] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2015. The Complexity of Resilience and
Responsibility for Self-Join-Free Conjunctive Queries. Proc. VLDB Endow. 9, 3 (2015), 180–191.

[21] Cibele Freire, Wolfgang Gatterbauer, Neil Immerman, and Alexandra Meliou. 2020. New Results for the Complexity of
Resilience for Binary Conjunctive Queries with Self-Joins. In PODS. ACM, 271–284.

[22] Ariel Fuxman and Renée J. Miller. 2007. First-order query rewriting for inconsistent databases. J. Comput. Syst. Sci. 73,
4 (2007), 610–635.

[23] Gianluigi Greco, Sergio Greco, and Ester Zumpano. 2003. A Logical Framework for Querying and Repairing Inconsistent
Databases. IEEE Trans. Knowl. Data Eng. 15, 6 (2003), 1389–1408.

[24] Miika Hannula and Jef Wijsen. 2022. A Dichotomy in Consistent Query Answering for Primary Keys and Unary
Foreign Keys. In PODS. ACM, 437–449.

[25] Lara A Kahale, Assem M Khamis, Batoul Diab, Yaping Chang, Luciane Cruz Lopes, Arnav Agarwal, Ling Li, Reem A
Mustafa, Serge Koujanian, Reem Waziry, et al. 2020. Meta-Analyses Proved Inconsistent in How Missing Data Were
Handled Across Their Included Primary Trials: A Methodological Survey. Clinical Epidemiology 12 (2020), 527–535.

[26] Yannis Katsis, Alin Deutsch, Yannis Papakonstantinou, and Vasilis Vassalos. 2010. Inconsistency resolution in online
databases. In ICDE. IEEE Computer Society, 1205–1208.

[27] Aziz Amezian El Khalfioui, Jonathan Joertz, Dorian Labeeuw, Gaëtan Staquet, and Jef Wijsen. 2020. Optimization of
Answer Set Programs for Consistent Query Answering by Means of First-Order Rewriting. In CIKM. ACM, 25–34.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

https://doi.org/10.1016/j.ic.2004.04.007

76:20 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

[28] Aziz Amezian El Khalfioui and Jef Wijsen. 2023. Consistent Query Answering for Primary Keys and Conjunctive
Queries with Counting. In ICDT (LIPIcs, Vol. 255). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:19.

[29] Benny Kimelfeld, Ester Livshits, and Liat Peterfreund. 2020. Counting and enumerating preferred database repairs.
Theor. Comput. Sci. 837 (2020), 115–157.

[30] Phokion G. Kolaitis and Enela Pema. 2012. A dichotomy in the complexity of consistent query answering for queries
with two atoms. Inf. Process. Lett. 112, 3 (2012), 77–85.

[31] Phokion G. Kolaitis, Enela Pema, and Wang-Chiew Tan. 2013. Efficient Querying of Inconsistent Databases with
Binary Integer Programming. Proc. VLDB Endow. 6, 6 (2013), 397–408.

[32] Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. 2021. Consistent Query Answering for Primary Keys on Path
Queries. In PODS. ACM, 215–232.

[33] Paraschos Koutris, Xiating Ouyang, and Jef Wijsen. 2023. Consistent Query Answering for Primary Keys on Rooted
Tree Queries. CoRR abs/2310.19642 (2023). https://doi.org/10.48550/ARXIV.2310.19642 arXiv:2310.19642

[34] Paraschos Koutris and Dan Suciu. 2014. A Dichotomy on the Complexity of Consistent Query Answering for Atoms
with Simple Keys. In ICDT. OpenProceedings.org, 165–176.

[35] Paraschos Koutris and Jef Wijsen. 2015. The Data Complexity of Consistent Query Answering for Self-Join-Free
Conjunctive Queries Under Primary Key Constraints. In PODS. ACM, 17–29.

[36] Paraschos Koutris and Jef Wijsen. 2017. Consistent Query Answering for Self-Join-Free Conjunctive Queries Under
Primary Key Constraints. ACM Trans. Database Syst. 42, 2 (2017), 9:1–9:45.

[37] Paraschos Koutris and Jef Wijsen. 2018. Consistent Query Answering for Primary Keys and Conjunctive Queries with
Negated Atoms. In PODS. ACM, 209–224.

[38] Paraschos Koutris and Jef Wijsen. 2019. Consistent Query Answering for Primary Keys in Logspace. In ICDT (LIPIcs,
Vol. 127). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 23:1–23:19.

[39] Paraschos Koutris and Jef Wijsen. 2020. First-Order Rewritability in Consistent Query Answering with Respect to
Multiple Keys. In PODS. ACM, 113–129.

[40] Paraschos Koutris and Jef Wijsen. 2021. Consistent Query Answering for Primary Keys in Datalog. Theory Comput.
Syst. 65, 1 (2021), 122–178.

[41] Leonid Libkin. 2004. Elements of Finite Model Theory. Springer.
[42] Andrei Lopatenko and Leopoldo E. Bertossi. 2007. Complexity of Consistent Query Answering in Databases Under

Cardinality-Based and Incremental Repair Semantics. In ICDT, Vol. 4353. Springer, 179–193.
[43] Carsten Lutz and Frank Wolter. 2015. On the Relationship between Consistent Query Answering and Constraint

Satisfaction Problems. In ICDT (LIPIcs, Vol. 31). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 363–379.
[44] Marco Manna, Francesco Ricca, and Giorgio Terracina. 2015. Taming primary key violations to query large inconsistent

data via ASP. Theory Pract. Log. Program. 15, 4-5 (2015), 696–710.
[45] Mónica Caniupán Marileo and Leopoldo E. Bertossi. 2010. The consistency extractor system: Answer set programs for

consistent query answering in databases. Data Knowl. Eng. 69, 6 (2010), 545–572.
[46] Dany Maslowski and Jef Wijsen. 2013. A dichotomy in the complexity of counting database repairs. J. Comput. Syst.

Sci. 79, 6 (2013), 958–983.
[47] Dany Maslowski and Jef Wijsen. 2014. Counting Database Repairs that Satisfy Conjunctive Queries with Self-Joins. In

ICDT. OpenProceedings.org, 155–164.
[48] Anantha Padmanabha, Luc Segoufin, and Cristina Sirangelo. 2023. A dichotomy in the complexity of consistent query

answering for two atom queries with self-join. CoRR abs/2309.12059 (2023). https://doi.org/10.48550/ARXIV.2309.12059
arXiv:2309.12059

[49] M. Andrea Rodríguez, Leopoldo E. Bertossi, and Mónica Caniupán Marileo. 2013. Consistent query answering under
spatial semantic constraints. Inf. Syst. 38, 2 (2013), 244–263.

[50] Slawek Staworko, Jan Chomicki, and Jerzy Marcinkowski. 2012. Prioritized repairing and consistent query answering
in relational databases. Ann. Math. Artif. Intell. 64, 2-3 (2012), 209–246.

[51] Balder ten Cate, Gaëlle Fontaine, and Phokion G. Kolaitis. 2012. On the data complexity of consistent query answering.
In 15th International Conference on Database Theory, ICDT ’12, Berlin, Germany, March 26-29, 2012, Alin Deutsch (Ed.).
ACM, 22–33. https://doi.org/10.1145/2274576.2274580

[52] Jef Wijsen. 2005. Database repairing using updates. ACM Trans. Database Syst. 30, 3 (2005), 722–768.
[53] Jef Wijsen. 2010. On the first-order expressibility of computing certain answers to conjunctive queries over uncertain

databases. In PODS. ACM, 179–190.
[54] Jef Wijsen. 2019. Corrigendum to "Counting Database Repairs that Satisfy Conjunctive Queries with Self-Joins". CoRR

abs/1903.12469 (2019).
[55] Jef Wijsen. 2019. Foundations of Query Answering on Inconsistent Databases. SIGMOD Rec. 48, 3 (2019), 6–16.
[56] Dmitriy Zhuk. 2020. A Proof of the CSP Dichotomy Conjecture. J. ACM 67, 5 (2020), 30:1–30:78. https://doi.org/10.

1145/3402029

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

https://doi.org/10.48550/ARXIV.2310.19642
https://arxiv.org/abs/2310.19642
https://doi.org/10.48550/ARXIV.2309.12059
https://arxiv.org/abs/2309.12059
https://doi.org/10.1145/2274576.2274580
https://doi.org/10.1145/3402029
https://doi.org/10.1145/3402029

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:21

A MISSING PROOFS IN SECTION 4
Proof of Lemma 4.2. We denote

𝑝 = 𝑞𝑅:𝑦↬𝑥 =
(
𝑞 \ 𝑞𝑦△

)
∪ 𝑓 (𝑞𝑥△),

for some isomorphism 𝑓 that maps every variable in 𝑞𝑥△ to a fresh variable, except for 𝑥 , for which
we have 𝑓 (𝑥) = 𝑦.

Assume first that 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△, witnessed by the homomorphism ℎ with ℎ(𝑦) = 𝑥 . Let 𝑔 :
vars(𝑞) → vars(𝑝) be the mapping such that 𝑔(𝑧) = 𝑧 if 𝑧 ∈ vars(𝑞 \ 𝑞𝑦△), and 𝑔(𝑧) = 𝑓 (ℎ(𝑧))
otherwise. It is easily seen that 𝑔 is a homomorphism from 𝑞 to 𝑝 .
Conversely, assume there is a homomorphism ℎ : vars(𝑞) → vars(𝑝) from 𝑞 to 𝑝 . Hence

ℎ(𝑞) = ℎ(𝑞 \ 𝑞𝑦△) ∪ ℎ(𝑞𝑦△) ⊆
(
𝑞 \ 𝑞𝑦△

)
∪ 𝑓 (𝑞𝑥△).

Note that 𝑞 is minimal, i.e., there is no automorphism 𝛼 such that 𝛼 (𝑞) ⊊ 𝑞. If ℎ(𝑦) = 𝑦, since 𝑞 is
minimal, we have ℎ(𝑞 \ 𝑞𝑦△) = 𝑞 \ 𝑞𝑦△, and we have ℎ(𝑞𝑦△) ⊆ 𝑓 (𝑞𝑥△). Thus 𝑞

𝑦
△ ≤𝑦→𝑥 𝑞𝑥△, witnessed by

the homomorphism 𝑔 = 𝑓 −1 ◦ ℎ with 𝑔(𝑦) = 𝑓 −1 (ℎ(𝑦)) = 𝑓 −1 (𝑦) = 𝑥 , as desired.
Suppose for contradiction that ℎ(𝑦) ≠ 𝑦. In this case, we have ℎ(𝑞 \ 𝑞𝑦△) ∩ 𝑓 (𝑞𝑥△) ≠ ∅. There are

three possible cases, each of which leads to a contradiction, as shown next.
Case that ℎ(𝑦) <𝑝 𝑦 = 𝑓 (𝑥). Then ℎ maps the unique path of nodes from 𝑟 to 𝑦 in 𝑞 to the

unique path from ℎ(𝑟) to ℎ(𝑦) in 𝑝 , and hence both paths have the same length. However, since
ℎ(𝑦) <𝑝 𝑦 and either 𝑟 = ℎ(𝑟) or 𝑟 <𝑝 ℎ(𝑟), the path from ℎ(𝑟) to ℎ(𝑦) in 𝑝 is strictly shorter than
the path from 𝑟 to 𝑦 in 𝑞, a contradiction.
Case that ℎ(𝑦) ∥𝑝 𝑦 = 𝑓 (𝑥). Let 𝑦0 = 𝑦, and for each 𝑖 ≥ 1, let 𝑦𝑖 = ℎ(𝑦𝑖−1). In particular,

ℎ(𝑦0) = 𝑦1. We argue that variables 𝑦0, 𝑦1, . . . are all distinct, thereby reaching a contradiction to
the finite size of 𝑞. We define a left sibling of some variable 𝑢 in 𝑞 as a variable that precedes 𝑢 in
the depth-first, left-to-right order of 𝑞. Assume that 𝑦1 is a left sibling of 𝑦0 in 𝑞 (the case where 𝑦1
is a right sibling of 𝑦0 is symmetrical) : for the greatest common ancestor 𝑦∗ of 𝑦1 and 𝑦0, there is
an atom 𝑅(𝑦∗, .., 𝑦ℓ , .., 𝑦𝑟) such that 𝑦ℓ and 𝑦𝑟 are ancestors of, respectively, 𝑦1 and 𝑦0. Note that 𝑦1
appears in both 𝑝 and 𝑞 and its subtree is not affected by the rewinding operation since 𝑦1 ∥𝑝 𝑦0.
Since 𝑦1 is a left sibling of 𝑦0 and that the children of rooted trees are ordered, ℎ(𝑦1) is a left sibling
of ℎ(𝑦0), that is 𝑦2 is a left sibling of 𝑦1 in 𝑞, and this process continues. Since each 𝑦𝑖+1 is a left
sibling of 𝑦𝑖 , the variables need to be distinct, or otherwise some 𝑦 𝑗+1 is a right sibling of 𝑦 𝑗 , a
contradiction.
Case that 𝑦 = 𝑓 (𝑥) <𝑝 ℎ(𝑦). Since 𝑅 [𝑥] ∥𝑞 𝑅 [𝑦], let 𝑇 [𝑧] be the greatest common ancestor of

𝑅 [𝑥] and 𝑅 [𝑦] in 𝑞 and let 𝑢 and 𝑣 be variables in 𝑇 [𝑧] such that 𝑢 <𝑞 𝑥 and 𝑣 <𝑞 𝑦 and 𝑢 ∥𝑞 𝑣 .
Hence, 𝑧 appears in both 𝑞 and 𝑝 . Since 𝑦 <𝑝 ℎ(𝑦) and 𝑦 ≠ ℎ(𝑦), we have 𝑧 <𝑝 ℎ(𝑧) and ℎ(𝑧) ≠ 𝑧,
by a size argument. We have |𝑞𝑢△ | + |𝑞𝑣△ | + 1 ≤ |𝑞𝑧△ | ≤ |𝑝ℎ (𝑧)△ |, because the homomorphism maps 𝑞𝑧△
to the subtree of 𝑝 , rooted at ℎ(𝑧). We show that 𝑣 <𝑞 ℎ(𝑧). Since 𝑧 <𝑞 ℎ(𝑧) and 𝑣 is the immediate
child of 𝑧, we can have either 𝑣 <𝑞 ℎ(𝑧) or 𝑣 ∥𝑞 ℎ(𝑧). Suppose for contradiction that 𝑣 ∥𝑞 ℎ(𝑧),
then ℎ(𝑧) ∉ {𝑢, 𝑣}. Then, 𝑝ℎ (𝑧)△ = 𝑞

ℎ (𝑧)
△ since the rewinding leaves 𝑞ℎ (𝑧)△ intact. But that implies

ℎ(𝑞𝑧△) ⊆ 𝑞
ℎ (𝑧)
△ with 𝑧 <𝑞 ℎ(𝑧), a contradiction. It follows |𝑝ℎ (𝑧)△ | ≤ |𝑝𝑣△ | ≤ |𝑞𝑣△ |− |𝑞𝑦△ | + |𝑞𝑥△ |, where the

second inequality follows by construction of rewinding that replaces 𝑞𝑦△ with 𝑞𝑥△. Putting everything
together, we obtain 0 ≤ |𝑞𝑢△ | − |𝑞𝑥△ | ≤ −|𝑞𝑦△ | − 1 < 0, a contradiction. □

Proof of Transitivity in Proposition 4.7. We show show that ⪯𝑞 is transitive. Assume𝑅 [𝑥] ⪯𝑞

𝑅 [𝑦] and 𝑅 [𝑦] ⪯𝑞 𝑅 [𝑧]. We distinguish four cases.
• Case that 𝑅 [𝑥] <𝑞 𝑅 [𝑦] and 𝑅 [𝑦] <𝑞 𝑅 [𝑧]. Then we have 𝑅 [𝑥] <𝑞 𝑅 [𝑧], as desired.
• Case that 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△ and 𝑞𝑧△ ≤𝑧→𝑦 𝑞

𝑦
△. Then we have 𝑞𝑧△ ≤𝑧→𝑥 𝑞𝑥△, as desired.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:22 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

• Case that 𝑅 [𝑥] <𝑞 𝑅 [𝑦] and 𝑞𝑧△ ≤𝑧→𝑦 𝑞
𝑦
△. The claim follows if 𝑅 [𝑥] <𝑞 𝑅 [𝑧]. Suppose for

contradiction that 𝑅 [𝑧] <𝑞 𝑅 [𝑥]. Then 𝑅 [𝑧] <𝑞 𝑅 [𝑦], and 𝑞𝑧△ contains more atoms than
𝑞
𝑦
△. However, we have 𝑞𝑧△ ≤𝑧→𝑦 𝑞

𝑦
△, a contradiction. It then must be that 𝑅 [𝑥] ∥𝑞 𝑅 [𝑧].

Suppose for contradiction that 𝑞𝑥△ ≤𝑥→𝑧 𝑞
𝑧
△. Then we have 𝑞𝑥△ ≤𝑥→𝑦 𝑞

𝑦
△, but 𝑅 [𝑥] <𝑞 𝑅 [𝑦], a

contradiction. Since 𝑞 satisfies Cbranch, we have 𝑞𝑧△ ≤𝑧→𝑥 𝑞𝑥△, as desired.
• Case that 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△ and 𝑅 [𝑦] <𝑞 𝑅 [𝑧]. The claim follows if 𝑅 [𝑥] <𝑞 𝑅 [𝑧]. Suppose for
contradiction that 𝑅 [𝑧] <𝑞 𝑅 [𝑥]. Then 𝑅 [𝑦] <𝑞 𝑅 [𝑥], and 𝑞

𝑦
△ contains more atoms than

𝑞𝑥△. However, we have 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△, a contradiction. It then must be that 𝑅 [𝑥] ∥𝑞 𝑅 [𝑧].
Suppose for contradiction that 𝑞𝑥△ ≤𝑥→𝑧 𝑞

𝑧
△. Then we have 𝑞𝑦△ ≤𝑦→𝑧 𝑞

𝑧
△, but 𝑅 [𝑦] <𝑞 𝑅 [𝑧], a

contradiction. Since 𝑞 satisfies Cbranch, it follows that 𝑞𝑧△ ≤𝑧→𝑥 𝑞𝑥△.
This concludes the proof. □

B MISSING PROOFS IN SECTION 6
We first show that the formula in Fig. 6 propagates on root homomorphisms.

Lemma B.1. Let 𝑞 be a rooted tree query satisfying Cbranch and db a database instance. Then for
constants 𝑐, 𝑑1, 𝑑2, . . . , 𝑑𝑛 ∈ adom(db) where ®𝑑 = ⟨𝑑1, 𝑑2, . . . , 𝑑𝑛⟩ and any two atoms 𝑅 [𝑥] and 𝑅 [𝑦]
with 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△, the following statements hold:

(1) if fact(𝑅(𝑐, ®𝑑), 𝑥) is true, then fact(𝑅(𝑐, ®𝑑), 𝑦) is true; and
(2) if ⟨𝑐, 𝑥⟩ ∈ 𝐵, then ⟨𝑐,𝑦⟩ ∈ 𝐵.

Proof. We show both (1) and (2) by an induction on the height 𝑘 of the atom 𝑅 [𝑦] in 𝑞.
• Basis 𝑘 = 0. In this case, 𝑦 is a leaf variable of 𝑞 and (1) holds vacuously. Assume that the
label of 𝑦 is 𝐿, then there is an atom 𝐿(𝑦) in 𝑞. Then there must be an atom 𝐿(𝑥) in 𝑞. From
⟨𝑐, 𝑥⟩ ∈ 𝐵, we have 𝐿(𝑐) ∈ db, and thus ⟨𝑐,𝑦⟩ ∈ 𝐵 by the initialization step.

• Inductive step. Assume that both (1) and (2) holds if the height of 𝑞𝑦△ is less than 𝑘 . Consider
the case where the height of 𝑞𝑦△ is 𝑘 .
First we show (1) holds. Assume that fact(𝑅(𝑐, ®𝑑), 𝑥) holds. Let 𝑅 [𝑥] = 𝑅(𝑥, 𝑥1, 𝑥2, . . . , 𝑥𝑛)
and 𝑅 [𝑦] = 𝑅(𝑦,𝑦1, 𝑦2, . . . , 𝑦𝑛). Consider two cases.
– Case (I) that the following formula is true:∧

1≤𝑖≤𝑛
⟨𝑑𝑖 , 𝑥𝑖⟩ ∈ 𝐵. (6)

To show fact(𝑅(𝑐, ®𝑑), 𝑦) holds, it suffices to show
∧

1≤𝑖≤𝑛 ⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵. Consider any 𝑦𝑖 . If 𝑦𝑖
is a constant or a leaf variable with label ⊥, then ⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵 by the initialization step.
Otherwise, there is an atom 𝑇 [𝑦𝑖] in 𝑞. Since 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△, there is some atom 𝑇 [𝑥𝑖] in 𝑞

such that 𝑞𝑦𝑖△ ≤𝑦𝑖→𝑥𝑖 𝑞
𝑥𝑖
△ and ⟨𝑑𝑖 , 𝑥𝑖⟩ ∈ 𝐵, by Equation (6). Since the height of 𝑇 [𝑦𝑖] is less

than 𝑘 , by the inductive hypothesis for (2), we have ⟨𝑑𝑖 , 𝑦𝑖⟩ ∈ 𝐵.
– Case (II) that there is some atom 𝑅 [𝑢] <𝑞 𝑅 [𝑥] such that fact(𝑅(𝑐, ®𝑑), 𝑢) is true.
If 𝑅 [𝑢] <𝑞 𝑅 [𝑦], then fact(𝑅(𝑐, ®𝑑), 𝑦) holds, as desired. Assume from here on that 𝑢 is not
an ancestor of 𝑦 in 𝑞. Then, we must have 𝑅 [𝑢] ∥𝑞 𝑅 [𝑦]. Indeed, if not, we would have
𝑅 [𝑦] <𝑞 𝑅 [𝑢] <𝑞 𝑅 [𝑥], but 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△, a contradiction.
We argue that 𝑞𝑦△ ≤𝑦→𝑢 𝑞𝑢△. If not, then by Cbranch, we have 𝑞𝑢△ ≤𝑢→𝑦 𝑞

𝑦
△ ≤𝑦→𝑥 𝑞𝑥△, but

𝑅 [𝑢] <𝑞 𝑅 [𝑥], a contradiction.
Note that we just established fact(𝑅(𝑐, ®𝑑), 𝑢) is true and 𝑞𝑦△ ≤𝑦→𝑢 𝑞𝑢△ for 𝑅 [𝑢] <𝑞 𝑅 [𝑥]. If
Case (I) holds when fact(𝑅(𝑐, ®𝑑), 𝑢) is true, then fact(𝑅(𝑐, ®𝑑), 𝑦) is true, as desired. Otherwise,

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:23

by the previous argument in Case (II), either fact(𝑅(𝑐, ®𝑑), 𝑦) is true as desired, or there is
another atom 𝑅 [𝑤] such that 𝑅 [𝑤] <𝑞 𝑅 [𝑢] <𝑞 𝑅 [𝑥] and 𝑞

𝑦
△ ≤𝑦→𝑤 𝑞𝑤△ . Since there are

only finitely many 𝑅-atoms in 𝑞, this process must terminate and show that fact(𝑅(𝑐, ®𝑑), 𝑦)
is true.

For (2), assume that ⟨𝑐, 𝑥⟩ ∈ 𝐵. For every fact 𝑅(𝑐, ®𝑑) in the block 𝑅(𝑐, ∗) of db, fact(𝑅(𝑐, ®𝑑), 𝑥)
holds. By (1), fact(𝑅(𝑐, ®𝑑), 𝑦) holds for every fact 𝑅(𝑐, ®𝑑) in the block 𝑅(𝑐, ∗) of db. Hence,
⟨𝑐,𝑦⟩ ∈ 𝐵.

The proof is now complete. □

Proof of Lemma 6.2. The lemma follows from Lemma B.1 if 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△. Assume that 𝑅 [𝑥] <𝑞

𝑅 [𝑦], and both (1) and (2) are straightforward by definition of fact(𝑅(𝑐, ®𝑑), 𝑦). □

C MISSING PROOFS IN SECTION 8
We define a canonical copy of a query 𝑞 as a set of facts 𝜇 (𝑞), where 𝜇 maps each variable in 𝑞

to a unique constant. The following notation will be central in all our reductions. For a query 𝑞,
variables 𝑥𝑖 in 𝑞 and distinct constants 𝑐𝑖 , we denote

⟨𝑞, [𝑥1, 𝑥2, . . . , 𝑥𝑛 → 𝑐1, 𝑐2, . . . , 𝑐𝑛]⟩
as the canonical copy 𝜇 (𝑞), where 𝜇 (𝑧) = 𝑐𝑖 if 𝑧 = 𝑥𝑖 , and 𝜇 (𝑧) is a fresh distinct constant otherwise.

Lemma C.1. CERTAINTY(𝑞) is coNP-hard for each 𝑞 in TreeBCQ that violates C2.

Proof of Lemma C.1. Since 𝑞 violates C2, there exist two atoms 𝑅(𝑝, . . .) and 𝑅(𝑛, . . .) in 𝑞 such
that there is no homomorphism from 𝑞 to neither 𝑞𝑅:𝑝↬𝑛 nor 𝑞𝑅:𝑛↬𝑝 .
Consider now the root atom 𝐴(𝑟, . . .). It must be that 𝑟 ≠ 𝑝 , since otherwise, there would be a

homomorphism from 𝑞 to 𝑞𝑅:𝑛↬𝑝 , a contradiction. Similarly, we have that 𝑟 ≠ 𝑛. Hence, the root
atom is distinct from 𝑅(𝑝, . . .) and 𝑅(𝑛, . . .). We also have that 𝑟 <𝑞 𝑝 and 𝑟 <𝑞 𝑛.
We present a reduction from MonotoneSAT: Given a monotone CNF formula 𝜑 , i.e., each clause

in 𝜑 contains either only positive literals or only negative literals, does 𝜑 have a satisfying assign-
ment?

Let 𝜑 be a monotone CNF formula. We construct an instance db for CERTAINTY(𝑞) as follows.
• for each variable 𝑧 in 𝜑 , we introduce the facts ⟨𝑞𝑝△, [𝑝 → 𝑧]⟩ and ⟨𝑞𝑛△, [𝑛 → 𝑧]⟩;
• for each positive literal 𝑧 in clause 𝐶 , we introduce the facts ⟨𝑞 \ 𝑞𝑝△, [𝑟, 𝑝 → 𝐶, 𝑧]⟩;
• for each negative literal 𝑧 in clause 𝐶 , we introduce the facts ⟨𝑞 \ 𝑞𝑛△, [𝑟, 𝑛 → 𝐶, 𝑧]⟩;

Observe that the instance db has two types of inconsistent blocks. For relation𝐴, we have a block
for each positive or negative clause, where the primary key position is the clause. For relation 𝑅, for
every variable 𝑧 we have a block of size two, which corresponds to choosing a true/false assignment
for 𝑧. All the other relations are consistent.
Additionally, for a positive literal 𝑧 ∈ 𝐶 , the set of facts ⟨𝑞𝑝△, [𝑝 → 𝑧]⟩ ∪ ⟨𝑞 \ 𝑞𝑝△, [𝑟, 𝑝 → 𝐶, 𝑧]⟩

makes 𝑞 true; similarly for a negative literal 𝑧 ∈ 𝐶 , the facts ⟨𝑞𝑛△, [𝑛 → 𝑧]⟩ ∪ ⟨𝑞 \ 𝑞𝑛△, [𝑛, 𝑝 → 𝐶, 𝑧]⟩
makes 𝑞 true. Note also that ⟨𝑞𝑛△, [𝑛 → 𝑧]⟩ ∪ ⟨𝑞 \ 𝑞𝑝△, [𝑟, 𝑝 → 𝐶, 𝑧]⟩ is a canonical copy of 𝑞𝑅:𝑝↬𝑛

(and hence cannot satisfy 𝑞), while ⟨𝑞𝑝△, [𝑝 → 𝑧]⟩ ∪ ⟨𝑞 \ 𝑞𝑛△, [𝑟, 𝑛 → 𝐶, 𝑧]⟩ is a canonical copy of
𝑞𝑅:𝑛↬𝑝 (which also cannot satisfy 𝑞).

Now we argue that 𝜑 has a satisfying assignment 𝜒 if and only if db has a repair r that does not
satisfy 𝑞.

=⇒ Assume that 𝜑 has a satisfying assignment 𝜒 . Consider the repair r of db constructed as
follows:

• for each variable 𝑧, if 𝜒 (𝑧) = true, then r picks ⟨𝑞𝑛△, [𝑛 → 𝑧]⟩, otherwise r picks ⟨𝑞𝑝△, [𝑝 → 𝑧]⟩;

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:24 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

• for each positive clause𝐶 , r picks ⟨𝑞 \ 𝑞𝑝△, [𝑟, 𝑝 → 𝐶, 𝑧]⟩ where 𝑧 is a positive literal in𝐶 with
𝜒 (𝑧) = true; and

• for each negative clause 𝐶 , r picks ⟨𝑞 \ 𝑞𝑛△, [𝑟, 𝑛 → 𝐶, 𝑧]⟩ where 𝑧 is a negative literal in 𝐶

with 𝜒 (𝑧) = false.
We show that r does not satisfy 𝑞. Indeed, for each positive clause 𝐶 , there is a literal 𝑧 ∈ 𝐶 with

𝜒 (𝑧) = true, and thus ⟨𝑞 \ 𝑞𝑝△, [𝑟, 𝑝 → 𝐶, 𝑧]⟩ ⊆ r. However, we have ⟨𝑞𝑛△, [𝑛 → 𝑧]⟩ ⊆ r, and thus
𝑞 is not satisfied. Similarly, for each negative clause 𝐶 , there is a literal 𝑧 ∈ 𝐶 with 𝜒 (𝑧) = false,
and thus ⟨𝑞 \ 𝑞𝑛△, [𝑛, 𝑝 → 𝐶, 𝑧]⟩ ⊆ r. However, we have ⟨𝑞𝑝△, [𝑝 → 𝑧]⟩ ⊆ r and hence this part also
cannot satisfy 𝑞. Hence r does not satisfy 𝑞.

⇐= Now assume that db has a repair r that does not satisfy 𝑞. Consider the assignment 𝜒
such that 𝜒 (𝑧) = true if ⟨𝑞𝑛△, [𝑛 → 𝑧]⟩ ⊆ r, and 𝜒 (𝑧) = false otherwise. We argue that 𝜒 is
a satisfying assignment for 𝜑 . For each positive clause 𝐶 , there exists some 𝑧 ∈ 𝐶 such that
⟨𝑞 \ 𝑞𝑝△, [𝑟, 𝑝 → 𝐶, 𝑧]⟩ ⊆ r. Since r does not satisfy 𝑞, it must be that ⟨𝑞𝑝△, [𝑝 → 𝑧]⟩ ⊈ r and thus
⟨𝑞𝑛△, [𝑛 → 𝑧]⟩ ⊆ r. By construction, 𝑧 is true and the clause 𝐶 is satisfied. Similarly, the negative
clauses are all satisfied by the assignment. □

Lemma C.2. Let 𝑞 be a rooted tree query. If there exist two distinct atoms 𝑅(𝑥, . . .) and 𝑅(𝑦, . . .) such
that 𝑥 <𝑞 𝑦 and there is no root homomorphism from 𝑞

𝑦
△ to 𝑞

𝑥
△ (i.e., it does not hold that 𝑞

𝑦
△ ≤𝑦→𝑥 𝑞𝑥△),

then CERTAINTY(𝑞) is NL-hard.

Proof. The two following assumptions are without loss of generality: (𝑖) there is no atom
𝑅(𝑧, . . .) such that 𝑧 ∉ {𝑥,𝑦}, 𝑥 <𝑞 𝑧 <𝑞 𝑦 (we then say that 𝑅 [𝑥] and 𝑅 [𝑦] are consecutive), and
(𝑖𝑖) for any 𝑦 <𝑞 𝑧, 𝑧 ≠ 𝑦, we have 𝑞𝑧△ ≤𝑧→𝑦 𝑞

𝑦
△. Indeed, we can pick 𝑅(𝑥, . . .) and 𝑅(𝑦, . . .) to

be the pair of consecutive 𝑅-atoms that violates the root homomorphism condition and occurs
lowest in the rooted tree. Such a pair must always exists, since the root homomorphism property is
transitive, i.e., if 𝑞𝑦△ ≤𝑦→𝑧 𝑞

𝑧
△ and 𝑞𝑧△ ≤𝑧→𝑥 𝑞𝑥△, then we also have that 𝑞𝑦△ ≤𝑦→𝑥 𝑞𝑥△.

We present a reduction from the complement of the REACHABILITY problem, which is NL-hard:
Given a directed acyclic graph 𝐺 = (𝑉 , 𝐸) and 𝑠, 𝑡 ∈ 𝑉 , is there a directed path from 𝑠 to 𝑡 in 𝐺?
We construct an instance db forCERTAINTY(𝑞) as follows. First, we introduce two new constants

𝑠′ and 𝑡 ′. Then:
• for each 𝑢 ∈ 𝑉 ∪ {𝑠′}, introduce ⟨𝑞 \ 𝑞𝑥△, [𝑥 → 𝑢]⟩;
• for every edge (𝑢, 𝑣) ∈ 𝐸 ∪ {(𝑠′, 𝑠), (𝑡, 𝑡 ′)}, introduce ⟨𝑞𝑥△ \ 𝑞

𝑦
△, [𝑥,𝑦 → 𝑢, 𝑣]⟩;

• for every vertex 𝑢 ∈ 𝑉 , introduce ⟨𝑞𝑦△, [𝑦 → 𝑢]⟩.
Note that the above construction guarantees that only 𝑅 has inconsistent blocks.
We now argue that there is a directed path (𝑢1, 𝑢2, . . . , 𝑢𝑘) with (𝑢𝑖 , 𝑢𝑖+1) ∈ 𝐸, 𝑢1 = 𝑠 and 𝑢𝑘 = 𝑡

in 𝐺 if and only if there is a repair of db that does not satisfy 𝑞.
=⇒ Assume that there exists a directed path (𝑢1, 𝑢2, . . . , 𝑢𝑘) with (𝑢𝑖 , 𝑢𝑖+1) ∈ 𝐸, 𝑢1 = 𝑠 and

𝑢𝑘 = 𝑡 in𝐺 . Denote𝑢0 = 𝑠′ and𝑢𝑘+1 = 𝑡 ′. Let r be the repair that picks ⟨𝑞𝑥△ \ 𝑞
𝑦
△, [𝑥,𝑦 → 𝑢𝑖 , 𝑢𝑖+1]⟩ for

every 1 ≤ 𝑖 ≤ 𝑘 −1, and picks ⟨𝑞𝑦△, [𝑦 → 𝑢]⟩ for any other vertex 𝑢. Suppose for contradiction that r
satisfies 𝑞 with a valuation 𝜃 . By a simple size argument, it is not possible that 𝜃 (𝑞) ⊆ ⟨𝑞𝑦△, [𝑦 → 𝑢]⟩
for any 𝑢 ∉ 𝑉 since the size does not fit.
We argue that we must have 𝜃 (𝑥) = 𝑢𝑖 and 𝜃 (𝑦) = 𝑢𝑖+1 for some 0 ≤ 𝑖 < 𝑘 . If 𝜃 (𝑥) = 𝑢𝑖 ∈

{𝑢0, 𝑢1, . . . , 𝑢𝑘 }, then we must have 𝜃 (𝑦) = 𝑢𝑖+1 since ⟨𝑞𝑥△ \ 𝑞
𝑦
△, [𝑥,𝑦 → 𝑢, 𝑣]⟩ is a canonical copy.

Suppose for contradiction that 𝜃 (𝑥) ∉ {𝑢0, 𝑢1, . . . , 𝑢𝑘 }. It is not possible that 𝜃 (𝑥) = 𝑢𝑘+1 = 𝑡 ′ since
by construction, there is no rooted tree set rooted at 𝑡 ′. Note that there is no atom 𝑅(𝑧, . . .) such
that 𝑧 ∉ 𝑥,𝑦, 𝑥 <𝑞 𝑧 <𝑞 𝑦. Hence 𝜃 (𝑥) cannot fall on the path connecting any 𝑢𝑖 and 𝑢𝑖+1, and 𝜃 (𝑞𝑥△)
must be contained in some ⟨𝑞𝑥△ \ 𝑞

𝑦
△, [𝑥,𝑦 → 𝑢𝑖 , 𝑢𝑖+1]⟩. Then, there must be an atom 𝑅(𝑧, . . .) such

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

Consistent Query Answering for Primary Keys on Rooted TreeQueries 76:25

that (i) 𝑥 <𝑞 𝑧, (ii) 𝑧 ∥𝑞 𝑦, and (iii) 𝜃 (𝑞𝑥△) is contained in ⟨𝑞𝑧△, [𝑧 → 𝜃 (𝑥)]⟩, which, by a simple size
argument, can be seen to be impossible.

By construction, there is a canonical copy of 𝑞𝑦△ rooted at 𝑢𝑖+1. If this canonical copy is contained
in ⟨𝑞𝑥△ \ 𝑞

𝑦
△, [𝑥,𝑦 → 𝑢𝑖+1, 𝑢𝑖+2]⟩, then there is a root homomorphism from 𝑞

𝑦
△ to 𝑞𝑥△ \𝑞

𝑦
△, and so from

𝑞
𝑦
△ to 𝑞𝑥△, a contradiction. Otherwise, there exists some atom 𝑅(𝑧, . . .) such that (𝑖) 𝑦 <𝑞 𝑧 and (𝑖𝑖)

𝑞
𝑦
△ \ 𝑞𝑧△ has a root homomorphism to 𝑞𝑥△ \ 𝑞

𝑦
△. Recall now that by our initial assumption, we must

have that 𝑞𝑧△ ≤𝑧→𝑦 𝑞
𝑦
△. This implies that we can now generate a root homomorphism from 𝑞

𝑦
△ to

𝑞𝑥△, a contradiction.
⇐= Assume that there is no directed path from 𝑠 to 𝑡 in𝐺 . Consider any repair r of db. Since𝐺

is acyclic, there exists a maximal sequence 𝑢0, 𝑢1, . . . , 𝑢𝑘 with 𝑘 ≥ 1 such that 𝑢0 = 𝑠′, 𝑢1 = 𝑠 ,
⟨𝑞𝑥△ \ 𝑞

𝑦
△, [𝑥,𝑦 → 𝑢𝑖 , 𝑢𝑖+1]⟩ ⊆ r for 0 ≤ 𝑖 < 𝑘 and ⟨𝑞𝑦△, [𝑦 → 𝑢𝑘]⟩ ⊆ r. Then, the following set of

facts satisfies 𝑞:

⟨𝑞 \ 𝑞𝑥△, [𝑥 → 𝑢𝑘−1]⟩ ∪ ⟨𝑞𝑥△ \ 𝑞
𝑦
△, [𝑥,𝑦 → 𝑢𝑘−1, 𝑢𝑘]⟩ ∪ ⟨𝑞𝑦△, [𝑦 → 𝑢𝑘]⟩.

This shows that CERTAINTY(𝑞) is NL-hard since NL is closed under complement. □

Lemma C.3. CERTAINTY(𝑞) is NL-hard for each 𝑞 in TreeBCQ that violates C1.

Proof of Lemma C.3. Assume that 𝑞 violates C1. Then there exist two distinct atoms 𝑅(𝑥, . . .)
and 𝑅(𝑦, . . .) in 𝑞 such that there is no root homomorphism from 𝑞

𝑦
△ to 𝑞𝑥△ or from 𝑞𝑥△ to 𝑞

𝑦
△. If

𝑥 ∥𝑞 𝑦, Lemma 4.2 implies that C2 is also violated, so CERTAINTY(𝑞) is coNP-hard by Lemma C.1.
Otherwise, CERTAINTY(𝑞) is NL-hard by Lemma C.2. □

Proof of Proposition 8.1. Immediate from Lemmas C.1 and C.3. □

D MISSING PROOFS IN SECTION 9
Proof of Bridging Lemma. Assume that, inmoving from𝑞 to𝑞sjf , occurrences of a same relation

name 𝑅 in 𝑞 are renamed in 𝑅1, 𝑅2, . . . , 𝑅𝑚 , where𝑚 is the number of occurrences of 𝑅 in 𝑞. Let 𝑓
be a mapping from facts to facts such that for every atom 𝑅𝑖 (𝑥1, . . . , 𝑥𝑛) ∈ 𝑞sjf , for every 𝑅𝑖-fact
𝐴 := 𝑅𝑖 (𝑎1, . . . , 𝑎𝑛), 𝑓 (𝐴) := 𝑅(⟨𝑎1, 𝑥1⟩, . . . , ⟨𝑎𝑛, 𝑥𝑛⟩). Notice that 𝑓 maps 𝑅𝑖-facts to 𝑅-facts. Here,
every couple ⟨𝑎𝑖 , 𝑥𝑖⟩ denotes a constant such that ⟨𝑎𝑖 , 𝑥𝑖⟩ = ⟨𝑎 𝑗 , 𝑥 𝑗 ⟩ if and only if both 𝑎𝑖 = 𝑎 𝑗 and
𝑥𝑖 = 𝑥 𝑗 . Moreover, if 𝑐 is a constant, then ⟨𝑐, 𝑐⟩ := 𝑐 . Since no two distinct atoms of 𝑞 agree on both
their relation name and primary key, it will be the case that for all facts 𝐴 and 𝐵, 𝐴 ∼ 𝐵 if and only
if 𝑓 (𝐴) ∼ 𝑓 (𝐵), where ∼ denotes “is key-equal-to.”
We extend the function 𝑓 in the natural way to databases db that use only relation names

from 𝑞sjf : 𝑓 (db) := {𝑓 (𝐴) | 𝐴 ∈ db}. Clearly, 𝑓 (db) can be computed in FO. Let db be a set
of facts with relation names in 𝑞sjf . It can be easily seen that |rset(db) | = |rset(𝑓 (db)) | and
rset(𝑓 (db)) = {𝑓 (r) | r ∈ rset(db)}, where rset(db) is the set of repair of db. Let r be an arbitrary
repair of db. It suffices to show that

r |= 𝑞sjf ⇐⇒ 𝑓 (r) |= 𝑞.

For the implication =⇒ , assume that r |= 𝑞sjf . We can assume a valuation 𝜃 over vars(𝑞sjf) such
that 𝜃 (𝑞sjf) ⊆ r. Let 𝜇 be the valuation such that for every variable 𝑥 ∈ vars(𝑞sjf), 𝜇 (𝑥) = ⟨𝜃 (𝑥), 𝑥⟩.
By our construction of 𝑞sjf and 𝑓 , it will be the case that 𝜇 (𝑞) ⊆ 𝑓 (r), thus 𝑓 (r) |= 𝑞.

For the implication ⇐= , assume that 𝑓 (r) |= 𝑞. We can assume a valuation 𝜃 over vars(𝑞) such
that 𝜃 (𝑞) ⊆ 𝑓 (r). Notice that if 𝑐 is a constant in 𝑞, then it must be the case that 𝜃 (𝑐) = ⟨𝑐, 𝑐⟩ := 𝑐 . We
define 𝜃𝐿 as the substitution that maps every variable 𝑥 in vars(𝑞) to the first coordinate of 𝜃 (𝑥); and
𝜃𝑅 maps every 𝑥 to the second coordinate of 𝜃 (𝑥). It is convenient to think of 𝐿 and 𝑅 as references
to the Left and the Right coordinates, respectively. Thus, by definition, 𝜃 (𝑥) = ⟨𝜃𝐿 (𝑥), 𝜃𝑅 (𝑥)⟩.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

76:26 Paraschos Koutris, Xiating Ouyang, & Jef Wijsen

By inspecting the right-hand coordinates of couples ⟨𝑎𝑖 , 𝑥𝑖⟩ in 𝑓 (r), it can be easily seen that
𝜃 (𝑞) ⊆ 𝑓 (r) implies 𝜃𝑅 (𝑞) ⊆ 𝑞. Since the query 𝑞 is minimal, it follows that 𝜃𝑅 (𝑞) = 𝑞, i.e., 𝜃𝑅 is an
automorphism. Since the inverse of an automorphism is an automorphism, 𝜃𝑅−1 is an automorphism
as well. Note that 𝜃𝑅 will be the identity on constants that appear in 𝑞. We now define 𝜇 := 𝜃𝐿 ◦𝜃𝑅−1

(i.e., 𝜇 is the composed function 𝜃𝐿 after the inverse of 𝜃𝑅), and show that 𝜇 (𝑞sjf) ⊆ r, which implies
the desired result that r |= 𝑞sjf . To this extent, let 𝑅𝑖 (𝑥1, . . . , 𝑥𝑛) be an arbitrary atom of 𝑞sjf . It suffices
to show 𝑅𝑖 (𝜇 (𝑥1), . . . , 𝜇 (𝑥𝑛)) ∈ r, which can be proved as follows. From 𝑅𝑖 (𝑥1, . . . , 𝑥𝑛) ∈ 𝑞sjf , it
follows𝑅(𝑥1, . . . , 𝑥𝑛) ∈ 𝑞. Thus, since𝜃𝑅−1 is an automorphism,𝑅

(
𝜃𝑅

−1 (𝑥1), . . . , 𝜃𝑅
−1 (𝑥𝑛)

)
∈ 𝑞.

Since 𝜃 (𝑞) ⊆ 𝑓 (r), 𝑅
(
𝜃

(
𝜃𝑅

−1 (𝑥1)
)
, . . . , 𝜃

(
𝜃𝑅

−1 (𝑥𝑛)
))

∈ 𝑓 (r). Since, for every symbol 𝑠 , 𝜃 (𝑠) =
⟨𝜃𝐿 (𝑠), 𝜃𝑅 (𝑠)⟩ and 𝜃𝑅

(
𝜃𝑅

−1 (𝑠)
)
= 𝑠 , we obtain 𝑅

(
⟨𝜃𝐿 (𝜃𝑅−1 (𝑥1)), 𝑥1⟩, . . . , ⟨𝜃𝐿 (𝜃𝑅−1 (𝑥𝑛)), 𝑥𝑛⟩

)
∈

𝑓 (r). That is, by our definition of 𝜇, 𝑅 (⟨𝜇 (𝑥1), 𝑥1⟩, . . . , ⟨𝜇 (𝑥𝑛), 𝑥𝑛⟩) ∈ 𝑓 (r). From this, it is
correct to conclude that 𝑅𝑖 (𝜇 (𝑥1), . . . , 𝜇 (𝑥𝑛)) ∈ r. This concludes the proof. □

Attacks. Let 𝑞 be a self-join-free Boolean CQ. For every atom 𝐹 ∈ 𝑞, we define 𝐹+,𝑞 as the
set of all variables in 𝑞 that are functionally determined by key(𝐹) with respect to all functional
dependencies of the form key(𝐺) → vars(𝐺) with 𝐺 ∈ 𝑞 \ {𝐹 }. Following [36], the attack graph
of 𝑞 is a directed graph whose vertices are the atoms of 𝑞. There is a directed edge, called attack,
from 𝐹 to 𝐺 (𝐹 ≠ 𝐺), written 𝐹

𝑞
{ 𝐺 , if there exists a path between 𝐹 and 𝐺 in G(𝑞) such that

every two adjacent atoms share a variable not in 𝐹+,𝑞 . The attack is called weak if every variable
in key(𝐺) is functionally determined by key(𝐹) with respect to all functional dependencies of the
form key(𝐻) → vars(𝐻) with 𝐻 ∈ 𝑞; otherwise it is called strong.

We can now prove the proposition.

Proof of Proposition 9.3. Let 𝑞 be a connected minimal query in GraphBCQ .
Assume that 𝑞 is not a rooted tree query. Then, 𝑞 contains two atoms 𝑅(𝑥, . . . , 𝑧, . . .) and

𝑆 (𝑦, . . . , 𝑧, . . .) with 𝑥 ≠ 𝑦 (and possibly 𝑅 = 𝑆). Consider now 𝑞sjf , and let 𝑅0 and 𝑆0 be the

corresponding atoms of 𝑅 and 𝑆 in 𝑞sjf . It is easily verified that 𝑅+,𝑞sjf
0 = {𝑥} and 𝑆+,𝑞

sjf

0 = {𝑦}, with

neither set containing the shared variable 𝑧. Hence, 𝑅0
𝑞sjf

{ 𝑆0 and 𝑆0
𝑞sjf

{ 𝑅0. By [36, Theorem 3.2],
CERTAINTY(𝑞sjf) is L-hard (due to this cycle in the attack graph of 𝑞sjf), and so is CERTAINTY(𝑞)
by Lemma 9.4.
Next we additionally assume that 𝑞 is Berge-acyclic, that is, 𝑞 ∈ GraphBergeBCQ . It is easily

verified that 𝑞sjf also belongs to GraphBergeBCQ . Let Σ𝑞 be the set of functional dependencies
containing 𝑥 → 𝑦 whenever 𝑥,𝑦 ∈ vars(𝑞) such that 𝑦 occurs in an atom of 𝑞 with primary key 𝑥 .
Assume for the sake of a contradiction that Σ𝑞 |= 𝑥 → 𝑦 and Σ𝑞 |= 𝑦 → 𝑥 . Then, there exist atoms
𝑅0, 𝑅1, . . . , 𝑅𝑛 and 𝑆0, 𝑆1, . . . , 𝑆𝑚 and variables 𝑥0, 𝑥1, 𝑥2, . . . , 𝑥𝑛+1,𝑦0, 𝑦1, . . . , 𝑦𝑚+1 in 𝑞sjf where 𝑥0 = 𝑥 ,
𝑥𝑛+1 = 𝑦, 𝑦0 = 𝑦, 𝑦𝑚+1 = 𝑥 such that 𝑞sjf contains atoms 𝑅𝑖 (𝑥𝑖 , . . . , 𝑥𝑖+1, . . .) for every 0 ≤ 𝑖 ≤ 𝑛,
and 𝑆𝑖 (𝑦𝑖 , . . . , 𝑦𝑖+1, . . .) for every 0 ≤ 𝑖 ≤ 𝑚. Then,(

𝑥0, 𝑅0, 𝑥1, 𝑅1, . . . , 𝑅𝑛, 𝑥𝑛+1 (= 𝑦 = 𝑦0), 𝑆0, 𝑦1, 𝑆1, . . . , 𝑆𝑚, 𝑦𝑚+1 (= 𝑥 = 𝑥0)
)

is a Berge-cycle in 𝑞sjf , contradicting that 𝑞sjf is Berge-acyclic. We conclude by contradiction that
at least one of 𝑥 → 𝑦 or 𝑦 → 𝑥 is not implied by Σ𝑞 . Consequently, among the mutual attacks
between 𝑅0 and 𝑆0 in 𝑞sjf , there is at least one that is strong. By [36, Theorem 3.2],CERTAINTY(𝑞sjf)
is coNP-hard (due to this strong cycle in the attack graph of 𝑞sjf), and so is CERTAINTY(𝑞) by
Lemma 9.4. □

Received June 2023; revised August 2023; accepted September 2023

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 76. Publication date: May 2024.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Complexity Classification
	5 Context-Free Grammar
	6 Membership of CERTAINtr(q) in LFP
	6.1 Frugal repairs
	6.2 Expressibility in LFP and FO

	7 Complexity Upper Bounds
	8 Complexity Lower Bounds
	9 Extending the Trichotomy
	9.1 From TreeBCQ to GraphBCQ
	9.2 Open Challenges

	10 Conclusion
	References
	A Missing Proofs in Section 4
	B Missing Proofs in Section 6
	C Missing Proofs in Section 8
	D Missing Proofs in Section 9

