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Abstract: The growing demand for advanced tools to ensure safety in railway construction projects
highlights the need for systems that can smoothly integrate and analyze multiple data modalities,
such as multimodal learning algorithms. The latter, inspired by the human brain’s ability to integrate
many sensory inputs, has emerged as a promising field in artificial intelligence. In light of this, there
has been a rise in research on multimodal fusion approaches, which have the potential to outperform
standard unimodal solutions. However, the integration of multiple data sources presents significant
challenges to be addressed. This work attempts to apply multimodal learning to detect dangerous
actions using RGB-D inputs. The key contributions include the evaluation of various fusion strategies
and modality encoders, as well as identifying the most effective methods for capturing complex
cross-modal interactions. The superior performance of the MultConcat multimodal fusion method
was demonstrated, achieving an accuracy of 89.3%. Results also underscore the critical need for
robust modality encoders and advanced fusion techniques to outperform unimodal solutions.

Keywords: multimodal fusion; RGB-D dangerous action recognition; deep learning

1. Introduction

Construction and transportation are among the industries in the EU with the biggest
number of fatal workplace accidents, highlighting the high-risk nature of these indus-
tries (https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Accidents_at_
work_-_statistics_by_economic_activity (accessed on 7 May 2024)). For that matter, it is
important to ensure the safety of workers in the field of railway construction with advanced
surveillance systems. Recently, artificial intelligence methods such as deep learning models
have emerged as powerful solutions that can ensure worker safety by changing the way
construction sites are monitored and managed. This is due to the advanced performance
of deep learning in the computer vision field, which makes it particularly adapted for
identifying patterns of risky behavior and predicting potential accidents [1].

Among deep learning models, research in multimodal deep learning models has
known greater interest [2,3] as it was proven for their greater performance in classification
tasks [4]. Especially in the era of big data, where information is available in various forms
such as text, audio, video, and images, it has become increasingly important to develop
deep learning algorithms that can simultaneously process these different types of data.
Multimodal learning algorithms attempt to leverage the diversity of data types to improve
the performance of existing unimodal deep learning solutions. As the human brain can
by design integrate sensory data to interpret the world, multimodal learning also aims
to fuse information from different modalities for an improved decision-making process.
These methods have demonstrated remarkable potential in many fields [5], including
but not limited to computer vision, natural language processing (NLP), healthcare, and
surveillance systems.
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In this work, multimodal fusion approaches were applied in RGB-D action recogni-
tion by combining RGB and depthmap frames, which in theory will increase the overall
performance of the model [4]. The motivation of this work is to combine the RGB data
information such as color information that captures texture and appearance, with depth
data that provide spatial information about the scene’s geometry. By aggregating them,
a model can exploit both the appearance cues (RGB data) and the spatial cues (depth data),
ultimately extracting more comprehensive features which enable one to obtain a rich and
complete perception of the scene. The impacts of this research are important, with the
potential to drastically reduce accidents and enhance safety standards in high-risk sectors
in railway construction sites.

In this work, the following contributions are made:

• Proposing the fusion of unimodal action recognition models as encoders for their
ability to capture useful features.

• Providing an analysis of multimodal fusion approaches, highlighting their effective-
ness in recognizing dangerous actions in railway construction.

• Analyzing the contribution of depthmaps modality in terms of performance.

The remainder of this paper is organized into four main sections. Section 2 covers the
state-of-the-art in multimodal learning and RGB-D action recognition. Section 3 presents
the proposed RGB-D dangerous action recognition approach using multimodal fusion
methods. Section 4 provides a detailed analysis of the results, where the impact of different
design choices are studied, such as the chosen fusion method and modality encoder, as
well as the impact of depthmaps modality. Finally, Section 5 concludes the report by
summarizing the main findings and takeaways from this study.

2. Literature Review

This section covers the state of the art in multimodal learning, such as its taxonomy,
key concepts, and a detailed comparison of multimodal fusion methods. Furthermore,
related work in RGB-D action recognition will be discussed and categorized based on the
techniques used.

2.1. Multimodal Learning Definitions and Concepts

Multimodal machine learning is a learning paradigm that aims to mimic human
behavior interacting with the surrounding world. Compared to the high-level cognitive
abilities of the human brain, the goal of this paradigm is to combine multiple modality data
sources when involved in capturing cross-modal interactions. However, those modalities
bear characteristics that need to be taken into consideration for optimal learning, and in the
following subsection, these aspects will be explored in greater detail.

2.1.1. Multimodal Principles Definition

A modality refers to the specific setting or type of signal where an event takes place
or is observed [3] depending on the sensory inputs. An observation state can be recorded
through multiple sources. For example, an image holds a visual representation of an object
along with a caption that has its textual description. Both depict the corresponding object
(or scene) but differently and uniquely. These kinds of modalities are often heterogeneous
but complementary due to their interconnections. In the literature, these two are defined
as follows:

Heterogeneity

As described in [3], the heterogeneity of modalities is a complex and nuanced concept
that should be approached as a spectrum rather than a binary choice, with different modal-
ities carrying variety levels of heterogeneity depending on their qualities, structures, and
representations. Therefore, it requires careful consideration to define the interconnections
between modalities in multimodal learning. For instance, while two images captured
using the same camera may share some similarities, they can still differ in lighting condi-
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tions, camera settings, and other factors, hence exhibiting some heterogeneity. In contrast,
utilizing different sensors (such as depth maps and Lidar sensors) might create more
heterogeneity since they record different types of information and have distinct qualities,
structures, and representations. Thus, in multimodal learning, modal heterogeneity should
be viewed as a subtle complex term that differs based on the modalities involved.

Interconnections

Having two heterogeneous modalities does not exclude the fact of exhibiting com-
plementary information that interacts with each other [3]. This characteristic has at least
two types:

• Modality connections: Describe how modalities are often related and share common-
alities, such as correspondences between the same concept in language and images or
dependencies across spatial and temporal dimensions. Several dimensions of modality
connections were outlined based on both statistical (association and dependency) and
semantic (correspondence and relationship) perspectives (Figure 1).

• Modality interactions: Modality interactions study how modality elements interact
to give rise to new information when integrated for task inference. It is important
to highlight a key difference between interaction and connections: the interaction
takes place when at least two modalities are involved during the learning process of
a multimodal model, which helps devise a new response during inference compared
to an unimodal model.

Figure 1. Modality connections [3].

Having established a clear understanding of what constitutes a modality and its
fundamental principles, an overview of the main areas in multimodal learning will be
provided next.

2.2. Multimodal Learning Taxonomy Overview

Multimodal learning is often divided into five areas: representation, alignment, gen-
eration, fusion, and co-learning. In a recent survey [3], quantification was added as an
important area that aims to interpret and suggest methods for applying XAI in multimodal
architectures. It is worth noting that these areas often overlap when solving a complex task
such as co-learning [6].

2.2.1. Representation Learning

The purpose of representation learning is to capture complementary data and ex-
ploit these through a proper representation vector that summarizes the most valuable
features [2,3,7]. The heterogeneity of multimodal data makes it challenging to construct
such representations. For example, language is often symbolic while audio and visual
modalities will be represented as signals. While issues with missing data or the absence of
some modalities may arise, representations should be adapted to solve the issues as men-
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tioned earlier. In the literature, it is often divided into two categories, joint and coordinated
representation, as illustrated in Figure 2.

Figure 2. Illustration of joint and coordinated representation learning inspired by [2].

2.2.2. Alignment

The main objective is to find correspondence and alignment between the sub-components
of instances that preserve order, it can be divided into at least two categories: explicit and
implicit alignment [2]. The first category covers use cases where the model will explicitly
align sub-components between modalities, for example, align recipe steps with video
instruction [8]. Whether the implicit one is based on an intermediate (latent) representation,
(e.g., image retrieval based on text may require an alignment step between words and
image regions). For example, [9] consists of RVOS (referring video object segmentation
task) task that used multimodal transformers for aligning the region of interest with the
most semantically related word.

2.2.3. Generation

Generation (or translation) is referred to in the context of mapping one modality to
another. In other words, the purpose is to generate the same entity in a different modal-
ity (e.g., image captioning). It can be categorized into two types: example-based and
combination-based models [2]. The example-based models are parametric since they de-
pend on a dictionary used for cross-modal retrieval based on the closest element. Whether
the combination-based models, they combined them to construct more meaningful and
semantic intermediate representations. Generally, they are hand-crafted or based on heuris-
tics. A concrete example of generation models is Dall-E [10] a transformer-based system
for generating images from text captions developed by OpenAI. It consists of bridging
the gap between vision and text across a broad spectrum of concepts described in natural
language. Utilizing a 12-billion parameter variant of the GPT-3 transformer model, it
interprets natural language inputs and produces corresponding images based on textual
descriptions (see Figure 3).

Figure 3. Dall-E image generation example from OpenAI official website.
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2.2.4. Co-Learning

Co-learning refers to transferring knowledge from one mode of learning to another [2,3,6].
This is often achieved by incorporating external modalities into the training process, creat-
ing a shared representation space, and evaluating how this model performs on tasks that
involve only one modality. Examples of this approach include using word embeddings
to classify images, knowledge graphs for image classification, and video data for text
classification. Co-learning is valuable because it allows us to improve unimodal systems by
integrating external data, which is particularly beneficial for low-resource tasks. Moreover,
the principles of co-learning can provide insights into other multimodal tasks by guiding
the creation of a joint representation space. For instance, in [11], the authors suggested
training a hallucination network to transfer depth map information into an RGB stream
that allows the model to make inferences even when depth modality is missing without
compromising the performance.

2.2.5. Quantification

Quantification is the study that aims to provide a deeper understanding of the het-
erogeneity, cross-modal interactions, and multimodal learning process through empirical
and theoretical analysis. According to [3], quantification can be categorized into three
sub-challenges:

• Identifying the dimensions of heterogeneity in multimodal data and their impact on
modeling and learning, such as the presence of modality bias and noise.

• Quantifying the types of connections and interactions among different modalities in
datasets and trained models.

• Characterizing the learning and optimization challenges involved in heterogeneous
data.

It is worth mentioning the importance of studying these sub-challenges in the context
of other multimodal challenges. A comprehensive understanding of these core challenges
will lead to insights that can enhance the robustness, interpretability, and reliability of
multimodal applications in real-world scenarios.

2.2.6. Fusion

Fusion is one of the primary and innovative areas of focus in multimodal learning.
This concept entails the integration of various modalities within a single network, aiming
to achieve continuous predictions, such as regression, or discrete predictions, such as classi-
fication. The existing literature typically categorizes fusion into four distinct approaches:
early, late, intermediate, and hybrid fusion [2,12].

• Early fusion: This is the study of learning a joint representation at an early stage (raw
modalities), which was one of the first attempts to achieve representation learning [2].
This type of fusion may vary depending on the modality’s level of abstraction. In the
literature, the most common methods used for multimodal fusion are concatenation,
element-wise multiplication, and weighted sum [7,12].

• Intermediate fusion: Also known as feature-level fusion [13]. Contrary to the early
fusion, this approach takes features at a higher level after feeding the raw modalities
through shallow layers. This method is advantageous for capturing cross-modal
interactions and relationships because it allows for the integration of more abstract
representations of the data from each modality. It may also be more susceptible to
incorporating noisy information [13] or allowing the dominance of one modality to
influence the overall model’s performance negatively.

• Late fusion: Also known as decision-level fusion, late fusion is a technique where
data sources are processed independently and then combined at a later stage for
decision-making purposes. This approach is based on ensemble classifiers and is
simpler than the early fusion method, especially when dealing with data sources with
varying characteristics such as sampling rate, data dimensionality, and measurement
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unit. One of the most common approaches is decision aggregation by averaging [14],
voting [15], or weighted-sum [16]

• Hybrid fusion: Hybrid fusion is the methodology of merging the attributes of both
early and late fusion techniques within a unified architecture. Most prior research
focuses on the combined representation created by Early Fusion at the feature level.
This integrated representation is then combined with decision-level approaches, such
as weighted voting [17], to establish a more effective fusion process.

Frequently, overfitting can be an issue in multimodal data fusion, as data from diverse
sources and inconsistent learning rates generalize in distinct ways. To tackle this overfitting
issue, adopting a flexible and adaptive fusion strategy, along with a regularization method
like gradient blending, can help calculate the ideal combination of modalities according to
their overfitting tendencies [18].

2.3. Multimodal Fusion Techniques

Moving forward, state-of-the-art multimodal fusion techniques widely used for vari-
ous application tasks will be presented. They can be divided into three types: tensor-based
fusion, transformers-based fusion, and adaptive fusion.

2.3.1. Tensor-Based Fusion:

• Tensor fusion: The main idea behind this technique is to capture complex interactions
and complementary information between modalities’ embeddings. To do so, in [19],
they suggested performing a 3-fold Cartesian multiplication between all modalities
(see Figure 4). The particularity of this technique is that it preserves the unimodal
characteristics as well as the trimodal and bimodal ones. Despite the advantages of
being non-parametric, it comes with a high computation cost, which increases the
model complexity and might not be adapted for real-world applications.

Figure 4. Tensor fusion method [19].

• Low-rank tensor fusion: To mitigate the computation cost without compromising the
performance, [20] divides the tensor fusion multiplication into low-factor weights that
reduce the number of parameters (see Figure 5). Their work shows prominent results
in terms of linear scalability with the number of modalities being used.
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Figure 5. Low-rank multimodal fusion method [20].

2.3.2. Transformers-Based

With the recent success of Transformers [21] with both text and image modalities,
a rise in architectures that take both inputs simultaneously for multimodal tasks have
been widely used recently. In the literature, and more specifically Bert-like models, they
are often divided into two types: single-stream and two-stream models [22]. A single
stream suggests combining modalities at the entry level and is then processed using
a single module followed by a co-attention layer, whether a two-stream approach takes two
modules, each of them will treat a modality separately.

• VisualBert: [23] a single-stream approach that uses self-attention integrated into a trans-
former layer for an implicit alignment between image and text inputs (see Figure 6).
The image features were generated from a ResNeXt-based Faster RCNN pre-trained
on Visual Genome [24] and text tokens using a BERT tokenizer [25]. The main contri-
bution of this architecture is the ability to capture cross-modal interactions by aligning
visual and textual information; in addition, it can generate a joint representation by
leveraging the transformer architecture to learn contextualized embeddings for words
and image regions.

• LXMERT: [26] LXMERT (learning cross-modality encoder representations from trans-
formers) is a two-stream approach introduced for understanding and reasoning across
both visual and textual modalities. The architecture leverages the powerful Trans-
former architecture and employs a cross-modality attention mechanism to learn the
joint representations of image and text data. The latter are implemented through
a series of co-attention layers that consist of three attention sub-modules: self-attention
for the visual modality, self-attention for the textual modality, and cross-attention
between the two modalities. The self-attention sub-modules focus on learning rela-
tionships within each modality, while the cross-attention sub-module learns to align
and relate the information across the visual and textual domains. LXMERT is pre-
trained on large-scale datasets to extract general features from images and text and is
then fine-tuned for specific tasks such as a visual question answering image-caption
matching, and visual reasoning.

• Multimodal attention bottleneck: [27] A single-stream approach that comes with
a novel way of fusing modalities using attention bottleneck fusion. The intuition
behind this technique is to condense and capture the most important complementary
information between modalities and omit what is unnecessary. It has been proven
that it is computationally efficient and performs better than classical self-attention
fusions. As illustrated in Figure 7, They achieved this by adding a set of B extra fusion
bottleneck tokens to the input sequence and then used to condense all the cross-modal
interaction of modalities through bottleneck tokens.
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Figure 6. VisualBERT architecture [23].

Figure 7. This figure illustrates the integration of bottleneck tokens into the audiovisual input [27].

2.3.3. Adaptive Fusion

• Auto-fusion: In this work [28], an adaptive fusion is proposed that allows for effective
multimodal fusion. Instead of using static techniques such as concatenation, it lets
the network decide how to combine a given set of multimodal features more effec-
tively. The main idea behind the auto-fusion is to maximize the correlation between
multimodal inputs and use a reconstruction strategy to obtain a novel fusion layer
that is minimized using an Euclidean distance between the original and reconstructed
concatenated vector.

• MFAS: “Multimodal Fusion Architecture Search” [29] is a research study focused on
developing a method for automatically discovering optimal fusion architectures for
multimodal data. The central idea is to utilize neural architecture search (NAS) [30,31]
techniques to search for the best fusion strategy that combines information from mul-
tiple modalities. This approach aims to address the challenge of designing effective
fusion strategies for multimodal tasks by employing NAS techniques to automati-
cally learn the most suitable architecture for a given task. They suggested picking
a modalities representation at the different stages/layers of each encoder and non-
linear transformation to come up with the optimized combination that takes into
account the appropriate abstraction level of the modality representation and the fusion
technique used.

Next, state-of-the-art fusion techniques used for RGB-D action recognition and their
categories will be examined.

2.4. RGB-D Fusion Methods

The domain of action recognition has significantly evolved with the integration of
deep learning techniques [32], particularly through the processing of RGB and depth map
sequences. This section categorizes the notable advancements into fusion strategies, hybrid
models, and machine learning-based solutions. To provide a comprehensive overview,
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Table 1 summarizes the key multimodal fusion methods, highlighting their fusion method,
input types, encoders, and datasets used.

2.4.1. Fusion Strategies for Action Recognition

A variety of fusion strategies have been explored to enhance the performance of action
recognition systems. In [13], the impacts of early, intermediate, and late fusion techniques
in multimodal settings are discussed. Similarly, ref. [33] employs a late fusion approach
by integrating the CNN streams of dynamic image and depth data. In [34], c-ConvNet is
introduced, which operates over constructed visual and depth dynamic images from the
raw data RGB and depth maps at the input level, utilizing a decision-level score-product
fusion, adaptable for scenarios with missing modalities. Furthermore, ref. [35] adopts a late
fusion strategy using the Naive Bayes method for classifier score fusion.

2.4.2. Deep Learning-Based Solutions

Several studies have proposed hybrid networks and advanced models to capture
complex spatial and temporal information. The authors in [36] explore a deep learning
auto-encoder framework for RGB-D action recognition, focusing on capturing shared in-
formation between modalities. The authors in [37] present a hybrid CNN-RNN network,
leveraging weighted dynamic images and canonical correlation analysis. The authors
in [38] introduce a discriminative model combining 3D-CNN and LSTM with an attention
mechanism. The authors in [39] propose a Transformer-based framework for egocentric
action recognition, emphasizing inter-frame and mutual-attentional fusion. The authors
in [40] contrast previous methods by integrating a SlowFast multimodality compensation
block for processing depth and RGB sequences. The authors in [41] propose a dual-stream
cross-modality fusion transformer, enhancing feature representations through self-attention
and cross-attention mechanisms. The authors in [42] also proposed a dual-stream ar-
chitecture with a cross-modality compensation block (CMCB) that captures cross-modal
interactions. The authors in [39] present a Transformer-based RGB-D egocentric action
recognition framework that utilizes a self-attention mechanism to model temporal struc-
tures in video data. It consists of an inter-frame attention encoder and a mutual-attentional
fusion block for processing and integrating features from RGB and depth modalities. The
authors in [43] suggested a multi-modal contextualization unit (MCU), which encodes
sequences from one modality with action content features from others, like RGB with depth
or IR.

2.4.3. Machine Learning-Based Solutions

Some works suggest that traditional machine learning approaches remain relevant,
with [35] modeling action videos using a bag-of-visual-words model and a multi-class SVM
classifier. Ref. [44] primarily focuses on depth-based input for human action recognition,
employing depth motion maps (DMM) and local binary patterns (LBPs) applied to depth
data for feature extraction and representation.

For the further exploration of RGB-D action recognition techniques, the surveys [32,45,46]
and the review in [47] offer detailed insights into the field’s current state and future directions.
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Table 1. Table summarizing RGB-D fusion methods, including the encoders used, fusion input blocks,
and experimental datasets.

Fusion Methods Fusion Inputs Encoders Datasets

SKPDE-ELM (hybrid) [44] Depth motion map (DMM),
local binary pattern (LBP) ELM optimized by SKPDE

MSRAction3D [48],
MSRDaily Activity3D [49],
MSRGesture3D [50],
UTD-MHAD [51]

Deep autoencoder based
(intermediate) [36] RGB and depth features Not specified

Online RGBD action [52],
MSRDaily Activity3D [49],
NTU RGB+D [53],
3D action pairs [54],
RGBD-HuDaAct [55]

Multi-modal contextualization
unit (intermediate) [43] RGB and depth embeddings ResNet-18

NTU RGB+D 60 [53],
NTU RGB+D 120 [56],
NW-UCLA [57]

Mutual-attentional fusion
block (intermediate) [39] RGB and depth embeddings ResNet-34 and Transformer

encoder
THU-READ [58], FPHA [59],
WCVS [60]

Attention mechanism
(Intermediate) [38] RGB and depth Densely connected 3D CNN Real-set, SBU-Kinect,

MSR-action-3D

CCA-based feature fusion [37] RGB and depth 3D ConvLSTM, weighted
dynamic images

ChaLearn LAP IsoGD [61],
NTU RGB+D [53],
multi-modal and multi-view
and interactive
benchmark [62]

Naive Bayes combination (late
fusion) [35] RGB and depth SIFT (RGB) and SURF (depth)

UTKinect-Action3D [63],
CAD-60 [64,65],
LIRIS human activities

Product score fusion (late
fusion) [34]

Visual (RGB) and depth
dynamic images c-ConvNet ChaLearn LAP IsoGD [61],

NTU RGB+D [53]

Fusion score (late fusion) [33] RGB and depth frames Pre-trained VGG networks
MSRDaily activity 3D [49],
UTD-MHAD [51],
CAD-60 [64,65]

early, intermediate, and late
fusion [13] RGB, depth, skeleton I3D and shift-GCN NTU RGB+D [53],

SBU interaction [66]

Cross-modality compensation
block (intermediate) [42] RGB and depth ResNet and VGG with CMCB

NTU RGB+D 120 [56],
THU-READ [58],
PKU-MMD [67]

SlowFast multimodality
compensation block
(intermediate) [40]

RGB & Depth features Swin transformer

NTU RGB+D 120 [56],
NTU RGB+D 60 [53],
THU-READ [58],
PKU-MMD [67]

Cross-modality fusion
transformer
(intermediate) [41]

RGB and depth features Restnet50 feature extractors
NTU RGB+D 120 [56],
THU-READ [58],
PKU-MMD [67]

3. Proposed Approach for RGB-D Dangerous Action Recognition

This section will present the proposed RGB-D dangerous action recognition approach
using multimodal fusion methods. The models were evaluated based on the accuracy
metric on a simulated dataset to solve a multi-class classification task. The goal is to assess
whether multimodal fusion helps one obtain an improvement in terms of performance for
detecting dangerous actions in railway construction to satisfy customers’ needs. First, the
dataset used is presented. Second, the problem is formulated mathematically. Third, the
modality encoders used are defined. Finally, the experimental setup is described.
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3.1. Dataset

The railway construction dangerous action recordings were initially introduced in
the work [1]. Readers are encouraged to refer to the Figure 8 and Table 2 for the class
distribution statistics and a detailed definition of each dangerous action. This dataset
consists of dangerous actions generated using the game engine Unity (https://unity.com/
(accessed on 7 May 2024)) which gives enough flexibility to generate a wide range of
scenarios within these environments. The scenes consisted of scenes close to real-world
scenarios where workers are confronted with dangerous situations. Given that this uni-
modal dataset was initially provided (RGB sequences only), this work has been extended
by generating synthetic depth map sequences given RGB modality. Indeed, multiple works
have been proposed for depth estimation [68] and monodepth2 [69] was selected for its su-
perior results on the KITTI benchmark [70]. In Figure 9, an example using monodepth2 on
a simulated video sample is demonstrated.

(a) (b)
Figure 8. Dataset statistics of the simulated dataset, as provided in [1]: (a) Action’s duration (in
seconds) distribution; and (b) class distribution of the simulated dangerous actions.

Figure 9. Depth estimation on the simulated dataset. On the left, there is the RGB frame, and
on the right, there is the corresponding depth map frame generated using monodepth2’s GitHub
implementation (https://github.com/nianticlabs/monodepth2 (accessed on 7 May 2024)).

Table 2. Dataset classes’ definition as provided in [1].

Actions Definition

Other No dangerous actions to be notified

Cabin-Worker Worker moving too close to the cabin while the excavator is being operated

Bucket-Worker
Worker moving under the bucket, in danger of getting hit, or
materials may fall from the bucket

Track-Excavator
The excavator moving forward to the tracks (active railway line or
electric wires)

https://unity.com/
https://github.com/nianticlabs/monodepth2
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3.2. Problem Formulation

For an easy understanding, this problem can be formulated mathematically as follows:
let Irgb be an input sequence of N RGB frames, and Idepth be an input sequence of N
depth map sequence, such that both inputs are synchronized and captures the same scene
simultaneously. Each modality stream is fed into its corresponding modality encoder g,
consisting of pre-trained backbone with frozen weights. This encoder is used to extract
spatial and temporal features Zrgb and Zdepth calculated as follows:

grgb(Irgb) = Zrgb (1)

and
gdepth(Idepth) = Zdepth (2)

The extracted visual features are then fused using a fusion operation denoted as ⊕,
resulting in a multimodal representation vector Z such that Z = zrgb ⊕ zdepth, where ⊕
denotes a fusion operation (e.g., concatenation). This vector is then fed into a one-layer
classifier that performs multi-class dangerous action prediction. It is worth mentioning
that element-wise operations used in this comparison study (addition, multiplication, max,
and average) do not need feature vectors z to be down-spaced since both RGB and depth
encoders have the same latent feature dimensions. The training strategy adopted in this
work is illustrated in Figure 10.

Figure 10. This figure illustrates the complete data flow and components involved in the proposed
method, including preprocessing, feature extraction, and classification. The training strategy is
divided into two training steps: the first one consists of training the unimodal action recognition
classifiers on dangerous action recognition, then the backbone weights are frozen and used as feature
extractors in the next step. RGB and depth frames are preprocessed and passed through separate
pre-trained backbones (grgb and gdepth) to extract features (Zrgb and Zdepth). These features are then
fused using various feature-level fusion methods for comparison purposes. The fused features (Z)
are fed into a classifier consisting of fully connected layers (FC) with a ReLU activation and Softmax
output to perform the final action recognition.

3.3. Modality Encoders

This work compares three architectures which are well known for their superior
performance on action recognition tasks:
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• Slowfast: [71] SlowFast networks are designed for video recognition using RGB frames.
It is divided into two main components: a slow and a fast pathway(see Figure 11). The
slow pathway, operating at a low frame rate, allows one to capture spatial semantics,
and the Fast pathway, operating at a high frame rate, is used to capture motion at
fine temporal resolution. It was tested to achieve strong performance for both action
classification and detection in video, large contribution, and state-of-the-art accuracy
are reported on major video recognition benchmarks: kinetics [72], charades [73], and
AVA [74]

• C3D: introduced by [75], utilizes 3D convolutional layers (3D ConvNets) to analyze
video data, capturing spatial and temporal information simultaneously. This model
processes video clips by applying filters across three dimensions (width, height, and
time), enabling it to extract features from the sequences of frames for action recognition
(see Figure 12). The architecture is straightforward, comprising repeated blocks of 3D
convolutions followed by pooling layers, designed to work with fixed-length video
segments, typically 16 frames. Despite its simplicity, C3D has shown effectiveness in
various video analysis tasks compared to 2D ConvNets, benefiting from the ability to
be pre-trained on large video datasets and fine-tuned for specific tasks.

Figure 11. Slowfast architecture sourced from [71].

Figure 12. Three-dimensional convolution operations on videos, as initially introduced in [75] operate
on video volumes and preserve the temporal information of the input signal.

• TimesFormer: [76] a convolution-free approach for video classification that is built
exclusively on self-attention over space and time. This architecture, which is based
on Transformers, enables spatiotemporal feature learning directly from frame-level
patches(see Figure 13). The authors claim that, despite the radically new design,
TimeSformer achieves state-of-the-art results on several action recognition benchmarks
such as Kinetics-400 [72] and Kinetics-600 [77].
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Figure 13. Architecture of timesformer used in this study that employs self-attention to capture
spatiotemporal features using residual connections. Source [76].

3.4. Setup

The comparative analysis was performed using mmaction2’s [78] public checkpoints
for the modality encoders. For instance, slowfast_r50_256p_8x8x1_256e_kinetics400_rgb
public checkpoint for Slowfast, and Timesformer (divided space+time attention) [76]
public checkpoint divST_8xb8-8x32x1-15e_kinetics400-rgb (see Figure 13), both trained
on Kinetics [72]. Finally, c3d_sports1m-pretrained_8xb30-01-16x1x1-45e_ucf101-rgb for C3D
trained on UCF-101 [79].

The SGD optimizer [80] was used with a 0.001 learning rate for finetuning encoders and
0.01 for training multimodal models, both training steps where operating with a 0.9 momentum
and a total of 50 epochs. An early stopping was set to 15 epochs to avoid overfitting. The
feature extractors’ weights were frozen during training as depicted in Figure 10. The
models were trained and evaluated on the GPU of type NVIDIA GeForce GTX 1080 Ti
with 11264 Mb of VRAM using the PyTorch framework (https://pytorch.org/ (accessed on
7 May 2024)). Finally, the metric used for evaluation was the accuracy score.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

In the next section, the results obtained following the methodology and the experi-
mental setup detailed previously will be discussed.

4. Results and Discussion

Table 3 reports comparison results between fusion methods and stream encoders. First,
it is noticed that slowfast [71] gives an overall better performance in both multimodal
and unimodal training compared to c3d [75] and timesformer [76]. The best result was
recorded with MultConcat, a fusion method that was initially introduced in [81] for HS
code prediction. This proves its effectiveness in feature-level fusion and compatibility
with the slowfast backbone. However, one of the main limitations of this method is its
dependency on efficient modality encoders, since it has lower performance than unimodal
models and the other fusion strategies when used with c3d and timesformer backbones. It
is also important to note that all models perform better with RGB-only compared to depth-
only settings. Indeed, Depth maps, while useful for understanding the three-dimensional
structure of a scene, represent only one aspect of the visual data (the distance of surfaces
from the camera) and lack the detailed appearance information contained in RGB images.
Another reason for this decrease in accuracy could be attributed to the pre-training of
encoders since they did not operate on similar data modalities.

https://pytorch.org/
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The next fusion methods showing moderate accuracy are addition and average. It
is still worth noting that they perform less than unimodal solutions operating on RGB-
only frames with c3d and timesformer, which can be attributed to the feature vector
incompatibility for multimodal fusion compared to slowfast.

Table 3. Results on the simulated dataset of dangerous actions in railways construction by varying
the backbones and fusion methods. Best result are in bold.

Backbone Fusion Method Modalities Test Accuracy

C3d

Addition RGB-D 0.741
Concatenation RGB-D 0.728
Max RGB-D 0.663
Product RGB-D 0.683
Average RGB-D 0.720
GatedFusion [82] RGB-D 0.22
/ rgb only 0.806
/ depth only 0.786

MultConcat [81] RGB-D 0.675

Timesformer

Addition RGB-D 0.296
Concatenation RGB-D 0.296
Max RGB-D 0.399
Product RGB-D 0.428
Average RGB-D 0.383
GatedFusion [82] RGB-D 0.3868
/ depth only 0.7572
/ rgb only 0.7901

MultConcat [81] RGB-D 0.465

Slowfast

Addition RGB-D 0.868
Concatenation RGB-D 0.860
Max RGB-D 0.860
Product RGB-D 0.860
Average RGB-D 0.876
GatedFusion [82] RGB-D 0.8477
/ depth only 0.7984
/ rgb only 0.8601

MultConcat [81] RGB-D 0.893

4.1. Embedding Visualization

The embedding space was visualized in Figure 14 using 3D t-SNE of the dangerous
action categories including the normal one (no danger). The unimodal embeddings Zrgb
show some clustering of the dangerous action categories, but the separation between
different classes is not very distinct. Specifically, the clusters for “Bucket-Worker”, “Cabin-
Worker”, and “Track-Excavator” overlap significantly, making it difficult to differentiate
between these categories based on RGB data alone.

(a) Unimodal embeddings (RGB) (b) Multimodal embeddings
Figure 14. Projection of multimodal and unimodal embeddings of test set observations using
t-SNE algorithm.
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In contrast, a clear pattern is observed with the multimodal embeddings Z: the model
could separate the dangerous actions from the normal ones (safe actions). The inclusion
of depth maps in addition to RGB frames allows the model to better distinguish between
the actions. For instance, the “Bucket-Worker” and “Cabin-Worker” clusters are more
distinctly separated in the multimodal embeddings, indicating that the additional spatial
information provided by the depth maps helps in accurately identifying these actions.
This improved separation in the multimodal embeddings highlights the effectiveness of
the MultConcat [81] fusion method, which can better capture the nuances of each action
when both RGB and depth information are utilized compared to the unimodal approach
(RGB only).

4.2. Modalities Contribution

The contribution of the multimodal model (RGB-D) was quantified compared to the
RGB-only model (unimodal). The goal is to isolate only these two modalities to measure
the impact of the depthmaps modality. To achieve this, the accuracy scores were calculated
for both models on the test set results, followed by computing the accuracy difference
between the two. The result of this operation is illustrated in Figure 15. The contribution
was calculated as follows:

C = Acc f :X 7→Y(Depthmaps, rgb)− Accg:X 7→Y(rgb) (4)

where f : X 7→ Y represents the multimodal model taking RGB and depth maps as
input simultaneously, and g : X 7→ Y represents the unimodal model trained on RGB
sequences only.

Figure 15. Multimodal contributions per action class.

The results indicate that the addition of depth information alongside RGB sequence
contributes to varying degrees of accuracy improvement across action classes. Specifically,
the “Bucket-Worker” class showed the most significant improvement with a 7% increase in
accuracy, followed by “Track-Excavator” with a 2% increase. The categories “Normal” and
“Cabin-Worker”, however, showed no improvement. These results suggest that the depth
maps modality contributes more significantly to categories where the additional depth
information likely provides crucial distinguishing features not available in RGB data alone.
Indeed, this information is crucial to perceive how far the worker is from the operating
engines to determine whether there is a risk of collision.

5. Conclusions

This work addresses dangerous action recognition under a multimodal fusion frame-
work. The experiments conducted through this study demonstrate the critical need for
robust modality encoders, which are key components in extracting pertinent features.
Equally crucial is the design of a fusion method that maintains the modality-specific charac-
teristics, while simultaneously exploiting cross-modal interactions. In addition, the success
of the fusion method MultConcat initially proposed in [81] was observed, yielding better
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results than the other fusion methods tested as well as unimodal solutions operating on rgb
frames only. It was also noticed that the depth modality improves the overall performance,
enabling the model to easily discriminate dangerous actions from safe ones. Overall, this
study highlights the advantage of multimodal fusion techniques in industrial settings. As
a final note, the dependence on robust encoders could represent a limitation that merits
further investigation in future work.
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