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RESEARCH ARTICLE                                         

Contribution of vibrational spectroscopy to the characterisation and 
detection of insect meal in compound feed

Abiga€el Anselmoa,b, Audrey Pissarda, Damien Vinckea, Quentin Arnoulda, Bernard Leclera,  
S�ebastien Gofflota, Denis Michezb and Vincent Baetena 

aWalloon Agricultural Research Centre, Knowledge and Valorisation of Agricultural Products Department, Gembloux, Belgium; 
bLaboratory of Zoology, Research Institute of Biosciences, University of Mons, Mons, Belgium 

ABSTRACT 
Insect-based products, such as insect meals, have experienced significant growth in recent years 
due to their composition, making them excellent substitutes for commonly used ingredients in 
feed. Currently, only eight insect species are authorised for use in feed, and their nutritional 
value varies depending on species, developmental stages, and diet. To ensure nutritional quality 
and compliance with current legislation, it is essential to develop tools to monitor insect-based 
products. In this context, two Near Infrared (NIR) spectroscopy techniques have been developed 
to determine the chemical composition of various insect meals and to distinguish and detect 
them in compound feeds. First, NIR Spectroscopy (NIRS) allowed for the assessment of protein, 
lipid, and moisture contents in several insect products, achieving coefficients of determination 
greater than 0.95 and low cross-validation errors. Secondly, NIR Microscopy (NIRM) enabled the 
differentiation of insect products from plant and animal products and was also able to detect 
the presence of insect meals at low inclusion rates in feed. These results suggest that NIR spec-
troscopy techniques can be effective, non-destructive tools for the characterisation, differenti-
ation, and detection of insect-based products.

HIGHLIGHTS

� NIRS coupled with PLS regression can predict the protein, humidity and fat content of insect- 
based products.
� NIRM coupled with qualitative analysis can discriminate insects from other ingredients and 

detect insect meal in small quantities within a matrix.
� Results are of interest for the development of monitoring tools for insect-based products.
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Introduction

The search for new sources of animal proteins as 
ingredients for feed is a constant concern in the ani-
mal production sector. In this regard, insect meals are 
considered an interesting alternative, particularly in 
the current context of decreasing availability of certain 
protein sources and the search for ingredients that are 
more compatible with a more sustainable and envi-
ronmentally friendly production. Insect meals are 
ingredients with high nutritional value, known for 
their effectiveness in animal production while being 
seen as having a low environmental footprint (van 
Huis and Oonincx 2017). Insect meals are a source of 
proteins containing essential amino acids in animal 

production, as well as lipids, vitamins, and minerals 
(S�anchez-Muros et al. 2014; De Marco et al. 2015; 
Veldkamp and Bosch 2015; Barragan-Fonseca et al. 
2017; Kr€oncke and Benning 2022). Due to their com-
position, insect meals are excellent substitutes for 
ingredients such as soybean and fish meals in the 
breeding of pigs, poultry, and fish (S�anchez-Muros 
et al. 2014). Environmental impact-wise, compared to 
ingredients of similar nutritional interest, insect meals 
have a reduced impact because their production is 
not land-intensive, requires less water consumption, 
has low greenhouse gas emissions, and allows for the 
valorisation of recycled organic substrates or those 
not fit for food production (FAO 2013).
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Their composition varies according to the insect 
species, developmental stage, diet, and production 
type (S�anchez-Muros et al. 2014; Pinotti and Ottoboni 
2021). Products derived from insects generally come 
in the form of powders with varying particle sizes 
obtained through technological processing involving 
cleaning, drying, and grinding steps (Oonincx and 
Finke 2021). Different insect species can be used for 
meal production. However, European legislation only 
permits eight species for feed and feed meal produc-
tion: Acheta domesticus (Orthoptera, Gryllidae), 
Alphitobius diaperinus (Coleoptera, Tenebrionidae), 
Bombyx mori (Lepidoptera, Bombycidae), Gryllodes 
sigillatus (Orthoptera, Gryllidae), Gryllus assimilis 
(Orthoptera, Gryllidae), Hermetia illucens (Diptera, 
Stratiomyidae), Musca domestica (Diptera, Muscidae), 
and Tenebrio molitor (Coleoptera, Tenebrionidae) 
(European Commission 2017, 2021; Anselmo et al. 
2023). In practice, black soldier fly larvae (H. illucens), 
house fly (M. domestica) and yellow mealworm (T. 
molitor) have received the most attention in the feed 
sector, thanks to their ability to feed on a wide range 
of substrates (Chia et al. 2019).

The production and use of insect meals as ingre-
dients in animal production require the development, 
validation, and implementation of analytical tools to 
ensure nutritional quality, compliance with regulatory 
requirements, and traceability. Therefore, it is impor-
tant to have fast and reliable tools for monitoring 
insect meals at all stages of their production and use. 
Currently, analyses are primarily conducted using 
methods based on classical chemical techniques and 
molecular biology (European Commission 2013, 2022). 
However, various initiatives are being taken to develop 
rapid, multi-parameter analytical methods that allow 
for online analysis, have low operational costs, use lit-
tle or no chemical reagents (green analytical techni-
ques), and require minimal sample preparation. 
Among these, methods based on Near Infrared spec-
troscopy (NIRS) and multivariate analysis seem particu-
larly suitable for ensuring the quality, safety, and 
traceability of insect meals. It should be noted that 
these methods require calibration and validation steps 
to build robust predictive models and a maintenance 
strategy for them.

This article aims to present recent developments in 
the implementation of a NIRS method for the charac-
terisation of insect-based products, as well as a Near 
Infrared Microscopy (NIRM) method for the detection 
of different meal ingredients and the discrimination of 
types of insect meals.

Materials and methods

Near Infrared spectroscopy analyses

Spectra collection
Different kinds of insect-based samples namely dried 
and ground insects (larva or adult stages), and insect- 
based products (diverse processed products from both 
food and feed industry) were used to build an exten-
sive database. Tenebrio molitor species was highly rep-
resented in different forms in the database, jointly 
with other kinds of species such as Hermetia illucens, 
Acheta domesticus, Gryllodes sigillatus, Gryllus assimilis 
and Alphitobius diaperinus. A total of 103 samples 
were studied. All samples were scanned using an XDS 
spectrophotometer (FOSS NIRSystems, Inc., USA) cov-
ering the VIS and NIR ranges from 408 nm to 2498 nm. 
All samples were scanned twice and the spectra were 
averaged for statistical analyses.

Reference analysis
The reference values (wet chemistry analyses) were 
realised to determine the dry matter, protein and fat 
contents of the sample. Dry matter was realised by 
oven drying at 103 �C for 4 h. Nitrogen was deter-
mined by the Kjeldahl method, with a correction 6.25 
to express nitrogen as protein content. Finally, for fat 
content, gravimetric extraction was performed with 
SoxtecTM 2055 (FOSS Denmark), with petroleum ether.

Preprocessing and chemometric analyses
Spectra and reference values were used to calibrate 
spectroscopic models using WinISI software (Infrasoft 
International LLC, USA) using spectral range 1100– 
2498 nm. Pre-treatment (SNV Detrend) was applied to 
the raw spectra and Partial Least Squares (PLS) regres-
sion technique was used to build the calibration 
models.

To evaluate the predictive potential of NIR models, 
the database was split into two sets: a calibration set 
(to develop the calibration models) of 80 samples and 
a validation set (to test the performances of the mod-
els) containing 23 samples. The partition was realised 
according to the protein, fat and fibre contents to 
have two sets with the same variability. The accuracy 
of the calibration models was evaluated based on the 
coefficient of determination of calibration (R2c), root 
mean square error of calibration (RMSEC), the coeffi-
cient of determination of cross-validation (R2cv) and 
the root mean square error of cross-validation 
(RMSECV). For the validation step, the accuracy was 
evaluated based on the coefficient of determination of 
prediction (R2p) and the root mean square error of 
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prediction (RMSEP). The samples included in the valid-
ation set are partially independent as they differ from 
the samples included in the calibration. However, 
some samples may come from the same batches or 
same providers. Ratios of performance to deviation 
(RPD) were also calculated for both calibration and 
validation steps, which is defined as the ratio between 
the standard deviation and the root mean square error 
of the calibration or validation set.

Near Infra-red Microscope analyses

NIR spectra were collected on a Near Infrared 
Microscope (NIRM) consisting of a Hyperion 3000 micro-
scope connected to a Fourier Transform (FT) near infra-
red spectrometer (Bruker Belgium SA, Kontich, Belgium). 
The instrument was linked to a camera and used the 
OPUS 7.5 software (Bruker Belgium SA, Kontich, Belgium) 
to analyse and extract spectra.

For the analysis of the aluminium plate containing 
the different types of samples (Figure 3(A)), a 
200� 199 mapping with a 200 mm pitch was carried 
out to analyse the whole surface of the plate. Spectra 
were collected in the range 9000 cm−1 to 4000 cm−1 

(1111 nm to 2500 nm) with a resolution of 8 cm−1 and 
16 co-added scans by spectra. A total of 39,800 spec-
tra were taken, covering the whole surface of the alu-
minium plate and including spectra associated with 
each sample analysed. The final spectra were the 
results of the ratio between the raw spectrum and the 
background consisting of aluminium.

For adulterated samples, each pure sample, i.e. the 
ruminant feed and the H. illucens larvae meal, was 
placed in a well of a multi-well aluminium plate 
(Bruker Belgium SA, Kontich, Belgium) and analysed by 
10� 10 mapping with an automatic pitch. The adulter-
ated samples were spread into three replicates on an 
aluminium slide, to obtain a thin layer facilitating 
detection of the adulterant product and analysed by 
40� 40 mapping with a 300 mm pitch. For this ana-
lysis, spectra were also collected in the range 
9000 cm−1 to 4000 cm−1 (1111 nm to 2500 nm), with a 
resolution of 16 cm−1, and 8 co-added scans by spec-
tra. The final spectra were the result of the ratio 
between the raw spectrum and the background con-
sisting of a gold well provided on the multi-well plate.

Preprocessing and chemometric analyses
Image treatment and analysis. Representative spec-
tra of the different products of insects (G. assimilis and 
H. illucens), wheat bran, frass and bovine processed 
animal proteins (PAPs) were extracted from the image. 

The extracted spectra were used to calibrate a PLS-DA 
model discriminating each group, i.e. the insects, the 
wheat bran, the frass and the bovine PAP. Then, the 
whole image was predicted by applying the model on 
each individual pixel.

An alternative discrimination method was also 
tested by applying a decision rule based on the 
absorbance values at different wavelengths, i.e. 1944, 
2060 and 2148 nm of the first and second derivative 
spectra (Baeten et al. 2005; von Holst et al. 2008). This 
equation is used to assess whether or not particles 
belong to the animal group. So, if Absorbance (1944) 
þ Absorbance (2148)/2>Absorbance (2060), the par-
ticle is classified as being of animal origin.

The spectral ratio was computed for each individual 
pixel of the image and the animal protein pixels were 
detected based on the threshold value.

Adulterated samples analysis. All NIRM spectra are 
pre-processed to remove the noise, the scattering 
effect and to facilitate the visualisation of the sample 
differences (Engel et al. 2013). Firstly, the Savitzky- 
Golay method with a first order derivative is applied 
to reduce baseline and background effect (Engel et al. 
2013). Secondly, the standard normal variate (SNV) is 
used to remove variability in the reflectance spectra 
related to scattering effects (Engel et al. 2013).

All chemometric analyses are carried out using Solo 
9.2.1 (2023) and the PLS toolbox plug-in included 
(Eigenvector Research, Inc., Manson, WA, USA 98831).

Since two levels of adulteration are studied, two 
separate chemometric analyses, based on the same 
approach, are carried out. To start with, 100 spectra of 
pure meal samples of H. illucens larvae meal and 
ruminant feed are measured per sample and used to 
create a calibration set. For the adulterated samples, 
4800 spectra are collected.

Then, to assess the NIRM’s ability to detect the 
presence of insect meals in a feed at a low level of 
adulteration, a supervised Partial Least Squares 
Discriminant Analysis (PLS-DA) (Barker and Rayens 
2003) is performed using k-fold (k¼ 10) venetian 
blinds cross-validation (CV). During CV, the same num-
ber of latent variables (LVs) is used for the two single- 
class models (ruminant feed or H. illucens larvae meal) 
to only include the variability of interest for the pre-
diction, and the selected number of LVs is the one 
that minimised the classification error for the whole – 
multi-class – approach. As two different levels of adul-
teration are tested, two separate PLS-DA models are 
built to obtain optimal LVs for each level of 
adulteration.
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Discrimination results are assessed using sensitivity 
and specificity. The sensitivity refers to the ability of 
the model to correctly identify samples. It measures 
the ratio of true positive (TP) predictions to actual 
positive instances including false negative (FN) predic-
tions (Westerhuis et al. 2008) (1).

Sensitivity ¼ TP= TPþ FNð Þ (1) 

Specificity refers to the ability of the model to cor-
rectly identify samples that are not of this class. It 
measures the ratio of true negative (TN) predictions to 
actual negative instances, including false positive (FP) 
predictions (Westerhuis et al. 2008) (2).

Specificity ¼ TN= FPþ TNð Þ (2) 

Sensitivity and specificity values vary between 0 
and 1, with 1 being the optimum value for a predic-
tion model. For each multi-class PLS-DA analysis, a 
confusion matrix is provided. It compares the actual 
class with the one predicted by the model.

Results and discussion

Near Infra-red spectroscopy analyses

NIR spectra
A large spectral variability was observed due to the 
high diversity between insect-based products used in 
this study as shown in Figure 1. Variability can be 
observed in different NIR regions: between 1150 and 
1250 nm (second overtone region), between 1650 
and 1800 nm (first overtone region), between 1900 nm 
and 2400 nm (combination regions). As the database 
contains several samples of dried and ground Tenebrio 
molitor larvae, their spectra were averaged to better 

highlight the NIR bands of this species (Figure 2). So, 
seven bands can be identified at wavelengths about 
1204, 1724, 1760, 2058, 2174, 2306 and 2348 nm. 
Bands about 1204, 1724, 1760 nm are related to fat 
content. Kr€oncke and Benning (2022) also highlighted 
bands corresponding to lipids at 1200, 1726 and 
1785 nm. The slight band at 1940 nm is related to 
moisture content. Kr€oncke and Benning (2022) showed 
major bands at 1450 and 1950 nm corresponding to 
water bands, which were not so visible in our study as 
dried and ground larvae were scanned here. The 
absorption bands at 2058 nm and at 2174 nm corres-
pond to combination bands and are probably related 
to proteins since according to Bertrand and Dufour 
(2006), bands around 2050 nm and 2180 nm character-
ised peptide liaison. Bands at 2306 and 2348 nm are in 
a region where C-H combination bands are observed. 
In particular, bands at 2304 and 2348 have been 
related to specific combination bands of lipids 
(Bertrand and Dufour 2006).

Calibration results
The data were split into a calibration set of 80 samples 
and a validation set of 23 samples. As not all 
samples were characterised for fat content, only 59 
samples and 17 samples constituted the calibration 
and validation set respectively for this parameter. The 
sets were established to have as much as possible the 
same variability. However, the calibration samples 
were chosen to contain the maximum variability 
(extreme reference values). The number of samples, 
mean and standard deviation of both sets are shown 
in Table 1.

Figure 1. NIR raw spectra of the insect-based products contained in the database.
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Calibration set was used to develop models using 
PLS regression on pre-treated spectra. Performances of 
the calibration models are presented in Table 2. For all 
parameters, some outliers (based on GH distances and 
t criteria) were removed during the development of 
the equations, so that the number of samples in the 
calibration models differed from the calibration set 
one. Coefficients of determination superior to 0.95 and 
relatively low errors of cross-validation (SECV) were 
observed for all parameters. High values of RPD 
(higher than 3) were obtained indicating good per-
formances of the models.

To evaluate their performances, the samples of the 
validation set were predicted using the calibration 
models. After the removal of one outlier (based on t 
criteria), validation results showed similar values of 
coefficient of determination compared to the calibra-
tion set (Table 3). The Standard Errors of Prediction 
(SEP) were similar, or slightly higher, to the errors of 
Cross-Validation (SECV). High values of RPD (higher 
than 3) were also obtained for the validation. 
Therefore, results suggested that NIR spectroscopy can 
be used to determine accurately these chemical com-
pounds in insect-based products.

These results may be compared to the study of 
Kr€oncke and Benning (2022). They analysed different 
preprocessings of the spectra and showed that the 
best calibration models were obtained using the 1st 

derivative spectra of mealworm larvae. They attained 
very low errors of prediction for protein content 
(RMSEP ¼ 0.51) and for moisture content (RMSEP ¼
0.46). Compared to our study, the error of prediction 
for protein was three times lower. Regarding the fat 
content prediction, a very low error or prediction 
(RMSEP ¼ 0.28) was attained by Kr€oncke et al. (2023) 
which is again several times lower than the error 

obtained in this study. The differences of accuracy 
may be explained by the different set up of both stud-
ies and the very different material investigated. Indeed 
Kr€oncke and Benning (2022) focused on larvae of 
T. molitor grown in specific controlled conditions 
whereas this study aimed to build a very large data-
base of diversified insect-based products.

In this study, calibration models were built for the 
total protein content. However, it should be noted 
that the protein content was estimated based on the 
nitrogen content combined with a conversion factor 
(6.25). It is likely that the estimated protein content is 
biassed or misestimated by the chitin contained in the 
cuticula of the insects. Indeed, chitin is composed of 
nitrogen which has also been converted into protein 
in this case. Further studies should be investigated to 
determine the chitin content chemically and to investi-
gate the potential of NIR to determine this compound 
specifically.

Distinction of multiple ingredients by NIRM

The image obtained following the NIRM analysis is a 
‘pseudo-image’. The NIRM does not provide an RGB 
image composed of pixels, but creates a ‘false’ image 
from points, corresponding to the location of the 
39,800 spectra taken during the analysis. The OPUS 
7.5 software automatically calculates the total area 
under the spectra and assigns a colour according to 
its value. The more information contained in the spec-
trum, the redder the assigned colour (Figure 3(B)). This 
pseudo-image was converted into pixels to perform 
the different chemometric analysis.

First, a PLS-DA analysis was applied on the spectra. 
The results of this analysis are given in pixel form in 
Figure 3(C) and in numerical form in the confusion 

Figure 2. NIR raw spectra of Tenebrio molitor larvae.
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matrix presented in Table 4. In view of the confusion 
matrix, it appears that insects and bovine PAP are the 
classes for which the spectra were most accurately 
predicted, with very few confusions between these 
ingredients and the others. On the other hand, there 
was a significant amount of confusion between frass 
and wheat bran. This result is not really surprising 
since frass is defined as a mixture of insect excrement, 
food substrate, insect parts and dead eggs (European 
Commission 2021). Therefore, it is quite logical to find 
traces of plants in frass, and consequently particles 
predicted as such. Furthermore, this result could also 
be due to confusion between the two types of matri-
ces. Given that frass is ultimately a by-product of the 
substrate and therefore of wheat bran, it is highly 
probable that their chemical composition is similar, 
leading to confusion between frass and wheat bran. 
However, 278 spectra were still predicted as frass, 
which could also mean that frass may have its own 
spectral signature.

Secondly, instead of a classical PLS-DA analysis, the 
equation described by Baeten et al. (2005) was applied 
to the spectra generated by the NIRM and a new 
image was created. The result is shown in Figure 3(D). 

Most of the spectra identified as animal are from the 
two insect species and the bovine PAP. This result is 
in line with what would be expected from the use of 
this equation, since it is used to classify the spectra 
according to whether they belong to the animal 
group or not. In fact, in the spectral image, only the 
G. assimilis, the H. illucens larvae and the bovine PAP 
are animal samples.

Once again, using this equation, it appears that 
there are no spectra classified as animal in the frass 
sample, despite it being derived from insect rearing. It 
is therefore quite probable that this type of sample is 
sufficiently degraded by insects that, for example, no 
potential traces of moulting remain.

Detection of low levels of insect meal in a 
ruminant feed using NIRM

The detection of low levels of insect meal in a rumin-
ant feed was carried out using 4800 spectra obtained 
by NIRM analysis. The PLS-DA model to analyse the 
ruminant feed adulterated with 1% of H. illucens larvae 
meal included 8 latent variables. Three ruminant feed 
spectra are considered outliers as they did not fit the 

Figure 3. Photograph (a), spectral image (B), PLS-DA image processing (C) and absorbance equation image processing (D) of dif-
ferent samples analysed by NIRM. WB: Wheat bran; F: Frass; BP: Bovine PAP; GA: Gryllus assimilis; HI: Hermetia illucens larvae.
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model and are therefore removed. These outliers are 
mainly generated by the fact that the spectrum taken 
is located at the edge of the well and therefore 
included part of the background.

Classification results are given in Table 5. 
Concerning the calibration set, the classification is free 
of errors. Following application of the model to the 
sample adulterated with 1% H. illucens larvae meal, 12 
spectra are predicted as potentially H. illucens larvae 
meal and 4788 as ruminant feed. We can deduce that 
0.25% of our adulterated sample is classified as H. illu-
cens larvae meal, which is lower than the percentage 
added. This may be related to the composition of our 
sample and the possibility that the 1% of added 
insects may be partially covered by other particles. In 
addition, these data remain predictions, and it is 
therefore possible that in the 4788 spectra identified 

as ruminant feed there are spectra corresponding in 
reality to insects.

For the ruminant feed adulterated with 0.5% of 
H. illucens larvae meal, The PLS-DA model included 
7 latent variables. For the same reasons as mentioned 
above, two H. illucens larvae meal spectra are consid-
ered outliers and are removed.

Classification results are given in Table 6. 
Concerning the calibration set, the classification is also 
free of errors. Regarding the application of the model 
on the ruminant feed adulterated with 0.5% of H. illu-
cens larvae meal, only 3 are predicted as H. illucens lar-
vae meal and 4797 are predicted as ruminant feed. In 
this case, we can deduce that only 0.06% of the spec-
tra of the adulterated sample are classified as H. illu-
cens larvae meal. This result can be explained in the 
same way as for the result obtained with 1% of insect 
meal.

The results obtained both with ruminant feed adul-
terated with 1% H. illucens larvae meal and with that 
adulterated with 0.5% tend to demonstrate that the 
NIRM is capable of detecting adulteration at low con-
centrations. It is also found that when the adulteration 
rate is reduced, the number of spectra detected as 
being H. illucens larvae meal decreased, which is per-
fectly logical. In fact, the rate of adulteration between 
the two samples is divided by two but the number of 
spectra analysed remained the same. To detect more 
spectra of the adulterant, the total number of spectra 
analysed would have had to be increased.

These results are also in line with those already 
demonstrated in the literature using other NIR techni-
ques. As an example, the article by Alagappan et al. 
(2024) demonstrated both the ability of vibrational 
spectroscopy techniques to detect adulteration of 

Table 1. Humidity (HUM), protein (MPT), and fat (FAT) content (expressed in %) for calibration and validation sets.
Calibration set Validation set

HUM (% as_is) MPT (% as_is) FAT (% as_is) HUM (% as_is) MPT (% as_is) FAT (% as_is)

N 80 80 58 23 23 17
Mean 4.66 60.98 14.32 4.87 60.27 15.94
Minimum 1.5 16.59 1.56 1.5 18.81 4.56
Maximum 10.18 75.80 40.96 8.21 73.60 32.78
SD 1.94 12.13 7.71 1.76 13.48 8.00

N: Number of samples; SD: Standard Deviation.

Table 2. Calibration models for humidity (HUM), protein (MPT), fat (FAT), content (expressed in %) obtained using PLS 
regression.
Constituent N Mean SD SEC R2c SECV R2cv RPD

HUM (% as_is) 74 4.48 1.76 0.24 0.98 0.32 0.96 5.5
MPT (% as_is) 71 62.75 9.65 0.95 0.99 1.52 0.97 6.3
FAT (% as_is) 51 13.67 6.07 0.49 0.99 0.97 0.97 6.2

N: Number of samples in the calibration; SD: Standard Deviation; SEC: Standard Error of Calibration; R2c: Coefficient of Determination of the Calibration; 
SECV: Standard Error of Cross-Validation; R2cv: Coefficient of Determination of Cross-Validation; RPD: Ratio of Performance Deviation ¼ SD/SECV.

Table 3. Validation results for the humidity (HUM), protein 
(MPT), fat (FAT), cellulose (CELL) and chitin (ADF-ADL) content 
(expressed in %) obtained using PLS regression.

N Val SEP R2p RPD

HUM (% as_is) 22 0.44 0.94 4.1
MPT (% as_is) 22 1.79 0.97 5.7
FAT (% as_is) 16 1.64 0.96 5.1

N Val: Number of samples in the validation; SEP: Standard Error of 
Prediction; R2p: Coefficient of Determination of Prediction; RPD: Ratio of 
Performance Deviation ¼ SD/SEP.

Table 4. Confusion matrix of results obtained by PLS-DA for 
the analysis of the image by NIRM: Near Infrared Microscopy.

Actual class

Predicted class Bovine PAP Frass Wheat bran Insects

Bovine PAP 182 0 0 7
Frass 0 278 134 0
Wheat bran 0 47 238 2
Insects 7 0 0 1035
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ingredients with insects, and also the matrix effect on 
NIR analyses.

In the case of contamination, increasing the num-
ber of spectra analysed will be crucial. In fact, 
although in this study NIRM analysis enables adulter-
ants to be detected at low concentrations, these con-
centrations could potentially not fully reflect the levels 
of contamination that can be found on the market. A 
complementary study needs to be carried out using 
even lower levels of adulteration to make NIRM a reli-
able method for detecting contaminants in feed.

Conclusions

These studies on the use of NIR spectroscopy to evalu-
ate the chemical composition of insect-based samples 
shows promising results. Indeed, the results suggest 
that NIRS coupled with simple PLS regression consti-
tutes a good tool for the prediction of humidity, pro-
tein and fat content with a relatively low error of 
prediction. It should be noted that NIRS models were 
developed using relatively small data sets, as the avail-
able data (spectra and reference values of insect-based 
samples) were quite limited. In the future, the data-
base should be fed with new samples to increase its 
variability and improve the predictive performances 
and develop models to determine the chitin content.

On the other hand, the results obtained by NIRM 
analysis have demonstrated the ability of this tech-
nique to distinguish between several types of prod-
ucts and to detect the presence of ingredients in low 

concentrations in a feedstuff. Further analysis is still 
required to determine the extent to which this tech-
nique can differentiate between different product cat-
egories, and to detect even lower levels of 
adulteration in other types of matrices.
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