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Sustainability in all things should be our species’ philosophy

Sir David Attenborough
(British biologist, natural historian, and writer, 1926 - )

We are persuaded to spend money we don’t have,
on things we don’t need,

to make impressions that won’t last,
on people we don’t care about

From "An Economic Reality Check"
Tim Jackson

(British ecological economist, 1957 - )
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Summary

Energy is the bedrock of modern economies and societies, yet its production
and consumption are also responsible for 75% of greenhouse gas emissions,
making it the primary driver of climate change. But global warming is not
the only negative impact that human activity has on our planet. The energy
transition must aim not only at counteracting climate change, but also at
returning us below the 9 planetary boundaries that describe limits beyond
which the environment may not be able to self-regulate anymore. Equally
important is that the energy transition must be fair, allowing everyone to thrive
in an environment respectful of the Earth. In other words, we need to find
the safe space between the 9 planetary boundaries and a social foundation of
well-being that no one should fall below. Encompassed within the basics needs
of life is notably access to energy.

Renewable energy sources are expected to play a significant role in the energy
transition, because of their low emissions of greenhouse gases over their lifetime.
However, they affect other planetary boundaries as they require a lot of raw
materials and a considerable surface area, potentially jeopardizing biodiversity
and impacting land use. Therefore, the operation of those energy sources must
be optimized to produce electricity in the most efficient way and avoid spillage
of electricity. Moreover, renewable energy sources are inherently intermittent,
fluctuating, and highly unpredictable, thus posing many challenges to ensure a
reliably supply of electricity. A detailed planning and usage throughout the
year will be necessary to guarantee access to electricity for everyone, at all
times, and at an affordable price.

This thesis does not have the ambition to tackle all the challenges of the
energy transition, but aims at discussing the impact of the massive installation
of renewable energy sources, targeting one type in particular: offshore wind
energy. This work is focused on developing enhanced models of offshore wind
generation, with the purpose of improving the integration of future offshore wind
farms in power systems by assessing their impact on the reliability of supply
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and their ability to provide balancing services. Machine Learning techniques
are leveraged to build a fast, accurate and topology-aware surrogate for offshore
wind farms, able to capture complex aerodynamic phenomena and to generalize
to any layout configuration while keeping a reasonable computation time. This
model is then directly integrated within adequacy studies aimed at evaluating
the reliability of electricity supply in future power systems with a high share
of offshore wind generation. It allows to assess the impact of an improved
modelling of offshore wind power on reliability indices. The generalization
capabilities enable the consideration of the uncertainty related to the topology
of future wind farms, as their layout (turbine position, power density, turbine
technology) is still unknown. Thanks to the topology-aware abilities of the wind
farm surrogate, the same model can be used to consider many possible farm
configurations without hindering the tractability of the computation process.
Outcomes show that disregarding power losses due to aerodynamic phenomena
arising in offshore wind farms leads to an underestimation of reliability indices,
thereby concealing adequacy issues and preventing the right investments to
ensure a sufficient reliability of the system. Finally, we focused on the foreseen
participation of offshore wind farms to reserve markets, aimed at restoring
balance within the system in case of sudden perturbations. We explored how the
layout of future wind farms can be optimized to account for their participation to
ancillary frequency services. The developed surrogate is especially appropriate
for a wind farm layout optimization problem, where a different layout is seen
at each iteration, justifying the need for a topology-aware model, applicable to
any wind farm configuration.
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CHAPTER 1.
Introduction

How to ensure a fair energy transition for all ? How to guarantee an energy
transition that respects our life-giving planet in every aspect ? What is the
role of renewable energy sources ? Are they the easy solution for this problem ?
These complex questions are at the heart of today’s challenges regarding the
energy transition. They cannot be all and fully answered in one single work,
but they will be the guiding thread for the remaining of this thesis.

The first chapter provides a brief introduction to current challenges regarding
energy, which allows setting the context for the objectives and contributions
of the proposed research work. In particular, section 1.1 discusses the impact
of human activities related to energy on the Earth system, the complexity of
making an energy transition fair for all, and the role of offshore wind energy.
Then, section 1.2 explores the motivations, research questions and scope of the
proposed research work. Thereafter, section 1.3 presents the corresponding
research objectives and scientific contributions. Finally, section 1.4 provides an
outline of the remainder of this dissertation.

1.1. Context
Climate change caused by human activities is a fact. There is now a consensus
in the scientific community that our fast-paced use of fossil fuels, our never end-
ing exploitation of raw materials, our unreasonable land use, and our careless
greenhouse gases emissions have put a severe strain on Earth’s climate system.
There is no need for an umpteenth introduction on global warming. A few
key figures can sum up current issues: according to the last IPCC (Intergov-
ernmental Panel on Climate Change) report [1], the increase of global surface
temperature has now reached 1.1◦C above levels in 1850–1900, atmospheric
CO2 concentrations are higher than at any time in at least 2 million years, the
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global mean sea level has increased by 0.20 m since 1901, and approximately
3.6 billion people live in contexts that are highly vulnerable to climate change
(heatwaves, heavy precipitation, droughts, tropical cyclones, ...).

However, global warming is not the only negative consequence of human
activities. Environmental scientists have identified 9 planetary boundaries that
describe limits to the impacts of human activities on the Earth system [2].
Beyond these limits, the environment may not be able to self-regulate anymore,
which means that the Earth system would leave the period of stability of the
Holocene, in which human society developed. Every boundary is characterized
by one or several control variables and the corresponding limit values:

1. Climate change: atmospheric CO2 concentration

2. Biodiversity loss: rate of species extinction

3. Biogeochemical composition: levels of phosphate and nitrogen, applied
to land as fertilizers

4. Ocean acidification: global mean saturation state of calcium carbonate
in surface seawater

5. Land use: part of forests remaining intact

6. Freshwater change: human induced disturbance of green water (available
to plants) and blue water (rivers, lakes, groundwater, glaciers, polar ice)

7. Ozone layer depletion: stratospheric ozone concentration

8. Atmospheric aerosols: interhemispheric difference in aerosol optical depth

9. Novel entities: percentage of synthetic chemicals released to the environ-
ment without adequate safety testing

As it can be seen on Fig. 1.1, 6 out of 9 boundaries have already been
crossed as of 2023, with only ocean acidification, atmospheric aerosol loading
and stratospheric ozone depletion remaining in the safe operating space. It is
well past-time for an ecological transition to reduce pressure on the planet and
safeguard the stability of our home. Otherwise, damage will be irreversible and
we will put in jeopardy the living conditions in which humanity has thrived for
thousands of years. A technological solution backed up by many scientists is a
massive development of renewable energy [3].

Variable Renewable Energy Sources (VRES) such as onshore and offshore
wind turbines, and photovoltaic panels, have emerged as an important building
block for the energy transition. They do not emit greenhouse gases during
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Figure 1.1.: Planetary boundaries in 2023 [2].

the production of electricity, they diversify energy supply and they reduce
dependence on imported fuels. However, although VRES seem to enable us
to counteract climate change and reach carbon neutrality, they might impede
on other planetary boundaries. Indeed, solar panels require a large amount of
silicon, while building a wind turbine relies upon a lot of raw materials: copper
for wiring and electricity generators, rare earths for synchronous machines,
steel for the tower and hub, carbon fibres for the blades, and concrete for the
turbine foundations. Mining and exploiting all those resources has a significant
negative impact on land use and biodiversity. Moreover, because of their lower
capacity factors, VRES involve using a lot of surface area, which might lead to
deforestation and modifications of land use. Therefore, the decision to build
wind turbines and solar panels should be taken carefully, as to avoid installing
more VRES than necessary. Moreover, the operation of those energy sources
must be optimized to produce electricity in the most efficient way and avoid
spillage of electricity.

Coming back to the planetary boundaries, the overshoot of 6 of them already
has drastic consequences on human well-being. The increase of weather and
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climate extreme events have exposed millions of people to acute food insecurity
and reduced access to water. Roughly half of the world’s population currently
experience severe water scarcity for at least part of the year [4]. Human mortality
from floods, droughts and storms has severely escalated in highly vulnerable
regions [5]. In some oceanic regions, ocean warming and acidification have
been detrimental to food production from fisheries and shellfish aquaculture
[6]. Occurrences of climate-related food-borne and water-borne diseases are
exacerbated [7]. Mental health challenges arise because of trauma from extreme
events, and loss of livelihoods and culture [8]. Individual livelihoods have
been impacted through, e.g., destruction of homes and infrastructure, loss of
property and income, health deterioration, and food insecurity, all of which
having negative effects on gender and social equity.

Therefore, we should ensure an ecological transition that aims not only at
decreasing pressure on Earth’s resources but also at making sure that humanity
can thrive in that environment. And that is the essence of the Doughnut, a
concept introduced by the English economist Kate Raworth in 2017: a social
foundation of well-being that no one should fall below, and an ecological ceiling
of planetary pressure that we should not go beyond. Between the two lies a
safe and just space for all [9], the sweet spot to target, as depicted in Fig. 1.2.
The ecological ceiling consists in the 9 planetary boundaries cited above, while
the social foundation encompass the 12 basic needs of life: sufficient food and
cooking facilities, clean water and decent sanitation, access to education and
healthcare, a minimum income and decent work, peace and justice, political
voice, social equity, gender equality, decent housing, access to networks of
information and social support, and finally, access to energy.

The energy transition, besides striving to counteract climate change without
crossing other planetary boundaries, must not jeopardize the access of energy
for all. VRES are inherently intermittent, fluctuating, and highly unpredictable
and a massive installation of those energy sources in modern power systems
results in many challenges to ensure a reliably supply of electricity. For example,
a dunkelflaute is an extended period of time with minimal or no wind nor sun,
usually occurring during winter [11], as depicted in Fig. 1.3. Highly-renewable
electricity systems will thus require a detailed planning and usage throughout
the year to guarantee electricity supply even in those conditions. Moreover,
because many parts of the Doughnut are interconnected, hindering access to
energy adversely impacts other social needs. Indeed, hospitals, schools, and
essential governmental institutions must be provided with sufficient energy to
guarantee the quality of healthcare, education and social stability. Furthermore,
scarcity often yields inequality [12], as it was demonstrated during the 2022
energy crisis, where electricity prices reached values so high that they became
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Figure 1.2.: The Doughnut: a depiction of the safe space between planetary
boundaries and human well-being [9].

0

2000

4000

6000

8000

10000

12000

01/01/2023 06/01/2023 11/01/2023 16/01/2023 21/01/2023 26/01/2023 31/01/2023

P
o

w
er

 [
M

W
]

Biomass Hydro Offshore Onshore Solar Elia Grid Load

Figure 1.3.: Dunkelflaute event in Belgium during January 2023 (data from
[10]).
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unaffordable for many households, even in developed countries. 760 million
people still lack access to electricity today [13], notably in sub-Saharian Africa
where 80% of the population lives without regular supply. The energy transition
must allow to decrease those numbers, and ensure a reliable and stable supply
of electricity that can meet demand at all times and at an affordable price.

This work does not have the ambition to tackle all aspects of the Doughnut,
but aims at discussing the impact of the massive installation of VRES, notably
on the access to energy with a focus on the security of supply. Moreover, it will
not explore all VRES but will target one type in particular: offshore wind
energy.

1.2. Scope, Motivation, and Research Questions

Offshore wind energy has the potential to deliver large amounts of low-carbon,
renewable energy to fulfil a large part of future electrical needs. Offshore wind
power has gradually progressed in many countries and further development is
foreseen for the future. In 2023, 11 GW of new offshore wind power was added
to the grid, bringing the total worldwide offshore wind capacity to 75.2 GW [14].
The rate of new offshore installations is expected to dramatically increase in the
future, reaching 66 GW in 10 years, as shown in Fig. 1.4. Indeed, it has been
estimated that to meet a 1.5◦C-trajectory, the worldwide offshore wind capacity
should reach at least 380 GW by 2030 and 2000 GW by 2050 [15]. Regarding
Europe, the European Union has recently set targets for an installed capacity
of at least 60 GW of offshore wind energy by 2030, and 300 GW by 2050 [16].
This is part of the European Union’s plan to reach a climate-neutral economy
with zero-net greenhouse gas emissions by 2050 [17]. It is important to keep in
mind that all those targets assume an energy use that maintains the current
high living standards in developed countries. However, a recent study showed
that, with a combination of the most efficient technologies available and radical
demand-side transformations that reduce excess consumption to sufficiency-
levels, the final energy requirements for providing decent living standards to
the global population in 2050 could be over 60% lower than consumption today
[18].

Regarding Belgium, there are currently 9 offshore wind farms installed in
the North Sea (399 wind turbines), as shown in Fig. 1.5, amounting to 2.2 GW
of installed offshore capacity. The oldest turbines date from 2009 while the
latest wind farms have been operating since 2020. They can generate in average
8 TWh of green electricity per year, i.e., 10% of the total electrical load or
nearly 50% of the electricity needs of all Belgian households. Over its expected
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Figure 1.4.: Worldwide new offshore installations for the next 10 years [14]
(*CAGR = Compound Annual Growth Rate).

Figure 1.5.: Offshore wind farms location in the Belgian part of the North Sea,
current cluster and the future Princess Elizabeth zone [19].

operational lifespan of 20 years, a wind farm emits 115 times less CO2 than the
current Belgian electricity mix and 175 times less than the most modern gas
power stations [19]. Recent environmental studies have also shown that wind
farms at sea do not have a significant negative impact on fish or other maritime
fauna and flora [20]. Therefore, Belgium has set high targets of large-scale
offshore wind for the future carbon-neutral electricity system. Indeed, despite
having the smallest exclusive economic zone in the North Sea, Belgium has
ambitious plans to further increase its offshore wind capacity in the coming
decade. By 2030, the offshore production capacity is set to reach 6 or 8 GW
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with the new Princess Elizabeth Zone (PEZ), which would allow to cover
approximately 30% of the electrical consumption thanks to wind energy in the
Belgian North Sea [21]. This new zone is represented by parcels B, C and D on
Fig. 1.5.

However, even if offshore wind is stronger and more constant than in onshore
conditions [22], it remains inherently intermittent and uncertain. The wind
may not be blowing when the electricity from a wind farm is required, while it
can be very windy and electricity is being produced even if energy is not needed
(the turbines might have to be curtailed in that case). Adding to that the trend
for nuclear dismantling, the decentralization of production and other challenges
related to the energy sector, growing concerns are expressed regarding the
reliability of future power systems. In the scientific literature, power system
reliability is associated with two distinct concepts: adequacy and security
[23]. On the one hand, adequacy represents the ability of the electrical system
to satisfy load consumption in steady-state conditions [24]. In every considered
state, it is supposed that the system conditions do not evolve, thus adequacy
does not encompass dynamic behaviours. On the other hand, security assesses
the ability of a power system to cope with severe and sudden perturbations, such
as non-anticipated loss of system components or electrical short-circuits, while
maintaining its integrity, i.e., without major service interruptions. Therefore,
adequacy and security are two distinct concepts that mainly differ from each
other with regard to the timescale: adequacy focuses on the long-term behaviour
of a system (e.g., a 10 years horizon) while security relates to the response
and integrity right after an unanticipated disturbance. A lack of adequacy
leads to load shedding, i.e., scheduled power outages designed to prevent the
failure of the entire system when the demand strains the generation capacity,
while insufficient security can lead to power blackouts. Adequacy studies are
traditionally carried out by the Transport System Operator (TSO) and policy-
makers in order to evaluate the risk of generation shortage, thus assessing
the need for investment in additional production units. In Belgium, Elia, the
national TSO, biennially publishes its "Adequacy & Flexibility study" for an
horizon of 10 years in the future [25].

By definition, a system is adequate if there is sufficient capacity to meet
the relevant needs via different means including generation, imports, storage
and demand side management. However, several challenges jeopardize the
adequacy of the future Belgian power system. Firstly, a massive electrification
is foreseen in the coming years, which will largely increase the electrical demand
(from 83 TWh in 2023 to almost 130 TWh in 2034) [25]. Secondly, given its
topography, limited area and dense population, Belgium’s full VRES potential
will not meet all of the country’s future needs. Thirdly, Belgium relies heavily on
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importations, which was not an issue in the past. However, given the fast pace at
which foreign policy is evolving and the speed at which change in the European
energy system is occurring, Belgium’s security of supply becomes vulnerable to
events happening abroad and to the availability of surplus generation across
Europe at times of need in Belgium. All those challenges must be considered
when Belgian policy-makers decide on investments to be made in the generation
fleet and interconnections with other countries. The latest adequacy study
carried out by Elia for Belgium has highlighted the need for new domestic
capacity in the future [25]. However, the exact amount depends on scenarios
and sensitivities regarding electrical consumption, VRES installation, nuclear
phase-out, demand side response, storage, closure of thermal capacity and
surplus in other countries. Because adequacy studies are usually carried out
on an hourly basis, accurate generation profiles for VRES are crucial, and it is
not sufficient to use the average production based on yearly capacity factors.
Given the increased role of offshore wind generation in the future Belgian
electricity mix, improving its modelling is essential, especially the hour-by-hour
variations. Free-flow wind speed, wind direction and aerodynamic phenomena
drive the production of turbines within a wind farm. Not accurately capturing
power variations and losses due to those aerodynamic effects might lead to an
overestimation of adequacy, thus hiding potential stressed conditions within the
power system. Thinking back about the Doughnut, adequacy aspects ensure
that a massive integration of offshore wind energy, even though beneficial
against climate change, will not jeopardize access to energy.

A higher penetration of VRES generation also puts strain on security, as
storms and rapidly changing weather conditions are expected to cause impor-
tant system balancing challenges if not adequately managed [25]. Moreover,
given the ambitions regarding a massive installation of VRES, more and more
periods will occur during which the production of renewable electricity exceeds
demand, which could lead to difficulties when trying to manage positive system
imbalances (generation exceeds consumption). During the spring and summer
months, when high levels of solar generation occur simultaneously in Belgium
and its neighbouring countries, these difficulties will be particularly critical,
making it difficult to export excess energy. Therefore, it is crucial to explore
how to make sure that the generation of VRES is used in the most efficient
way possible. Historically, balancing services were provided by thermal gener-
ation, typically gas-fired power plants in Belgium. However, considering the
progressive phase-out of fossil fuel generators and the increasing penetration of
weather-dependant electricity generation, the need for more security will inten-
sify. Because offshore wind generation capacity is expected to grow steadily in
the future, wind farm operators will have an important role in system balancing.
Allowing offshore wind farms to participate in the reserve market will be of mu-
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tual interest to TSOs and wind producers. Offshore wind farms were originally
designed, optimized, and operated to produce maximal power, regardless of
the current situation of the grid. However, it has been proven that variable
speed wind turbines in modern wind power plants have intrinsic fast down
(virtually at no cost) and ramping up (subject to the availability of wind power)
capabilities, which can be effectively used to provide ancillary services [26], [27].
For example, during periods of overproduction, instead of producing at full
capacity, wind farms should offer balancing services, e.g., derating turbines and
keeping a power output margin available in case of sudden perturbations in
the system, therefore not aggravating generation surplus. This aspect should
be considered when designing the future offshore wind farms in the second
Belgian offshore cluster. Moreover, coming back to the Doughnut, a more
efficient operation of wind farms, avoiding spillage of renewable energy, could
lead to a recalculation of security needs. This could then result in a reduction
of requirements to build more generation means, thereby alleviating land use,
mining demand and all associated negative effects on the environment.

Making accurate hourly power assessments with a very low computation
time is crucial for assessing the impact of offshore wind farms on the supply
of electricity. For computational reasons, offshore wind generation is often
modelled in a simplified way in power system computations assessing the
reliability of electricity supply. In problems involving iterative calculations,
simplified offshore wind farm models often disregard complex aerodynamic
effects. However, these effects have a significant impact on the produced
electricity. Therefore, this thesis aims at developing novel formulations to
answer the following research questions:

• How can we improve the integration of future offshore wind farms in
power systems by assessing their impact on the reliability of supply and
their ability to provide balancing services ?

Throughout this work, this main research question has been divided into
three sub-questions. Each of the following research questions is addressed in
the chapters of this dissertation:

• How to model offshore wind farms in a fast and accurate way to capture
complex aerodynamic phenomena while keeping a reasonable computation
time ? (chapter 3)

• What is the impact of an improved modelling of offshore wind generation
in adequacy studies aimed at assessing the reliability of electricity supply
in future power systems ? (chapter 4)

• How can the layout of future wind farms be optimized to account for the
participation to ancillary frequency services ? (chapter 5)
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Overall, the improved modelling of offshore wind generation could be applied
to other power system computations. The objective is to enable a better
integration of offshore wind production. The case studies are based on real-
word Belgian offshore wind farms, as well as wind and market data from the
Belgian power system, which allows performing quantitative observations. The
presented research contributions and findings may be relevant to all wind farm
operators, policy makers and system operators.

1.3. Research Objectives and Scientific
Contributions

The goal of this thesis is to develop novel models for offshore electricity pro-
duction in order to ensure a better integration of wind farms in future power
systems. More specifically, this work establishes the three following research
objectives.

• Developing a fast and reliable topology-aware surrogate of off-
shore wind farms
The objective is to build a Machine Learning (ML) model for making
accurate hourly power assessments with a very low computation time, but
also able to generalize to unseen wind farm configurations (i.e. applicable
to any offshore wind farm in the world, with the training process carried
out only once).

• Assessing the impact of a more accurate offshore wind genera-
tion modelling on power systems adequacy
This objective aims at integrating the ML surrogate model within ade-
quacy studies, in order to study the impact of considering aerodynamic
effects on reliability indices.

• Designing future wind farm layouts considering the provision of
frequency services
For this objective, a new formulation for Wind Farm Layout Optimization
(WFLO) is developed to account for the participation of future wind
farms to both day-ahead energy and reserve markets.

The accomplishment of these three complementary objectives provides a
tool to model offshore wind farms for power system adequacy and security
assessments. From a practical perspective, this research project would enable
TSOs to have an accurate and tractable modelling of offshore wind generation
when they carry out adequacy studies to assess the reliability of electricity
supply in the future. Moreover, the surrogate model could be used by wind
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farm operators willing to design future offshore projects in an optimal way
and to estimate the yearly production of various layouts. By extension, this
would benefit the integration of offshore wind farms in future power systems
by ensuring a reliable supply of electricity for systems with a high share of
offshore generation and by enabling wind farms to be designed and operated as
to optimize the utility of the produced electricity. Considering these research
objectives, we list the three main contributions with regard to the literature:

• On a topology-aware wind farm surrogate. A generic, topology-
aware ML model is trained to accurately capture complex aerodynamic
effects arising within offshore wind farms, encompassing various atmo-
spheric conditions, heterogeneous turbine types and turbine failures. The
model relies on an augmented set of features, including atmospheric,
geometric, physics-informed, and turbine-specific characteristics, which
makes it able to generalize to any farm configuration (even future farms
that are not yet built). By externalizing the complexity from the model
architecture to the input features set, the proposed model has a very low
computation time in both training and inference stages, such that the ML
model is applicable in problems involving iterative computations. The
development of the model has resulted in the following contributions:

– T-H. Nguyen, J-F. Toubeau, E. De Jaeger, and F. Vallée, "Topology-
aware Surrogate for Future Offshore Wind Farms Using Machine
Learning", submitted to Applied Energy

– T-H. Nguyen, J-F. Toubeau, E. De Jaeger and F. Vallée, "Fast
and Reliable Modeling of Offshore Wind Generation for Adequacy
Studies," IEEE Transactions on Industry Applications, vol. 59, no. 6,
pp. 7116-7125, 2023

– T-H. Nguyen, N. Thils, J-F. Toubeau, E. De Jaeger, and F. Val-
lée, "Offshore Wind Farm Power Prediction for Security of Supply
Assessment Using a Unique Machine Learning Proxy", 2022 EAWE
PhD seminar, Bruges, Belgium, 2022

• On adequacy studies with improved offshore wind farm models.
The developed ML surrogate is embedded within adequacy studies using
sequential Monte-Carlo simulations in order to assess the impact of an
improved offshore wind generation modelling on reliability results. The
generalization capabilities of the model are leveraged to account for
uncertainties in the layout and turbine choice of future offshore wind
farms. This is illustrated by an integration of the model into a long-
term adequacy study aimed at assessing the reliability indices of a power
system with a high share of offshore wind generation. For this part, those
contributions have been proposed:
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– T-H. Nguyen, J-F. Toubeau, E. De Jaeger and F. Vallée, "Fast
and Reliable Modeling of Offshore Wind Generation for Adequacy
Studies," IEEE Transactions on Industry Applications, vol. 59, no. 6,
pp. 7116-7125, 2023

– T-H. Nguyen, G. Paternostre, J-F. Toubeau, E. De Jaeger, and
F. Vallée, "Adequacy Computations for Power Systems with a High
Share of Offshore Wind Generation: Application to Belgium", 2023
EAWE PhD seminar, Hannover, Germany, 2023

– T-H. Nguyen, J-F. Toubeau, E. De Jaeger and F. Vallée, "Ade-
quacy Assessment Using Data-driven Models to Account for Aerody-
namic Losses in Offshore Wind Generation", Electric Power Systems
Research, vol. 211, 2022

– T-H. Nguyen, J-F. Toubeau, E. De Jaeger and F. Vallée, "Machine
Learning Proxies Integrating Wake Effects in Offshore Wind Genera-
tion for Adequacy Studies," 2021 IEEE International Conference on
Environment and Electrical Engineering and 2021 IEEE Industrial
and Commercial Power Systems Europe (EEEIC / I&CPS Europe),
Bari, Italy, 2021

• On wind farm layout optimization accounting for reserve mar-
kets. A new formulation for computing the optimal offering, reserve
allocation strategy, and subsequent expected profits of a wind farm par-
ticipating in both day-ahead energy and reserve markets is developed. It
considers the uncertainty in forecasts of wind power, electricity prices
and activated reserve volumes. The estimated penalties and balancing
costs for failing to provide energy and reserve are also taken into account.
This formulation is used as the objective function of a wind farm layout
optimization maximizing yearly profits, and applied on a real wind farm
using historical data for wind and electricity prices. This part led to the
following contribution:

– T-H. Nguyen, J. Quick, P-E. Réthoré, J-F. Toubeau, E. De Jaeger
and F. Vallée, "Offshore Wind Farm Layout Optimization Account-
ing for Participation to Secondary Reserve Markets", submitted to
Wind Energy Science

The complete list of publications can be found at the end of this manuscript
in Appendix A.
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1.4. Thesis Outline
The organisation of this thesis manuscript is the following:

• Chapter 2 firstly introduces the basics regarding offshore wind farms
design and operation, as well as their integration within power systems.

• Chapter 3 presents the topology-aware wind farm surrogate, built upon
aerodynamic simulations of wind farms using supervised Machine Learning
techniques. The developed models are assessed and compared with high-
fidelity simulations and data of real offshore wind farms.

• Chapter 4 is focused on improving the modelling of offshore wind
generation within adequacy studies and studying the impact on reliability
indices. The case study is based on the Belgian power system in 2030.

• Chapter 5 details a novel formulation for wind farm layout optimization
accounting for provision of frequency reserve.

• Chapter 6 concludes this report, while offering some perspectives for
future research.
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CHAPTER 2.
Offshore Wind Farms Design and Operation

Wind energy has been used for millennia by successive cultures and civilizations
[28]. Since early history, wind power has been exploited by seamen for sailing
boats on rivers and lakes and then ships at sea. Windmills primarily refer
to wind-powered machines that grind or mill grain and turn it into flour for
bread making. But windmills have also had numerous other applications such
as grinding spices, sawing timber, pressing oil, mines ventilation, shredding
tobacco, and water pumping in the pre-industrial revolution era [22]. However,
it was not until late in the 19th century that several inventors on both sides of
the Atlantic focused on harnessing the wind to generate electricity. Within a
few months of each other, the first wind turbines built for generating electricity
were installed in Scotland and France, soon followed by one in the United
States and a few years later by one in Denmark. The very first known wind
turbine to produce electricity is generally credited to Professor James Blyth, a
Scottish electrical engineer [29]. Blyth’s 10 m high, cloth-sailed wind turbine
was installed in the garden of his holiday cottage at Marykirk (shown in Fig. 2.1).
It was used to charge accumulators that powered the lighting in the cottage,
thus making it the first house in the world to have its electricity supplied by
wind power. However, the invention never really caught on as the technology
was not considered to be economically viable, and no more wind turbines were
built in the United Kingdom until 60 years later. Actually, with the exception
of the work in Denmark, none of these early experimentation resulted in any
lasting technological development.

Back in the 19th century, no one would have guessed that there would be,
today, more than 1 TW of wind power capacity worldwide (1021 GW), with
117 GW of new installations for 2023 only [14]. At the current rate, the goal
is to reach 2 TW before 2030. Around 20% of the final energy we consume
in the world is for generating electricity and it comes from different sources.
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Figure 2.1.: Blyth’s wind turbine at his cottage in Marykirk in 1891 [29].

Among renewable sources, the share of electricity coming from wind turbines
is about 7.8% [13], [30]. In Belgium, the electricity share in the final energy
consumption is 17.4%, among which 18.9% came from onshore and offshore
wind turbines [31].

Regarding offshore wind generation, the first offshore wind farm in the
world was constructed in Denmark, off the coast of Lolland, in 1991, for an
estimated cost of 10 million euros [32]. The Vindeby Havmøllepark consisted of
11 wind turbines of 450 kW each, for a total capacity of almost 5 MW. It was
decommissioned for cost reasons in 2017 after 25 years of electricity production.
Nowadays, offshore turbines usually have a rated power of several MW, and
are expected to reach up to 20 MW in the future [33]. Currently, offshore wind
capacity is only 75 GW (i.e., 7% of total wind power) but it has developed
rapidly in the past few years (as seen in Fig. 2.2) and it will continue to do
so. Indeed, to meet a 1.5◦C-trajectory, the world will need at least 380 GW of
offshore wind by 2030 and 2000 GW by 2050 [15]. Belgium has been a pioneer
when it comes to large offshore wind farms. C-Power, the first Belgian farm,
was installed in 2009, for a rated capacity of 325 MW. Ten years later, in 2020,
Belgium ranked fourth of the countries with the most offshore wind power in
total installed capacity (behind the United Kingdom, Germany and China,
and ahead of Denmark and the Netherlands), with a total installed power of
2262 MW [19].

This chapter is structured as follows. The production of electricity from wind
is discussed in section 2.1. The wind turbine is described, as well as the main
governing equations and the power curve. Section 2.2 details the characteristics
of offshore turbines, and the main challenges related to offshore conditions.
In section 2.3, resource assessment of a wind site is discussed. Indeed, the
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Figure 2.2.: Historic development of onshore and offshore wind worldwide [14].

ability to measure and assess available wind resources at a given location is
crucial to the development, siting, and operation of a wind farm. Aerodynamic
effects arising within an offshore wind farm are examined in section 2.4. Wake
effects and turbulence have a high impact on the electrical output of interacting
turbines. Section 2.5 describes the design process of an offshore wind farm,
notably the layout (turbine placement, choice of turbine model). In section 2.6,
the operation of current offshore wind farms is presented, and future possible
control strategies are considered. Finally, section 2.7 concludes this chapter.

2.1. Harvesting Energy from the Wind

Wind is atmospheric air in motion, caused by the uneven heating of the Earth’s
surface by solar radiation. The velocity of the air motion defines the strength
of wind and is directly related to the amount of mechanical kinetic energy in
the wind, given by:

Ek,wind = 0.5 mair ∗ u2 (2.1)

where mair is the mass of air and u is the wind speed. We define a control
volume as a stream tube (cylinder) of cross-section area A through which air is
flowing at velocity u. The mass flow rate of air through the control volume is
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Figure 2.3.: Front and lateral view of an horizontal axis turbine with 3 blades.

given by:

dmair

dt
= ρair ∗ A ∗ u (2.2)

where ρair is the air density. The wind power in the flow, i.e., the kinetic energy
flowing per unit of time, can thus be written as:

Pk,wind =
Ek,wind

dt
= 0.5 ∗ ρair ∗ A ∗ u3 (2.3)

A wind turbine is a machine which converts this kinetic power in the wind
into electricity. The conversion process uses the aerodynamic force of lift on
turbine blades to produce a net positive torque on a rotating shaft, producing
first mechanical power and then transforming it to electricity with a generator.
Nowadays, the most common design of wind turbine is the horizontal axis wind
turbine (the axis of rotation is parallel to the ground) with 3 blades, pictured
in Fig. 2.3. The cross-section area A is then defined as the area swept by the
turbine blades and RWT is the rotor radius.

However, not all kinetic power is available for utilization. The efficiency in
wind power extraction is quantified by the power coefficient Cp, which is the
ratio of power extracted by the turbine to the total power of the wind resource
Cp = Pturbine/Pk,wind. Therefore, turbine power is given by:

Pturbine = 0.5 ∗ ρair ∗ π ∗R2
WT ∗ u3 ∗ Cp (2.4)
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Figure 2.4.: Power curve of the Vestas V112-3MW turbine (data from [36]).

There is a theoretical upper limit on the maximum extractable power fraction,
known as the Betz Limit. According to Betz’s theory [34] the maximum possible
power coefficient Cp is equal to 16/27, i.e., 59% efficiency is the best a wind
turbine can do in extracting power from the wind.

The power output of a wind turbine varies with the wind speed and every
turbine has a characteristic power performance curve. With such a curve it is
possible to predict the energy production of a wind turbine without considering
the technical details of its various components [35]. The power curve gives the
electrical power output as a function of the free-flow wind speed at hub height.
Fig. 2.4 shows the ideal power curve of a turbine with regard to incoming wind
speed. It can be observed that wind turbines are controlled to operate only in
a specified range of wind speeds bounded by the cut-in (uci) and cut-out (uco)
speeds, respectively the minimum wind speed at which the machine will deliver
useful power and the maximum wind speed at which the turbine is allowed to
deliver power for safety constraints. Beyond these limits, the turbine should be
stopped to protect both the generator and the turbine.

There are three different operational regions shown in Fig. 2.4 (but more
regions are sometimes defined). Region I is the low-speed region, where the
turbine should be stopped and disconnected from the grid to prevent it from
being driven by the generator. When the incoming wind reaches the cut-in
speed, the wind turbine relaxes its braking after passing through this region
and starts up. Region II is the moderate-speed region that is bounded by the
cut-in speed at which the turbine starts working, and the rated speed (ur),
at which the turbine produces its rated power (generally the maximum power
output of the electrical generator). The turbine produces its maximal power in
this region, as it is controlled to fully extract the available power from the wind.
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Figure 2.5.: Power curve with regard to rotor speed of a variable speed turbine:
wind turbine control mode in different operating regions [37].

Although the speed of the wind turbine could be fixed or variable, maximization
of the extracted energy in this region is only achievable with variable rotating
speed wind turbines. Since these turbines can change their rotational speed
to follow instantaneous changes in wind speed, they are able to maintain a
constant rotational speed to wind speed ratio. Fig. 2.5 shows the power curve
with regard to rotational rotor speed (and not incoming wind speed, as it was
the case in Fig. 2.4). In region II, the Maximum Power Point Tracking (MPPT)
control is implemented to ensure that the wind turbine operates under the
maximum power coefficient. There are several MPPT control algorithms to
determine the optimal operating point of the wind turbine (tip speed ratio
control, optimal torque control, perturbation and observation control, ...). In
Region II bis, the wind turbine maintains the maximum allowable speed, but
the output power of the wind turbine does not reach the maximum limit, which
is generally realized through variable-pitch control. In region III, the high
speed region (i.e., between rated and cut-out), the turbine power is limited so
that the turbine and generator are not overloaded and dynamic loads do not
result in mechanical failure. The wind turbine reduces the rotor speed when
the wind speed increases by adjusting the pitch angle so that the power can
be kept constant. Above the cut-out speed, the turbine should be shut down
to protect it from structural overload. Power curves for existing machines can
generally be obtained from the manufacturer.
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2.2. Building Wind Turbines Offshore

An offshore wind turbine is typically installed at sea, although the term also
comprises inshore water areas such as lakes, fjords and sheltered coastal areas.
In fact, a wind turbine shall be considered as an offshore turbine if the support
structure sustain hydrodynamic loading.

The main reason for seeking offshore conditions is the higher wind speeds
offshore than on land, due to the absence of land mass obstacles and the lower
surface roughness of water compared to land features (forests, buildings, ...) [38].
The wind speed is also less prone to variations (e.g., diurnal cycle) and the wind
direction is more constant, thus alleviating the need to redirect turbines to face
the wind. This allows offshore farms to generate more electricity per capacity
installed, thus enhancing efficiency and leading to less negative impact for
materials and land use. Regarding mining requirements, the amount of rock that
has to be mined for the extraction of materials is lower for offshore (34.88 tons
per GWh of electricity generated) than for onshore turbines (59.48 t/GWh)
[39]. The quantity of materials needed is also lower for offshore wind power
(1.95 t/GWh, among which 1.79 t/GWh of steel) than for onshore turbines
(7.09 t/GWh) that require a lot of concrete (5.14 t/GWh). Improvements in
offshore turbine technology (e.g., larger turbines with longer blades and higher
hub heights), along with access to better wind resources, result in a global
weighted average capacity factor of 35% for offshore wind farms in Europe,
against 23% for their onshore counterparts [40]. However, the average load
factor for new wind installations built in 2022 in Europe is expected to reach
almost 50% for offshore farms [41]. There is thus a vast wind energy potential
in open waters. Moreover, offshore wind turbines have less impact on people
and the landscape and are thus more prone to public acceptance. Being miles
out from the coast, offshore turbines are further away from the local population.
It has also been shown that there are no significant negative environmental
impact and restricted access to offshore sites may even help to protect the
surrounding marine ecosystems [20].

However, the cost of offshore wind has historically been higher than for
onshore [22]. Indeed, offshore wind farms face more challenging conditions
throughout installation, commissioning, operation and maintenance, due to the
harsh marine environments. Their offshore locations complicate construction
and grid connection, further adding to their planning and project development
complexity. Therefore, offshore wind projects tend to have significantly longer
lead times and higher costs than onshore wind projects. The latest report
of the International Renewable Energy Agency indicates a Levelized Cost of
Energy (LCOE) of 0.075$ per kWh for offshore wind, against 0.033$ per kWh for
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onshore [42]. LCOE is a metric used to assess the cost of electricity generation
and the impact from technology design changes, and to compare costs of all
types of generation. LCOE combines costs and energy production into one
metric, and its computation is expressed as follows [42]:

LCOE =

∑n
t=1

It +Mt + Ft

(1 + r)t∑n
t=1

AEPt

(1 + r)t

(2.5)

where:

• It are the investment expenditures in the year t [$]

• Mt are the operation and maintenance expenditures in the year t [$]

• Ft are the fuel expenditures in the year t [$]

• AEPt is the electricity generation in the year t [kWh]

• r is the discount rate [%]. It is used to determine the present discounted
value of a payment or revenue flow made in the future.

• n is the lifetime of the system [years]

The LCOE of renewable energies varies by technology, country and project,
based on the renewable resource, capital and operating costs, and the ef-
ficiency/performance of the technology. This difference in LCOE between
offshore and onshore wind mainly comes from the total installation costs. The
breakdown of offshore wind farms total installation costs is presented in Fig. 2.6,
where the variability comes from studying projects from different years and
countries.

Development costs, which include planning, project management, insurance
during construction, and other administrative costs, represent 2 to 9% of total
installation costs. Indeed, data must be collected on seabed characteristics
and at site locations for the offshore wind resource assessment, while obtaining
permits and environmental consents entails great complexity and can be time
consuming. Foundations are major cost items: they typically cost 15% to
20% of the overall project, as offshore wind farms are inherently installed
in challenging settings and their foundations need to be well designed and
installed because the costs of reworking (corrections and maintenance) can
be enormous. Offshore turbines represent approximately 35 to 45% of the
overall project costs. Electrical interconnection (collection system, array cables,
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Figure 2.6.: Representative offshore wind farm total installed cost breakdown
in the world between 2013 and 2021 [42].

export cables) accounts for 10 to 20%. Installation costs themselves have a
large variability: they range between 5 to 25% of the project expenditures.
The expense of transporting, operating and installing foundations and turbines
offshore, along with the distance to port, are major contributing cost factors.
Indeed, installation requires specialized ocean craft, e.g. jack-up vessels, to
transport and install the components. These specialized crafts are costly and
require a lot of planning because of their scarcity but high solicitation.

2.3. Resource Assessment

The ability to measure and assess available wind resources (wind speed, wind
direction, turbulence, stability, ...) at a given site is crucial to the development,
siting, and operation of a wind farm. It allows to determine project feasibility,
select appropriate equipment and estimate the energy production of a wind farm.
Wind resource can be assessed from on-site measurements with meteorological
masts, turbine sensors, LiDARs, ... However, the use of meteorological masts
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Figure 2.7.: Long term statistics of mean wind speeds. From time series, his-
tograms are plotted and from histograms, the probability density
function of a Weibull distribution can be deduced.

can be costly for offshore conditions, where a platform must be set up to install
the instrumentation. LIDARs are able to capture the wind speed and direction
at specified heights: floating platforms equipped with them could be a viable
alternative to deploying costly masts to capture the offshore wind potential
[43]. Weather models and wind resource maps can also be leveraged for wind
resource assessment. When the wind speed regime (long term hub height wind
speeds) has been established, the electrical energy production can be estimated
by using wind turbine power curves supplied by manufacturers. The frequency
distribution of wind speeds can help developers choose the most adequate
turbine model for the assessed site. Usually, the distribution of wind can be
approximated by a Weibull law, which gives the probability of wind speed being
inferior to u:

p(u) =
k

α
∗
(u
α

)k−1

∗ e−(u/α)k (2.6)

where α is the scale factor and k is the shape factor (≈ 2 in Northwestern
coastal Europe). Fig. 2.7 shows the process of plotting a histogram from
historical times series of measured wind at a given site, then deducing the
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Offshore Wind farm Design  module 4: Offshore Wind Climate

14

The main institution collecting and distributing data in The Netherlands is KNMI. They have 
established an online database which can be assessed for wind energy applications. The 
project in which this database is set up and can be used by external parties is called the 
Hydra project (http://www.knmi.nl/samenw/hydra/index.html). Most of the information 
concerns onshore locations, but there is also data available for 7 offshore measuring posts. 

1.8 Overview existing knowledge 
Many of the formulas given in this report depend on the stability of the boundary layer. Here it 
is assumed that the stability conditions are neutral. For the time being this seems justified 
because on average the influence of the stability on the wind profile seems to be very limited 
according to measurements at on offshore location. 
By means of sensitivity studies, on energy yield and design loads, the validity of this 
assumption can be investigated. Furthermore, neutral conditions correspond with high wind 
speeds, so the assumption will probably lead to conservative design loads. 

1.8.1 Wind resource 

For the economics of a wind farm, the estimate of the average energy production is essential. 
For an accurate estimate of the energy output the following information is important. First the 
statistics of wind speeds are described, than an overview of methods to calculate the wind 
speed at hub height (wind profile) is given 

Statistical description 

One of the main drivers for offshore siting of wind turbines is the higher mean wind speed. In 
the figure the Weibull distribution onshore and offshore are compared.  

Fig. 13 

The annual mean wind speed can vary considerably in different years. A standard deviation of 
annual mean wind speed of 11% is found for offshore locations, which is large compared to 
the 5.5% for onshore sites. 

In order to determine the long term mean wind speed a database of 30 years or more is 
necessary; such long databases are not (yet) available for offshore locations. In case such a 
database becomes available for some locations, this will be also useful for locations nearby 
(for which only a limited data set is available). A correction factor can be determined based on 
the ratio of the annual mean wind speed for the two locations. Such method is standard 
practice for onshore situations.  
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Figure 2.8.: Examples of Weibull distribution of wind speed, onshore and off-
shore [44].

Weibull law associated with the location. As it was stated before, offshore
wind tends to blow stronger than in onshore conditions. This can be seen
on Fig. 2.8, where the Weibull probability distributions are very different in
shape and values between offshore and onshore conditions: the onshore curve
is more narrow, with a lower wind speed and reduced probabilities of higher
wind speeds (probability of speeds exceeding 14 m/s under 2%). The offshore
curves are broader, especially the one depicting the North Sea wind regime,
and the most probable wind speed is around 8 m/s while high values can reach
up to 28 m/s.

It should be noted that measuring wind at turbine hub height is not always
possible, especially for modern offshore turbines whose hub can reach up to
145 meters [45]. In that case, wind speed profiles (vertical extrapolation) can
be deduced with the power law:

u(z) = u(zref ) ∗ (
z

zref
)α (2.7)

where u(z) is the wind speed at height z, and u(zref) is the measured wind
speed at a reference height zref . The shear coefficient α is an empirically derived
value that varies depending on the stability of the atmosphere. For neutral
offshore conditions, α is approximately equal to 0.11 [22].

Although Weibull wind speed distributions give an insight on the mean wind
speed regime, it does not describe annual (seasonal), diurnal and short-term
variations. Significant variations in seasonal or monthly averaged wind speeds
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are common over most of the world. For offshore conditions in the North Sea,
wind tends to blow stronger in winter months and can be still for long periods
during summer [25]. The diurnal variation is typically an increase in wind speed
during the day and the lowest wind speeds during the hours from midnight to
sunrise (due to the heating of the ground). However, it is less visible above sea
because of the large thermal capacity of the water (the sea-surface temperature is
more likely to remain stable) [46]. Short-term variations usually mean variations
over time intervals of 10 minutes or less. Turbulent fluctuations in the flow
need to be quantified for the turbine design considerations of maximum load,
fatigue prediction, structural excitation, control, system operation, and power
quality. Turbulence in the wind is caused by dissipation of the wind kinetic
energy into thermal energy via the creation and destruction of progressively
smaller eddies (or gusts). The most basic measure of turbulence is the ambient
turbulence intensity TIu. It is defined by the ratio of the standard deviation
σu of the wind speed to the mean ū:

TIu =
σu

ū
(2.8)

The length of the time period for computing the mean and standard deviation
is normally no more than an hour, and by convention, it is usually equal to
10 minutes in wind energy engineering [35]. Turbulence characteristics vary
significantly depending on the stability of the atmospheric boundary layer.
The atmospheric stability is characterized by the vertical gradient in potential
temperature, θ, which is a measure for comparing the temperature of air at two
different heights. Positive, zero, and negative values of ∂θ/∂z correspond to
respectively stable, neutral, and unstable atmospheric conditions [47]. Onshore,
unstable conditions often occur during the day when the sun-heated planetary
surface transfers heat to the layer of adjacent air, while stable conditions are
usually observed at night when the planetary surface and the adjacent air cool.
In offshore conditions, unstable atmosphere occurs when cool air passes over
relatively warm ocean water while stable conditions exist when warm air passes
over relatively cool ocean water.

2.4. Aerodynamic Effects in Offshore Wind
Farms

Wind farms are locally concentrated groups of wind turbines that are electri-
cally and commercially tied together. While there are many advantages to this
electrical and commercial structure (such as concentration of repair, mainte-
nance equipment and spare parts, reduced labour costs per turbine, increased
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Figure 2.9.: Schematic side view of a wake structure behind a wind turbine
[48].

exploitation of areas with profitable wind resources), wind farms are subjected
to complex aerodynamic phenomena. As wind flows through a wind turbine
and mechanical energy is extracted, the volume of air downwind of the turbine
has a lower wind speed than the freestream flow. This volume of air is called a
wind turbine wake [49], it is depicted in Fig. 2.9. Moreover, turbine wake flows
lead to a substantial increase in the level of downstream turbulence intensity
with respect to the turbulence level of the incoming atmospheric boundary
layer flow. This effect has been observed in several numerical and experimental
studies [50]. As the volume proceeds downstream, it spreads and energy is
transferred inwards from the rim such that the difference between the lower
energy/higher turbulence wake air and the freestream is gradually reduced.
The size and degradation of wake structures depends on many factors such
as the ambient wind speed and turbulence. Indeed, higher levels of ambient
turbulence intensity leads to more mixing downward, which is favourable to
wake dissipation and recovery of the flow. Wake added turbulence, turbine type,
terrain, structure of the boundary-layer relating to atmospheric stability, and
flow direction are other factors influencing wake propagation. However, it has
been shown that after a distance equivalent of approximately 20 rotor diameters,
the wake has recovered towards free stream conditions [51]. Moreover, as wakes
move downstream, they impact the ground and are subject to downstream and
lateral merging with other wakes. Indeed, depending on the wind direction,
wind turbines inside wind farms are often exposed to multiple wakes from
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Figure 2.10.: Wake effects observed within Horns Rev.
Photo credit: Vattenfall Wind Power, Denmark.

several upstream wind turbines. Fig. 2.10 depicts turbine wakes at Horns
Rev, an offshore wind farm in the North Sea, west of Denmark. Particular
meteorological conditions allow wake visualization by natural cloud formation.

Within a wind farm, the most obvious effects of wakes are the resulting
lower power: wake losses refer to the loss of energy generation capacity of
the downstream turbines due to these wake effects. A wind farm will not
produce 100% of the energy that a similar number of isolated turbines would
produce in the same prevailing wind. Farm wake losses are mainly a function of
wind turbine spacing (both downwind and crosswind), wind turbine operating
characteristics, wind farm size and density, and turbulence intensity. Moreover,
power losses are also a function of the annual wind direction frequency distri-
bution. The crosswind (perpendicular to the direction of incoming wind) and
downwind (parallel to wind direction) distances between wind turbines will
vary depending on the geometry of the wind farm layout and the direction of
the wind. Yearly wake losses need to be calculated based on representative
annual wind direction data in addition to wind speed and turbulence data.
Wake losses are a major issue for offshore wind farms, as the lower roughness
at sea reduces the atmospheric turbulence intensity and leads to generally
stable atmospheric conditions. Measured values of the turbulence intensity
range between 7 and 9% at 15 m/s for neutral offshore conditions in the North
Sea [52]. Power losses due to turbine wakes in large offshore wind farms are
predicted by state-of-the-art models to be in the order of 10–20% of the total
potential power output, hence they are a significant component of the overall
economics of large wind farms [53].
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Another consequence of wakes are higher mechanical constraints at turbines
experiencing wakes compared to those in freestream flows. Even though ambient
turbulence is usually lower in offshore conditions, this may not result in reduced
loads on offshore wind turbines due to high levels of wake-generated turbulence
in large wind farms. Therefore, the dynamic loading increases significantly for
offshore wind farms due to the more turbulent wake of upstream turbines, and
hence impacts turbine lifetime. High load fluctuations are especially observed
when the swept area of a turbine is partly covered by a wake. Measurements
at the Vindeby offshore wind farm indicate that the relative increase in wake
turbulence is considerably higher offshore and is more persistent downstream
due to the lower ambient turbulence [44].

2.5. Design and Layout Configuration
The upfront costs of offshore wind farm projects are enormous and the initial
development costs to mature the project are also significant when compared
with onshore renewable development. Offshore wind planning is typically a long
process that can take eight to ten years before the offshore wind farm begins
generating power. The design phase is thus crucial to ensure that investment
costs are compensated throughout the farm lifetime.

2.5.1. Site Choice and Development Phase

Selecting an appropriate location is the first step for building an offshore wind
power plant: it requires a complex planning process that is based on diverse
environmental, social, and economic factors. Government agencies are central
in determining offshore wind farm concessions and in the tendering process. Site
selection refers to the process by which government agencies outline offshore
wind farm concessions: location, size and number of parcels. This is carried out
according to a marine spatial plan and preliminary studies. Maritime spatial
planning is a tool to coherently manage the use of seas and oceans and to
ensure that human activities take place in an efficient, safe and sustainable
way. Fig. 2.11(a) shows the marine spatial plan for the horizon 2020-2026 in
Belgium. It can be seen that in the Belgian part of the North Sea, space is scare
and determining zones for the production of offshore wind energy must respect
constraints for shipping routes, nature protection areas, extraction areas, and
zones for commercial and industrial activity. This explains why offshore wind
farms are often gathered in clusters, which reduces power production because
of wakes losses between neighbouring farms, but facilitates planning and site
selection. Even for countries with longer coasts, clustering offshore wind power
plants is a common practice, as it can be seen in Fig. 2.11(b), which indicates
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(b)(a)

Figure 2.11.: (a) Map of the Marine Spatial Plan (2020-2026) for the Belgian
North Sea [54], (b) Locations of US offshore wind energy pipeline
activity and Call Areas as of May 31, 2024 in the North Atlantic
Sea [55].

the locations of future US offshore wind farms in the North Atlantic.

Once concessions (or lease areas) have been determined by governments,
they are awarded to offshore wind farm operators through a tendering process.
Candidates submit bids for gaining support from the government for the project
they intend to build, then bids are ranked according to bid values. Those bids
should conform to admissibility (pre-qualification) criteria such as:

• Technical capacities: the bidder must have previous experience for large-
scale offshore projects. This allows to limit the risk of project delays or
non-execution

• Financial stability: minimum amount of assets and proof of financial
strength through a provision of guarantee.

• Minimum installed capacity: the bidder will have to demonstrate that
the minimal capacity fixed for the concerned parcel by the government
will actually be built into its project.

• Maximum strike price: in case of support mechanism, this is a guaranteed
price for offshore energy producers. If wholesale electricity markets fall
under the strike price, wind farm operators receive the difference between
the two prices for every produced MWh, usually for a fixed period of time
(several years). This mechanism is usually used in contracts for differences
(CfD) that can be one-sided (the government pays the producer in case
of low electricity prices) or two-sided (producers also pay the government
if prices reach the strike price, potentially with an added margin), as
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Figure 2.12.: A simplified illustration of different support mechanisms: (A) Two-
sided CfDs, (B) One-sided CfDs, and (C) Feed-in Tariffs [56].

illustrated in Fig. 2.12. A maximum strike price set by the government
is imposed on the bids: tender bids with a strike price higher than the
predetermined maximum are automatically considered as unacceptable.

Candidates willing to participate to the auction make bids, where they
stipulate the characteristics of their projects. They study the viability and
profitability of the envisioned wind farm, with a view to the tendering process,
as well as the management of the different actors or stakeholders involved.
This includes environmental planning, site design, assessment of wind potential,
technology review and component selection. As it was explained in section 2.3,
a thorough knowledge of wind resources in an area is fundamental as it allows an
estimation of the wind farms productivity and therefore the financial viability
of the project. Marine aspects such as water depth, wave spectrum, ocean floor
mapping, and geophysical surveys are also examined as they constrain turbine
siting, suitable types of foundations, and choice of technology. At the end of the
tender period, bids are then ranked according to awarding criteria, which depend
on the type of tender and are set up by the government. They vary between
countries and years but existing criteria include strike price, expected amount
of energy produced, but also qualitative criteria such as environmental benefits
(marine mammals, sea birds, flora), local content (contribution to secure skilled
workers and local benefits), citizen participation, system integration benefits,
envisaged commissioning date, ... A price-based ranking has the advantage
that only the bids with the lowest prices will be awarded, which leads to a cost-
effective selection. In a purely price-based auction, any additional objectives for
the promotion of renewable energies can only be controlled via pre-qualification
requirements outside the auction system. While there is no consensus on the
ideal tender design system, auctions generally aim at achieving competitive
prices (cost-competitiveness criterion) and high realisation rates (efficiency
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criterion). They should also promote research and innovation efforts and allow
for the development of cutting-edge wind technologies. The winning bidder
receives the permission and the necessary permits for the construction and
operation of the offshore installations for the duration of the lease.

In Belgium, no tender process were used for the first 9 offshore wind farms
built before 2021: concessions could be requested and were granted without a
tendering process, according to a Royal Decree [57]. Bidders had to demonstrate
financial capacity, respond to technical criteria, and prove previous references
and technical means. The award criteria were technical and environmental
conformity, quality of the project, maintenance plan, and provisions for end-of-
life dismantling. For the Princess Elizabeth Zone (second wave of offshore wind
farms foreseen to be built by 2030), a Royal Decree published in June 2024
sets the rules for the tendering process [58], and the auction for the first parcel
(700 MW) is scheduled for the end of 2024. Admissibility criteria include a
strike price below 95e/MWh, previous experience for offshore wind projects of
at least 300 MW, proof of financial stability (guarantee of 70 millions euros),
demonstration that the minimal capacity decided for the parcel will actually be
built into the project, and citizen participation (a minimum share of 1% of the
investment costs of the entire project should be opened to citizen participation).
There are two awarding criteria, each evaluated through points attribution:
90% points given according to the strike price (the lowest bidded price receives
the maximum points), and 10% for the degree of citizen participation. The
support mechanism will be a two-sided contract for difference, enforced during
20 years.

2.5.2. Turbine Technology
Because of the unique environment, a number of turbine manufacturers are
designing wind turbines specifically for offshore use [35]. Offshore turbines
are generally larger than their onshore counterparts. There has been a trend
towards higher capacity turbines, with higher hub heights and longer, more
efficient and durable blades. These turbines, specially designed for the offshore
sector, increase energy capture. The larger turbines also provide economies
of scale, with a reduction in installation costs and electrical connection, and
an amortization of project development and maintenance costs. This trend
of increasing rotor diameter can be explained by the fact that a turbine with
blades twice as long would, theoretically, be four times as powerful, as it can
be deduced from Eq.(2.4). However, the expansion of the area swept by the
rotor puts great strain on the entire assembly, and larger designs pose many
challenges like taller towers, larger nacelles, and more severe aerodynamic loads.
It should be noted that for the same rotor diameter, hub height is lower for
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offshore turbines as there are less safety constraints on the distance between
blade tip and sea than for onshore, where the blade should rotate high enough
above ground. Currently, a big issue concerning offshore turbines is supply
chain delays and bottlenecks, due to ever increasing pressure on manufacturers
to keep pace with demand [59].

The choice of turbine technology is an important step in the design process,
as turbine costs represent approximately 35 to 45% of the overall project
costs. Criteria for wind turbine selection are not independant, but often
interrelated. For example, more advanced turbine technologies usually require
less maintenance costs, but their price is higher as well. Selection criteria
include:

• Technical characteristics
The turbine rated power is an important factor as the total farm capacity
usually needs to reach a minimum value associated with the offshore
concession. Within a parcel, the number of turbines that can be installed
is limited by the parcel boundaries and the minimum distance to ensure
between adjacent turbines for safety reasons. Therefore, rotor diameter
is also an important factor since the power extracted from the wind
is proportional to the square of the rotor radius (see Eq.(2.4)). Hub
height is an important criteria as well, as larger rotor diameters require
higher towers. If the wind speed regime at the considered site displays
reduced wind at lower altitudes, higher towers are necessary to capture the
stronger wind speeds above. Moreover, considering the harsh conditions
at sea (depicted in Fig. 2.13), features such as anti-corrosion against salt
and humidity, lightning protection, typhoon prevention, and resistance
to cold temperatures are decisive factors for the turbine choice. Indeed,
in cases of failures, maintenance time for offshore turbines is long, and
the cost is very expensive. This is also why mature technology including
intelligent monitoring and fault diagnosis analysis could be preferred.

• Matching with the wind resource
The turbine power curve (cut-in, cut-out and rated wind speeds) should
correspond with the wind regime at the considered site. Indeed, under
the same wind resource conditions, the lower the rated wind speed, the
more wind energy absorbed by offshore wind turbines, and the higher the
utilization rate of wind resources. Moreover, in case of frequent strong
winds, the cut-out wind speed must be high enough to avoid shutting
down the turbine too often (protection from mechanical failure). When
using time series of wind data (speed, direction, turbulence) measured or
modelled for the wind site, the capacity factor (ratio of the actual power
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Figure 2.13.: Environmental impacts on an offshore wind turbine.

generation of a wind turbine to the rated theoretical power generation)
of the turbine can be deduced. A high capacity factor indicates that the
turbine production characteristics fit with the wind resource.

• Economy
The cost per kW, i.e. per installed power, is an important index to
measure the economic performance of wind turbines: it reflects the cost
of purchasing wind turbines, which will directly impact the investment
cost of wind farm projects. The cost per kWh, i.e. per energy produced,
is also essential to evaluate the economic benefits of the whole offshore
wind power project. It depends not only on the turbine cost but also
on the output energy, and indicates how well the turbine performs with
regard to the investment costs. Buying turbines with the cheapest cost
per kW does not necessarily leads to low costs per energy if the turbine
is not suited for the considered offshore site, thus both factors should be
considered.

• Other non-technical criteria
The reputation and experience of the supplier can also influence the choice
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of turbine technology. In Europe, as of 2023, the supply chain for offshore
turbines was dominated by two companies: Siemens Gamesa Renewable
Energy (66.5% of market shares) and Vestas (26%). Other notable
manufacturers include Senvion (formerly called REpower), GE Vernova
(formerly General Electric), and Bard, with respectively 4%, 2.5% and
1% of market shares. Moreover, for a considered turbine type, historical
performance, production statistics and track record (sales performance)
are studied to guarantee reliability. Other aspects such as availability of
spare parts, delivery time, and warranty can be considered.

Wind turbine technology has evolved substantially during the past decade,
with the development of new designs aimed at improving the system integration
of wind power. Indeed, wind power can have a lower (average) market value
because turbines tend to produce disproportionately during times when the
electricity price is low (and wind speed is high). This has sometimes been
referred to as the “self-cannibalization effect”, because it is the abundance of
renewable energy itself that depresses market prices during periods of high
resource availability [60]. Therefore, in a power system supplied fully by wind
power, there will be a lack of power at low wind speed and excess at strong
wind. To address this issue, low wind speed turbines have entered the market:
they are taller and have a larger rotor-to-generator ratio (a lower specific rating
per area swept by the rotor). These turbines capture more energy at low wind
speeds. For example, the LowWind rotor concept [61] developed by Vestas and
the Technical University of Denmark (DTU) is designed to produce more than
double the power at low wind speeds compared with a conventional turbine
(as illustrated in Fig. 2.14). Initial power system simulations with a LowWind
type power curve have shown that this increased power production at low wind
where the electricity prices often are high can be quite beneficial [62]. Another
feature of the LowWind turbine is that it shuts down at a wind speed around
13 m/s, where conventional turbines have reached their rated power. However,
a challenge with low wind speed turbines is the big rotor and blade size, which
can increase transportation and installation costs. Moreover, as low wind
turbines are optimized to a reduced operational range from e.g. 2 to 13 m/s, it
is expected that this will lead to design solutions differing considerably from
the conventional variable speed, 3-bladed rotor and pitch regulated turbine.

2.5.3. Turbine Foundations

In offshore wind farms, wind turbines are elevated above the sea level and
anchored to the sea bed using foundations. The distance to shore, water depth,
and ocean soil conditions will determine the type of foundations to use (floating
or fixed-bottom) and the design. The choice of turbine technology is also
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Figure 2.14.: Normalized power curve of the LowWind turbine concept [61].

Figure 2.15.: Main types of offshore foundation structures [63].

important as increasing turbine size and head mass have a direct impact on the
tower as well as the foundation in terms of mechanical loads. Most offshore wind
farms currently consist of fixed-foundation wind turbines in relatively shallow
water, usually no deeper than 60 m [64]. There are four main configurations of
fixed-bottom offshore foundation structures: monopiles, tripods, gravity base
foundations and lattice/jacket structures, shown in Fig. 2.15.

Monopiles consist of a single large-diameter hollow pipe made of steel, buried
deep in the seabed, and supporting all the loads (weight, wind, ...) of a large
above-surface structure. Monopiles are typically used in shallow water depths
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(20 to 40 meters). Nowadays, the monopile structure is considered the dominant
concept (cumulative market share of 81.5% in Europe by the end of 2018 [65]).
In the offshore wind industry, there is an economic interest to increase the
range of applicability for monopiles towards larger turbines and water depths
due to the simplicity and relatively low fabrication costs compared to other
foundations.

Tripods consist of a large-diameter central, steel tubular section that is
supported over its lower length by three braces, which are connected to the
seabed using different foundation types (e.g., gravity base, suction bucket or
piles). Therefore, the loads applied to the turbine and its support structure
are mostly transferred axially (via the braces) to the seabed foundation.

A jacket structure is a lattice frame comprising small-diameter steel struts
that are anchored to the seabed. These structures are particularly suited for
severe maritime weather conditions because of the additional structural stiffness
and larger moment arm for reacting against the bending loads, compared with
monopile foundations [66]. Jacket structures are also more adaptable to the con-
ditions encountered on-site, increasing their application range, with geometrical
variations of the substructure achieved relatively simply, but without altering
the stiffness of the overall structure. There is a shift towards jacket and tripod
systems for future offshore wind farms at deeper sea locations that provide
consistently higher wind speeds and hence greater wind energy production.

For larger water depths (typically above 50 m), the use of floating structures
is necessary. However, floating offshore wind has only recently entered the early
commercial stage. Such floating platforms for wind turbines will impose many
new design challenges.

In Belgium, 3 structural types of foundations can be found: mostly monopiles,
but also jackets and gravity structures, for respectively 86.5%, 7.5% and 6% of
installed turbines. Their distance to the coast varies from 23 to 54 km, leading
to water depths between 14 and 40 meters [19].

2.5.4. Turbine Layout
Offshore winds are generally characterised by higher annual average speed, more
extreme speeds but lower turbulence and gust factors along with a smoother
wind shear and more stable directionality. For most sites and with a reasonable
turbine spacing, this results in lower aerodynamic loads and offers opportunities
for design optimisation [44]. Indeed, wind turbines should be placed so that the
local wind resource is maximally exploited while avoiding energy losses from
turbine wakes. Finding an optimal layout is critical because even relatively
small improvements in energy conversion can translate to significant gains in
revenue [67].
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Figure 2.16.: Development of wind farm patterns over time. Left of the dashed
green line are wind farm layouts operational in industry, while
right of this line are optimised layouts from literature studies [68].

Lower turbulence intensities in offshore conditions require greater spacing
between turbines to allow the turbine wakes to be reenergized. Turbine spacing
should be adjusted to maximize the amount of energy that can be generated
without substantially increasing the investment costs. On the one hand, if the
farm is significantly spread out (large spacing between turbines), the inter-array
cables length will increase. On the other hand, turbines located too closely will
lead to highly detrimental power losses because of wake effects. A compromise
is thus required between the objective of maximizing the power generated
per turbine and the competing incentive to maximize the number of turbines
per unit area. The spacing is therefore an optimization problem between the
compactness of the wind farm (which minimizes the investment costs due to
subsea cables) and the adequate separations between turbines to minimize the
energy loss due to wake effects.

Optimized wind farm designs try to avoid aligning turbines in the directions
of dominant wind to minimize wake losses. Wind roses are a useful tool to
visualize the wind power potential of an offshore site. They show the frequency
of wind speeds blowing from particular directions over a specified period. This
allows to determine the dominant wind directions of the site, as well as the
directions of higher wind speeds. Earlier offshore wind farms have regular
patterns, with turbines often aligned on equidistant rows, but newer and larger
wind farms show more variation in patterns, as seen in Fig. 2.16. Optimizing
the layout with mathematical tools can lead to highly irregular patterns, which
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Figure 2.17.: Connection of an offshore wind farm to the onshore grid [15].

have a higher potential of increasing the minimum inter-turbine spacing by
strategically relocating a limited number of turbines. Irregular wind farm
layouts outperform regular layouts regarding energy production and they also
increase the persistence with regard to wind direction [68] (i.e., the power
output is less sensitive to fluctuations in wind direction). However, a drawback
of irregular layouts is that the turbulence intensity for some turbines may be
higher, leading to increased fatigue loads.

2.5.5. Electrical Interconnection
Meticulous design of the electrical infrastructure is also very important. As it
is represented in Fig. 2.17, the whole electrical chain includes the inter-array
cables within the wind farm, the offshore export cable, the onshore export cable
and point of interconnection, and the onshore grid itself. Those four parts are
further detailed below.

Within a wind power plant, the collection system comprises the electrical
connection of the wind turbine generators to power substations through electri-
cal cables. Those inter-array cables are AC links of lower voltage (the current
maximum voltage class available on the market for inter-array cables is 66 kV),
usually between 1 and 10 km in length, that carry the energy generated by
a single wind turbine (or by a subset of turbines). They enable the energy
produced by the turbines to flow to the substations that aggregate their power
and export it to the point of connection to the grid [69]. The design of such a
cable system is constrained by the limited cable capacity and the avoidance of
cable crossings. There are various arrangements for wind farm collector systems
employed in existing offshore wind farms, but the four basic designs are [70]:

• Radial: a number of wind turbines are connected to a single cable feeder
within a string. The maximum number of wind turbines on each string
feeder is determined by the turbines rated power and the maximum
capacity of the subsea cable. This design offers the benefits of being
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simple to control and also inexpensive because the total cable length is
smaller. The major drawback is its poor reliability as cable faults at the
end of the radial string have the potential to prevent all downstream
turbines from exporting power.

• Single-sided ring: similar to the radial design, but an additional cable
runs from the last wind turbine at the end of the string to the collection
hub. This design addresses some of the security of supply issues of the
radial design by incorporating a redundant path for the power flow within
a string, at the expense of additional cables.

• Double-sided ring: the last wind turbine in one string is interconnected to
the last wind turbine in the next string. While offering redundancy, it can
lead to cables oversizing as the full output power of the wind turbines in
one of the strings is diverted through the other string in case of failures.

• Star: individual turbines are connected to a star/cluster point with
its own cable. A main cable is then connected to the medium voltage
collector hub. This design reduces cable ratings and provides a high level
of security for the wind farm as a whole. The main drawback is the more
complex switchgear requirement at the wind turbine in the centre of the
star.

Offshore wind farms are sometimes dozens of kilometres away from the
coast and long-distance power transmission can incur significant energy losses.
Without efficient long-distance undersea power transfer, the costs of offshore
installations can be prohibitive. For short distances (typically under 70 kilome-
tres [71]), AC connections are suitable, but for longer distances, high-voltage
direct-current (HVDC) transmission should be considered. Moreover, careful
planning for the installation of power cables is crucial to minimize the lifetime
cost of the cables. Indeed, cable laying ships and equipment are very expensive
and cables are subject to damage. The greatest hazards are from anchors and
fishing, thus the most cost-effective solution to these problems is finding a
cable route that avoids fishing and anchoring areas. Inter-array and export
cables are buried under the seabed to avoid the risk of entanglement with nets.
Another danger are mobile sand waves because they can uncover buried cable
in a couple of weeks [35], prompting the need to bury cables 2 to 3 meters deep
to avoid wave action. Therefore, a good cable design must balance expensive
cable installation and burial costs with the cost of down time and repair.

Another design aspect is finding a suitable site to connect to the transmis-
sion grid. Nowadays, almost all offshore wind power plants are connected
to onshore grids using point-to-point radial offshore transmission lines [72].
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Finding a suitable interconnection point capable of transferring up to several
gigawatts of electricity with the existing transmission infrastructure is generally
done in coordination with the TSO. However, due to the limited number of
points of interconnection in onshore grids close to coastlines, to environmental
and community impacts of submarine cables, and to the higher cost to build
transmission for a single offshore project, it has become clear that offshore
transmission lines that are interconnected, or even meshed, will allow to un-
lock large amounts of offshore wind energy. Doing so requires proactive and
coordinated transmission planning for offshore wind, as well as advancement
in offshore transmission technologies. In Belgium, a Modular Offshore Grid
(MOG) station centralizes the power of the four most recent offshore wind
farms (Rentel, Seastar, Mermaid, and Northwester 2) in an offshore hub, and
transports it via three 220 kV AC cables to the onshore substation. This
is a cost efficient and reliable way to connect high volumes of offshore wind
energy, tackling general increasing cost levels for infrastructure. The combined
cable infrastructure guarantees that the wind farms can always transmit the
power they generate to the mainland, even if one of the cables is temporarily
unavailable. Bundling the cables from several wind farms uses around 40 km
less cable than building a separate cable connection for each wind farm, so the
MOG project significantly reduces the impact on the seabed and the marine
environment [73]. Moreover, the Princess Elizabeth island, planned by Belgium
in the North Sea, will be one of the first energy islands. Such hybrid systems
allow cost-savings compared to single-purpose solutions because of the need for
fewer transmission assets and from optimized operation of the offshore system.
Energy islands also have the advantage of remaining readily accessible and
expandable, which can lower the risk of future projects.

Finally, in most countries, the onshore transmission grid was built for central-
ized large generators that were often located away from the coast. With several
gigawatts of electricity generated by offshore wind, the existing transmission
grid limits may hinder the ability to deliver power to end consumers. In loca-
tions with significant offshore wind potential, policymakers are beginning to
recognize the need to develop the onshore transmission grid in coordination
with offshore planning. For example, in Belgium, to accommodate the future
energy production of the second offshore zone planned in the North Sea, a
reinforcement of the onshore transmission grid is envisioned, by the addition of
two high voltage lines [74] (Boucle du Hainaut and Ventilus projects).
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2.6. Operation of an Offshore Wind Farm

Today, offshore wind power is traded on day-ahead markets in many countries
[75]. From a wind power point of view, the significant forecast errors associated
with the 12–36 h ahead scheduling timeframe would rather suggest trading on
a combination between a day-ahead spot and an intra-day adjustment market,
if available, allowing the incorporation of more accurate wind power prediction.
The current participation of offshore wind farms in electricity markets will
constantly be changing, since wind turbines are now able to provide energy and
reserve services in the electricity market [76]. There is a growing demand from
transmission system operators for wind energy sources to play an active role
in balancing the grid through market participation and provision of ancillary
services such as frequency control, which have been traditionally provided by
conventional power plants [26].

When selling electricity on energy markets, wind farm operators aim at
maximizing energy capture. In most commercial wind farms [77], each wind
turbine is controlled so that its own power is maximized: this is called the
"greedy" strategy. This control allows to optimize the extracted power without
exceeding the maximum allowed power and maximum rotor speed (i.e., MPPT
mode). Methods for decreasing wake losses have been proposed in the literature:
the main ones being wake steering and axial induction control [78]. However,
when used in the context of power maximization, these techniques are associated
with an increase on loads and fatigue on the turbine blades [79]. The wind
industry has recognized the potential of an improved wind farm control but
the actual implementation is still difficult because of the inherent system
complexities of wind farms and the aerodynamic interactions among wind
turbines. In the event of very high winds (or even storms), the turbine must
be shutdown so that the generator is not overloaded and dynamic loads do not
result in mechanical failure for the turbine. Turbines are then controlled to
collectively pitch their blades toward a feather position and shed power [80].

Wind farms require maintenance throughout their typical operational life of
20-25 years [81]. Operation and Maintenance (O&M) costs for offshore wind
farms per kW are higher than those for onshore wind, primarily due to the
higher cost of accessing the wind site to perform maintenance on turbines and
cabling. These costs are heavily influenced by weather conditions and the
availability of skilled personnel and specialised vessels. Bad weather and long
distances to shore increase maintenance costs and can decrease availability when
unexpected repairs are needed. To limit the risk to people in harsh offshore
conditions but also to minimize the downtime of the equipment, most of the
monitoring is done remotely using sensors and even drones, with diagnostics
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performed through embedded sensors in the offshore station and in the wind
turbine generators [72]. O&M costs typically constitute 16 to 25% of the LCOE
for offshore wind farms with fixed-bottom foundations [42].

2.7. Conclusion
This chapter aimed at providing an overview of offshore wind energy. With
declining technology costs, high resource quality, and the increasing scale of
turbines and wind farms, offshore wind has become the world’s fastest growing
renewable generation technology [82]. The LCOE of offshore wind farms is
higher than their onshore counterparts because they face more challenging
conditions throughout installation, commissioning and O&M due to the harsh
marine environments. Their offshore locations thus complicate construction
and grid connection, further adding to their planning and project development
complexity. However, the stronger wind at sea and the vast potential over
open water make offshore wind farms highly profitable. Exploiting offshore
wind resources is particularly suitable for countries with a high population
density and difficulties to find suitable sites on land, but with an ample and
windy coastal maritime space. The complex aerodynamic phenomena arising
in offshore wind farms have also been explored. Wake effects, which lead
to significant power losses, are exacerbated in offshore conditions because of
the lower ambient turbulence. The different aspects involved in the design of
offshore wind farms have also been investigated. Many design considerations
are interdependent, prompting the need for an integrated design approach.

Considering the massive growth of offshore wind generation in electrical
grids, the techno-economic analysis of modern power systems can no longer
be envisioned without an accurate modelling of this fluctuating generation
within power system computations. In the next chapter, we will thus focus on
the modelling of the power output of offshore wind farms, taking into account
aerodynamic effects while maintaining a low computational cost.
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CHAPTER 3.
Topology-Aware Offshore Wind Farm Surrogate

As the role of offshore wind generation increases in modern power systems,
the need for enhanced modelling techniques becomes critical. In problems
involving iterative computations, simplified offshore wind farm models often
disregard complex aerodynamic effects due to computational issues associated
with accurately representing them. For example, the power curve approach
simply converts free-flow wind speed to power output by using the turbine
power curve, then multiplies it by the number of turbines in the farm to
assess the total generated power. Wake effects are ignored with that approach,
but they have a significant impact on the produced electricity. Wind farm
numerical simulations cannot be directly integrated in complex iterative power
systems simulations. However, a database can be generated from wind farm
simulations, then be used to train fast models based on Machine Learning (ML)
techniques. Machine learning focuses on extracting knowledge from data: it
is a research field at the intersection of statistics, artificial intelligence, and
computer science. The application of machine learning methods has in recent
years become ubiquitous in everyday life [83].

This chapter is organized as follows. A bibliographical review for wind farm
models using Machine Learning is provided in section 3.1. It highlights the
limitations of the current literature, and the subsequent innovations developed in
this chapter. Then, section 3.2 details how wind farm simulations can be carried
out to build a significant training database. High-fidelity simulations as well as
engineering models are considered and described. They are then compared in
section 3.3 in terms of computation time, accuracy and practicality. Section 3.4
details the wind farm simulations carried out to build the training database.
In section 3.5, a wind farm surrogate using Machine Learning techniques
is developed using this training database. Geometric and physics-informed
features are added the inputs of the model in order to enable it to be topology-
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aware, i.e., applicable to any wind farm configuration. Different algorithms of
supervised Machine Learning are considered: they are described, tuned, then
compared based on model complexity, inference time, and accuracy. Section 3.6
validates the topology-aware ML surrogate using high-fidelity computations of
a real-life wind farm generally used as a benchmark in the literature. Finally,
section 3.7 concludes this chapter.

3.1. Literature Review on Modelling Wind
Farms Using Machine Learning

Previous research has explored the use of ML for modelling offshore wind
generation, focusing on diverse applications such as annual energy production
estimates, optimization of wind farm layouts, and real-time monitoring. In
references [84]–[86], power measurements of wind turbines and/or wind infor-
mation from meteorological masts are gathered at onshore wind farms to train
a ML model dedicated to predict the power produced by each turbine. Neural
networks are used in [84] to estimate wind turbine power generation, while
[85] trains adaptive neuro-fuzzy interference system, cluster center fuzzy logic,
k-nearest neighbor and neural networks. Authors in [86] compare physics-based,
data-driven and hybrid models, using onshore Supervisory Control And Data
Acquisition (SCADA) data. A strong limitation of those models is their re-
liance on measurements, which are often not publicly accessible or even entirely
unavailable for future farms that are yet to be built. Authors in [87] train
ML surrogates on wind farm simulations, but every wind farm needs its own
surrogate, making the training process cumbersome.

All works cited above are building a model only applicable for the wind
farm on which they have been trained, i.e., for a fixed layout and wind turbine
characteristics. This means that the model has to be completely retrained for
any modification of the wind farm configuration, i.e., adding/removing turbines
or changing the turbine type for, e.g., re-powering. Consequently, the current
ML models cannot be applied to various wind farms, such that a different
model has to be trained for each wind farm topology. Given the diversity in
layout shape, turbine spacing, turbine characteristics, ... of the future offshore
wind landscape, current methods are not computationally efficient. Moreover,
the topology of future wind farms, which are not yet built, remains unknown
and this uncertainty must be taken into account when studying them, which
can be achieved by considering different possible configurations (leading to
different power outputs) of those farms. Finally, none of the cited works allows
the possibility to consider turbine failures. Indeed, in case of maintenance or
repair, an idle turbine does not produce electricity, thus does not extract energy
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from the wind. Its situation affects all downwind turbines, and the wind energy
is redistributed among neighbouring turbines in a complex way. This impacts
the wind farm resulting production, especially with turbines that have a large
rotor diameter.

A few papers have focused on creating generalized ML models, to ensure
that the training process should be carried out only once. In [88], two neural
networks (respectively capturing wake and turbulence field) are trained with
a database consisting of simulations performed on a standalone wind turbine.
While showing strong capabilities to capture the complex spatial relationship
between inflow conditions and the wake fields, the developed model exhibits
a high computation time for large wind farms. Indeed, power computations
for a wind farm require the propagation of the wake field, which involves
the neural network to be run many consecutive times. In [89], a dataset is
built upon medium-fidelity aerodynamic simulations and the ML model uses
atmospheric and physics-informed features to generalize to different layout
configurations. However, the proposed model is limited to very specific wind
conditions. Authors in [90] train physics-induced graph neural networks, able to
generalize to unseen wind farm configurations. However, the use of graph neural
networks involves a high computation time that increases with the number of
turbines. In this way, the reported time is 0.1 s for a 40-turbines wind farm,
which exceeds wind farm simulation tools based on advanced wake models,
making them irrelevant for iterative computations. Besides, the proposed model
in [90] cannot handle heterogeneous turbine types.

Therefore, the objective of this chapter is to develop an offshore wind farm
surrogate built on wind farm simulations (removing the need for measurements),
encompassing heterogeneous turbine types and turbine failures, and more im-
portantly able to generalize to unseen wind farm configurations (i.e. applicable
to any offshore wind farm in the world, with the training process carried out
only once), while exhibiting a very low computation time when making power
assessments.

3.2. Offshore Wind Farm Simulations

There are several methods to run wind farm simulations. The simplest and
less expensive approach is to use analytical wake engineering models. In a
general form, wake models apply aerodynamic simulations considering mass
and momentum conservation principles. However, the equations governing
the models rely on many assumptions on aerodynamics, model parameters
often need to be tuned (either with SCADA data relying on measurements
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Table 3.1.: Comparative table between physics-based wake models (engineering
models), and CFD simulations.

Wake models CFD

Based on
Simplified equations of
conservation and momentum,
and physical assumptions

Navier-Stokes equations
(conservation of mass, momentum
and energy)

Computation Analytical, steady-state Numerical, dynamics

Accuracy Limited Medium to high

Computation time Low Hours to days

Computation cost Low Very expensive

Usage Simple (few inputs) Know-how required

Database
creation

Fast and easy Cumbersome

Examples Jensen, Gaussian, Curl, Ainslie, ... RANS, LES, DNS, ...

or with more advanced techniques), and power predictions deep inside wind
farms can have bias. Nonetheless, their speed and simplicity make them
attractive to use in the context of this work. Computational Fluid Dynamics
(CFD) rely on a set of partial differential equations to solve with initial and
boundary conditions, a discrete representation of the geometry and flow domain
(the mesh) and on a numerical procedure (spatial and temporal discretization
schemes). In order to choose between the two approaches for running wind farm
simulations (CFD or wake models), an existing wind farm will be modelled
with the two methods. These simulations first need to be validated against
hourly steady-state measurements. The difference should be assessed, as well
as their advantages and disadvantages (presented in Fig. 3.1) in order to choose
the method that will be used for the remaining of this work. Once validated,
they should then be used to create the database for the training of the ML
model.

3.2.1. Reynolds Averaged Navier Stokes Simulations

The fundamental basis of almost all CFD problems is the Navier–Stokes equa-
tions, which are partial differential equations describing the motion of viscous
fluid flows. For air flows around a wind turbine, compressibility effects may
only affect at blade tips. We can thus use the incompressible Navier-Stokes
equations. The conservation of mass principle leads to the continuity equation,
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which applied to incompressible flows is expressed as:

∂ui

∂xi

= 0 (3.1)

where ui is the flow velocity in direction i.

The momentum equations are derived from the conservation of momentum
(Newton’s second law):

∂ui
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∂xj
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∂ui
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(3.2)

where t is time, i, j=1, 2, 3 are the index of flow direction, ρ is the mass
density, p is the pressure, and ν is the kinematic viscosity.

For incompressible flows, the energy is no longer coupled to continuity and
momentum, so it can be solved independently. Initial conditions must be
specified, as well as boundary conditions at the inlet (prescribed density, energy
and velocity), outlet (prescribed velocity or vanishing stress), and at solid walls
(e.g., no-slip condition, and given temperature or prescribed heat flux). Solving
these equations requires a discretization of space (using finite difference, finite
volumes, finite elements, ...) and advancement in time is typically expressed
by some kind of finite difference method (implicit or explicit). The discretized
conservation equations are solved iteratively: a number of iterations are usually
required to reach a converged solution. Convergence is obtained when changes
in solution variables from one iteration to the next are negligible and overall
property conservation is achieved.

Turbulence is the time-dependent chaotic behaviour seen in many fluid flows.
The numerical solution of the Navier–Stokes equations for turbulent flow is
extremely difficult, due to the significantly different mixing-length scales that
are involved in turbulent flow. The stable solution of this requires such a fine
mesh resolution that the computational time becomes significantly infeasible
for calculation or Direct Numerical Simulation (DNS). Indeed, to numerically
simulate turbulent flows with accuracy, the motion needs to be calculated for
all eddies (movements of fluid that deviate from the general flow of the fluid)
in time and space, i.e., no turbulence model is used. DNS cannot be used for
most engineering flows: it is mainly applied in academic research to obtain the
exact solution of basic turbulent flows. Therefore, to reduce computational
costs, turbulence models have been introduced. For turbulent flow simulations
of offshore wind farms, there are several computational strategies with respect
to computed turbulent scales.
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(a) (b)

Figure 3.1.: Instantaneous streamwise velocity of two offshore wind farms ob-
tained with LES simulations. The black bars indicate the turbine
rotors.(a) Source: [93], (b) Source: [94] (velocity normalized by
hub height wind speed).

In Large Eddy Simulations (LES), all flow structures larger than a cut-off
length defined by the user (i.e., large eddies) are resolved without modelling,
while all flow structures smaller than the cut-off length (i.e. subgrid-scale
eddies) are modelled. If the cut-off length is smaller than the smallest eddies,
then LES becomes DNS. This approach is computationally very expensive
in time and in computer memory, but produces accurate results because it
explicitly resolves the larger turbulent scales. For example, in [91], [92], LES
are able to capture transitory effects in offshore wind farms and large turbulent
scales are resolved. In [93], an offshore wind farm of 80 turbines was modelled
using LES (depicted in Fig. 3.1(a)): one complete simulation required 1536
processors during about 55 hours for simulating 67 minutes of wind, which
means roughly 85 000 hours-processors. Another offshore wind farm of 48
turbines was simulated in [94] (shown in Fig. 3.1(b)): it required more than a
million CPU-hours for 10 minutes of simulation. Because of the prohibitively
high computational costs, LES are mainly used for academic research, and a
deep know-how is required to run such simulations with relevant results.

In many engineering problems, we are often interested in the mean (or
time-averaged) flow characteristics, rather than instantaneous ones. Mean
flows contain a lot of important information, such as mean velocity profiles,
mean pressure profiles and forces. Mean flows can be obtained by averaging
instantaneous flows (from high-fidelity simulations), but it is also possible
to average the Navier-Stokes equations before solving them, which yields the
Reynolds-Averaged Navier Stokes (RANS) equations. A RANS solver models the
averaged turbulent quantities so that only mean flow and statistical moments
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are obtained, in a steady-state simulation. For assessing the reliability of power
systems, e.g., in the context of adequacy studies, the mean power is needed
on an hourly basis. The small fluctuations around the mean value are not
necessary (which would not be the case if the power was needed, e.g., to assess
the ability of wind turbines to participate to very fast frequency balancing).
The principle of RANS equations is that any variable can be decomposed into
a mean and a fluctuation:

u(xi, t) = u(xi, t) + u′(xi, t) (3.3)

where u is the mean, and u′ is the fluctuation. We also have u′ = 0. This
Reynolds decomposition is injected into the Navier Stokes equations. Equations
for the mean quantity are then obtained by applying the averaging operator.
Moreover, subtracting instantaneous and mean equations leads to equations for
fluctuations. The RANS equations for incompressible flows are then deduced
from Eq.(3.1):

∂ui

∂xi

= 0 (3.4)

and Eq.(3.2):
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The term u′
iu

′
j in Eq.(3.5) is the tensor of Reynolds stresses. They can be

viewed as an apparent stress acting on the mean flow field due to turbulence
[95]. They represent the correlations between velocity components and the
transport of momentum by the turbulence. The system of RANS equations
(3.4) and (3.5) is open: there are more unknown than equations. In particular,
the six independant components of the symmetric Reynolds tensor are not
known. Therefore, modelling is necessary to close the system: we solve the
statistical/mean equations, and we model all fluctuations (motion of eddies).
The Reynolds stresses thus need to be expressed. The closure strategy can be
of different orders, but in practice, only first-order and second-order closure
models are used. For second-order closure models (or Reynolds stress transport
models), each of the six Reynolds stress components are modelled individually,
thus a transport equation must be derived and solved for each component.
However, it is often difficult to obtain a fully converged solution with this
approach, and it requires relatively high computational costs. In first-order
closure models, the six stress components are modelled all together, assuming a
similarity between the viscous stress (due to viscosity) and Reynolds stress (due
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to turbulence). This is based on the Boussinesq hypothesis, which introduces
the concept of eddy viscosity or turbulence viscosity [96], a function of space
and time (and not a fluid property). It is assumed that the Reynolds stresses
are proportional to the mean velocity gradient and the eddy viscosity:

Rij = −ρu′
iu

′
j = µT

(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3
δijk (3.6)

where µT is the eddy viscosity, δij is the Kronecker delta:

δij =

{
0, if i ̸= j

1, if i = j
(3.7)

and k is the turbulent kinetic energy:

k =
1

2
u′
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′
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The Boussinesq hypothesis reduces the number of unknowns from the six
components of the symmetric Reynolds stresses tensor to two: µT and k. It
should be noted that the Boussinesq hypothesis is only valid for isotropic
turbulence. To finally close the RANS equations, models providing µT and k
need to be established. These can be based on a simple algebraic model (zero-
equation model), on a single transport equation (e.g. Spalart–Allmaras model
[97]), or on two transport equations (e.g., k-ω [98], k-ϵ [99] and shear-stress
transport [100] models).

The different strategies for computing turbulent flows are illustrated in
Fig. 3.2. Unsteady RANS (or URANS) simulations allow to capture unsteady
flow motions that are not due to turbulence (since the effects of turbulence
are already modelled as the Reynolds stress). It is used to study large-scale
unsteady flow motions, when there is a very clear time-scale separation between
those motions and turbulence. To build a relevant database for the training
of the ML surrogates, thousands of simulations need to be run, for different
sets of input parameters. In practice, it is not tractable to run such a number
of simulations with very advanced CFD models such as LES, as it would take
too long to build the database. This is why Reynolds-Averaged Navier–Stokes
are used in this work to build a database linking free-flow wind information
with power output. Even though the accuracy of RANS is lower than for
more advanced CFD solvers (that remain too expensive in time and resources
when they are used on large offshore wind farms), it can be more accurate
than analytical wake models, especially for deep wind farms. Moreover, it is
tractable to run hundreds of RANS simulations for small farms in a reasonable
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Figure 3.2.: Summary of CFD modelling of turbulent flows [101].

time, if parallel computing is used. It should be noted that properly running
RANS simulations still requires specific know-how.

Wind Turbine Representation

In RANS simulations, the wind turbine geometry is not physically modelled;
instead, the rotor forces are represented by actuator lines or an Actuator Disk
(AD), shown in Fig. 3.3. For the latter, the wind turbine is then seen as an
ideal fluid dynamic element that extracts momentum and energy from the
wind, uniformly over the rotor area and without any specific load aerodynamic
information on the blades. An actuator disk allows air flow to pass through its
surface, withstands pressure differences between upstream and downstream disk
surfaces, and acts as a momentum source term in the Navier–Stokes equations.
Authors in [102] showed that as long as the actuator disk is subject to ambient
atmospheric turbulence, the averaged velocity deficit calculated by the disk
is similar to that from a CFD simulation in which the full rotor geometry is
represented. The thrust, i.e., the force exercised by an actuator disk on the
external flow, determines the amount of momentum that is extracted from the
wind and is therefore very important in wind turbine wake simulations that
are modelled with actuator disks.

The determination of the actuator disk forces in multiple wake configurations
is not straightforward. In cases where downstream actuator disks experience
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Thrust

Undisturbed flow Upstream wind turbine Downstream wind turbine

Actuator disk
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𝑈∞

Figure 3.3.: Actuator disk concept and downstream wind turbine. U is the
streamwise velocity and p is the pressure.

the velocity deficit of upstream disks, the downstream disks that are positioned
in the full wake of others should experience lower normal and tangential forces
compared to those that are subject to the undisturbed flow, as shown in
Fig. 3.3. Therefore, they will produce less power than the upstream actuator
disks. Moreover, determining the power output of waked wind turbines is not
trivial, as the power extracted by an actuator disk from the wind can be written
as:

Pwind turbine = 0.5 ∗ ρair ∗ π ∗R2 ∗ Cp(u∞) ∗ U3
∞ (3.9)

where R is the radius of the wind turbine rotor (and thus the radius of the
actuator disk), Cp is the power coefficient and u∞ is the upstream undisturbed
flow velocity at hub height. Eq.(3.9) assumes that the wind turbine is actively
controlled in order to optimize the extracted power without exceeding the
maximum allowed power and maximum rotor speed, and that the nacelle is
aligned with the main wind direction. However, for a waked wind turbine, the
reference velocity u∞ is not readily known and would require arbitrary decisions
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about which upstream distance to use when specifying the velocity. Instead,
for wind farms, it is useful to base the relations for power on the prevailing
axial velocity at the rotor disk position, ud, such that:

Pwind turbine = 0.5 ∗ ρair ∗ π ∗R2 ∗ C∗
p(ud) ∗ u3

d (3.10)

The relationship between Cp and u∞ for most manufactured wind turbines
is readily available in the form of power curves or Cp curves. However, the
calibrated coefficient C∗

p as a function of the averaged actuator disk velocity ud

is not directly provided. Therefore, a calibration procedure is carried out in
order to determine the value of C∗

p with regard to ud: single standalone wind
turbine simulations are run for 2 ≤ u∞ ≤ 30 m/s with equidistant intervals
of 0.5 m/s. From these simulations, it is possible to extract the corresponding
ud and its associated C∗

p [103].

Modelled Wind Farm

The modelled offshore wind farm is Alpha Ventus, Germany’s first offshore wind
farm located in the North Sea and built in 2009. Electricity has been produced
by the wind farm since 2010. It consists of 12 wind turbines equally spaced:
6 Adwen AD5-116 of 5 MW on tripod foundations with a rotor diameter
of 116 meters, and 6 Senvion 5M of 5 MW on jacket foundations with a
diameter of 126 meters. The layout can be seen in Fig. 3.4. Because it was the
first offshore wind farm in Germany, Alpha Ventus is accompanied by several
research projects sponsored by the German Federal Ministry for Environment.
Measurements have been extensively collected in the scope of the "Research
at Alpha Ventus" project (RAVE) [104] since 2009 by a multitude of sensors
installed on 4 of the 12 turbines in the wind farm. The 100-m-high measuring
mast Fino 1 is located directly alongside the wind farm, allowing to record
meteorological data. In addition, SCADA data and measurements at both
substations (onshore and offshore) have been collected. Times series from 2011
to 2014 of wind speeds and wind directions from Fino 1 as well as SCADA
measurements of electrical power output for all turbines are available.

Numerical Setup

In CFD simulations, the mesh should be carefully chosen, as a mesh too coarse
leads to approximate results and a mesh too refined is computationally too heavy.
In this work, the computed domain dimensions are 5500m x 5000 m x 500m,
divided into 182 x 167 x 17 cells respectively in the x, y and z direction. This
means that the meshing is roughly equivalent to 4 points per wind turbine
diameter. In order to capture the most relevant phenomena around the wind
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Figure 3.4.: Layout of the offshore wind farm Alpha Ventus. Red turbines are
those equipped with extensive measurement technology [104].

turbines rotors, the mesh is refined in the actuator disks areas: the mesh is then
equivalent to 16 points per diameter. This refinement is kept for 10 diameters
behind each wind turbine so that wake effects are correctly captured.

The RANS equations are closed with the k-ϵ two-equations model for the
turbulent viscosity. It is one of the simplest "complete" method because it does
not require any flow-dependent parameter to be specified: it is extensively used
in the literature, with known performance [103], [105]. The model constants
have been carefully calibrated for several different types of basic flows so that
the model can (in theory) be applied to a wide variety of flows. One of the
limitations is that the model needs a special treatment in the near-wall region.
The two transport equations are solved for the turbulent kinetic energy k
(Eq.(3.11)) and the turbulent dissipation rate ϵ (Eq.(3.12)).

ρ ∗
(
∂k

∂t
+ uj

∂k

∂xj

)
=

∂

∂xj

(
µT

σk

∂k

∂xj

)
+µT

∂ui

∂xj

(
∂ui

∂xj

+
∂uj
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)
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−ρ∗C2ϵ∗

ϵ2

k
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where C1ϵ and C2ϵ are model constants respectively set to 1.44 and 1.92 [106],
and σk and σϵ, respectively set to 1 and 1.3, are effective Prantdl numbers
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relating eddy diffusion of k and ϵ to the momentum equation eddy viscosity.
Eddy viscosity µT is computed as:

µT = ρ ∗ Cµ ∗
k2

ϵ
(3.13)

where Cµ is another model constant model set to 0.09.

Boundary conditions at the inlet are a Neumann condition (zero gradient)
for pressure, and a Dirichlet condition (constant value) for k and ϵ. For wind
speed, a generalised log-law type ground-normal inlet boundary condition
for the streamwise component of wind velocity is used, leading to a neutral
atmospheric boundary layer modelling. At the outlet, pressure is set to 0
while k and ϵ have a zero gradient condition. For wind speed, an inlet/outlet
boundary is used, i.e., reverse flow is set to a fixed value while outflow is treated
using a zero gradient condition. Lateral and top boundaries have a symmetry
condition.

Initial and inlet values for the turbulence characteristics k and ϵ are computed
as follows [107]:

k =
(u∗)2√
Cmu

(3.14)

ϵ =
(u∗)3

κ ∗ (z + z0)
(3.15)

where u∗ is the friction velocity given by:

u∗ =
uref ∗ κ

ln(
zref+z0

z0
)

(3.16)

with κ the Von Karman constant (0.41), z0 the surface roughness (0.0002 in
offshore conditions), and uref the wind speed at the reference height zref .

The solver employs the SIMPLE (Semi-Implicit Method for Pressure Linked
Equation) [108] algorithm to solve the continuity and momentum equations.
It is an iterative procedure for the calculation of pressure and velocity fields.
Starting from an initial pressure field p0, its mains steps are to solve the
discretized momentum equations to yield intermediate velocity fields, solve
the continuity equation for pressure correction, correct pressure and velocity,
solve all other discretized transport equations, then repeat until all fields have
converged.
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(a) (b) (c)

Figure 3.5.: RANS simulations of the Alpha Ventus wind farm, for a wind speed
of 8 m/s and a wind direction of (a) 270°, (b) 265° and (c) 245°.

The RANS simulations are carried out using OpenFOAM, a free open source
CFD software [109], for wind speeds ranging between 2 m/s and 32 m/s with
intervals of 1 m/s, and for wind directions ranging from 0° to 360 ° by steps
of 5°. This amounts to a total of 2232 simulations, where each simulation
computes the mean hourly power for a given combination of hourly wind speed
and direction. This allows to get the power output of each wind turbine for
many combinations of wind speed and wind direction. Each simulation is run
in parallel on 25 CPUs for approximately 4 minutes, which amounts to 1.67
CPU hour. Simulations for a wind speed of 8 m/s and wind directions of 0°,
5° and 25° can be seen in Fig. 3.5. Comparatively with more advanced CFD
models, a simulation of one single wind turbine using LES needs a computation
time of 8000 CPU hours [110].

It is assumed that the wind turbines are actively controlled in order to
optimize the extracted power without exceeding the maximum allowed power
and maximum rotor speed (i.e., maximum power point tracking mode) and
that the nacelle is always perfectly aligned with the main wind direction. This
is usually called the "greedy" strategy, where each wind turbine is controlled so
that its own power is maximized, and it is used in practice in most commercial
wind farms [77].

3.2.2. Engineering Wake Models
Despite having a lesser accuracy than CFD simulations, wake models receive
a lot of attention due to their efficiency and fast computation time. These
semi-empirical models provide descriptions of the energy loss in the wake of
individual turbines. They are based on simplified assumptions about turbine
wakes (based on observations) and on conservation of momentum. They may
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Figure 3.6.: The Jensen wake model concept.

include empirical constants derived from either wind tunnel model data or
from field tests of wind turbines. They are useful for describing the important
aspects of the energy loss in turbine wakes, and, therefore, for modelling wind
farm array losses.

The first wake models were very quick to estimate the waked wind speed
between two interacting wind turbines, but their accuracy were limited. For
example, the Jensen model [111], developed in 1983, assumes a top-hat shape
for the normalized velocity deficit (pictured in Fig. 3.6) and was derived using
only mass conservation. The velocity deficit ∆u in the wake of a turbine is
computed as follows:

∆u

u∞
=

u∞ − uw

u∞
=

(1−
√
1− CT )

(1 + 2∗kw∗xw

D
)2

(3.17)

where u∞ is the free-flow undisturbed wind speed, ∆u is the velocity deficit,
uw is the waked wind speed behind the turbine, CT the thrust coefficient of the
turbine, kw the Jensen wake spreading parameter, D the wind turbine diameter
and xw the distance downstream behind the turbine. The Frandsen model [112]
is another formulation that assumes a top-hat shape for the velocity deficit and
apply the conservation of mass and momentum to a control volume around the
turbine. Although they are commonly used in the literature and commercial
softwares because of their speed, the Jensen and Frandsen models tend to
overestimate power prediction in full-wake conditions and underestimate it in
partial-wake conditions due to the top-hat velocity deficit assumption.
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Figure 3.7.: Schematic of the vertical profiles of the mean velocity (top) and
velocity deficit (bottom) downwind of a wind turbine obtained by
assuming Gaussian distribution for the velocity deficit in the wake
[113].

Subsequent studies found that the velocity deficit in wakes is much closer
to a bell-shaped distribution rather than linear (see Fig. 3.7), and a series of
new wake models have been proposed accordingly [113]–[118]. These past few
years, more advanced wake models have been developed and their accuracy
keeps increasing. For example, in [119], an adaptive data-driven analytical
model is proposed, which significantly improves the accuracy of the initial wake
model. It is thus interesting to consider these improving analytical models in
the context of this work (hourly steady-state simulations).

Among recent wake models, the Gaussian wake model, using a gaussian
function to simulate the velocity distribution in the wake, was proposed. It has
been proven to be in good agreement with both numerical and experimental
results. Indeed, the Gaussian shape of the hub height velocity deficit in the far
wake can clearly be seen in wind tunnel measurements [120], [121], numerical
simulations [122], and data of operating wind farms [123]. The Gaussian model
uses an analytical solution of the simplified linearized Navier-Stokes equations,
which are appropriate for normal turbine operation [124]. It is derived from
the mass and momentum conservation equations (if viscous and pressure terms
are neglected). If the velocity deficit in the turbine wake is assumed to have
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a Gaussian shape, regardless of incoming conditions, the self-similarity in the
wake describes the normalised velocity deficit as:

∆u

u∞
= C(xw)e

− r2

2σ2
g (3.18)

where C(xw) represents the maximum normalized velocity deficit at each
downwind location which occurs at the centre of the wake, r is the radial
distance from the turbine centre, and σg is the standard deviation of the
Gaussian-like velocity deficit profiles at each downstream distance xw. Inserting
Eq.(3.18) into the momentum equation, the expression for C(x) becomes (the
interested reader can find more details of the mathematical development in
[113]):

C(x) = 1−
√
1− CT

8(σg

D
)2

(3.19)

If we assume a linear expansion for the wake region, σg

D
can be written as:

σg

D
= k∗xw

D
+ ϵ (3.20)

where k∗ ( ∂σg

∂xw
) is the growth rate and ϵ is equivalent to the value of σg

D
when

xw approaches 0. In practice, it is set to:

ϵ = 0.25 ∗ 1 +
√
1− CT

2
√
1− CT

(3.21)

Subsequent work [115] posed the growth rate k∗ as an empirical formulation
depending on the local turbulence intensity TI:

k∗ = ka ∗ TI + kb (3.22)

where ka and kb are parameters tuned empirically.

The wake model is complemented with a turbulence model to capture the
turbulence field, which is essential in the context of interactions among multiple
turbines. Indeed, there is a turbulence intensity enhancement in turbine wakes,
also called added turbulence as opposed to the ambient turbulence carried
by the undisturbed flow. Since turbulence facilitates wind speed recovery in
the wake, disregarding this effect may lead to a significant underestimation of
the actual generated power. The Crespo-Hernandez approach [125] has been
widely used for modelling the added turbulence TI+ due to turbine operation.
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It follows the empirical equation:

TI+ = Cc ∗ aCa ∗ TICi ∗
(xw

D

)Cd

(3.23)

where C are model parameters: the constant coefficients Cc, Ca, Cd, and Ca

respectively modulate the dependence on the scale, on the axial induction
factor a, on ambient turbulence intensity, and on downstream distance. The
axial induction factor a is a measure of the momentum deficit experienced by
air flowing past a wind turbine. It is directly related to the power and thrust
coefficients of a wind turbine rotor.

Finally, depending on the wind direction, the turbines inside wind farms are
often exposed to multiple wakes from several upstream wind turbines. These
overlapping wakes are combined using wake superposition models. In some of
the earliest work on wake superposition [126], velocity deficits were linearly
combined, as it was assumed that the velocity deficit could be treated as a
passive flow component, analogous to the transport of a passive scalar. A linear
superposition scheme accounts for the continuous decrease in momentum with
additional wakes and can be written, for each turbine wake i up to the total
number N of wakes being considered, as:

ui(xw) = u∞ −
N∑
i=1

∆ui(xw) ∗ u∞,i (3.24)

where ui(xw) is the local average velocity field, u∞,i is the local inflow velocity
and ∆ui(x) is the velocity deficit, defined as:

∆ui(xw) = 1− ui(xw)

u∞,i

(3.25)

Other research suggested the superposition of energy deficits (rather than
velocity or momentum), leading to a root-sum-squares formulation [127], or
takes the maximum velocity deficit in any region of the flow [128].

Floris: a Wake Modelling Engineering Tool

Simulations using wake models are run with Floris (FLOw Redirection and
Induction in Steady state) [129], developed by the National Renewable Energy
Lab. This open-source code provides a modelling tool of the steady-state wake
characteristics in a wind farm that integrates turbine interactions in wind power
plants. Floris implements several wake models: in this work, gaussian models for
wake deflection and velocity deficit are chosen, the Crespo-Hernandez approach
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Table 3.2.: Wake models parameters for velocity deficit and added turbulence.

Gaussian velocity deficit
ka kb

0.38 0.004
Crespo-Hernandez model
Cc Ca Ci Cd

0.9 0.8 0.0325 -0.32

(a) (b)

Figure 3.8.: Floris simulations of Alpha Ventus, for a wind speed of 8 m/s and
a wind direction of 270°. (a) Horizontal plane cut through the
simulation domain at hub height, (b) y-plane cut vertically through
the flow field along the wind direction at x=0.

is selected for modelling added turbulence arising from turbine operation, and
overlapping wakes are combined using a linear superposition approach. The
parameters of the Gaussian velocity deficit and turbulence model are specified
in Table 3.2, and are derived from the literature [130], [115].

In practice, the inputs needed by Floris simulations are the wind farm layout,
the wind turbines characteristics (diameter and hub height), and a list of wind
speeds and directions. Interestingly, the resulting database consists not only
in the power output of the entire wind farm for a given set of wind speed and
direction, but also integrates individual wind turbine power outputs as well
as the waked wind speed uWTi

seen at the rotor of each turbine WTi. The
modelled wind farm is the same as the one described in section 3.2.1: the
12-turbines offshore wind farm Alpha Ventus. Floris simulations of Alpha
Ventus, for a wind speed of 8 m/s and a wind direction of 270°, can be seen in
Fig. 3.8. This is the same wind case than in Fig. 3.5a of section 3.2.1.
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Figure 3.9.: Layout of the wind farm Alpha Ventus and the chosen wind turbine
for the benchmark.

Similarly to RANS simulations, it is assumed that the wind turbine is actively
controlled for maximum power point tracking and that the nacelle is always
perfectly facing the main wind direction. However, if other wind farm controls
(such as wake steering or axial induction control) were to be implemented in
the future, it could be taken into account. To that end, new simulations where
wind turbines are controlled with those strategies could be run, as Floris allows
to do so [131].

3.3. Comparing RANS and Floris
In order to validate the two methodologies, a benchmark is set up for the
Alpha Ventus wind farm. Times series from 2011 to 2014 of wind speeds
and wind directions from the meteorological mast Fino 1 as well as SCADA
measurements of electrical power output for one wind turbine in the centre of
the wind farm are used as a reference for benchmarking. The measurements
were pre-processed and filtered before being used to assess the accuracy of the
wind farm simulations. The validation is done in terms of normalized power for
a given wind speed over a wide range of wind directions. The reference wind
turbine for the validation process is the AV6 turbine (highlighted in the Alpha
Ventus layout of Fig. 3.9). When the wind direction is coming from the west
and south (respectively wind direction of 270◦ and 180◦), AV6 is in a double
wake situation (wake coming from two upwind turbines).

In Fig. 3.10, the normalized power of the wind turbine is plotted against
the wind direction, for a wind speed of 9.5 m/s. It can be seen that RANS
simulations show a good agreement with the measurements: they are able
to predict the width and depth of the power deficits. Floris simulations also
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Figure 3.10.: Normalized power against wind direction computed with RANS
simulations, Floris, and the power curve approach. Comparison
with SCADA measurements.

exhibit a good fit with respect to the measurements. However, they sometimes
overestimate the power deficit, and the RANS curve appears to follow the
SCADA curve more accurately. The power curve approach does not consider
wake effects and the power output of the wind turbine is constant for a given
wind speed, independently of the wind direction. Considering that the maximum
power loss can reach ≈ 50% in full-wake conditions, this clearly emphasizes the
limitations of such an approach. The slight discrepancies could be explained
not only by modelling inaccuracies, but also by measurement noise. Moreover,
compared with prediction simulation data, reproducing observational data is a
more rigorous test for the model because field observations invariably involve
uncertainty regarding the wind speed, wind direction and atmospheric stability
conditions. The averaged profiles obtained from observations include various
stability conditions and cannot be reproduced precisely by models trained on
data from well-controlled numerical simulations under neutral stability [49].
Therefore, it can be concluded that both RANS and Floris simulations offer a
good representation of reality when assessing the hourly mean power output of
a wind turbine within a wind farm.

When studying the variation of wind power with regard to the wind direction,
it can be seen that power drops happen when the wind turbine is in a waked
condition. These drops can reach up to 50% of the normalized power. However,
if the data points used to train the ML model do not cover these drops, then the
subsequent model will not be able to capture power losses in an accurate way.
It can be seen in Fig. 3.11 that the wind directions chosen as inputs to wind
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Figure 3.11.: Normalized power of a wind turbine with regard to wind direction:
choosing enough data points.

farm simulations should be as close as possible to the power drops. Indeed, if
wind directions are sampled in a regular way (blue points), and unfortunately
lead to situations with reduced wake effects, power losses arising in more severe
conditions (red points) will not be be captured. If such samples are not present
in the database used to train the ML model, it will impossible for the latter to
capture such phenomena. Granularity of data is thus really important when
considering the output of a wind turbine in waked conditions. However, unless
plotting every wind scenario, it is not feasible to know beforehand the exact
wind directions of the power drops for each turbine in a farm. Therefore, it
is preferable to have the highest data granularity as possible. In that case,
building a relevant database with RANS simulations (1.67 CPU hour per run)
can become too cumbersome. The accuracy that is gained by using more
accurate simulations such as RANS is lost by having an incomplete database.
Therefore, Floris simulations based on wake models will be used to
build the training database for the ML models.

Nonetheless, it should be kept in mind that those conclusions are valid
because we consider hourly power data (steady-state and averaged over an
hour). If one wants to consider transitory effects and large turbulent scales,
then the CFD simulations might be the only viable solution.

3.4. Building a Substantial Wind Farm Database
Our Floris-based simulation model is used on six real-life offshore wind farms
to generate the training database for the ML model. The wind farms names
and characteristics are the following:
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Figure 3.12.: Wind farms used for training the ML model. The scale is the
same in all figures, to allow a visual comparison for density and
turbine spacing.

• Alpha Ventus: 12 turbines, 4 km², 60 MW (15 MW/km²)

• Belwind: 56 turbines, 17 km², 171 MW (10 MW/km²)

• Mermaid: 28 turbines, 17 km², 235 MW (13.8 MW/km²)

• Norther: 44 turbines, 44 km², 370 MW (8.4 MW/km²)

• Northwind: 72 turbines, 15 km², 216 MW (14.4 MW/km²)

• Rentel: 42 turbines, 23 km², 309 MW (13.4 MW/km²)

They can be visualized in Fig. 3.12. They are all located in the North Sea
but they offer variable characteristics in terms of layout and turbine technology.
Indeed, their layouts show different wind turbine density, shape and number
of turbines. The wind turbines have different rotor diameter, hub height
and power curve shapes (see Table 3.3). For each farm, the layout (wind
turbine coordinates) is publicly available [104], [132], and the wind turbine
characteristics are extracted from manufacturers datasheets. Two wind farms
(Belwind and Alpha Ventus) have heterogenous turbine types.
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Type Rotor Hub Rated Rated
Diameter [m] Height [m] Power [MW] Wind speed [m/s]

Alpha
Ventus

Adwen 116 90 5 12.5
Senvion 126 94 5 14

Belwind
Vestas 90 72 3 15
Heliade 150 100 6 13

Mermaid Siemens 167 109 8.4 14
Norther Vestas 164 105 8.4 13
Northwind Vestas 112 71 3 13
Rentel Siemens 154 105 7.35 13

Table 3.3.: Characteristics of the wind turbines used for training the ML model.

Regarding the list of wind speeds, wind directions and ambient turbulence
used as inputs for wind farm simulations, the ERA5 dataset provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF) [133] is
chosen. ERA5 is based on reanalysis to generate atmospheric time series
covering a large period (from 1959 to 2024), with a spatial resolution of 31 km
and an hourly temporal resolution. Reanalysis combines model data with
observations from across the world into a globally complete and consistent
dataset using the laws of physics. It provides a comprehensive description of
the observed climate as it has evolved during recent decades, on 3D grids at
sub-daily intervals.

For each wind farm, one year (2019) of hourly wind as well as extreme
scenarios (very high wind speeds) at the location of the offshore wind farms
were used as atmospheric inputs. Hence, a total of 52,746 (6*8791) simulations
were run with Floris (presented in section 3.2.2). The resulting database
consists not only in the aggregated power output of the entire wind farm, but
also the individual wind turbine outputs, taking into account potential
turbine failures in the farm. Those failures were randomly sampled from a
probabilistic distribution based on offshore turbines reliability data. This means
that some data samples represent situations where all turbines are operational,
while other account for one or several simultaneous turbine failures.

Moreover, Floris also allows to run simulations with the option to ignore
aerodynamic losses. This method is thus equivalent to the traditional way
of modelling wind farms in iterative power system computations, where a
simple aggregated power curve is used to match free-flow wind speeds to the
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Table 3.4.: Comparison of mean annual energy production with and without
aerodynamic losses, based on Floris simulations.

Yearly Production Yearly Production Yearly
With wake Without wake Wake losses

Alpha Ventus 230.76 GWh 241.82 GWh 4.57%
Belwind 585.25 GWh 650.19 GWh 9.99%
Mermaid 1008.86 GWh 1106.28 GWh 8.81%
Norther 1481.76 GWh 1617.87 GWh 8.41%
Northwind 848.67 GWh 1027.00 GWh 17.36%
Rentel 1148.44 GWh 1279.48 GWh 10.24%

power output. It is then possible to assess wake losses, by comparing the
annual energy generation with and without taking into account wake effects.
This comparison is presented in Table 3.4, where the mean annual energy is
computed and averaged for the years 2019-2021 of the ERA5 dataset and for
the six wind farms used for training. It can be seen that although wake losses
are similar for the wind farms Belwind, Mermaid, Rentel and Norther (around
8 to 10%), they are significantly higher (17.4%) for Northwind. This can be
explained by the different layout and distances between wind turbines. Indeed,
as seen in Fig. 3.12, the layout of Northwind is more compact, thus leading
to higher losses as the distance between wind turbines is not large enough to
allow for wake recovery. Those results clearly emphasize the need to integrate
site-specific aerodynamic effects in the offshore wind generation models used in
power system computations, if one wants to have a reliable estimation of the
real contribution of offshore wind farms.

3.5. Machine Learning Proxy

To train the ML surrogate, the database built in section 3.4 is used. Each wind
turbine of every wind farm simulation is considered as a sample. Therefore,
without pre-processing, each data sample represents an hourly value of wind
speed, wind direction and ambient turbulence, and the corresponding wind
turbine steady-state power. We predict the output of a single wind turbine
because an evaluation at the turbine level gives a better insight of the ML
models performance since turbine errors may compensate when powers are
aggregated into total power at the farm level. Moreover, this allows to consider
individual wind turbine outages when the model is used in adequacy studies
(see section 4.2.3).
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In order to have a single model applicable to any wind turbine within any
wind farm configuration, cross-series learning is used. Cross-series learning is
a technique that builds a single global model from multiple correlated series.
After being trained, the global model can then make accurate predictions for any
of the input series. Cross-series learning allows the effective learning of various
common patterns observed among related series (cross-series information) [134].
In our case, the samples are correlated as the power produced by a wind turbine
highly depends on the wake (and thus the power) generated by neighbouring
turbines. Moreover, as only one model is built for multiple series, model
selection and hyperparameters tuning have to be performed only once, thus
saving time and computational resources.

The main challenge is to ensure that the trained ML model is generic, or
topology-aware, for any wind farm configuration, i.e., the model should be
able to make power assessments for a farm unseen in the training database.
An important contribution of this work is therefore to enrich the input space
with new features, including atmospheric, geometric, physics-informed, and
turbine-specific information, which enable the ML model to generalize to any
farm configuration. Moreover, while most ML models in the literature aim
at predicting turbine power, the direct output of our ML surrogate is
the waked wind speed uWTi

, i.e., the wind speed seen at the rotor of the
ith turbine WTi. This waked wind takes into account the influence of all
upstream turbines on the free-flow wind speed (i.e., velocity deficit from the
wake, but also wake recovery due to turbulence). Indeed, this allows our ML
surrogate to generalize to turbine with different characteristics (e.g., different
rotor diameter). To obtain the wind turbine power output, the waked wind
speed is fed to the turbine power curve, then the wind farm total power is
computed by summing individual turbine outputs. The process is detailed in
Fig. 3.13. Practically, each sample consists of 16 input features, which are
detailed hereafter, while the direct output of the ML model is the wind speed
seen at the turbine rotor.

3.5.1. Features for the Topology-Aware Wind Farm Proxy

Atmospheric Features

The wind speed in front of the rotor directly determines the output generated
by the turbine. However, this information is not readily available, so the
free-flow wind speed measured upstream of the wind farm is used. If the
wind measurement height is different than the turbines hub height, vertical
extrapolation is carried out using the power law of Eq.(2.7). When taking
wake effects into account, wind direction also has a crucial impact. However,
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Figure 3.13.: Diagram of the methodology used to predict wind farm power
with the topology-aware ML model.

wind direction is not directly used as a feature, but rather implicitly considered
when computing the geometric and physics-informed features, as explained
hereafter. Ambient turbulence is also an important factor because it influences
wake recovery, as explained in sec. 2.4.

Geometric Features

For each sample (corresponding to a specific time step for a wind turbine within
a farm), the computation of geometric features allows to convert information
regarding wind direction and wind farm layout into usable inputs for the ML
model. Based on the knowledge on how wake effects propagate and affect
downstream turbines, the following features have been computed for every
sample:

• Number of upstream blocking wind turbines

This feature indicates the number of turbine located upwind, i.e., whose
swept area (or part of) coincides with the rotor of the considered wind
turbine, potentially affecting its wind access and performance. No blocking
turbine means that the considered turbine is unwaked, and produces the
maximum power computed for the free flow wind speed. However, more
blocking turbines means less available energy in the wind seen by the
rotor, thus a reduced wind speed seen at the turbine rotor (and less power
produced). The relationship between the number of blocking turbines
and the waked speed is not linear.
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Figure 3.14.: Illustration of geometric features in a simple layout with 4 turbines.
Plan view with wind blowing from 270◦ (rotor diameters are
represented by grey rectangles and their swept area by dotted
lines).

• Mean distance of blocking wind turbines

The distances between the considered wind turbine and all upstream
blocking turbines are averaged. Distances between turbines are computed
perpendicularly to the rotor areas, in the direction of the flow. A high
number may indicate a lower turbine density for the wind farm (turbines
installed at a larger distance from one another), thus allowing for more
wake recovery.

The two features described above are illustrated in Fig. 3.14. In this simple
configuration, there are no turbines upstream of WT1 and WT4. Turbine WT3

is only blocked by WT4, whereas turbine WT2 is partially blocked by both WT1

and WT3: the number of blocking turbines for WT2 is thus 2, and the mean
blocking distance is (L1,2 + L3,2)/2.

Wind farm measurements have shown that the closest upwind turbine aligned
with the considered rotor has the most influence on power deficit [49]. Therefore,
we identify the closest blocking turbine WTb,1 of turbine WTi in terms of
streamwise direction (i.e., direction of mean flow).

• Streamwise distance of first blocking wind turbine

This is the distance between the considered wind turbine WTi and the
closest upstream blocking turbine WTb, in the streamwise direction.
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• Lateral distance to first blocking turbine

This distance is the shift between the considered wind turbine WTi and
the closest upstream blocking turbine WTb, in the spanwise direction (i.e.
direction perpendicular to the mean flow). Indeed, the velocity deficit will
be maximum if the blocking rotor is completely shadowing the considered
turbine. This distance is computed between rotor centrelines.

• Rotor diameter of first blocking turbine

A turbine with a larger rotor diameter generally extracts more power from
the incoming wind, as turbine power is proportional to the square of the
rotor radius (see Eq.(2.4)). Therefore, for the same streamwise distance,
a larger turbine will lead to a increased velocity deficit in the wake, thus
reducing the waked wind speed seen at the rotor of the considered turbine
WTi.

In Fig. 3.14, while turbine WT2 is blocked by both WT1 and WT3, the
closest blocking turbine in terms of streamwise distance is WT3, as L3,2 < L1,2.
Therefore, the lateral distance to the first blocking turbine is S3,2. The rotor
diameter of WT3 is also used as feature.

There may be multiple upstream turbines that block the same or additional
portions of the swept area of a given turbine. Moreover, as stated before,
blocking turbines that are closer have more influence on the waked wind speed
at the rotor of turbine WTi. However, if those turbines are not completely
aligned with the considered rotor, their influence decreases. The combination
of those two aspects are captured by the two last geometric features described
below.

• Blocking ratio

This is the fraction of the swept area of turbine WTi that is blocked
by the swept area of any wind turbine upstream [135]. This blocking
ratio BRi varies between 0 (not blocked) to 1 (totally blocked) and is
computed as:

BRi =
1

Ai

∫
(x,y)∈Ai

χ dx dy (3.26)

where

Ai is the swept area of the rotor of turbine WTi

(x, y) are grid points on the rotor disk
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χ =

{
1, if the grid point is blocked by any turbine
0, otherwise.

• Blocking distance

It represents the weighted average distance to the upstream blocking
turbines. The blocking distance BDi of turbine WTi is defined as:

BDi =
1

Ai

∫
(x,y)∈Ai

[χ ∗min(L,L∞) + (1− χ) ∗ L∞] dx dy (3.27)

where
L is the distance between the grid point and any upwind blocking
turbine
L∞ = 20 ∗D (for grid points not blocked by any upwind turbine)

The blocking distance can be seen as the average distance to the upstream
blocking turbines, weighted by the fraction of the area obstructed by
each upstream blocking turbine. The term L∞ is an arbitrary large but
finite length ensuring that the integral remains finite. In this study, L∞
is set to a distance equal to 20 rotor diameters since previous studies have
shown that the velocity profile in a turbine wake almost entirely recovers
its original shape at 20 rotor diameters downstream of the turbine [51].

The blocking ratio and blocking distance are illustrated in Fig. 3.15 (this is
the same layout than the one in Fig. 3.14 but seen from a different perspective).
Since turbines WT1 and WT4 are unwaked, their blocking ratio BR1 and BR4

are equal to 0. If turbine WT2 is considered, it can be seen that its swept area
is partially blocked by WT3 and WT1, such that 0 < BR2 < 1. For examples,
for three points (marked by circles) of turbine WT2, it can be seen that P1 is
blocked by WT3, located at a streamwise distance L3,2, P2 is not blocked, and
P3 is in in the wake of WT1 distant of L1,2. It should be noted that if a same
point is blocked by several turbines, L is the distance to the closest blocking
turbine.

As a reminder, it is assumed in the calculations of these geometric features
that the turbine yaw angle changes with the wind direction (greedy control
strategy) so that the swept area is always perpendicular to the incoming wind.
Moreover, for the computation of the blocking ratio and distance, the swept
area of each turbine is divided into a large number of discrete areas, and the
integrals in Eq.(3.26) and (3.27) are evaluated numerically to give the geometric
measures.

74



Chapter 3. Topology-Aware Offshore Wind Farm Surrogate

WT2

WT1WT3WT4

y

z

x

Region of WT2

blocked by WT1

Region of WT2

blocked by WT3

P3P1 P2

Figure 3.15.: Illustration of geometric features in a simple layout with 4 turbines
(identical to the one in Fig. 3.14). Plane cut vertically through
the flow field across the wind direction, behind WT2.

Physics-Informed Features

Complex ML models (such as deep neural networks, or random forests with
numerous deep trees) can be plagued by a black-box nature, which makes them
difficult to interpret and prone to produce physically impossible results. A recent
field of research that has focused on solving this problem is physics-informed
Machine Learning [136]. Physics-informed Machine Learning is characterized
by the exploitation of the scientific knowledge or the physics laws to guide
the optimization, architecture design, and implementation of ML models. In
particular, physics-informed feature engineering refers to leveraging the insights
of prior physical knowledge to select, transform, and synthesize the most
informative input variables from raw data for the ML model [137].

Geometric features simply describe the layout of the wind farm, and it uses
turbine rotor diameters to compute the swept area of the upstream turbine
rotor and the subsequent wake diameter. However, it is known that the wake
expands behind a turbine, meaning that the diameter of the wake increases
with the downstream distance [138]. The model performance could be improved
by adding information regarding this physical aspect. Indeed, when using only
geometric features, the ML model may infer that some turbines are exposed to
free-flow wind (if the number of blocking turbines found using rotor diameters is
equal to 0), while they are in fact slightly in the wake of another turbine. This
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Figure 3.16.: Illustration of geometric features in a simple case with 2 turbines.
Plan view where rotor diameters are represented by grey rectangles
and their swept area by dotted lines. The wake expansion is shown
by the red dashed lines.

could happen if the turbines are not directly aligned such that the downstream
turbine is not in the wake cylinder whose cross section is computed using the
upstream turbine rotor diameter, but within the cylinder of a an expanded
wake. This is depicted in Fig. 3.16.

The determination of the diameter of the expanded wake at the rotor of
the downstream turbine bears physical meaning, allowing the ML model to
produce results more in line with aerodynamic rules. However, computing
this wake diameter should be fast and straightforward, otherwise it will hinder
the computation time of ML input features and the speed advantage of using
ML will be lost. This is why we use the very simple Jensen wake model
[111] to compute the wake diameter Dw. The Jensen model was described in
section 3.2.2, but as a reminder, the wake diameter is computed as follows:

Dw = D + 2 ∗ kw ∗ xw (3.28)

where kw is the Jensen wake spreading parameter, D the wind turbine diameter
and xw the distance downstream behind the turbine. In offshore conditions,
kw is usually set to 0.05 [53]. Therefore, additional values for the number of
blocking turbines, mean blocking distance, distance/shift/rotor diameter of
the first blocking turbine, blocking ratio and blocking distance are computed.
They result from the same equations as for the geometric features, but use a
wake diameter Dw instead of turbine rotors D. These new inputs are called
physics-informed features.
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3.5.2. Supervised Machine Learning Algorithms
Supervised learning is used to learn hidden structures where output data are
known. The user provides the supervised algorithm with N pairs of inputs
(or features) XXX = (xi)

N
i=1 and desired outputs (or labels) yyy = (yi)

N
i=1, and

the algorithm aims at producing the desired output for a given input. In
particular, it is able to create an output for an input it has never seen before.
The goal is thus to bypass the (possibly complex) physical modelling of the
underlying phenomena, by directly exploiting the information contained in
the data [139]. While creating a dataset of inputs and outputs is often a
laborious manual process, supervised learning algorithms are well understood
and their performance is easy to measure [83]. Popular methods of supervised
learning include artificial neural networks, decision trees, k-nearest neighbours,
linear and polynomial regressions, and support vector machines. The choice of
algorithm depends on the data (structure, quantity) and on the problem to be
solved. For our ML surrogate, the goal is to predict waked wind speed at the
turbine rotor, which is a continuous number: our problem is a regression task.

The relationship between the waked wind speed and the proposed input
features is highly non-linear, which motivates the use of the four following
supervised ML algorithms.

Decision Tree

Decisions trees are a non-parametric supervised learning method whose goal
is to create a tree-like model that predicts the value of a target variable by
learning simple decision rules inferred from the data features [140]. A diagram
of a decision tree is shown in Fig. 3.17: each node describes a decision criterion
considering one particular feature (e.g., comparison with a threshold value).
To build a decision tree, all training samples are first gathered in the root
node, then each division, called "split", separates each node in two other nodes.
The splitting criteria is based on the definition of an impurity function and
partitions the feature space such that the samples with the same labels are
grouped together. The recursive partitioning of the data is repeated until each
leaf in the decision tree only contains a single regression value ("pure" leaf).
However, building a tree as described here and continuing until all leaves are
pure leads to models that are very complex and highly overfit to the training
data. Indeed, the presence of pure leaves mean that a tree is 100% accurate
on the training set. One way to avoid overfitting is pre-pruning, i.e., stopping
the creation of the tree early. Possible criteria for pre-pruning include limiting
the maximum depth of the tree, limiting the maximum number of leaves, or
requiring a minimum number of points in a node to keep splitting it. In this
work, the hyperparameter used to tune a decision tree is the maximum depth
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Figure 3.17.: Diagram of a decision tree.

of the tree. Finally, to make a prediction, the tree is traversed based on the
tests in each node and finds the leaf where the new data point falls into. The
output for this data point is the mean target of the training points in this leaf.

Advantages of decision trees is that they are easily interpreted if the size is
small, and there is no need for a heavy data preparation as they are able to
work with features of different scale. However decision trees tend to overfit
(even with pre-pruning) and their generalization performance can sometimes
be poor. Moreover, decision trees can be unstable because small variations in
the data might result in a completely different tree being generated.

Random Forest

To mitigate the overfitting problem of a single tree, several decision trees can
be combined so that the variance of the resulting model is decreased. Random
forests are an ensemble method, which involves combining multiple machine
learning models to create more powerful models. A random forest is essentially
a collection of decision trees established in a independant way [141]. Each
tree is built on a random sub-sample of the training data set drawn with
replacement (i.e., a bootstrap sampling). The purpose of this randomness is
to make every tree slightly different from the others and thus to decrease the
variance of the random forest. Indeed, as individual decision trees typically
exhibit high variance and tend to overfit, the injected randomness in forests
yield decision trees with somewhat decoupled prediction errors. To make a
prediction using the random forest, the algorithm first makes a prediction for
every tree in the forest, then average these results to get the final prediction (as
seen in Fig. 3.18). By averaging the results of all trees, the overall overfitting
is highly reduced. The main parameters to adjust when using this method is
the maximum depth of the trees (similarly to single decision trees) and
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Figure 3.18.: Diagram of a random forest of decision trees.

the number of trees (or estimators) in the forest.

Essentially, random forests share all of the benefits of decision trees, while
making up for some of their deficiencies. They do not require heavy tuning
of the parameters nor scaling of the data. Moreover, because trees are built
independently, training can be easily parallelized across multiple CPU cores
within a computer. The drawbacks of random forests are their poor performance
when applied on very high dimensional and sparse data, as well as the increasing
memory requirement and computational time with the number of trees. Indeed,
averaging more trees will yield a more robust ensemble by reducing overfitting
(although there are diminishing returns [83]).

Gradient Boosting Regression Trees

Gradient Boosting Regression Tree (GBRT) is another ensemble method com-
bining multiple trees. The main idea behind gradient boosting is to combine
many simple models (weak learners), like shallow trees. In contrast to random
forests, this algorithm builds trees in a sequential way so that each new tree
attempts to improve the errors made by the previous one. The gradient boost-
ing iteratively fits new weak learners on the negative gradient of a given loss
function. The model is then updated by adding the new tree, weighted by a
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Algorithm 1 Algorithm for gradient boosting regression trees

Let (xi, yi)
N
i=1 be the training set, T the model to build, T a decision tree,

L(y, T (XXX)) a differentiable loss function, M the number of iterations.

Initialize the model:
T (XXX) = argminγ

∑N
i=1 L(yi, γ)

for m = 1 to M do
1. Compute pseudo-residuals

rm,i = −
[
∂L(yi, T (xi))

∂T (xi)

]
T =Tm−1

i = 1...N

2. Fit a new tree Tm(XXX) to the pseudo-residuals using the training set
(xi, rm,i)

N
i=1

3. Compute multiplier γm by solving

γm = argmin
γ

N∑
i=1

L(yi, Tm−1(xi) + γ ∗ Tm(xi))

4. Update the model

Tm(XXX) = Tm−1(XXX) + η ∗ γm ∗ Tm(XXX)

end for

Output TM(XXX)

multiplier computed using the loss function [142]. The procedure is detailed in
Algorithm 1.

Apart from the maximum depth and the number of trees in the ensemble,
another important parameter of gradient boosting is the learning rate η,
which controls how strongly each tree tries to correct the mistakes of the
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previous trees. A higher learning rate means that each tree can make stronger
corrections, allowing for more complex models. Adding more trees to the
ensemble can improve performance as the model has more chances to correct
mistakes on the training set, but it also increases the model complexity.

Gradient boosted trees offer the advantage of often using very shallow trees,
which makes the model smaller in terms of memory and predictions faster.
The main drawback of the GBRT method is the difficulty to find the optimal
hyperparameters, as it is highly sensitive to the calibration of their values.
The tuning of hyperparameters can thus be a cumbersome process. Moreover,
since trees are built in a sequential way, the model is slower to train (no
parallelization, unlike random forests).

Feed-Forward Neural Network

An artificial Neural Network (NN) is a Machine Learning model inspired
by the structure and function of biological neural networks in human brains
[143]. A neural network consists of units (neurons) connected by weighted
edges (synapses) with the goal of mathematically representing any relationship
between inputs and outputs. Each artificial neuron receives signals from
connected neurons, processes them using a non-linear function of the sum
of its inputs (called the activation function), then sends a signal to other
connected neurons. The strength of the signal at each connection is determined
by weights, which are optimized during the learning process. Usually, neurons
are aggregated into layers. For a neuron in layer l, receiving H input signals
from the previous layer l − 1, the neuron output slh can be computed as:

slh = fa
h (

H∑
h′=1

wh′,h ∗ sl−1
h′ ) (3.29)

where wh′,h is the weight of the connection between unit h′ to unit h, and fa
h (.)

is the activation function. This is further illustrated in Fig. 3.19.

For a Multi-layer Perceptron (MLP), or feed-forward neural network, inputs
travel from the first layer (the input layer) to the last layer (the output layer),
possibly passing through multiple intermediate layers (hidden layers) in a
forward way: this is called a forward pass of the network. This can be observed
in Fig. 3.20.

The hyperparameters to adjust are the number of hidden layers, the
number of neurons in each hidden layer, as well as the activation
function. Common options for the activation function include the hyperbolic
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Figure 3.20.: Example of a MLP structure.

tangent, the logistic sigmoid and the Rectified Linear Unit (ReLU) (their shape
is pictured in Fig. 3.21). These functions are nonlinear, which can significantly
improve the NN performance, and the hyperbolic tangent and logistic sigmoid
functions are differentiable, thus making them suitable for gradient methods.
The ReLU function is continuous but it is not differentiable at the origin, as
it can be seen in Fig. 3.21. However, to overcome this issue, the derivative is
simply set to 0 at the origin, as it has been proven to be efficient [144] and
being exactly at the origin during ReLU computations is extremely rare. The
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Figure 3.21.: Common activation functions for MLP.

differentiability aspect will be particularly important for Chapter 5.

One of the main advantages of MLPs is their ability to capture information
contained in large amounts of data and to build incredibly complex models.
However, neural networks (particularly large ones) often take a long time to
train and require a careful tuning of the hyperparameters. Moreover, MLPs are
sensitive to feature scaling, thus input data should be carefully pre-processed.

Training, validating and estimating performance

The database built in section 3.4 is used to train the models built on the ML
algorithms described above. Their training performance is then assessed using
an appropriate error with respect to the considered task. For example, the
coefficient of determination, noted r2, represents the proportion of variance
of yyy that has been explained by the independent features XXX. It provides an
indication of goodness of fit and therefore a measure of how well unseen samples
are likely to be predicted by the model, through the proportion of explained
variance. It is computed as follows:

r2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − y)2
(3.30)

where ŷi is the model prediction of the i-th sample, yi is the corresponding true
value, and y is the average of all labels y = 1/N

∑N
i=1 yi. The best possible

score is 1, which means that all outputs predicted by the model are strictly
equal to their true value.

Although the training score assesses the performance of the model on the
training set, it cannot be directly used to evaluate the ability of the model to
make good predictions of unseen samples, i.e. its generalization abilities. To
assess the model performance, it should be fed with new data that it has not
seen during training, for which labels are available. This is usually done by
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splitting the labelled data at disposal into two parts. One part of the data,
the training set, allows to build the ML model and the rest of the data, the
test set, is used to assess how well the model performs and generalizes. In
our case, the test set consists of a database of simulations performed on an
unseen wind farm, with different characteristics than the ones in the training
set (this will be further detailed in the next section). Therefore, the only
measure of whether an algorithm will accurately generalize on new data is the
evaluation on the test set, which can be carried out using various error metrics.
Besides the coefficient of determination r2, other metrics include the Root
Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The RMSE
is more sensitive to outliers and penalises large errors, while the MAE simply
measures the average magnitude of the errors in a set of predictions, without
considering their direction. Lower RMSE and MAE values are associated with
more accurate models, and should thus be targeted. They are computed as
follows:

RMSE =

√√√√ 1

N
∗

N∑
i=1

(yi − ŷi)2 (3.31)

MAE =
1

N
∗

N∑
i=1

|yi − ŷi| (3.32)

Building a model that is too complex for the amount of information is called
overfitting, which is usually characterized by a test score rather worse than
the training score. Overfitting occurs when the model is fit too closely to the
particularities of the training set. On the other hand, if the model is too simple,
it might not be able to capture all the aspects and variability in the data, and
will do badly even on the training set: this is called underfitting. There is thus
a compromise to be found for the model complexity.

One way to control the model complexity is by carefully tuning the hyperpa-
rameters. However, this calibration cannot be performed on the test set, as any
choice based on the test set accuracy leaks information from testing data into
the model. Therefore, it is important to keep the test set separate, and only
use it for the final evaluation. One way to resolve this problem is to split the
data again (resulting in three datasets) to obtain a validation set, used to
tune the hyperparameters. In our case, the validation set consists of a database
of simulations performed on another unseen wind farm, different from the one
used for the training and test sets (it will be described in the next section).
The hyperparameters of each model are chosen to maximize the accuracy on
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Figure 3.22.: Process to build a supervised ML model [145].

the validation dataset.

To summarize, training data are used to build/train the ML model, validation
data help selecting the hyperparameters, and test data are leveraged to evaluate
the performance and generalization abilities of the model. The process is
outlined in Fig. 3.22. Finally, once the model has been trained, tuned and
tested, it can be stored and later used to make predictions, which is called
inference or online utilization.

3.6. Verification and Validation

3.6.1. Performance of the Machine Learning Model
The synthetic database of section 3.4 was used to train the topology-aware ML
model. To find the best (combinations of) hyperparameters for the supervised
ML algorithms, a validation dataset of wind farm simulations is set up. The
latter consists in hourly simulations performed on the Lillgrund offshore wind
farm, using Floris and one year (2020) of ERA5 wind data. Lillgrund is located
near the coast of Sweden, and the layout of the wind farm is presented in
Fig. 3.23(a). This wind farm has a total rated capacity of 110 MW and consists
of 48 pitch-controlled, variable speed wind turbines with a rotor diameter of
93 m and a hub height of 65 m. The layout is quite tight, with a mean turbine
spacing of 3.3 rotor diameters. The hyperparameters of each ML model were
calibrated with a thorough grid search performed on the validation set, and
the obtained optimal architectures are:

• Decision tree
– maximum depth of 20

• Random forest
– 50 trees
– maximum depth of 25
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• Gradient boosting regression tree

– 50 trees

– maximum depth of 15

– learning rate of 0.1

• Multi-layer perceptron

– 2 layers of 50 neurons each

– ReLU as activation function.
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Figure 3.23.: Layout of the (a) Lillgrund and (b) Horns Rev offshore wind farms

Moreover, to quantify the performance of the ML surrogate and assess its
ability to generalize to unseen data, the model is evaluated on a test set, which
is composed of a new wind farm. The latter consists in hourly simulations
performed on the large offshore wind farm Horns Rev, using Floris and one
year (2021) of ERA5 wind data. Horns Rev is located in the eastern North
Sea, near the coast of Denmark. It consists of 80 wind turbines (Vestas V-80),
whose rated power is 2 MW, hub height is 70 m above sea level and rotor
diameter is 80 m. The wind farm layout (Fig. 3.23(b)) has a rhomboid shape
with a minimum spacing of seven rotor diameters between two consecutive
turbines. The total area of the wind farm is about 20 km² and the total
installed capacity is 160 MW, meaning a power density of 8 MW/km². Similar
to the training database, random turbines failures are also added to the test
set. The performance of each ML model is given in Table 3.5. The RMSE and
MAE are computed and given in MW but also in percentage (RMSPE and
MAPE) of the wind farm total installed capacity (160 MW for Horns Rev).
The inference time corresponds to the total time for obtaining a yearly output
of 8760 samples. The chosen algorithm should reflect the best compromise
between accuracy, inference time and model complexity.
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Table 3.5.: Performance of the Machine Learning models on the test set.
Tree RF GBRT NN-MLP

RMSE [MW] 2.47 2.23 1.93 1.57
RMSPE [%] 1.54 1.40 1.20 0.98
MAE [MW] 1.28 1.07 1.05 0.84
MAPE [%] 0.80 0.67 0.66 0.53
Inference time [s] 0.31 2.09 0.32 1.77

The four ML models show strong performance regarding both accuracy and
inference time. The decision tree has a very low prediction time, but has the
highest RMSE (decision trees are prone to overfitting). Random forests exhibit
lower errors, but at the cost of a higher inference time. The GBRT algorithm
seems to offer a good compromise between accuracy (low errors, with RMSE
around 1% of wind farm total capacity) and computation time. The MLP
is slower, but shows lower errors than random forests and GBRT, with both
RMSE and MAE under 1% of the wind farm rated capacity. Neural networks
(MLP) are thus the supervised algorithm chosen for rest of this work.
Throughout the remainder of this thesis, the term "ML surrogate"
will refer to the model trained using MLP.

It should be noted that the time needed to calculate geometric and physics-
informed features is to be added to the inference time. For Horns Rev, the
computation time is around 10.3 s, which brings the total inference time between
10.6 s and 12.39 s. This value is much lower than the 332 s needed to carry
out 8760 simulations (i.e., one year) of Horns Rev with Floris. This means
that the ML model is more than 25 times faster than wind farm simulations,
making it ideally suited for computations where wind farm total power has to
be simulated for thousands or even millions iterative steps.

3.6.2. Validation with High-Fidelity Simulations

We also validate our physics-informed ML surrogate of offshore wind generation
with very high-fidelity results of the test offshore wind farm Horns Rev, carried
out in [50] using large eddy simulations. Comparisons are performed for a
given wind speed over a wide range of wind directions. In Fig. 3.24, the total
power of the entire farm is represented as a function of the wind direction, for
a wind speed of 8 m/s. This wind speed is selected to be below the Vestas V-80
turbine rated speed to more significantly highlight the impact of wake effects.
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Figure 3.24.: Comparison of normalized farm power at Horns Rev for a wide
sector of wind directions and a wind speed of 8 m/s.

On the y-axis, the wind farm power is normalized by the unwaked power, so
that the curves reflect the power losses arising from aerodynamic effects.

First, it can be seen that Floris simulations (full curve) provide a good fit
with respect to the high-fidelity simulations (scatter points): they are able to
accurately capture the width and depth of power deficits. As it has already been
observed through low values of RMSE and MAE, the power estimations given
by the MLP model (dashed curve, ML_NN ) closely follows Floris simulations,
such that they also accurately match the LES points. The average absolute error
between LES points and ML-based power is 2.92%, and the maximum error
reaches 8.17%. Since the traditional power curve approach ignores wake effects,
the power remains constant (at 1 p.u.) for a given wind speed, independently
of the wind direction. With the power curve method, the average absolute
error with respect to LES simulations is 20.06 % and the maximum error can
reach 40.50% in full wake conditions (i.e., for a wind direction when turbines
in a row are perfectly aligned). These observations confirm the relevance of the
proposed model, while clearly emphasizing the limitations (i.e., high errors) of
the power curve approach.
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3.7. Conclusion

In power systems problems involving iterative computations, simplified offshore
wind farm models often disregard complex aerodynamic effects due to the
computational issues associated with accurately representing them. However,
those effects have a significant impact on the produced electricity. In this
chapter, a new methodology is developed to improve the modelling of offshore
wind power within time demanding computations. A Machine Learning-based
wind farm surrogate is created, allowing to account for aerodynamic losses
arising in large offshore wind farms without compromising tractability. The
model is trained on a large database built using aerodynamic simulations of
real-life wind farms. Two methods for carrying out wind farm simulations
are compared: RANS simulations and wake models. Although the RANS
approach could yield more accurate results (especially for deeper wind farms),
the computation time is prohibitive and does not allow to build a significant
training database. Therefore, wake models are used to run numerous wind farm
simulations. The ML model is then fed by new geometric and physics-informed
input features such that the ML surrogate is generic and topology-aware, i.e.,
it can be applied to any offshore wind farm. This enables simulating wind
farms without historical data, such as those yet to be built. Moreover, this
model allows to account for disabled turbines (failures or maintenance) and
the subsequent wake redistribution.

The performance of different standard supervised ML algorithms are com-
pared, and the model is validated against very high-fidelity simulations. Neural
networks (more specifically multi-layer perceptrons) are the supervised al-
gorithm chosen for the ML model. The computation time is detailed, and
compared against wind farm simulations carried out with wake models: the
general surrogate is shown to be more than 25 times faster. Moreover, the
proposed methodology is easy to implement and to reproduce, as it only uses
publicly available data and simulation outputs.

The developed topology-aware ML models can thus be directly integrated
within problems involving iterative computations, e.g., adequacy studies using
sequential Monte-Carlo simulations. This will be carried out in the next chapter.
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CHAPTER 4.
Improved Modelling of Offshore Wind

Generation in Adequacy Studies

Offshore wind power is intrinsically intermittent and uncertain. Growing
concerns are thus expressed regarding the reliability of future power systems,
notably regarding the security of supply. In adequacy studies, the traditional
way of modelling offshore wind generation consists in generating free-flow wind
speeds and converting them to power through the use of a single wind turbine
power curve. This power output is then multiplied by the number of turbines
to assess the global power generated by the wind farm [146]–[149]. We further
call this methodology the traditional power curve approach. Such strategies
are undermined by the fact that they neglect important factors, such as wind
shear, turbulence and wake effects. Those effects, which depend on parameters
such as the wind farm layout or the distance between turbines, clearly influence
the expected power output, and they must not be disregarded. In the current
literature, this aspect is either neglected or modelled in a highly simplified
fashion through an efficiency coefficient (typically assumed to be equal to 90%-
95% of the total wind farm power [150] or computed using the approximated
Jensen wake model [151], [152]). Since wake losses are a major issue for offshore
wind farms (they can cause annual energy losses of 10 to 20% [103]), this clearly
motivates their inclusion into power system adequacy studies.

The objective of this chapter is thus to account for intra-farm wake losses
arising in offshore wind farms in the context of adequacy studies. This is ac-
complished by directly integrating the topology-aware ML surrogate developed
in the previous chapter within sequential Monte-Carlo simulations. The impact
of an improved offshore wind generation modelling on reliability indices will
then be assessed.

This chapter is structured as follows. Section 4.1 explores the theoretical
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foundations of power systems reliability and adequacy. In section 4.2, the
sequential Monte-Carlo algorithm used to carry out adequacy studies is detailed.
In particular, the improvement for the modelling of offshore wind generation
in the context of adequacy studies is explained. Then, section 4.3 presents
the case study, which is based on a simplified version of the Belgian power
system in 2030. The impact of an improved modelling of offshore wind farms
is assessed, and our methodology is benchmarked against the traditional power
curve approach. Finally, conclusions are given in the last section.

4.1. Power System Reliability

The International Energy Agency defines power system reliability in its simplest
form as "keeping the lights on". In more technical terms, it refers to the ability
of the value chain to deliver electricity to all connected users within acceptable
standards and in the amounts desired. In the scientific literature, power system
reliability is associated with two fundamental dimensions: adequacy and
security [23].

On the one hand, adequacy represents the ability of the electrical system to
satisfy load consumption in the present and over time in steady-state conditions,
using existing and new resources [24]. On the other hand, security assesses the
ability of a power system to cope with severe and sudden perturbations while
maintaining its integrity, i.e., without major service interruptions. Perturbations
include non-anticipated loss of generation or network key components, electrical
short-circuits, loss of fuel, or rapid changes in demand. This is thus a dynamic
approach that is mainly used when talking about real-time operation. Therefore,
adequacy and security are two distinct concepts that notably differ from each
other with regard to the timescale: adequacy focuses on the long-term behaviour
of a system while security relates to the response and integrity right after an
unanticipated disturbance. A lack of adequacy leads to load shedding, i.e.,
scheduled power outages designed to prevent the failure of the entire system
when the demand strains the generation capacity, while insufficient security
can lead to power blackouts. Adequacy studies are traditionally carried out by
the TSO and policy-makers in order to evaluate the risk of generation shortage,
thus assessing the need for investment in additional production units. This
chapter is focused on adequacy considerations, while security will be
covered in the next chapter.
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Figure 4.1.: Hierarchical levels for power system reliability assessment.

4.1.1. Hierarchical Levels

Modern electrical systems are highly complex and sometimes cover a large
geographical area. They are thus divided into 3 hierarchical levels when their
reliability is evaluated [153], as shown in Fig. 4.1. The first hierarchical level
(HL-I) is concerned with only the generation facilities and their ability to meet
the electricity demand. The second hierarchical level (HL-II) includes both
generation and transmission facilities: it assesses the ability of the combined
generation-transmission system to deliver electricity to load points, within the
limits of the electrical transmission grid. The third hierarchical level (HL-III)
includes all three functional zones by also encompassing distribution and its
capability to satisfy the energy demand of individual customers. However,
HL-III studies are not usually directly carried out on practical large-scale power
systems due to the enormity of the problem.

The remaining of this work is limited to the hierarchical level HL-I,
as it is the case for many adequacy studies focused on wind generation [146],
[154], [155]. Even if it is not in the scope of this thesis, it should be noticed
that HL-II assessments are also relevant when considering increased offshore
wind generation, as this production is often geographically concentrated in
clusters at the coast. There might thus be challenges to deliver the electricity
produced at sea by the offshore turbines to the rest of the grid. For example,
in Belgium, because of the second offshore zone planned in the North Sea, a
reinforcement of the transmission grid is envisioned by the addition of two high
voltage lines (Boucle du Hainaut and Ventilus projects) [74].
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4.1.2. Towards Numerical Probabilistic Techniques for
Adequacy Assessment

Several methods have been developed to assess power systems adequacy, but
they can be first divided into two groups: deterministic approaches and proba-
bilistic methods.

Historically, deterministic techniques were generally used at times when
power systems were vertically integrated, i.e., the same company was in charge
of producing, transporting and selling the electricity at a single imposed price.
The deterministic analysis is based on calculating power system parameters
under strictly defined conditions, and computed criteria include [23]:

• Capacity reserve margin: the total installed production capacity must
reach the sum of the predicted peak load and a fixed percentage of that
load. This criterion thus anticipates an unexpected increase of the load.

• Loss of the largest unit: the power system must be able to meet the load
demand even after the loss of the largest production unit.

• Combination of the two above criteria

While appropriate in the past, deterministic approaches for adequacy assess-
ment are not suitable for modern power systems. Indeed, they cannot model
generation units using renewable energy sources and they can only consider
a limited number of worst case situations. Moreover, the electricity system
has been liberalized (unbundling of the electricity sector), international power
exchanges have increased, and power systems are required to be as economical
as possible, leading to generating units operating closer to their physical limits.
Deterministic methods cannot consider random behaviours such as production
unit failures and renewable sources variability.

Probabilistic methods, unlike deterministic approaches, allow to consider
all possible system states with their associated probabilities, and explicitly
encompass random component failures. The risk related to the severity and
occurrence of restrictive system states can thus be estimated. This can lead to
the development of technically and economically adapted solutions to maintain
the electrical system adequacy, by finding the optimal balance between the
risk of not always being able to cover the load and the related cost. Therefore,
probabilistic techniques are now widely used in the context of power systems
reliability [156]. Probabilistic methods can be further divided into two sub-
groups: analytical techniques and numerical simulations.

Analytical methods use a mathematical model to represent system states
and evaluate reliability indices from the model using mathematical solutions.
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Enumeration methods enumerate all possible states of the system and their
probability of occurrence, evaluate the reliability of each state, and sum them
with their respective weights to obtain reliability indices. Population based
methods use optimization tools and evolutionary programming, and they
attempt to discover the majority, if not all, of the available states, in order to
calculate a good approximation of the reliability indices [157]. Approximate
methods use the continuous probability distribution function for formulating
an approximate generation system model [158]. For example, the probability
convolution combines the probability density functions of the generation system
and the load to mathematically evaluate the power system reliability. While
analytical methods are fast and exact, they are usually limited to small-scale
power systems as the complexity and number of potential system states increase
exponentially with the number of system components.

Simulation techniques are used to mimic unpredictable events in power
systems, and Monte-Carlo simulations are the preferred method for reliability
assessment of large and complex systems [159]. Monte-Carlo simulation methods
estimate the reliability indices by simulating the actual process and random
behaviour of the system [24], thus treating the problem as a series of random
events modifying the system state. Each state is then considered as a snapshot
of the system (usually on an hourly basis). Examined random events are
failures or maintenance of generation units, as well as load and renewable
production variations. Monte-Carlo simulations allow to include numerous
system effects without excessive approximation (which would be the case
for analytical methods) [153]. For large-scale power systems with numerous
elements, the number of possible states can become prohibitive. Analysing
all those states is not realistically possible, but the Monte-Carlo approach
implements a limited sampling of states. There is thus a compromise between
accuracy and the number of samples states. It should be noticed that the
required number of samples for a given accuracy level is independent of the
size of the system, which is another reason why Monte-Carlo simulations are
suitable for large-scale systems. Moreover, they allow to calculate not only
reliability indices in the form of expected values of random variables, but
also the distributions of these indices. Monte-Carlo methods can be broadly
classified into two main types according to the way in which system states
are sampled: non-sequential Monte-Carlo (random sampling), and sequential
Monte-Carlo (chronological sampling) simulations.

For non-sequential Monte-Carlo simulations, each system state is randomly
sampled and completely independently from previous and subsequent samples.
Therefore, in a non-sequential Monte-Carlo assessment, system components
are sampled without considering any time dependency between coherent states.
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Figure 4.2.: Summary of methods for reliability assessment.

Therefore, with this non-sequential approach, it is not possible to evaluate
techno-economic strategies that imply a time coupling, e.g. storage or load
shifting. Another source of sequentiality comes from the load (daily, weekly and
seasonal cycles) and renewable energy sources. Indeed, time series of renewable
generation show characteristics of an auto-correlated signal.

Sequential Monte-Carlo simulations are based on a Markovian approach (a
Markov process is a stochastic process describing a sequence of possible events
in which the probability of each event depends only on the state attained in
the previous event). Therefore, attention is paid to the transition between
successive states. Sequential Monte-Carlo simulations typically require higher
computational effort than their non-sequential counterparts, but they are
more suitable and accurate for modern power systems with a high share of
renewable generation. To carry out our adequacy studies, we will thus
use sequential Monte-Carlo simulations. Fig. 4.2 summarizes the different
methods for reliability evaluation, and highlights the one chosen in this work.

4.1.3. Reliability Indices
The adequacy of a given power system is quantified through the computation
of reliability indices, which measure the frequency, duration, and scale of
electricity supply interruptions. Many reliability indicators can be defined to
assess adequacy, but two widely used indices will be used in this chapter.

The Loss Of Load Expectation (LOLE) [h/year] is defined as the expected
yearly number of hours during which the electricity consumption C exceeds
the available production P . It can be written as:

LOLE =
LOLP

100
∗ 8760 h/year (4.1)
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where LOLP is the loss of load probability, defined as the yearly probability
that the consumption C is larger than the available generation P :

LOLP [%] = IP(C > P ) (4.2)

In Belgium, the TSO, Elia, has to comply to a maximum yearly LOLE of
3 hours/year (and 20 hours/year for the LOLE95, i.e., the LOLE value that
has 1 chance in 20 to be encountered). A formal cost-benefit analysis has
been applied to derive these reliability standards, based on observations of the
decreasing marginal value of adding more capacity beyond a certain level of
reliability. Such a cost-benefit analysis depends on the value of lost load, which
is a parameter that represents the customer damage from an outage event with
a direct monetary value. It is, however, hard to estimate in practice since this
value is likely to vary from customer to customer, and it is highly dependent
on the timing, frequency and duration of an outage [160].

While widely used by other TSOs, the LOLE does not provide a comprehen-
sive quantification of a power system adequacy. Indeed, it does not allow to
quantify the missing power production (or loss load) during periods of scarcity
(i.e., when C > P ). This is why the Loss Of Energy Expectation (LOEE)
[MWh/year] is introduced: this quantity defines the average energy not served
during the year. LOEE is expressed as follows:

LOEE =
M∑
i=1

∫ +∞

Pgi

F (C)dC ∗ IP(P = Pgi) ∗ 8760 h/year (4.3)

where F (C) is the cumulative distribution function of the consumption:

F (x) = IP(C > x) (4.4)

An example of F (C) is shown in Fig. 4.3, where the base load is the minimum
level of demand of an electrical grid over a span of time and the peak load is
the highest electrical power demand that has occurred in this time period (it is
typically characterized as annual, daily or seasonal).

In other words, LOLE allows to quantify the probability of scarcity events,
while LOEE measures their severity. These two reliability indices are used in a
complementary way to assess power systems adequacy.
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Figure 4.3.: Example of a traditional load cumulative distribution function.

4.2. Sequential Monte-Carlo Simulations for
Adequacy Studies

Currently, the more accurate adequacy calculations rely on sequential Monte-
Carlo simulations [159]. Indeed, sequential simulations allow the use of detailed
hourly generation and load models, which makes them ideally suited to the
analysis of intermittent generating sources such as offshore wind generation.
Since the Monte-Carlo sampling process is sequential, it models all contingencies
and operating characteristics inherent to the power system in a chronological
time-consistent way. This is achieved by sampling successive system states while
maintaining the time correlation between consecutive steps. The objective is
then to compute reliability indices (LOLE and LOEE) on a yearly basis, with an
hourly resolution. To that end, time series of wind speed and direction should
be generated (and then converted into power using the trained ML models),
along with scenarios of load and possible failures of conventional generation
units. Each type of time series is further detailed in the next subsections.

4.2.1. Load Modelling

Since the simulations are sequential, a load profile (without load shifting)
describing the hourly evolution of electrical consumption throughout an entire
year is needed. The load described here refers to the grid load measured on the
TSO electrical network, i.e., the aggregated load of all consumers from which
the renewable generation at the distribution level is subtracted. This load is
highly fluctuating and influenced by more or less foreseeable conditions such as:
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Figure 4.4.: Yearly evolution of the load in Belgium for the year 2023. Summer
holidays and several public holidays are highlighted. Data from
[10].

• Meteorology: temperature and rain impact heating, while wind and sun
variations drive variable generation on the distribution grid.

• Economical activities: there is usually more consumption on working
days than during week-end and holidays, and the daily cycle differ as
well.

• Pricing incentives: dynamic tariffs such as day/night pricing.

• Rare events: international gathering (e.g., sports events) can cause a
sudden peak in load demand.

For example, Fig. 4.4 depicts the yearly evolution of load in Belgium for the
year 2023 (data collected on the Elia website). It can be seen that the load
tends to decrease during summer while reaching higher values during winter.
Moreover, public holidays and summer holidays can be clearly identified by the
sudden drops in electrical consumption. On Fig. 4.5, the hourly load evolution
for a typical weekday is shown (blue curve): the electrical consumption is
reduced during the night, then there is the peak corresponding to people
waking up and morning activities. During the afternoon, the load decreases
again, before another peak is seen in the evening, when people come home and
start cooking and watching television. A typical weekend day is also shown on
Fig. 4.5 (grey curve): it can be seen that the load is clearly lower than during
a weekday. Time series of load should thus jointly incorporates seasonal trends,
diurnal cycles as well as weekday/weekend patterns.
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Test systems, available in the literature for the evaluation of adequacy
assessment methods, usually combine a peak load and modulation diagrams
[161], [162]. While the obtained load profile fully encompasses yearly, weekly,
and daily patterns, the same time series is used for all simulated years of the
Monte Carlo analysis, unless statistical noise is added. For real-life power
systems, if historical data are available, they can be gathered and used to build
a load model. The latter can then be leveraged to generate synthetic load
profiles, thus allowing to consider the random behaviour of the fluctuating load.

4.2.2. Conventional Units
Conventional power plants (based on natural gas, nuclear, oil but also waste
and biomass) can undergo failures inherent to their operation. To account for
conventional units outages, the operational cycle of such units is represented
through a two-state model, distinguishing between up (operational) and down
(non-operational) states. A yearly sequence of up-down-up cycles can be
produced by employing a random sampling technique, which draws from the
probability distributions of state residence times for each respective state. The
Time To Failure (TTF ) and Time To Repair (TTR) are typically assumed to
be exponentially distributed and can be computed as follows:

TTF = −MTTF ∗ ln U

TTR = −MTTR ∗ ln U ′ (4.5)

where MTTF is the Mean Time To Failure, MTTR is the Mean Time To
Repair, and U and U ′ are two uniformly distributed random number sequences

100



Chapter 4. Improved Modelling of Offshore Wind Generation in Adequacy
Studies

Up

Down

Status:

Hour in year1 8760

Figure 4.6.: Yearly availability profile of a conventional unit. Modified from
[163].

between 0 and 1. The construction of the yearly availability profile of each unit
is determined by juxtaposing the status of samples drawn from the TTF and
TTR distributions, as shown in Fig. 4.6.

4.2.3. Improved Offshore Wind Generation Modelling
In adequacy studies, offshore wind energy is usually modelled using the tradi-
tional power curve approach, thus ignoring intra-farm wake effects. However,
those effects clearly influence the expected power output, especially in offshore
conditions, and they must not be disregarded. For adequacy studies of modern
power systems with a high share of offshore wind generation, the inclusion
of complex aerodynamic phenomena in the wind farm modelling is crucial.
Moreover, for sequential Monte-Carlo simulations, the wind variability (sea-
sonal trends, daily cycles) should also be considered when generating yearly
profiles for offshore wind energy. In this work, the offshore wind generation
model is thus composed of three main parts, i.e., the wind model, the Machine
Learning surrogate developed in Chapter 3 and the wind turbine availability
model. These three parts are described as follows.

Free-flow Wind model

Usually, only a wind speed model is needed for adequacy assessment. However,
when taking wake effects into account, the wind direction also has an important
influence on the power output of wind turbines. Moreover, when generating wind
data, it is important to maintain the correlation between wind speeds and wind
directions at different locations. To that end, we use a Vector Auto-Regressive
Moving Average (VARMA) model, which augments the ability of ARMA
models (that accurately represent time dependencies) with a representation of
cross-variables correlations [164].

In ARMA models for wind speed, each value in the simulated time series
depends on its own lagged values (AR part) but also on current and various
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past values of a stochastic term (MA part). The model is usually referred
to as a ARMA(p, q) model where p and q are respectively the order of the
auto-regressive and the moving average parts. First, the series yt is normalized
to ensure stationarity, as the hourly wind speed distribution is non stationary
due to the daily cycle and seasonality:

yt =
OWt − µt

σt

(4.6)

where t is an hour in the year, OWt is the observed wind speed at hour t, µτ is
the mean of all observed wind speed at hour t over several years, and σt is the
standard deviation of all observed wind speed at hour t.

Then, the data series yt can be used to build the following ARMA(p, q) wind
speed time series model [165]:

yt = ϕ1 ∗ yt−1 + ϕ2 ∗ yt−2 + ...+ ϕp ∗ yt−p

+ αt − θ1 ∗ αt−1 − θ2 ∗ αt−2 − ...− θq ∗ αt−q (4.7)

where ϕi (i = 1, 2, ..., p) and θj (j = 1, 2, ..., q) are the auto-regressive and
moving average parameters of the model respectively, αt is a normal white noise
process with zero mean and variance σ2

a, i.e., αt ∈ NID(0, σ2
a) with NID denoting

Normally Independently Distributed. The maximum likelihood approach is
adopted to estimate the values of ϕi, θj and σ2

a. A grid search procedure based
on the F-criterion is used to determine the order of the ARMA(p, q) model.

Once the wind speed time series model is established, the simulated wind
speed can be calculated as:

SWt = µτ + στ ∗ yt (4.8)

VARMA(p, q) models for simulating correlated wind speeds and wind direc-
tions are just a generalization of ARMA(p, q) models, where the wind speed
not only depends on its own lagged values, but also on the lagged values of
wind direction. The same goes for the wind direction time series, and the wind
vector is written as:

yt = Φ1 ∗ yt−1 + Φ2 ∗ yt−2 + ...+ Φp ∗ yt−p

+ αt −Θ1 ∗ αt−1 − ...−Θq ∗ αt−q (4.9)

where yt = [ys, yw]
t contains the data series corresponding to wind speed

and wind direction and Φi and Θj are matrices of dimensions [2x2]. The
methodology for estimating the parameters and for choosing the (p, q) order is
the same as for ARMA models.
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Figure 4.7.: Integration of the developed ML surrogate in the sequential Monte-
Carlo framework.

Wind Turbine Availability Model

To account for wind turbine outages, the operational cycle of a wind turbine
is represented through a two-state model, similar to the one described in sec-
tion 4.2.2. For offshore wind turbines, the MTTF is approximately 1298 hours
and the MTTR is 34 hours [166]. It should be noted that turbine failures are
fully encompassed by the developed ML surrogate, which can capture
the redistribution of wind due to disabled turbines and the subsequent change
in electrical power output.

Wind Turbine Power Surrogate

Wind scenarios are fed to the the ML-based wind farm surrogate developed
in Chapter 3, along with turbine availabilities. Offshore wind power profiles
are then obtained, fully encompassing the time correlation between consecu-
tive states and power losses due to wake interactions between turbines. The
integration of the ML proxy within the sequential Monte-Carlo framework is
depicted in Fig. 4.7.

4.2.4. Sequential Monte-Carlo Algorithm

The sequential Monte-Carlo methodology is illustrated in Fig. 4.8. During the
initialization, the maximum number of simulated Monte-Carlo years NMC is set.
It should be noticed that Monte-Carlo years refer to possible realizations of the
physical year for which adequacy is computed (studied time horizon). Then,
the procedure for assessing the generation adequacy within a power system is
described as follows:
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Figure 4.8.: Diagram of the proposed methodology, where the generation of
hourly time series of offshore production (using the ML model) is
highlighted in grey, while the sequential Monte-Carlo process is
given in blue.

1. Create a yearly time series for the availability of conventional generating
units using chronological simulations.

2. Generate a yearly time series for the wind power output of every wind
farm using the ML proxy and the wind turbine availability model.

3. Compute the total generation capacity of the system (by aggregating
conventional and wind powers).

4. Compare the total generation capacity with the load for each state.

5. Compute the yearly reliability indices for the simulated Monte-Carlo year:
the number hours when production cannot meet demand i.e., the Loss
Of Load (LOL), along with the associated total energy not served, i.e.,
the Loss Of Energy (LOE).

This process is carried out on a yearly basis (i.e., 8,760 hours), and repeated
until a specified degree of confidence has been reached. Once convergence is
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achieved, the simulation can be terminated. The stopping criterion used in this
work is [25]:

σ(X)

E(X)
< ϵ (4.10)

where X is a reliability index (LOLE or LOEE), E(X) is the mean value, σ(X)
is the standard deviation and ϵ is a convergence threshold, set to 0.005. The
mean value and the standard deviation are computed on a set number of years
nMC (sliding convergence window). In other words, convergence is achieved
when the criteria is met on the last nMC computed years. The purpose of using
a stopping criterion (and a maximum number of Monte-Carlo years NMC) is to
provide a compromise between the required accuracy and computational cost.
At the end of the procedure, final values of LOLE and LOEE are collected and
the power system system adequacy is assessed. For YMC simulated Monte-Carlo
years:

LOLE =

∑YMC

yMC=1 LOLyMC

YMC

(4.11)

LOEE =

∑YMC

yMC=1 LOEyMC

YMC

(4.12)

It should be noticed that because of the iterative process of sequential Monte-
Carlo simulations, not only expected values of reliability indices are obtained,
but also their statistical distribution.

4.3. Case Study

We apply the methodology developed in this paper to a simplified model of the
Belgian power system in 2030. Currently, 2.2 GW of offshore wind generation
capacity is installed in the Belgian North Sea, in a zone consisting of 9 clustered
wind farms. However, aligned with the ambitious objectives of the energy
transition, the Belgian government has decided to reach between 5.35 GW to
5.7 GW of offshore capacity by 2030. To that end, a second zone (Princess
Elizabeth zone) will encompass 3 parcels, with a total capacity ranging from
3.15 to 3.5 GW. The layout (turbine location, turbine choice, power density)
of these future wind farms is still unknown, as the tendering process should
begin in late 2024. Therefore, it is important to consider multiple scenarios
for this future offshore zone in order to account for the current uncertainty on
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the energy that will be provided by the different wind farms. As a reminder,
the electrical network is not considered here and is thus simplified using the
“copper plate” approach, i.e., there are no constraints to deliver production
towards the load consumers.

4.3.1. Data for the Belgian Power System in 2030
Load

Since the simulations are sequential, the load profile describing the hourly evolu-
tion of electrical consumption throughout an entire year is needed. This profile
jointly incorporates seasonal trends, diurnal cycle as well as weekday/weekend
patterns. Historical data of total load gathered from Elia [10] are used to
build an ARMA model that captures the yearly load profiles. The peak load is
expected to reach 17.72 GW, for an expected yearly consumption of 112.8 TWh.

Solar and onshore wind resources, which are connected to the distribution grid,
are aggregated. Historical capacity factors during 2014-2019 in Belgium from
[167]–[169] are used, as well as the projected installed capacity, i.e. 14.5 GW
for solar and 5.6 GW for onshore wind.

Conventional Units

The installed capacities of the different generation technologies along with
their forced outage rates are based on Elia’s latest adequacy study [25]. The
conventional generation is spread as follows: 2.1 GW nuclear, 7 GW gas,
0.14 GW oil, and 0.97 GW biomass and waste. Specifically, the system consists
in 76 large-scale thermal units (i.e., modelled individually by Elia), detailed in
Tables 4.1 to 4.6. We assume that by 2030, two nuclear power units (Doel 4
and Tihange 3) are supposed to remain in operation, and two new gas power
plants (non-existing today, Seraing with 885 MW, and Flémalle) will be added.
Moreover, small distributed conventional units connected on the Elia grid are
also considered, but in an aggregated manner. According to Elia, three types
of generation are considered: small gas cogeneration units (1600 MW), biomass
units (567 MW), and waste units (48 MW). Finally, power plant failures are
represented using a probabilistic model similar to the one described in section
4.2.2. Values for MTTF and MTTR are also provided in the tables.
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Table 4.1.: Nuclear generation fleet foreseen in Belgium for 2030.

Nuclear power plant Capacity Fuel type MTTF MTTR
[MW] [h] [h]

Doel 4 1039 Nuclear 6246 240
Tihange 3 1038 Nuclear 6246 240

Table 4.2.: Diesel generation fleet foreseen in Belgium for 2030.

Turbojet Capacity [MW] Fuel type MTTF [h] MTTR [h]

Aalter 18 Oil 902 98
Beerse 32 Oil 902 98
Cierreux 18 Oil 902 98
Noordschote 18 Oil 902 98
Zedelgem 18 Oil 902 98
Zeebrugge 18 Oil 902 98
Zelzate 18 Oil 902 98

Table 4.3.: Generation fleet of incinerator stations foreseen in Belgium for 2030.

Incinerators Capacity Fuel type MTTF MTTR
[MW] [h] [h]

Beveren 2 Indaver 21 Waste 1199 82
Beveren 3 Indaver 24 Waste 1199 82
Beveren Sleco 41 Waste 1199 82
E-wood 22 Waste 1199 82
Intradel 32 Waste 1199 82
ISVAG 12 Waste 1199 82
IVBO 16 Waste 1199 82
Oostende Biostoom 19.4 Waste 1199 82
Oostende Greenpower 20 Waste 1199 82
Schaerbeek 1 15 Waste 1199 82
Schaerbeek 2 15 Waste 1199 82
Schaerbeek 3 15 Waste 1199 82
Thumaide 34 Waste 1199 82
Oostende Biomassa 18 Biomass 1199 82
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Table 4.4.: Cogeneration fleet foreseen in Belgium for 2030.

Cogeneration plant Capacity Fuel type Plant type MTTF MTTR
[MW] [h] [h]

Aalst GT 43 Gas CCGT-GT 1735 101
Aalst ST 5 Gas CCGT-ST 1735 101
Beveren Ineos 25 Gas OCGT 2250 201
Borealis Kallo 32 Gas CCGT 1735 101
Euro-Silo 12.9 Gas CCGT 1735 101
Gent Taminco 6.3 Gas OCGT 2250 201
Ham GT 39 Gas CCGT 1735 101
Inesco 1 45 Gas CCGT-GT 1735 101
Inesco 2 45 Gas CCGT-GT 1735 101
Izegem 20 Gas CCGT 1735 101
Jemeppe-sur-Sambre 1 48 Gas CCGT-GT 1735 101
Jemeppe-sur-Sambre 2 48 Gas CCGT-GT 1735 101
Jemeppe-sur-Sambre ST 10 Gas CCGT-ST 1735 101
Lanaken 43 Gas OCGT 2250 201
Langerbrugge 1 10 Biomass CL 1199 82
Langerbrugge 2 40 Biomass CL 1199 82
Lillo Degussa 1 43 Gas CCGT-GT 1735 101
Lillo Degussa 2 32 Gas CCGT-GT 1735 101
Lillo Monsanto 43 Gas OCGT 2250 201
Lillo ST 10 Gas CCGT-ST 1735 101
Oorderen 43 Gas OCGT 2250 201
Scheldelaan 140 Gas CCGT 1735 101
Wilmarsdonk 1 43 Gas OCGT 2250 201
Wilmarsdonk 2 43 Gas OCGT 2250 201
Wilmarsdonk 3 43 Gas OCGT 2250 201
Zandvliet 419 Gas CCGT 1735 101
Zeebrugge Fluxys 40 Gas OCGT 2250 201
Zwijndrecht GT 43 Gas CCGT-GT 1735 101
Zwijndrecht ST 15 Gas CCGT-ST 1735 101

Table 4.5.: Classical thermal generation fleet foreseen in Belgium for 2030.

Thermal power plant Capacity Fuel type MTTF MTTR
[MW] [h] [h]

Knippegroen 305 Gas 1199 82
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Table 4.6.: Generation fleet of combined cycle gas turbines foreseen in Belgium
for 2030.

CCGT Capacity Fuel type Plant type MTTF MTTR
[MW] [h] [h]

Amercoeur 1 GT 289 Gas CCGT-GT 1735 101
Amercoeur 1 ST 162 Gas CCGT-ST 1735 101
Angleur 31 25 Gas OCGT 2250 201
Angleur 32 25 Gas OCGT 2250 201
Angleur 41 64 Gas OCGT 2250 201
Angleur 42 64 Gas OCGT 2250 201
Drogenbos 1 150 Gas CCGT-GT 1735 101
Drogenbos 2 150 Gas CCGT-GT 1735 101
Drogenbos ST 160 Gas CCGT-ST 1735 101
Flémalle 890 Gas CCGT 1735 101
Ham 31 58 Gas OCGT 2250 201
Ham 32 58 Gas OCGT 2250 201
Herdersbrug GT1 157 Gas CCGT-GT 1735 101
Herdersbrug GT2 156.3 Gas CCGT-GT 1735 101
Herdersbrug ST 167 Gas CCGT-ST 1735 101
Inesco 49 Gas CCGT-ST 1735 101
Marcinelle 413 Gas CCGT 1735 101
Ringvaart 385 Gas CCGT 1735 101
Saint-Ghislain 378 Gas CCGT 1735 101
Seraing 885 Gas CCGT 1735 101
Seraing 1 150 Gas CCGT-GT 1735 101
Seraing 2 150 Gas CCGT-GT 1735 101
T-Power 425 Gas CCGT 1735 101
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Storage

Because sequential Monte-Carlo simulations allow to keep the time dependence
between consecutive states, storage can be included in the adequacy assessment.
Pumped storage (1.2 GW), aggregated large-scale (1.1 GW) and small-scale
(1.02 GW) batteries are considered. Storage is operated in a greedy way,
i.e. charging in periods of overproduction, and discharging when there is a
shortage of electricity, until energy bounds are reached. This is thus a rule-
based operation that does not take economics into account, unlike a price-based
optimization.

Imports

Belgium, being a highly interconnected nation, anticipates yearly electricity
imports to reach 30 TWh by 2030. Consequently, we impose this annual cap of
30 TWh on imports for each year in our simulations.

Offshore Wind Generation

Scenarios of wind (speed, direction and ambient turbulence) are produced with
a VARMA model, as explained in section 4.2.3. Wind data used to build the
wind model come from the ERA5 database, presented in section 3.4, at the
location of the offshore zone in the Belgian North Sea and for the years 2018 to
2021. For this dataset, the F-criterion leads to a VARMA(3,2) model for the
generation of correlated wind speed and wind direction time series. It should
be noted that given the proximity of all wind farms, the same wind time series
is applied to all of them as free-flow wind. This is rather realistic for farms
clustered within the same zone. Moreover, a correlation study performed on
ERA5 wind data show that the wind is nearly entirely correlated between the
existing cluster and the new Princess Elizabeth area. Since the two offshore
wind zones are submitted to the same wind regime, there is no geographical
smoothing on the overall electrical production. Wind scenarios are converted to
wind power using the ML-based wind farm surrogate developed in Chapter 3.

The turbine coordinates and characteristics for the 9 wind farms located in
the first offshore zone are derived from the documentation provided by the
Royal Belgian Institute of Natural Science [132]. Their layout is pictured in
Fig. 4.9, along with their installed capacity. Turbine power curves can easily
be found on the manufacturer website.

Regarding the future offshore wind farms yet to be built in the second zone,
different scenarios should be considered, as proposed in preliminary studies
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Figure 4.9.: First offshore zone in the Belgian North Sea (already built).

carried out by the Belgian government [170]. Indeed, there is a high uncer-
tainty on how wind farm developers will optimize their installation. Therefore,
five different power densities are investigated: 6.2 MW/km², 7.5 MW/km²,
10 MW/km², 11.2 MW/km², and 12.5 MW/km², respectively leading to in-
stalled capacities of 1750 MW, 2100 MW, 2800 MW, 3150 MW, and 3500 MW
in the second offshore zone. Moreover, different wind turbine technologies
are also considered. As the trend in recent offshore wind installations is to
invest in larger turbines, the following 3 turbines types are assessed: a 13 MW
turbine with a rotor diameter D of 220 m, a 15 MW turbine with D=236 m,
and a boosted 17 MW variant of the latter. The location of turbines within
the future offshore farms is determined using a simple micro-siting method,
complying with inter-turbine distance, environmental and shipping-constraints
[171]. Examples of such layouts are presented in Fig. 4.10.

4.3.2. Results

For each sequential Monte-Carlo simulation, besides values of LOLE and LOEE,
several outputs can be analysed to assess the power system adequacy. An
example of possible results obtained from a Monte-Carlo run is shown in
Figs. 4.11 and 4.12: it corresponds to a case where the second offshore zone
has an installed capacity of 1.75 GW and turbines with a 13 MW rated power.
The distribution of LOL (the number of hours where consumption exceeds
production for each Monte-Carlo year) is shown in Fig. 4.11(a). LOLE and
LOEE convergence can be seen in Fig. 4.11(b): reliability indices oscillate
during the first Monte-Carlo years, before converging after approximately 600
simulated years.
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Figure 4.11.: Analysis of reliability indices, (a) Distribution of LOL, (b) Evolu-
tion of LOLE and LOEE during Monte-Carlo simulations

A scarcity event is defined as a power shortage, i.e., when the available
production is not able to meet the demand. Because sequential Monte-Carlo
simulations keep the time correlation between consecutive timesteps, it is
possible to quantify the duration and severity of scarcity events (in terms of
highest power and total energy not served), as pictured in Fig. 4.12(b). The
distribution of durations can be seen in Fig. 4.12(a).
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Figure 4.12.: Analysis of scarcity events, (a) Distribution of events duration, (b)
Peak power against event duration, with points coloured according
to the total energy not served during the event.

Impact of Wake Losses on Adequacy Indices

The offshore wind generation is simulated with both the traditional power
curve approach, and the developed topology-aware ML surrogate based on
neural networks, i.e., the MLP model whose hyperparameters are specified
in section 3.6. All other simulation parameters, e.g. wind speed and wind
direction, are the same for both approaches. This allows to quantify the impacts
of disregarding wake effects on the annual offshore production, and thus on
adequacy indices. Results for four cases (reflecting different capacities of the
second offshore zone) are presented in Table 4.7.

First, it can be observed that for each case, the modelling approach for
offshore wind power significantly influences LOLE and LOEE values. The
relative difference varies from 13% to more than 18%. One can note that
increasing the installed capacity (ranging from 1.75 GW to 3.5 GW in the
second offshore zone) exacerbates these differences in adequacy indices. Indeed,
as the penetration of offshore generation within the power system increases,
aerodynamic losses have a higher impact on the yearly offshore production.
This can be explained by the fact that, as the power density is higher, the
distance between neighbouring turbines is reduced, thereby intensifying wake
effects. Moreover, when analysing the two last cases of Table 4.7 (same installed
capacity, but different types of turbines), we observe that the difference in
LOLE values between the power curve and ML model is approximately 15.5%
for 17 MW turbines, while it reaches 19% with 13 MW turbines. Indeed, when
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Table 4.7.: Adequacy indices, when offshore generation computed with the ML
proxy and power curves.

LOLE LOEE
Yearly offshore
production

Case 1: 1.75 GW in the 2nd offshore zone, 13 MW turbines
ML proxy 29.54 h/y 36.43 GWh/y 15.72 TWh
Power curves 26.06 h/y 32.13 GWh/y 17.33 TWh
Difference 3.93 h/y 5.05 GWh/y -1.72 TWh

13.29 % 13.85 % -10.91 %

Case 2: 2.8 GW in the 2nd offshore zone, 13 MW turbines
ML proxy 25.72 h/y 31.12 GWh/y 19.26 TWh
Power curves 21.63 h/y 26.13 GWh/y 21.94 TWh
Difference 4.27 h/y 5.01 GWh/y -2.91 TWh

16.61 % 16.11 % -15.09 %

Case 3: 3.5 GW in the 2nd offshore zone, 13 MW turbines
ML proxy 24.42 h/y 30.10 GWh/y 21.33 TWh
Power curves 19.97 h/y 24.53 GWh/y 24.99 TWh
Difference 4.59 h/y 5.92 GWh/y -3.93 TWh

18.80 % 19.67 % -18.40 %

Case 4: 3.5 GW in the 2nd offshore zone, 17 MW turbines
ML proxy 23.48 h/y 28.40 GWh/y 22.10 TWh
Power curves 19.58 h/y 23.68 GWh/y 25.38 TWh
Difference 3.65 h/y 4.21 GWh/y -3.15 TWh

15.55 % 14.84 % -14.27 %

keeping the same installed capacity, the use of the (larger) 17 MW model
reduces the number of wind turbines in the farm. This enables an increase
in the spacing between turbine rows, thus mitigating wake losses. Regarding
yearly offshore generation, the difference between the power curve and the MLP
model ranges between 11% and 18%. This is in line with power losses reported
in the literature, where wake effects account for 10 to 20% of the total yearly
energy output in large offshore wind farms [49].

Besides studying expected yearly values of reliability indices, it could also
be interesting to analyse in more details LOL and LOE values as well as
scarcity events for all simulated Monte-Carlo years. Case 3 of Table 4.7, i.e.,
3.5 GW in the second offshore zone and 13 MW turbines, is chosen for this more
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(a) (b)

Figure 4.13.: Comparison of the distributions of (a) LOL values, (b) LOE values,
when using the ML surrogate and the power curve approach for
offshore wind modelling.

thorough analysis. Fig. 4.13(a) shows the distribution of LOL values (number of
hours in the year where consumption exceeds production) across all simulated
Monte-Carlo years. It can be seen that the distributions differ between the
two methods for modelling offshore wind generation. With the power curve
approach, the distribution is shifted towards lower values of LOL, since wake
effects are ignored and wind power is usually overestimated. With the ML
surrogate, the distribution shows a lower density towards small LOL values, and
spread over higher values (100 h/year are sometimes reached). The same can
be observed for LOE values (energy not served during the Monte-Carlo year),
as shown in Fig. 4.13(b). When studying scarcity events in terms of duration,
total energy not served, and peak power, it can be observed in Fig. 4.14 that
with the ML surrogate for offshore wind modelling, the energy not served can
reach up to 140 GWh, while the maximum value with the power curve approach
is approximately 120 GWh. Moreover, there is a higher concentration of points
towards very severe peak values with the ML surrogate.

These results demonstrate that relying on a more accurate model of off-
shore wind generation in adequacy studies becomes crucial, especially when
the installed offshore capacity increases. In particular, adequacy indices are
significantly underestimated when aerodynamic effects are ignored. This could
wrongly result in an overly optimistic adequacy assessment, and therefore
mislead the subsequent energy policy decisions.
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Figure 4.14.: Peak power against scarcity event duration, with points coloured
according to the total energy not served during the event, for
offshore wind modelled with (a) the ML surrogate, (b) the power
curve approach.

Sensitivity to the Power Density within Wind Farms

LOLE and LOEE values, as well as yearly offshore production, are reported in
Table 4.8 for each combination of installed capacity and turbine model in the
second offshore zone. As expected, when the installed power of offshore farms
increases from 1.75 GW to 3.5 GW, the yearly produced energy grows as well.
This, in turn, improves reliability indices, leading to a more robust supply of
electricity. However, for a given turbine model, this effect becomes less signifi-
cant as power density increases. For example, for the 13 MW turbine model,
values of LOLE decrease from 29.54 to 25.72 hours/year (i.e., -3.82 hours/year)
when adding 1.05 GW of wind turbines (by increasing the installed capacity
from 1.75 GW to 2.8 GW). But another supplementary 700 MW only reduces
the LOLE from 25.72 hours/year to 24.42 hours/year (-1.3 hours/year). These
diminishing marginal returns can be explained by the fact that adding more
turbines amplifies wake losses. Consequently, wind farm developers should be
careful that the extra energy generated does not offset the additional investment
costs. The installed capacity should thus result from a well-studied compromise
between increasing the yearly offshore production while limiting power losses
from wake effects.
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Table 4.8.: Adequacy indices, for different wind farm layouts in the second
offshore zone (using the ML proxy).

LOLE LOEE
Yearly offshore
production

Case 1: 1.75 GW in the 2nd offshore zone (6.2 MW/km²)
13 MW turbines 29.54 h/y 36.43 GWh/y 15.72 TWh
15 MW turbines 28.73 h/y 35.55 GWh/y 15.92 TWh
17 MW turbines 28.22 h/y 34.30 GWh/y 15.99 TWh
Case 2: 2.1 GW in the 2nd offshore zone (7.5 MW/km²)
13 MW turbines 27.42 h/y 33.32 GWh/y 17.05 TWh
15 MW turbines 27.14 h/y 33.19 GWh/y 17.21 TWh
17 MW turbines 26.70 h/y 32.22 GWh/y 17.40 TWh
Case 3: 2.8 GW in the 2nd offshore zone (10 MW/km²)
13 MW turbines 25.72 h/y 31.12 GWh/y 19.26 TWh
15 MW turbines 25.04 h/y 30.51 GWh/y 19.68 TWh
17 MW turbines 24.85 h/y 30.54 GWh/y 19.87 TWh
Case 4: 3.15 GW in the 2nd offshore zone (11.2 MW/km²)
13 MW turbines 24.44 h/y 29.81 GWh/y 20.30 TWh
15 MW turbines 24.25 h/y 29.41 GWh/y 20.69 TWh
17 MW turbines 24.10 h/y 29.51 GWh/y 20.94 TWh
Case 5: 3.5 GW in the 2nd offshore zone (12.5 MW/km²)
13 MW turbines 24.42 h/y 30.10 GWh/y 21.33 TWh
15 MW turbines 24.17 h/y 29.59 GWh/y 21.80 TWh
17 MW turbines 23.48 h/y 28.40 GWh/y 22.10 TWh

Sensitivity to the Choice of Wind Turbines

From Table 4.8, another interesting observation is that the choice of turbine
model has a significant impact on adequacy indices. For example, for a 1.75 GW
capacity in the second offshore zone, LOLE values are respectively 29.54, 28.73
and 28.22 hours/year for 13, 15, and 17 MW turbines. LOEE values decrease
from 36.43 GWh/year to 34.30 GWh/year when the rated power of turbines
increases. This difference of 2.13 GWh/year is equivalent to the average yearly
consumption of more than six hundred Belgian households. However, the cost
of larger turbines is increased, and wind farm operators might choose to install
less powerful turbines if the difference in yearly energy does not justify the
expense.
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4.3.3. Computation Time
As a reminder, since the ML proxy is independent of the wind farm configuration,
the training phase is carried out only once, and the resulting ML surrogate
can be applied for any wind farm layout in the second offshore zone. The
whole training process takes approximately 465 minutes (less than 8 hours),
including (1) carry out wind farm simulations to build the training database
(12 minutes), (2) search for optimal hyperparameters (442 minutes), and (3)
train the models (11 minutes). In comparison, the entire training process for
the farm-specific models (such as the ones developed in [87]), takes around
157 minutes for a single wind farm. In the proposed case study, training 24
models would have been necessary, resulting in over 62 hours of computational
effort. Moreover, exploring an additional layout scenario for the second offshore
zone would necessitate developing yet another model, thereby further extending
the simulation duration. This clearly shows the advantage of the proposed
topology-aware ML surrogate over the conventional approach that consists in
building multiple farm-specific models.

Regarding the time needed to carry out Monte-Carlo simulations for each
case, the average number of simulated years needed to reach convergence was
around 500 to 700 Monte-Carlo years (and each Monte-Carlo year requires a
yearly offshore power time series of 8760 samples). For the case 5 in Table 4.8
(3.5 GW in the second offshore zone with 15 MW turbines), one Monte-Carlo
simulation would take between 412 and 577 hours with Floris-based simulations,
while it only required 13 to 18 hours using the proposed generic ML model.
The difference in computation time is huge, especially if one wants to consider
several scenarios sensitivities for the future power system.

4.4. Conclusion
In this chapter, the developed ML surrogate is directly integrated within
adequacy studies using sequential Monte-Carlo simulations. The fast inference
time and topology-aware abilities allow an improved modelling of offshore wind
farms without hindering the tractability of the computation process. Wake
effects arising within offshore wind farms and leading to significant power losses
are fully encompassed with the model, as well as turbine failures.

Results of a test case, based on a simplified model of the Belgian power
system in 2030, demonstrate the relevance of an improved modelling of offshore
wind generation as it significantly affects adequacy outcomes. Indeed, with
a power curve approach (generally used in adequacy studies) that ignores
wake losses, we observe a noteworthy underestimation of LOLE and LOEE
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values. This error increases with both the installed capacity and power density
within the farms, potentially exceeding 18%. This can critically affect adequacy
assessments, particularly in a context of increased wind energy integration.
Indeed, underestimating reliability indices may conceal adequacy issues, thereby
preventing to make the right investments and take the necessary planning
actions to ensure a sufficient adequacy of the system.

The generalization abilities allow to account for various possibilities related to
future wind farms topology, which is uncertain. Indeed, with the topology-aware
ML surrogate, the same model can be used to consider many possible farm
configurations, thereby preventing the need to train one model per configuration,
as it would be the case with traditional farm-specific surrogates. Outcomes
show that increasing power density improves reliability indices, but diminishing
marginal returns are observed after a certain point, due to the amplification of
wake losses caused by the additional turbines. The installed capacity should
thus result from a well-studied compromise between increasing the yearly
offshore production while limiting power losses from wake effects. Moreover,
the choice of turbine technology also impacts adequacy results, as larger rotor
diameters (for the same total farm capacity) decrease LOLE and LOEE values,
but at the expense of higher turbine costs.

In the case study, possible configurations for future wind farm layouts were
obtained with a simple micro-siting method, complying with inter-turbine
spacing and placing turbines in a regular grid. However, this might not be
the optimal design, as it does not consider wake effects and dominant wind
directions. To address this problem, the developed topology-aware ML surrogate
will be integrated within a wind farm layout optimization problem aimed at
finding the turbines optimal positions.
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CHAPTER 5.
Wind Farm Layout Optimization With

Participation to Secondary Reserve Market

With the sharp increase of renewable energy sources in modern power systems,
balancing electrical load and generation throughout the day is becoming a
challenge. In case of real-time measured imbalance in the system, the TSO needs
to activate reserves in order to restore balance and avoid frequency deviations.
In the near future, with a high penetration of weather-dependant electricity
generation, intra-hour variability and randomness will become more significant,
increasing the need for fast regulation and the value of reserve. Reserve markets,
which allow power plant operators to act as Balancing Service Provider (BSP),
will be critical for the reliable integration of renewable electricity.

Because offshore wind generation capacity is expected to grow steadily in the
future, wind farm operators will have an important role in reserve markets and
system balancing. Allowing offshore wind farms to participate in the reserve
market will be of mutual interest to TSOs and wind producers. Moreover,
it has been proven that variable speed wind turbines in modern wind power
plants have intrinsic fast down (virtually at no cost) and ramping up (subject
to the availability of wind power) capabilities, which can be effectively used
to provide ancillary services [26], [27]. To alleviate frequency deviations, the
TSO has several reserve capacities, with different requirements for maximum
ramping and activation time. The focus in this work will be on Automatic
Frequency Restoration Reserve (aFRR), also called secondary reserve
or R2. Indeed, volume needs of secondary reserves are usually higher and are
expected to reach even larger values than those for primary reserve in the
future [25]. Moreover, primary reserve requires an activation and ramping
to full capacity within seconds [172], which might be prohibitive within wind
farms, where wind and wake effects take time to propagate. Tertiary reserve
is manually activated and is only used to complement and release secondary
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reserve (e.g., for very extensive imbalances). It must be able to stay active
for a long period of time (hours), which could be a challenge for wind farm
operators because of the wind variability. Therefore, secondary reserves seem
to be suitable for increasing revenues of wind farms participating to reserve
markets [173], [174]. Secondary reserves have a moderately fast response time,
are used in both directions to restore a frequency of 50 Hz, and remain active
as long as necessary. The TSO activates aFRR automatically by sending a
set-point every four seconds and the requested energy is to be activated within
7.5 to 15 minutes in case of selection of the full volume of the aFRR energy
bid.

Concerning the participation of wind farms to a Joint day-ahead Energy and
Reserve Market (JERM), optimal offering and allocation policies have been
investigated, but with the assumption of constant electricity prices [76]. This
does not allow to capture the variation of day-ahead and reserve prices with
wind speed and wind direction. A combined energy and regulation reserve
market model has been developed to encourage wind producers to regulate their
short-term outputs [175], but it assumes that marginal revenues of providing
day-ahead energy is always higher than the marginal revenues for upward
reserve as well as perfect forecasts of market prices. Provision of reserve by
wind power units has been considered for generation capacity expansion [176]
but simulations were only carried out over 9 representative days of load and
generation.

Therefore, the first objective of this chapter is to develop a new formulation
for computing the optimal offering, reserve allocation strategy, and subsequent
expected profits of a wind farm participating in both day-ahead and secondary
upward reserve markets. It will consider the uncertainty in forecasts of wind
power, electricity prices and activated reserve volumes. The estimated penalties
and balancing costs for failing to provide energy and reserve will also be taken
into account.

The remainder of the chapter is structured as follows. Section 5.1 reviews
wind farm layout optimization formulations that are available in the literature.
Section 5.2 briefly analysis historical data from Belgium of wind speed, wind
direction, and electricity prices. In Section 5.3, a general formulation for
the computation of revenues from both day-ahead and reserve markets is
presented. Section 5.4 details the integration of the new formulation within
the wind farm layout optimization problem. In section 5.5, the developed
methodology is applied on a real wind farm, using historical data for wind
and electricity prices. Yearly profits, supplied energy and AEP of the best
optimized layout are compared with regard to the current built configuration
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of the test wind farm. Comparisons are also made with more traditional wind
farm layout optimization formulations. The study is carried out for the Belgian
system using existing market rules. However, although this system has some
peculiarities, the main methodology could be applied in other systems with
minor modifications. Finally, conclusions are gathered in the last section.

5.1. Literature Review on Wind Farm Layout
Optimization

While current wind farms have usually been designed to maximize their power
output, future wind farms should be planned and built taking into account
the participation to reserve markets. Wind farm layout optimization usually
aims at maximizing Annual Energy Production (AEP). It attempts to choose
the best placement for turbines, which is equivalent to minimizing wake losses.
Indeed, when wind turbines extract mechanical energy from the wind to produce
electricity, they cause a reduction of wind speed behind them. Downstream
turbines in the wake therefore produce less energy. On a site with specific wind
conditions, WFLO will avoid aligning turbines in the directions of dominant
wind. Layout optimization for maximizing AEP has been widely studied in the
literature, using gradient-based optimization techniques [177]–[179], gradient-
free [180]–[182], or comparing both [67]. The idea behind maximizing AEP
is that it will maximize profits for wind farm operators selling energy on the
Day-Ahead Energy Market (DAEM). However, both objectives might not lead
to the same results because of the high volatility of electricity prices. For
example, producing much energy in periods of low prices will lead to reduced
profits. When considering only day-ahead market, if patterns of low and high
prices do not match with wind direction patterns, optimizing AEP is not the
same as maximizing profit. Indeed, maximizing profit might lead to higher
profits while decreasing supplied energy (and thus turbine loads). WFLO for
yearly profit has been studied in previous works [183]–[185], but wind power
was sold only on the day-ahead market. Adding participation to reserve market
will also impact results if Day-Ahead (DA) and reserve prices do not show the
same variations with regard to wind direction.

Therefore, the second objective of this chapter is to use the new formulation
for wind power bidding in JERM as the objective function of a wind farm
layout optimization maximizing yearly profits. Because computing yearly
profits at each iteration step of the optimization is too costly, Stochastic
Gradient Descent (SGD) will be used. This prompts the need to make the
profit function differentiable. The gradient of the total profit is then estimated
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for a limited amount of timesteps. This allows to obtain rather accurate results
in a reasonable computation time.

5.2. Analysis of Historical Data

To help better understand the motivations of this chapter, we analyse historical
data of wind, electricity prices and activated reserve volume for the year 2023 in
Belgium. Data of wind speed and wind direction at the location of the offshore
wind farms in the Belgian North Sea have been gathered from the ERA5
database. Electricity prices for the day-ahead market were available on the
European Network of Transmission System Operators (ENTSO-E) transparency
platform [186]. Prices for reserve capacity and reserve activation, as well as
activated upward aFRR reserve volumes were provided by Elia, the Belgian
TSO [10].

From Fig. 5.1, we can study the variations of price with regard to wind
direction and wind speed, and the mean activated reserve per wind sector. It
can be seen in Fig. 5.1(a) that mean day-ahead prices do not follow the same
pattern as mean reserve capacity and activation prices with regard to wind
direction. Indeed, mean day-ahead prices show a lower mean value for the wind
sector centred around 230◦. This wind sector corresponds to the direction of
dominant wind in this area of the North Sea (direction with most occurrences),
as it can be seen in Fig. 5.1(d). This leads to a discrepancy between maximizing
profits and energy production. Indeed, when prices are not considered, WFLO
will try to avoid aligning turbines in the dominant wind direction. However,
since prices tend to be lower in that wind section, it might be more profitable
to avoid wake losses in other directions, where prices are higher. Mean reserve
capacity prices, on the other hand, tend to be higher in that wind direction
sector, while reserve activation prices do not show a significant increase or
decrease. This means that accounting for participation to reserve will affect the
optimization results, as day-ahead and reserve prices have different patterns
with regard to wind direction. Fig. 5.1(c) shows the volumes of activated
reserve normalized by the maximum activated volume for aFRR upward reserve
(117 MW in 2023). We can see that mean activated volumes tend to be lower
in the direction of dominant wind. Another interesting analysis can be made
in Fig. 5.1(b), which displays the mean electricity prices with regard to wind
speed. One can see that day-ahead prices tend to decrease with higher wind
speeds, while it is the opposite for reserve capacity prices. One reason that
explains this reduction of day-ahead price with increasing wind speed is the
high penetration of offshore wind generation in the Belgian power system (10%
of yearly consumption produced by offshore wind farms). Because wind energy
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(a) (b)

(c) (d)

Figure 5.1.: Mean electricity prices with regard to (a) wind direction and (b)
wind speed in 2023. (c) Mean normalized activated volumes of
reserve with regard to wind direction. (d) Wind rose at the location
of Belgian offshore wind farms for 2023, from ERA5 data (latitude:
51.5◦N, longitude: 2.75◦E).

has lower production costs than conventional thermal power plants, a high
production of electricity through wind turbines can lead to lower prices in the
day-ahead market. This highlights the relevance of the development of low
wind turbines (described in section 2.5.2), which are designed to capture more
energy at low wind speeds. Reserve activation prices remain constant until
approximately 20 m/s, but show a sharp increase around 25 m/s, which is the
cut-off wind speed of most Belgian offshore wind turbines. This is the limit
at which turbines are shut down to prevent mechanical damage, and the farm
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output goes from rated power to 0. Therefore, a small prediction error in wind
speed can lead to a tremendous need of reserve.

5.3. Optimal Joint Participation to Day-Ahead
and Reserve Markets of Offshore Wind Farm

One day before real-time delivery (market closure is at noon), for each timestep t
of the 24 hours of the next day k, a wind farm operator:

• forecasts available wind power P̂wind, avail
k,t

• decides the total amount of power sold to both day-ahead and reserve
markets P c

k,t

• decides the amount of reserve capacity to procure to the reserve market
Rk,t = αk,t ∗ P c

k,t

• computes the power to be sold in the day-ahead energy market
PDA
k,t = P c

k,t − R̂k,t

The wind farm reserve capacity represents the amount of power that the
wind farm holds back from electricity production, to sell in the reserve market
instead of the day-ahead energy market. Based on weather forecasts (and thus
wind power forecasts), a wind farm operator bids its electricity production
in the day-ahead market and the reserve capacity in the secondary reserve
market. On the day of delivery, the wind farm must be able to supply both the
day-ahead and activated reserve quantities. In this work, it is assumed that
wind farms always prioritize providing reserve (as the wind farm is contractually
bound to make the reserve capacity available).

The accuracy of weather and thus wind power forecasts is crucial in order
to make relevant bids in both markets: underestimation leads to lower bids
and decreased profits, while overestimating production results in inability to
supply contracted bids, thus incurring financial penalties. Moreover, electricity
prices can be highly volatile, and the actual activation of reserve depends on
the system imbalance, which is also fluctuating. Forecast errors on electricity
prices and activation volume can lead to a wrong estimation of expected profit.
In this work, we assume that forecast errors follow a gaussian distribution with
a given mean and standard deviation. For each considered timestep, S forecast
errors are randomly sampled using a Monte-Carlo approach.
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5.3.1. Wind Power Forecasts

The forecast of available wind power P̂wind, avail
k,t depends on (previously) fore-

casted free-flow wind speed û∞
k,t and wind direction θ̂k,t.

P̂wind, avail
k,t,s = f(û∞

k,t,s, θ̂k,t,s)

The index s denotes the Monte Carlo sample number related to forecast error
sampling. The operator f(·) indicates the conversion of wind data to wind
power: it is based on the wind turbines power curve and should account for
wake effects arising within the wind farm.

The forecasted wind speed û∞
k,t is derived from the actual realization of wind

speed (normally not known by the wind farm operator) and a forecast error
sampled from a normal distribution.

û∞
k,t,s = u∞

k,t + ϵuk,t,s

ϵuk,t,s ∼ N(0, σu)
(5.1)

The same process is used to forecast wind direction

θ̂∞k,t,s = θ∞k,t + ϵθk,t,s

ϵθk,t,s ∼ N(0, σθ)
(5.2)

Therefore, forecasts of available wind power can be written as:

P̂ avail
k,t,s = fP (u

∞
k,t + ϵuk,t,s, θ

∞
k,t + ϵθk,t,s) + ϵfPk,t,s (5.3)

ϵfPk,t,s is the modelling error associated with the wind farm model. For
wind speed forecasting, literature shows that forecast errors follow a gaussian
distribution with a mean value of 0 and a standard deviation approximately
equal to 15% [187]. For wind direction, day-ahead forecasts show a root mean
squared error of 4.2 ◦ [188].

5.3.2. Day-ahead Market

The day-ahead energy market is a financial market where participants purchase
and sell electrical energy at financially binding day-ahead prices for the following
day. Electricity is traded at 12h00 for the 24 hours of the next day and the
market is cleared based on an auction mechanism, where market price and
volume is the intersection point between the demand and supply curves. After
the auctions on day-ahead markets are closed, existing shortfalls or surpluses
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can still be evened out through intra-day trading. However, intra-day market
is not considered in this work, as prices are extremely volatile and tend to have
similar patterns than imbalance fees. Indeed, market participants are charged
with imbalance fees every time they deviate from their nominations. These
fees, set on a quarter-hourly basis, aim at ensuring that participants contribute
efficiently at balancing the electrical system and reflect the cost related to the
activation of reserves by the TSO. Revenues from the day-ahead market for
timestep t of day k can be written as (assuming perfect forecasts):

ProfitDA
k,t = PDA

k,t ∗ λDA
k,t −∆PDA

k,t ∗ λimb
k,t (5.4)

where λDA
k,t is the day-ahead price, ∆PDA

k,t is the contracted power not supplied,
and λimb

k,t is the imbalance fee.

Day-ahead prices and imbalance penalties need to be forecasted by the wind
farm operator before making a bid on the market. For the gaussian distribution
parameters of day-ahead electricity prices, µ is approximately 0 and σ is around
7% [189].

5.3.3. Reserve Market for aFRR

Upward regulation is activated in case of negative imbalance in the system
(frequency deviation because consumption exceeds production), and downward
regulation is used for positive imbalance. In this work, we only consider the
provision of upward reserve regulation since wind farms are not able to benefit
from fuel-saving returns in downward regulation [190]. Indeed, activation of
downward reserves can yield both positive (the TSO pays the BSP) and negative
prices (the BSP pays the TSO) [191]. Negative prices result from producers
(e.g., gas-fired power plants) willing to lower their output since their energy is
already sold in long-term markets and they can save operating costs: they are
usually willing to pay the TSO a small amount. However, when facing scarcity
of downward flexibility, BSP may bid positive activation prices, i.e. being paid
for the service, which is the only case where providing downward reserve would
be profitable for wind farm operators. It should be noted that this assumption
strongly depends on market conditions, but it is suitable for the Belgian case
study considered in this work. Therefore, we will only focus on upward
reserve.

Revenues from the aFRR upward market are twofold. BSPs earn revenues
from the procurement of reserve capacity (through capacity bids), and balancing
revenues from the real-time activation of procured reserves. The reserve capacity
price λR,c is determined through a pay-as-bid process. We assume that because
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Figure 5.2.: Bidding process of an offshore wind farm operator participating in
both day-ahead and reserve markets.

of the lower production costs for wind generation than conventional power
plants, capacity bids from wind farm will be well placed in the merit order
and will be chosen first by the TSO. The reserve activation price λR,a is pay-
as-cleared and contracted aFRR energy bids for possible activation on day k
have to be submitted by the BSP to the TSO at the latest in day-ahead (day
k-1). The TSO may activate partially or entirely aFRR energy bids, depending
on the negative system imbalance. This process is presented in Fig. 5.2. The
uncertainty in the balancing actions (i.e., the total amount of activated upward
reserve) is modelled through scenarios of reserve activation κa ∈ [0, 1]. Moreover,
in case of several market players bidding in the balancing market, we assume
an equal distribution of reserve among all market participants.

Failing to provide the activated reserve requested by the TSO leads to
activation penalties that are calculated as follows [192]:

PenaltiesR,a
k,t = γa ∗ ∆Ra

k,t

Rrequested
∗ (Capacity remuneration + Activation remuneration)

(5.5)

where γa is a penalty multiplier for failing to provide activated reserve. It is
set by the TSO and in Belgium, Elia has chosen a value of 1.3 for γa. The
reserve discrepancy during activation (contracted reserved not supplied when
requested), ∆Ra

k,t, is defined as:

∆Ra
k,t = Rrequested −Rsupplied

∆Ra
k,t = Rk,t ∗ κk,t −min(Rk,t ∗ κk,t, P̂

wind, avail
k,t )

(5.6)
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In our problem, this translates to this equation:

PenaltiesR,a
k,t = 1.3 ∗

∆Ra
k,t

Rk,t ∗ κa
k,t

∗ (Rk,t ∗ λR,c
k,t +Rk,t ∗ λR,a

k,t ∗ κa
k,t)

PenaltiesR,a
k,t = 1.3 ∗

∆Ra
k,t

κa
k,t

∗ (λR,c
k,t + λR,a

k,t ∗ κa
k,t)

(5.7)

Moreover, Elia controls the availability of the aFRR capacity by performing
availability tests. Elia has the right to perform at maximum 12 availability
tests on a rolling window of 12 months and each test lasts 3 quarters of an hour.
In case of a failed availability test, the BSP must pay financial penalties.

PenaltiesR,c
k,t = γc ∗∆Rc

k,t ∗ λ
R,c
k,t (5.8)

∆Rc
k,t is the missing reserve capacity during the availability test and γc is the

penalty factor, equal to 0.75 by default. However, in case the penalty concerns
a second consecutive failed availability test, γc is equal to 1.5. But more
importantly, Elia hinders the possibility of participating to reserve markets
by adapting the upper limit of aFRR capacity bids in case of two or more
failed consecutive availability tests of the same aFRR capacity product. To
account for this technical penalty, we should set a very high penalty price when
available power for activation in real-time is lower than reserve capacity bids.
This allows to account for this technical constraint in the profit formulation.
Therefore, we set γc to 10.

For a timestep k, t where a wind farm decides to participate to the reserve
market, revenues from reserve are computed as follows:

Profitreservek,t = (Rk,t ∗ λR,c
k,t +Rk,t ∗ λR,a

k,t ∗ κa
k,t)

−
(
1.3 ∗

∆Ra
k,t

κa
k,t

∗ (λR,c
k,t + λR,a

k,t ∗ κa
k,t) + γc ∗∆Rc

k,t ∗ λ
R,c
k,t

)
(5.9)

Reserve and regulation prices are characterized by higher volatility, lower
mean, more frequent price spikes and a more skewed distribution compared
to electric energy prices, thus modelling their behaviour is potentially more
challenging [193].
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5.3.4. Profit Computation

To summarize, revenues from the participation of both day-ahead and reserve
markets over T timesteps of K days can be written as:

Profit =
K∑
k

T∑
t

Es [ (P
DA
k,t ∗ λ̂DA

k,t,s)

+ (Rk,t ∗ λ̂R,c
k,t,s)

+ (Rk,t ∗ λ̂R,a
k,t,s ∗ κ̂

a
k,t,s)

− (∆PDA
k,t,s ∗ λ̂imb

k,t,s)

− (1.3 ∗
∆Ra

k,t,s

κ̂a
k,t,s

∗ (λ̂R,c
k,t,s + λ̂R,a

k,t,s ∗ κ̂
a
k,t))

− (γc ∗∆Rc
k,t ∗ λ̂

R,c
k,t,s) ]

(5.10)

The first line of Eq. (5.10) represents the revenues from the day-ahead energy
market, the second line is the revenues stemming from the procurement of
reserve capacity, the third line is the profits earned for the real-time activation
of reserves, the fourth line is the imbalance fees when deviating from day-
ahead market nominations, the fifth line is the penalties for failing to provide
the activated reserve requested by the TSO, and the last line represents the
penalties related to the reserve capacity availability tests.

For each timestep t of day k, an inner optimization problem gives the
optimized total power contracted to the market (day-ahead and reserve), and
the percentage of power allocated for reserve.

Max
αk,t,βk,t

Es [ (P
DA
k,t ∗ λ̂DA

k,t,s)

+ (Rk,t ∗ λ̂R,c
k,t,s)

+ (Rk,t ∗ λ̂R,a
k,t,s ∗ κ̂

a
k,t,s)

− (∆PDA
k,t,s ∗ λ̂imb

k,t,s)

− (1.3 ∗
∆Ra

k,t,s

κ̂a
k,t,s

∗ (λ̂R,c
k,t,s + λ̂R,a

k,t,s ∗ κ̂
a
k,t,s))

− (γc ∗∆Rc
k,t,s ∗ λ̂

R,c
k,t,s) ]

(5.11)
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with:

PDA
k,t = (1− αk,t) ∗ βk,t ∗ P farm,rated

Rk,t = αk,t ∗ βk,t ∗ P farm,rated

0 ≤αk,t ≤ 1 ∀k, t
0 ≤βk,t ≤ 1 ∀k, t

(5.12)

Rk,t ∈ [0, Rmax] (5.13)

The agreed upon power schedules, PDA
k,t and Rk,t are the true design variables

in this problem. The total contracted power in reserve and day-ahead markets
cannot exceed the wind farm installed capacity, which is translated with
constraints (5.12). Moreover, reserve bids are limited to a maximum value
Rmax, ensured by constraint (5.13). Indeed, according to Elia rules for BSP
participating to aFRR markets, each bid should not exceed 50 MW per delivery
point. Furthermore, aFRR requirements for the Belgian power system was
117 MW in 2023 (total power contracted by Elia with BSPs), which sets an
absolute value as well. For each timestep, the wind farm operator chooses
to contract P c

k,t, the total contracted power, to the JERM. This quantity is
optimized through the βk,t variable. The allocation of this contracted power
to the day-ahead and reserve markets is then given with αk,t. As a reminder,
in case of missing power (available power lower than power contracted in the
JERM, i.e. ∆PDA

k,t,s and/or ∆Ra
k,t,s ≥ 0), the supply of activated reserve will

always be prioritized, regardless of imbalance prices.

This optimal allocation of day-ahead and reserve power is similar to the
flexible stochastic formulation available in the literature [76]. This approach
is characterized by its total freedom to choose the energy and reserve share
in each stage of the problem; i.e. the wind farm can take advantage of the
intermediate information about wind power production, thereby reducing the
penalties at the balancing stage. This means that the operator can adjust the
share of energy and reserve in the balancing stage in line with the expected
power production in each scenario s. Optimal values of αk,t and βk,t can be
found with a combinatorial exploration (since their range is limited and the
granularity does not have to be very high, as power bids are submitted by steps
of 1 MW).
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5.4. Formulation of the Wind Farm Layout
Optimization Problem

Taking into account uncertainty on wind (thus wind power) and price forecasts,
we can write the optimization problem:

Max
xxx,yyy

K∑
k

T∑
t

Es [ (P
DA
k,t ∗ λ̂DA

k,t,s)

− (∆PDA
k,t,s ∗ λ̂imb

k,t,s)

+ (Rk,t ∗ λ̂R,c
k,t,s +Rk,t ∗ λ̂R,a

k,t,s ∗ κ̂
a
k,t,s)

− (1.3 ∗
∆Ra

k,t,s

κ̂a
k,t,s

∗ (λ̂R,c
k,t,s + λ̂R,a

k,t,s ∗ κ̂
a
k,t,s))

− (γc ∗∆Rc
k,t,s ∗ λ̂

R,c
k,t,s) ]

(5.14)

subject to√
(xi − xj)

2 + (yi − yj)
2 ≤ dmin ∀ i, j > i (5.15)

xl ≤ xi ≤ xu ∀i
yl ≤ yi ≤ yu ∀i

(5.16)

The design variables are xxx and yyy, the vectors of x- and y-coordinates of wind
turbines. Constraint (5.15) ensures a minimum spacing dmin between adjacent
turbines while (5.16) keeps turbines from being outside the farm boundaries
([xl-xu], [yl-yu]). The objective function aims at maximizing the total profit over
T timesteps of K days. The total power contracted in the JERM, the allocation
of reserve and the distribution of potential missing power is determined from
Eq.(5.11).

The complete methodology is summarized in Fig. 5.3. The ML surrogate
based on neural networks (MLP) developed in Chapter 3 is used for wind power
conversion: it is especially appropriate for a wind farm layout optimization
problem. Indeed, at each optimization step, turbines are moved within the farm
boundaries until convergence is reached for the optimal positioning. Therefore,
a different layout is seen at each iteration, justifying the need for a topology-
aware model, applicable to any wind farm configuration. Moreover, as the
optimizer will aim at placing turbines to minimize power losses due to wakes,
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Figure 5.3.: Methodology for layout optimization accounting for
reserve participation.

accurately modelling wake losses is crucial as it will directly influence the
optimized solution.

The optimization is carried out using Stochastic Gradient Descent (SGD),
which is an iterative method for optimizing a differentiable objective function. It
replaces the actual gradient (calculated from the entire data set) by an estimate
(calculated from a randomly selected subset of the data). Therefore, the
algorithm follows the mean gradient by a specified distance, which is equivalent
to optimizing the expected value of the objective function [177]. This reduces
the very high computational burden in high-dimensional optimization problems,
achieving faster iterations but at the cost of a lower convergence rate. The
search path of the stochastic gradient method is compared with the standard
gradient descent in Fig. 5.4. The deterministic constraints of Eq.(5.16) and
(5.15) are implemented within the stochastic gradient descent by aggregating
them to a penalty term with units that are consistent with the objective [177].
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Gradient descent Stochastic gradient descent

(a) (b)

Optimum
Contour lines

Figure 5.4.: Illustration of search paths of (a) the gradient descent and (b) the
stochastic gradient methods on a 2D plane.

The penalty term is designed so that, initially, the penalty gradients are of
similar magnitude to the profits gradients and so that the penalty gradients
overwhelm the profits gradients as the optimization continues.

Because computing the total profit for a year (365 days * 96 quarters of
an hour, i.e., 35,040 timesteps) at each iteration would bee too costly, SGD
is particularly relevant for our proposed WFLO formulation. However, an
important condition for using SGD is that the objective function needs to be
differentiable, since SGD is a gradient-based method. As a reminder, neural
networks (MLP) are the method used to build the ML surrogate. When making
predictions, input features are fed to the first hidden layer of the network,
where neurons are activated and propagate the signal through all the hidden
layers along the synapses to the output layer. Since the propagation only
involves weighted sums, and the activation function (ReLU was chosen) can
be made differentiable (as explained in section 3.5.2, we just need to define a
value for the derivative at the origin), MLP neural networks can be directly
integrated within gradient methods. Moreover, the inner optimization for the
optimal bidding strategy in the JERM, defined by Eq.(5.11), is solved through
a combinatorial exploration, which makes it differentiable and thus compatible
with the SGD algorithm.

5.5. Case Study
We use data from Northwind, a Belgian offshore wind farm situated 38 km from
the coast in the North Sea, within the first Belgian offshore cluster. Northwind
consists of 72 Vestas turbines, for a total installed capacity of 216 MW. Each
turbine has a rotor diameter of 112 m, a hub height of 71 m, and the rated
power is 3.075 MW. The layout of this wind farm can be seen in Fig. 5.5.
Northwind was built in 2014, when provision of reserve by offshore wind farms
was not even discussed. The layout is quite regular, with turbines aligned on
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Figure 5.5.: Layout of Northwind offshore wind farm.

rows, probably aimed at maximizing production with regard to the directions
of dominant wind.

Before optimizing the layout, expected yearly profits and supplied energy are
computed for the current built layout (further referred to as the base layout),
for different modes of operation (with and without reserve). The maximum
amount of power that can be allocated to reserve Rmax is set to different values.
First, Elia has set a limit of 50 MW per delivery point in its current BSP
agreement. Then, the required volume of aFRR reserves that Elia should
ensure throughout the year was 117 MW for 2023. However, with the growing
penetration of renewable energies foreseen in the future, one can expect that
this requirement will increase as well. Indeed, power systems will become highly
weather-dependant, thus more prone to variability and unpredictability. We
therefore set two more values for the maximum allocated reserve: Elia’s total
aFRR needs (approximately equal to half of the wind farm rated capacity, if
the operator wants to keep a part of available wind power for other markets),
and the full farm capacity.

WFLO is then carried out with the new formulation for the objective function
that maximizes profits from both day-ahead and reserve markets. Historical
data from 2023 in Belgium (see section 5.2) are used during the optimization
process. To assess the influence of accounting for reserve in the WFLO process,
optimization with day-ahead market only is also simulated. Then, to compare
with state-of-the-art WFLO formulations, the layout will also be optimized with
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the objective of maximizing AEP. Results will be compared in terms of expected
yearly profits and yearly production. Moreover, it is important that the optimal
layouts are not only relevant for the data used in the optimization process.
Therefore, yearly profits are also computed for unseen data, i.e. historical data
from another year (2024).

The new objective function for WFLO has been integrated into the TOP-
FARM framework ([194]), comprising the SGD optimizer. Profit and AEP
gradients are computed using automatic differentiation. Turbine powers are
obtained from the topology-aware wind farm surrogate developed in Chapter 3.
The minimum turbine spacing dmin (constraint of Eq.(5.15)) is set to 2 rotor
diameters. The SGD optimizations are carried out using the following parame-
ters: the initial learning rate is one rotor diameter, the maximum number of
iterations is 2000, and the initial value for the constraint aggregation multiplier
is 0.1. We use several values of K ∗ T (numbers of samples for every SGD iter-
ation) when optimizing for profits and AEP. To obtain statistically significant
results, each case of SGD optimization is run using 5 different initial random
starting conditions.

5.5.1. Operating the Current Built Layout with Reserve
Participation

Before optimizing the layout of the Northwind wind farm, yearly profits are
computed for the current layout using historical data from 2023. Three modes
of operation are considered:

• Producing as much wind power as possible (referred to as prod. max.
operation in results tables). Energy bids are not risk-based as they only
rely on forecasts of available power, regardless of market conditions. This
is the most simple operation as the operator does not need to derate the
turbines in case of unfavorable market conjuncture.

• Wind power is only sold on the day-ahead market but energy bids are
made based on forecasts of available wind power, day-ahead prices and
imbalance penalties (referred to as DAEM optimized operation in results
tables)

• Wind power is sold on JERM (provision of reserve)

The optimal allocation of day-ahead and reserve power on JERM is solved
with Eq.(5.11) for every quarter of an hour of the year, and the expected profits
are summed over 35,040 timesteps. The maximum value allowed for reserve
bids is first set to 50 MW. The optimized operation on DAEM only uses the
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same formulation but with Rk,t = 0 ∀k,∀t. This allows to assess the impact of
participating to the upward secondary reserve market.

The expected supplied energy is the yearly production of the farm actually
injected to the grid. For the JERM case, it encompasses both the energy
sold on the day-ahead energy market and the activated reserve. It should be
noted that electrical losses and downtime due to maintenance and failures are
not taken into account. AEPtheory is the theoretical yearly production of the
farm, computed solely by converting data of wind speed and wind direction to
potential wind power. It does not include any forecasting errors.

Expected yearly profits and supplied energy are reported as µ± σ√
S
, where the

standard deviation relates to forecast uncertainty (sampling of S forecast errors).
To obtain statistically significant results, we set S to 500 when computing yearly
profits. Since one year is divided into 35,040 quarters of an hour, converting
500 times wind data to wind power per timestep leads to more than 17 million
wind power evaluations. With Floris, the tool used to carry out wind farm
simulations in section 3.2.2, it would take 161 h, while the computation time
with the ML surrogate was only 4 h.

It can be seen in Table 5.1 that operating Northwind for maximizing pro-
duction leads to the lowest profits. Indeed, making energy bids on DAEM
only for profits maximization increases expected yearly profits by 6.47%. This
can be explained by two factors. First, producing much wind power when
day-ahead prices are negative is detrimental, but timesteps with such prices
only occur 2.52% of the time in data from 2023. Then, forecasting prices allows
to adopt a risk-aware approach, i.e., bidding more when imbalance penalty
prices are expected to be close to day-ahead prices (the risk is acceptable), and
bidding less than the forecasted available power in case of very high imbalance
prices. This confirmed in Table 5.2, which shows the profits breakdown between
positive profits and imbalance penalties. Total imbalance penalties are higher
when operating for profit maximization, but the significant increase in positive
profits allows to compensate for the penalties losses. Regarding supplied energy,
maximizing production obviously leads to more wind power injected to the grid.
The reduction of supplied energy of 4.47% when maximizing DAEM profits
is very interesting, because it could lead to lower load constraints on wind
turbines, thus extending turbines lifetime. However, this aspect needs to be
further investigated.

Supplying secondary upward reserve (operate the wind farm on JERM)
increases expected yearly profits by 7.82%, while the supplied energy is decreased
by 7.67%. Indeed, bidding a given amount of power in the reserve capacity
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Table 5.1.: Expected yearly profits and supplied energy in 2023 for the initial
base layout of Northwind, operated for maximizing production
on DAEM (a;d), maximizing profits on DAEM only (b;e), and
maximizing profits on JERM (c;f, with maximum reserve bids
Rmax=50 MW). Results reported as µ ± σ√

S
, where µ and σ relate

to forecast uncertainty.

Base layout

Expected yearly profits

(a) On DAEM only (prod. max.) 60.6208 ± 0.0077 Me

(b) On DAEM only (profits max.) 64.5432 ± 0.0081 Me ▲6.47% w.r.t. (a)

(c) On JERM (with reserve) 69.5877 ± 0.0083 Me ▲7.82% w.r.t. (b), ▲14.79% w.r.t. (a)

Expected energy supplied

(d) On DAEM only (prod. max.) 812.61 ± 0.04 GWh

(e) On DAEM only (profits max.) 776.28 ± 0.05 GWh ▼4.47% w.r.t. (d)

(f) On JERM (with reserve) 716.72 ± 0.05 GWh ▼7.67% w.r.t. (e), ▼11.80% w.r.t. (d)

AEPtheory 918.39 GWh

Table 5.2.: Breakdown of expected yearly profits in 2023 for the initial base
layout of Northwind, operated for maximizing production on DAEM
(a), maximizing profits on DAEM only (b), and maximizing profits
on JERM (c, with maximum reserve bids Rmax=50 MW).

Positive Imbalance Reserve Reserve

profits penalties profits penalties

on DAEM on DAEM

(a) On DAEM only (prod. max.) 75.5925 Me 14.9717 Me / /

(b) On DAEM only (profits max.) 87.0894 Me 22.5462 Me / /

(c) On JERM (with reserve) 82.4348 Me 22.4393 Me 9.9334 Me 0.3412 Me

and energy markets does not mean that this power will be entirely supplied. If
the system negative imbalance is not too severe, only a fraction of contracted
reserves is actually activated by the TSO. However, the wind farm operator still
earns profits by making this power available to restore balance in the system.
This is particularly profitable when day-prices are very low. It can be seen in
Table 5.2 that while positive profits on DAEM are quite lower when providing
reserve (earnings are "transferred" to the reserve markets), imbalance penalties
do not decrease significantly. This is inherent to our formulation, because in

139



Chapter 5. Wind Farm Layout Optimization With Participation to Secondary
Reserve Market

Table 5.3.: Expected yearly profits and supplied energy in 2023 for the initial
base layout of Northwind, operated for maximizing production
on DAEM (a;f), maximizing profits on DAEM only (b;g), and
maximizing profits on JERM (c-e;h-j, for different limits on reserve
participation, Rmax). Results reported as µ ± σ√

S
, where µ and σ

relate to forecast uncertainty.

Base layout Comparison

Expected yearly profits

(a) On DAEM only (prod. max.) 60.6208 ± 0.0077 Me

(b) On DAEM only (profits max.) 64.5432 ± 0.0081 Me

(c) On JERM (with reserve, Rmax=50MW) 69.5877 ± 0.0083 Me ▲7.82% w.r.t. (b)

(d) On JERM (with reserve, Rmax=117MW) 74.3597 ± 0.0090 Me ▲15.21% w.r.t. (b)

(e) On JERM (with reserve, Rmax=221.4MW) 77.8529 ± 0.0111 Me ▲20.62% w.r.t. (b)

Expected energy supplied

(f) On DAEM only (prod. max.) 812.61 ± 0.04 GWh

(g) On DAEM only (profits max.) 776.28 ± 0.05 GWh

(h) On JERM (with reserve, Rmax=50MW) 716.72 ± 0.05 GWh ▼7.67% w.r.t. (g)

(i) On JERM (with reserve, Rmax=117MW) 662.08 ± 0.04 GWh ▼14.71% w.r.t. (g)

(j) On JERM (with reserve, Rmax=221.4MW) 625.46 ± 0.05 GWh ▼19.43% w.r.t. (g)

AEPtheory 918.39 GWh

case of imbalance (available wind power is lower than total power bidded on
both DAEM and reserve markets), priority is given to the reserve provision.

Sensitivity to Reserve Limit

Currently, the maximum value per delivery point of reserve capacity bids
established by Elia is 50 MW. Moreover, the static volume need of aFRR
reserves for the Belgian power system in 2023 was set at 117 MW. However,
as stated before, in future weather-dominated power systems, the need for
frequency regulation, including aFRR, will increase. Therefore, the wind farm
is operated considering two other values of Rmax: 117 MW (approximately 1/2
of rated capacity, in case the operator always wants to keep a part of available
wind power for other markets), and 221.4 MW (full farm capacity).

With Rmax=117 MW, it can be observed in Table 5.3 that for the base
layout, expected yearly profits increase by 15.21% when the wind farm offers
aFRR services, while supplied energy drops by 14.71%. Compared to the
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previous case (Rmax=50 MW), doubling the allowed maximum value for reserve
capacity bids leads to a profit improvement also multiplied by 2 (15.21% against
7.82% previously). Regarding yearly supplied energy (on DAEM and activated
reserve), it decreases when Rmax is increased (≈ 662 GWh against ≈ 717 GWh
with Rmax=50 MW). Indeed, allowing for higher reserve bids enables wind
farms to participate more in frequency reserve services. But if reserve energy
bids are not entirely activated by the TSO, less energy is supplied, while profits
are increased.

With the full wind farm capacity (221.4 MW) as Rmax, expected yearly
profits on JERM in 2023 for the base layout are even higher. However, even
though Rmax is doubled compared to the previous case, profit increments are
not multiplied by 2 this time. Indeed, the improvement is at 20.62%, against
15.21% when Rmax was set at 117 MW. This shows a flattening of profits
augmentation, and wind farm operators might want to avoid allocating all
available power to the reserve market. Indeed, because of potential forecast
errors, there is a significant risk to bid in only one market, and operators
could want to keep a part of available wind power for other markets (or even
a security margin to avoid penalties when the contracted power cannot be
entirely supplied).

5.5.2. Optimized Layout Accounting for Reserve Provision

WFLO is carried out with the objective of maximizing profits on JERM, with
SGD optimizations performed for different values of Monte-Carlo samples
(K ∗ T ) and several initial conditions. Reported results are those obtained with
the best optimized layout out of all simulations, i.e. the one leading to the
highest expected yearly profits on JERM.

As it can be seen in Table 5.4, the best optimized layout leads to an increase
of yearly profits on JERM by 2.23%, as well as 2.35% more supplied energy.
This augmentation of production could be explained by two reasons. On the
one hand, a better placement of wind turbines to avoid wake losses leads to an
improved electricity production in general. On the other hand, this increase of
power output coincides with wind directions related to higher electricity prices,
which boosts profits. Considering that the average lifespan of an offshore wind
farm is approximately 20 years [81], a profit increased by 1.56 Me per year
leads to a significant improvement in the wind farm profitability: more than
30 Me over the farm lifetime. It should be noted that these numbers cannot
be directly generalized for other electricity pools, but since most European
electricity markets have a similar structure, applying this methodology is also
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Table 5.4.: Expected yearly profits and supplied energy in 2023 for the best
layout optimized on JERM, operated for maximizing production
on DAEM (a;d), maximizing profits on DAEM only (b;e), and
maximizing profits on JERM (c;f, with maximum reserve bids
Rmax=50 MW). Results reported as µ ± σ√

S
, where µ and σ relate

to forecast uncertainty.

Base
Layout optimized

on JERM

Expected yearly profits [Me]

(a) On DAEM only (prod. max.) 60.6208 ± 0.0077 62.1989 ± 0.0073 (▲2.6% w.r.t. base)

(b) On DAEM only (profits max.) 64.5432 ± 0.0081 66.0759 ± 0.0077 (▲2.37% w.r.t. base)

(c) On JERM (with reserve) 69.5877 ± 0.0083 71.1430 ± 0.0078 (▲2.23% w.r.t. base)

Expected energy supplied [GWh]

(d) On DAEM only (prod. max.) 812.61 ± 0.04 829.71 ± 0.04 (▲2.10% w.r.t. base)

(e) On DAEM only (profits max.) 776.28 ± 0.05 793.32 ± 0.04 (▲2.20% w.r.t. base)

(f) On JERM (with reserve) 716.72 ± 0.05 733.58 ± 0.04 (▲2.35% w.r.t. base)

AEPtheory [GWh] 918.39 935.41 (▲1.85% w.r.t. base)

expected to result in higher yearly profits for layouts optimized for profit
maximization with reserve participation.

The best optimized layout is plotted in Fig. 5.6 and compared to the current
layout of Northwind. Turbines that were on the farm boundaries in the base
layout kept their position on the outer limits (even though turbines had random
positions in the starting initial conditions of the optimization). However, inner
turbines positions have been significantly modified compared to the base layout.
Indeed, while the structure of rows has been approximately maintained, it can
be observed that more turbines are placed together on a row, while consecutive
rows are more distant from one another and are not parallel (which was the
case for all rows in the base layout). A few turbines have a more irregular
position (in-between rows).

Another interesting characteristic to compare between the optimized and
base layouts is the power rose. It shows the power output of the wind farm
with regard to wind direction, for a given wind speed. In Fig. 5.7, the power is
normalized by the wind farm rated capacity (for Northwind, 221.4 MW). It
allows to identify the wind directions leading to higher wake losses.

The power rose of Fig. 5.7(a) shows that the base layout exhibits many power
drops, with wake losses being the most severe for directions of 135◦ and 315◦
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Figure 5.6.: (a) Base layout of Northwind offshore wind farm, (b) Best layout
optimized for profit maximization with participation to reserve
market.
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Figure 5.7.: Power roses of Northwind (a) Base layout, (b) Layout optimized
for profit maximization on JERM.

(0◦ corresponds to wind blowing from the North, then clockwise counting).
This pattern is inherent to regular layouts, where turbines are placed in rows
equidistant from each other and wake losses are at their maximum when most
turbines are aligned with the wind direction. In Fig. 5.7(b), wake losses are
still prevalent for wind directions of 135◦ and 315◦, but they are less severe,
and power drops are smoothed for other directions. Indeed, while still located
on rows, turbines from different rows are more distant, allowing wind speed to
recover between consecutive rows. However, it should be noted that a more
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irregular turbine placement can lead to higher installation costs and fatigue
loading [68].

5.5.3. Comparison with Layout Optimized without
Reserve

To assess the impact of including participation to reserve in the layout opti-
mization process, the objective function has been modified as to only include
profits from the day-ahead market (i.e., setting Rmax = 0 MW), referenced as
the DAEM case. Like before, SGD optimizations are performed for different
values of Monte-Carlo samples (K ∗ T ) and several initial conditions. For every
obtained layout optimized without consideration of reserves in the objective
function, expected profits on DAEM only (i.e., wind farm operated without
reserve) are computed. The optimized layouts for DAEM are also operated
with reserve in order to compare yearly profits on JERM with those computed
for the layouts optimized with reserve participation.

Fig. 5.8 shows the expected yearly profits on JERM in function of expected
yearly profits on DAEM only for the layouts optimized for profits maximization
with and without reserve participation. The highest profits on JERM are
obtained for layouts optimized with reserve: this highlights the importance
of accounting for participation of wind farms to reserve markets in the layout
optimization process. Moreover, it can be seen that both yearly profits are
linearly linked, i.e., higher profits on DAEM only leads to higher profits on
JERM. Surprisingly, the best total yearly profits on DAEM only are obtained
for cases optimized with reserve. One reason that could explain this is that
during the optimization without reserve, the wind farm can only participate to
one market (the DAEM). If day-ahead prices are very low or negative, wind
farm will not bid on the DAEM, resulting in no profit, thus leading to a zero
gradient and the solution space being less explored. This means that even if
reserve market rules change dramatically, causing the wind farm to be unable to
participate in the reserve market, operating the optimized layout with reserve
on DAEM only would still be profitable.

5.5.4. Comparison with Layout Optimized for AEP
Maximization

We compare our novel formulation for WFLO with the objective function
widely used in the current literature, i.e., AEP maximization. For the latter,
wind speeds and wind directions from the 2023 historical data are used during
the optimization process. To benchmark the performance of our methodology,
expected yearly profits on JERM are computed with reserve participation, for
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Figure 5.8.: Expected yearly profits on JERM plotted versus expected yearly
profits on DAEM only (wind farm operated without reserve). Each
point corresponds to one optimized layout, with the black circles
representing layouts optimized with reserve, and the grey squares
are for layouts optimized without reserve.

the layouts optimized for AEP maximization. It is worth reminding that while
the total energy supplied indicates the actual electricity sold (or activated, in
case of reserve provision) and injected to the grid, AEP gives the theoretical
energy that could be supplied by the wind farm given the wind conditions,
regardless of prices and errors on wind power forecasts.

Fig. 5.9 shows the expected yearly profits on JERM in function of AEP for the
layouts optimized for profits maximization with reserve and AEP maximization.
The uppermost black circle on the right represents the optimized layout giving
the highest profits on JERM but also the highest AEP. It may seem confusing
at first that the best AEP is not obtained for a layout optimized for AEP
maximization. A plausible explanation is that the profit function has better
gradients than the AEP objective function, allowing to avoid local minima. It
should be noted that this layout corresponds to the best layout optimized for
profits maximization with reserve for which results are given in Table 5.4.

Another interesting observation is that yearly profits on JERM are generally
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Figure 5.9.: Expected yearly profits on JERM plotted versus AEP. Each point
corresponds to one optimized layout, with the black circles repre-
senting layouts optimized with reserve, and the grey triangles are
for layouts optimized for AEP maximization.

higher for layouts optimized for profits maximization with reserve: if a diagonal
is drawn in the scatterplot, all triangles are located below that line compared
to the circles. And if a vertical line is plotted for a given AEP, black circles
are always located above the triangles. In other words, for the same level of
AEP, the layouts optimized for profits with reserve lead to higher profits on
JERM than the ones obtained for AEP maximization. The explanation for
those significant economic losses is that the objective function with AEP aims
at maximizing the power output of wind farm regardless of electricity prices.
It usually avoids wake losses for the directions of dominant wind. However, if
low or even negative prices are associated with those directions, then profits
will not increase. Moreover, besides profits, it is not beneficial for the grid
that wind farms produce a lot of electricity when prices are quite low. Indeed,
for power systems with a high penetration of renewable energies, especially
wind, low or even negative prices may correspond to periods of overproduction,
i.e., generation exceeds consumption. In that case, wind turbines might have
to be curtailed to reduce wind energy production and restore balance in the
system. This spillage of renewable energy is of course not desirable and it is
much more relevant to optimize wind farm layouts so that they produce more
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energy during times of scarcity (usually associated with higher prices).

5.5.5. Generalization to Unseen Future Data
In Sections 5.5.1 to 5.5.4, historical data from 2023 were used during the SGD
optimizations, as well as for the computation of expected yearly profits for the
optimized layouts. In this section, revenues and supplied energy will be assessed
with historical data from 2024, i.e., data unseen during the optimization process.
Indeed, it is valuable to have optimized layouts that also yield improved profits
for future years.

First, wind data and electricity prices from January to July 2024 are analysed.
The wind rose of 2024, plotted in Fig. 5.10(d), shows patterns comparable with
2023: dominant wind directions are mostly South-Westerly. More wind blowing
from the North-East was visible in Fig. 5.1(d), which is not the case here. It
can be seen in Fig. 5.10(a) that day-ahead prices, similar to 2023, have lower
values for the direction of dominant winds, although this is less noticeable than
in 2023. Moreover, day-ahead prices in 2024 have overall lower mean values
than in 2023. Reserve capacity prices do not vary much with wind direction,
while activation prices show more variability but no significant drop for the
directions of dominant wind. The overall mean values are in the same order of
magnitude than for the previous year, and we observe again a sharp increase
in reserve activation prices between 20 and 25 m/s. However, this peak is
less pronounced, with a mean peak value under 200e/MWh while it reached
almost 250e/MWh in 2023. This could be explained by less sudden and high
wind events (e.g., storms), a smoother farm cut-out, or a better anticipation by
the TSO. Normalized activation volumes exhibit lower values for directions of
dominant wind. Therefore, while wind, prices and activated reserve volume of
2024 share some similarities with data from 2023, they also exhibit noticeable
differences. They are thus relevant to test the validity of the optimized layouts
on unseen data. The case presented here uses Rmax=50 MW when the wind
farm is operated with reserve.
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(a) (b)

(c)
(d)

Figure 5.10.: Mean electricity prices with regard to (a) wind direction and
(b) wind speed in 2024. (c) Mean normalized activated volumes
of reserve with regard to wind direction. (d) Wind rose at the
location of Belgian offshore wind farms for 2024, from ERA5 data
(latitude: 51.5◦N, longitude: 2.75◦E)

For the base layout, it can be observed in Table 5.5 that results show the
same trends already noticed for 2023: profits on DAEM only are increased
when energy bids are made to maximize profits and not power production.
Participating to reserve leads to yearly profits improved by 20.97%, while it was
only 7.82% for 2023. A reason for this better improvement is the overall lower
values of day-ahead prices in 2024, thus giving more opportunities to make
profits on reserve markets. Indeed, allowing participation to reserve markets
increases profits significantly when the day-ahead market is less profitable.
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Table 5.5.: Expected yearly profits and supplied energy in 2024 for the base
and best layout optimized on JERM with 2023 data, both operated
for maximizing production on DAEM (a;d), maximizing profits
on DAEM only (b;e), and maximizing profits on JERM (c;f, with
maximum reserve bids Rmax=50 MW). Results reported as µ ± σ√

S
,

where µ and σ relate to forecast uncertainty.

Base
Layout optimized

on JERM

Expected yearly profits [Me]

(a) On DAEM only (prod. max.) 18.8986 ± 0.0054 19.4822 ± 0.0050 (▲3.09% w.r.t. base)

(b) On DAEM only (profits max.) 21.3492 ± 0.0043 21.9111 ± 0.0040 (▲2.63% w.r.t. base)

(c) On JERM (with reserve) 25.8267 ± 0.0045 26.4243 ± 0.0042 (▲2.31% w.r.t. base)

Expected energy supplied [GWh]

(d) On DAEM only (prod. max.) 445.74 ± 0.03 455.23 ± 0.03(▲2.13% w.r.t. base)

(e) On DAEM only (profits max.) 394.98 ± 0.03 404.21 ± 0.03 (▲2.34% w.r.t. base)

(f) On JERM (with reserve) 347.56 ± 0.03 356.52 ± 0.03 (▲2.58% w.r.t. base)

AEPtheory [GWh] 506.93 516.24 (▲1.84% w.r.t. base)

The best layout optimized on JERM is the same than the one presented in
Tab. 5.4, i.e. optimized with 2023 data. When operated using 2024 data, the
optimized layout leads to higher total profits and supplied energy, in the same
order of magnitude than for 2023. These results show that the optimized layout
obtained with data from 2023 is still relevant for 2024, even though both year
showed dissimilarities in wind distribution and prices.

If we compare again our methodology with the AEP maximization formu-
lation, we observe the same patterns than for 2023. Indeed, when plotting
expected yearly profits on JERM in function of AEP, for layouts optimized for
profits on JERM and for AEP, we still see that the grey triangles representing
layouts for AEP maximization are below the black circles. However, it can
be observed that a few black circles are below triangles. This implies that
those layouts optimized for profit maximization with reserve are less optimal
regarding wind data and electricity prices from 2024.
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Figure 5.11.: Expected yearly profits on JERM in 2024 plotted versus AEP.
Each point corresponds to one layout optimized using 2023 data,
with the black circles representing layouts optimized with reserve,
and the grey triangles are for layouts optimized for AEP maxi-
mization.

5.6. Conclusion

In this chapter, the ML surrogate developed in Chapter 3 was integrated within
a wind farm layout optimization problem accounting for reserve provision by
offshore turbines. Indeed, in the forthcoming years, offshore wind farms are
expected to have a significant role for restoring frequency balance through the
provision of reserve. Future wind farms should therefore be designed for that
purpose. This chapter develops a new methodology for WFLO to account for
future offshore wind farms participating to secondary upward reserve markets.
The objective function aims at maximizing revenues from both day-ahead
and reserve markets. It uses stochastic gradient descent for the optimization
and probabilistic forecasts of wind power and electricity prices. An inner
optimization problem provides the total power contracted on the JERM and
the allocation of power to reserve procurement purposes.

When applied on a real-life Belgian test case, results show that yearly profits
are expected to increase in a significant way when accounting for participation
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to reserve markets, while exhibiting a lower supplied energy. This profit
augmentation is amplified when the maximum value for reserve bids is increased.
Moreover, layouts optimized for profit maximization with reserve markets lead
to better yearly profits than when considering day-ahead market only in the
objective function. Profits are also higher for the developed methodology than
for layouts optimized for AEP maximization, widely used in the literature, even
though the AEP is similar. Finally, the optimized layouts also yield better
profits when computed using unseen data. Besides higher revenues, it is critical
that wind farms are designed to produce more energy when prices are higher,
usually corresponding to periods of electricity shortage. Maximizing production
when prices are low or even negative, generally associated with a surplus of
generation, leads to spillage of renewable energy.

Chapter Publication
• T-H. Nguyen, J. Quick, P-E. Réthoré, J-F. Toubeau, E. De Jaeger and

F. Vallée, "Offshore Wind Farm Layout Optimization Accounting for
Participation to Secondary Reserve Markets", submitted to Wind Energy
Science
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CHAPTER 6.
Conclusions and Perspectives

Global warming is not the only negative impact that human activities have
on our planet. The energy transition must aim not only at preventing climate
change, but also at returning us below the 9 planetary boundaries that describe
limits beyond which the environment may not be able to self-regulate anymore.
Equally important is that the energy transition must be fair, allowing everyone
to thrive in an environment respectful of the Earth. In other words, we need to
find the safe space between the 9 planetary boundaries and a social foundation
of well-being that no one should fall below (this is the main concept of the
Doughnut). Encompassed within the basics needs of life is notably access to
energy.

Renewable energy sources are expected to play a significant role against
climate change, as they emit very low greenhouse gases during their operational
lifetime. However, solar panels and wind turbines require a lot of raw materials,
obtained through mining, and a considerable surface area, potentially jeopar-
dizing biodiversity and land use (through deforestation) and affecting other
planetary boundaries. Therefore, the operation of those energy sources must
be optimized to produce electricity in the most efficient way and avoid spillage
of electricity. Moreover, renewable energy sources are inherently intermittent,
fluctuating, and highly unpredictable, thus posing many challenges to ensure a
reliably supply of electricity. A detailed planning and usage throughout the
year will be necessary to guarantee access to electricity for everyone, at all
times, and at an affordable price.

Considering those challenges, this work did not have the ambition to tackle
all those aspects, but aimed at discussing the impact of the massive installation
of renewable energy sources, targeting one type in particular: offshore wind
energy. This work is thus focused on three complementary research questions
with the purpose of improving the integration of future offshore wind farms
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in power systems by assessing their impact on the reliability of supply and
their ability to provide balancing services. The first objective was to develop
a fast and accurate model for offshore wind farms, able to capture complex
aerodynamic phenomena while keeping a reasonable computation time. This
led to a topology-aware offshore wind farm surrogate, able to generalize to any
layout configuration. Then, the research focus was put on adequacy studies
aiming at assessing the reliability of electricity supply in future power systems
with a high share of offshore wind generation. The developed surrogate was
leveraged to assess the impact of an improved modelling of offshore wind power
on reliability indices. Thirdly, we focused on the foreseen participation of
offshore wind farms to reserve markets, aiming at restoring balance within the
system in case of sudden perturbations. We explored how the layout of future
wind farms can be optimized to account for their participation to ancillary
frequency services.

In this final chapter, the developments and findings presented throughout
the dissertation are summarized. Then, perspectives for future research are
formulated.

6.1. Concluding Remarks

Considering the massive growth of offshore wind generation in electrical grids
(in Europe, but also in China and perhaps in the United States), the techno-
economic analysis of modern power systems can no longer be envisioned without
an accurate modelling of this fluctuating generation within power system
computations. Because of complex aerodynamic phenomena arising within
offshore wind farms, modelling their power output is an intricate process.
While high-fidelity wind farm simulations allow to capture aerodynamic effects
between interacting turbines and their impact on electricity production, they
are generally computationally demanding and time consuming. Therefore, they
cannot be used as such in iterative power system computations.

In this work, a new methodology is developed to improve the modelling of
offshore wind power within time demanding computations. In Chapter 3, a
Machine Learning-based wind farm surrogate is created, allowing to account for
aerodynamic losses arising in large offshore wind farms without compromising
tractability. The model, based on MLP neural networks, is trained on a large
database built upon wind farm simulations, thus removing the need for historical
data (rarely publicly available, for confidentiality and strategic reasons, and
not existent for future wind farms yet to be built). The ML surrogate is fed by
new geometric and physics-informed input features such that it is generic and
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topology-aware, i.e., it can be applied to any offshore wind farm configuration.
This topology-aware aspect ensures that the training process is carried out only
once. Moreover, this model allows to account for disabled turbines (failures or
maintenance) and the subsequent wake redistribution.

Comparisons with very high-fidelity simulations of a real-life offshore wind
farm demonstrate the validity of the developed methodology. Moreover, the
topology-aware ML surrogate is shown to be more than 25 times faster than
the wind farm simulations carried out to build the training database. The
proposed methodology is easy to implement and to reproduce, as it only uses
publicly available data (wind farm layout, turbine power curve, wind database)
and simulation outputs.

Within problems involving iterative computations, wake effects occurring
in offshore wind farms are often taken into account in a very simplified way
or even completely disregarded, even though they greatly influence the power
output. Assessing the adequacy of modern power systems usually involves such
iterative computations. Therefore, in Chapter 4, the developed ML surrogate
is directly integrated within adequacy studies using sequential Monte-Carlo
simulations. The fast inference time and topology-aware abilities allow an
improved modelling of offshore wind farms without hindering the tractability
of the computation process. In that way, it leads to a better assessment of
the security of supply and an accurate computation of reliability indices for
modern power systems.

Results of a test case, based on a simplified model of the Belgian power
system in 2030, demonstrate the relevance of an improved modelling of offshore
wind generation as it significantly affects adequacy outcomes. Indeed, with
a power curve approach (generally used in adequacy studies) that ignores
wake losses, we observe a noteworthy underestimation of LOLE and LOEE
values. This error increases with both the installed capacity and power density
within the farms, potentially exceeding 18%. This can critically affect adequacy
assessments, particularly in a context of increased wind energy integration.
Indeed, underestimating reliability indices may conceal adequacy issues, thereby
preventing to make the right investments and take the appropriate necessary
planning actions to ensure a sufficient reliability of the system.

The generalization abilities allow to account for various possibilities related
to future wind farms topology. Indeed, their layout (turbine position, power
density, turbine technology) is still unknown, as the tendering process should
begin in late 2024. Therefore, it is important to consider multiple scenarios
for the future offshore zone in Belgium in order to account for the current
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uncertainty on the energy that will be provided by the different wind farms.
Thanks to the topology-aware abilities of the ML surrogate, the same model
can be used to consider many possible farm configurations, thereby preventing
the need to train one model per configuration, as it would be the case with
traditional farm-specific surrogates. Outcomes show that increasing power
density improves reliability indices, but exhibit diminishing marginal returns
after a certain point, due to the amplification of wake losses caused by the
additional turbines. The installed capacity should thus result from a well-
studied compromise between increasing the yearly offshore production while
limiting power losses from wake effects. Moreover, the choice of turbine models
also impacts adequacy results, as larger rotor diameters (for the same total
farm capacity) decreases LOLE and LOEE values, but at the expense of higher
turbine costs.

Current offshore wind farms are usually operated to maximize the annual
energy production, and they have been designed with that purpose. However,
in the forthcoming years, offshore wind farms are expected to have a significant
role for restoring frequency balance through the provision of reserve. Future
wind farms should therefore be designed for that purpose. In Chapter 5, the
ML surrogate was integrated within a wind farm layout optimization problem
accounting for reserve provision by offshore turbines. This chapter develops
a new methodology for WFLO to account for future offshore wind farms
participating to secondary upward reserve markets. The objective function
aims at maximizing revenues from both day-ahead and reserve markets. It uses
stochastic gradient descent for the optimization and probabilistic forecasts of
wind power and electricity prices. An inner optimization problem provides the
total power contracted on the JERM and the allocation of power to reserve
procurement purposes.

The developed topology-aware ML surrogate is especially appropriate for a
wind farm layout optimization problem. Indeed, for a fixed number of turbines
with given characteristics, the optimal siting will aim at placing turbines
to minimize power losses due to wakes, considering the wind regime (i.e.,
dominant wind directions) at the farm location. Accurately modelling wake
losses is thus crucial in that context as it will directly influence the optimized
solution. Moreover, at each optimization step, turbines are moved within
the farm boundaries until convergence is reached for the optimal positioning.
Therefore, a different layout is seen at each iteration, justifying the need for a
topology-aware model, applicable to any wind farm configuration.

When applied on a real-life Belgian test case, results show that yearly profits
are expected to increase in a significant way when accounting for participation
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to reserve markets, while exhibiting a lower supplied energy. Moreover, layouts
optimized for profit maximization with reserve markets lead to better yearly
profits than when considering day-ahead market only in the objective function.
Profits are also higher for the developed methodology than for layouts optimized
for AEP maximization, widely used in the literature. Finally, the optimized
layouts also yield better profits when computed using unseen data. Besides
higher revenues, it is critical that wind farms are designed to produce more
energy when prices are higher, usually corresponding to periods of electricity
shortage. Maximizing production when prices are low or even negative, generally
associated with a surplus of generation, leads to spillage of renewable energy.

6.2. Perspectives for Future Research

On a Topology-aware Offshore Wind Farm Surrogate
• Perspective 1 - on enriching the training database

In this work, an engineering tool was used to run wind farm simulations.
Although the tool was validated with very high-fidelity simulations, it is
clear that more advanced models would have a higher accuracy. Currently,
the high computational time of such advanced methods prohibit their
use to build a database with a significant amount of samples. However, if
future models are able to reduce the computational time, and a relevant
database can be generated, then the methodology presented in this paper
could still be used, but with this new database. Besides, the lack of
publicly available operational data for offshore wind farms has gradually
incentivised research academics to publish simulations data, especially
when the latter are carried out using intensive computation methods such
as LES or RANS [195]–[198]. Because of the computational burden and
the recentness of the initiative, the number of cases is still very limited
and would not constitute a comprehensive database sufficient to train
our model. However, in the meantime, a multi-fidelity database could
be built with the lower-fidelity simulations obtained with wake models,
combined with few cases of high-fidelity simulations. For example, in
multi-fidelity composite neural networks [199], a first training is carried
out using the low-fidelity data, then corrected in a next stage by coupling
with high-fidelity neural networks in order to discover and exploit corre-
lations between low-fidelity and high-fidelity data. Another possibility
would be to leverage a gaussian process regression framework to combine
information from low and high-fidelity simulations [200].
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• Perspective 2 - on capturing wind dynamics
Computing hourly averaged wind power can be carried out with two
ways: by directly using hourly averaged wind data (which was the case
in this work), or by converting wind time series to power time series and
average the latter (quasi-steady or even dynamic approach). Because the
wake takes time to propagate within a wind farm (especially for large
farms), those two methods could lead to different power assessments.
The recent advancements regarding dynamic wake models [201]–[204]
would allow to capture wind power variation and replace steady-state
simulations by dynamic ones. Those dynamic wake models are faster
than CFD simulations and first results show a relatively good accuracy
compared to high-fidelity CFD simulations [205]. In particular FloriDyn
is a dynamic version of Floris, the open-source code used in Chapter 3 to
build the training database of wind farm simulations, but it is still under
development. Building a database of dynamic wind farm simulations
would allow to train a ML surrogate able to capture wind (and thus
power) variations within an hour. For example, wind inputs would consist
in not only the average value of wind speed and wind direction, but also
other statistics such as standard deviation (or higher statistical moments)
that capture wind changes.

• Perspective 3 - on the consideration of turbine control
Throughout this work, it was assumed that wind turbines are actively
controlled for maximum power point tracking and that the nacelle is
always perfectly facing the main wind direction. Indeed, it is the common
practice in commercial wind farms as operators aim at maximizing annual
energy production. However, methods for decreasing wake losses are
actively studied, the main ones being wake steering and axial induction
control. Even though these techniques could be associated with an
increase on loads and fatigue on the turbine blades, the wind industry has
recognized the potential of an improved wind farm control. If such wind
farm controls are to be implemented in the future, new simulations where
wind turbines are controlled with yaw steering, induction control, or other
methods, should be run. Additional features would have to be fed to the
ML surrogate to describe the control strategy used in the farm. This
could prove especially challenging if different strategies are applied to
individual wind turbines, leading to a heterogeneous control distribution
within the farm and a complex distribution of wakes.
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On Adequacy Studies with a High Share of Offshore
Generation

• Perspective 1 - on wake effects between neighbouring wind farms
While intra-farm wake effects have been considered in the adequacy studies
thanks to the ML surrogate, wake effects between neighbouring wind
farms have been ignored. However, inter-farm effects are particularly
relevant if wind farms are installed close to each other and if the dominant
wind direction blows throughout several adjacent farms. Even for more
distant wind farms, the influence of an upwind farm is sometimes not
negligible, depending on wind conditions and farm characteristics. For
example, in Belgium, the potential impact of the new offshore zone on the
already built turbines has been studied [206], although it will be situated
at a distance of approximately 8 km (for the closest point) to 42 km (for
the furthest point) from the first offshore cluster. It was shown that AEP
loss due to the new zone could reach 0.8%, but more importantly that
in worst-case wind conditions, power losses can be as high as 20%. For
future electricity systems reliant on offshore wind, such a momentary drop
in wind power due to farm interactions can potentially cause unexpected
grid instability. Therefore, inter-farm wake effects should be encompassed
in future work on adequacy studies with a high share of offshore wind
generation. Wind farm wake is a very complex flow, and its computation
differ from the prediction of individual wind turbine wakes. Although
the turbine wake models used in Chapter 3 are not directly adapted
to compute farm wake, other tools have recently been developed with
the purpose of estimating the influence of an entire wind farm on the
incoming wind [207]–[209]. Therefore, the power assessment for a given
wind farm would be carried out in two steps: firstly, estimate the influence
of upstream wind farms (if present) on the incoming wind, then feed this
computed waked wind to our ML surrogate.

• Perspective 2 - on intra-hour wind power variability
The adequacy studies carried out in this work have a temporal resolution
of 1 hour, which was highly suitable when power systems were dominated
by conventional generation. However, for modern power systems with
a high share of renewables, this hourly granularity may no longer be
appropriate. For offshore wind farms, ramping events correspond to
sudden changes in wind power. The main cause for those events is wind
speed fluctuations. This is especially significant if those variations occur
around the steep part of the power curve, where the wind farm power can
ramp significantly in 5 minutes [210]. Another root cause for ramping
events can be changes in wind direction, as the wake from upstream wind
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farms and the wakes inside the wind farm are modified. With several
offshore wind farms close to each other, the wind speeds and directions
are highly correlated, and therefore the total offshore wind power ramping
can become critical. For example, in Belgium, in the evening on the 10th
of August, a reduction in wind speed from approximately 13 m/s to 8 m/s
led to a power decrease from full to less than half in less than one hour
[210]. For adequacy studies, it could mean that the integral over one hour
is such that mean generation covers the load, but some smaller periods
may be inadequate, with no sufficient generation. To capture this aspect,
wind data with a higher temporal resolution is needed: since offshore
wind modelling generally has an hourly granularity, measurements might
be required to generate wind time series with timesteps of e.g. 15 minutes.
The hourly resolution could be kept for conventional generation, and the
impact of sudden wind generation variations on reliability indices should
be assessed.

On Wind Farm Layout Optimization Accounting for
Reserve Participation

• Perspective 1 - on forecast errors
For the optimal bidding strategy on JERM, probabilistic forecasts of
wind power, electricity prices and reserve activation volume were used to
account for forecasting error. Those forecast errors are sampled from a
normal distribution related to each variable, meaning that those forecasts
are independant. However, this is a huge assumption that may not be
realistic. Indeed, one can expect that a large error on wind forecast
(e.g., overestimating wind power) will lead to a large error in day-ahead
and imbalance prices (underestimation), especially in weather-dominated
power systems. A better modelling of forecast errors could take into
account cross-correlation between wind, price and activated reserve fore-
casts. Although this would not change the WFLO formulation, it would
impact day-ahead and reserve bidding, and subsequent profits.

• Perspective 2 - on the impact of reserve provision for turbine
loading
The components of a wind turbine are constantly impacted by both static
and dynamic loads. It has been shown that supplying upward frequency
services (i.e., keeping a power reserve so that increases in power are
possible) could have a beneficial effect on static loading [211], as it tends
to decrease extreme loads in faster winds. Moreover, as it was shown
in the test case of Chapter 5, wind farms participating in the reserve
market supply less energy, which would reduce static loads as well as
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operation and maintenance costs of the wind farm components, thereby
increasing the farm lifetime. However, regarding dynamic and fatigue
loading, additional mechanical constraints are also sustained by turbines
when providing ancillary services. Indeed, when actively participating
to frequency reserve markets, the power reference setpoint of the wind
farm could be frequently modified, thus creating load fluctuations on
turbines. Therefore, mechanical fatigue of wind turbine components could
be increased due to dynamic load variations. Computing the resulting
impact on blade loads (static and dynamic) would be relevant to assess
the costs versus benefits of providing reserve services. Moreover, it could
be influencing the layout optimization as well.

• Perspective 3 - on an objective function aiming at benefiting
society
In our formulation of the layout optimization for wind farms providing
reserve, the objective function is to maximize profits for the farm owners.
However, coming back to the Doughnut described in the introduction of
this manuscript, what we really want to optimize is the value of energy,
and not profits as such. Maximizing offshore wind farm utilities means
providing reserve only if necessary, and maximizing electricity production
in times of high demand or scarcity, but not when the grid is already
saturated with overproduction. Indeed, in that case, wind turbines might
have to be curtailed to reduce wind energy generation and this spillage
of renewable energy is of course not desirable. If wind farms are not
properly designed and operated to maximize utility and societal welfare,
it could lead to the installation of more turbines than necessary, thus
impacting land use, exploitation of resources, biodiversity, ... In this work,
we assume that electricity prices are a good representation of the value
of energy (higher prices in periods of scarcity, and low or even negative
prices in case of overproduction in the system), which is why we aimed
at maximizing profits. However, we know that it might not always be
the case, as it was demonstrated during the recent 2022 energy crisis.
Although gas price spikes could partially explain the overly high electricity
prices, uncertainty and fear of shortages also contributed. Moreover, in the
current liberalized system, electricity is traded on markets as a commodity
and is thus subjected to market schemes, malfunctions, and sometimes
wrong assumptions (such as the presumption of unlimited resources).
Therefore, it could be interesting to develop another objective function
for the layout optimization problem, using a proxy for the value of energy
instead of profits. Finding such a proxy is a rather complex task but a
great challenge to take a step forward towards a fair energy transition
within the limits of our planet.
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