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Abstract

We propose a framework to study local gauge theories on manifolds with boundaries and their

asymptotic symmetries, which is based on representing them as so-called gauge PDEs. These ob-

jects extend the conventional BV-AKSZ sigma-models to the case of not necessarily topological and

diffeomorphism invariant systems and are known to behave well when restricted to submanifolds and

boundaries. We introduce the notion of gauge PDE with boundaries, which takes into account generic

boundary conditions, and apply the framework to asymptotically flat gravity. In so doing, we start with

a suitable representation of gravity as a gauge PDE with boundaries, which implements the Penrose

description of asymptotically simple spacetimes. We then derive the minimal model of the gauge PDE

induced on the boundary and observe that it provides the Cartan (frame-like) description of a (curved)

conformal Carollian structure on the boundary. Furthermore, imposing a version of the familiar bound-

ary conditions in the induced boundary gauge PDE, leads immediately to the conventional BMS algebra

of asymptotic symmetries. Finally, we briefly sketch the construction for asymptotically (A)dS gravity.
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1 Introduction

Asymptotic symmetries play a prominent role in modern QFT and gravity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

They originate from gauge transformations that preserve the boundary conditions imposed on fields but, at

the same time, are not to be considered as genuine gauge transformations and hence define new physical

symmetries. In particular, asymptotic symmetries critically depend on the choice of the boundary conditions

for fields and gauge parameters.

Historically, the first and very influential example of asymptotic symmetries is the Bondi-Metzner-Sachs

(BMS) symmetries of asymptotically flat gravity [1, 2]. In contrast to naive expectations, the simplest

natural choice of boundary conditions employed in [1, 2] results in the enhancement of the Poincaré group

by the so-called supertranslations, giving the infinite-dimensional symmetry group which is now known

as the BMS group. The latter group, or its generalizations associated with different choices of boundary

conditions, is now considered to be a proper symmetry group of the gravitational S-matrix and has been

related [10, 12] to the celebrated soft graviton theorem and the gravitational memory effect.

The proper geometrical setup for studying asymptotic symmetries of gravity was proposed by Roger

Penrose, who introduced the notion of asymptotically simple spacetime [13]. More specifically, this is a

spacetime (M̃, g̃) that is diffeomorphic to the interior of the spacetime (M, g) with boundary such that in the

interior g = Ω2g̃ for some smooth function Ω satisfying Ω > 0 and Ω|J = 0, dΩ|J 6= 0, where J = ∂M

is the boundary. In other words, the idea is to realize the boundary at infinity as the usual boundary of the

auxiliary spacetime. More details can be found in e.g. [14, 15, 16].

Recent decades have shown an increasing interest in asymptotic symmetries, not only in the context

of gravity but also in general gauge theories, including Yang-Mills, topological systems, and higher-spin

gauge theories [17, 18, 19, 20, 21, 22, 23, 24]. From this perspective, asymptotic symmetries are to be

considered as a general feature of gauge theories on manifolds with (asymptotic) boundaries. This calls for

a proper gauge-theoretical understanding of asymptotic symmetries. Various approaches are available in the

literature. In particular, the first principle understanding of asymptotic symmetries is provided within the

Hamiltonian approach [25, 4], see also [17], at the price of manifest covariance. A covariant generalization

can be achieved with one or another version of the covariant phase space approach [26, 27, 28], see also

[29] and references therein.

A powerful and systematic framework for (quantum) gauge theories is provided by the Batalin-Vilkovisky

(BV) formalism [30, 31] or, more precisely, its modern enhancements, such as the jet-bundle BV approach

to local gauge theories, see e.g. [32, 26]. Of special attention in the present work is the so called BV-

AKSZ framework [33], initially proposed in the context of topological models. An interesting feature

observed in [34, 35, 36, 37, 38] (see also [39, 40, 40]) is that a BV-AKSZ system naturally induces a shifted

AKSZ system on any space-time submanifold. For instance, an AKSZ version of the Hamiltonian BFV

formulation is induced on a space-like submanifold of spacetime. By combining this observation with the

construction of [39], see also [40, 38], which allows one to reformulate a general local gauge system as

an AKSZ-like model, one arrives at the framework to analyze boundary values and symmetries of generic

local gauge systems. This approach has been successfully employed in [41, 42, 43] in the study of boundary

values of generic gauge fields on AdS space, see also [44] for a related approach, and in the reconstruction

of bulk theories from the boundary data [45, 46]. Note that it does not employ the symplectic structure of

BV formalism and is applicable to non-Lagrangian systems or systems whose Lagrangian is not specified.

Let us also mention the somewhat related approach of [37] to Lagrangian gauge systems on manifolds with

boundaries, see also [47, 48, 49].

In this work we develop an approach to gauge theories on manifolds with boundaries and their asymp-

totic symmetries, which is based on representing a given local gauge theory as a so-called gauge PDE.

Gauge PDE (gPDE) is a generalization of the non-Lagrangian BV-AKSZ formulation to the case of general

gauge theories. Although the term gauge PDE and its geometrical definition was introduced only in [50],

the framework was originally put forward already in [39], see also [51], under the name parent formulation.
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Just like AKSZ systems, gPDEs behave well with respect to the restriction to space-time submanifolds and

hence provide a natural framework to study gauge theories on manifolds with boundaries. More precisely,

a gPDE is a bundle over spacetime and its pullback to a submanifold is again a gPDE, see e.g. [52] and

references therein. Gauge PDEs can be also considered as a BV-BRST extension and generalization of the

so-called unfolded formalism developed in the context of higher spin theories [53, 54].

We propose the notion of gPDEs with boundaries, which takes into account boundary conditions on

fields and gauge parameters. More precisely, the boundary conditions are described by a sub-gPDE of the

induced boundary gPDE which is, by definition, the initial gPDE pulled back to the boundary. In these terms

asymptotic symmetries can be defined in a rather general and purely geometrical way, giving a systematic

description of such systems and their symmetries in terms of differential graded geometry.

The approach is applied to asymptotically flat gravity and is shown to reproduce celebrated BMS sym-

metries once a gauge PDE version of the well-known boundary conditions is taken. A crucial point of the

construction is the gauge theoretical implementation of the Penrose asymptotically simple spacetime. This

is achieved by introducing a Weyl compensator field Ω. In so doing the metric sector of the system can be

considered as that describing conformal geometry, which allows to employ the equivalent reduction [55]

(see also [56]) known in the context of conformal gravity. This later step leads to a remarkably simple

boundary system which also resembles the conformal-geometry approach [57, 58, 59] to BMS symmetries

and more general boundary calculus [60, 61].

The paper is organized as follows: in Section 2, we briefly recall the gauge PDE approach to local

gauge theories and propose its extension to theories on manifolds with boundaries and generally nontrivial

boundary conditions. We then define asymptotic symmetries in this setup. In Section 3, we present a

reformulation of gPDE for general relativity in a form convenient for studying the asymptotic structure of

this theory. The form is inspired by the Penrose’s notion of an asymptotically simple spacetime. In Section 4

we derive the induced boundary system and analyze boundary conditions and asymptotic symmetries in the

asymptotically flat case. This involves derivation of a concise minimal model of the induced boundary

system, which makes manifest the Carrollian geometry structure. Finally, we sketch the construction in the

the case of nonzero cosmological constant and present the respective minimal model.

2 Gauge PDEs with boundaries and their symmetries

2.1 Gauge PDEs

In the approach we employ in this work, local gauge theories, considered at the level of equations of motion,

are encoded in the geometrical objects called gauge PDEs (or gPDE for short). The geometry underlying

gPDE can be seen as a generalization of the jet-bundle non-Lagrangian BV formalism1 , whose under-

lying geometrical structure is a jet-bundle of a graded fiber bundle equipped with the BV-BRST differential,

see e.g. [32] for more details and references.

We first need to briefly recall the necessary prerequisites. More detailed exposition can be found in [50].

Definition 2.1. A Q-manifold (also called dg-manifold) is a Z-graded supermanifold equipped with a ho-

mological vector field Q, i.e. a vector field of degree 1 satisfying Q2 =
1

2
[Q,Q] = 0, gh(Q) = 1, |Q| = 1,

where gh(·) denotes Z-degree (often called ghost degree), and | · | denotes Grassmann parity.

In this work we only deal with bosonic systems and hence one can simply assume |f | = gh(f)mod 2
for any homogeneous functions, form, vector field, etc. Of course, the framework extends to systems with

fermions in a standard way.

The standard simplest example of a Q manifold is a shifted tangent bundle T [1]X over a smooth mani-

fold X . Its algebra of functions is just the algebra of differential forms on X . Under this identification the

de Rham differential corresponds to a homological vector field dX on T [1]X . If xµ are local coordinates on

X and θµ the associated coordinates on the fibers, dX ≡ θµ ∂
∂xµ .

Let us also recall the definition of a Q-bundle, i.e. a fiber bundle in the category of Q-manifolds:

1The version of classical BV formalism at the level of equations of motion was suggested in [51], see also [62, 63, 64].
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Definition 2.2. [65] 1. Q-bundle π : (M,Q) → (N, q) is a locally trivial bundle of graded manifolds M

and N such that π∗ ◦ q = Q ◦ π∗.

2. A section σ : N → M is called a Q-section if q ◦ σ∗ = σ∗ ◦Q.

3. A Q-bundle π : (M,Q) → (N, q) is called locally trivial (as a Q-bundle) if it’s locally isomorphic to

a direct product of the base (N, q) and the fiber (F, q′) in such a way that Q = q + q′, i.e. Q is locally the

direct product Q-structure.

There is a natural notion of equivalence for Q manifolds, which, roughly speaking, corresponds to elim-

ination of contractible pairs. From gauge-theoretical viewpoint, such contractible coordinates correspond

to auxiliary fields, pure gauge variables and their associated ghosts/antifields. More precisely:

Definition 2.3. 1. A contractible Q-manifold is a Q-manifold of the form (T [1]W, dW ), where W is a

graded vector space considered as a graded manifold, and dW is the de Rham differential on T [1]W .

2. A Q-manifold (N, q) is called an equivalent reduction of (M,Q) if (M,Q) is a locally trivial Q-

bundle over (N, q) admitting a global Q-section, and the fibers of this bundle are contractible Q-manifolds.

Equivalent reduction generates the notion of equivalence. In particular, cohomology of natural com-

plexes, e.g. Q-cohomology in differential forms on E, multivector fields, etc. on equivalent Q-manifolds

are isomorphic.

Locally, the statement that (N, q) is an equivalent reduction of (M,Q) implies that, seen as a Q-

manifold, (M,Q) is a direct product of (N, q) and a contractible Q-manifold. A useful way [51] to identify

an equivalent reduction in practice is to find independent functions wa such that Qwa are independent func-

tions as well. It then follows that at least locally a submanifold defined by Qwa = 0 and wa = 0 is an equiv-

alent reduction of the initial Q-manifold. It follows one can find functions φi such that wa, va = Qwa, φi

form a local coordinate system and Qφi = Qi(φ). In this case, wa and va are standard contractible pairs

known in the context of local BRST cohomology, see e.g. [66] and reference therein.

The above notions of equivalent reduction and of equivalence extend to Q-bundles over the same base:

Definition 2.4. Let (M ′, Q′) and (M,Q) are Q-bundles over the same base (N, q). (M,Q) is called an

equivalent reduction of (M ′, Q′) if (M,Q) is a locally trivial Q-bundle over (M,Q) such that the projection

and the local trivializations maps are compatible with projections to (N, q) (i.e. it is a bundle in the category

of bundles over (N, q)), (M ′, Q′) admits a global Q-section, and, moreover, the fiber is a contractible Q-

manifold.

This generates an equivalence relation for Q-bundles. Again, a practical way to identify an equivalent

reduction is to find functions wa such that wa, Qwa are independent functions that remain independent when

restricted to a fiber (i.e. they can be taken as a part of a fiber coordinate system). It follows that at least

locally the subbundle of (M ′, Q′) singled out by wa = 0 and Qwa = 0 is an equivalent reduction. 2

Finally, we are ready to formulate the definition of Gauge PDEs.

Definition 2.5. 1. Gauge PDE (E,Q, T [1]X) is a Q bundle π : (E,Q) → (T [1]X, dX), where X is a

real manifold (independent variables). In addition it is assumed that (E,Q, T [1]X) is locally equivalent

to nonnegatively graded Q-bundle. Moreover, it should be equivalent to a jet-bundle BV-formulation seen

as Q-bundle over T [1]X with Q = dh + s, where s is the BV-BRST differential and dh the horizontal

differential.

2. Two gauge PDEs over T [1]X are considered equivalent if they are equivalent as Q-bundles.

Gauge PDEs encode local gauge theories. In particular, field configurations are identified with their

sections while equations of motion arise as differential conditions on sections. More precisely, section

σ : T [1]X → E is a solution to (E,Q, T [1]X) if

dX ◦ σ∗ = σ∗ ◦Q (2.1)

2Strictly speaking, in the infinite-dimensional case one should also require the existence of complementary fiber coordinates

φi such that Qφi = Qi(φ). See [39] for more details.
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Infinitesimal gauge transformations of the section σ are defined as

δσ∗ = dX ◦ χ∗
σ + χ∗

σ ◦Q, (2.2)

where χ∗
σ : C∞(E) → C∞(T [1]X) is of degree −1, satisfies

χ∗
σ(fg) = χ∗

σ(f)σ
∗(g) + (−1)|f |σ∗(f)χ∗

σ(g) , ∀f, g ∈ C∞(E) , (2.3)

and χ∗
σ(π

∗(h)) = 0 for all h ∈ C∞(T [1]X). The map χ∗
σ is interpreted as a gauge parameter. It is easy to

check that the above gauge transformation is an infinitesimal symmetry of the equations of motion (2.1). In

a similar way one defines gauge for gauge symmetries.

It is often convenient to parameterize χ∗
σ in terms of a vertical vector field Y on E of degree −1:

χ∗
σ = σ∗ ◦ Y . It is easy to check that for this choice χ∗

σ (2.3) is indeed satisfied. Using this representation

the gauge transformation of σ can be written as δσ∗ = σ∗ ◦ [Q, Y ]. Note that a vector field V ≡ [Q, Y ] is

an infinitesimal symmetry of (E,Q, T [1]X) because it preserves Q, the degree, and the bundle structure.

In the case of diffeomorphism-invariant systems, for instance gravity, their gPDE description usually

requires the additional condition on the allowed class of sections. More precisely, the fiber coordinates

typically involve a subset of “diffeomorphism ghosts” ξa, a = 0, . . .dimX − 1, gh(ξa) = 1 and sections

are restricted by the condition that eaµ(x) defined via σ∗(ξa) = eaµ(x)θ
µ, are invertible. This is of course

a gPDE counterpart of the familiar condition in the frame-like formulation of gravity. All the systems

considered in this work are of this type and the nondegeneracy condition on sections is assumed in what

follows.

To complete the discussion of gPDEs let us note that gPDE automatically determine a nonlagrangian

jet-bundle formulation of the underlying gauge system. This is induced on the bundle of super-jets of E and

its BV-BRST differential is the vertical part of the prolongation of Q to the super-jet bundle. More details

can be found in [50, 52], see also [39] for the original construction and local proof.

2.2 Gauge PDEs with boundaries

Let X be a space-time manifold but now we assume that X has a nontrivial boundary Σ = ∂X and let

i : Σ → X denotes the embedding of the boundary. Suppose we are given with a gPDE (E,Q, T [1]X) on

X . This induces a new gPDE i∗E on Σ given by a pullback of E to T [1]Σ ⊂ T [1]X (here by a slight abuse

of notation i also denotes an induced pushforward T [1]Σ → T [1]X). It is easy to check that this is again

a gPDE (e.g. by regarding it as a Q-submanifold of E), which we call induced boundary gPDE. i∗E can

be considered as a gPDE describing a gauge theory of unconstrained boundary values of the fields encoded

in (E,Q, T [1]X), see [52] for more details and [41, 42] for the earlier and less general construction and

applications in the context of higher spin holography.

Now we are interested in the gPDE description of systems with possibly nontrivial boundary conditions.

We have the following:

Definition 2.6. By a gauge PDE with boundaries we mean the following data: (E,Q, T [1]X,EΣ, T [1]Σ),
where gPDE (E,Q, T [1]X) is a gPDE on X and (EΣ, QΣ, T [1]Σ) is a gPDE on the boundary Σ = ∂X ,

which is a sub-gPDE of i∗E. In particular, QΣ is a restriction of Q to EΣ ⊂ i∗E ⊂ E.

Gauge PDE (EΣ, QΣ, T [1]Σ), which is a part of the above definition, can be regarded as a gPDE of

boundary conditions. For instance, if EΣ = i∗E this means that no boundary conditions are imposed.

General situations are described by nontrivial Q-subbundles of i∗E. It is important to stress that in general,

EΣ restricts not only the boundary values of fields but also the boundary values of gauge parameters and

parameters of gauge-for-gauge symmetries (if any).

Remark 2.1. Even if EΣ doesn’t coincide with i∗E it doesn’t necessarily mean that we are dealing with

nontrivial boundary conditions. This happens if EΣ is an equivalent reduction of i∗E in which case EΣ

implements elimination of auxiliary fields and pure gauge variables.
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Although the above definition is quite general, in the context of asymptotic symmetries it is useful to

allow (E,Q, T [1]X) to be slightly locally nontrivial. Namely, E restricted to the interior of X and i∗E are

still required to be locally trivial while the typical fiber of i∗E can differ from the fiber over the interior by

a subset of measure zero. For our present purposes it is enough to allow the fiber of i∗E to be a manifold

with boundary whose interior coincides with the typical fiber over the interior. In this case the total space of

E restricted to the interior of X is itself the interior of a manifold with corners. Restricting it to ∂X gives a

total space of i∗E whose fiber is a manifold with boundary. As we are going to see, at more practical level

we actually work with i∗E and its sub-gPDE EΣ which are locally trivial. Note that a gPDE with boundary

could be defined in terms of a single locally-nontrivial bundle E ′ → T [1]X such that its fibers over the

boundary shrinks to those of EΣ but we prefer to keep boundary conditions explicit.

The field theoretical interpretation of the above definition becomes clear with the help of:

Definition 2.7. 1. A solution of (E,Q, T [1]X,EΣ, T [1]Σ) is a section σ : T [1]X → E satisfying σ∗ ◦Q =
dX ◦ σ∗ and such that its restriction to T [1]Σ belongs to EΣ, i.e. is a solution to (EΣ, QΣ, T [1]Σ).

2. A gauge parameter is a vertical vector field Y on E such that gh(Y ) = −1 and its restriction to i∗E

is tangent to EΣ ⊂ i∗E. In other words, gauge parameters should satisfy the boundary conditions encoded

in EΣ ⊂ i∗E.

3. A gauge transformation of section σ is defined as

δY σ
∗ = dX ◦ σ∗ ◦ Y + σ∗ ◦ Y ◦Q . (2.4)

The following comments are in order: it is easy to check that if σ is a solution then σ + δY σ with δY σ

determined by (2.4), is again a solution (to first order in Y ). Moreover, in this case the gauge transforma-

tion (2.4) can be rewritten as:

δY σ
∗ = σ∗ ◦ [Q, Y ] . (2.5)

Restricting (2.4) to T [1]Σ, one finds a standard gauge transformation for (EΣ, QΣ, T [1]Σ) whose parameter

is Y restricted to EΣ ⊂ i∗E ⊂ E (recall that Y is vertical and hence is tangent to i∗E, while the above

definition requires Y to be tangent to EΣ). Gauge-for-gauge transformations can be defined in a similar

way. In particular, parameters of the gauge-for-gauge transformations of stage 1 are vertical vector fields of

degree −2 and tangent to EΣ.

All the above definitions can be generalised to the case where Σ is a generic submanifold. This version

can be relevant in describing theories with defects. Generalization to the case of manifolds with corners or

higher codimension strata is also possible.

2.3 (Asymptotic) symmetries in gPDE terms

Let us now turn to the discussion of symmetries. Given a gauge PDE, an infinitesimal symmetry is by def-

inition a vector field W which preserves all the structures, i.e. [Q,W ] = 0, W is vertical, and gh(W ) = 0
(though symmetries of the nonvanishing ghost number are also of interest). The infinitesimal transforma-

tion of a solution σ under a symmetry transformation determined by W is defined to be:

δWσ∗ = σ∗ ◦W . (2.6)

It is easy to check that it defines an infinitesimal symmetry transformation that takes solutions to solutions.

Gauge symmetries are the ones where W = [Q, Y ], where Y is a gauge parameter. In particular, in this

case the above transformation coincides with (2.5) so that it is natural to regard symmetries of the form

W = [Q, Y ] as trivial. As we only consider infinitesimal symmetries, in what follows we systematically

omit ”infinitesimal”.

Inequivalent symmetries (also known as global or physical) can be defined as the respective quotient

of all symmetries modulo the ideal of the gauge ones and hence are given by Q-cohomology in vertical

vector fields. One can check that in the case of usual jet-bundle BV formulation of a local gauge theory,

this definition reproduces the standard one, at least locally. Details can be found in Appendix A.

As far as gauge PDEs with boundaries are concerned, a natural definition of a symmetry is that it is

a vertical vector field W such that [Q,W ] = 0 and W restricted to i∗E is tangent to EΣ ⊂ i∗E. At the
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same time, genuine gauge symmetries in this case are those symmetries of the form W = [Q, Y ] whose

parameters Y are tangent to EΣ. All the above discussion applies to symmetries of arbitrary definite ghost

degree.

Let now (E,Q, T [1]X,EΣ, T [1]Σ) be a gPDE with boundaries. A common lore is that asymptotic sym-

metries are gauge symmetries of the system (defined as if there were no boundary conditions) that preserve

boundary conditions while those whose parameters satisfy boundary conditions for gauge parameters are

genuine gauge symmetries and should be considered trivial. In the case of Lagrangian systems the extra

requirements are to be imposed. In the gPDE setup this can be formalised as follows:

Definition 2.8. Asymptotic symmetries of (E,Q, T [1]X,EΣ, T [1]Σ) are symmetries of (EΣ, QΣ, T [1]Σ),
which are restrictions to EΣ of those gauge symmetries of i∗E that preserve EΣ ⊂ i∗E. Gauge symmetries

of (EΣ, QΣ, T [1]Σ), i.e. vector fields on EΣ of the form [Q, Y ]|EΣ
with Y tangent to EΣ, are considered

trivial asymptotic symmetries.

More explicitly, asymptotic symmetries are vertical vector fields that are tangent to EΣ and have the

form [Q, Y ] with Y vertical. These are considered modulo vector fields vanishing on EΣ. Moreover, vector

fields [Q, Y ] with Y tangent to EΣ are genuine gauge symmetries and are therefore trivial. Asymptotic

symmetries form a subalgebra of all symmetries of (EΣ, QΣ, T [1]Σ).
An alternative would be to define asymptotic symmetries as all symmetries of (EΣ, QΣ, T [1]Σ) modulo

its own gauge symmetries. Another alternative is to require asymptotic symmetries to arise as restrictions

to EΣ of symmetries of E, but this does not seem to make any difference if we restrict ourselves to local

analysis, as we do in this work.

Later on we also need a slightly more general framework applicable to the case where EΣ is not a

regular submanifold of i∗E while its prolongation to the bundle of jets of its sections is. This occurs in

applications in which a frame field arises as a component of σ∗(ξa), where σ : T [1]Σ → i∗E, and therefore

the condition that the frame field is invertible cannot be implemented in terms of the fiber geometry and is

imposed instead as a condition on sections.

Such formulations arise in practice if one is after a concise formulation of the boundary gPDE. To cover

this situation one allows Y to be a generalized vector field, i.e. its coefficients are allowed to depend on jets

of sections. If IΣ is the ideal of EΣ ⊂ i∗E then the condition that [Q, Y ] is tangent to EΣ is replaced by

dXσ
∗(Y f) + σ∗(Y Qf) = 0 ∀f ∈ IΣ . (2.7)

This should hold for all sections of the gPDE of boundary condition, i.e. sections of i∗E such that σ∗(IΣ) =
0. The above condition ensures that the corresponding symmetry transformation sends solutions to EΣ to

themselves. Note that if one doesn’t want to employ such a generalization it is always possible to work in

terms of the associated parent gPDE whose underlying bundle is the super-jet bundle of i∗E and hence the

prolongation of EΣ is a smooth submanifold, see [39, 50] for further details of parent gPDEs.

2.4 Asymptotic symmetries in the presymplectic gPDE framework

In the case of Lagrangian systems, asymptotic symmetries can be defined as gauge transformations whose

associated charges become nontrivial due to boundary conditions. Althogh in this work we restricted our-

selves to the analysis at the level of equations of motion, let us briefly comment on how such an approach

can be implemented in the gPDE framework.

A Lagrangian system can be described by a gPDE (E,Q, T [1]X) equipped with the compatible presym-

plectic structure ω of degree n− 1, n = dimX , such that:

dω = 0 , LQω ∈ I , iQLQω ∈ I , (2.8)

where I denotes the ideal of forms on E generated by the forms of positive degree, pulled back from the

base, i.e. by dxµ, dθµ in standard coordinates. We also fix a presymplectic potential χ such that ω = dχ.

Note that for n > 1 it exists globally as the respective de Rham cohomology is empty. More details on

presymplectic gPDEs can be found in [52, 56, 67], see also [68, 69, 70] for earlier relevant works.

7



We say that boundary gPDE EΣ and symplectic potential χ are compatible if the pullback of χ to EΣ

vanishes. It turns out that this is a sufficient condition for the respective action to be differentiable. Indeed,

the above data defines a presymplectic AKSZ-like action (also known as intrinsic action):

S[σ] =

∫

T [1]X

σ∗(χ)(dX) + σ∗(H) , (2.9)

where the “covariant Hamiltonian/BRST charge” H is defined through iQω + dH ∈ I. Note that picking

an equivalent χ = χ + dα doesn’t affect equations of motion but adds a boundary term
∫
dXσ

∗(α) to the

above action. Consider a variation of S[σ] under σ → σ + δσ. Representing δσ as σ∗ ◦ V , where V is a

vertical vector field on E, one finds that the boundary term has the form:

δS =

∫
“EOM” δσ +

∫
σ∗(iV χ) (2.10)

Because δσ should preserve boundary conditions, V is tangent to EΣ so that boundary contribution vanishes

provided χ and EΣ are compatible as we assume in what follows.

Let us now turn to conserved currents (conservation laws) associated to symmetries. A symmetry W is

called compatible with presymplectic structure if

LWω + LQdα ∈ I , (2.11)

for some 1-form α of ghost degree gh(α) = gh(W ) + n− 2. Given a compatible symmetry one can define

an associated generalised conserved current, which is a degree gh(W ) + n− 1 function defined through: 3

iWω − (−1)|W |LQα− dHW ∈ I , (2.12)

The consistency condition d(iWω − (−1)|W |LQα) ∈ I holds thanks to (2.11). If α is fixed HW is defined

modulo functions of the form π∗(f), f ∈ C∞(T [1]X). Moreover, it follows d(QHW ) ∈ I and hence

QHW = π∗(h) for some function h on T [1]X so that by adding to HW a function of the form π∗(f) one

can achieve QHW = 0. This defines a map from compatible symmetries to conserved currents.

Given a conserved current, i.e. a Q-closed function HW on E, one can define the respective charge as

HW[σ] =

∫

T [1]C

σ∗(HW ) , (2.13)

where σ is a solution (Q-section) of E restricted to a shifted tangent bundle of submanifold C ⊂ X

of codimension 1 − gh(W ). Note that adding a Q-exact piece to HW results in the addition of a dX-

exact term in the integrand and hence this only contributes to the boundary term (if C has a nontrivial

boundary). The above charge doesn’t change under deformations of C provided ∂C is kept undeformed,

because dXσ
∗(HW ) = σ∗(QHW ) = 0 if σ is a solution.

If W is a gauge symmetry, i.e. W = [Q,Z] with Z vertical it is automatically compatible with ω

because L[Q,Z]ω = −(−1)|Z|LQdLZχ+I. The associated conserved current determined by the above map

is Q-exact and can be taken in the form HW = Q(iZχ). In particular, in the case of a gPDE with boundary

the currents associated to gauge symmetries (i.e. with Z tangent to EΣ) necessarily vanish on the boundary

provided χ and EΣ are compatible. In other words charges associated to genuine gauge symmetries vanish

while those associated to asymptotic symmetries are generally nontrivial.

3 GR as a gauge PDE

3.1 Off-shell GR as a gauge PDE

We start by reformulating Riemannian geometry as a local gauge theory or, more precisely, a gauge PDE.

This system can also be seen as an off-shell gravity, i.e. a gauge theory whose fields are components of the

metric and gauge transformations act as diffeomorphisms.

3The discussion of global symmetries and conserved currents in the presymplectic BV-BRST approach can be found in [64].
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In the gPDE language the underlying bundle is given by:

E → X , E = (T ∗X ∨ T ∗X)nd ⊕ T [1]X . (3.1)

Sections of the first summand are metrics g̃ab(x) while coordinates on the fibers of the second summand are

diffeomorphism ghosts ξa. The desired gPDE Ẽ → T [1]X can be taken to be J∞(E) → X , pulled back to

T [1]X by the canonical projection T [1]X → X . In plain words, the fiber coordinates are D(a)g̃bc, D(a)ξ
b,

where Da denote canonical total derivative in J∞(E), (a) denotes a symmetric multi-index, and the degree

is assigned in a standard way: gh(D(a)g̃bc) = 0, gh(D(a)ξ
b) = 1. In terms of local coordinates the Q

structure is determined by

Qxµ = θµ, Qg̃bc = ξaDag̃bc + g̃acDbξ
a + g̃baDcξ

a, Qξb = ξaDaξ
b, (3.2)

and [Q,Da] = 0. Note that g̃bc = g̃cb and g̃bc is invertible. Note also that here we use generic coordinates

xµ on the base X . To be more specific, once the jet bundle and the action of Q on the fiber is defined in

terms of a fixed coordinate system xa we have a freedom of using any coordinate system xµ on the base.

This happens because Q is locally a product Q-structure of dX and the Q-structure of the typical fiber or, in

other words, the underlying bundle is locally trivial as a Q-bundle.

In what follows we often refer to g̃ab as a metric. Similarly, we refer to the Cristoffel symbols, Riemann

curvature, etc. seen as respective functions in D(a)g̃bc just as Christoffel symbols, Riemann curvature, etc.

This is natural because such local functions coincide with the respective objects if one evaluates them on

the prolongation of a section σ0 : X → E . However, from the gPDE point of view, this only happens in a

particular gauge (3.3).

Remark 3.1. The above gPDE is not exactly the standard BV-BRST jet-bundle equipped with the horizontal

differential dh and the BRST differential γ, see e.g. [71, 72]. Although the action of Q on fiber variables

coincides with that of the standard BV-BRST differential it actually corresponds to the total BRST differen-

tial dh + γ. More precisely, thanks to the diffeomorphism invariance one can bring dh + γ to the form (3.2)

by a change of fiber coordinates, see e.g. [39] for more details.

A local proof of the equivalence of the above gPDE and the standard jet-bundle BV-BRST formulation

of off-shell GR can be found in [39]. In any case, it is not difficult to explicitly consider solutions and gauge

transformations and check that we are indeed dealing with the off-shell GR. Probably the simplest way to

see the equivalence is to observe that the gauge condition

σ∗(ξa) = θa, σ∗(D(b)ξ
a) = 0 (3.3)

is reachable locally. In this gauge the remaining equations of motion simply tell us that g̃ab is unconstrained

and that σ∗(D(a)g̃bc) = ∂(a)σ
∗(g̃bc). Moreover, in this gauge the residual gauge parameters χ∗(D(a)ξ

b) are

all determined by ǫa(x) = χ∗(ξa) and the residual gauge transformation of σ∗(g̃ab) is given by Lǫσ
∗(g̃ab)

so that indeed we are dealing with off-shell gravity. More detailed discussion of the analogous gauges in a

more general context can be found in [73].

The above system can be equivalently extended to provide a gauge-theoretical implementation of the

Penrose description of asymptotically simple spaces [74, 3]. More specifically, we extend the fiber of E
with extra coordinates Ω, Ω > 0 and λ, with gh(Ω) = 0, gh(λ) = 1 and extend Q as follows:

QΩ = ξaDaΩ + λΩ, Qλ = ξaDaλ, [Da, Q] = 0 . (3.4)

Condition Ω > 0 is crucial in ensuring the equivalence of the initial and the extended system in the

sense of 2.5. Thanks to this condition we can introduce new coordinates gbc ≡ Ω2g̃bc. In these coordinates

the action of Q is given by:

Qxµ = θµ, Qgbc = ξaDagbc + gacDbξ
a + gbaDcξ

a + 2λgbc, Qξb = ξaDaξ
b . (3.5)

Definition 3.1. The extended system with Ω > 0 and the Q structure determined by (3.5),(3.4) is called

conformal-like off-shell gravity.
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Note that the gauge transformations of σ∗(gab) can be identified (for instance by employing partial gauge

condition (3.3) along with σ∗(D(a)λ) = 0) with the action of diffeomorphisms and Weyl transformations

whose parameters are associated to ghosts ξa and λ. Let us also note that if we allow Ω to vanish the sub-

gPDE determined by Ω = 0, D(a)Ω = 0 gives the gPDE reformulation of the conformal geometry, which

is known in the literature in one or another version [55, 75, 56].

3.2 Conformal-like on-shell GR

From the field theory perspective the systems presented above are off-shell gauge theories, i.e. theories

equivalent to a set of unconstrained fields subject to gauge transformations. We are mostly interested in

gravity-like theories, where fields are subject to nontrivial differential equations. The respective gPDE

description can be obtained by considering a Q-subbundle of the initial off-shell system. In the case of

off-shell GR (3.2) the Q-subbundle is defined as an infinite prolongation of the Einstein equations

D(a)(R̃bc −
g̃bc

d
R̃) = 0, R̃ =

2d

d− 2
Λ, (3.6)

where R̃bc, R̃ ≡ g̃bcR̃bc are local functions in D(a)g̃bc corresponding to Ricci tensor and the scalar curvature

respectively. It is easy to see that Q restricts to the submanifold and hence this indeed defines a gPDE, to

which we refer in what follows as the on-shell GR.

In what follows we often encounter gPDEs defined as subbundles of other gPDEs i.e. jet-bundles. A

convenient way to describe (coordinate) functions on such a subbundle is to regard them as the equivalence

classes of functions modulo those vanishing on the subbundle. Alternatively, the restrictions of the ambient

coordinates to the subbundle can be regarded as an overcomplete coordinate system therein.

Our aim now is to equivalently reformulate on-shell GR as a sub-gPDE of the conformal-like off-shell

GR defined in 3.1. To this end consider a subbundle singled out by the following constraints:

D(a)Fbc = 0, Ωρ+
gab

2
DaΩDbΩ = −

Λ

(d − 1)(d− 2)
, (3.7)

where

Fbc ≡ DbDcΩ− Γd
bcDdΩ + ΩPbc + ρgbc, (3.8)

ρ ≡ −
1

d
gbc(DbDcΩ− Γd

bcDdΩ + PbcΩ) (3.9)

and Γd
bc, Pbc are respectively the Christoffel symbols and the Schouten tensor seen as functions in the jets of

the metric.

Equations (3.7) are known as the almost Einstein equation. However, usually they are interpreted as

equations on Ω while metric gab is considered fixed, see [76, 77] for more details. Now we treat (3.7) as

equations restricting both gab and Ω.

Definition 3.2. The sub-gPDE of the conformal-like off-shell GR 3.1, which is determined by constraints

(3.7), is called conformal-like on-shell GR.

The name is justified by the following:

Proposition 3.3. For d> 3 conformal-like on-shell GR is equivalent to on-shell GR (3.6).

Proof. First of all recall that Ω > 0. In terms of g̃ab = Ω−2gab, the Einstein equations have the standard

form (3.6) while (the derivatives of) Ω and λ form contractible pairs and can be eliminated. There remains to

show that the Einstein equations rewritten in terms of gab are equivalent to (3.7). This can be checked using

the well-known, see e.g. [76], transformation rules of the Schouten tensor under Weyl transformations.

It is important to stress that the above equivalence crucially relies on the condition Ω > 0. At the same

time, the conformal-like on-shell GR is perfectly well-defined without this condition and is going to be very

instrumental in studying the boundary behaviour. Note also that the above system with no restrictions on

Ω provides a gPDE description of tractor geometry though, to keep the exposition concise, we refrain from

giving details here.
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3.3 Pre-minimal model for conformal-like on-shell GR

In what follows we need a certain equivalent reduction (in the sense of definition 2.5) of conformal-like on-

shell GR. This can be done in two steps. The first step is to concentrate on the sector of gab, ξ
a, λ and their

jets. This sector is precisely the one that gives a gPDE description of conformal geometry (also regarded

as the off-shell conformal gravity) so that one can eliminate contractible pairs as explained in [55], see also

[56] for the discussion in similar language. Namely,

QΓc
ab = · · · −DaDbξ

c, QPab = · · · −DaDbλ (3.10)

allows one to eliminate Γc
ab, DaDbξ

c, Pab, DaDbλ as well as all their symmetrized total derivatives. This

reduction is quite different for the cases d = 3 and d> 4, so in what follows we assume d> 4. However,

generalization to d = 3 is possible. The remaining jets of the metric have the meaning of the Weyl tensor

Wb
cde;(a) and its covariant total derivatives. All the symmetries of the usual Weyl tensor are preserved: anti-

symmetry over pairs of indices, Bianchi identities, tracelessness, and so on. It is always possible to choose

components of these tensors in such a way that they form a part of the coordinate system. However, for

our purposes it is more convenient to keep all the components and use them as an overcomplete coordinate

system. We introduce the notation Cdab = −
1

(d− 3)
Wc

dab;c.

Then the action of Q on some coordinates in this sector is given by

Qgbc = Cb
agac + Cc

agba + 2λgbc, Qξb = ξaCa
b,

Qλ = ξaλa, Qλb = Cb
aλ

a +
1

2
ξaξdCb

ad,

QCb
c = Cb

aCa
c + λbξ

c − λcξb + δcbλaξ
a +

1

2
ξaξdWc

bad,

(3.11)

where the standard convention for raising and lowering indexes is used, for example λa ≡ gabλb, and Ca
b ≡

Daξ
b. The action of Q on Wb

cde;(a) can also be obtained by a straightforward (but tedious) calculation.

In the second step we analyze the sector of Ω. If Ω(a) denotes the restriction of D(a)Ω to the system

obtained in the 1st step, one finds that equations D(a)Fbc = 0 from (3.7) restricted to the surface defined by

this reduction, takes the following form:

Ωab + gabρ = 0,

Ωa1...an = 0, n> 3

∇a1 . . .∇an−3
(Wd

anan−2an−1
∇dΩ + Canan−2an−1

Ω) = 0.

(3.12)

where ρ = −1
d
gabΩab and for any degree 0 coordinate ϕ, ∇aϕ is defined through Qϕ = ξa∇aϕ + . . . .

The first equation is just Fbc = 0 restricted to the subbundle defined by previous reduction, the second

is the totally-symmetric component of D(a1...)Fan−1an = 0, and the third one is the remaining irreducible

component in D(a1...)Fan−1an = 0. These equations fix all the jets of Ω except for Ω, Ωa and ρ. For n = 3
the third equation in (3.12) takes the form

Wd
anan−2an−1

∇dΩ + Canan−2an−1
Ω = 0 (3.13)

and is known as a part of the Fridrich equations, see e.g. [78]. After taking into account the above equations

and introducing na ≡ gabΩb in place of Ωa, the action of Q on Ωa, n
a, ρ takes the form:

QΩ = ξagabn
b + λΩ, Qnb = −ξbρ− naCa

b + λbΩ− λnb, Qρ = −λρ− λan
a. (3.14)

The results of this subsection can be summarized in the following proposition:

Proposition 3.4. For d> 4 the gPDE defined in 3.2 is equivalent to its sub-gPDE (E,Q, T [1]X) with

the following overcomplete set of fiber coordinates {gbc,Ω, n
b, ρ, ξb, Cb

c, λ, λb,Wb
cde;(a), |a|>0} which are

understood modulo the ideal generated by the following constraints:

Ωρ+
1

2
gabn

anb = −
Λ

(d− 1)(d− 2)
,

∇a1 · · ·∇an(W
b3

cb1b2n
c − Cb3

b1b2Ω) = 0, n> 0.

(3.15)

The action of Q on all coordinates except curvatures Wb
cde;(a) is given by (3.11), (3.14).
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4 Boundary systems and asymptotic symmetries

4.1 Asymptotically simple GR as a gPDE with boundaries

Having obtained a description of gravity in the bulk as a gPDE one can immediately construct the induced

gPDE (i∗E,Q, T [1]J ) on the boundary J . More specifically, we start with the gPDE defined in the Propo-

sition 3.4, which encodes the conformal-like on-shell GR in the bulk. A slight but important modification is

that fibers of E over the boundary are extended by their own boundary by allowing Ω to take value 0 (recall

that in the bulk Ω > 0). In what follows we restrict ourselves to the local analysis and hence do not discuss

global geometry of the space-time and its boundary. More specifically, we assume the boundary to have the

topology of Sd−2 × R.

Now we identify a gPDE with boundaries which describes asymptotically simple GR. To this end we

impose additional conditions which implements Penrose’s definition of asymptotically simple spacetime in

the gPDE terms. More specifically, we take EB ⊂ i∗E to be a sub gPDE of i∗E determined by

Ω = 0 , QΩ = 0 . DaΩ 6= 0 . (4.1)

This gives a gPDE with boundaries (E,Q, T [1]X,EB, T [1]J ) which we refer to as asymptotically simple

GR. Here we keep using Q to denote the homological vector field on i∗E as well as on EB as these are

restrictions of the initial Q on E to the respective submanifolds. Analogous systems for asymptotically-

simple spacetimes are obtained by not imposing the Einstein equations.

It is important to stress that if DaΩ were nonvanishing everywhere in i∗E, functions Ω and QΩ would

be independent on i∗E so that setting Ω = 0 and QΩ = 0 can be understood as an equivalent reduction.

However, DaΩ 6= 0 is imposed at Ω = 0 only so that it is better to regard (4.1) as the boundary conditions

determining asymptotically simple GR. In any case, (4.1) effectively implements only minor restrictions

on the moduli of solutions, which can be thought of as partial gauge conditions. Another remark is that,

as we discussed in Section 2, the total space E can be extended to a manifold with corners by allowing

Ω> 0 everywhere. From this perspective EB can be identified with the respective corner provided one also

excludes points where DaΩ 6= 0. As an (overcomplete) coordinate system on i∗E we use coordinates on E

restricted to i∗E seen as a submanifold in E. In particular, Ω in (4.1) is, strictly speaking, a restriction of

the initial coordinate Ω to i∗E.

Taking into account constraints (4.1) in (i∗E,Q, T [1]J ) results in the boundary gPDE (EB, Q, T [1]J ).
The overcomplete set of fiber coordinates can be obtained by restricting the coordinates from Proposition 3.4

to EB and is given by

{gbc, n
b, ρ, ξb, Cb

c, λ, λb,Wb
cde;(a), |a|> 0} . (4.2)

The action of Q on some of the coordinates is easily obtained by restricting (3.11), (3.14):

Qgbc = Cb
agac + Cc

agba + 2λgbc, Qξb = ξaCa
b,

Qnb = −ξbρ− naCa
b − λnb, Qλb = Cb

aλ
a +

1

2
ξaξcCb

ac,

Qρ = −λρ− λan
a, Qλ = ξaλa,

QCb
c = Cb

aCa
c + λbξ

c − λcξb + δcbλaξ
a +

1

2
ξaξdWc

bad .

(4.3)

At the same time constraints (3.15) take the form:

gabn
anb = −

2

(d − 1)(d− 2)
Λ,

(
∇a1 · · ·∇an(W

b3
cb1b2n

c − Cb3
b1b2Ω)

) ∣∣
Ω=0

= 0, n> 0, ,

(4.4)

and, finally, the last constraint is given by ξagabn
b = 0 and originates from QΩ = 0.

Definition 4.1. The above gPDE (EB, Q, T [1]J ) is refereed to as the boundary gPDE for asymptotically

simple GR.
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As we will see later it is very convenient to work in terms of the minimal model of the system 4.1.

However, the respective minimal gPDE crucially depends on the value of the cosmological constant. As we

are mostly interested in the null-infinity we assume Λ = 0 unless otherwise specified.

4.2 Minimal model for the boundary gPDE of asymptotically simple GR

We now take Λ = 0 and find a minimal model of the boundary gPDE obtained in the previous Section. We

have the following:

Proposition 4.2. In the case Λ = 0 and gab of Lorentz signature, gPDE (EB, Q, T [1]J ) defined in 4.1 is

equivalent to its subbundle determined by the following conditions:

gab =



0 1 0
1 0 0
0 0 −δAB


 , na =



0
1
0


 , (4.5)

Ca
b =



−λ 0 CA

0 −λ 0
0 −CA ρA

B − λδBA


 , (4.6)

ρ = 0, ξΩ = 0, λΩ = 0, (4.7)

where we used the adapted partition of indexes {a} = {Ω, u, A}, A = 1, . . . , d − 2 and introduced the

following new coordinates: ρAB ≡ C[AB], CA ≡ CΩA. Among the constraints (4.4) on the degree-zero

variables there only remain:

∇a1 · · ·∇anWb3ub1b2 −

n∑

i=1

guai∇a1 · · · ∇̂ai · · ·∇anCb3b1b2 = 0, n> 0. (4.8)

Note that guai = δaiΩ on the subbundle.

We denote the minimal model introduced in the above Proposition by (Emin
B , Q, T [1]J ). This gPDE is

explicitly defined as a sub-gPDE of (EB, Q, T [1]J ) which, in its turn, is a sub-gPDE of i∗E.

Proof. As usual, the proof is based on the identification of contractible pairs. Using

Qnb = −ξbρ− naCa
b − λnb (4.9)

and taking into account nb 6= 0 one can set:

nΩ = 0, Cu
Ω = −ξΩρ, nu = 1, Cu

u = −ξuρ− λ, nA = 0, Cu
A = −ξAρ , (4.10)

which also gives guu = 0 thanks to the first constraint in (4.4). Using then

Qgua = −ξΩρgΩa − ξuρgua − ξBρgBa + Ca
bgub + λgua , (4.11)

we can eliminate gua as well as Ca
bgub. Note that gub 6= 0 because of det(gab) 6= 0. More precisely, we set

guΩ = 1, CΩ
Ω = ξuρ− λ,

guA = 0, CA
Ω = ξΩρgΩA + ξBρgBA.

(4.12)

The second constraint in (4.4) then gives ξΩ = 0. Using

Qρ = −λρ− λΩ, (4.13)
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allows us to set ρ = 0 and λΩ = 0. Furthermore, using

QgΩΩ = 2CΩ
u + 2CΩ

BgBΩ + 2λgΩΩ (4.14)

we can set gΩΩ = 0 and CΩ
u = −CΩ

BgBΩ. Similarly,

QgΩA = λgΩA + CΩ
BgBA + CA

u (4.15)

allows us to set gΩA = 0 and CA
u = −CΩ

BgBA. Finally, eliminating the remaining components gAB of the

metric we set

gAB = −δAB, C(AB) = λδAB. (4.16)

To summarize, we have explicitly found a minimal model of the boundary gPDE for asymptotically sim-

ple GR. Its overcomplete fiber coordinates are {ξu, CA, ξA, ρA
B, λ, λu, λA,Wb

cde;(a), |a|> 0}. The action

of Q on the degree 1-coordinates ξA, λ, λA, ρA
B is given by:

QξA = ξBρB
A − ξAλ,

QρA
B = ρA

CρC
B + λAξ

B − λBξA +
1

2
ξCξDWB

ACD,

Qλ = ξAλA,

QλA = ρABλ
B − λλA +

1

2
ξCξDCA

CD + ξuξDCA
uD.

(4.17)

Setting the curvatures (these enter the right hand sides multiplied by ξaξb) to zero gives the Chevalley-

Eilenberg differential of the so(d − 1, 1) subalgebra of iso(d − 1, 1) algebra. This subalgebra can be

identified with the conformal algebra of a d − 2-dimensional flat space. Moreover, setting to zero only the

components CA
uD gives the respective sector of the minimal model of the conformal geometry in d − 2

dimensions. Note, however, that the entire system differs form that of conformal geometry. In particular,

extra curvatures are present and the action of Q on the curvatures is different.

The action of Q on the remaining degree-1 coordinates reads as:

Qξu = −ξuλ− ξACA,

QCA = CBρB
A + λuξA − λAξu +

1

2
ξCξDWA

ΩCD,

Qλu = CAλA − λλu +
1

2
ξCξDCΩCD + ξuξDCΩuD.

(4.18)

With all the curvatures set to zero, the actions of Q is that of the Chevalley-Eilenberg differential of iso(d−
1, 1), where (4.17) corresponds to so(d− 1, 1) while (4.18) to the iso(d− 1, 1) translations.

Fields parameterizing solutions of the above minimal model are the iso(d − 1, 1) connection on the

boundary along with the bunch of the degree zero fields (curvatures) some of which are expressed in term

of the connection through the equations of motion (and generally impose some differential equations on the

connection) while the remaining ones are independent fields. It is of course natural that the boundary system

can be formulated in terms of the Poincarè connection because the minimal model of the bulk gravity has

an analogous formulation. Similar, but not identical formulations of the asymptotically simple GR were

considered in [79],[59]. More details on the field theory encoded in the above minimal model are given in

Section 4.4.

In the next two sections, in order to agree with the standard conventions for connections and curvatures,

we redefine all fiber coordinates ϕ such that gh(ϕ) = 1 as ϕ → −ϕ. In particular, this affects the explicit

formulas for the action of Q on fiber coordinates (an alternative way is to reverse the sign at the vertical part

of Q).
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4.3 Boundary conditions and BMS symmetries

Now we plan to identify a proper counterpart of the BMS boundary conditions in this setup. Strictly

speaking the minimal model constructed in the previous section is too “minimal” to incorporate a sub-

gPDE of boundary conditions as a regular submanifold. Nevertheless it is not difficult to identify, generally

non-regular, constraints which do the job, giving a rather concise description of the boundary conditions

and asymptotic symmetries.

As explained in Section 2.3 in this setup we are forced to allow Y to depend on jets of sections of Emin
B

(recall that we treat the gPDE of boundary conditions as a subbundle in Emin
B ). Here we use Dθ

µ to denote

the total derivative in θµ direction (it’s a total derivative in the super-jet bundle of Emin
B and should not

be confused with the total derivative in the initial jet-bundle from which Emin
B has been constructed). For

instance, if σ is a section and σ∗(λA) = λAµ(x)θ
µ then σ∗(Dθ

µλA) = λAµ(x). Note that σ∗(Dθ
µD

θ
νλA) = 0

by the degree reasoning.

We define EJ ⊂ Emin
B as a zero locus of the constraints defined on Emin

B . We first introduce constraints

which set the frame field encoded in ξa to be a fixed frame:

ξA − eA ∼ 0, ξu − θu ∼ 0 , (4.19)

where we use adapted coordinates yα and u on the boundary J and assumed for simplicity that eA =
eAα(u, y)θ

α. It is easy to see that Q is not tangent to the surface and hence extra boundary conditions are

necessary. Consider the following extra constraints:

λ ∼ 0 , λAξ
A ∼ 0 , CAξ

A ∼ 0 , dJ e
A + ξBρB

A ∼ 0 , (4.20)

where the last three ones coincide with Qλ, Q(ξu − θu), and Q(ξA − eA) modulo terms proportional to λ.

This can be easily seen using (4.17) and (4.18) as well as the following representation:

CAξ
A = Qξu − ξuλ , ρABξ

B = QξA − ξAλ . (4.21)

Constraints (4.20) and (4.19) define an ideal IJ in the algebra of functions on Emin
B introduced in

Proposition 4.2. It is easy to see that Q is well defined on the quotient as IJ is Q-invariant. Because some

of the constraints are quadratic, the quotient is not an algebra of functions on a regular subbundle. However,

we can still think of it as determining a Q-subbundle EJ which is defined in the algebraic sense only. This

does not really lead to problems because its prolongation to jets of supersections is a regular submanifold,

provided we restrict ourselves to sections such that the corresponding frame field is invertible. In this

sense working in terms of EJ only gives an economical framework to analyse asymptotic symmetries. All

the steps can be repeated in terms of its jet-prolongation which is a genuine subbundle of the jet-bundle.

Disregarding the above subtlety, constraints (4.20) and (4.19) define a gauge PDE with boundary in the

sense of Definition 2.6. Indeed, EJ is a sub-gPDE of the Emin
B which, in turn, is defined as a sub-gPDE of

i∗E.

Now we are ready to study gauge symmetries that preserve the gPDE of boundary conditions. Consider

a gauge parameter vector field

Y = ǫu
∂

∂ξu
+ ǫA

∂

∂ξA
+ λ̄

∂

∂λ
+ λ̄A

∂

∂λA

+ ρ̄AB ∂

∂ρAB
+ C̄A ∂

∂CA
+ λ̄u ∂

∂λu
, (4.22)

where ǫu, ǫA, λ̄, . . . are functions in x while λ̄A, C̄
A, ρ̄AB are also allowed to depend on the θ-jets of

λA, C
A, ρAB. Note that the component λ̄u ∂

∂λu clearly preserves the constraints and hence correspond to

trivial asymptotic symmetries.

We are interested in Y such that the respective symmetry transformations preserves the ideal and hence

induces a symmetry transformation that take solutions of EJ to solutions. We have:

dJσ
∗(Y f) + σ∗(Y Qf) = 0 ∀f ∈ I (4.23)

This should hold for all section of the gPDE of boundary condition, i.e. sections of Emin
B such that

σ∗(“constraints”) = 0.
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Taking f = λ gives

σ∗(dJ λ̄− ǫAλA + ξAλ̄A) = 0 (4.24)

This implies ∂uλ̄ = 0 because we assumed θu unconstrained and because σ∗(λA) = λAB(x)e
B for some

λAB(x) = λBA(x) thanks to σ∗(ξAλA) = 0. Furthermore, (4.24) also implies:

eαB∂αλ̄− ǫAλAB + σ∗(λ̄B) = 0 . (4.25)

This can be solved for λ̄B by e.g. λ̄B = −eαB∂αλ̄ + eαBǫ
ADθ

αλA. Indeed, σ∗(Dθ
αλA) = λAB(x)e

B
α and

hence imposes no restrictions on ∂αλ̄.

Taking f = ξu − θu in (4.23) one finds

dJ ǫ
u + σ∗(ǫuλ− ξuλ̄+ ǫACA − ξAC̄A) = 0 (4.26)

This implies ǫu = uλ̄(y) + T (y), with T unconstrained. Moreover, the remaining equation can be satisfied

by taking C̄A = eαA(∂αǫ
u + ǫBDθ

αCB).
Taking f = ξA − eA one gets

dJ ǫ
A + σ∗(−ǫBρB

A + ξBρ̄B
A + ǫBλ− ξBλ̄) = 0 (4.27)

Thanks to σ∗(dJ e
A + ρABξ

B) = 0 one finds that σ∗(ρAB) = ωA
Bµθ

µ, where ωA
Bα(u, y) can be ex-

pressed in terms of eA = eAα(u, y)θ
α through standard formulas for Levi-Civita connection and ωB

A
u =

σ∗(eαB∂ue
A
α). Then, in terms of ǫα ≡ eαAǫ

A, the equation (4.27) implies

∂uǫ
α = 0, ∂αǫβ − Γγ

αβ(e)ǫγ + eAαe
B
βσ

∗(ρ̄AB)− gαβλ̄ = 0. (4.28)

Here, similarly to the standard formulas, gαβ ≡ eAαe
A
β and Γγ

αβ ≡ eγA(∂αe
A
β −eBβωB

A
α). The antisym-

metric part of the second equation in (4.28) can be solved for ρ̄AB , and the symmetric part is nothing but a

conformal Killing equation. In particular this fixes λ̄ in terms of ǫA.

Finally, there remains to check (4.23) for the last three constraints from (4.20). However, these three are

all of the form Qg, modulo terms proportional to λ, with g being λ or ξu − θu or ξA − eA. It follows (4.23)

always holds because

dJ σ
∗(Y Qg) + σ∗(Y QQg) = dJσ

∗(Y Qg) = −dJ (dJ σ
∗(Y g)) = 0 , (4.29)

where in the last equality we made use of (4.23), with f replaced by g, and the fact that Y was chosen in

such a way that (4.23) holds for f being λ or ξu − θu or ξA − eA.

In this way we are left with Y parameterized by u-independent T and ǫα. Interpreting ǫu(u, y), ǫα(y) as

components of a vector field on the boundary it is easy to check that this is precisely BMS vector field on

the boundary, which encodes conformal isometries of d−2-dimensional space and supertranslations. More

specifically, the BMS vector field on EJ reads as

ǫBMS = (uλ̄+ T (y))
∂

∂u
+ ǫα(y)

∂

∂yα
, (4.30)

where we use adapted coordinates u, yα on J and where T (y) is a generic function in yα, ǫα(y) are com-

ponents of a conformal Killing vector in d− 2 dimensions, and λ̄ is determined by (4.28). This is precisely

how the infinitesimal BMS transformations act as symmetries of the conformal Carrollian geometry, see

e.g. [80] for more details.

To make sure we are dealing with nontrivial asymptotic symmetries one should, strictly speaking, show

that these symmetries are not equivalent to trivial. I.e. that [Q, Y ]|EJ
can not be represented as [Q|EJ

, Y ′]
for some vertical vector field Y ′ on EJ . Considering Y ′ as a representative of an equivalence class of

vertical vector fields tangent to EJ modulo those vanishing on EJ one can assume that Y ′λ = Y ′ξA =
Y ′ξu = 0. Repeating the analysis of this section for such Y ′ one concludes that σ∗(λ̄A) = σ∗(C̄A) =
σ∗(ρ̄AB) = 0. Considering, for instance, σ∗([Q, Y ′]CA) one finds that (δY ′σ)∗(CA) = σ∗(eAλ̄u). Then

introducing components CAB as σ∗(CA) = eBCBA(x), the transformation takes the form:

δY ′CAB = ηABλ̄
u (4.31)

so that it cannot affect the trace-free components of coordinates (CAB). As will be shown in the next section,

these components parameterize the asymptotic shear. At the same time transformations with nontrivial

ǫu, ǫα do affect the asymptotic shear.
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4.4 Field-theoretical interpretation of the minimal model

As we have seen the minimal model (Emin
B , Q, T [1]J ) of the boundary gPDE for asymptotically simple

GR, defined in Section 4.2, plays a crucial role in our approach to asymptotic symmetries. In this section

we study its solutions and gauge symmetries and explain how the BMS symmetries can be derived in these

terms.

We now study the space of solutions, i.e. sections of (Emin
B , Q, T [1]J ) satisfying dJ ◦ σ∗ = σ∗ ◦Q. By

some abuse of notation we introduce the following parameterization of sections:

σ∗ρA
B = ωA

B, σ∗ξA = eA, σ∗ξu = l , (4.32)

where all the new functions are linear in θµ, i.e. can be seen as 1-forms on X , by the degree reasoning. For

the remaining fiber coordinates we take σ∗φ = φ(x, θ). The equations of motion in the sector of degree-1

fiber coordinates read as:

dJ e
A + ωA

Be
B + λeA = 0, dJ λ+ eAλA = 0, dJ l + λl − eACA = 0 ,

dJωA
B + ωA

CωC
B + λAe

B − λBeA =
1

2
eCeDWA

B
CD,

dJ λ
A + ωA

Bλ
B − λλA = −leDCA

uD −
1

2
eCeDCA

CD,

dJC
A + ωA

BC
B + λueA − λAl =

1

2
eCeDWΩ

A
CD,

dJλ
u + CAλ

A − λλu = −leDCΩuD −
1

2
eCeDCΩCD .

(4.33)

These are Cartan structure equations for the iso(1, d − 1) connection written in the special basis, where

the so(1, d − 1) subalgebra is made explicit as the conformal algebra in d − 2-dimensions and in contrast

to the usual Cartan description of Riemannian or Einstein geometry these equations are defined in d − 1-

dimensional space rather than d-dimensional one. Moreover, the curvatures appearing in the right hand

sides of the above equations are subject to specific constraints. For instance, components of the curvature

in the sector of varibales eA, l and λ vanish.

In the case of d = 4 the curvature of this connection contains 5 independent components, namely CΩcd

and CBcd (other components vanish in d = 4), which can be identified with Newman-Penrose coefficients

Ψ4,Ψ3, ImΨ2 encoding the gravitational radiation. At the same time, fields WAΩΩB , WΩuAΩ, and WΩuuΩ

also contain 5 independent components which correspond to the remaining Newman-Penrose coefficients

Ψ0,Ψ1 and Re(Ψ2), see e.g. [81]. Let us stress that in contrast to the former, the latter 5 components do

not enter the Cartan structure equations and hence can not be interpreted as components of the curvature of

the iso(1, d− 1)-connection on the boundary. These are known to capture the longitudinal information and

indeed are not described by the curvature [82], see also [57, 59] for more details.4

Let us introduce the components of the dual frame according to eA = σ∗(ξA) = eAµθ
µ and l = σ∗(ξu) =

lµθ
µ and restrict to sections with invertible frame. Components (eµA, n

µ) of the frame are introduced via

nµlµ = 1, nµeAµ = 0, lµe
µ
A = 0, eAµe

µ
B = δAB. (4.34)

Taking into account the constraints on the curvature one can check that as independent components of

the connection one can take {lµ, e
A
µ, e

ν
Aλν , C(AB)} because the remaining components can be expressed

through them.

The parameterization of the space of solutions to (4.33) can be described more efficiently if one makes

use of the gauge freedom (2.2). Introducing gauge parameter vector field Y as in (4.22) and assuming

coefficients to depend on x only the gauge transformation for λµ reads as

λµ → λµ + ∂µλ̄− ǫAλAµ + eAµλ̄A , (4.35)

4They are analogous to the components of subleading modes appearing in the near-boundary analysis of critical fields in

the AdS/CFT context, see e.g. [83, 84]. For generic fields, these modes were described in [41, 42] within a version of gPDE

approach.
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so that the following gauge condition can be imposed:

eνAλν = 0 . (4.36)

In this gauge the components of the gauge parameter satisfy λ̄A = −eµA(∂µλ̄− ǫBλBµ). In a similar way,

we can achieve CA
A = 0, leading to further relations between gauge parameters:

λ̄u =
1

d− 2
eµA(∂µC̄

A − C̄BωB
A
µ + CB

µρ̄B
A + λu

µǫ
A − λA

µǫ
u). (4.37)

Furthermore, using

δlµ = ∂µǫ
u + ǫuλµ − lλ̄+ ǫACAµ − eAµC̄A , (4.38)

the following gauge can be reached lµ = ∂µu, where u is a function of xµ satisfying nµ∂µu = 1. Function u

is often employed in the literature on BMS symmetries and it is convenient to take it as one of the coordinate

functions {xµ} → {u, yα}, α = 1, . . . , d − 2. Let us also list the constraints on gauge parameters, which

ensure preservation of lµ = ∂µu:

C̄B = eµB(∂µǫ
u + ǫuλµ + ǫACAµ), λ̄ = nµ(∂µǫ

u + ǫuλµ + ǫACAµ) . (4.39)

To summarize: by imposing gauge condition as explained above one can parameterize the connection

in terms of algebraically independent components {eAµ, C(AB)|tf} (of course there can be nontrivial differ-

ential constraints following from the constraints on the curvature). In so doing eAµ encodes the degenerate

metric gµν ≡ eAµgABe
B
ν whose kernel is generated by n = ∂

∂u
, while −1

2
C(AB)|tf is the so-called asymp-

totic shear, see e.g.[85], which parameterize torsion-free and metric-compatible affine connections on the

boundary. Recall that such a connection is not unique if metric is degenerate. The geometry determined by

gµν and nµ defined up to an overall Weyl-like rescalings is often refereed to as conformal Carroll geometry.

The setup of this section gives an alternative framework to study asymptotic symmetries, which in

contrast to the more algebraic approach of Section 4.3, is somewhat analogous to the standard analysis, see

e.g. [79], where the first-order formalism is also employed. Let us sketch how asymptotic symmetries can

be found in this framework. First of all one imposes boundary conditions on sections of Emin
B and then, in

order to simplify the system, one imposes partial gauge conditions, e.g. the one discussed above. In the

next step one studies gauge transformations that preserve this boundary conditions. For instance, to arrive at

BMS symmetries in the present framework it is enough to fix a concrete frame eA = eAµ(x)θ
µ and set λ = 0.

BMS symmetries are then obtained as the residual symmetries preserving these boundary conditions. Note

that these boundary conditions correspond to only a subset of the conditions (4.19) and (4.20) of Section 4.3.

The remaining conditions correspond to solving some of the equations of motion and imposing partial gauge

conditions, cf. Remark 2.1.

4.5 Asymptotically (A)dS spaces

In the above analysis we concentrated on asymptotically flat spacetimes. It turns out that the boundary

system (EB, Q, T [1]J ) defined in 4.1 also works in the case of asymptotically (A)dS spacetimes5. In this

case the metric induced on the boundary is nondegenerate and hence the respective minimal model differs

substantially from the case of Λ = 0. More precisely, we have

Proposition 4.3. For Λ 6= 0 Gauge PDE (4.1) is equivalent to its sub-gPDE defined as follows:

gab =

(
−Λ̃ 0
0 ηεAB

)
, na =

(
1
0

)
, Ca

b =

(
−λ 0
0 ρA

B − λδBA ,

)
,

ρ = 0, ξΩ = 0, λΩ = 0,

(4.40)

5In our analysis Λ > 0 for asymptotically AdS spacetimes or Λ < 0 for asymptotically dS spacetimes, since we work in the

signature (+,−, . . . ,−). See e.g. [78]
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where the adapted partition of indexes, e.g. {a} = {Ω, A}, A = 0, . . . , d− 1 has been employed and

ηεAB ≡ (ε,−1, . . . ,−1), ρAB ≡ C[AB], Λ̃ ≡
2

(d− 1)(d− 2)
Λ, ε ≡ sign Λ . (4.41)

Among the constraints on the degree-zero variables (4.4) there only remain:

∇a1 · · ·∇anWb3Ωb1b2 −

n∑

i=1

gΩai∇a1 · · · ∇̂ai · · ·∇anCb3b1b2 = 0, n> 0, (4.42)

where the hatted symbols are assumed omitted and gΩai = −Λ̃δΩai .

The proof is fully analogous to that of 4.2. As an overcomplete coordinate system on the above sub-

gPDE we can take the restrictions of : {ξA, ρA
B, λ, λA,Wm

nkp;(a), |a|> 0}. In these coordinates the action

of Q on the degree 1 coordinates reads as:

QξA = ξBρB
A − ξAλ,

QρA
B = ρA

CρC
B + λAξ

B − λBξA +
1

2
ξCξDWB

ACD,

Qλ = ξAλA,

QλA = ρACλ
C − λλA +

1

2
ξBξCCA

BC .

(4.43)

It is easy to see that this coincides with the definition of CE differential of o(d, 1) for dS and o(d − 1, 2)
for AdS, written in the conformal-like basis. This of course signals that in the case at hand the boundary

is naturally equipped with the conformal structure. More precisely, solutions to the above sub-gPDE in the

sector of degree 1 coordinates define a Cartan connection of the respective conformal geometry. However,

the gauge theory encoded in this sub-gPDE is not generally equivalent to conformal geometry. For instance,

in the case of d = 5 the respective conformal geometry is Bach-flat. The Bach flatness condition is encoded

in the equations on curvatures arising in the sector of degree 0 variables. This is the realization in our

approach of the well-known Fefferman-Graham analysis [86, 83] (see also [41, 42, 43, 45] for the analogous

considerations for generic gauge fields within a version of gPDE framework).

As for asymptotic symmetries, one can consider an analogous boundary condition σ∗(ξA) = eA, where

eA is a fixed frame on the boundary. The analysis of Section 4.4 can be easily repeated in the case at hand,

giving the conformal Killings of gµν = eAµ e
B
ν gAB as the basis in the algebra of asymptotic symmetries. Of

course, one can equally well repeat the analysis of Section 4.3 in which case together with ξA− eA ∼ 0 and

Q(ξA − eA) ∼ 0 one should also impose additional boundary conditions λ ∼ 0 and Qλ ∼ 0.
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A Symmetries

Let us restrict ourselves to local analysis. At least locally, a gPDE can be equivalently represented as

the nonlagrangian local BV system so that it is enough to give a proof in this setup. In this case E is a

J∞(E) → X pulled back to T [1]X . In particular, functions on E can be identified with horizontal forms

on J∞(E). E is equipped with the evolutionary homological vector filed s of ghost degree 1 and the

homological vector field dh = θaDa of θ-homogeneity 1. We have the following:
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Proposition A.1. Locally, cohomology of [dh, ·] in the space of vertical vector fields is trivial in positive

θ-homogeneity (space-time form degree). In the space of vertical vector fields of vanishing θ-homogeneity,

it is given by the evolutionary vector fields on E.

Proof. Let us work in local coordinates xa, θb, φi
(a) and conisider a θ-homogeneity 1 vector field to begin

with:

V = θaV i
a

∂

∂φi
+ θaV i

a|b

∂

∂φi

b

+ . . . . (A.1)

The cocycle condition reads as [dh, V ] = 0 and implies, in particular,

[dh, V ]φi = θaθb(DbV
i
a − V i

a|b) = 0 (A.2)

At the same time the coboundary [dh,W ] acting φi has the following structure:

[dh,W ]φi = θa(DaW
i −W i

a) , (A.3)

where coefficients W i,W i
a are introduced as W i = Wφi and W i

a = Wφi
a. It follows, by adding a cobound-

ary one can always set the coefficient V i
a = ∂

∂θa
(V φi) to zero. Then the cocycle condition implies that

V i
a|b − V i

b|a = 0 so that V i
b|a can be also set to zero by adding [dh,W ] such that the only nonvanishing co-

efficient is W i
ab = Wφi

(ab) = −V i
(a|b). The proof can be completed by induction. The analysis for higher

θ-homogeneity vector field is analogous.

Let us now turn to the cohomology of [Q, ·], Q = dh+s in the space of vertical vector fields. Expanding

the cocycle condition in the θ-homogeneity one gets

[s, V0] = 0 , [s, V1] + [dh, V0] = 0 , . . .

[s, V1] + [dh, V0] = 0 , [dh, Vk] = 0 ,
(A.4)

where we assumed that Vl = 0 for all l > k, with 0 < k6n. Applying the above Proposition we conclude

that Vl = [dh,Wl−1]. Subtracting the trivial cocycle [Q,Wl−1] we arrive at a new representative V ′ such

that V ′
l = 0 for all l > k − 1. Applying the same procedure again we arrive at an equivalent representative

for which Vl = 0 for l > 0. The cocycle condition then implies that [s, V0] = 0 and [dh, V0] = 0. In other

words we have arrived at the standard representative of a global symmetry. Note that in the above we did

not assume gh(V ) = 0 so that it applies to generalized symmetries as well.
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