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Abstract—Mass localization in mammography is a critical task
for early detection and effective treatment of breast cancer, a
prevalent health concern worldwide. Computer Aided Diagnosis
systems (CADx) can assist radiologists in their difficult diagnosis
task, and play a key role in detecting abnormalities and treating
breast cancer. In this paper we propose an innovative method for
automated labelling and localization of mammographic masses
and microcalcifications. The aim of our method is to detect the
presence of masses and microcalcifications on the mammography.
Hence, we propose to use Yolo Framework in order to locate
tumours in a dataset with complete mammograms. Malignant
masses or microcalcifications are usually annotated and analysed
by a medical expert. As there are only few medical experts
devoted to this annotation in each hospital, this task become
too time-consuming. Malignant tumours, on the other hand, are
nine times more numerous on average, and require far too much
time from radiologists to annotate them manually. Our innovative
method consists of automatically extracting all abnormalities,
whether benign or malignant, from the full mammogram. Our
experiments were carried out with a dataset from a Belgian
hospital (HELORA) thanks to a retrospective study containing
800 malignant images and 90 000 benign images classified in
two directories, positive and negative respectively. Addressing
the challenge posed by the abundance of tumors relative to the
limited availability of expert annotators, our approach demon-
strates proficiency in reducing the time burden on radiologists.

Index Terms—breast cancer, masses and microcalcifications
detection, localisation, automated labelling, convolutional neural
networks.

I. INTRODUCTION

Breast cancer screening is a public health issue. Given
that one woman in nine will be affected by the disease, it
is vital to detect the first signs of this disease. Numerous
campaigns are urging women to undergo regular screening
and to have a diagnosis as soon as any clinical abnormality
becomes apparent. The number of mammograms to be carried
out is therefore fairly high, creating a significant workload for

doctors. What’s more, interpreting a mammographic image is
a difficult task, requiring verification by a second or even a
third reader (in the event of a discrepancy) in order to reduce
the number of false negatives. It is the most common cancer in
women and the second most common cause of death. Indeed,
one woman in nine will develop breast cancer before the age of
75. Also, 80% of breast cancer cases occur after the age of 50.
Although breast cancer in men is rare, there are nevertheless
around 80 new cases every year (+/- 1% compared with
women). Screening, which is based on mammography, can
detect cancer at an early stage, even if there are no symptoms.

Screening or diagnosing breast cancer on the basis of
mammography is a difficult problem, which cannot be dealt
with using a conventional image classification method. In fact,
we are faced with three major difficulties:

• A major imbalance between the small number of images
available showing an abnormality and the large number
of healthy images;

• The malignant character of an entire image composed of
4000x3000 pixels is determined by a few small regions,
of the order of 100x100 pixels;

• Inter-operator variability: the same image read by two
specialists may lead to two different diagnoses, requiring
a third reader to make the correct diagnosis.

Knowing this situation, a number of classification techniques
specific to mammography images have been developed and are
constantly being improved to provide increasingly effective
diagnostic tools. However, these approaches require large,
properly annotated datasets to train the model. To achieve
this, the data must be manually annotated by experienced
radiologists, which presents major challenges. Manual anno-
tation is time-consuming, tedious and subjective. Obtaining
the resources to annotate large amounts of data is costly, due
to the need for qualified radiologists. In addition, annotations



can vary from one radiologist to another. Therefore, the main
challenge lies in the creation of correctly annotated medical
image datasets.

In order to save doctors’ valuable time, we propose in
this paper an extraction method based on Deep lerning,
to automatically extract masses and microcalcification from
mammograms previously marked by doctors as positive or
negative. This is particularly useful when the number of
images to be processed is very high, especially for the majority
class containing benign mammograms. Once these anomalies
(masses and/or microcalcifications) have been extracted, the
patches (crops) formed in this way can be used to train an AI
more effectively.

In the literature, several articles present solutions based
on the YOLO (You Only Look Once) architecture, includ-
ing the work of S. Ramachandran et al. that proposes the
localisation of pulmonary nodules which caught our attention
[7]. In this work proposed in 2018, this team of researchers
uses convolutional neural networks to learn nodule detection
features, replacing the traditional method based on geometric
shape or texture. In this architecture, object detection is treated
as a regression problem with a single convolutional network
simultaneously predicting several bounding boxes and class
probabilities for these boxes. The accuracy obtained with a
database containing 2132 cases is 93%, with a sensitivity of
89% and 6 false positives per image. In view of the results
obtained by this team, we will use the YOLO Framework
to locate medical anomalies, and more specifically the latest
version (v6) because of its speed, performance and better ratio
between execution time and accuracy.

II. DATASET

A. Private raw dataset

We used a database containing 4,000 mammograms, in-
cluding 800 positive images and 3,200 negative images. This
database, which was anonymised, came from a hospital in
Belgium thanks to a convention with UMONS university.

B. Pre-processing phase

In the medical field, almost every database we have contains
DICOM images. A DICOM image is more than just an image;
it contains information about the pixels, the patient, etc. The
grey levels range from 0 to 255 and from -32768 to 32767
for 8-bit and 16-bit DICOM images respectively. In order to
view the image with conventional software and use it with our
machine learning algorithms, it needs to be saved in PNG or
JPG format.

This conversion to PNG and JPG format is a crucial
stage, and one for which particular attention has been paid
to windowing. Windowing, also known as greyscale map-
ping, contrast stretching, histogram modification or contrast
enhancement, is the process by which the greyscale component
of an image is manipulated. This changes the appearance of
the image to highlight particular structures. The brightness

of the image is adjusted via the window level. The contrast
is adjusted by the width of the window. In order to obtain
images of the best possible quality, the choice of windowing
parameters was entrusted to our experienced radiologist.

C. Region of interest

In order to train our model correctly (binary classifier), an
expert senologist framed all the malignant anomalies in our
possession. This was an extremely important task so as not to
disrupt the training of our model with incorrect annotations.
However, the benign tumours could not be framed due to the
large quantity present. To do this, we automatically extracted
all benign abnormalities from benign mammograms thanks to
YOLOv5 and YOLOv6 algorithms.

Fig. 1. Extraction of ROIs



III. EXPERIMENTAL RESULTS

A. Localisation

1) Tumors: The figure 2 below shows a comparison be-
tween the images annotated by the medical expert (ground
truth) and our model. It should be noted that out of 224 mam-
mograms, our model based on Yolo v6 was able to correctly
locate lesions on 70% of mammograms and incorrectly on
5% of images. A confidence rate is also displayed for each
anomaly detected. The first number given corresponds to the
class of the abnormality (in this case, class 2 indicates that the
tumour is malignant). We note that for the fourth image, our
model has more difficulty with a confidence index of 49%.

Fig. 2. Comparison between ground truth and prediction

Fig. 3. Micro-calcifications (malignant) with a probability of 81%.

2) Niples: The figure 4 illustrates the location of the nipple.

Fig. 4. Nipple localization.

It is important to be able to locate the nipple in order to
determine the position of the tumour in relation to the nipple.
In practice, to specify the location of the lesion for screening
or diagnosis, each breast is divided into four quadrants with
reference to the position of the nipple [1] as illustrated in 5.
The majority of the mammary gland is located in the upper
external quadrant (QSE).

Fig. 5. Localization per quadrant [1]

B. Experiments with publics datasets

Our approach has been to work with an expert to annotate
the malignant areas. Consequently, we were able to train a
detection model and test it on the test dataset. Our second
application was to study the diversification capability of this
model on completely different mammography datasets. Indeed,
the public datasets CMMD [3] and Inbreast [4] were examined
with the model trained using annotations from a medical
center’s images.

Fig. 6. Localization with CMMD and inbreast datasets

Unfortunately, less than 10% of the images from Inbreast
were detected by the algorithm. Additionally, the confidence
scores are below 0.6. This could be explained by the lower
pixel intensity compared to our dataset, which may account
for the lack of performance. However, two better results were
obtained with CMMD, which is closer in terms of pixel
intensity to our private dataset. Better confidence scores were
achieved with a confidence rate of 82% and 2492 crops out
of 4146 raw images.

C. XAI

In Figure 7, it is possible to observe the doctor’s annotation
as well as the detection of the model with its confidence rate.
However, a detection that converges with that of the doctor
is not sufficient to be able to affirm that our model is indeed
based on the doctor’s diagnosis. It is therefore necessary to



justify the reasons for a detection in order to help the diagnosis
but also to study the presence of potential bias. To build a
breast cancer diagnosis aid for hospitals, the study of the
explainability (XAI) of detection models. LRP was used to
analyse the detection zone and assign importance to the source
pixels of the detections. This explicability method introduced
in 2015 by Binder et al [2] is used to find relevance scores for
individual features in input data by decomposing CNN output
predictions. It works on the basis of retropropagation, the aim
of which is to highlight the pixels responsible for the classifi-
cation. It is then possible to perform the inverse calculation of
the output (which is a vector giving the probability of a class)
and to obtain the importance of the combinations of pixels and
therefore features giving the prediction.

To achieve this, [6] was used as a basis to apply LRP on
a detection model in the medical field. Figure 3 whose class
is malignant due to a set of microcalcifications. The model
had correctly identified the malignant zone. It was therefore
necessary to understand on which characteristics the model
relied to identify this zone. Using the LRP algorithm applied
to the detection model, it was possible to show that the model
does indeed rely on microcalcifications for diagnosis.

Fig. 7. Visualisation of the pixels responsible for malignant tumours with
LRP.

The tumours present different aspects and have been studied
using detection and explicability algorithms, as shown in the
Figure 8. Indeed, it is important that the model understands
that there are different malignant forms. As explained above,
tissue intensity, shape and dispersion must be taken into
account.

Fig. 8. Visualisation of the pixels responsible for malignant tumours with
different aspects.

D. Classification

The results of the binary classification of benign and ma-
lignant tumours using the ResNet50 architecture are presented
in Figures 9 and 10, while Figure 11 shows the results of the
Visual Transformer model. We observe that we have achieved
very promising results, with an area under the curve ROC

of 92% for both architectures. The ROC (Receiver Operating
Characteristic) curve, also known as the sensitivity/specificity
curve, is used to calculate the ability of a screening test
to distinguish between positive and negative images. The
sensitivity of the test, i.e. the true positives, is shown on the
y-axis and the false positives, i.e. the specificity, on the x-
axis. The optimum value is in the top left-hand corner of the
graph, indicating a high proportion of true positives and a low
proportion of false positives.

Fig. 9. ROC Curves (ResNet50 Model)

Fig. 10. Recall Precision Curve (ResNet50 Model)

Accuracy (or specificity), which represents the ability of a
classifier to classify an image correctly, is defined as the ratio
of true positives to the sum of true and false positives:

Specificity =
True Positive

True Positive + False Positive
(1)

Recall (or sensitivity), which represents the ability of a clas-
sifier to identify all positive cases. This corresponds to the
percentage of what was correctly classified for all the cases
that were actually positive:

Sensitivity =
True Positive

True Positive + False Negative
(2)



Fig. 11. ROC Curves (Transformer Model).

IV. CONCLUSION AND FUTURE WORK

In this paper, we proposed an innovative method to extract
the anomalies (malignant and benign tumours) from a dataset
of mammograpy labelized. This makes it possible to train an
AI directly on the anomalies and not the entire mammogram.

One of these objectives would be to develop diagnostic aid
software applied to mammographies. By combining two AI
models, one to locate anomalies using our method and the
other to perform a binary classification of the localised lesion
(negative or positive) thanks to a model that will have been
trained on positive and negative lesions. The model built based
on the physician’s annotations could be improved by using a
greater number of annotations and by diversifying the sources
of images from several hospitals. However, care must be taken
to normalise the images from the different machines during
pre-processing because, as can be seen in the Figure 12 below,
the grey levels and contrasts are significantly different.

One solution to diversify our binary classification model
with regard to the suspicion of malignant and benign tumours,
and to have more data, would be to use federated learning for
breast cancer in collaboration with several hospitals.

Finally, it is crucial to apply XAI algorithms, particularly in
the context of diagnostic assistance software. In the medical
field, a thorough understanding of the diagnosis is necessary
for its validation, and there is also a risk of bias that can lead to
positive results without taking essential features into account.
These algorithms are of significant importance because they
are able to focus on tiny, potentially malignant features that
can be difficult to spot.
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