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1. Introduction

During machining operations, the interaction between tool
and workpiece leads to tool wear. This wear results in imperfect
cutting, which can reduce the quality of parts produced. Factors
such as the geometry of the workpiece, its residual stresses and
its surface finish are all dependent on the condition of the tool.
Wear is a major problem in machining operations, and it is es-
timated that the cost of cutting tools can represent between 3%
and 12% of production costs. Tool failure, due to wear, can ac-
count for up to 20% of production stoppages [1]. To avoid ex-
cessive tool wear, tools need to be replaced regularly. Industrial
practice is to carry out tests at the start of production and to take
safety margins to determine the time to replace the tool. Also,
sometimes, replacement is based on the judgement of the ma-
chining operator to decide whether or not the tool needs to be
replaced. The solutions currently in use clearly lack objective
criteria for replacing the tool at the optimal moment, leading to
waste and costs. In order to determine the optimum tool replace-

ment, it is useful to use decision support methods to determine
whether the tool is worn or still usable.

Artificial intelligence (AI) is increasingly being used to
monitor cutting tools as a decision support methods. There are
several AI techniques for monitoring the degradation of cutting
tools, typically divided into two categories: indirect and direct.
Indirect approaches relies on sensors installed in the machine
to estimate the state of the tool from cutting signals. Extensive
review present the strategies that have been developed in this
field [2]. These indirect approaches are often specific to a given
experimental condition or set-up, and are difficult to apply to
more complex industrial contexts.

The direct approach consists of taking the images of the cut-
ting tool to assess if the tool is still able to perform the cutting
operation. This method is often more precise, but if conducted
by humans, it can yield more uncertain results due to individ-
ual interpretations and definitions of wear. Consequently, sev-
eral image analysis techniques and tools are available [3]. How-
ever, these images, frequently taken under varying lighting and
masked by cutting fluid or chips, make wear detection chal-
lenging for traditional image analysis. Nevertheless, artificial
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intelligence methods overcome these issues, by their ability to
reliably identifying wear even in such conditions [3]. Numer-
ous AI methods have been employed to identify or categorize
the region of tool wear using images. For example, Pagani et al
utilized the color of the chips to infer the tool’s condition [4].
In 2019, Wu et al compared their own model with VGG16 to
distinguish between different types of wear. Their model was
quicker, but the performances were comparable between the
two models [5]. Some researchers have also used images of the
vibration spectrogram along with transfer learning models like
VGG16, LeNet, etc., to classify the state of the tool [6]. Other
researchers have employed U-Nets to directly segment the wear
zone on tool images, both in milling [7] and turning [8]. In the
field of image classification or segmentation, it is generally not
recommended to build models from scratch. Indeed, deep learn-
ing models generally require large amounts of data and meticu-
lous tuning to guarantee robust and reliable performance. This
is why transfer learning is often the preferred approach in this
type of application. It offers a significant advantage by provid-
ing models that are inherently more robust than those built from
scratch. Despite the existence of numerous approaches for tool
condition monitoring, the significance of transfer learning and
the applicability of methods developed for image classification
tasks remain unclear in the literature.

The novelty of this article therefore lies in the use and com-
parison of 3 AI methods for image classification using transfer
learning. The 3 baseline architecture are: VGG19 [9], Efficient-
NetV2 [10] and Visual Transformers [11]. These techniques
are evaluated on modified images that reflect those acquired in
an industrial environment, with modifications including rota-
tion and adjustments to brightness and contrast. The effective-
ness of these methods in response to these alterations is exam-
ined. Explainability analysis is also employed to highlight the
challenges experienced by these networks. Finally a discussion
about the most suitable to industrial scenario is carried out. In
contrast to the manual wear analyses currently carried out in
industry, this approach automatically detects and takes advan-
tage of deep learning capabilities to robustly and automatically
recognise the wear zone.

2. Database

In order to train the different approaches presented in this
article, a turning database coming from experimental turning
tests on C45 steel bars is used. These bars were machined
with a CNMG120404-M3 TP40 tool in a tool holder DCLN R
2020K12-M on a Weiler E35 lathe. The tool is one of the lowest
grades in order to favour the appearance of wear and at the same
time to reduce the quantity of material used during the tests. A
total of 30 tools were used during the straight turning testing
campaign. On average, each tool was inspected 6 to 7 times
during its life. The inspection consists of taking a picture of the
insert. The database therefore contains 192 images of the flank
face of the tool. These tools were used under similar cutting
conditions but with varying cutting speeds (Table 1). The tool
was inspected every 2 minutes 40 seconds using a Byameyee

EU-1000X 3 digital portable microscope. The images obtained
are colour images with a resolution of 460 by 640 pixels from
which the tool wear is measured. An example of image acquired
during the experimental campaign is presented Fig. 1.

Table 1. Cutting conditions during experimental turning tests

Test Cutting
Speed

[m/min]

Feed
[mm/rev]

Depth of cut
[mm]

1 to 10 260 0.2 1
11 to 15 250 0.2 1

16 240 0.2 1
17 to 20 265 0.2 1
21 to 30 Variable

during life:
240 to 260

0.2 1

Fig. 1. Image of an insert. VB: 280 µm

In this article, AI is used to classify the state of the tool. It
has been chosen to classify the state of the tool into 3 different
classes, each of them representing a part of the tool’s life (Fig.
2). A tool with wear between 0 and 150 microns is deemed new,
one with wear between 150 and 300 microns is considered with
moderate wear, and a tool with wear exceeding 300 microns
is classified as worn. This classification system is structured to
take account of the different stages in the life of a cutting tool.
Initially, in class 1, a new tool undergoes rapid degradation un-
til it moves into class 2, where it remains for most of its ser-
vice life. During this class 2 phase, the rate of degradation of
the tool slows down compared with class 1. Finally, after a few
minutes, the tool suffers excessive wear, leading to rapid dete-
rioration that brings it into class 3. In this last class, a tool is
considered to be ’worn’ if it has a flank wear of more than 300
microns. This threshold is established by the ISO 3685 standard
[12]. The database, however, lacks homogeneity: there are more
images of new tools than worn tools, which can be a limitation
when training AI. To counteract this imbalance, the data are
oversampled. This technique duplicates the number of images
in a class so that there are as many images in each class. This
method’s drawback is the potential repetition of the same image
multiple times in the training database. To mitigate this issue,



52 Lorenzo Colantonio  et al. / Procedia CIRP 132 (2025) 50–55

data augmentation is used, so that even 2 identical images are
not augmented twice in the same way, thereby expanding the
diversity of data for training. Data augmentation is frequently
implemented in databases to compensate for a limited quan-
tity of images and to generalize images under conditions that
are unevenly represented in the database. Data augmentation
is used here to generate new, unique images from the images
in the database [13]. Two types of augmentation are taken into
account: image manipulation and lighting modification During
training, each image is randomly augmented using a combina-
tion of the following modifications:

• Image manipulation:
– Horizontal flip. There’s a 50% probability that the

image will be horizontally flipped, resulting in a
mirrored version of the original. This modification
applied on Fig 1 is shown in Fig. 3(a)

– Rotation. This technique rotates the image. The
rotation angle is randomly chosen between -20 to
20 degrees. This modification applied on Fig 1 is
shown in Fig. 3(b)

• Lighting modification:
– Contrast modification. This technique modifies

the image contrast by a factor randomly chosen in
the range -0.2 to 0.2. This modification applied on
Fig 1 is shown in Fig. 3(c)

– Brightness modification. This technique randomly
change the brightness of the image by a factor ran-
domly chosen in the range -0.2 to 0.2. This modifi-
cation applied on Fig 1 is shown in Fig. 3(d)

150

300

Time [s]Initial 
Wear

Steady-state
Wear

Class 3

Class 2

Class 1

Wear [µm]

Accelerated
wear

Fig. 2. Classification of the tool degradation into 3 classes: green - New, yellow
- Moderate wear, red - Worn tool

The selection of these modifications is driven by the ob-
jective to reproduce any distortion on image acquired indus-
trially. Adjusting the image orientation is intended to replicate
the inconsistencies and imperfections of real-world image cap-
ture. Modifying the image by altering its contrast or brightness
mimics the disruptive elements of the industrial environment
which prevent measurements being taken under constant and
controlled lighting conditions. The training domain of the net-
works therefore consists of images of a single type of tool ma-

chining at different cutting speed and acquired under different
lighting conditions.

In order to test the ability of an AI approach to learn this
training domain, a testing database needs to be defined. This
database must represent all existing cases and it consist of 5 im-
ages of each class. Each of this image is tested six times under
distinct configurations: once in its original form, once flipped,
once rotated, once after adjusting its contrast, once after alter-
ing its brightness and finally once with all the previous modifi-
cations (Fig. 3(e)). This process ensures that each test image is
thoroughly evaluated under various conditions, enhancing the
robustness of the testing phase.

3. Models

Artificial intelligence offers multiple strategies for image
classification. The most straightforward approach involves
building and training a deep neural network from scratch on the
database. While this method is certainly viable, it’s often more
advantageous to utilize a pre-existing, pre-trained architecture
that has been trained on extensive databases. This makes it pos-
sible to take advantage of an architecture that is already capable
of extracting valuable features from images thanks to its train-
ing. This approach, known as transfer learning (Fig. 4), involves
using an existing network and modifying its output to adapt it
to a new classification task [14].

In the following, different pre-existing models will be used.
These models are selected based on their performance in dif-
ferent classification tasks as well as the different approaches
behind them. These models are:

• VGG19 [9]. Developed in 2014, VGG19 is a deep convo-
lutional neural network that aims at simplicity. It is com-
posed of 16 3x3 convolutional layers and 3 fully con-
nected layers. It was trained on the ImageNet dataset (14
millions images) to classify a thousand different classes.
Its architecture is often used as a reference in image clas-
sification.
• EfficientNetV2-M [10]. Introduced in 2019, it is an ex-

tension of the initial EfficientNet. The particularity of
this model lies in its balance between model size, perfor-
mance and computational efficiency. It was also trained
on ImageNet. The EfficientNetV2 model family includes
several variants, in this case the M stands for medium
and is selected for its compromise between complexity
and accuracy.
• Vision Transformers (ViTs) [11]. The Transformer

model, originally designed for natural language process-
ing, was adapted in 2020 for image data, leading to the
creation of ViTs. ViTs work by dividing images into
patches, each of which is converted into a vector and
processed by a transformer encoder. Unlike Convolu-
tional Neural Networks (CNNs) that mainly capture lo-
cal features, ViTs excel in identifying both local and
global features, including long-range dependencies be-
tween patches. This makes them especially useful for
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(a) (b) (c) (d) (e)

Fig. 3. Image transformations applied on image from Fig. 1 (a) Horizontal flip (b) Image rotation (c) Modification of contrast (d) Modification of brightness (e) All
modifications applied

tasks requiring a comprehensive understanding of an im-
age. Since 2020, ViTs have generated significant interest
in the field of computer vision.

The choice of these models is driven by the intent to con-
trast three distinct approaches: an initial “classic” model, an im-
proved version of this type of model, and finally an innovative
approach to vision through transformers. This provides a com-
parative perspective on the different image processing methods.
As these models have all been pre-trained on ImageNet, the en-
tries for these networks are colour images of 224 by 224 pixels.
The images in the database are therefore resized to be compati-
ble with this shape.

To adapt these models to classify the state of the tool, the last
layers are modified to classify the tool state (Fig. 4). The layers
that are added consist of a Maxpooling2D layer, a layer con-
taining 1024 neurons with ReLu activation function, a dropout
layer and finally a classification layer representing the 3 possi-
bles states of the tool.

All the approaches are trained under comparable conditions
with an AMD Ryzen 9 7950 X3D CPU. The input for each
model is a color image with dimensions of 224 by 224 pix-
els. The Adam optimizer is employed during the training pro-
cess. The loss function ”Categorical crossentropy” is used. The
metrics for evaluation are ”precision”, ”recall”, ”F1-score” and
”accuracy”. A maximum of 300 epochs is set. To avoid overfit-
ting and eliminate unnecessary calculations, an early stopping
mechanism is implemented. This mechanism stops the learning
process if there is no improvement in network performance over
a period of 60 epochs. To obtain optimal results, the learning
rate is progressively reduced as the model approaches conver-
gence.

Data 

Cutting Tool
Images 

Max Pooling 2D
Dropout

1024 neurons 

Tool
Classification

Model 
Output
Layers Results 

Model 

Classification Task 

Cutting Tool Classification Task 

Transfer Learning:
Weights, Architecture, etc

Fig. 4. Transfer learning principle: A given architecture is reused for a different
tasks.

4. Results

Table 2 presents a comparative analysis of the performance
across the three network architectures previously discussed. It
provides detailed results, segmented by class and the type of
image modification applied. Each type of modification is com-
posed of 5 images per class. Therefore there are 15 test images
per modification. The following observations are drawn from
this table.

• VGG19 is the architecture that obtained the best results
in this article. It obtained an overall accuracy of 94%
and F1 scores of 0.95, 0.92 and 0.97 for classes 1 to 3
respectively. The model reached convergence after 120
epochs, taking approximately 22 minutes. Once trained,
this model is capable of making a prediction, known as
inference time, in 40 ms. The data presented in the table
indicates that the architecture retains its ability to accu-
rately identify tool wear, regardless of the changes made
to the image.
• The EfficientNetV2-M model achieved an overall accu-

racy of 87%, making it almost as good as VGG19. This
model can perfectly identify class 1, but it seems to be
less accurate for classes 2 and 3. However, even with
the original image (referred to as ‘Initial’ in Table 2), it
makes mistakes in identifying class 2 and 3. This model is
quicker to train than VGG19, taking only 7 minutes. It’s
worth noting that this model reached its best performance
quite fast, in just 65 cycles of training. To put it in per-
spective, the EarlyStopping function waits for 60 cycles
without improvement before stopping, which means the
network converges in just 5 cycles. The inference time, is
similar to VGG19, at 80 milliseconds.
• The ViT model achieved the same overall accuracy as

EfficientNetV2. However, it tended to classify class 3 less
well than the other architectures. This architecture is also
the longest to train, with a total training time of around
3.5 hours for 300 epochs. The inference time is also the
longest with 2 s per image.

A straightforward comparison of results serves as a useful
performance indicator, but it does not fully determine whether
one method outperforms another. This is particularly true when
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Table 2. Comparison of results for the different methods segmented by class and the type of image modification applied

Initial Flipped Rotated Contrasted Brightness All Precision Recall F1 Score Accuracy

VGG19
Class 1 100% 80% 100% 100% 100% 100% 94% 97% 0.95

94%Class 2 100% 100% 80% 80% 100% 100% 90% 93% 0.92
Class 3 100% 100% 80% 100% 100% 80% 100% 93% 0.97

EfficientNetV2
Class 1 100% 100% 100% 100% 100% 100% 83% 100% 0.91

87%Class 2 80% 80% 60% 80% 80% 100% 80% 80% 0.8
Class 3 80% 80% 80% 80% 80% 80% 100% 80% 0.89

ViT
Class 1 100% 100% 100% 100% 100% 100% 86% 100% 0.92

87%Class 2 100% 80% 60% 100% 80% 100% 79% 87% 0.83
Class 3 80% 80% 60% 80% 60% 80% 100% 73% 0.85

the accuracies achieved by the architectures are quite similar,
hence, more detailed analysis are needed . The goal of classify-
ing the tool’s condition means that detecting class 3, or a worn
tool, is the only classification that can influence the tool’s re-
placement. The wear limit is set at 300 microns, so in a strict
case, a tool with 299 microns of wear would still be consid-
ered as moderate wear being only 1 micron away from being
worn. In practice this is not the case, the boundary between a
usable tool and a worn one is not always clear and needs to be
taken into account. To illustrate this fact, Table 3 shows the po-
sition of errors made by the different architectures in different
classes. A buffer zone of 50 microns, 25 for each class, is added
between the classes, creating a transition zone between classes
1 and 2, and between classes 2 and 3. The first zone covers wear
from 125 to 175 microns (transition from class 1 to 2), and the
second covers wear from 275 to 325 microns. Analysis of the
results in this zone reveals where the boundary between a us-
able tool and a worn one becomes unclear. Table 3 indicates
that the EfficientNetV2 architecture made 6 errors in the tran-
sition zone between class 2 and 3. This is higher than the other
approaches. However, these errors are of little consequence in
practical applications. Indeed, this error is less than 25 microns
which have almost negligible impact on the quality of produc-
tion. Therefore, although EfficientNetV2 has the same accuracy
as ViT, its errors have less impact in practice.

In addition to the position of errors, it is also necessary to
understand the reason for a correct or incorrect classification.
In order to explain and visualise the cause of the classification
made by the architectures, a Grad-CAM (Gradient-weighted
Class Activation Mapping) method is used [15]. Grad-CAM is
a technique utilized for understanding and explaining the de-
cisions made by a CNN in image classification. By analyzing
the gradients in the last convolutional layer of the CNN, this
technique determines the importance of each region of the im-
age. In other words, it indicates the areas of focus of the net-
work during its classification process. Grad-CAM serves as a
crucial tool in explaining the workings of the CNN and verifies
that the network has successfully learned the desired patterns.
Fig. 5(a) shows an example of an attention map obtained us-
ing Grad-CAM on the VGG19 architecture. This attention map
highlights the region of the image used to predict the condi-
tion of the tool. In particular, the focused area is located on the
tool’s wear zone, enabling the network to correctly categorise
this image. The area of focus can differ based on the architec-

ture employed. In this study, all accurately classified images
have a concentrated attention located on the area of wear. This
proves that the methods have identified that the distinction be-
tween a new tool and a worn tool is attributed to the amount
of flank wear. Fig. 5(b) shows the VGG19 attention map for

High attention Low attention 

(a)

High attention Low attention 

(b)

Fig. 5. Attention map obtain with a Grad-CAM analysis of an image classified
with VGG19. (a) Attention map of a correctly classified images, the attention
map is located on the wear. (b) Attention map of an incorrectly classified image
with VGG19. The image is the same as Fig. 5(a) but with a variation of contrast.
This change of contrast modify the attention zone that is not on the correct part
of the wear of the tool.

the classification of the same image as Fig. 5(a) but this image
has undergone a change in contrast. In this case, the network
wrongly classified the image as representing a new tool. This
change in contrast appears to have misled the network, causing
it to focus on an incorrect part of the tool for its prediction. The
highlighted area clearly indicates that the network has focused
on a part of the tool that shows minimal signs of wear. The same
conclusions can be drawn for all the errors made by the different
approaches. In general, misclassification is due to an inability to
detect the area of wear on the image. This is either because the
image has been modified or because the original image contains
features that make it difficult for the AI to detect.

5. Conclusion

This article explores the use of transfer learning to classify
the state of cutting tools based on their images. Three archi-
tectures pre-trained on the ImageNet database are utilized for
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Table 3. Comparison of the position of errors for the different architectures. A transition between classes is added.

Position of errors in the classification
Approach Class 1: 0 to

125 µm
Transition 1- 2:
125 to 175 µm

Class 2: 175 to
275 µm

Transition 2-3:
275 to 325 µm

Class 3: 325+
µm

VGG19 1 0 2 1 1
EfficientNetV2-M 0 0 6 6 0
ViT 0 1 3 1 7

this purpose: VGG19, EfficientNetV2, and Vision Transform-
ers. These models are employed to categorize the state of the
tools into three classes: new, moderate, or worn. The images
used for training the model are derived from experimental tests
conducted during turning operations. The original dataset is
augmented and balanced through data augmentation and over-
sampling. This is done to assess the robustness of the different
architectures against variations in brightness, contrast, and im-
age orientation that may occur in an industrial environment.

Among the approaches, VGG19 yielded the best results with
an accuracy of 94%. It was closely followed by EfficientNetV2
and Vision Transformers (ViT), both achieving an accuracy of
87%. All models demonstrated robustness against image modi-
fications, showcasing the strength of transfer learning.

In terms of speed, EfficientNetV2 was the fastest model to
train and query, with a training time of just 7 minutes and an in-
ference time of 80 ms. VGG19, while slightly faster in querying
(70 ms), took more than three times longer to train, with a time
of 22 minutes. The ViT approach was the slowest of all, with a
training time of 3 hours and an inference time of 2 seconds.

A detailed analysis of the errors made by the networks re-
vealed that even though EfficientNetV2 and ViT have the same
overall accuracy, the errors committed by EfficientNetV2 oc-
cur at the transition between classes and it makes fewer errors
in the last class. Consequently, the errors made by Efficient-
NetV2 have less negative impact on tool replacement compared
to those made by ViT.

In addition to the accuracy of each technique, the Grad-CAM
method provides additional information on the ability of the
networks to detect the area of flank wear. The analysis reveals
that the networks successfully located the region of interest in
the images, which corresponds to the flank wear region. In ad-
dition, this examination highlights the reasons for the misclas-
sification of certain images, illustrating the challenges faced by
the networks in recognising the area of wear.

In conclusion, for databases similar to the one presented
in this article, we recommend using CNN approaches such as
VGG19 and EfficientNetV2 to classify the state of cutting tools
from their images. Thanks to transfer learning, it is possible to
detect excessive tool wear and therefore replace it at the most
optimal time.

Future studies could explore detecting and classifying tool
defects during machining, like tool’s plastic deformation, un-
usual damage, etc. Another direction of research is to automati-
cally identify the wear zone and damages and measure the wear
based on this identification. The attention map obtained in this
article indicates that the networks can automatically identify the
wear zone. An image segmentation network would make it pos-

sible to measure the wear zone and thus predict a remaining use-
ful life of the tool. In this study, the database is augmented and
limited to a single type of tool. An analysis on a more diversi-
fied database could also help industries to better understand the
implementation and limitation of these techniques.
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