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Abstract: Background/Objectives: Artificial intelligence (AI), particularly large language
models (LLMs), has demonstrated versatility in various applications but faces challenges
in specialized domains like neurology. This study evaluates a specialized LLM’s capability
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and trustworthiness in complex neurological diagnosis, comparing its performance to
neurologists in simulated clinical settings. Methods: We deployed GPT-4 Turbo (OpenAI,
San Francisco, CA, US) through Neura (Sciense, New York, NY, US), an AI infrastructure
with a dual-database architecture integrating “long-term memory” and “short-term mem-
ory” components on a curated neurological corpus. Five representative clinical scenarios
were presented to 13 neurologists and the AI system. Participants formulated differential
diagnoses based on initial presentations, followed by definitive diagnoses after receiving
conclusive clinical information. Two senior academic neurologists blindly evaluated all
responses, while an independent investigator assessed the verifiability of AI-generated
information. Results: AI achieved a significantly higher normalized score (86.17%) com-
pared to neurologists (55.11%, p < 0.001). For differential diagnosis questions, AI scored
85% versus 46.15% for neurologists, and for final diagnosis, 88.24% versus 70.93%. AI
obtained 15 maximum scores in its 20 evaluations and responded in under 30 s compared
to neurologists’ average of 9 min. All AI-provided references were classified as relevant
with no hallucinatory content detected. Conclusions: A specialized LLM demonstrated
superior diagnostic performance compared to practicing neurologists across complex clini-
cal challenges. This indicates that appropriately harnessed LLMs with curated knowledge
bases can achieve domain-specific relevance in complex clinical disciplines, suggesting
potential for AI as a time-efficient asset in clinical practice.

Keywords: artificial intelligence; large language models; neurological diagnosis; clinical
decision support

1. Introduction
Artificial intelligence (AI) has become an instrumental force across multiple sectors,

notably in healthcare [1] and biomedical research [2]. Within this expansive realm, large
language models (LLMs) have garnered attention for their proficiencies in natural language
processing (NLP). These models have demonstrated versatility in diverse, broad applica-
tions, most recently exemplified by the prominent advent of conversational agents [3–5].
However, their deployment in specialized scientific domains, particularly medicine, is dis-
tinctly challenging [6] due to the stringent constraints inherent to medical applications and
the nuanced, discipline-specific considerations such domains entail [7]. Neurology—with
its intricate clinical manifestations, neural substrates, and interdisciplinary integration—is
a prime example of a complex and rapidly evolving expanse of knowledge that may be
substantially embedded—and effectively encoded—in natural language. In practice, neu-
rologists skillfully elicit detailed physical examination findings, which they then integrate
with data from diverse diagnostic modalities through sophisticated clinical reasoning
pathways defining high-stakes medical management.

Hence, a salient challenge resides in fine-tuning LLMs to achieve domain-specific
relevance. Traditional fine-tuning methods are resource-intensive, requiring substantial
computational and human capital [8]. Consequently, these methods are often feasible only
for large-scale projects with considerable resources [9]. Another limitation of conventional
LLM implementation is interpretability and transparency in information processing [10]—a
critical requirement for verifiable information generation for medical and research purposes.
Furthermore, while modern LLMs have expanded context windows, they still face attention
degradation across long contexts, potentially limiting their effectiveness in complex, data-
rich environments typical of healthcare and research [11,12]. Here, we evaluate a specialized
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LLM’s capability and trustworthiness in complex neurological diagnosis, comparing its
performance to neurologists in simulated clinical settings.

2. Materials and Methods
2.1. AI System

Neura (Sciense, New York, NY, USA) is a solution deploying an LLM with custom pa-
rameters and prompt engineering on curated corpora with extended contexts for advanced
grounding through retrieval-augmented generation (RAG) [13]. This solution is predicated
on a dual-database architecture integrating both ‘long-term memory’ (LTM) and ‘short-term
memory’ (STM) components. The LTM serves as the repository for domain-specific knowl-
edge. It employs an agnostic, vectorized approach enabled by text embeddings generated
from parsed source texts [14]. The STM captures the setting and conversational history
between the user and the LLM, thereby adding a layer of contextual knowledge. The STM
is implemented using a non-relational database [15], ensuring real-time accessibility and
state persistence of conversational data. Information retrieval is optimized in speed and
accuracy through a single-stage filtering process, integrating vector and metadata indexes
into a unified structure [16] that integrates vector and metadata indexes into a unified
structure, enabling simultaneous semantic similarity matching and exact term identifica-
tion. This approach reduces computational overhead while maintaining context sensitivity
This dual-database architecture with LTM vectorization and STM context capture aims
to address attention degradation challenges in long clinical contexts. Source tracking is
enabled, culminating in actionable, standardized references for the end-user and ensuring
verifiability of answer accuracy. For this study, we deployed a state-of-the-art LLM, GPT-4
Turbo (OpenAI, San Francisco, CA, USA) [5], on a prototype corpus curated for clinical
neurology sourced from five comprehensive neurology textbooks [17–21], the neurologic
disorders section of Merck’s Manual (copyrighted) [22], and Wikipedia (open-source) [23]
(Figure 1).
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2.2. Diagnostic Challenges

Five representative clinical scenarios were adapted from peer-reviewed complex
cases [24–28] to mirror the clinical practice through a two-tiered diagnostic approach. These
cases were selected to represent diverse neurological subspecialties and encompass a spec-
trum of diagnostic complexity requiring the integration of clinical and paraclinical findings
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(Table 1). The first tier required formulating and justifying an exhaustive differential di-
agnosis based on initial clinical presentation and findings. In the second tier, conclusive
clinical information was provided to establish a definitive diagnosis (Table 2). We recruited
senior residents and board-certified neurologists from teaching hospitals. Neurologists
engaged in complex clinical reasoning to solve these diagnostic challenges, solely relying
on intrinsic knowledge in the first tier—external resources were permitted in the second
tier. All challenges were conducted via videoconferencing sessions, supervised by two
investigators who provided documents presenting the cases (Supplementary S1), initial
instructions, and procedural assistance. Answers with timing were recorded in text docu-
ments, which were subsequently collected and anonymized. AI undertook the challenges
based on the same documents provided to neurologists. Answers were time-stamped and
anonymized. Two senior academic neurologists, each responsible for residency training
and educational programs at their respective universities, independently evaluated the
answers, blinded to the involvement of AI as a participant. They employed a standardized
scoring sheet (Supplementary S2), assigning points for precise and justified diagnoses and
allowing bonus points for unexpected, relevant findings (Figure 2).

Table 1. Concise summaries of clinical presentations, neurologic fields, and final diagnoses for illus-
trative neurology cases demonstrating diagnostic challenges across diverse neurological disorders.

Case Summary Neurological Field Final Diagnosis

Case 1

An 84-year-old Chinese woman with
recurrent focal deficits, cognitive
decline, multifocal cerebral artery

constriction, and bilateral infarctions.

Neurovascular/neuro-oncology Intravascular lymphoma

Case 2

A 44-year-old woman with
hypothyroidism presenting with

cognitive decline, headaches,
confusion, and progressive

multifocal white matter lesions.

CNS inflammation diseases Susac disease

Case 3

A 50-year-old woman with systemic
lupus erythematosus presenting with

acute progressive left-sided
weakness and sensory deficits, with
imaging showing rapidly worsening

right-hemispheric lesions.

Demyelinating diseases
Neuromyelitis optica

spectrum
disorder (NMOSD)

Case 4

A 65-year-old man with diabetes
presenting with progressive

asymmetric weakness, sensory
deficits, areflexia, and weight loss.

PNS inflammation diseases Neurosarcoidosis

Case 5

A 55-year-old man with extensive
psychiatric history presenting with

subacute-on-chronic cognitive
decline, dysphagia, involuntary
hyperkinetic movements, gait

instability, and chronic transaminitis.

Movement disorders Neuroacanthocytosis
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Figure 2. Overview of the simulated clinical diagnostic challenge: a videoconference setup for clinical
scenarios simulations with human neurologists and specialized AI through grounding, parametriza-
tion, and prompt engineering; (a) shows the two-tiered diagnostic workflow from initial clinical
presentation to differential diagnosis (using intrinsic knowledge only for human neurologists), fol-
lowed by conclusive clinical information leading to definitive diagnosis (with external resources
allowed for human neurologists); (b) represents the blind evaluation process where expert neurol-
ogists performed standardized scoring of anonymized responses from both human participants
and AI.

Incorrect or risky conclusions incurred deductions, with a two-point loss yielding
a null question score. Null scores from both evaluators constituted question failure. If
multiple participants achieved the maximum score for a given question, the evaluator
chose a preferred answer; conversely, if a single answer attained the maximum score, it
was then defined as the highest score. In parallel, an independent investigator assessed the
verifiability and reliability of the AI-generated information. This was achieved by classi-
fying the references provided within the answers as relevant, irrelevant, or hallucinatory
(i.e., incorrect or nonexistent) (Supplementary S3).
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Table 2. Illustrative example of diagnostic workflow and scoring (Case 5). Structured clinical scenario
highlighting the diagnostic reasoning process, scoring criteria for differential diagnoses (tier 1) and
the final diagnosis (tier 2), demonstrating the study methodology.

Initial Presentation Differential Diagnosis (Tier 1) Ancillary Exams and Results Final Diagnosis (Tier 2)

- Hyperkinetic
involuntary movements
affecting trunk and
limbs, inability to
suppress movements;

- Chronic psychiatric
conditions (PTSD,
schizophrenia,
anxiety, depression);

- Chronic dysphagia,
regurgitation, elevated
transaminases (AST:
304 U/L, ALT: 154 U/L);

- CK elevation (4753 IU/L,
baseline ~600–800 IU/L);

- MRI: bilateral
caudate atrophy.

Evaluators awarded points
(max 1 each) for justified
differential diagnoses:

- Basal ganglia structural
disorders
(vascular, demyelinating);

- Toxic-metabolic disorders
(electrolyte derange-
ments, hyperglycemia);

- Drug-induced
(antipsychotics,
tardive dyskinesia);

- Systemic autoimmune
(lupus, APLS);

- Hereditary (Huntington’s,
neuroacanthocytosis,
Wilson);

- Paraneoplastic
(anti-CRMP5/NMDA).

Penalties for aberrant/harmful
hypotheses (max − 2). Bonuses
for plausible, justified
alternative diagnoses (max + 2).

- Serum copper and
ceruloplasmin normal;

- Extensive
gastroenterologic and
rheumatologic evalua-
tions unrevealing;

- MRI brain: bilateral
caudate atrophy.

Neuroacanthocytosis
(3 points awarded).
(Alternative, less accurate
diagnosis, Huntington’s:
1 point.)
Penalties possible for aber-
rant/harmful conclusions.

2.3. Statistical Analysis

Descriptive statistics were calculated for the scores and times. For normalization, the
maximum possible combined score for each question was determined by summing the
highest score assigned by each evaluator. For any participant, we calculated the combined
score from both evaluators for each question and then divided this by its maximum
possible combined score. These resulting normalized scores were expressed as percentages,
indicating the proportion of the maximum possible points each participant collected on a
given question. We used the intraclass correlation coefficient (ICC) to measure consistency
agreement for inter-rater reliability between evaluators. We compared the performance
of the AI with that of neurologists using a linear mixed-effects model. Before analysis,
we used residual plots, QQ plots, and Shapiro–Wilk tests to assess the assumptions of
normality, homoscedasticity, and random effect structure. This model utilized average
scores derived from the two evaluators as the dependent variable. Participant type (AI vs.
human) was treated as a fixed effect, while variability across questions was modeled as
random. The significance of the fixed effect was corroborated using an ANOVA with
Satterthwaite’s method for approximating degrees of freedom. We employed a Monte
Carlo simulation (MCS) of 10,000 iterations to estimate the probabilities for AI achieving
observed thresholds of maximum scores, highest scores, and preferred answers among
its 20 scores by chance—assuming a uniform distribution of scores within each question’s
specific range across all participants. We set our alpha level threshold at 0.05 to determine
statistical significance using two-tailed tests. All computations and visualizations were
performed using R version 4.1.3, with the packages ‘afex’, ‘eulerr’, ‘ggplot2’, ‘irr’, ‘lme4’,
and ‘lmertest’.
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3. Results
Of the 13 neurologists, 8 were board-certified. Challenges were conducted between

March and October 2023. ICC(C,2) was found to be significant at 0.767 (95% CI [0.675, 0.833],
F(139,139) = 4.3, p-value < 0.001). The residuals did not significantly deviate from normality
(W = 0.99327, p = 0.753, Shapiro–Wilk test) as observed on the QQ plot, and plots of resid-
uals versus fitted values supported homoscedasticity (Supplementary Figures S1 and S2).
Additionally, random effects for participants and questions showed substantial variance
(0.3789 and 0.3587, respectively, with a residual variance of 1.0584). Across all questions, AI
achieved a significantly higher normalized score of 86.17% versus 55.11% for neurologists
(SD = 14.81, range = 30.85–80.85; averages of 66.38% for residents and 48.07% for board-
certified physicians—estimate = 1.46, Std. Error = 0.39, df = 129, t = 3.75, p < 0.001, linear
mixed-effects model, and F(1,129) = 14.021, p < 0.001, type III ANOVA). For differential
diagnosis questions, AI achieved a normalized score of 85% versus 46.15% for neurologists
(SD = 15.24, range = 26.67–78.33; averages of 58.45% for residents and 39.40% for board-
certified physicians). For final diagnosis, AI achieved a normalized score of 88.24% versus
70.93% for neurologists (SD = 17.36, range = 35.29–97.06; averages of 80.5% for residents
and 64.87% for board-certified physicians) (Figure 3). AI performance notably decreased
for differential diagnosis in Q2.1 and final diagnosis in Q4.2. In Q2.1, AI proposed broad
diagnoses, including neoplastic and leukodystrophic conditions that evaluators deemed
aberrant. In Q4.2, AI initially proposed neurosarcoidosis in the differential diagnosis but
ultimately favored paraneoplastic neuropathy, a choice similarly made by most neurolo-
gists; this misalignment resulted in a null score due to the conservative scoring approach of
one evaluator.
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Each axis corresponds to a specific question, designated as Qx.y (where ‘x’ is the case number and ‘y’
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The mean number of null scores and question failures was 2 and 0 for AI and 2 and
0.46 for neurologists (1 and 0.2 for residents and 2.625 and 0.625 for board-certified physi-
cians). AI obtained 15 maximum scores (p-value < 0.001, MCS) in its 20 evaluations, 6 of
the 8 highest scores (p-value < 0.001, MCS), and 4 of the 11 preferred answers from both
evaluators (p-value = 0.03, MCS) (Figure 4).
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In comparison, the best neurologist, a resident, obtained a normalized score of 80.85%,
with nine maximum scores, including two highest scores from one evaluator without a
preferred answer and one null score. Neurologists’ mean response times for differential and
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compared to AI’s mean times of 28.8 and 19.2 s, respectively (Figure 5).
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All references provided by the AI were classified as relevant, and the generated
information was deemed accurately derived from the cited sources. Despite the diverse
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corpus including Wikipedia and Merck’s Manual, source tracking revealed the AI system
exclusively retrieved information from the peer-reviewed neurology textbooks for all
diagnostic challenges. No instances of hallucinatory content were detected.

4. Discussion
In this blinded, controlled, comparative study, AI demonstrated superior diagnos-

tic performance compared with a cohort of 13 neurologists across five complex clinical
challenges, as evaluated by two academic neurologists. It achieved a significantly higher
normalized score of 86.17% against the neurologists’ 55.11%, with 15 maximum scores
(including 6 highest scores) out of 20 evaluations. Across various levels of experience
(residents and board-certified physicians) and types of diagnosis (differential and final), the
AI consistently outperformed the neurologists. Interestingly, senior residents outperformed
board-certified neurologists, a trend that might be attributed to the broader, ongoing train-
ing of the former, contrasting with the deep but narrow specialization of the latter. As this
may reflect a judicious case selection for representing general neurology, it also raises the
question of artificial and human acumen in niche or emerging domains of expertise.

In the diagnostic challenges, each tier encapsulated distinct aspects of clinical practice:
the first tier encompassed bedside diagnosis, utilizing intrinsic knowledge and initial
clinical presentation, while the second tier, extending to broader clinical investigation,
allowed the inclusion of external resources for definitive diagnosis. Consequently, the
gap between neurologists’ normalized scores for differential (46.15%) and final diagnosis
(70.93%) indicates that external resources likely enhance diagnostic accuracy beyond mere
reliance on personal knowledge. In contrast, AI performed well in both differential (85%)
and final diagnosis (88.24%), demonstrating capability in two distinct yet complementary
diagnostic tasks: the substantiated formulation of a comprehensive array of hypotheses
and the decisive synthesis of a conclusive diagnosis. Moreover, AI manifested perspicuity
and cogency, with a significant record of four preferred answers selected by both evaluators.
Nonetheless, neurology is a discipline reliant on collaborative, multidisciplinary problem-
solving. In turn, comparing AI with neurologists’ highest individual scores reveals a
nuanced picture. In differential diagnosis, both the best neurologists and AI surpassed
each other on two occasions. Remarkably, at least one neurologist achieved perfect scores
for all final diagnoses, surpassing AI in two cases. Of course, using the highest individual
scores as a proxy for collective intelligence does not fully capture the complex dynamics
that influence the collective endorsement of individual contributions. In addition, AI’s
rapid generation of differential and final diagnoses, typically within one minute, contrasts
the average times of 10 and 9 min, respectively, taken by neurologists. This disparity,
particularly considering the neurologists’ consistent reliance on external resources for final
diagnoses, underscores the potential of AI as a time-efficient and resourceful asset in clinical
practice, especially for individual clinical endeavors. It suggests workflow optimization
potential, allowing physicians to focus more on patient interaction and treatment planning,
though implementation frameworks must ensure AI remains a complementary tool that
enhances rather than replaces clinical judgment.

Regarding AI’s null scores, the first evaluator incurred a two-point deduction on
a differential diagnosis challenge because the two least important diagnoses proposed
were deemed aberrant (Supplementary S4). Otherwise, AI’s answer would have received
a score of 4 (out of 5 possible points based on this evaluator’s scoring pattern for this
question). Notably, the answer included the correct final diagnosis. This outcome likely
resulted from the AI’s prompt engineering strategy, inspired by ‘surgical sieves’ [29] to
systematically evaluate various pathologies, leading to the listing of supernumerary diag-
noses. Paradoxically, this reveals that while this algorithmic design enables the LLM to
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emulate a human approach to diagnosis, it lacks innate human nuance in selecting relevant
diagnoses—an intuition not emerging from our solution architecture and LLM’s founda-
tional weights. Context-sensitive filtering and adaptive mechanisms of prompt engineering
could better prioritize diagnoses based on clinical relevance while maintaining compre-
hensive differential coverage—addressing the gap between algorithmic thoroughness and
human clinical intuition in diagnostic decision-making. The second evaluator attributed
a null score on a final diagnosis challenge, applying a deliberately conservative scoring
approach—i.e., recognizing only a unique option as granting points (Supplementary S4).
While AI initially proposed the correct diagnosis in its differential, it did not retain it in
its final diagnosis. Interestingly, the AI’s final diagnosis aligned with most neurologists
(11 out of 13 human participants), leading to the highest number of null scores on a question
record—questioning AI’s ability for original contributions.

4.1. Rationale

Since the public introduction of LLMs, many studies have compared AI and human
performance. As this surge emphasizes the potential of generalist models, broadening
accessibility for users of varying expertise, it also prompts scrutiny of their reliability in
specialized contexts [30,31]. Indeed, these models were often applied to large datasets and
within paradigms distant from real-world intricacies. On the other hand, seminal works
have demonstrated promising results from large-scale projects conducted by major tech-
nology corporations, employing resource-intensive fine-tuning methods in sophisticated
protocols [9,32]. However, many of these studies yielded outcomes that proved difficult to
interpret [33]. We posited that a state-of-the-art foundational LLM, adeptly harnessed to a
curated and indexed corpus of knowledge, can achieve domain-specific relevance in a com-
plex clinical discipline. In parallel, we pursued controllability, verifiability, and scalability
for mitigating influences and biases from the model’s pre-trained weights, enabling source
tracking and advancing accessibility for clinicians and researchers. Testing this hypothesis,
we conducted an in-depth, qualitative, and quantitative comparison of human and artificial
diagnostic acumen, perspicuity, and cogency in a naturalistic setting. The findings support
our rationale by confirming effective information synthesis from relevant selections of
aptly cited sources and asserting the absence of hallucinatory content. In addition, this
solution aims for versatility and accessibility. Relying on open-source technologies, it can
be implemented on multiple foundational LLMs (e.g., GPT [34], Llama [35], and the Mistral
series [36]). Its data-agnostic architecture accommodates numerous file formats for building
a curated corpus.

4.2. Limitations

The limited cohort of neurologists and the select set of clinical cases do not fully
represent the spectrum of neurological expertise or the complexities of clinical practice,
potentially limiting the generalizability of the findings and constraining the solution’s
broader applicability. Regarding the reliability of the AI-generated information, our two-
fold approach—first categorizing the relevance of provided references and then applying
binary classification of information accuracy—does not capture the subtle influences of
the LLM’s constitutional weights. Indeed, the foundational LLM integral to our frame-
work is inherently subject to biases [37,38], a byproduct of their data-driven training that
lies beyond our control. This issue is exacerbated by proprietary and closed-source mod-
els [39] which also exposed to overfitting. Biases do not spare the corpus we employ [40],
despite—and, in some aspects, because of—our control over its curation. Interestingly,
despite access to diverse sources, the system’s exclusive retrieval from peer-reviewed text-
books suggests an inherent selection mechanism favoring authoritative academic content.
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However, even rigorously vetted academic sources harbor inherent biases, emphasizing
the critical importance of transparent source attribution that enables users to evaluate
information provenance. This point and the curation and maintenance of the corpus itself
were beyond the scope of this study. It raises intellectual property considerations and
concerns about the quality and up-to-dateness of the information. As this research is
nascent, we focused on solution development rather than its optimization. The system’s
performance can vary based on several factors, including the fine-tuned LLM for embed-
dings, the foundational LLM, their parameters, the prompt engineering strategies, and
the structure and composition of the LTM and STM databases. The prototype corpus was
assembled from raw, unprocessed textual data to uphold methodological neutrality and
facilitate the agnostic, versatile approach we aimed to investigate. It remains plausible
that text preprocessing techniques optimized for LLMs/NLP could enhance the system’s
performance. Also, we purposely deployed our solution on a limited but cohesive corpus of
knowledge on clinical neurology. Further investigation is required to assess the solution’s
ability to manage a diverse and extensive corpus, including heterogeneous and conflicting
sources, in a manner that effectively and transparently meets the end-user’s needs and
objectives. Recently, multimodal AI models [41,42], which can integrate natural language
information with other sensory data such as images and audio, were introduced. This
framework is not yet equipped to deploy these models. Finally, evaluating the solution’s
usability for non-expert users was beyond the scope of this study and will be the focus of
subsequent research.

4.3. Perspectives

Humans have built, shared, and accessed knowledge in evolving ways. Transitioning
from orality to literacy, and from analog to digital media, these evolutions have funda-
mentally shaped our comprehension of the world. Throughout these transitions, natural
language remains central. Its adaptive and symbolic nature enables abstract thought and
complex communication. With AI, the human ability for information integration and
generation has been challenged—LLMs’ prowess for NLP is humbling in this regard. It
elucidates the singular role of natural language in structuring knowledge derived from
various modalities, media, and agents. This prompts reconsideration of complex tasks
once thought uniquely human. While LLMs excel at information-intensive tasks, they
lack general reasoning capabilities [43–47] and are grounded in human-derived data. This
raises questions about their efficacy in scenarios requiring original thinking or high-order
cognition and about potential bias propagation [48].

LLMs indicate a new phase of human–machine integrative intelligence, with profound
implications for cognition and knowledge. In medicine, LLMs can complement clinicians’
experiential understanding by integrating patient histories, physical examinations, and test
findings with vast medical knowledge. This emphasizes the need for human oversight and
contextual interpretation.

Explainable AI (XAI) and specialized, purpose-built interfaces (Figure 6) will be crucial
for ethical integration and utility evaluation in high-stakes fields. It is imperative to involve
and empower clinicians and scientists in LLM-driven applications and research, developing
accessible tools and consensus-based standards aligned with medical needs and priorities.
This approach ensures that as our tools become more sophisticated, they remain controllable
and serve our purposes rather than obfuscate them.
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5. Conclusions
In our comparative analysis, a specialized LLM demonstrated superior diagnostic

performance against practicing neurologists in complex neurological cases, highlighting its
potential as a time-efficient clinical asset. The solution’s architecture employing RAG on a
curated corpus achieved domain-specific relevance while maintaining verifiability through
source tracking. Our findings suggest a promising trajectory for human–machine integra-
tive intelligence in healthcare. This research underscores the importance of developing
accessible, transparent AI tools that complement rather than replace clinical expertise. As
we advance these technologies, maintaining human oversight and aligning development
with medical priorities will ensure AI systems remain valuable tools that enhance rather
than diminish the essential human dimensions of healthcare.
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mdpi.com/article/10.3390/brainsci15040347/s1, Supplementary S1. Clinical cases; Supplementary S2.
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Normal Q-Q plot; Figure S2: Plot of residuals. References [49–53] are cited in the supplementary
materials.
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