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Many recent applications of photonic resonant modes have focused on optical bound states in the continuum
(BICs) within photonic crystal slabs. An asymmetric kind of lossy resonances, called unidirectional guided reso-
nances (UGRs), with intentional symmetry breaking leading to directional leakage, has also attracted considerable
attention. This study presents a microscopic semi-analytical model aimed at enhancing the understanding of these
resonances. We employ a multimodal interference method for BIC and UGR investigation in two-dimensional
(2D) and three-dimensional (3D) structures, offering valuable insights into their specific properties. Through this
model, we seek to advance the design and comprehension of both BICs and UGRs in photonic crystal slabs. To
illustrate this, we examine different families of modes in a 2D device, and we explain the origin of resonances in an
experimentally studied 3D structure. In both cases, symmetry breaking and judicious Bloch mode mixing form the
basis of the confinement scenarios. © 2025 Optica Publishing Group. All rights, including for text and data mining (TDM),

Artificial Intelligence (AI) training, and similar technologies, are reserved.
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1. INTRODUCTION

Resonances in photonic crystals (PhCs) attract significant
interest due to their diverse applications, including lasers,
optical filters, and sensors, among others [1,2]. In particular,
modes called bound states in the continuum (BICs) [3–6] are
notable for their exceptionally high-quality (Q-)factors and
remarkable robustness against perturbations [7], offering many
application opportunities in the fields of sensing, lasers, strong
coupling, and nonlinear optics [8–21]. Recently, a new type of
resonance, the unidirectional guided resonance (UGR), was
identified [22,23]. These resonances share similar properties
with BICs, but they permit radiation emission in a single direc-
tion at a specific frequency, thus opening up a range of practical
applications, spanning from on-chip lasers to energy-efficient
grating couplers [24–26]. Consequently, it is crucial to accu-
rately describe and elucidate the emergence of these guided or
semi-guided modes.

Several models are employed to characterize BICs, such
as topological charges [7,22,27] and the decomposition into
localized multipoles [28,29]. Another approach involves a
multimodal decomposition of resonances [30–32], which
describes BICs as the result of destructive interference between
several Bloch modes guided transversely in the PhC. However,
this method is usually applied to relatively simple, symmetrical

structures and typically involves the interaction of only two or
three modes in 2D structures.

In this paper, we introduce a semi-analytical model based on
this multimodal approach, generalized to any number of Bloch
modes, enabling the study of asymmetric structures, and thus
the description of UGRs via the multimodal framework. We
will demonstrate that this model is effective in both 2D and
3D contexts. An additional advantage of our approach is its
computational efficiency, allowing rapid screening for a broad
range of parameters, thereby facilitating the search for BICs or
UGRs within the parameter space. We will apply this model
to various structures, including a 1D periodic PhC composed
of 2D rectangular particles with broken top-down symmetry,
resulting in a simple staircase configuration that supports the
emergence of UGRs. We show that two families of UGRs arise,
with two different mode-mixing origins: one from an accidental
BIC (also called Friedrich–Wintgen BIC) and the other from
a symmetry-protected BIC. Furthermore, the method will be
tested on a 3D structure formed by a 2D PhC made of paired
cylindrical particles. The latter structure has been experimen-
tally characterized for sensing purposes, among others [33],
making it valuable to understand these resonances in detail
using our model.
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Section 2 introduces the semi-analytical model and its imple-
mentation. Section 3 presents the findings when the method
is applied to a staircase-like asymmetric structure with UGRs.
Section 4 showcases the results for the 3D structure.

2. MODEL FORMULATION

To illustrate the method, we consider a PhC consisting of
symmetric rectangular sections [Fig. 1(a)], which manifests
BICs. The structure is periodic along the x axis with period a
and invariant along the z axis. Later on, we will break the top-
down symmetry to create a PhC with staircase-shaped elements
[Fig. 1(c)], which supports UGRs.

We proceed by defining a sectioning line in the middle of the
structure [red dashed lines in Figs. 1(a) and 1(b)]. This section
defines a 1D periodic refractive index profile along x [noted as
n(x )]. If we consider this profile infinite along y , this provides
a number of propagating modes (in y direction) defined by the
1D PhC profile n(x ). For the full structure, the model then
follows these local Bloch modes that are propagating up and
down (along y ), as the complete structure is finite (along y ),
leading to reflections at the interfaces; see arrows in Fig. 1(b).

The number of propagating modes of the multilayer or
waveguide array n(x ) depends on the structure and frequency.
For this explanation, we focus on a case with two coexisting
modes (which is a common case for BICs), though the model is
applicable to an arbitrary number of modes. We then compute
the waveguide array dispersion to identify all the (typically
propagative) Bloch modes for a given frequency and for a given
lateral propagation constant kx .

Next, we calculate the half-turn scattering–reflection matri-
ces, Su and Sd for the upper and lower parts, respectively, by
employing the modal properties of the upper and lower parts of
the structure. These matrices provide reflection information for
the entire structure, incorporating both propagation and inter-
face reflection for the two half-structures. For a rectangular half,
as in the lower part of Fig. 1(b), we construct the Sd matrix as

Sd = P (Ld )× Rd × P (Ld ), (1)

where Rd is the reflection matrix at the bottom interface,
and P (Ld ) is the propagation matrix for a length Ld [with
convention exp(iωt)]:

(a) (b) (c)

Fig. 1. (a) Unit cell of the symmetric PhC, periodic along x
(periodic repetition in inset). The length Ld is rapidly adjustable
analytically. (b) Detailed view of the multimodal decomposition in two
halves. Sd includes the propagation of modes (described by P ), which
are then reflected (by Rd ) and propagated again (by P ). A similar rea-
soning applies to the upper part for Su . (c) Staircase structure formed
by the breaking of top-down symmetry.

P (L)=
[

exp(−iβ1Ld ) 0
0 exp(−iβ2Ld )

]
, (2)

with β1 and β2 the (potentially complex) mode propagation
constants. Once we have determined Rd , via numerical simula-
tion, e.g., it is straightforward to calculate Sd for another length,
allowing for a rapid exploration of a wide range of different
lengths without computationally intensive simulations. As the
resonances stem from Bloch modes bouncing up and down
within the structure, being able to quickly vary the length is
crucial for rapidly determining BICs and UGRs.

This decomposition is simple for the homogeneous parts of
a structure, such as both parts in Fig. 1(b) and the lower part
of the step structure in Fig. 1(c). However, the upper part in
Fig. 1(c) has an additional interface due to the step (if one cuts as
indicated with the horizontal dashed line) and therefore cannot
be as easily decomposed.

The matrices Su and Sd are central to our model. By multi-
plying them, we obtain the round-trip matrix Sd Su (or Su Sd

if starting downward), which provides comprehensive infor-
mation about a complete cycle of modes in the structure. By
calculating the eigenvalues, we get

Sd Suvu = λvu, (3)

where the eigenvalues λ provide valuable information about the
localization of resonances in the parameter space. For a reso-
nance to occur, several conditions must be met. First, Im(λ)= 0
indicates a phase resonance, which is an important condition to
have the same reflection criteria after each round-trip made by
the modes within the structure. Second, we require constructive
interference within the section, which implies having ampli-
tudes of the same sign after a complete cycle. This condition is
expressed as Re(λ) > 0.

Furthermore, the eigenvectors vu reveal the mode mixture
and the relative phases between the guided modes in the particu-
lar resonance, allowing us to identify their nature. This mode
mixing is often essential for achieving a good resonance, as the
modes do not necessarily have a 100% reflection at the interfaces
of our structure when considered individually (unless there
is an orthogonality), so their interference is needed to cut (or
enhance) radiation to the outside.

For BICs, the closer |λ| is to 1, the closer we are to achieving
a “true” BIC, i.e., with an infinite Q-factor, in opposition to
quasi-BICs (qBICs), which have a high but finite Q-factor.
Specifically, an eigenvalue of 1 signifies zero losses after a
round-trip and thus corresponds to a true BIC.

However, the latter criteria are not ideal for UGRs, as these
modes experience fairly significant losses in one direction (and
few or no losses in the other direction), thus typically resulting
in the total round-trip eigenvalue distant from 1 (so |λ|< 1). It
is therefore necessary to identify another criterion that allows
for distinguishing UGRs from other resonances. To do this, we
calculate the transmission separately for the upper and lower
parts of the particular resonance, respectively Tu and Td [see
Fig. 1(b)], which then allows us to determine the Q-factors of
the two halves; see below.

Equation (3) represents the complete round-trip of the
modes using the mode mixture given by the eigenvector vu

“beginning” by the upper half, thereby indicating the respective
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amplitudes of modes to be injected upward that achieve the
resonance. In this way, we can interpret v′d = Suvu as the mode
mixture returning from the upper part after a half round-trip
Su , containing information on propagation and reflection at
the upper interface. Similarly, v′u = Sd Suvu can be seen as the
mixture from a full round-trip in the structure. As the sum of
the modulus-squared components gives us the relative power
in each mode, we can calculate the amount of energy reflected
by each half turn (neglecting the absorption) [34]. Thus, one
can determine Tu , the transmission to the top, as one minus the
reflection, which is the ratio of the reflected energy

∑
i |v
′

d ,i |
2 to

the injected energy
∑

i |vu,i |
2 (with i indicating the included

Bloch modes). Similarly, one finds Td , leading to

Tu = 1−

∑
i |v
′
d ,i |

2∑
i |vu,i |

2
Td = 1−

∑
i |v
′
u,i |

2∑
i |v
′
d ,i |

2
. (4)

Although this development started the cycle upward, it is pos-
sible to show that Tu and Td can be rewritten as

Tu = 1− |c u |
2 Td = 1− |c d |

2, (5)

where

Suvu = c uvd Sdvd = c dvu . (6)

Here vu and vd are normalized eigenvectors of, respectively,
Sd Su and Su Sd (i.e.,

∑
i |vu,i |

2
= 1 and

∑
i |vu,i |

2
= 1) with

the same eigenvalue λ. This reformulation allows for detach-
ment from the arbitrary choice of the initial direction by
enabling the direct calculation of Tu and Td using the matrices
Su and Sd , along with their respective eigenvectors.

With the transmissions Tu and Td , it is possible to determine
a Q-factor associated with both the upper (Qu) and lower (Qd )
sides of the structure, thereby enabling distinction between
BICs and UGRs [34]:

Qu =
2ω0L
|vg |Tu

Qd =
2ω0L
|vg |Td

, (7)

where ω0 is the angular frequency of the resonance, L is the
total height [Fig. 1(a)], and vg is an averaged group velocity
computed as

vg = |v
1
g ||vu,1|

2
+ |v2

g ||vu,2|
2, (8)

with v1
g and v2

g group velocities of the considered propagating
modes at the angular frequencyω0.

Equation (7) and more precisely Eq. (8) are strictly valid for
rectangular structures [Fig. 1(a)]. For the UGRs, we use a struc-
ture with a small step, resulting in a minor difference between
group velocities in the upper and lower parts, allowing us to
approximate and retain these equations despite the asymmetry
of our structure. In cases of a more pronounced asymmetry,
such as a larger step, it is necessary to detail the calculation of the
Q-factor, taking into account the different regions with varying
guided modes. Furthermore, we neglect evanescent modes (even
though they can easily be added), as well as the energy outside
the PhC. It may be possible to include a term accounting for this
external field if required [35].

All the equations in this section are presented for two guided
Bloch modes of the 1D periodic, lateral refractive index profile

at the considered section. It should be noted that the model is
easily generalizable to a general amount of N modes. The main
difference is that the various matrices involved (Su , Sd , Ru , Rd ,
and P ) would be N × N matrices, implying N eigenvalues and
N eigenvectors with N components.

3. MODEL APPLICATION TO 2D UGRs

To illustrate our model and its usefulness to elucidate new types
of modes, we study a 1D PhC comprising a 2D rectangular
particle. An up-down symmetric geometry [Fig. 1(a)] and a
symmetry-broken, stair-shaped device [Fig. 1(c)] are consid-
ered. The symmetric structure allows obtaining (quasi-)BICs,
while the asymmetric structure enables UGRs. For Fig. 1(a),
up-down symmetry gives the same values for Tu and Td , so this
always leads to symmetric BIC modes. In Fig. 1(c), up-down
symmetry is broken, rendering different transmissions, and
in general providing modes that are unidirectional. We have
chosen a step structure because it should be feasible to fabri-
cate, and it is a perfect application of our model (e.g., for rapid
length sweeps). Other types of up-down symmetry breaking are
possible, e.g., with slanted sidewalls [22].

We assume a refractive index of n = 3.5 for the interior
material and air n = 1 for the exterior. The cell width is
a = 386 nm, while the particles have a width of w= 0.6a
and a total height of L = 0.81a + Ld for the rectangle particle
and L = 1.0125a + Ld for the stair-like particle. The step is
placed at a distance of 0.81a from the top of the stair. With
the cut as in Figs. 1(a) and 1(c), we can semi-analytically vary
the length Ld of the lower part. In contrast, varying the fre-
quency always necessitates new calculations. To measure the
asymmetry of the structure, we define an asymmetry parameter,
similar to Ref. [36], αs =ws /w, where ws is the width of the
step. Furthermore, we set kx = 0.193(2π/a) (unless otherwise
stated), and for the asymmetric structure, we fix αs = 0.08.
These values will lead to a well-defined UGR.

Figure 2(a) shows the dispersion of Bloch modes propagating
in the y direction, with electric field oriented along the z axis
(transverse electric, TE modes), so these are the Bloch modes
as if the central section at the position of the cut was infinite
vertically (and periodic along x ). When the frequency increases,
the number of propagating modes increases. We confine our
analysis to a frequency range with two guided modes [light blue
zone in the middle of Fig. 2(a)], with mode profiles in Fig. 2(b).
Although it is possible to apply the multimodal method to an
arbitrary number of modes, the decision to limit the study to
a region containing only two modes is motivated by the desire
to keep the model relatively simple and to achieve high-quality
resonances. Indeed, our method relies on the principle of inter-
ference between multiple modes, and achieving good matching
between the different modes is more likely with two modes than
with three or more.

After computing Su and Sd , and by applying the selection cri-
teria onλ, namely Im(λ)= 0 and Re(λ) > 0, we obtain Fig. 3(a)
for the symmetric structure, indicating the resonance positions
in the parameter space, with color bar for the Q-factor. Two
sets of quasi-parallel lines are observed: One set is more vertical
and crosses the bottom dashed line [around ω= 0.3(2πc/a)];
these are the Fabry–Pérot resonances connected with mode 1.
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(a) (b)

Fig. 2. (a) Dispersion of guided Bloch modes in the cut section of the PhC. We focus on the frequency range containing only two modes, high-
lighted by the light blue band in the middle of the graph. The blue (lowest) and orange (second lowest) lines represent the two most fundamental
modes, labeled “mode 1” and “mode 2,” respectively. (b) Electric field profiles of modes 1 and 2 for a wavelength of 1229 nm (or a normalized angular
frequency of 0.314), shown in the same colors as in (a). The gray zone between dashed vertical lines indicates the high-index section. For both figures,
kx = 0.193(2π/a).

(a)

(b) (c)

Fig. 3. In the three graphs, each point corresponds to the location of a resonance satisfying the criteria outlined in the text. (a) The color repre-
sents the global Q-factor of each point for a symmetric structure. The red circle (highest circle) highlights the qBIC associated with the “anticrossing”
family. The blue circle (lowest circle) indicates the absence of a BIC at the crossing. (b), (c) Color shows top and bottom Q-factors for the asymmet-
ric stair-like structure. The red circle (highest circle) and dashed line show the first family, referred to as “anticrossing.” The blue circle and dashed line
(lowest circle and line) indicate the “crossing” family.

The second set also slopes downward as the length increases but
becomes nearly horizontal near the cut-off of mode 2 [around
ω= 0.3(2πc/a), where its ky value approaches zero]; these
lines are thus the Fabry–Pérot resonances via mode 2 [31].

We calculate dispersions and reflection matrices via the
finite-element solver COMSOL Multiphysics, but any

tool could be employed for the model. Figure 3(a) corre-
sponds to the symmetric structure, with three series of yellow
hotspots corresponding to qBICs, which are echoes of true
symmetry-protected BICs obtained only with a zero kx . These
points, see, e.g., the red circle, are located near the anticrossings
between the two families of curves, indicating an interaction
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(a) (b) (c) (d) (e)
e)

b)

c)

(f)

Fig. 4. (a)–(e) Out-of-plane electric field profiles for different resonances. (a) ω= 0.347(2πc/a), Ld/a = 0.745; (b) ω= 0.358(2πc/a),
Ld/a = 0.518; and (c) ω= 0.361(2πc/a), Ld/a = 0.470 show the first family: (a) for the BIC, (b) and (c) for the UGRs. (d) ω= 0.308(2πc/a),
Ld/a = 0.810 and (e) ω= 0.315(2πc/a), Ld/a = 0.599 show the second family: (d) for the BIC and (e) for the UGR. Black arrows show the
direction of radiation propagation. (f ) Comparison of the ratio between Qd and Qu obtained using an eigensolver (COMSOL) and the multimodal
method.

between the two modes that produce this qBIC. Next to the
anticrossings, there are also crossings (see, e.g., the blue circle)
with dark color, indicating the absence of a (good-quality) qBIC
for this up-down symmetric structure, as the up-down parities
of the single-mode Fabry–Pérot resonances do not match and
thus have no overlap (maximum versus zero in the middle).

Figures 3(b) and 3(c) show Qu and Qd for the step asym-
metric structure. Large values (yellow zones) are observed at
(sometimes slightly) different positions, indicating a contrast
between Qu and Qd , a sign of the presence of (multiple) UGRs.
By inputting the parameters corresponding to these UGRs into
a COMSOL eigensolver, we indeed find typical UGR field
profiles as shown in Fig. 4 (detailed later on). By inspecting
Figs. 3(b) and 3(c), one observes that two families of UGRs arise.

The first family, indicated by a red dashed line and the red
circle, arises from the interaction of the two Bloch modes near
an anticrossing point. This family is analogous to what was
previously observed [31] and originates from an accidental
BIC in the same regions [red circle on Fig. 3(a) for symmetric
structure]. Figure 4(a) (for a BIC), 4(b), and 4(c) (for UGRs)
show the out-of-plane electric field profiles of these resonances.
It is readily observed that these modes have similar profiles.
By breaking the top-down symmetry (by creating the step),
the reflection conditions at the upper side of the structure are
slightly altered, allowing resonances at slightly different loca-
tions in parameter space and, consequently, the emergence of
two nearby UGRs emitting in opposite directions. [The separa-
tion between the two UGRs is more visible on Figs. 5(d)–5(f ),
with blue and red zones next to each other, e.g., in the region
aroundω= 0.36(2πc/a) and Ld/a = 0.5.]

The second family [blue dashed line and circle in Figs. 3(b)
and 3(c)] is uncommon and seems to emerge as an echo of a
symmetry-protected BIC. The dominant mode for this BIC
is horizontally antisymmetric and cannot couple with exter-
nal radiation at the gamma point (kx = 0). By imposing a
nonzero kx , the mode is allowed to couple to the outside, as
shown by the profile in Fig. 4(d), transitioning from a true BIC
to a qBIC emitting weak radiation outward. Adding broken
up-down symmetry (the step) modifies the way the different

guided modes interact, allowing for the occurrence of accidental
destructive interference in a single direction, and thus the emer-
gence of a UGR, visible in Fig. 4(e). This hypothesis is further
confirmed by Figs. 5(d)–5(f ) [e.g., around ω= 0.35(2πc/a)
and Ld/a = 1], indicating the emergence of stronger UGRs
from this family as the step asymmetry increases. This inter-
action happens at crossings that in the symmetric case do not
interact [vertically orthogonal Fabry–Pérot modes, blue circle
in Fig. 3(a)], but which can couple slightly when there is a step
[so the Fabry–Pérot profiles are not fully orthogonal any longer,
blue circle in Fig. 3(c)].

To summarize, both families of modes are connected with
true (symmetry-protected) BICs in the symmetric structure at
kx = 0. The first family of pairs of UGRs is a consequence of a
remaining (slightly) multimodal BIC in the symmetric structure
at kx = 0.193(2π/a) [red circle, Fig. 3(a)]. In contrast, the
second family of single UGRs originates from a true BIC in the
symmetric structure (at kx = 0) that disappears for a nonzero kx

[blue circle, Fig. 3(a)].
By gradually varying the parameter kx , the resonance posi-

tion shifts in the parameter space. This characteristic is related
to the topological nature of BICs, providing them with a cer-
tain robustness against changes [7]. Introducing a symmetry
breaking allows the BIC to split into multiple UGRs, which in
turn move within the parameter space, as already observed in
Refs. [22,37].

Figure 4(f ) shows the ratio Qd/Qu for the first two resonance
branches. This parameter can be interpreted as an asymmetry
parameter for the radiation. The red and blue points represent
the results obtained using an eigensolver (COMSOL), while the
yellow and purple points correspond to results obtained using
the multimodal method. The good agreement between the
two methods demonstrates the effectiveness of the multimodal
decomposition. Points e), b), and c) correspond to the asymme-
try peaks associated with the profiles shown in Figs. 4(b), 4(c),
and 4(e).

By analyzing a cross section in the upper and lower parts, it
is possible to obtain a complete detail of the mode distribution
in the staircase. We examine the UGR of Fig. 4(e). In the lower
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 5. (a)–(c) Sweep for kx = 0.100, 0.193, and 0.300(2π/a), respectively, αs = 0.08. The color scale represents multimodality from 0 to 100%.
A value of 0% indicates single-mode domination, while 100% indicates a 50/50 mixture. (d)–(f ) Sweep for αs = 0.08, 0.12, and 0.16, respectively,
kx = 0.193(2π/a). The color indicates the ratio Qd/Qu , with red indicating an UGR emitting upward and blue indicating an UGR emitting down-
ward.

part, the mixing is relatively monomodal, consisting of approx-
imately 93% of mode 2 and 7% of mode 1 in both upward
propagation and downward propagation. In the upper part, the
mixing is more asymmetric. Specifically, in the upward propa-
gation, the mixing is 81% and 19%, while in the downward
direction, it is 95% and 5%, respectively. This is explained by a
surprisingly high reflectivity of mode 2 at the interface formed
by the step. Figure 2(b) shows that more field is located near the
edge of the waveguide for mode 2, making it more sensitive to
the step. Despite a very small perturbation, 20% of mode 2 is
reflected at the step interface.

This asymmetric behavior in the upper and lower parts of the
structure indicates the formation mechanism of the UGR. By
combining the mixing information with the interface reflectiv-
ity values (Ru and Rd ), it turns out that the energy escaping on
the side without emission is very similar for each mode inde-
pendently, which enables destructive interference between the
radiations of each mode when they couple. On the side with
emission, the energy loss levels for each mode differ, preventing
complete destructive interference.

For further exploration, we also perform sweeps for the inter-
esting parameters kx and αs ; see Fig. 5. From Figs. 5(a)–5(c),
we vary the lateral Bloch propagation constant kx , where the
color indicates “multimodality.” A value of 0% corresponds
to a resonance dominated by a single guided mode. A value of
100% corresponds to a perfectly balanced mixture between
the two modes, so 50% of the power in mode 1 and 50% in
mode 2. We observe that increasing kx enhances the coupling
between the modes, thereby increasing the multimodal nature
of the resonances. For the first family of UGRs, the anticrossing
increases strongly, and the modes become multimodal over a
larger parameter range (larger, brighter spot). The second family

of UGRs also brightens, so becomes more mixed, as kx increases,
even though it is still fairly dominated by a single mode.

Figures 5(d)–5(f ) show the ratio between Qd and Qu in
function of αs . A positive ratio exponent indicates an upward-
radiating UGR (in red), while a negative ratio exponent
indicates a downward-radiating UGR (in blue). It is clear
that the UGRs we have seen before in Figs. 3(b) and 3(c) [with
the same parameters as Figs. 5(b) and 5(d)] shift as αs increases,
indicating a significant influence of asymmetry on their posi-
tion. The double UGRs from the first family are nicely visible in
this figure: close to the anticrossing, pairs of red and blue zones
can be observed, indicating the presence of a pair of UGRs radi-
ating in opposite directions. In opposition, near the crossing,
a single red dot is visible, meaning the apparition of only one
UGR.

The application of the model to this 2D geometry demon-
strates that it allows for analysis and understanding of multiple
parameters on the UGRs, thereby facilitating the design of
structures that support these types of resonances. In the next
section, we explore a fully 3D example.

4. APPLICATION TO A 3D STRUCTURE

One of the strengths of the model is its versatility. In the previous
section, we applied it to a 2D structure supporting two guided
modes. In this section, we apply the model to a 2D array of finite
3D cylindrical pillars, where we break both size and position
symmetries of the lattice [38]. This structure closely resembles
the one used in Ref. [33] for sensing experiments. In Ref. [33],
a good agreement between the experimental results and scat-
tering simulations was reported, using plane-wave incidence to
extract an extinction spectrum and identify resonances. Here,
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(a) (b)

(c)

Fig. 6. (a) 3D representation of the structure. (b) Dispersion of the guided Bloch modes in the z direction. The horizontal dashed lines indicate the
positions of the two studied TE-excited qBICs. The red curve (fifth line from the left) represents the main mode forming the low-λ qBIC. The blue
lines (second and fourth lines from the left) correspond to the two modes forming the high-λ qBIC. (c) Cut of the structure showing the small offset of
the cylinders.

(a) (b)

(c)

Fig. 7. (a) Extinction at normal incidence versus wavelength via a scattering simulation. Scattering electric field norm profile for (b) low-λ qBIC
and (c) high-λ qBIC.

we apply the multimodal method in order to understand the
qBICs in this device from another perspective and to work with
an experimentally feasible structure.

Each unit cell, see Fig. 6(a), has a length of ax = 408 nm
and a width of a y = 204 nm. The surrounding is considered
uniform with a refractive index n = 1.48 (which was created
with index-matching liquid in Ref. [33]), and the two cylinders
per unit cell have index n = 4.4. Here, we restrict ourselves to
nondispersive materials with a refractive index similar to those
in Ref. [33], so that the (Bloch) mode dispersion is purely due
to the geometry. The cylinders have a height of h = 90 nm and
radii of R1 = 57.5 nm and R2 = 70 nm, respectively. Both
cylinders are slightly offset from a square grid by 10 nm on the
x axis; see Fig. 6(c).

The double breaking of symmetry (in both size and position
of the cylinders) enables the emergence of multiple qBICs. Note
that only breaking the position symmetry typically does not
lead to qBICS, as inversion symmetry is conserved [38]. With
our model, the resonances are found in a frequency range that
permits up to seven guided modes of the transverse section, as
shown in Fig. 6(b), which shows the modes (with all polariza-
tions) as if the cylinders are infinitely long in the z direction and
kx = ky = 0. In contrast to the previous 2D section [with Bloch
modes of a 1D profile n(x )], here we cut the 3D cylinders in
the middle, leading to a 2D refractive index profile n(x , y ) [see
Fig. 6(c)]. The dispersion of the modes of this 2D PhC crystal

array, considered infinite along the z direction, is depicted in
Fig. 6(b). Although the multimodal method allows for all polar-
izations, we limit ourselves here to TE-excited qBICs, for which
the field is primarily oriented along y as shown in Fig. 6(a).

Figure 7(a) shows the extinction spectrum via COMSOL
scattering simulations of the structure, with TE excitation at
normal incidence. Two qBICs appear in the spectrum, with
extinction values approaching 1. Figures 7(b) and 7(c) display
the electric field profile on a cut at mid-height of the cylinders
for the two qBICs located at 698 nm (called “low-λ qBIC”) and
731 nm (“high-λ qBIC”), respectively.

By applying our model to this structure, we can see that
the nature of the two qBICs is different, e.g., via their decom-
position. The low-λ qBIC is mainly composed of a single
magnetic-dipole-type mode. The exact decomposition is 94%
of the primary mode indicated in red in Fig. 6(b), 5% of a sec-
ondary mode, and less than 1% of other modes. The profile of
the primary mode is visible in Fig. 8(a), showing a circulation of
the electric field in the cylinders, akin to a magnetic dipole. This
characterizes this resonance as a Fabry–Pérot-like qBIC.

To use the multimodal analysis, we divide the structure in two
halves, needed to compute the scattering–reflection matrices,
Su and Sd . Then one alternative way to obtain a field profile
of a mode is to inject the correct distribution of Bloch modes
[of the section n(x , y )] in one half of the structure. In this
way, by injecting directly the corresponding modes with their
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Guided modes Multimodal Eigensolver

Fig. 8. (a)–(c) Electric field norm profiles for the low-λ qBIC. (d)–(f ) electric field norm profiles for the high-λ BIC. (a) and (d) show guided
modes in the cylinder section. (b) and (e) show fields at mid-height of the cylinders using the multimodal method. (c) and (f ) show the profiles of the
same modes obtained using an eigensolver.

eigenvector amplitudes into the top half of the structure, we
get the profile of Fig. 8(b), plotted at the mid-height position
of the cylindrical pillars. The correspondence with the profiles
obtained in two other ways, i.e., by the scattering [Fig. 7(b)] and
by the eigensolver [using the complete structure, Fig. 8(c)], is
clear.

On the other hand, the high-λ qBIC consists of two modes
represented in blue in Fig. 6(b) with a composition of 79% of
the first mode and 21% of the second. Their profiles are shown
in Fig. 8(d), representing electric-dipolar-type modes localized
mainly in one of the cylinders. The presence in reasonable
quantity of at least two modes characterizes this resonance as
a Friedrich–Wintgen-type qBIC. Similar to the low-λ qBIC,
the profiles obtained by different methods correspond almost
perfectly with one another [see Figs. 7(c), 8(e), and 8(f )].

For both qBICs, one observes slightly more field inside the
cylinders via the guided modes [Fig. 8(a)] than in the other types
of profiles because the guided mode profiles are for an infinite
waveguide, whereas the other profiles are at the middle of the
finite cylinders (with interfering modes propagating back and
forth). It is also worth noting that we obtain a good match for
the wavelengths via the different methods (multimodal, scatter-
ing, and eigensolver), with a difference of approximately 3 nm
for the low-λ qBIC and about 15 nm for the high-λ qBIC.

An interesting aspect is the relatively large wavelength of these
qBICs, which is more than seven times larger than the height
(90 nm) of the structure. For a basic fundamental Fabry–Pérot
mode, one would think of the wavelength (in the material, or
effective) divided by 2. Here, the relatively short length for the
fundamental mode is due to the phase shift of the mode reflec-
tions and the stretching of the resonance into the layers above
and below. Indeed, for a single-mode Fabry–Pérot, one needs

2βh + 2ϕ = 2πm, (9)

where β is the propagation constant, ϕ is the reflection phase,
and m is an integer. The phase of the reflection in our model is
directly captured by the matrices Ru and Rd , nicely describing
the “thinness” of the modes.

In the end, the decomposition method offers a different way
to understand the resonances in this structure. In Ref. [33], dif-
ferent sensitivities to parameter modifications of the two qBICs
were reported, offering sensor possibilities. We describe in Ref.
[33] these behaviors via the percentage of energy located inside
versus outside of the cylindrical pillars. Here, we show that
the two qBICs have a different origin, with one being weakly
multimodal and the other highly multimodal. The nearly
monomodal qBIC stems from a magnetic-dipole guided mode,
with the electric field fairly outside the cylinders. In contrast, the
bimodal qBIC derives from two electric-dipole guided modes,
with a more confined field. This type of reasoning thus provides
an additional pathway to understand these and other types of
behaviors.

5. CONCLUSION

We present a multimodal model that focuses on Bloch modes
propagating in the out-of-plane direction of a PhC. We demon-
strate that it is possible to describe BIC and UGR resonances as
interactions between several modes reflecting back-and-forth in
the PhC. The coupling of these modes via the interfaces enables
destructive interference that can prevent radiation losses, either
from both sides of the PhC, for BICs, or from only one side, for
UGRs. The ability to quickly scan parts of a parameter space
forms a significant advantage in locating and designing the
resonances.

By applying the model to a 1D periodic structure with up-
down symmetry breaking, we show that the model identifies
asymmetric resonances, thereby enabling the rapid iden-
tification of UGRs oriented both upward and downward.
Furthermore, the detailed guided mode decomposition allows
one to understand in greater detail the mechanism behind these
resonances and the impact of various parameters. Additionally,
we demonstrate the model for a complex 3D structure, which
permits the coexistence of numerous modes, thus helping
to understand the nature of qBICs that were experimentally
observed in Ref. [33].

In the end, the versatility of this model allows application to
a wide range of structures, leading to a different way to classify
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and understand the resonances. It is therefore entirely feasible
to apply this method to structures hosting specific effects, such
as slot waveguides or second harmonic generation, in order
to enhance control over applications of BICs in lasers and
integrated devices.
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