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Abstract. In this paper, we focus our attention on the positive solutions to second-order
nonlinear ordinary differential equations of the form u′′ + q(t)g(u) = 0, where q is a sign-
changing weight and g is a superlinear function. We exploit the classical shooting approach and
the comparison theorem to present non-degeneracy and exact multiplicity results for positive
solutions. This completes the multiplicity results obtained by Feltrin and Zanolin. Numerical
examples and some related open problems are also discussed.

1. Introduction

The paper investigates the positive solutions to the Dirichlet boundary value problem

(1.1)

{
−∆u = ω(x)g(u), in Ω,
u = 0, on ∂Ω,

where Ω ⊆ RN is a bounded domain, ω is a sign-changing weight, and g is a function with
a superlinear growth, i.e., g(u) ∼ up with p > 1. This kind of problems is usually called
“superlinear indefinite”, a terminology that has been popularized starting with [38]. As usual,
a solution u of (1.1) is said to be positive if u > 0 in Ω.

In the last thirty years a great quantity of existence and multiplicity results for positive
solutions to indefinite problems, both in the ODE and PDE cases, have been obtained using
different techniques, such as topological and variational methods, see for instance [2, 3, 7, 15,
16, 22, 45, 52], and also [9, 25] for a quite complete panorama of the research done in this
framework. An important motivation for the analysis of the superlinear indefinite problem
(1.1) comes from the search for stationary solutions to parabolic equations arising in different
frameworks, such as reaction-diffusion processes and population dynamics models (see [1, 46]
and the references therein).

Our investigation lies on a line of research initiated by the work of López-Gómez [44, 45]
concerning the analysis of the number of positive solutions depending on the nodal behaviour
of ω. More precisely, we are interested in weight functions ω depending on a real parameter µ
which plays the role of strengthening or weakening its positive and negative parts (cf. [5, 45, 46]).
More precisely, ω can be expressed in this manner

ω = h+ − µh−,

where µ > 0 is a parameter, h : [a, b] → R, with h± := |h|/2 ± h/2 the positive and negative
parts of h.

The starting point of our research is the following conjecture proposed by Gómez-Reñasco
and López-Gómez in [35] (see also [31]).
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Conjecture (Gómez-Reñasco and López-Gómez). There exists µ∗ > 0 such that for every
µ > µ∗ the Dirichlet problem

(1.2)

{
u′′ +

(
h+(t)− µh−(t)

)
|u|p−1u = 0, p > 1,

u(a) = 0 = u(b),

possesses at least 2m − 1 positive solutions, whenever h has m intervals where it is positive
separated by intervals where it is negative.

A first partial positive answer of this conjecture was proposed by Gaudenzi, Habets and
Zanolin in [32], where they show the existence of three positive solutions to (1.2) when h has
two positivity intervals separated by a negativity one, that is m = 2, and µ is large. Later
this result was improved by the same authors in [33] for m = 3. Both papers are based on a
very precise phase-plane analysis and a shooting technique (the possibility of using the shooting
method in the general case m ⩾ 2 has been recently asserted in [8], see Remark 2.2 therein).

In [29], exploiting a topological degree approach, Feltrin and Zanolin solved the conjecture for
every positive integer m and a general superlinear function g. Many other analogous multiplicity
results for positive solutions followed in different context: supersublinear nonlinearities, logistic-
type nonlinearities, periodic and Neumann boundary conditions, ϕ-Laplacian operators, etc.
(cf. [10, 11, 26, 27, 28, 30]).

When analyzing these multiplicity results a natural question arise: Is the number of solutions
given by the conjecture (and its variants) optimal? In other words, one should understand
whether there are examples of problems of the form (1.2) admitting exactly 2m − 1 positive
solutions for µ large.

The main result of the present manuscript, as far as we know for the first time in literature,
gives a positive answer to the above question and states the following. For simplicity in the
exposition, we now present it in a special case (see the general result in Theorem 3.3).

Theorem 1.1. Let k ∈ N with k ⩾ 2. Let h(t) = sin
(
kπt/(b− a)

)
. Then, there exists µ∗∗ > 0

such that for every µ > µ∗∗ the Dirichlet problem (1.2) admits exactly 2m−1 positive solutions,
where m is the integer part of (k + 1)/2. These solutions are non-degenerate.

Roughly speaking, Theorem 1.1 can be considered as a continuation result, in the sense
that we are going to explain in the following. We start by remarking that the existence of at
least 2m − 1 positive solutions is given by [29] and so we have to prove that there are at most
2m − 1 solutions. From [29], we observe that the number 2m − 1 comes from the possibility of
prescribing, for a positive solution, the behavior in each interval I where h is positive between
two possible ones: either the solution is “small” on I or it is “large” on I (the solution which is
“small” in every interval of positivity is identically zero, thus one have to subtract 1 from the
total).

The first step towards establishing Theorem 1.1 is to analyze the behaviour of each positive
solution of (1.2) when µ → +∞. In particular, we prove that the limit profile of the solution
is zero in the intervals where h is negative and solves the Dirichlet problem in each interval of
positivity (see Proposition 3.2). The second step is to prove that the number of limit profiles
(as µ → +∞) is exactly 2m − 1. The last step is a “continuation from infinity” to guarantee
that, for µ > 0 sufficiently large, 2m−1 remains the exact number of positive solutions of (1.2).

The determination of the number of limit profiles relies on uniqueness criteria for positive
solutions to

(1.3)

{
u′′ + f(t, u) = 0,

u(a) = 0 = u(b),
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where f : [a, b] × R → R. The classical multiplicity result proposed by Moore and Nehari in
[47] (they consider f(t, u) = q(t)u3 with q piecewise constant and non-negative) shows that
the problem of uniqueness can be of great complexity even in very simple situations (even in
the case of smooth functions, see Fig. 9). Looking at the literature, one can notice that the
question of uniqueness of positive solutions to (1.3) has received a considerable attention when
the nonlinear term f is non-negative, see for instance [18, 20, 23, 41, 48, 56] for the ODE case
and also [4, 46, 50] for the PDE case, while the few available results when f is sign-changing are
contained in [6, 12, 13, 14, 36, 49]. The approach we adopt in this paper is based on a method
introduced by Kolodner [40] and subsequently extended by Coffman [17, 18]. This method is
reminiscent of the shooting one since it consists in reducing the boundary value problem for
the linearization of (1.3) to an initial value problem and in tracking the point of intersection
of the solution with the t-axis (see also [41] for a survey and the references therein for a list of
the main applications).

To reach our goal however, the uniqueness of the limit profile with a given number of bumps
is not enough. Its non-degeneracy is also essential for the continuation argument to work.
In our case, though, the limit profile does not solve an ODE (the limit profile is not twice
differentiable!) and so the meaning of its non-degeneracy is not clear. To circumvent this
difficulty for the one-dimensional case of (1.1), namely

(1.4)

{
u′′ +

(
h+(t)− µh−(t)

)
g(u) = 0,

u(a) = 0 = u(b),

where h changes sign, we have to work separately on each sub-interval where h is positive
and negative. To “compose” the non-degeneracy results on each sub-interval (see the proof of
Theorem 3.3), the classical uniqueness results mentioned above need to be extended to precisely
track the sign of the solution to the linearized equation (see Propositions 2.10 and 2.11).

For the reader’s convenience, we end this introduction by listing the hypotheses used. In the
sequel, we assume that h : [a, b] → R is an L1-function (it will be specified explicitly when we
need h to be more regular) and g : [0,+∞[ → [0,+∞[ is a C1-function such that

(g+) g(0) = 0, g(s) > 0, for all s ∈ ]0,+∞[.

Moreover, we also make use of the following superlinear growth conditions

(gs) g′(s) >
g(s)

s
, for all s ∈ ]0,+∞[,

(g0) g′(0) = lim
s→0+

g(s)

s
= 0,

and

(g∞) lim
s→+∞

g(s)

s
= +∞.

The paper is organized as follows. In Section 2, exploiting the classical Kolodner–Coffman
technique, we refine some uniqueness results and present some technical estimates. Those
results are then exploited in Section 3 to give the proof of the main exact multiplicity result,
based on the study of limit profiles of positive solutions to (1.4). At last, in Section 4, we
present some numerical experiments to graphically illustrate the main theorem and to shed
some light on the behavior of the branches of solutions as µ moves away from +∞; moreover,
some related open questions are discussed.
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2. Uniqueness

In this section, we adapt and extend the classical Kolodner–Coffman method [17, 18, 40, 41]
to have more information on the linearized equation at a positive solution to the Dirichlet
boundary value problem

(2.1)

{
u′′ + q(t)g(u) = 0,

u(a) = 0 = u(b),

where q ∈ L1([a, b], [0,+∞[), q ̸≡ 0, and g ∈ C1([0,+∞[, [0,+∞[) satisfies (g+) and (gs).
Thanks to (g+), we can extend g to a continuous function on the whole real line by setting
g(u) = 0 whenever u ∈ ]−∞, 0]. For α ∈ [0,+∞[, let u(·;α) be the unique maximal solution to
the differential equation in (2.1) satisfying the initial conditions

u(a;α) = 0, u′(a;α) = α.

Given that the solution u(·;α) is concave when it is positive and is affine when it is negative,
u(·;α) exists on [a, b].

When α > 0, let us also denote B(α) the first t ∈ ]a, b] such that u(t;α) = 0 (if such a time t
exists). Let domB ⊆ ]0,+∞[ be the domain of B. Notice that if α ∈ domB, then u′(B(α);α) <
0 and, since g ≡ 0 for negative real numbers, u(s;α) < 0 and u′(s;α) = u′(B(α);α) for every
s ∈ ]B(α), b].

A first criteria ensuring uniqueness of positive solutions of (2.1) is the following.

Lemma 2.1. Under the above assumptions, if

(2.2) ∀α ∈ domB, B(α) = b ⇒ ∂αu(b;α) < 0,

then problem (2.1) has at most one positive solution.

Proof. We divide the proof into two steps.
Step 1. The map B is continuously differentiable.

First of all, it is classical (see e.g. [37, Chapter V] or [53]) that u(·;α) is continuously differ-
entiable with respect to α. Moreover, we have that

u
(
B(α);α

)
= 0, u′(B(α);α

)
< 0, for all α ∈ domB.

From an application of the implicit function theorem, we deduce that B is continuously differ-
entiable (from one side if α lies on the boundary of its domain) and

(2.3) ∂αB(α) = −
∂αu
(
B(α);α

)
u′
(
B(α);α

) .

Step 2. There exists at most one α ∈ domB such that B(α) = b.
Assume that (2.1) has a positive solution i.e., there exists α0 > 0 such that α0 ∈ domB and

B(α0) = b. We claim that [α0,+∞[ ⊆ domB and that for all α > α0, B(α) ∈ ]0, b[. Let ]α0, α1[
be the largest connected set such that

(2.4) ∀α ∈ ]α0, α1[, α ∈ domB and B(α) < b.

Clearly, (2.2)–(2.3) implies that ]α0, α1[ ̸= ∅. If α1 = +∞, the claim is proved. If not, let us
consider t1 ∈ [a, b] a limit point of B(α) as α → α1. The continuity of (t, α) 7→ u(t;α) implies
that u(t1;α1) = 0 and that u(·;α1) ⩾ 0 on [a, t1]. One cannot have t1 = a because otherwise
(tracking the maximums on [a,B(α)]) that would imply α1 = u′(a;α1) = 0. Therefore, as all
roots of u(·;α1) must be simple, u(·;α1) > 0 on ]a, t1[ and t1 = B(α1). If t1 = b, (2.4) implies
that ∂αB(α1) ⩾ 0 which contradicts (2.2). If t1 ∈ ]a, b[, the intermediate value theorem implies



UNIQUENESS, NON-DEGENERACY, AND EXACT MULTIPLICITY OF POSITIVE SOLUTIONS 5

that α1 is in the interior of domB and the continuity of B implies that B < b on a neighborhood
of α1, contradicting the maximality of α1.

Note that the previous argument also forbids any α1 < α0 such that B(α1) = b as we can
replay it with α0 and α1 swapped. The claim is thus proved. □

Remark 2.2. Notice that (gs) was not used in the above proof. Moreover, Lemma 2.1 remains
valid for other boundary conditions mutatis mutandis. For example for the boundary conditions
u′(a) = 0 = u(b) (or u(a) = 0 = u′(b) as we can swap a and b), the function u(·;α) is defined
as the unique solution to

(2.5)

{
u′′ + q(t)g(u) = 0,

u(a;α) = α, u′(a;α) = 0,

and B(α) is, as before, the first root of u(·;α) in ]a, b]. A criterion for uniqueness is again (2.2).

Our aim now is to provide conditions for the applicability of Lemma 2.1, namely sufficient
conditions that guarantee ∂αu(b;α) < 0, for every α ∈ [0,+∞[ yielding a solution. First of all,
we recall the following useful version of the well known Sturm’s Comparison Theorem [37, 57].

Theorem 2.3 (Sturm’s comparison Theorem). Let ω1, ω2 : [c, d] → R be L1-functions with
ω1(t) ⩽ ω2(t) in [c, d] with a strict inequality on a set of positive measure. Let u1 and u2 be
nontrivial solutions to

u′′
i + ωi(t)ui = 0 on ]c, d[, i = 1, 2.

Assume that one of the following conditions holds
u1(c) = 0 = u1(d);
u′
1(c) = 0 = u1(d) and u′

2(c) = 0.
Then, u2 must vanish at some point in ]c, d[.

Then, we have the following.

Lemma 2.4. Suppose the assumptions at the beginning of this section hold. Then, for all α > 0
such that α ∈ domB, the function ∂αu(·;α) has at least one zero in ]a,B(α)[.

Proof. Fix α > 0 with α ∈ domB, and let b̂ := B(α). We apply the Sturm’s Comparison
Theorem 2.3 to problem (2.1) written in the following form

u′′ +
q(t)g(u)

u
u = 0, u(a) = 0 = u(b̂),

and the equation satisfied by w := ∂αu(·;α), namely
w′′ + q(t)g′(u(t;α))w = 0.

Exploiting (gs), we deduce that w has at least one zero between the two zeros a and b̂ of u(·;α).
The lemma is proved. □

Remark 2.5. As before, Lemma 2.4 remains valid mutatis mutandis for the boundary conditions
u′(a) = 0 = u(b) (and u(a) = 0 = u′(b), swapping a and b).

Given the previous lemma, to establish that ∂αu(b;α) < 0, it is sufficient to show that
∂αu(·;α) cannot have more than one zero in ]a, b]. Below we will refine some classical criteria
for this. These require to linearize equation (2.1); thus a stronger regularity on q is needed,
namely that q is of bounded variation. Recall that the space BV(I) of functions of bounded
variation on an interval I is defined by [43, Definition 7.1]:

BV(I) = {u ∈ L1(I) | u′ is a finite signed Radon measure}.
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Here u′ denotes the distributional derivative of u. Each u ∈ BV(I) can be written as the
difference of two bounded nondecreasing functions and thus admits representatives that are
discontinuous at an at most countable number of points [43, Theorem 7.3 and Theorem 2.36].
Therefore BV(I) ⊆ L∞(I). Moreover, the left and right limits of such representatives exist
at any point x in the closure of I and are independent of the representative [43, Theorem 7.3
and Theorem 2.17]. These limits will respectively be denoted by u(x−) and u(x+). A special
representative of u, called the precise representative and denoted by u, averages the left and
right limits:

u(x) := 1
2

(
u(x−) + u(x+)

)
, for any x ∈ I.

The following version of the Fundamental Theorem of Calculus holds [43, Theorem 6.25]: for
all a, b ∈ I with a ⩽ b,

(2.6)
∫
]a,b]

u′(dx) = u′(]a, b]) = u(b+)− u(a+).

If one integrates over the interval ]a, b[, u(b+) must be replaced with u(b−). Finally we also
need a generalization of the Leibniz rule.

Proposition 2.6 (Leibniz rule). Let I ⊆ R be an interval and u, v ∈ BV(I). Then uv ∈ BV (I)
and

(2.7) (uv)′ = u′ v + u v′.

A proof of Proposition 2.6 is given in [55, pp. 189–191]. We offer an alternative elementary
proof for the one-dimensional case for the reader convenience.

Proof. The fact that uv ∈ BV (I) is asserted on page 45 of [43]. The right hand side of (2.7)
defines a measure because u′ and v′ are Radon measures and u and v are bounded and continuous
except possibly at an at most countable number of points. To establish (2.7), it suffices to
prove that the measures on both sides of (2.7) coincide on intervals of the form ]a, b] ⊆ I [43,
Corollary B.16]. Thanks to (2.6), (uv)′

(
]a, b]

)
= u(b+)v(b+) − u(a+)v(a+). From (2.6), we

deduce that

∀x ∈ ]a, b], v(x) = v(a+) + 1
2

(∫
]a,x[

+

∫
]a,x]

)
v′(dy)

and similarly for u. Therefore∫
]a,b]

v(x)u′(dx) = v(a+)
(
u(b+)− u(a+)

)
+

∫
]a,b]

1
2

(∫
]a,x[

+

∫
]a,x]

)
v′(dy)u′(dx).

A similar computation followed by a permutation of the integrals yields∫
]a,b]

u(y)v′(dy) = u(a+)
(
v(b+)− v(a+)

)
+

∫
]a,b]

1
2

(∫
]x,b]

+

∫
[x,b]

)
v′(dy)u′(dx).

Summing the last two integrals gives

(u′ v + u v′)
(
]a, b]

)
= v(a+)

(
u(b+)− u(a+)

)
+ u(a+)

(
v(b+)− v(a+)

)
+

∫
]a,b]

∫
]a,b]

v′(dy)u′(dx)

= v(a+)
(
u(b+)− u(a+)

)
+ u(a+)

(
v(b+)− v(a+)

)
+
(
v(b+)− v(a+)

)(
u(b+)− u(a+)

)
= (uv)′

(
]a, b]

)
. □
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Notice that assuming q ∈ BV([a, b]) allows q to be piecewise constant as well as piecewise
affine. These simple cases are already not included in the smoothness assumptions of the original
version of the next results. Furthermore, let us highlight that the following proof differs from
the one of Moroney [48] and shows that this result is a consequence of the property (2.2).

Theorem 2.7 (Moroney). Suppose the assumptions at the beginning of this section hold. As-
sume further that q ∈ BV([a, b]) is non-increasing on [a, b]. Then, (2.2) holds for the map
u defined by (2.5). In particular, the differential equation in (2.1) with boundary conditions
u′(a) = 0 = u(b) has at most one positive solution.

Proof. Let u(·;α) be the solution to (2.5). Let α > 0 be such that u(t;α) > 0 for all t ∈ ]a, b[
and vanishes for t = b. Let w(t) := ∂αu(t;α). From Lemma 2.1, we know that there is at most
one positive solution if w(b) < 0 for all such α’s. From Lemma 2.4, we know that w has a
(simple) root in ]a, b[. If we show that w has no other root in ]a, b[, we are done. This will be
done following the ideas of Sturm’s Separation Theorem [57, Theorem 2.6.2].

Suppose on the contrary that there are two roots of w in ]a, b]. Thus there exists c < d such
that

w(c) = 0 = w(d), w < 0 on ]c, d[, and w′(c) < 0 < w′(d).

Recall that w satisfies w′′ + q(t)g′(u)w = 0 where u(·) := u(·;α). Now consider u′(·) := u′(·;α).
Differentiating the equation of u and using Proposition 2.6, we obtain that u′ satisfies

u′′′ + q(t)g′(u)u′ = −q′(t)g(u)

in the sense of measures. Note that, the function g(u) being continuous, g(u) = g(u). Moreover
q = q a.e. for the Lebesgue measure (as the number of discontinuity points of q is at most
countable) and consequently also for the measure g′(u)u′ dx. Thus u′ satisfies

u′′′ + q(t)g′(u)u′ = −q′(t)g(u).

Multiplying the equation for w (see (2.10)) by u′ and vice versa and subtracting them gives

(2.8)
d

dt

[
u′(t)w′(t)− u′′(t)w(t)

]
= q′(t)g(u)w(t)

in the sense of measures. Here we made use of (2.7) as well as the identities u′ = u′, w = w,
w′ = w′, because these functions are (absolutely) continuous, and u′′w′ = u′′w′ because w′ ∈ L1

and so the measure w′ dx does not care about the value of u′′ at its points of discontinuity
which are at most countable. Then integrating from c to d and using (2.6) yields:

u′(d)w′(d)− u′(c)w′(c) =

∫
]c,d]

g(u(t))w(t) q′(dt).

Since q′ ⩽ 0 as a measure on [a, b], the right-hand side is ⩾ 0. On the other hand, u′(t) =∫ t

a
−qg(u) ⩽ 0 so the left-hand side is ⩽ 0. Therefore both are null and 0 = u′(c) =

∫ c

a
−qg(u).

This in turn implies that q ≡ 0 a.e. on [a, c] because g(u) > 0 on ]a, b[ as a consequence of (g+).
Therefore w′′ ≡ 0 on ]a, c[ which, given the initial conditions of w, contradicts the fact that c
is a root of w. □

The next lemma proposes sufficient conditions on the weight q ensuring the symmetry with
respect to the middle point of the interval [a, b] of every positive solution of (2.1) (cf. [34] for
an analogous result in the PDE setting under more restrictive regularity assumptions).
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Lemma 2.8. Let g ∈ C1([0,+∞[, [0,+∞[) satisfy (g+). Let q ∈ L1([a, b]) be such that q ⩾ 0,
q(t) = q(a + b − t) a.e. on [a, b], and q non-decreasing on [a, c], where c := (a + b)/2. Then,
every positive solution u of (2.1) is symmetric, i.e., u(t) = u(a+ b− t), for every t ∈ [a, b], and
is non-decreasing on [a, c].

Proof. Let u be a positive solution of (2.1). Since u is concave, the maximum of u in [a, b] is
attained either at a unique maximum point t∗, or at all the points of a subinterval J ⊆ [a, b] (if
q ≡ 0 in J), in this latter case let t∗ := min J . By contradiction, assume that t∗ ̸= c.

Due to the symmetry of q, t 7→ u(a+b−t) is another positive solution of (2.1); hence, without
loss of generality, we can assume that t∗ ∈ [a, c[. Let ũ : [a, 2t∗−a] → R and q̃ : [a, 2t∗−a] → R
be defined as follows

(2.9) ũ(t) :=

{
u(t), if t ∈ [a, t∗],
u(2t∗ − t), if t ∈ [t∗, 2t∗ − a],

q̃(t) :=

{
q(t), if t ∈ [a, t∗],
q(2t∗ − t), if t ∈ [t∗, 2t∗ − a].

See Figure 1 for a graphical representation. We notice that ũ and q̃ are symmetric with respect
to t∗ and ũ satisfies {

ũ′′ + q̃(t)g(ũ) = 0, in [a, 2t∗ − a] ⊆ [a, b],

ũ(a) = 0 = ũ(2t∗ − a).

By the monotonicity and the symmetry of q, we observe that q̃ ⩽ q in [a, 2t∗ − a]. At last, if
q̃ < q on a set of positive measure, by the Sturm’s Comparison Theorem 2.3, we conclude that
u should vanish in ]a, 2t∗ − a[, a contradiction. If instead q̃ ≡ q a.e. on [a, 2t∗ − a], then ũ ≡ u
on [a, 2t∗− a] (as they solve the same initial value problem) and so u(2t∗− a) = ũ(2t∗− a) = 0,
again a contradiction.

The monotonicity of u is a direct consequence of its concavity. □

a c bt∗ ã

u

ũ

a c bt∗ ã

q

q̃

Figure 1. Qualitative representation of ũ and q̃ defined in (2.9), where ã = 2t∗ − a.

Combining Lemma 2.8 with Theorem 2.7, we obtain the first criterion for uniqueness to
problem (2.1).

Theorem 2.9. Suppose the assumptions at the beginning of this section hold. Let q ∈ BV([a, b])
be such that q(t) = q(a+b−t) a.e. on [a, b] and q is non-decreasing on [a, c], where c = (a+b)/2.
Then, problem (2.1) has at most one positive solution.

Note that this theorem establishes uniqueness without actually proving that (2.2) holds.
However, for the next section, this and actually more information on the solutions of the
linearized equation is necessary. This is what we do in the next proposition.

Proposition 2.10. Under the same assumptions as in Theorem 2.9, if u is a positive solution
to (2.1) and w is a nontrivial solution to the linearized equation

(2.10)

{
w′′ + q(t)g′(u)w = 0,

w(a) ⩾ 0, w′(a) ⩾ 0.
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Then, w(b) < 0 and w′(b) < 0.

Proof. Reasoning as in the proof of Lemma 2.4, using Sturm’s Comparison Theorem 2.3, we
show the existence of ξ ∈ ]a, b[ such that w(ξ) = 0 and w(t) > 0, for all t ∈ ]a, ξ[. We claim
that

(2.11) ξ ∈ ]c, b[,

where c := (a + b)/2. We suppose by contradiction that ξ ∈ ]a, c]. Let η ∈ [a, c[ be such that
w′(η) = 0. Such a point η exists because of the conditions on w at a in (2.10). Differentiating
the equation in (2.1), we obtain, as in the proof of Theorem 2.7, the following equation for u′:

u′′′ + q(t)g′(u)u′ = −q′(t)g(u)

in the sense of measures. Then multiplying the equation of w in (2.10) by u′ and vice versa
and subtracting them, we obtain (2.8). An integration from η to ξ then yields

u′(ξ)w′(ξ) + u′′(η+)w(η) =

∫
]η,ξ]

g(u(t))w(t) q′(dt).

The left-hand side is ⩽ 0 since w(η) > 0, u′′(η+) = −q(η+)g(u(η)) ⩽ 0, w′(ξ) < 0, and
u′(ξ) ⩾ 0 (thanks to Lemma 2.8). The right-hand side is ⩾ 0 thanks to the hypothesis q′ ⩾ 0
in the sense of measures on [a, c]. Therefore both are null and this implies that q′ ≡ 0 on ]η, ξ]
and q(η+) = 0. Thus q ≡ 0 a.e. on [η, ξ], so w′′ ≡ 0 in [η, ξ] and we deduce that w′ ≡ w′(η) = 0.
Hence w is constant in [η, ξ]. This contradiction proves the claim (2.11).

Next, we prove that there are no critical points of w in [ξ, b]. By contradiction, let γ ∈ [ξ, b]
be such that w′(γ) = 0 (without loss of generality, assume that γ is the first critical point after
ξ). Proceeding as before, we integrate (2.8) from ξ to γ, obtaining

0 ⩾ −u′′(γ+)w(γ)− u′(ξ)w′(ξ) =

∫
]ξ,γ]

g
(
u(t)

)
w(t) q′(dt) ⩾ 0,

since w(γ) < 0, u′′(γ+) = −q(γ+)g(u(γ)) ⩽ 0, w′(ξ) < 0, u′(ξ) ⩽ 0 (due to the symmetry, as
before). Therefore q′ ≡ 0 on ]ξ, γ] and q(γ+) = 0. Thus q ≡ 0 a.e. on [ξ, γ], which in turn
implies that w′ is constant on [ξ, γ], contradicting the definition of η. In conclusion, no critical
points of w exist in [ξ, b]. Hence w′ < 0 in [ξ, b] and the proof is complete. □

Let us conclude this section by showing that the previous result holds uniformly with respect
to perturbations of g′.

Proposition 2.11. Under the assumptions of Theorem 2.9, let u be a positive solution to (2.1)
and (Gn)n be a sequence in C([a, b]) such that Gn → g′(u(·)) uniformly on [a, b]. Further, let
(wn)n be a sequence of solutions to{

w′′ + q(t)Gn(t)w = 0,

w(a) ⩾ 0, w′(a) ⩾ 0.

Then, there exists ε > 0 such that, for all n sufficiently large,

wn(b) ⩽ −ε
(
wn(a) + w′

n(a)
)

and w′
n(b) ⩽ −ε

(
wn(a) + w′

n(a)
)
.

Proof. Let z1,n (resp. z2,n) be the solution to

(2.12)

{
w′′ + q(t)Gn(t)w = 0,

w(a) = 1, w′(a) = 0,

(
resp.

{
w′′ + q(t)Gn(t)w = 0,

w(a) = 0, w′(a) = 1

)
.
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We claim that there exists ε > 0 such that, for all n sufficiently large and j ∈ {1, 2},
(2.13) zj,n(b) ⩽ −ε and z′j,n(b) ⩽ −ε.

Suppose on the contrary that there exists a j ∈ {1, 2} and a subsequence, still denoted (zj,n)n,
such that

(2.14) lim inf
n→∞

zj,n ⩾ 0 or lim inf
n→∞

z′j,n ⩾ 0.

Because (Gn)n is bounded in C([a, b]) and the initial conditions are also bounded, Grönwall’s
Lemma on z2j,n + (z′j,n)

2 implies that the sequence (zj,n)n is bounded in C1([a, b]). Now, using
again the equation and invoking Ascoli–Arzelà Theorem, one deduces that (zj,n)n converges
(taking if necessary a subsequence) in C1 and one names its limit zj,∞. Thanks to Gn → g′(u),
zj,∞ is a solution to

(2.15)

{
z′′ + q(t)g′(u(t))z = 0,

z(a) = 1, z′(a) = 0,
(if j = 1) or

{
z′′ + q(t)g′(u(t))z = 0,

z(a) = 0, z′(a) = 1
(if j = 2).

Moreover, (2.14) implies that zj,∞(b) ⩾ 0 or z′j,∞(b) ⩾ 0. This contradicts Proposition 2.10.
To conclude the proof, it suffices to notice that

(2.16) wn = wn(a)z1,n + w′
n(a)z2,n

and therefore (2.13) implies the claim. □

3. Exact multiplicity

In this section, we focus our attention on the Dirichlet boundary value problem

(3.1)

{
u′′ +

(
h+(t)− µh−(t)

)
g(u) = 0,

u(a) = 0 = u(b),

where µ is a real parameter, h+ and h− denote the positive and, respectively, the negative part
of the weight function h, namely h± := |h|/2± h/2.

In the present section, our starting point is the following result proposed in [29] for Dirich-
let and mixed boundary conditions and subsequently in [30] for the Neumann and periodic
boundary value problems. In the framework of problem (3.1) it reads as follows.

Theorem 3.1 (Feltrin and Zanolin, 2015). Let g : [0,+∞[ → [0,+∞[ be a continuous function
satisfying (g+), (g0) and (g∞). Let h : [a, b] → R be an L1-function. Suppose that
(h∗) there exist 2m+ 2 points

a = τ0 ⩽ σ1 < τ1 < · · · < σi < τi < · · · < σm < τm ⩽ σm+1 = b,

such that h ≻ 0 on [σi, τi], for every i ∈ {1, . . . ,m}, and h ≺ 0 on [τi, σi+1], for every
i ∈ {0, . . . ,m}.

Then, there exists µ∗ > 0 such that for every µ > µ∗ problem (3.1) has at least 2m − 1 positive
solutions.

The symbol h ≻ 0 means that h ⩾ 0 almost everywhere and h ̸≡ 0 on a given interval, and
h ≺ 0 stands for −h ≻ 0. Moreover, for simplicity in the sequel, we set

I+i := [σi, τi], i ∈ {1, . . . ,m}, and I−i := [τi, σi+1], i ∈ {0, . . . ,m},
the intervals of positivity and the ones of negativity for the function h. Without loss of gen-
erality, from now on, we assume that the points σi and τi are selected in such a manner that
h ̸≡ 0 on all left neighborhoods of σi and on all right neighborhoods of τi (cf. [29, Section 5.2]).
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In [29] the authors introduce a topological approach based on an extension of the Leray–
Schauder degree for locally compact operators on open (possibly unbounded) sets. Along the
proof, they first introduce three constants 0 < r < R (with r small and R large) and µ∗ > 0
(sufficiently large) such that for every positive solution u of (3.1) with µ > µ∗, it holds that

(3.2) 0 < max
t∈I+i

|u(t)| < R, max
t∈I+i

|u(t)| ≠ r, for every i ∈ {1, . . . ,m}.

Next, based on the above mentioned degree theory, given any nonempty set of indices I ⊆
{1, . . . ,m}, they prove that there exists at least one positive solution uI,µ to (3.1) contained in
the set

(3.3)
ΛI :=

{
u ∈ C([a, b]) : r < max

t∈I+i
|u(t)| < R, i ∈ I and

max
t∈I+i

|u(t)| < r, i ∈ {1, . . . ,m} \ I
}
,

namely, uI,µ is “small” on I+i for i /∈ I and “large” (i.e., r < maxI+i uI,µ < R) if i ∈ I. It is
worth noting that uI,µ is concave in each I+i and convex in each I−i , due to the sign condition
on h. As a consequence, ∥u∥∞ < R. Let us also remark that the precise value of r > 0 does not
matter as long as it is small enough so that the only non-negative solution in Λ∅ (i.e., small on
all the intervals I+i ) is the trivial solution (see [29, Lemma 2.2]).

The following result illustrates the convergence of the solutions for µ → +∞.

Proposition 3.2. Let (µn)n ⊆ ]µ∗,+∞[ be such that µn → +∞, and (uµn)n be a sequence
of positive solutions to problem (3.1). Then, there exists a continuous function u∞ : [a, b] →
[0,+∞[ such that, going to a subsequence of (uµn)n if necessary, one has

lim
n→+∞

uµn = u∞ uniformly on [a, b].

Moreover, for all i ∈ {0, . . . ,m}, u∞ ≡ 0 on I−i , and the restriction u∞|I+i : I+i → [0,+∞[ is a
non-negative solution to

(3.4)

{
u′′ + h+(t)g(u) = 0,

u(σi) = 0 = u(τi).

Furthermore, if in addition (uµn)n ⊆ ΛI for some I ⊆ {1, . . . ,m} with I ̸= ∅, then, for all
i ∈ {1, . . . ,m} \ I, u∞ ≡ 0 on I+i and, for all i ∈ I, u∞|I+i is a positive solution to (3.4).

Proof. Let (µn)n ⊆ ]µ∗,+∞[ be such that µn → +∞, and (uµn)n be a sequence of positive
solutions to problem (3.1). Then, recalling (3.2) and (3.3), we find

uµn ∈
⋃

I⊆{1,...,m}, I̸=∅

ΛI , for every n.

The case I = ∅ is excluded because uµn is nontrivial. Thus, up to a subsequence, (uµn)n ⊆ ΛI

for some nonempty I ⊆ {1, . . . ,m}. From now on, to highlight this property, we denote
(uI,µn)n ⊆ ΛI that subsequence.

The proof borrows some ideas developed in [11, 29, 30]. Let µ > µ∗ and let I ⊆ {1, . . . ,m}
be nonempty. Let uI,µ ∈ ΛI be a solution to problem (3.1). Then, ∥uI,µ∥∞ ⩽ R and

(3.5) |u′′
I,µ(t)| ⩽ h+(t) max

s∈[0,R]
g(s), for a.e. t ∈ I+i ,



12 G. FELTRIN AND C. TROESTLER

for all i ∈ {1, . . . ,m}. Next, since ∥uI,µ∥∞ ⩽ R, the mean value theorem implies that there
exists t∗i ∈ I+i such that |u′

I,µ(t
∗
i )| = |uI,µ(τi)− uI,µ(σi)|/|I+i | ⩽ R/|I+i |. Then, we have

(3.6)

|u′
I,µ(t)| =

∣∣∣∣u′
I,µ(t

∗
i ) +

∫ t

t∗i

u′′
I,µ(ξ) dξ

∣∣∣∣ ⩽ R

|I+i |
+ ∥h∥L1(I+i ) max

s∈[0,R]
g(s) =: κi, for every t ∈ I+i ,

for all i ∈ {1, . . . ,m}. As a consequence of the convexity of uI,µ on I−i , |u′
I,µ(·)| is bounded

on [a, b]. Then, via Ascoli–Arzelà Theorem, there exists uI,∞ ∈ C([a, b]) such that, up to a
subsequence, uI,µn → uI,∞ uniformly on [a, b].

The rest of the proof is divided into three steps.
Step 1. We are going to prove that uI,µ tends uniformly to 0 on all the intervals I−i . More
precisely, we claim that for every ε with 0 < ε ⩽ r, there exists µ⋆

ε ⩾ µ∗ such that for every
µ > µ⋆

ε and i ∈ {1, . . . ,m}, we have maxt∈I−i uI,µ(t) < ε.
Let ε ∈ ]0, r]. Let us define

δi := min

{
|I−i |
2

,
ε

2κi

}
and δ̃i := min

{
|I−i |
2

,
ε

2κi+1

}
,

where κi and κi+1 are defined in (3.6), as well as

µleft
i :=

R + κiδi

mins∈[ε/2,R] g(s)
∫ τi+δi
τi

∫ t

τi
h−(ξ) dξ dt

,

µright
i :=

R + κi+1δ̃i
mins∈[ε/2,R] g(s)

∫ σi+1

σi+1−δ̃i

∫ σi+1

t
h−(ξ) dξ dt

.

The denominators are positive because h− is never identically zero in right neighborhoods of τi
nor in left neighborhoods of σi+1. We claim that, for µ > µ⋆

ε := maxi=1,...,m{µleft
i , µright

i , µ∗} and
i ∈ {1, . . . ,m}, we have uI,µ(τi) < ε and uI,µ(σi+i) < ε. If so, by the convexity of uI,µ on I−i ,
we immediately have uI,µ(t) < ε for all t ∈ I−i .

Let µ > µ∗
ε and i ∈ {1, . . . ,m}. Suppose on the contrary that uI,µ(τi) ⩾ ε or uI,µ(σi+1) ⩾ ε.

Let us first deal with the case uI,µ(τi) ⩾ ε. By (3.6), u′
I,µ(τi) ⩾ −κi. The convexity of uI,µ

on I−i guarantees that u′
I,µ(t) ⩾ −κi for all t ∈ I−i . From the definition of δi, it is clear that

uI,µ(t) ⩾ ε/2 for all t ∈ [τi, τi + δi]. An integration on [τi, t] ⊆ [τi, τi + δi] yields

u′
I,µ(t) = u′

I,µ(τi) + µ

∫ t

τi

h−(ξ)g(uI,µ(ξ)) dξ ⩾ −κi + µ min
s∈[ε/2,R]

g(s)

∫ t

τi

h−(ξ) dξ.

Next, integrating the above inequality on [τi, τi + δi] and using µ > µ∗
ε ⩾ µleft

i , we obtain

uI,µ(τi + δi) = uI,µ(τi) +

∫ τi+δi

τi

u′
I,µ(t) dt

⩾ −κiδi + µ min
s∈[ε/2,R]

g(s)

∫ τi+δi

τi

∫ t

τi

h−(ξ) dξ dt

> −κiδi +R + κiδi = R,

a contradiction with the fact that R is a bound on uI,µ.
The case uI,µ(σi+1) ⩾ ε is similar. As above, (3.6) implies that u′

I,µ(σi+1) ⩽ κi+i and so
u′
I,µ(t) ⩽ κi+i for all t ∈ I−i . By definition of δ̃i, we have uI,µ(t) ⩾ ε/2 for all t ∈ [σi+1− δ̃i, σi+1].
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Integrating twice and using µ > µ∗
ε ⩾ µright

i , we obtain the contradiction

uI,µ(σi+1 − δ̃i) ⩾ −κi+1δ̃i + µ min
s∈[ε/2,R]

g(s)

∫ σi+1

σi+1−δ̃i

∫ σi+1

t

h−(ξ) dξ dt > R.

Step 2. Let i ∈ I. We are going to prove that (uI,µn) tends uniformly, up to a subsequence, to
a solution of (3.4) in the interval I+i .

We already know that (uI,µ)µ>µ∗ is bounded on I+i and, due to (3.6), so is (u′
I,µ)µ>µ∗ . Then

thanks to (3.5), (u′′
I,µ)µ>µ∗ is bounded in L1(I+i ) and equi-integrable. Then, by combining

the Dunford–Pettis Theorem with the Eberlein–Šmulian Theorem, we obtain that (up to a
subsequence) u′′

I,µn
⇀ vI in L1(I+i ), as n → +∞, for some vI ∈ L1(I+i ). Now, by Ascoli–Arzelà

Theorem, we obtain that uI,µn → uI,∞ in C1(I+i ), as n → +∞. Therefore, u′′
I,∞ = vI and

uI,∞ ∈ W 1,2(I+i ). By Step 1, we already know that uI,∞(σi) = uI,∞(τi) = 0. Finally, passing
to the limit on the weak formulation of the equation, we have that uI,∞|I+i is a non-negative
solution to (3.4). Moreover, because i ∈ I, maxI+i uI,∞ ⩾ r, so uI,∞ is nontrivial and, exploiting
the strong maximum principle, one deduces that uI,∞|I+i is a positive solution to (3.4).

Step 3. Let i ∈ {1, . . . ,m} \ I. Using hypothesis (g0) and reasoning as in Step 2, uI,µn → uI,∞
and that uI,∞|I+i is a non-negative solution to (3.4) such that maxI+i uI,∞ ⩽ r. That implies
that uI,∞ ≡ 0 in the interval I+i provided that r > 0 was chosen small enough. (See [11,
Proposition 5.4] for another approach.) □

Proposition 3.2 is the key ingredient of our investigation, since it describes the limit profiles
(for µ → +∞) of the solutions uI,µ. The goal of the present section is to find conditions such
that 2m − 1 is the exact number of solutions to (3.1), knowing that 2m − 1 is the exact number
of limit profiles.

We can thus state and prove our main result.

Theorem 3.3. Let g ∈ C1([0,+∞[, [0,+∞[) be a function satisfying (g+), (gs), (g0) and (g∞).
Let h : [a, b] → R be an L1-function satisfying (h∗). Moreover, we suppose that

for every i ∈ {1, . . . ,m}, h+ ∈ BV(I+i ), h+ satisfies h+(t) = h+(σi + τi − t) for a.e.
t ∈ [σi, τi] and is non-decreasing on [σi, ζi], where ζi := (τi + σi)/2 is the middle point
of I+i .

Then, there exists µ∗∗ > 0 such that for every µ > µ∗∗ problem (3.1) has exactly 2m− 1 positive
solutions. These solutions are non-degenerate.

Proof. By hypotheses (g+), (g0), (g∞), and (h∗), Theorem 3.1 applies and guarantees the ex-
istence of at least 2m − 1 positive solutions of (3.1) for every µ large enough. Each of these
solutions belongs to set ΛI for every nonempty subset of indices I ⊆ {1, . . . ,m}, cf. (3.3). We
are going to prove that, for µ larger, there exists a unique positive non-degenerate solution to
problem (3.1) in each ΛI , for every nonempty I ⊆ {1, . . . ,m}.

Let I ⊆ {1, . . . ,m} be non-empty. The arguments for non-degeneracy and uniqueness are
similar. If there are degenerate solutions uI,µ for µ large, that means that there exists a sequence
µn → +∞ such that the linearized equation{

w′′ +
(
h+(t)− µnh

−(t)
)
g′
(
uI,µn(t)

)
w = 0,

w(a) = 0 = w(b)

possesses a nontrivial solution wn. Analogously, if there are distinct solutions in ΛI for µ
large, then there exist a sequence µn → +∞ and uI,µn ∈ ΛI , vI,µn ∈ ΛI two different positive
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solutions to (3.1). Setting wn := uI,µn − vI,µn provides a nontrivial solution to{
w′′ +

(
h+(t)− µnh

−(t)
)
Gn(t)w = 0,(3.7)

w(a) = 0 = w(b),(3.8)

where

(3.9) Gn(t) :=

∫ 1

0

g′
(
suI,µn(t) + (1− s)vI,µn(t)

)
ds.

Thus, if non-degeneracy (resp. uniqueness) fails for µ large, there exists a sequence µn → +∞
such that, for all n, system (3.7)–(3.8) with Gn(t) := g′

(
uI,µn(t)

)
(resp. with Gn given by (3.9))

has a nontrivial solution. We will show hereafter that this is not possible.
Before that, let us collect the properties of Gn (common to both cases). First, Proposition 3.2

says that uI,µn → uI,∞ uniformly on [a, b]. In case we have two solutions, one also has vI,µn →
vI,∞ uniformly on [a, b]. Since uI,∞ ≡ 0 ≡ vI,∞ on all I−i , i ∈ {0, . . . ,m}, and I+i with i /∈ I
and we are in a situation where we have uniqueness of the positive solution of (3.4) on I+i ,
i ∈ I (see Theorem 2.9), one necessarily has uI,∞ ≡ vI,∞ on [a, b]. Therefore, Gn satisfies the
following properties:

Gn ∈ C([a, b]);
Gn → g′(uI,∞(·)) uniformly on [a, b];
for all t ∈ [a, b], Gn(t) ⩾ 0.

In the argument below we will also make use of the following function

rn(t) :=
wn(t)

w′
n(t)

defined for t ∈ [a, b] such that w′
n(t) ̸= 0.

Using equation (3.7), one deduces that rn satisfies the equation

(3.10) r′n(t) =
(w′

n(t))
2 − wn(t)w

′′
n(t)

(w′
n(t))

2
= 1+

(
h+(t)−µnh

−(t)
)
Gn(t) r

2
n(t), for a.e. t ∈ dom rn.

Note that, because wn is a nontrivial solution to (3.7), wn and w′
n cannot vanish at the same

time and so |rn(t)| → +∞ when t approaches the boundary of dom rn.
Now, let us rule out the existence of nontrivial solutions to (3.7)–(3.8) by examining in turn

how boundary signs transfer for each sub-interval.

Step 1. First, let us consider a negativity interval I−i = [τi, σi+1] for some fixed i ∈ {0, . . . ,m}.
From equation (3.7) we deduce that w′′

n(t) ⩽ 0 for a.e. t ∈ I−i such that wn(t) < 0 and w′′
n(t) ⩾ 0

for a.e. t ∈ I−i such that wn(t) > 0. Therefore, wn is concave in the interval I−i whenever wn is
negative, and convex in the interval I−i whenever wn is positive. Therefore, we have

if wn(τi) ⩾ 0 and w′
n(τi) ⩾ 0, then wn(σi+1) ⩾ wn(τi) and w′

n(σi+1) ⩾ w′
n(τi);(3.11)

if wn(τi) ⩽ 0 and w′
n(τi) ⩽ 0, then wn(σi+1) ⩽ wn(τi) and w′

n(σi+1) ⩽ w′
n(τi).(3.12)

In cases (3.11)–(3.12), we claim that, for any c > 0, one also has

(3.13) |wn(τi)| ⩽ c|w′
n(τi)| ⇒ |wn(σi+1)| ⩽ ĉ|w′

n(σi+1)|,
where ĉ := c+ |I−i |. Indeed the premise of (3.13) implies that w′

n(τi) ̸= 0 (as wn is a nontrivial
solution). Thus, noticing that (3.7) implies that |w′

n| is non-decreasing on I−i , I−i ⊆ dom rn.
Then equation (3.10) implies that r′n ⩽ 1 on I−i and, integrating, we obtain

rn(σi+1) ⩽ rn(τi) + |I−i |,
which proves the claim.
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Step 2. Let us now deal with intervals I+i = [σi, τi] with i /∈ I. We first claim that, for n large
enough and for any c > 0,

(3.14) |wn(σi)| ⩽ c|w′
n(σi)| ⇒ |wn(τi)| ⩽ ĉ|w′

n(τi)|

where ĉ := c+2|I+i |. To prove that, note that the premise of the implication reads |rn(σi)| ⩽ c
(w′

n(σi) ̸= 0 because the premise would otherwise imply that wn is the trivial solution). We
will establish that, for n sufficiently large,

(3.15) ∀t ∈ I+i , t ∈ dom rn and |rn(t)| ⩽ ĉ = c+ 2|I+i |,

from which (3.14) follows. Let ϑi be such that

0 < ϑi <
|I+i |

∥h∥L1(I+i ) ĉ
2
.

Given that Gn → g′(uI,∞) = 0 uniformly on I−i (remembering (g0)), we can consider n be
sufficiently large so that Gn(t) ⩽ ϑi for all t ∈ I+i . The properties in (3.15) are plainly satisfied
whenever t is close to σi. Let [σi, t

∗[ ⊆ [σi, τi] be the maximal interval where the properties in
(3.15) are valid. If t∗ = τi we are done. Otherwise, |rn(t∗)| = ĉ and t∗ ∈ dom rn (recall that
|rn| blows up when t approaches the boundary of dom rn). Then (3.10) yields the following
contradiction:

2|I+i | = ĉ− c ⩽ |rn(t∗)| − |rn(σi)| ⩽ |rn(t∗)− rn(σi)| =
∣∣∣∣∫ t∗

σi

r′n(t) dt

∣∣∣∣
=

∣∣∣∣∫ t∗

σi

1 + h+(t)Gn(t)r
2
n(t) dt

∣∣∣∣ ⩽ |I+i |+ ∥h∥L1(I+i ) ϑi ĉ
2 < 2|I+i |.

Now we claim that, for n large (how large depends on the c that will be chosen later to apply
(3.14)),

if wn(σi) ⩾ 0 and w′
n(σi) ⩾ 0, then wn(τi) ⩾

1

2
wn(σi) and w′

n(τi) ⩾
1

2
w′

n(σi);(3.16)

if wn(σi) ⩽ 0 and w′
n(σi) ⩽ 0, then wn(τi) ⩽

1

2
wn(σi) and w′

n(τi) ⩽
1

2
w′

n(σi).(3.17)

Let z1,n (resp. z2,n) be as in (2.12) with [a, b] replaced by I+i = [σi, τi]. As in that proof, we
have (2.16) and (z1,n) (resp. (z2,n)) converges, taking if necessary a subsequence, in C1(I+i ) to
a function z1,∞ (resp. z2,∞) which is a solution to (2.15) with u ≡ uI,∞ ≡ 0 on I+i . Therefore
z1,∞(t) = 1 and z2,∞(t) = t−σi. Thus, for n sufficiently large, z1,n(τi) ⩾ 1/2, z′1,n(τi) ⩾ −1/(4c),
z2,n(τi) ⩾ |I+i |/2, and z′2,n(τi) ⩾ 3/4.

If wn(σi) ⩾ 0 and w′
n(σi) ⩾ 0, then the previous inequalities and (3.14) yield

wn(τi) = wn(σi)z1,n(τi) + w′
n(σi)z2,n(τi) ⩾

1

2
wn(σi) +

|I+i |
2

w′
n(σi) ⩾

1

2
wn(σi),

w′
n(τi) = wn(σi)z

′
1,n(τi) + w′

n(σi)z
′
2,n(τi) ⩾ − 1

4c
wn(σi) +

3

4
w′

n(σi) ⩾
1

2
w′

n(σi).

Assertion (3.17) is established in a similar way.
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Step 3. At last, let us focus on the intervals I+i = [σi, τi] for some i ∈ I. We claim that, for
any c > 0, there exists ε > 0 (independent of n) such that, for n large enough,

if wn(σi) ⩾ 0, w′
n(σi) ⩾ 0 and |wn(σi)| ⩽ c|w′

n(σi)|
then wn(τi) ⩽ −ε

(
wn(σi) + w′

n(σi)
)
< 0, w′

n(τi) ⩽ −ε
(
wn(σi) + w′

n(σi)
)
< 0,

and |wn(τi)| ⩽ ĉ|w′
n(τi)| for some ĉ independent on n;(3.18)

if wn(σi) ⩽ 0, w′
n(σi) ⩽ 0 and |wn(σi)| ⩽ c|w′

n(σi)|
then wn(τi) ⩾ −ε

(
wn(σi) + w′

n(σi)
)
> 0, w′

n(τi) ⩾ −ε
(
wn(σi) + w′

n(σi)
)
> 0,

and |wn(τi)| ⩽ ĉ|w′
n(τi)| for some ĉ independent on n.(3.19)

Let us prove (3.18), (3.19) being similar. Let c > 0 be fixed. Proposition 2.11 implies that
wn(τi) ⩽ −ε

(
wn(σi) + w′

n(σi)
)

and w′
n(τi) ⩽ −ε

(
wn(σi) + w′

n(σi)
)

for n large enough and for
some ε > 0 independent of n. Given that wn can be written as a linear combination of z1,n and
z2,n (see (2.16) where [a, b] is here [σi, τi]), one has

wn(τi)

w′
n(τi)

= rn(τi) =
rn(σi)z1,n(τi) + z2,n(τi)

rn(σi)z′1,n(τi) + z′2,n(τi)

with rn(σi) ∈ [0, c] (recall that, as above, w′
n(σi) ̸= 0). Note that

γz1,n(τi) + z2,n(τi)

γz′1,n(τi) + z′2,n(τi)
−−−−→
n→+∞

γz1,∞(τi) + z2,∞(τi)

γz′1,∞(τi) + z′2,∞(τi)
uniformly w.r.t. γ ∈ [0, c],

where z1,∞ and z2,∞ are defined in the proof of Proposition 2.11. As z′1,∞(τi) < 0 and z′2,∞(τi) < 0
by Proposition 2.10, the limit is bounded independently of γ ∈ [0, c] and thus, for n large enough,
so is rn(τi). In other words, there exists a constant ĉ independent of n such that, for n large
enough, |wn(τi)| ⩽ ĉ|w′

n(τi)|. Incidentally, note that this shows that the denominator does not
vanish for n large and so that rn(τi) is well defined.

Step 4. To conclude the proof of the non-degeneracy and uniqueness, let us derive a contradic-
tion. For this, we will consecutively examine the sub-intervals I−i and I+i starting from a and
show that, for n large, wn(b) ̸= 0.

Without loss of generality, we can suppose that w′
n(a) = 1. If there is a first nontrivial

negativity interval I−0 = [a, σ1], (3.11) implies that wn(σ1) ⩾ 0, w′
n(σ1) ⩾ 1, and |wn(σ1)| ⩽

c1|w′
n(σ1)| with c1 := 1 + |I−0 |. If there is no such first interval, then σ1 = τ0 = a and we have

wn(σ1) = 0, w′
n(σ1) = 1, and |wn(σ1)| ⩽ c1|w′

n(σ1)| with c1 := 1. Thus, in both cases we have,
for n large, that

wn(σ1) ⩾ 0, w′
n(σ1) ⩾ 1, and |wn(σ1)| ⩽ c1|w′

n(σ1)|.

Next we have the interval I+1 = [σ1, τ1]. If 1 /∈ I, then (3.14) and (3.16) imply that, for n
possibly larger,

(3.20) wn(τ1) ⩾ 0, w′
n(τ1) ⩾

1

2
, and |wn(τ1)| ⩽ c2|w′

n(τ1)|,

with c2 := c1 + 2|I+1 |. If otherwise 1 ∈ I, then (3.18) yield

(3.21) wn(τ1) ⩽ −ε1, w′
n(τ1) ⩽ −ε1, and |wn(τ1)| ⩽ c2|w′

n(τ1)|,

for some ε1 > 0 and c2 > 0 (independent of n).
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The next interval is I−1 = [τ1, σ2]. If (3.20) occurred, then (3.11) and (3.13) yield, possibly
taking n larger,

wn(σ2) ⩾ 0, w′
n(σ2) ⩾

1

2
, and |wn(σ2)| ⩽ c3|w′

n(σ2)|,

where c3 := c2 + |I−1 |. If (3.21) occurred, then (3.12) and (3.13) yield

wn(σ2) ⩽ −ε1, w′
n(σ2) ⩽ −ε1, and |wn(σ2)| ⩽ c3|w′

n(σ2)|,
where again c3 := c2 + |I−1 |.

Continuing this procedure through the finitely many sub-intervals I+i and I−i , we have to go
through (at least) one interval I+i with i ∈ I and thus |wn(σi)| ⩾ ε > 0, for n large enough and
some ε > 0 (independent of n). As a consequence, one ends up with the fact that wn(b) ̸= 0
for n large enough. This contradiction concludes the proof. □

4. Numerical experiments and open problems

This section is devoted to the numerical exploration of questions related to Theorem 3.3
as well as discussions about possible future investigations. Throughout this section, we will
specialize the function g to the representative case g(u) = u3 and take [a, b] = [0, 1].

In the previous section, the exact number of positive solutions of (3.1) for µ large was
determined. A natural question is for what range of µ does this number of solutions persist. On
Fig. 2 and 3, one can see the branches of positive solutions to (3.1) for h(t) = sin(3πt) (which
corresponds to m = 2 in Theorem 1.1) as well as the graphs of these solutions for various values
of µ. In this situation, we observe that there are 3 positive solutions for all µ ⩾ 0 and the 3
branches collapse to a single point when µ ≈ −0.21. Below this value, a unique positive solution
(whence symmetric) exists. This bifurcation point can be seen as a symmetry breaking of the
ground state: numerical evidence suggests that, on the right of the bifurcation point, the value
A(u) of the action functional

A(u) :=
1

2

∫ b

a

(u′)2 dt−
∫ b

a

(
h+(t)− µh−(t)

)
G(u) dt,

where G is a primitive of g, is lower on the “external” branches (the solutions on these branches
are symmetric to each other) and higher on the “central” branch made of symmetric solutions.
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Figure 2. The branches of positive solutions to (3.1) with h(t) = sin(3πt) in [0, 1] and
g(u) = u3 (on the left) and graphs of solutions for some µ (on the right).
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Figure 3. Graphs of the unique positive solution to (3.1) with h(t) = sin(3πt) in [0, 1]
and g(u) = u3 for various µ < 0.
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Figure 4. The branches of positive solutions to (3.1) with h(t) = sin(5πt) in [0, 1] and
g(u) = u3 (on the left) and graphs of solutions for some µ (on the right).
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Figure 5. Graphs of the unique positive solution to (3.1) with h(t) = sin(5πt) in [0, 1]
and g(u) = u3 for various µ ⩽ 1.

Notice that this single bifurcation point is a rare occurrence and is not a consequence solely of
the symmetry of the weight h. Indeed, on Fig. 4, six of the seven branches of positive solutions
for the symmetric weight h(t) = sin(5πt) collapse two by two. Moreover, all degenerate turning
points occur at positive values of µ (those occurring at the same µ are due to the fact that the
solutions on these branches are symmetric to each other). The fact that all the branches but
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one collapse two by two also occurs in asymmetric cases such as h(t) = sin(4πt) (see Fig. 6)
and for small perturbations of h(t) = sin(3πt) (see Fig. 8).
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Figure 6. The branches of positive solutions to (3.1) with q(t) = sin(4πt) in [0, 1] and
g(u) = u3 (on the left) and graphs of solutions for some µ (on the right).
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Figure 7. Graphs of the unique positive solution to (3.1) with q(t) = sin(4πt) in [0, 1]
and g(u) = u3 along the lower branch of solutions.

In all the above examples (Figs. 2, 4, 6, and 8), one branch of positive solutions exists for all
values of µ. This is expected as the existence of at least one positive solution for all µ ∈ R has
been established [29, Theorem 5.1] (extending several earlier results [21, 24, 51] solely dealing
with the case µ < 0). Moreover, numerical experiments show that the ground states of A
form such a branch and that this branch is made of unimodal solutions (i.e., increasing then
decreasing functions as they are non-negative). When h is symmetric (i.e., is even with respect
to the center of the interval ]a, b[), the symmetric solutions with the lower action A also form a
branch living for all µ but that branch may not coincide with the previous one as a symmetry
breaking may occur (see Fig. 2), in which case functions along that branch may not be unimodal
for all µ ⩾ 0.

The fact that other branches extend up to µ = 0 is a delicate question. Clearly this is linked
to the question of the uniqueness of the positive solutions for µ = 0. In this case, the weight in
(3.1) is positive in each I+i and identically zero in every interval I−i . The multiplicity of positive
solutions of (3.1) depends on the length of the intervals I−i : if the intervals I−i are sufficiently
small, uniqueness holds (see, for instance, [19, 39, 47]).

When µ is negative enough, Figs. 2, 4, 6, and 8 indicate that the problem admits a single
solution. For µ < 0, h+ − µh− ⩾ 0 but this uniqueness is not a consequence of the known
criteria (neither the one presented in Section 2, nor those found in the literature, see for
example [17, 41, 42, 50, 54]). This solution is trivially unimodal as the solutions are concave
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Figure 8. The branches of positive solutions to (3.1) with h(t) = sin(3πt/(1− ε)) in
[0, 1− ε], h(t) = 0 in [1− ε, 1] and g(u) = u3 (on the left) and the graphs of solutions
for µ = 10 (on the right).

for µ ⩽ 0 (and is symmetric when h is). As far as we know, the question of the uniqueness of
positive solutions for large negative µ is open.

It is well known that there are non-negative weights q such that the Dirichlet problem (2.1)
possesses several positive solutions. In 1959, Moore and Nehari [47] gave such an example as
a smooth perturbation of a piece-wise constant function. Here we have chosen the simple C∞

symmetric function
q : [0, 1] → R, q(t) = (2t− 1)2.

Still considering g(u) = u3, Fig. 9 shows on the left the graphs of the three positive solutions
ui, i ∈ {0, 1, 2}, to problem (2.1). If we denote u(·;α) the solution to the differential equation
of (2.1) for the initial conditions (see Section 2)

u(0;α) = 0, u′(0;α) = α,

then ui(·) = u(·;αi) for some αi > 0. The right graphs of Fig. 9 show the derivatives t 7→
∂αu(t;αi) of the solutions with respect to the initial velocity α. Based on the numerical evidence
of these graphs, we posit that ∂αu(1;αi) ̸= 0 and so that the three solutions ui are non-
degenerate. Therefore a branch should emanate from each of them if h has the same shape as
the above q on an interval I+i . More precisely, let us consider the function

(4.1) h : [0, 1] → R, h(t) =

{
(t− 1/4)2 if t ∈ [0, 1/2[,

− sin(4πt) if t ∈ [1/2, 1]

for problem (3.1). Since for this h there are three positive limit profiles to choose from on
I+1 = [0, 1/2] and one positive limit profile on I+2 = [3/4, 1], we expect 4 · 2 − 1 = 7 branches
of positive solutions. This is confirmed by our numerical experiments, see Figs. 10 and 11.
Four of theses branches live until µ ≈ 26250 while two persist until µ ≈ 0.56 and the last one
lives for all µ (and, according to the graphs, is made of unimodal functions). We believe that
the techniques developed in this paper can be extended to prove the existence of these seven
branches and more generally to establish the exact multiplicity result under a sole condition of
the non-degeneracy of the positive limit profiles.
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Let us conclude with a more technical remark. Notice that the vertical axis on Figs. 10
and 11 reports ∥u′

µ∥L2 and not u′
µ(0). The reason is that the initial velocities of some solutions

are really close, especially for the large values of µ we need to tackle to see all branches. This
is particularly true for solutions having the same limit profile on I+1 but differing on I+2 . Thus,
instead of tracking u′

µ(0), we use a finite element discretization of (3.1) and start a branch
continuation algorithm at µ = 106 from the limit profiles (the dashed graphs on Figs. 10
and 11) refined thanks to a damped Newton’s method.
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Figure 9. The graphs of the three positive solutions ui to the Dirichlet problem (2.1)
when q(t) = (2t − 1)2, t ∈ [0, 1], and g(u) = u3, u ∈ [0,+∞[ (on the left). The
linearization with respect to the initial velocity (on the right).
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