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Abstract

We elaborate on the recently proposed notion of a weak presymplectic gauge

PDE. It is a Z-graded bundle over the space-time manifold, equipped with a degree

1 vector field and a compatible graded presymplectic structure. This geometrical

data naturally defines a Lagrangian gauge field theory. Moreover, it encodes not

only the Lagrangian of the theory but also its full-scale Batalin-Vilkovisky (BV)

formulation. In particular, the respective field-antifield space arises as a symplectic

quotient of the super-jet bundle of the initial fiber bundle. A remarkable property

of this approach is that among the variety of presymplectic gauge PDEs encoding

a given gauge theory we can pick a minimal one that usually turns out to be finite-

dimensional, and unique in a certain sense. The approach can be considered as

an extension of the familiar AKSZ construction to not necessarily topological and

diffeomorphism-invariant theories. We present a variety of examples including p-

forms, chiral Yang-Mills theory, Holst gravity, and conformal gravity. We also

explain the explicit relation to the non-BV-BRST version of the formalism, which

happens to be closely related to the covariant phase space and the multisymplectic

approaches.
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1 Introduction

The Batalin-Vilkovisky (BV) [1, 2] formalism is now considered to be the

most fundamental mathematical setup for studying gauge field theories. Be-

sides its original use as a quantization tool, it turned out to be extremely fruit-

ful in studying symmetries, consistent interactions, and renormalization, see

e.g. [3, 4, 5, 6, 7, 8], as well as in constructing new models as BV systems

from the very start. The well-known examples of the latter are the String Field

Theory [9, 10, 11] and topological field theories. In the case of topological the-

ories, it is the so-called AKSZ construction [12] which encodes the BV formu-

lation of a topological model in terms of the space-time manifold and the finite-

dimensional super-geometrical object – QP -manifold, i.e. a graded manifold
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equipped with a homological vector field and a compatible graded symplectic

structure.

The AKSZ construction has been successfully employed in describing vari-

ous topological models, see e.g. [13, 14, 15, 16, 17, 18, 19, 20]. Moreover, it has

been shown [21] to relate the Lagrangian BV and the Hamiltonian BFV [22, 23,

24] formulations of constrained Hamiltonian systems. In this sense, the AKSZ

construction comprises both the BV and BFV formulations of the underlying

gauge system [25, 26, 27] (see also [28, 29] for a related approach to unification

of BV and BFV).

The AKSZ construction, as nice as it is, does not directly apply to non-

topological field theories1 which are of the main interest from the physics per-

spective. Of course, this is the case only if one insists on manifest locality and

keeps the target QP -manifold finite-dimensional.

A possible way out is to allow for infinite-dimensional target space. If we

limit ourselves to the non-Lagrangian (equations of motion) version [30] of the

AKSZ construction, the relevant generalization is known [31] (see also [32, 33]

for the simplified versions and [34] for a modern geometrical description) and

amounts to taking as target space the jet-bundle of the BV formulation of the

theory in question seen as a Q-manifold with Q = s + dh, i.e. the total BRST

differential [31, 27]. This naturally leads to a concept of a gauge PDE (gPDE

for short) [34]) which encodes a local gauge theory in the geometric data of

a Q-bundle [35], i.e. an AKSZ-like fiber bundle equipped with a compatible

homological vector field. Let us also mention a somewhat related unfolded

formalism of higher spin gauge theories [36, 37].

If one is after a full-scale AKSZ formulation of a given Lagrangian gauge

theory, the situation is more subtle. The required modification is much less triv-

ial and was put forward in [26, 27]. The crucial ingredient of the construction is

the descent-completion L of the Lagrangian Ln to a cocycle of the total BRST

differential s0 + dh by adding a lower-degree horizontal forms Ln−1,Ln−2, . . ..
An interesting alternative, initially proposed in [38, 39], is to consider in-

stead of a symplectic structure a possibly degenerate presymplectic one. It turns

out that in this case an AKSZ-like model with the finite-dimensional target-

space can describe non-topological systems. This phenomenon can be under-

stood as follows: given a Lagrangian BV system one can for the moment forget

about the Lagrangian and concentrate on the equations of motion and gauge

symmetries in order to equivalently reformulate it as a gauge PDE. Further-

more, among the equivalent gauge PDE formulations of the system one can

usually identify the minimal one. This can be obtained by eliminating the max-

1Note that reparameterization invariant mechanical systems are of AKSZ type [21, 25].
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imal amount of contractible pairs for the total BRST differential. In the next step

one finds that the Lagrangian and the BV symplectic structure can be encoded

in a compatible graded presymplectic structure defined on the gauge PDE. This

presymplectic structure is (an equivalent of) the descent-completion of the BV-

symplectic structure to a cocycle of the total BRST differential s + dh. The

crucial observation is that the AKSZ-like action determined by this data gives

an equivalent Lagrangian formulation of the system and moreover involves only

a finite number of fields because the presymplectic structure is a local form.

Furthermore, it turns out that not only the Lagrangian but also a full-scale BV

formulation can be reconstructed from this data by taking a symplectic quotient

of the space of AKSZ fields [40, 41] (see also [39]).

An additional observation is that all the coordinates along the kernel of the

presymplectic structure are passive in the construction, e.g. the Lagrangian

does not depend on them. This allows one to take the quotient with respect

to the corresponding subdistribution of the kernel distribution, resulting in a

finite-dimensional bundle equipped with a compatible presymplectic structure

and degree 1 vector field Q. The price to be paid is that Q is in general not

nilpotent but satisfies a presymplectic analog of the BV master equation, which,

eventually, ensures that the vector field induced on the symplectic quotient is

again nilpotent and the full-scale BV formulation is recovered therein. This

leads to the concept of weak presymplectic gPDEs [42].

In this work we perform a systematic study of weak presymplectic gPDEs.

More specifically, we propose a more useful set of the basic axioms and give a

detailed proof that, at least locally, a weak gPDE defines a complete BV formu-

lation. Because weak gPDEs arise as certain quotients of presymplectic gPDEs,

of a particular interest are weak presymplectic gPDEs associated to minimal

gPDEs. These are gPDEs where the maximal amount of contractible pairs have

been eliminated. In the formal case, a minimal gPDE corresponds to the mini-

mal models of the associated L∞ (recall that formal Q-manifolds are 1 : 1 with

L∞ algebras) and hence should be unique, under some technical conditions. It

follows, that weak gPDEs corresponding to minimal models are equally distin-

guished provided the entire regular part of the kernel distribution was factored

out. When applied to the standard examples of topological models, such as the

Chern-Simons theory, the procedure described above results in the usual AKSZ

formulations. In this sense,weak presymplectic gPDEs can be thought of as a

generaliztaions of AKSZ models to the case of not necessarily topological and

diffeomorphism-invariant local gauge theories.

In addition to general statements we present a variety of examples of weak

presymplectic gPDEs that describe some known local gauge theories. These
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include chiral YM theory [43], conformal gravity, Friedman-Townsend theory,

Holst gravity [44], and Plebansky gravity [45]. We also discuss p-form gauge

theory as an illustration of how our machinery encodes a rather extended BV

field-antifield space of the model into a very concise super-geometrical object.

The paper is organized as follows: Section 2 contains a recap of graded geo-

metrical approaches to BV and related constructions. In Section 3 we introduce

weak presymplectic gPDEs and prove that they define a BV theory. Section4

consists of a variety of examples of weak presymplectic gPDEs.

2 Preliminaries

2.1 Local BV systems

BV formulation of local gauge theories is usually defined in terms of underlying

graded fiber bundles and their associated jet-bundles. Here we give a very brief

exposition with an accent on geometrical structures. The standard exposition

can be found in e.g. [7].

Let E be a graded fiber bundle over a real spacetime manifoldX. Its sections

(strictly speaking supersections ) are to be identified as BV fields and antifields

with the degree as the ghost degree.

Definition 2.1. A local BV system with the underlying fiber bundle E → X,

dim(X) = n, is determined by the following data:

(i) a degree-1, evolutionary vector field s defined on J∞(E) and satisfying s2 =
0
(ii) an (n, 2)-form

n
ω ∈

∧(n,2)(J∞(E)) of ghost degree −1, which is a pullback

to J∞(E) of a closed n+ 2 form ωE on E , such that 2

Ls
n
ω + dh(. . .) = 0 , (2.1)

In addition, ωE is required not to have zero-vectors.

Note that in the adapted local coordinates xa, ψA, where xa are base-space

coordinates, ωE satisfying the above conditions can be represented as

ωE = (dx)nωAB(ψ, x)dψ
AdψB , (dx)n =

1

n!
ǫa1...andx

a1 . . . dxan (2.2)

with ωAB invertible. In this form it is clear why it defines a graded Poisson

bracket.

2Here and in what follows LW ≡ iWd+ (−1)|W |diW denotes the Lie derivative along the vector field W .
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Let us recall how this data is related to a ”more conventional” definition of

BV in terms of master action and antibracket. To simplify the discussion we

assume that the de Rham cohomology of X is empty in positive degree. Using

Ls
n
ω = (isdv − dvis)

n
ω = −dvis

n
ω and equation (2.1) one has dvis

n
ω = dh(. . .).

Using that dv mod dh is empty in this degree, at least locally, one finds that there

exists
n

L such that

is
n
ω + dv

n

L = dh(. . .) . (2.3)

In other words s is a Hamiltonian vector field and
n

L is its Hamiltonian. The

horizontal n-form
n

L is usually called the BV Lagrangian.

Analogous considerations apply to any Hamiltonians vector field, i.e. satis-

fying LV
n
ω = dh(. . .), so that the analog of (2.3) defines the associated Hamilto-

nians HV ∈
∧(n,0)(J∞(E)). This defines HV only modulo the dh-exact contri-

butions. The odd Poisson bracket of a pair of such Hamiltonians can be defined

as

{HV1
, HV2

} = iV1
iV2

n
ω , (2.4)

and is well-defined on equivalence classes, i.e. on H(n,0)(dh). One can check

that the above bracket makes H(n,0)(J∞(E)) a graded Lie algebra. Applying

these considerations to
n

L one finds,
{

n

L,
n

L

}
= isis

n
ω = dh(·) . (2.5)

i.e. a classical BV master equations written in terms of BV Lagrangian density.

Alternatively, restricting ourselves to objects of compact support or assum-

ing a suitable asymptotic/boundary conditions one can extend this bracket to

genuine functionals of fields. In this form it can be identified with the standard

BV antibracket. Of course these considerations are completely standard and

apply to generic symplectic/Poisson structures, not necessarily BV ones. For

more details see e.g. [46, 47, 48].

The BV action functional can be written as:

SBV (σ̂) =

∫

X

σ̂∗
pr(

n

L) , (2.6)

where σ̂ is a supersection of E and σ̂pr denotes its infinite prolongation. As

usual, the underlying classical action is obtained by setting fields of non-vanishing

degree to zero, or, more geometrically, restricting SBV to sections.

The field-theoretical interpretation of a local BV system can be given en-

tirely in terms of the geometry of E without resorting to the BV action. Indeed,
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a section σ : X → E is a solution if its prolongation σpr satisfies σ∗
pr ◦ s = 0,

i.e. that σpr belongs to the zero locus of s. Gauge transformations are defined

in terms of a vertical evolutionary vector field ξ of ghost degree −1, namely

the infinitesimal gauge transformation associated to ξ is an evolutionary vector

field [s, ξ].
δσ∗

pr = σ∗
pr ◦ [s, ξ] . (2.7)

In a similar way one defines the (higher order) gauge for gauge transformations.

2.2 Q-manifolds and gauge PDEs

Throughout the paper we extensively employ the language of graded geometry,

Q-manifolds (also known as dg-manifolds), and their associated fiber bundles.

By definition, a Q-manifold is a pair (M, Q), where M is a Z-graded super-

manifold and Q an odd vector field of ghost degree 1 satisfying Q2 = 0. In

all our examples the Grassmann degree is induced by Z-degree, i.e. |f | =
gh(f)mod 2, so for simplicity we do not write it explicitly. This can always be

reinstated.

An important example of a Q-manifold is T [1]X, the shifted tangent bun-

dle of a real manifold X. If xa are local coordinates on X the induced local

coordinate system on T [1]X is given by xa, θa with gh(xa) = 0, gh(θa) = 1.

Algebra of functions on T [1]X can be identified with the exterior algebra of the

underlying manifoldX. Under this identification the de Rham differential onX
corresponds to a homological vector field dX on T [1]X. In terms of the above

local coordinates dX reads as dX = θa
∂

∂xa
.

A fiber bundle in the category of Q-manifolds is known as a Q-bundle [35].

Both total space and the base are Q-manifolds in this case and the Q-structures

are required to be compatible with the bundle projection, i.e. if π : (M, Q) →
(B, q) is a projection one has: π∗ ◦ q = Q ◦ π∗.

A rather far-going generalization of BV formulation of local gauge theories

at the level of equations of motion can be cast into the geometric data of a Q-

bundle. The following definition is a geometrical and refined version of the

formalism put forward in [31, 27]:

Definition 2.2. [34] (i) Gauge PDE (E,Q, T [1]X) is a Q bundle π : (E,Q) →
(T [1]X, dX), where X is a real manifold (independent variables). In addition it

is assumed that (E,Q, T [1]X) is locally equivalent to a nonnegatively graded

Q-bundle.

(ii) Sections ofE are interpreted as field configurations. Moreover, σ : T [1]X →
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E is a solution to (E,Q, T [1]X) if

dX ◦ σ∗ = σ∗ ◦Q . (2.8)

(iii) Infinitesimal gauge transformations of σ are defined as

δσ∗ = σ∗ ◦ [Q, Y ] , (2.9)

where Y is a vertical vector field of ghost degree −1 which is to be understood

as a gauge parameter. In a similar way one defines (higher order) gauge for

gauge symmetries.

It is easy to check that transformation (2.9) is indeed an infinitesimal sym-

metry of the equations of motion (2.8). Note that the gauge transformations can

be also defined via

δσ∗ = dX ◦ ξ∗σ + ξ∗σ ◦Q , (2.10)

where ξ∗σ : C∞(E) → C∞(T [1]X) is a gauge parameter map, which has degree

−1 and satisfies

ξ∗σ(fg) = (ξ∗σ(f)σ
∗(g) + (−1)|f |σ∗(f)ξ∗σ(g) , (2.11)

as well as ξ∗σ(π
∗α) = 0 for any α ∈ C∞(T [1]X). It is easy to see that taking

ξσ = σ∗ ◦ Y one indeed recovers (2.9) if σ is a solution. Recall that only the

gauge transformations of solutions have invariant meaning.

2.3 AKSZ models

The celebrated AKSZ construction [12] has been initially found as an elegant

geometrical object which encodes a full-scale Lagrangian BV formulation, in-

cluding BV master action and BV antibracket. In the terminology of the previ-

ous subsection, the AKSZ construction is a (usually finite-dimensional) gauge

PDE which is globally trivial as aQ-bundle, i.e. (E,Q) = (T [1]X, dX)×(F, q),
whose fiber F is in addition equipped with a compatible symplectic structure

ωF of ghost degree n − 1, where n = dim(X). The compatibility condition

reads

LQω = 0 . (2.12)

Here ω is the symplectic structure on the total space E defined by the target

space symplectic structure ωF . Note that in the adapted coordinates Q = dX +
q, i.e. a product Q-structure. A natural generalization is to consider source

manifolds which are more general than (T [1]X, dX), but we refrain from doing

this here.
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The fields and antifields of the theory are supersections of E. Let ψA denote

local coordinates on F and xa, θa on T [1]X. Their pullbacks to F × T [1]X
define coordinates onE, which by some abuse of conventions we keep denoting

as ψA, xa, θa. Coordinates on the space of supersections are then introduced as:

σ̂∗(ψA) =
0

ψA(x) +
1

ψA
a (x)θ

a + ... (2.13)

Note that gh(
k

ψA
...(x)) = gh(ψA)− k.

The above geometrical data defines a BV master-action functional on the

space of super-sections. Namely, the BV action of the theory is then given by

S[σ̂] =

∫

T [1]X

σ̂∗(χ)(dX) + σ̂∗(L) , (2.14)

where χ denotes a symplectic potential, i.e. ω = dχ, L is defined through

iQω + dL = 0, and σ̂∗(χ)(dX) denotes the evaluation of the 1-form σ̂∗(χ) on

the vector field dX = θa
∂

∂xa
i.e. σ̂∗(χ)(dX) = idXσ̂

∗(χ).
Moreover, the symplectic structure on F determines in a standard way a

symplectic structure ω̄ on the space of super-sections. If σ̂ is a given supersec-

tion (a point in the space of super-sections) and δ1σ̂ and δ2σ̂ are two tangent

vectors at σ̂ then the value of ω̄ evaluated at σ̂ on these tangent vectors is given

by:

ω̄σ̂(δ1σ̂, δ2σ̂) =

∫

T [1]X

ωσ̂(δ1σ̂, δ2σ̂) , (2.15)

where σ̂ is seen as a map from T [1]X to E while δ1,2σ̂ as maps from T [1]X to

Tσ̂E so that the integrand is indeed a function on T [1]X.

It is instructive to give a concise representation for ω̄ in terms of coordinates.

To this end let us treat θa as auxiliary coordinates and introduce generating

functions for coordinates on the space of supersections as:

Ψ(x|θ) =
0

ψA(x) +
1

ψA
a (x)θ

a + ... (2.16)

and similarly for the basis differentials δ
k

ψA(x). Then

ω̄ =

∫
dnxdnθωAB(Ψ(x|θ))δΨA(x|θ)δΨB(x|θ) . (2.17)

Finally, let us spell out the explicit form of the equations of motion derived

from the action (2.14):

σ∗(ωAB)(dXσ
∗(ψA)− σ∗(QψA)) = 0 . (2.18)
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Note that for a non-degenerate ωAB these equations are equivalent to the con-

dition that σ is a Q morphism, i.e. solutions to (2.18) also solve the respective

gauge PDE (E,Q, T [1]X). Note also that for the value of index A such that

gh(ψA) = −1 equations dXσ
∗(ψA)−σ∗(QψA) = 0 takes the form σ∗(QψA) =

0, i.e. is a constraint [30].

2.4 Presymplectic gauge PDEs

Although AKSZ sigma models give a very compact and elegant way to de-

scribe BV formulation of interesting gauge field theories in its traditional form

the approach is limited to topological (=no local degrees of freedom) and dif-

feomorphism invariant systems.

The analog of AKSZ construction in the general case can be arrived at as

follows: given a local BV system one can for the moment forget about the

Lagrangian and concentrate on the equations of motion and gauge symmetries.

It is known [31] that, at least locally, it can be equivalently represented as a

gauge PDE. Furthermore, it turns out that the Lagrangian and the BV symplectic

structure can be encoded in the graded presymplectic structure defined on the

gPDE. This procedure is formalised in the following definition:

Definition 2.3. A presymplectic gauge PDE is a gauge PDE (E,Q, T [1]X)
equipped with a presymplectic structure ω such that

dω = 0, LQω ∈ I , (2.19)

where I ⊂
∧•(E) denotes the ideal in

∧•(E) generated by differential forms

of the form π∗(α).

This data defines a local BV system, provided ω satisfies certain regularity

condition. In particular, it defines an action functional on the space of sections

of E, which generalizes the AKSZ action (2.14),

S[σ] =

∫

T [1]X

(σ∗χ)(dX) + σ∗(L) . (2.20)

where χ is a presymplectic potential ω = dχ, L is defined through iQω+dL ∈ I

and (σ∗χ)(dX) is the evaluation of σ∗(χ) on the vector field dX = θa
∂

∂xa
. It

is invariant under the algebraic gauge transformations generated by the kernel

distribution of ω. Moreover, ω is typically local (involves only finite number

of coordinates) and hence the above action depends on a finite number of fields

only. The extension of the action (2.20) to supersections determines the BV
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action of the theory. The respective BV field-antifield space can be obtained as

a symplectic quotient of the space of supersections [40, 41, 42].

In this approach all the information about the system can be encoded in

the geometry of a finite-dimensional quotient of the starting point presymplec-

tic gPDE. Indeed, among possible equivalent gPDE representations of a given

system one can pick a minimal one (in the formal setup it is simply the one as-

sociated to the minimal model of the respective L∞ algebra which is known to

be unique up to L∞ isomorphism). Furthermore, disregarding the coordinates

along the kernel distribution of the presymplectic structure leads to a finite-

dimensional geometrical object which knows everything about the local gauge

system in question but at the same time is minimal and unique in a certain

sense. We call such objects presymplectic minimal models. More generally,

even if one doesn’t require them to be minimal, objects of this sort are still

useful and can be regarded as the weak versions of presymplectic gPDEs. In

this work we perform a detailed study of such objects and the way they encode

gauge theories.

2.5 Local forms in terms of graded geometry

For our further considerations it is important to clarify the relation between

graded geometry language to describe vertical/horizontal forms on fiber bundles

and the standard language.

Definition 2.4. The algebra of vertical forms on a fiber bundle E
π
−→ M is

the quotient
∧•(E)/I where I ⊂

∧•(E) is the ideal generated by the forms

π∗α, α ∈
∧k>0(M).

Let now Ẽ → X be a fiber bundle equipped with a flat connection so that

we have a decomposition of the de Rham differential on Ẽ into the horizontal

and the vertical parts d = dh+dv. Let also E → T [1]X be a lift of Ẽ to T [1]X,

i.e. E = Π∗Ẽ, where Π is a canonical projection Π : T [1]X → X. In plain

terms this means that we extend Ẽ by the anti-commuting coordinates θa which

are basis differentials dxa understood as auxiliary coordinates.

The algebra of vertical forms onE (in the sense of 2.4) is a differential alge-

bra with the differential induced by de Rham: d′[a] = [da], where [a] denotes an

equivalence class of a ∈
∧•(E). This algebra is isomorphic to the algebra of all

forms on Ẽ equipped with the vertical differential. To see this let us first define

a map Υ :
∧•(E) →

∧•(Ẽ). If xa, ψA is an adapted coordinate system on Ẽ
and xa, θa, ψA is the induced coordinate system on E, the map Υ is determined

11



by:

Υ(dψA) = dvψ
A ,

Υ(θa) = dxa ,

Υ(dxa) = 0 = Υ(dθa) ,

Υ(f(x, ψ)) = f(x, ψ) .

(2.21)

Note that Υ employs an additional structure on Ẽ – the flat connection. It is

easy to see that Υ(I) = 0 and hence Υ is well defined on the equivalence

classes modulo I. Moreover, the induced map is an isomorphism between the

differential algebras (
∧•(E)/I, d′) and (

∧(•,•)(Ẽ), dv).
The above isomorphism allows one to define analogs of dv and dh in terms

of the algebra of vertical forms (
∧•(E)/I). In particular, dv is represented by

d′ while for dh we have:

dhΥ([a]) = Υ([LDa]) , D = θaDa , (2.22)

where Da are components of the covariant derivative, i.e. Da is a horizontal lift

of ∂
∂xa and dh = dxaDa. It is easy to check that the expression in the right hand

side does not depend on the choice of the representative.

Finally, note that the construction can be generalized to the case where the

connection D is not flat. This is achieved by taking ΥdψA = dψA − dxaDaψ
A.

The map is still coordinate independent but the induced analog of dv is not

nilpotent.

3 Weak presymplectic gPDEs

In this section we define our main objects and show how they encode a full-scale

local BV system.

3.1 Symplectic quotients of pre-Q manifolds

The following simple statement explains the idea of the construction:

Lemma 1. Let (M,ω) be a presymplectic supermanifold equipped with an odd

vector field Q satisfying:

ω(Q,Q) = 0, LQω = 0 . (3.1)

Let A be a subalgebra of functions annihilated by the kernel distribution of ω.

Then Q preserves A and moreover Q2f = 0 for any f ∈ A.
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If ω is regular A is just an algebra of functions on the symplectic quotient,

at least locally. This gives a useful generating construction for symplectic Q-

manifolds. The statement and the proof were in [42] thought it was probably

known before. For completeness we sketch the proof here as well. Let K be a

kernel distribution of ω, i.e. iKω = 0. It is involutive thanks to dω = 0. For any

f ∈ A and Z ∈ K one has ZQf = [Z,Q]f = 0 because i[Q,Z]ω = LQiZω = 0
so that Q preserves A. Finally, Q2f = 0 for all f ∈ A because

diQiQω = iQdiQω − LQiQω = iQiQdω − 2iQLQω − i[Q,Q]ω = 0 , (3.2)

so that Q2 ∈ K.

3.2 Presymplectic local BV systems

In what follows we need the following statement, whose non-graded version is

known, see e.g. [49]:

Lemma 2. Let E
π
−→ X be a graded bundle equipped with ω ∈

∧n+2(E),
a closed form, such that its kernel K has constant rank and is π vertical, i.e.

iKω = 0 → π∗K = 0. Then, at least locally, E/K is also a bundle over X
equipped with a non-degenerate form ω̃.

The definition of a local BV system has a straightforward generalisation to

the case where the symplectic structure is replaced by the presymplectic one:

Definition 3.1. A presymplectic local BV system with the underlying fiber bun-

dle E → X is determined by the following data:

(i) a degree-1, evolutionary vertical vector field s defined on J∞(E)

(ii) an (n, 2)-form
n
ω ∈

∧(n,2)(J∞(E)) of ghost degree −1, which is a pullback

to J∞(E) of a closed n+ 2 form ωE on E , such that

is
n
ω + dv

n

L = dh(·) , (3.3)

for some
n

L ∈
∧(n,0)(J∞(E)). In addition, the kernel distribution K of ωE is

required to be vertical, i.e. K ⊂ V E ⊂ TE .

(iii)
1

2
isis

n
ω = dh(·) . (3.4)

Note that compared to the Definition 2.1, the nilpotency condition is re-

placed by (3.4). At the same time, (3.3) is equivalent to Ls
n
ω + dh(. . .) = 0, at

least locally. In the symplectic case these definitions are equivalent.

Note the following statement:

13



Lemma 3. In the setting of Definition 3.1, s2 ≡ 1
2 [s, s] belongs to the kernel of

n
ω, i.e. is2

n
ω = 0.

Proof. Let I denote the interior Euler projector defined through I2 = I and

I(dha) = 0 for any a ∈
∧(n−1,s)(J∞(E), s> 1 see e.g. [50, 51] for further

details. Applying Idv to the equation (3.4) one gets I(dvisis
n
ω) = I(dvdh(·)) =

Idh(·) = 0. On the other hand rewriting the l.h.s. one gets

I(−2isLs
n
ω − i[s,s]

n
ω) = 0 . (3.5)

Using (3.3) the first term can be rewritten as:

I(−2isLs
n
ω) = I(2isdvdh(·)) = I(dh(isdv(·))) = 0 , (3.6)

giving Ii[s,s]
n
ω = 0. Because

n
ω is a pullback of a form from E it does not depend

on higher jets and therefore the Euler projector (see [50] for details) acts on it

identically this equation implies i[s,s]
n
ω = 0.

It turns out that a presymplectic local BV system still defines a local BV

system on a jet-bundle of a symplectic quotient of E , at least locally. More

precisely:

Proposition 3.2. Given a presymplectic local BV system, assume in addition

that the kernel distribution is regular. Then, at least locally, this data natu-

rally induces a local BV system with the underlying bundle being the symplectic

quotient of E by the kernel distribution K.

Proof. The proof is based on the explicit construction. At first step we employ

Lemma 2 to construct the respective quotient which is itself a new fiber bundle

G → X, which is well defined at least locally. This comes together with the

projection πG : E → G which is fiberwise. Restricting to the local analysis, we

can then realise G as a subbundle in E which in turn induces the embedding of

J∞(G) ⊂ J∞(E) as a subbundle. In particular, the pullback by the embedding

commutes with the horizontal differential dh. Note, however, that the embed-

ding is not canonical.

The projection πG : E → G induces a projection J∞(E) → J∞(G) of the

respective jet bundles. Together with the embedding it defines a projection s̃
of s to J∞(G). The projection is generally not evolutionary (because s is not

tangent to J∞(G), in general). By pulling back (3.4) to J∞(G) one finds:

is̃is̃(i
∗ nω) = dh(·) , (3.7)
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where i denotes the embedding J∞(G) → J∞(E). Indeed, is̃(i
∗ nω) = i∗(is

n
ω)

because projection can only add a vector from the kernel. Then i∗(dhf) =
dh(i

∗f) for any f ∈
∧•(J∞(E)). The same arguments show that the pull-back

of (3.3) gives:

is̃i
∗ nω + dvi

∗
n

L = dh(·) . (3.8)

Observe that is̃is̃(i
∗ nω) depends only on the action of s̃ on zero jets because

n
ω is itself a pullback to J∞(G) of the form on G. It follows, the equation is

also fulfilled if s̃ is replaced by the evolutionary vector field s′ which acts on

zeroth jets just like s̃, i.e. if ψα are coordinates on the fibers of G pulled back to

J∞(G) then s′ is uniquely determined by s′ψα = s̃ψα and that s′ is evolution-

ary. Finally, Lemma 3 implies that an evolutionary vector field s′ of degree 1

satisfying (3.7) and (3.8) is nilpotent provided i∗
n
ω is nondegenerate and hence

this data defines a local BV system.

3.3 Weak presymplectic gPDEs

Definition 3.3. A weak presymplectic gauge PDE is a Z graded fiber bundle

E
π
−→ T [1]X, dim(X) = n, equipped with a 2-form ω of degree n− 1, a 0-form

L of degree n and a vector field Q of degree 1 satisfying Q ◦ π∗ = π∗ ◦ dX and

dω = 0, iQω + dL ∈ I,
1

2
iQiQω +QL = 0 . (3.9)

where I ⊂
∧•(E) is the ideal generated by elements of the form π∗α, α ∈∧k>0(T [1]X).

This version of the definition is a slight variation of that given in [42]. Note

that similar axioms originally appeared in [38]. This data still defines an action

functional (2.20) and, in fact, a presymplectic local BV system. It is important

to mention that at this level we do not ask ω to be regular.

Solutions to this system can be defined as solutions of the Euler-Lagrange

equations determined by (2.20) and understood modulo the natural algebraic

gauge equivalence generated by the vector fields from the kernel of ω. Of course

one can equally well say that the physical interpretation of the system is that of

the induced local BV system.

As an alternative one can define such objects by specifying, instead of ω,

a presymplectric potential χ so that ω = dχ. This fixes the boundary terms

in the action functional (2.20). Moreover, it is easy to check that in this case

adding to χ a 1-form from I accompanied by a suitable transformation of L
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is a symmetry of the equations (3.9) and also does not affect the action (2.20)

modulo a field-independent boundary term. To see this note that if ω and Q are

given, the ambiguity in L satisfying the second condition from (3.9) is given by

functions of the form π∗(h), h ∈ C∞(T [1]X) so that the integrand of (2.20) can

only change by π∗(h).
An important fact which justifies the above definition is that this geometrical

object naturally defines a local BV system provided certain regularity condition

is imposed on ω. The crucial step in the construction is the passage to the

super-jet bundle SJ∞(E). This can be related with the jet-bundle of another

fiber bundle Ē whose typical fiber F̄ is the space of super-maps from Tx[1]X
to the typical fiber F of E. More precisely, J∞(Ē) can be understood as a

pullback of SJ∞(E) → T [1]X to the zero section of T [1]X. Note that F̄ is

finite-dimensional provided F is. General discussion of super jet-bundles can

be found [52], see also [34, 42] for precisely the present setup.

The prolongation of Q to SJ∞(E) restricts to J∞(Ē) ⊂ SJ∞(E) and is a

vertical evolutionary vector field s. The presymplectic structure ω on E induces

a 2-form on each fiber of Ē. Indeed, for a given x ∈ X let us consider the

fiber Ex of E over x (here we treat E as a bundle over X). Ex itself is a bundle

over Tx[1]X. The fiber Ēx of Ē at x is by definition the space of supersections

of Ex over Tx[1]X. Furthermore, restriction of ω to Ex gives rise to a 2 form

on Ēx via the standard construction which is (2.15) restricted to Tx[1]E. If this

2-form is regular and its rank does not depend on x we say that ω is quasi-

regular. Note that nonregular ω may be quasi-regular and this is precisely what

happens in applications. As we are going to see if ω is quasi-regular, one can

take a symplectic quotient (at least locally), resulting in a local BV system. The

construction is a more refined version of that originally presented in [42].

Having explained the idea of the construction let us formulate it as a theorem

and give a proof:

Theorem 3.1. Let (E, T [1]X,Q, ω) be a weak presymplectic gPDE. If ω is

quasi-regular this data determines a local BV system, at least locally.

Proof. Given a weak presymplectic gPDE (E, T [1]X,Q, ω), the system

(SJ∞(E), T [1]X, Q̄, ω̄, L̄) is also a weak presymplectic gauge PDE. Here Q̄
is a unique prolongation of Q and ω̄ = (π∞E )∗ω, L̄ = (π∞E )∗L, where π∞E is a

canonical projection SJ∞(E) → E. It follows, that conditions (3.9) imply:

dω̄ = 0, iQ̄ω̄ + dL̄ ∈ I,
1

2
iQ̄iQ̄ω̄ + Q̄L̄ = 0 , (3.10)

where by abuse of notations we denote by I the ideal in
∧•(SJ∞(E)), gener-

ated by forms of positive degree on the base T [1]X.
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First two conditions from (3.10) imply ω̄ = dχ̄ and

iQ̄ω̄ + dL̄+ I = 0 . (3.11)

Since Q projects to dX the prolonged vector field Q̄ can be decomposed as

Q̄ = D+swithD = tot(dX) and s evolutionary. We have iDdχ̄ = LDχ̄+diDχ̄
and hence (3.11) can be rewritten as

isω̄ = −d(L̄+ iDχ̄)− LD(χ̄) + I . (3.12)

Now we recall that on a jet-bundle the projection to the vertical part is well-

defined. Taking the vertical part of the above equation we get:

isω̄
v = −dv(L̄+ iDχ̄)− LD(χ̄v) . (3.13)

As it is clear from the structure of (3.13), it has a chance to encode a con-

dition that s is the Hamiltonian vector field, which is one of the axioms of a

presymplectic local BV system. Another axiom is the pre-master equation. To

obtain it consider the following expression:

isisω̄ = iQ̄−DiQ̄−Dω̄ = iQ̄iQ̄ω̄ − 2iQ̄iDω̄ + iDiDω̄ . (3.14)

Let us rewrite (3.11) as iQ̄ω̄ + dL̄ + α = 0, α ∈ I. Applying iQ̄ on it we get

iQ̄iQ̄ω̄ + QL̄ + iQ̄α = 0. Since α ∈ I is a 1-form iQ̄α = iDα. Making use of

the third equation in (3.10) we get iDα = −1
2iQ̄iQ̄ω̄ Then the second term on

the r.h.s. of (3.14) is 2iD(dL̄+ α) = 2D(L̄) + 2iDα = 2D(L̄)− iQ̄iQ̄ω̄ which

cancels the first term in (3.14). The third term is iDiDdχ̄ = iDLDχ̄+ iDdiDχ̄ =
2D(iDχ̄). So all in all we have:

1

2
isisω̄ = D(iDχ̄+ L) . (3.15)

Let us introduce a special coordinate system on SJ∞(E), where the total

derivative with respect to θ is simply Dθ
a = ∂

∂θa
, see Appendix A for more

details. In this coordinate system evolutionary vector fields commute with ∂
∂θa

and hence we can expand our equations in powers of θa, i.e. in horizontal form

degree if we switch to the language of differential forms on J∞(Ē). Introduce

notations
k

ω̃,
k

χ̃,

k

L̃ for the horizontal form degree k components of Υ(ω̄v), Υ(χ̄v),
Υ(L̄v), respectively. In terms of the differential forms on J∞(Ē) the horizontal

form-degree n components of equations (3.13) and (3.15) read as

is
n

ω̃ + dv

n

L̃BV = −dh
n−1

χ̃ . (3.16)
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where L̃BV = Υ(L) + Υ(iDχ̄) and

1

2
isis

n

ω̃ = dh(
n−1

L̃BV ) . (3.17)

These are precisely the defining relation of a presymplectic local BV system on

J∞(Ē).

Finally,
n

ω̃ is a pullback to J∞(Ē) of an (n + 2)-form on Ē and because
n

ω̃ is proportional to the volume form (dx)n, its kernel distribution is vertical.

The quasi-regularity of ω means that
n

ω̃ is regular, therefore all the conditions

from Definition 3.1 are satisfied and hence Proposition 3.2 implies that, at least

locally, a weak presymplectic gPDE determines a local BV system.

3.4 Weak presymplectic PDEs and multisymplectic systems

Before switching to the examples of weak presymplectic gPDEs associated to

various gauge field theories let us consider the special case, where Q does not

encode any gauge transformations. More specifically, consider a presymplectic

gPDE (E,Q, T [1]X,ω) such that the only nonvanishing degree variables are

θa, gh(θa) = 1 or, in other words, Z-degree is horizontal. This means that the

underlying gPDE is actually a usual PDE. Indeed, in this case C∞(E) can be

identified with the algebra of horizontal differential forms on the underlying

bundle Ẽ while Q corresponds to the horizontal differential dh on Ẽ, cf. (2.22).

Indeed, by the degree reasoningQ is linear in θa and can be seen as a flat covari-

ant differential on Ẽ → X so that (Ẽ, dh) is a PDE defined in the geometrical

way, see e.g. [53]. More detailed discussion of the above can be found in [34].

In this case there are no nonvanishing gauge parameters (=vertical vector

fields on E of degree −1) and hence the underlying (E,Q, T [1]X,ω) does not

encode nontrivial gauge (as well as gauge for gauge) transformations. Note that

it does not mean that the underlying PDE does not admit gauge symmetries, it

only means that there are no gauge symmetries accounted by Q. In this setup

gh(ω) = n− 1 implies that in local coordinates xa, θa, ψA the expression for ω
has the following structure

ω = ωa
ABdψ

AdψB(θ)(n−1)
a . (3.18)

Let us now reformulate the system in terms of the differential forms on Ẽ

which is a pullback of E to the zero section of T [1]X. Alternatively, Ẽ can be

also understood as a submanifold in E singled out by θa = 0. Using the map Υ
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defined in (2.21) from forms on E to forms on Ẽ we define

ω̃ = Υ(ω) ⊂
∧n−1,2

(Ẽ) , χ̃ = Υ(χ) ⊂
∧n−1,1

(Ẽ) ,

L̃ = Υ(L) ⊂
∧n,0

(Ẽ) .
(3.19)

Using the properties (2.22) of Υ and LQω ⊂ I one then finds:

dvω̃ = 0 , dhω̃ = 0 , ω̃ = dvχ̃ . (3.20)

In this way we have observed that ω̃ can be indeed identified with a com-

patible presymplectic current [54, 55, 56, 57]3 on Ẽ, i.e. we are indeed dealing

with a PDE equipped with a compatible presymplectic current. Because coho-

mology of dv can only originates from the global geometry of the fibres, at least

locally there exists (n, 0)-form l̃ such that ω̃ = d(χ̃ + l̃) and there is a natural

action functional on the space of sections of Ẽ:

SC [σ∗] =

∫
σ∗(χ̃+ l̃) . (3.21)

Of course, the functional is also defined locally, in general. In the PDE geometry

setup this action was proposed in [39, 58] as a way to encode the Lagrangian

formulation in terms of the geometry of the equation manifold, see also [59,

60]. Note that the action functionals analogous to (3.21) are well known in

the context of multisymplectic systems, see e.g. [61, 62, 63] and the discussion

below.

Let us now show that (3.21) is in fact the same as the AKSZ-like action (2.20).

To see this recall iQω + dL ∈ I can be rewritten as LQχ + d(L + iQχ) ∈ I,

giving

dhχ̃+ dv(Υ(iQχ) + L̃) = 0 , (3.22)

upon applying Υ to the both sides. It follows, ω̃ = d(χ̃ + l̃′), where l̃′ =

Υ(iQχ) + L̃, so that one can assume l̃′ = l̃ and we have recovered all the

ingredients of the action (3.21) from the presymplectic gPDE data.

Finally, introducing the coordinates xa, θa, ψA on E, action (2.20) can be

written as:

SgPDE[σ∗] =

∫

T [1]X

(σ∗(χA)dXσ
∗(ψA) + σ∗(l − χAQψ

A)) =

∫

X

(σ∗(χ̃A)dσ
∗(ψA) + σ∗(l̃)− σ∗(χ̃Adhψ

A)) , (3.23)

3We use the term presymplectic current to indicate that this is an n − 1 horizontal and 2-vertical form on the

equation manifold.
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where l ∈ C∞(E) is a unique function such that Υ(l) = l̃ and by some abuse

of notations we use σ to denote a section X → E and its unique extension to a

section T [1]X → E. At the same time, in terms of the coordinates xa, θa, ψA,

the action (3.21) takes the following form

SC [σ∗] =

∫

X

σ∗(χ̃Advψ
A + l̃) =

∫

X

σ∗(χ̃A(d− dh)ψ
A + l̃) =

=

∫

X

σ∗(χ̃Adψ
A) + σ∗(l̃ − χ̃Adhψ

A)) , (3.24)

so that indeed the actions coincide.

Let us also consider a weak presymplectic gauge PDE (E,Q, T [1]X,ω)
such that gh(ψA) = 0 and see what it corresponds to in terms of the ge-

ometry of the underlying fiber bundle Ẽ. In this case Q is still linear in θa

but Q2 is generally nonvanishing. From the point of view of Ẽ it is a co-

variant differential, which in contrast to the case considered above, is gener-

ally non-flat. Note that the third condition (3.9) is trivially satisfied because

gh(iQiQω) = gh(QL) = n + 1 and hence does not impose any constraints on

Q2. Nevertheless, all the above reformulations of the action can be repeated.

Namely, the action (2.20) can be rewritten as

S[σ] =

∫

X

σ∗(Θ) , Θ = Υ(χ+ L+ iQχ) . (3.25)

Note that Θ is an n-form on Ẽ.

From the above discussion it is clear that we have arrived at a multisym-

plectic system, provided dΘ is nondegenerate. Recall, that a multisymplectic

system is a bundle Ẽ → X equipped with an n-form Θ, n = dimX, such that

Ω = dΘ vanishes on any 3 vertical vectors, see e.g. [61, 64, 65, 66, 62, 49]4.

The last condition is automatically satisfied in our case because Θ originates

from a sum of 1 and 0-forms on E. Further details on multisymplectic systems

can be found in e.g. [55, 67, 61, 68, 49].

It is important to stress, however, that the multisymplectic system deter-

mined by a weak presymplectic gPDE comes equipped with the additional

structure, the Ehresmann connection on Ẽ encoded in Q, which is not nec-

essarily flat. This system can be seen as the quotient of the respective PDE by

the maximal regular subdistribution of the vertical kernel distribution of ω̃. The

differential induced by dh on the quotient generally fails to be nilpotent and

hence its associated connection is not flat, in general.

4Note that there are various versions of the definition. For instance the multisymplectic bundle as defined

in [61] contains the above multisymplectic system as a subbundle defined by the Legendre transform.
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4 Examples

4.1 p-forms

The gauge field of the p-form theory is a spacetime p-form A subject to the

gauge transformation δA = dB and the Lagrangian of the form (dA)2. For

p > 1 this is a reducible gauge theory and its proper BV formulation involves

p generation of ghosts (for ghosts) together with their conjugate antifields. It

turns out that the complete BV formulation of this system arises from a rather

concise weak presymplectic gPDE. In this section we use notation T (p) to denote

a totally antisymmetric tensor T a1...an and T (k) · R(k) to denote a contraction of

such tensors.

Consider a trivial bundle E → T [1]X with X being the n-dimenisonal

Minskowski space and the fiber being the space with coordinates C , gh(C) = p
and F (p+1), gh(F (p+1)) = 0. It is convenient to introduce “generating function”

F = 1
(p+1)!Fa1...ap+1

θa1 . . . θap+1 in terms of which the Q-structure is defined as:

QC = F , QF (p+1) = 0= QF . (4.1)

The presymplectic structure is given by

ω = dχ , χ =
1

2
(⋆F)dC , (4.2)

where ⋆ denotes the usual Hodge conjugation of functions in θa seen as exterior

forms, i.e. (⋆F) = 1
(n−p−1)!ǫ(n) · (F

(p+1)θ(n−p−1)).

It is easy to check that the axioms are indeed fulfilled and L defined through

iQω + dL ∈ I can be taken as

L = −
1

4
F(⋆F) . (4.3)

Note that in this case Q2 = 0 = QL.

Introducing fields A(p)(x) and F(p+1)(x) to parameterize sections so that

σ∗(C) = A(p) · θ
(p) and σ∗(F(p+1)) = F(p+1) the action functional (2.20) takes

the form

S[A(p),F
(p+1)] =

∫

T [1]X

(dXA)(⋆F)−
1

4
F(⋆F)

=

∫
dnx(

1

2
∂[(1)A(p)] · F

(p+1) −
1

4
F(p+1) · F(p+1)) . (4.4)
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where we also introduced the following generating function A = 1
p!A(p)θ

(p).

This action is equivalent to the standard (dA)2 action through the elimination

of the auxiliary field F(p+1).

It is instructive to see how the formalism also generates the BV action for

this model. For simplicity let us restrict to the simplest case p = 2, n = 4. The

component expression for the symplectic structure is given by

ω =
1

2
ǫabcd(dF

abcθd)dC . (4.5)

Coordinates on the fibers of Ẽ are introduced as components of supersection

σ̂ : Tx[1]X → E:

σ̂∗(C) =
0

C +
1

Caθ
a +

1

2
Aabθ

aθb +
1

6

3

Cabcθ
aθbθc + . . . ,

σ̂∗(F abc) = F abc +
1

F abc
dθ

d +
1

2

2

F abc
deθ

dθe +
1

6

3

F abc
defθ

dθeθf + . . . .

(4.6)

Presymplectic structure on Ẽ has the following form:

4

ω̃ =
1

2
(dCdC∗ − dCadC

∗a + dAabdA
∗ab − dF ∗

abcdF
abc)(dx)4 , (4.7)

where C =
0

C , C∗ =
3

F abc
abc, Ca =

1

Ca, C∗a = 3
2

F abc
bc, A

∗ab = 3
1

F abc
c,

F ∗
abc =

3

Cabc and we have switched to the language of differential forms on Ẽ.

It follows that we have indeed recovered the fiber bundle Ẽ underlying the

standard BV formulation of the p-form theory, see e.g. [69]. Indeed, the sym-

plectic structure is canonical and the spectrum of ghost degrees is summarized

in the following table:

field Aab A∗ab F abc F ∗
abc Ca C∗a C C∗

gh(·) 0 −1 0 −1 1 −2 2 −3

All the remaining variables are in the kernel of
4

ω̃ and are factored out. Finally,

in the above coordinates the BV-AKSZ action (2.14) is given by

SBV =

∫
d4x(

1

2
F abc(∂aAbc + ∂bAca + ∂cAab)−

1

4
F abcFabc+

+
1

2
A∗ab(∂aCb − ∂bCa) +

1

2
C∗

a∂
aC) (4.8)

and is indeed a standard BV action of the p-form theory.
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4.2 Freedman-Townsend model

In this section we present a weak presymplectic gPDE formulation of the Freedman-

Townsend model [70]. Its first-order action has the following form:

S[Bab, Aa] =

∫
d4xTr(−

1

4
ǫabcdB

ab(∂cAd−∂dAc+[Ac, Ad])+
1

4
AaAa) . (4.9)

Its gauge transformations can be written as

δBab = ∂aλb − ∂bλa + [Aa, λb]− [Ab, λa] , δAa = 0 . (4.10)

To see that (4.9) is indeed a consistent deformation of the 2-form theory

discussed in the previous Section, one can use the following field redefinition:

Aa = ǫabcdF
bcd. Keeping only quadratic terms one indeed recovers (4.4) with

p = 2, n = 4.

The weak presymplectic gPDE formulation of this model is constructed as

follows. The fiber of the underlying bundle E → T [1]X is the space with

matrix-valued coordinates C , gh(C) = 2 and Aa, gh(Aa) = 0. Presymplectic

structure and Q-structure are given by:

ω = dχ , χ = −
1

2
Tr(CdAaθ

a) . (4.11)

QC = −
1

6
ǫabcdA

aθbθcθd − 2[C,Aa]θ
a , (4.12)

QAa = −[Aa, Ab]θ
b . (4.13)

Hamiltonian L defined defined by iQω + dL ∈ I can be taken as

L =
1

2
Tr(

1

2
AaAa(θ)

4 + C[Aa, Ab]θ
aθb) . (4.14)

It is easy to check that the remaining conditions are satisfied iQiQω = QL = 0.

Introducing coordinates on the fibers of Ẽ via:

σ̂∗(C) =
0

C +
1

Caθ
a +

1

2
Babθ

aθb +
1

6

3

Cabcθ
aθbθc + . . . ,

σ̂∗(Aa) = Aa +
1

Aa
bθ

b +
1

2

2

Aa
bcθ

bθc +
1

6

3

Aa
bcdθ

bθcθd + . . . ,

(4.15)

the symplectic structure
4

ω̃ on Ẽ takes the form:

4

ω̃ =
1

2
Tr (

1

6
dCdC∗ +

1

2
dCadC∗

a +
1

6
dA∗

adA
a +

1

4
dBabdB∗

ab)(dx)
4 , (4.16)
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where now C =
0

C , C∗ = ǫabcd
3

Aabcd, C
a =

1

Ca, C∗
a = ǫabcd

2

Abcd, A∗
a = ǫabcd

3

Cbcd

and B∗
ab =

1

Aab. It is of course not surprising that this is just a matrix version

of (4.7) because the interaction do not affect the symplectic structure.

Finally, the BV-AKSZ action (2.14) is given by

SBV =

∫
d4xTr(−

1

4
ǫabcdB

ab(∂cAd − ∂dAc + [Ac, Ad]) +
1

4
AaAa−

−
1

4
ǫabcdCa∂[bB

∗
cd] −

1

4
C∂aC∗

a) , (4.17)

so that we have indeed recovered the standard BV formulation of the Freedman-

Townsend theory [71].

4.3 Chiral Yang-Mills theory

The so called chiral and (anti-)selfdual theories are extensively studied in the

literature [43, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81]. A simple example of a

chiral (selfdual) theory can be constructed starting from the Yang-Mills theory.

Let us first give an overview of YM formulations in terms of the (anti-)selfdual

curvatures:

(⋆F∓)ab = ∓F∓
ab , (⋆F )ab =

1

2
ǫabcdF

cd . (4.18)

In Euclidean signature ⋆2 = 1 and therefore has eigenvalues ±1. To avoid

complexification we will stick to Euclidean signature for this section. Note that

F±
ab =

1
2
(Fab ± ⋆Fab).

The action of YM theory can be rewritten in terms of F± as:

SYM [A] =

∫
Tr(F ∧ ⋆F ) =

=

∫
d4xTr(FabFpk)ǫ

abcdǫpkcd =

∫
d4xTr((F+)2 + (F−)2) (4.19)

In its turn, the action of the topological YM theory can be written as:

StY M [A] =

∫
Tr(F ∧ F ) =

∫
d4xTr((F+)2 − (F−)2) . (4.20)

Taking the sum of the actions (4.19) and (4.20) one arrives at the equivalent

(modulo boundary terms) action
∫
(F+)2 which involves only selfdual part of

the curvature. It can be further rewritten using an additional field Gab which is

selfdual,

ScYM [G,A] =

∫
d4xTr(FabG

ab +
1

2
GabGab). (4.21)
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Integrating out G gives (F+)2. Finally, the Chalmers–Siegel action (4.29), is

obtained by omitting the GabGab term in (4.21) [43].

Both the chiral form of YM theory and the Chalmers-Siegel admit con-

cise formulations in terms of weak presymplectic gPDEs. Let us start from the

graded fiber bundle E → T [1]X underlying the respective formulation of the

standard YM theory [42]:

xa, θa, C , gh(C) = 1

Gab, gh(Gab) = 0 .
(4.22)

Here Gab = −Gba and Gab and C take values in some Lie algebra g which we

assume semisimple. Let Q act as:

Qxa = θa

QC = −
1

2
[C,C] + α(Gab)

+θaθb + βG−
abθ

aθb ,

QGab = [Gab, C] ,

(4.23)

where α, β ∈ R are some coefficients and [·, ·] denotes the graded commutator

in g tensored with C∞(E). As a presymplectic structure we take:

ω = Tr(d(G+
abθ

aθb)dC + γd(G−
abθ

aθb)dC) (4.24)

which is compatible with the differential:

iQω = −dL+ I = Tr(d(−G+
ab

1

2
[C,C]θaθb +

α

2
G+

ab(G
ab)+θ4−

− γG−
abθ

aθb
1

2
[C,C] +

βγ

2
G−

ab(G
ab)−θ4)) + I (4.25)

Moreover, it is easy to check that iQiQω = 0 = QL so that the axioms are

fulfilled.

Let us parameterize the space of sections by

σ∗(C) = Aa(x)θ
a ,

σ∗(Gab) = Gab(x) .
(4.26)

The corresponding action takes the following form:

S[G,A] = Tr

∫

X

((Gab)+ + γ(Gab)−)(Fab(A))−

−
α

2
(Gab)+G+

ab −
1

2
(βγ)G−

ab(G
ab)− . (4.27)
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Varying with respect to Gab one gets:

F+
ab(A)− αG+

ab = 0

γ(F−
ab(A)− βG−

ab) = 0
(4.28)

Let us see what does the above system describe at different values of param-

eters α, β, γ:

1. γ = 1, α = β. The induced action is that of the topological YM (4.20).

2. γ = −1, α = β. This reproduces the conventional weak presymplectic

gPDE formulation [41, 42], giving the usual action (4.19). In this case the

symplectic structure can be written as ω = Tr d(ǫabcdG
cdθaθb)dC .

3. α, β, γ generic. One can express Gab in terms of Fab(A). Then inserting

Gab back into the action gives a sum of YM (4.19) and topological YM (4.20)

actions with some coefficients depending on α, β, γ.

4. γ = 0, α, β – generic, gives chiral formulation of YM theory, i.e. ac-

tion (4.21) up to a numerical factor. Note that in this case ∂
∂G−

ab

is in the kernel

and can be set to 0, resulting in the subbundle of E. In particular, coefficient β
is irreleveant.

5. γ = 0, α = 0 results in the Chalmers-Siegel action functional:

SsdY M [A,G+] =

∫
Tr(G+ ∧ (dA+

1

2
[A,A])) , (4.29)

The analysis of the BV spectrum of these theories with γ 6= 0 is pretty

much the same as in [41] whilst in the case γ = 0 the G−
ab component (together

with its antifields) lies in the kernel of the presymplectic structure on the super

jet-bundle, resulting in the correct BV field-antifield spectrum.

Note that in the case γ = 0 the kernel distribution of ω includes a regular

subdistribution generated by
∂

∂G−
ab

so that G−
ab can be factored out immediately

on the initial bundleE. This results in another weak gPDE where the coordinate

G−
ab is absent. Finally, the the BV action is given by

SBV,sdYM = SsdYM+∫
d4xTr(A∗

d(∂
dC + [C,Ad]) +

1

2
C∗[C,C] + (G+)∗ab[(G

+)ab, C]) , (4.30)

where ghosts and antifields arise as the appropriate components of a supersec-

tion.
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4.4 Holst gravity

The next example is the family of gravity theories, known as Holst gravity [44],

which contains the usual Cartan-Weyl Lagrangian as well as its chiral ver-

sion [82, 83].

We immediately start with the associated weak presymplectic gPDE which

we take to be a trivial bundleE → T [1]X, with the fiber being a linear manifold

with the following coordinates:

ξa, ρab, gh(ξa) = gh(ρab) = 1 .

The base T [1]X is coordinatized, as usual, by xµ, gh(xµ) = 0 and θµ, gh(θµ) =
1. The action of Q is determined by:

Qξa = −ρakξ
k,

Qρab = −ρakρ
k
b −

Λ

2
ξaξb,

Qxµ = θµ,

(4.31)

where Λ ∈ R is a multiple of the cosmological constant. As the presymplectic

structure we take:

ω =
1

2
ǫabcdd(ρ

ab)d(ξcξd) + αd(ρab)d(ξ
aξb), (4.32)

where α ∈ R is a parameter. Note that for α = ±1 the distribution generated by
∂

∂ρ∓ab
belongs to the kernel of ω. For α generic the kernel distribution does not

have nowhere vanishing vector fields.

It is easy to check that all the conditions are satisfied. In particular,

iQω = −
1

2
ǫabcdd(ξaξbρc

kρkd +
Λ

4
ξaξbξcξd)− αd(ξcξdρc

kρkd) . (4.33)

If we parametrize the space of sections by

σ∗(ξa) = eaµθ
µ ,

σ∗(ρab) = ρab,µθ
µ ,

(4.34)

the associated action takes the following form:

S[ea, ρab] =

∫
eaebT

abcd(dρcd + ρc
kρkd +

Λ

4
eced) , (4.35)

where T abcd = 1
2ǫ

abcd + α
2 (η

acηbd − ηadηbc). This is the Holst generalization of

the usual Cartan-Weyl action which is reproduced at α = 0. For generic α the

27



action is still equivalent to that with α = 0 and hence also describes the standard

Einstein gravity. The construction of the BV formulation on the symplectic

quotient of the super-jet bundle is a direct generalization of that from [40].

We have seen that the case where α = ±1 is a special one because the kernel

distribution of (4.32) involves (anti)-selfdual components ρ∓ab of ρab. In this case

(for definiteness we stick to α = 1) the action takes the form [82, 83, 44]:

ScCW [ea, ρab] =

∫
eaebR+

ab(ρ) (4.36)

where R+ denotes a selfdual part of the curvature. In particular, ScCW does not

depend on the anti-selfdual component ω− of the spin-connection ω. Moreover,

the respective BV action does not involve ghosts and antifields associated to ρ−

because they belong to the kernel of the presymplectic structure and hence do

not enter the induced BV formulation. Nevertheless, the action is still equivalent

to the full Einstein gravity. Varying w.r.t. ω+ gives that ω+
ab = ω+

ab(e) is the

selfdual part of the Levi-Chevita connection associated to ea. Varying w.r.t. ea

tells that the selfdual part of the Riemann tensor associated to ea is Einstein.

This in turn implies that the full Riemann tensor is Einstein.

The formulation in the case of α = ±1 can be achieved by taking a quotient

of the initial E by the subdistribution of the kernel distribution, generated by
∂

∂ρ∓ab
. In fact this is a maximal regular subbundle of TE that belongs to the

kernel distribution. It is easy to check that such a quotient is again a weak

presymplectic gPDE and the gauge theory it encodes is precisely (4.36).

4.5 Plebansky gravity

Consider a trivial bundle E → T [1]X with the following coordinates:

Bi gh = 2 ,

C i, θa gh = 1 ,

xa gh = 0 .

(4.37)

Here the index i is the su(2) algebra index. The coordinates Bi are not totally

independent, they are subject to the following relation:

BiBj =
1

3
δijBkBk . (4.38)

This means that the actual fiber of our system is the nonregular ”surface” (4.38)

in the space with coordinates Bi, C i. However, we are going to see that the
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prolongation of this surface is regular provided one restricts to configurations

where the 2-form field associated to Bi
ab is in a certain sense nondegenerate.

The action of Q is determined by:

QC i = −
1

2
ǫijkCjCk + ΛBi ,

QBi = −ǫijkCjBk ,
(4.39)

where Λ ∈ R is a numerical parameter. It is easy to see thatQ is compatible with

the constraints (4.38), i.e. Q preserves the ideal of functions on E generated by

(4.38).

The presymplectic structure is taken to be:

ω = dC idBi , gh(ω) = 3 . (4.40)

This structure is nondegenerate and would just define a topological BF theory

if we forget about the constraints (4.38). However, it has zero vectors on the

surface, e.g. vector fields

Xjk = (
2

3
Biδjk − Bjδik − Bkδij)

∂

∂Ci
(4.41)

preserve the surface and satisfy

iXjkω =
2

3
δjkBidBi −BjdBk −BkdBj = d(

1

3
δjkBiBi −BjBk) = 0 (4.42)

modulo terms proportional to (4.38). The presymplectic structure isQ invariant:

iQω = d(−
1

2
ǫijkC iCjBk +

Λ

2
BiBi) . (4.43)

Let us now turn to the gauge theory our system defines. To this end we

parametrize the space of sections as:

σ∗(C i) = ρiaθ
a ,

σ∗(Bi) =
1

2
Bi

abθ
aθb ,

(4.44)

where Bi
ab(x) is subject to the prolongation of the equation (4.38). The action

reads as:

S[ρ, B] =

∫
Bi(dρi +

1

2
ǫijkρjρk)−

Λ

2
BiBi (4.45)
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which together with the constraint (4.38) gives the Plebansky formulation of

gravity [45, 84]. More precisely, the conformal Urbantke metric can be defined

in terms of Bi
ab as (see e.g. [84, 85] for more details)

gab
√
|g| = ǫcdnmǫijkBi

acB
j
bdB

k
nm , (4.46)

where it is assumed that Bi
ab is subject to the following nondegeneracy condi-

tions: K ij = Bi
abB

j
cdǫ

abcd is invertible. This, in turn, ensures that gab is invert-

ible. 5

Let us finally discuss the BV formulation encoded in the above weak presym-

plectic gPDE with constraints (4.38). To this end consider the super-jet bun-

dle SJ∞(E) where we need to take into account the prolongation of the con-

straints (4.38). More precisely, we again employ the following special coordi-

nates for the θ jets (see Appendix A for further details)

(π∞E )∗(C i) = C i(θ) =
0
ρi + ρiaθ

a +
1

2

2
ρiabθ

aθb +
1

6

3
ρiabcθ

aθbθc + ...

(π∞E )∗(Bi) = Bi(θ) =
0

Bi +
1

Bi
aθ

a +
1

2
Bi

abθ
aθb +

1

6

3

Bi
abcθ

aθbθc + ...

(4.47)

In these coordinates the prolongation of (4.38) are simply the homogeneous in

θ components of

Bi(θ)Bj(θ)−
δij

3
Bk(θ)Bk(θ) = 0 . (4.48)

To see that the local BV formulation encoded in the above system is proper,

i.e. takes into account all the gauge symmetries, it is enough to show this for a

theory linearized around a vacuum solution Bi(θ) = Σi
abθ

aθb, see e.g. [40] for

a similar analysis. The linearization of (4.38) reads as

0

biΣj

[ab] + Σi
[ab]

0

bj −
2δij

3

0

bkΣk
[ab] = 0 ,

1

bi[aΣ
j

bc] + Σi
[ab

1

bj
c] −

2δij

3

1

bl[aΣ
l
bc] = 0 ,

(4.49)

where bi... denote the perturbation of the respective Bi
... and we only listed ex-

plicitly the equations involving
0

bi and
1

bi.

The first equation implies
0

bi = 0 so there are no ghost 2 variables. To

analyze the second equation let us take Σi
ab describing a constant frame-field.

5If one opts to single out a definite signature for this metric some more conditions are to be imposed on Bi
ab.
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The simplest choice is to take constant Σi
ab such that Σi

abθ
aθb are basis elements

in the space of constant selfdual 2-forms on X. By employing the language

of two-component spinors one then finds that only 4 independent components

survive in bia. These can be parameterized in terms of independent b̃a as
1

bia =

ǫabcdb̃bΣ
i
cd. At the same time θ-jets of C i remain independent.

All in all we conclude that the BV system associated to this weak presym-

plectic gPDE model contains all the right fields: 4 diffeomorphism ghosts pa-

rameterized by 4 independent components of
1

bia, the selfdual Lorentz ghost ρi,
the frame field inside Bi

ab and the Lorentz connection ρia. Of course the respec-

tive BV antifileds must also be present because the hidden BV system has a

nondegenerate symplectic structure.

4.6 Conformal gravity

In this section we present a formulation for conformal gravity using the weak

presymplectic formalism. This is the refined version of the formulation pre-

sented in [41]. However, the advantage of the weak presymplectic gauge PDE

formalism is that one only works with finite-dimensional objects.

Let E → T [1]X be a trivial bundle with the following coordinates:

ξa, ρab, κa, λ, gh = 1

W a
bcd, Cabc, gh = 0

(4.50)

where W a
bcd has the Weyl (”traceless window”) tensor index symmetry and

Cabc has the Cotton (”traceless hook”) tensor index symmetry and xµ, θµ are

coordinates on the base T [1]X. The action of Q is given by:

Qξa = ρacξ
c + ξaλ ,

Qρab = ρacρ
c
b + (ξaκb − ξbκ

a) +
1

2
ξcξdW a

bcd ,

Qκb = κcρ
c
b + λκb +

1

2
ξcξdCbcd ,

Qλ = κcξ
c ,

(4.51)

and

QW a
bcd = PW (ξaCbcd)− ρk

aW k
bcd+

ρb
kW a

kcd + ρc
kW a

bkd + ρd
kW a

bck + 2λW a
bcd ,

QCabc = ρa
kCkbc+

ρb
kCakc + ρc

kCabk + 3λCabk + κkW
k
abc .

(4.52)

31



Here PW denotes a projector on the space of rank-4 tensors that singles out a

Lorentz-irreducible component of tensor structure of a Weyl tensor.

The presymplectic structure is:

ω = ωW − 2ωC ,

ωW = d(ρab)d(W
abnmǫnmpkξ

pξk) , ωC = d(ξa)d(C
a
bcǫ

bcpkξpξk) .
(4.53)

Let us check that the axioms are satisfied. We have:

iqωW = d(ρalρ
l
bW

abnmǫnmpkξ
pξk) + (ξaκb − ξbκa)d(W

abnmǫnmpkξ
pξk)+

+
1

2
Wabijξ

iξjd(W abnmǫnmpkξ
pξk) + d(ρab)ξ

jPW (δajC
bnm)ǫnmpkξ

pξk , (4.54)

and

iqωC = ρanξ
nd(Ca

bcǫ
bcpkξpξk) + d(ξa)ρa

nCnbcǫ
bcpkξpξk+

+ξaλd(C
a
bcǫ

bcpkξpξk) + d(ξa)λC
a
bcǫ

bcpkξpξk+

+d(ξa)κkW
k
abcǫ

bcpkξpξk .

(4.55)

Together they satisfy iQω + dL = 0 with:

L = −ρalρ
l
bW

abnmǫnmpkξ
pξk−2ξaκbW

abnmǫnmpkξ
pξk+2ρanξ

nCa
bcǫ

bcpkξpξk+

+ 2ξaλC
a
bcǫ

bcpkξpξk −
1

4
Wabijξ

iξjW abnmǫnmpkξ
pξk . (4.56)

Finally, it is straightforward to see that that QL = 0 as well as iQiQω = 0.

The action functional determined by the above data coincides with the one

from [41], where it was shown to determine an equivalent formulation of con-

formal gravity.
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A Coordinates on superjet space

Given an adopted coordinate system {xa, θa, uA} on E → T [1]X, there exists

the associated coordinate system {xa, θa, uA...|...} on SJ∞(E) defined as

uAa1...|b1... = Da1...D
θ
b1
...uA , (A.1)

where Da = tot(
∂

∂xa
), Dθ

b = tot(
∂

∂θb
) are the total derivatives.

However, it appears very useful to employ another natural coordinate system

on SJ∞(E). The new coordinates are the same xa, θa and ψA
a1...|b1... defined as:

(ψA
a1...|b1... − uAa1...|b1...)|θ=0 = 0 ,

Dθ
aψ

A
a1...|b1... = 0 .

(A.2)

Note that in this coordinate system Dθ
a =

∂

∂θa
. In particular, coefficients of any

evolutionary vector field s do not depend on θ thanks to [Dθ
a, s] = 0.

It is easy to write down the expression of the old coordinates in terms of the

new ones:

uA = ψA + θaψA
|a +

1

2
θaθbψA

|ab + . . .

uA|a = ψA
|a + θbψA

|ab +
1

2
θbθcψA

|abc . . .

. . . .

(A.3)

It is clear that coordinates ψA
...|... are the ones which are constant along the θ-part

of the Cartan distribution. Note that this is a special feature of Grassmann odd

base-space coordinates because the even analog, i.e. coordinates φA...|... such that

Daφ
A
...|... = 0 simply do not exist. Indeed, it is easy to see that Daφ

A
...|... = 0 do

not have solutions in the space of local functions.
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