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Abstract

We discuss boson stars and black holes with scalar hair in a model where the complex scalar field
forming the boson star and the hair on the black hole, respectively, interacts with a real scalar field via a
Hénon-Heiles-type potential. We demonstrate that black holes and boson stars carrying only a real scalar
field with cubic self-interaction are possible and that black holes with both real and complex scalar field
branch off from these solutions for sufficiently large interaction between the two fields and/or sufficiently
large horizon radius rh. The latter possess lower mass for the same choice of coupling constants than
the former, however seem to be thermodynamically preferred only for high enough temperature.

1 Introduction

Boson stars are theorised compact objects, the result of gravitationally bound compact collections of bosonic
particles which mediate an outward scalar field [1, 2, 3, 4, 5]. The non-gravitating counterparts of these
solutions are often referred to as Q-balls [6], non-topological solitons formed of a complex scalar field with
harmonic time-dependence. These solitons exist only for (non-renormalizable) self-interaction potentials of
(at least) sextic order. This changes when considering boson stars, where only a mass term for the scalar
field is required. Following studies of topological solitons and the possibility of inserting black holes into
the centres of these objects thus constructing hairy black holes (see e.g. the construction of these solutions
in a model with magnetic monopole solutions [7, 8]) it was considered that placing a black hole inside the
centre of a boson star might lead to a black hole with complex scalar hair. However, this does not works
when the radial pressure associated to the scalar field is larger than the pressure in angular direction and
when the weak energy condition is fulfilled [9]. For the spherically symmetric, non-rotating boson star with
energy-momentum content fulfilling the weak energy condition the radial pressure is always larger than the
pressure in angular direction and hence black holes cannot carry complex scalar hair. However, spherically
symmetric, non-rotating black holes with complex scalar hair can e.g. be constructed 1 when the model
possesses a U(1) gauge field [10, 11] allowing for the radial pressure to be smaller than the pressure in
angular direction. Another possibility is to consider rotating black holes [12]. In both of the cases discussed,
a so-called synchronisation condition has to be fulfilled which assigns either the electric potential at the
horizon or the horizon velocity to the frequency of the complex scalar field, respectively.

1We do not discuss extended gravity models here.
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In this paper, we discuss another possibility: black holes which carry interacting complex and real scalar
hair that interact via a Hénon-Heiles potential. In our model, the weak energy condition can be violated for
certain choices of the coupling constants. Black holes with real scalar hair have recently been constructed
in a model with a quartic, asymmetric potential [13] and in a model where a U(1) gauged complex scalar
field interacts with a real scalar field via a potential that is quadratic in the complex and quartic in the real
scalar field [14], respectively.

Here, we will choose a scalar potential which describes the interaction between a real and complex scalar
field inspired by the Hénon-Heiles potential from classical mechanics [15]. This potential has at most cubic
terms in the fields, depends on two masses and two coupling constants. It has been shown to exhibit solitons
[16] and Q-ball solutions to this model have been examined as well [17]. It is through coupling to gravity
that we extend these solutions in the present work.

Our paper is organised as follows: in Section 2, we give the model and the equations of motion resulting
from a spherically symmetric Ansatz. In Section 3, we discuss scalarised boson stars, i.e. boson stars that
carry a real scalar field as well as solitonic objects made off only a real scalar field, while in Section 4, we
discuss the hairy black hole solutions. We conclude in Section 5.

2 The model

We consider the following action that describes a complex scalar field non-minimally coupled to a real scalar
field in curved space-time:

S =

∫
d4x

[
R

16πGN
+ Lm

]
(2.1)

with the matter Lagrangian density given by that of two scalar fields (one complex, one real) interacting :

Lm = −∂µϕ
∗∂µϕ− 1

2
∂µξ∂

µξ − U(|ϕ|, ξ) , U(|ϕ|, ξ) = m2
1ϕ

∗ϕ+
1

2
m2

2ξ
2 − g1ξϕ

∗ϕ− g2ξ
3 (2.2)

where R is the Ricci scalar, G Newton’s constant, ϕ the complex-valued scalar field and ξ the real-valued
scalar field. m1 and m2 are the masses of the complex and real scalar field, respectively, and g1 and g2
are the interaction and self-interaction couplings, respectively. The original Hénon-Heiles model is such
that g2 = −g1/3 [15], but generalized forms have been extensively studied in classical mechanics, see e.g.
[18] for a review of soliton-like solutions in generalized Hénon-Heiles potentials. Here we assume that all
parameters belong to R+

0 . The model has recently been studied in flat space-time [17]. The equations that
result from the variation of the action (2.1) with respect to the metric and matter fields are the Einstein
equation (α = 4πGN , c = 1 in the following):

Gµν =
8πGN

c4
Tµν = 2αTµν (2.3)

with energy-momentum tensor Tµν = gµνLm − ∂Lm

∂gµν given by

Tµν = −gµν

[
1

2
gσρ (∂σϕ

∗∂ρϕ+ ∂ρϕ
∗∂σϕ+ ∂σξ∂ρξ) +m2ϕ∗ϕ+

1

2
M2ξ2 − g1ξϕ

∗ϕ− g2ξ
3

]
+ ∂µϕ

∗∂νϕ+ ∂νϕ
∗∂µϕ+ ∂µξ∂νξ (2.4)

as well as the Klein-Gordon equations for the two scalar fields(
□− ∂U

∂|ϕ|2
)
ϕ = 0 , □ξ − ∂U

∂ξ
= 0 . (2.5)
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We are interested in spherically symmetric solutions and hence use spherical coordinates (t, r, θ, φ). The
Ansatz then reads

ϕ = eiωtF (r)√
2

, ξ = G(r), (2.6)

for the matter fields with F (r) and G(r) real-valued functions, and

ds2 = −N(r)σ(r)2dt2 +
1

N(r)
dr2 + r2dθ2 + r2 sin2 θdφ2 , N = 1− 2m(r)

r
(2.7)

for the metric. m(r) is the mass functions. The equations that result from the variation of the action with
respect to the matter and metric field functions read:

N ′ = −αr

(
m2

1F
2 +m2

2G
2 − g1GF 2 − 2g2F

3 +
ω2F 2

Nσ2
+NF ′2 +NG′2

)
+

1

r
− N

r
, (2.8)

σ′

σ
= αr

(
F ′2 +G′2 +

αrF 2ω2

N2σ2

)
, (2.9)

F ′′ =
1

N

[((
m2

1 −
ω2

Nσ2

)
− g1G

)
F −

(
N ′ +

σ′N
σ

+
2N

r

)
F ′

]
, (2.10)

G′′ =
1

N

[(
m2

2 − 3g2G
)
G− g1F

2

2
−

(
N ′ +

σ′N
σ

+
2N

r

)
G′

]
, (2.11)

where the prime here and in the following denotes the derivative with respect to r. In order to obtain
asymptotically flat, finite energy solutions, we need to require the following conditions at infinity:

F (r → ∞) → 0 , G(r → ∞) → 0 , σ(r → ∞) → 1 . (2.12)

Other boundary conditions are determined by the object in question. We examine two cases: globally regular
solutions as well as black holes. In the former case boundary conditions will be imposed at r = 0 and in the
black hole case they will be imposed at the horizon r = rh. We have solved the differential equations (2.8) -
(2.11) numerically using a collocation method with adaptive grid scheme [19, 20].

2.1 Physical quantities

The model is invariant under a global U(1) symmetry ϕ → eiχϕ, χ ∈ R. The corresponding locally conserved
Noether current jµ reads :

jν = i (ϕ∗∂νϕ− ϕ∂νϕ∗) =
ωF 2

Nσ2
. (2.13)

Hence, the solutions possess a conserved charge QN given by

QN =

∫ √−g jtd3x = 4ωπ

∫ ∞

r0

F 2r2

Nσ
dr (2.14)

where r0 = 0 for boson stars and r0 = rh for black holes. This has frequently been interpreted as the number
of scalar bosons making up the boson star and the scalar cloud surrounding the black hole, respectively.

In the probe limit, i.e. when α = 0, we compute the mass of the solution via the spatial integral of the
energy density E = −T t

t as follows:

M = −
∫ √−g T t

t d
3x = 4π

∫
r2σ

[
ω2F 2

2Nσ2
+

N

2

(
F ′2 +G′2)+ m2

1F
2

2
+

m2
2G

2

2
− g1GF 2

2
− g2G

3

]
dr (2.15)
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while for α ̸= 0, we use the ADM mass such that M = MADM = m∞/α with m∞ = m(r → ∞).
For black holes, we can further define thermodynamical quantities. The temperature of a static black

hole is given by TH = κs/(2π) with surface gravity κs :

κ2
s = −1

4

(
gttgij

∂gtt
∂xi

∂gtt
∂xj

)
r=rh

=

(
N ′|r=rhσ(rh)

2

)2

. (2.16)

The entropy S and free energy F are given as follows:

S =
Ah

4
= πr2h , F = M − THS (2.17)

where Ah is the surface area of the horizon.

3 Scalarized boson stars

In the following, we will discuss the boson stars that are made up out of the complex scalar field ϕ. We
will show that in our model, these boson stars can carry additional real scalar fields. Next to the boundary
conditions (2.12) we need to impose boundary conditions at r = 0 to ensure that we find globally regular
solutions to the equations (2.8)-(2.11). These read:

N(0) = 1 , F ′(0) = 0 , G′(0) = 0 . (3.18)

We set m1 = 1,m2 = 2 and g2 = 1 in the rest of this section. This can be done without loss of generality
because appropriate rescalings of the coordinates and functions can be applied.

For α = 0, the Q-ball solutions of this model have been discussed in detail [17]. Here, we will focus
on investigating the effect of backreaction, i.e. we will choose different values of α and determine how the
properties of the solutions change. In Fig. 1 we show typical solutions for different values of α. We observe
that the minimal value of N(r) as well as the value of the metric function σ(r) at r = 0 decreases when
increasing α from zero. We also observe that the scalar field functions become more compact in the sense
that the fall-off of the functions happens at smaller r. The value of F (0) increases with increasing α, while
the value of G(0) is fixed in our calculations. The solutions correspond to different values of ω: ω = 0.9888,
ω = 0.9527, ω = 0.9107, and ω = 0.8525 for α = 0, α = 0.01, α = 0.025 and α = 0.05, respectively. This
means that keeping G(0) fixed leads to a decrease in the frequency of the complex scalar field when increasing
the gravitational backreaction.

We will now examine the qualitative changes in the boson star solutions for the three cases of g1 = g2,
g1 > g2 and g1 < g2. The relative value of the couplings g1 and g2 have a clear impact on the system, an
observation that has already been made for the corresponding flat space-time solutions [17].

3.1 The case g1 = g2

We first examine the range of solutions in the g1 = g2 case. Our results are shown in Fig. 2, where we give
the values of F (0) and G(0) in function of ω. Note that due to the boundary conditions (3.18) imposed
F (0) = 0 implies F (r) ≡ 0. For α = 0, non-trivial solutions exist on the interval ω ∈ [ωmin, ωmax] where
the maximal possible value of ω = ωmax = 1. We find that for each ω exactly one solution exists and that
the central value of F (0) is maximal at some intermediate value of ω, while G(0) is a strictly increasing
function when decreasing ω with G(0) = 0 at ωmax = 1. When increasing α from zero, we observe that while
ωmax = 1, the minimal value of ω, ωmin, decreases with increasing α. Moreover, the maximal value of F (0)
now corresponds to the minimal value of ω = ωmin and the second branch of solutions reaches F (0) = 0 at
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Figure 1: Metric functions N(r) (top left), metric function σ(r) (top right) as well as the scalar field functions
F (r) (bottom left) and G(r) (bottom right), respectively, for G(0) = 0.5, g1 = g2 = 1 and different values of
the gravitational coupling α.

ωcr > ωmin. At the same time, G(0) increases from 0 at ω = ωmax = 1 to ω = ωmin and then continues to
increase on the second branch of solutions when increasing ω from ωmin to ωcr. G(0) reaches its maximal
value when F (0) = 0 on the second branch of solutions. For increasing α the difference between ωmin and
ωcr increases such that the two branches in F (0) intersect at some value of ω which is smaller than ωcr and
larger than ωmin. We see no such intersection for G(0). In Fig. 3 we show the two solutions that exist for
the same choice of all parameters of the model: α = 0.011, ω = 0.946 and g1 = g2 = 1. Branch 1 here refers
to the branch that starts at ω = 1, while branch 2 is the branch that ends at ωcr. Clearly, the solutions
are different. The central values of the scalar fields, F (0) and G(0), are smaller for the solutions on branch
1 as compared to those on branch 2. Moreover, the minimal value of N(r) as well as the central value of
the metric function σ(r), σ(0), is smaller on branch 1 as compared to branch 2. This suggests a stronger
curvature of space-time for the solutions on branch 1.

In Fig. 2 (bottom left), we show the mass M of the solutions in function of ω for different values of α.
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In the α = 0 limit, the mass diverges at ω = 1, while it tends to zero at ωmin = ωcr. For α ̸= 0, this changes
and the mass tends to zero at both ωmax as well as at ωcr. This is a well known phenomenon for boson stars
that does not change in the presence of the additional real scalar field. In Fig. 2 (bottom right) we show the
ratio M/QN , which can be thought of as the energy per bosonic particle, in function of QN. We find that for
α = 0, this ratio is always larger than unity and that QN tends asymptotically to unity from above. When
α > 0, QN has a finite maximal value which decreases with increasing α. We approach the limit M/QN = 1
from M/QN < 1 with a doubling back of the curve. This is a crucial result. It demonstrates that in our
model we have bound states. This indicates that these boson stars are stable with respect to the decay into
QN individual scalar bosons.
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Figure 2: The central value of the complex scalar field F (0) (top left) and the central value of the real scalar
field G(0) (top right) in function of ω for different choices of α and g1 = g2 = 1 (colour coding as in bottom
figures). The mass M in function of ω (bottom left) and the ratio of the mass and the Noether charge M/QN

(bottom right) in function of the Noether charge QN for different choices of α and g1 = g2 = 1.
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Figure 3: We show the two solutions that exist for the same values of the parameters with α = 0.011,
ω = 0.946 and g1 = g2 = 1: branch 1 (black) and branch 2 (blue). The metric functions N(r) (solid) and
σ(r) (dashed) are shown on the left, while the scalar field functions F (r) (solid) and G(r) (dashed) are shown
on the right.

3.2 The case g1 ̸= g2

We will first discuss the case g1 > g2 = 1. In [17] it was shown that the solutions exist on an interval in
ω ∈ [ωmin : ωmax] with ωmax = 1. Increasing g1 from unity it was found that the minimal value of ω = ωmin

decreases, i.e. that a stronger coupling between the complex and real scalar field allows the solutions to exist
for smaller values of the frequency ω. We confirm this result and find that the qualitative pattern does not
change significantly when including backreaction.

This can be seen in Fig. 4, where we give F (0) and G(0), respectively, as function of ω for α = 0.2 and
different values of g1. We find that ωmin = 0 for sufficiently large g1. The figure demonstrates that while
for g1 = 2.1, F (0) becomes zero at a finite value of ω, the qualitative pattern changes for larger g1. In this
case F (0) = 0 only at ω = 1, while F (0) > 0 at ω = 0. These limiting solutions have QN = 0. Increasing g1
further leads to an increase of F (0) and a decrease of G(0). We also find that, as in the g1 = g2 case, bound
state solutions exist.

Our results for the case g1 < g2 = 1 are shown in Fig. 5 for α = 0.025. Qualitatively similar to the
α = 0 limit, two branches exist in ω which meet at ωmin. We find that ωmin increases with decreasing g1,
i.e. solutions exist on smaller intervals of ω when decreasing g1 from unity. The second branch of solutions
always ends at F (0) = 0 with G(0) ̸= 0 which is different to the case g1 > g2. However, we see now also a
crucial difference to the α = 0 case. We find that increasing α increases both ωmin as well as the maximal
value of F (0) for any g1 < g2. Moreover, decreasing g1 at fixed α leads to an increase in ωmin, which is
the opposite of what was observed for α = 0, where decreasing g1 decreases ωmin. In comparison to the
g1 > g2 case, the range of ω for which solutions exist appears more sensitive to α and we were able to obtain
solutions for larger values of α.

We also find that for g1 < g2 we can produce bound states and - since we can increase α to larger values
- that these bound states are stronger bound as compared to the g1 ≥ g2 case. For α = 0.025 we find e.g.
that the minimal value of M/QN is approximately 0.92.
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4 Scalarized Black Holes

We impose a horizon at r = rh > 0 with N(rh) = 0. We require all matter fields to be regular at rh and
hence need to impose the following boundary conditions:

N ′F ′∣∣
r=rh

=
(
m2

1 − g1G
)
F
∣∣
r=rh

(4.19)

N ′G′∣∣
r=rh

=

((
m2

2 − 3g2G
)
G− g1F

2

2

)∣∣∣∣
r=rh

(4.20)

Moreover, as the scalar field equations demonstrate, we need to choose ω = 0 making the complex scalar
field real. These three boundary conditions above, along with the three already provided in (2.12), give
the required six boundary conditions to solve the equations of motion (2.8) − (2.11). There are now six
parameters: m1, m2, α, g1, g2 and rh. We will comment on appropriate scalings that allow to set some of
these values to fixed values without loosing generality in the following.

4.1 Probe limit

For α = 0 the gravity equations have a simple solution: σ ≡ 1 and N(r) = 1−rh/r. This is the Schwarzschild
solution and we will first study the two interacting scalar fields in the background of this space-time.

4.1.1 The case F ≡ 0

As is easy to see from (2.10), F (r) ≡ 0 is a solution to the equations of motion. A first question is therefore
whether Schwarzschild black holes can support the real scalar field G(r). The equation for G(r) reads:(

1− rh
r

)(
G′′ +

2

r
G′

)
+

rh
r2

G′ = m2
2G− 3g2G

2 , (4.21)

which has to be solved subject to the boundary conditions

G′(rh) = rh
(
m2

2G(rh)− 3g2G
2(rh)

)
, G(r → ∞) = 0 . (4.22)

Note that since the coupling constant g1 becomes irrelevant in this case, appropriate rescalings of the function
G(r) and of the radial coordinate r allows us to set g2 = 1 and m2 = 1 without loosing generality. In the
probe limit the only parameter that remains is the horizon radius rh.

In spite of its simplicity, we found no closed form solution of this boundary value problem. Analytical
results are known for a classical Hénon-Heiles model in spaces with constant curvature [21], but not in the
background of a Schwarzschild black hole. We therefore solved the problem numerically for several values of
the horizon value rh. Our results are shown in Fig. 6, where we give the dependence of G(rh) and G′(rh)
on the horizon radius rh. Since all values are finite, the solutions are regular at rh. We will refer to these
solutions as G-clouds in the following. The limit rh = 0 is smooth with G(0) finite and corresponds to
solutions discussed in [17].

4.1.2 Two interacting scalar fields

Let us now consider the case when the two scalar fields are non trivial.
The constant g2 and the mass m1 can be set to unity by appropriate rescalings of G(r) and of the radial

coordinate r. The two remaining constants g1 and m2 now play a crucial role for the domain of existence of
the solutions which we will refer to as F -G-clouds in the following. We observe that with fixed rh and m2

the solutions with F (r) ̸= 0 exist only for g1 ≥ g1,cr. Our results indeed demonstrate that the function F (r)
tends uniformly to the null function for g1 → g1,cr. In other words: the F -G-clouds become G-clouds in this
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limit. Remembering that the G-clouds exist irrespective of the g1 coupling constant, the F -G-cloud can be
seen as bifurcating from the G-clouds at the critical value g1,cr. Such a bifurcation is shown in Fig. 7 (left)
for rh = 1, where we give the values of F (rh) and G(rh) in function of the horizon radius rh. Note that
for G-clouds the value of F (rh) ≡ 0 and G(rh) ≡ 3.8333, where the latter results from the choice m2 = 2.
The values G(rh) for F -G-cloud solutions are lower than the ones for G−cloud. Moreover, the mass M is
lower for the F -G-clouds at fixed horizon radius. This can be seen in Fig. 7 (right) and demonstrates the
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important role of the a priori complex scalar field in the system. In Fig. 8 we show the domain of existence
of F -G-clouds in the m2-g1-plane for two different values of rh (left) and in the g1-rh-plane for two different
values of m2 (right). This demonstrates that g1,cr depends on m2 and rh. We find that for small values of
m2, the value of g1,cr is not very sensitive to the size (and hence mass) of the black hole. For large(r) values
of m2 smaller black holes need larger values of g1 to be able to be surrounded by an F -G-cloud. We also find
that an increase in m2 lowers the value of g1,cr at fixed rh. In summary, we find that the larger the black
hole and the larger the mass of the real scalar field, the easier it is to have F -G-clouds on a Schwarzschild
black hole.
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Figure 8: Left: The domain of existence of G-clouds and F -G-clouds in the m2-g1-plane for two different
values of rh for α = 0, m1 = 2, m2 = 1 and g2 = 1. Right: The domain of existence of G-clouds and
F -G-clouds in the g1-rh-plane for two different values of m2, α = 0, m1 = 2 and g2 = 1. The F -G-clouds
exist above the corresponding curves, while G-clouds exist in the full domain. In both figures, the curves
correspond to the value of g1,cr.

4.2 Black holes with scalar hair

In the following, we will discuss the case α > 0, i.e. we will study spherically symmetric, static black hole
solutions that carry either one or two scalar fields on their horizon and demonstrate how the backreaction
of the space-time changes the solutions. We will set g2 = m1 = 1 without loss of generality in the following.

4.2.1 Black holes with G-hair

We will first study the case F (r) ≡ 0. We have fixed the value of α and varied rh for g1 = m2 = 1. We show
the values of G(rh) and G′(rh) in function of rh in Fig. 9. Clearly, G(r) is non-trivial in this case, i.e. we
have constructed black holes with G-hair. Our numerical data suggests that the solutions are not limited
by a maximal value of rh, i.e. we can make the black holes carrying G-hair as large as we want. The value
of G(rh) increases up to a maximal value at some critical value of rh = rh,cr from where it monotonically
decreases. The corresponding value of G′(rh) decreases up to rh,cr and increases from there. We find that
increasing α decreases the value of rh,cr. Hence, for small black holes, an increase in the size as well as in
the backreaction allows for larger values of the real scalar hair on the black hole horizon with scalar field
values decreasing for r > rh. For large black holes, the backreaction increases the value of the scalar field
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on the horizon, while increase in size leads to decrease in the value of the scalar field at rh. Moreover, our
results show that for r > rh,cr the scalar field increases in value when moving away from the horizon.

The mass of the solutions increases with increasing rh, see Fig. 10 (left), although we find that the
slope of the rh-M -curve decreases with increasing α. For small α, we see a strong increase in mass M when
increasing rh, while M seems nearly unchanged for large α. At the same time, the black hole temperature TH

decreases monotonically for increasing rh, see Fig. 10, when α is small. For large α, on the other hand, we
find that the temperature seems to possess a local minimum at some intermediate horizon value. In the limit
rh → 0 the temperature diverges and we find a regular solution. These are the gravitating versions of the
solitons made of real scalar fields first discussed in [17] for α = 0. (For soliton solutions in models with more
general potentials see also [22]).) We find that for α = 0.1 we have G(0) ≈ 1.4, while [17] finds G(0) = 1.397
for α = 0. Hence, the solitonic solutions made of a real scalar only generalize to curved space-time.
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Figure 9: We show the values of G(rh) (left) and G′(rh) (right), respectively, in dependence on the horizon
radius rh for several values of α and F (r) ≡ 0. Moreover g1 = g2 = 1, m1 = m2 = 1.

Typical profiles of the metric function N(r) are presented in Fig. 11 (left) for three values of rh, α = 1.0,
g1 = g2 = 1, m1 = m2 = 1. We also show profiles of the metric function for a constant horizon radius rh = 1
and several values of α in Fig. 11 (right). We find for all parameter choices presented in these figures that
N(r) possesses a local maximum and a local minimum outside the horizon - expect for the choice rh = 1,
α = 0.1. The maximal value of N(r) increases, while the minimal value of N(r) decreases when decreasing
rh for fixed α. For fixed rh, the minimal value does not show strong dependence on α (although it shifts to
large r when increasing α), however, the maximal value increases strongly when increasing α. We hence find,
as expected, the strongest change in the metric function N(r) for small black holes with large backreaction.

4.2.2 Black holes with F -G-hair

Let us finally present the results for black holes carrying both real as well as complex scalar hair, i.e. F -G-
scalar hair.

We show the values of F (rh) and G(rh) in function of g1 for different values of α with rh = 0.15, m2 = 1
and g1 = 1 in Fig. 12. Here we see that increasing the gravitational strength lowers the value of g1 at
which solutions with F -G-hair bifurcate from those with only G-hair. In Fig. 13 we show the free energy F
in function of the temperature TH for black holes with G-hair and black holes with F -G-hair for α = 0.5,
m2 = 2 and g1 = 2.5. For low temperature, the black hole with only G-hair is thermodynamically preferred,
while at sufficiently high temperature the black holes with F -G-hair have lower free energy.
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5 Conclusions

We have extended the work of [17] to include gravity. We have found globally regular as well as black hole
solutions. The globally regular solutions are boson stars (made of the complex scalar field) which carry an
additional real scalar field. In comparison to the non-backreacted case we find that now two solutions exist
for the same values of the couplings and the frequency of the complex scalar field. Moreover, there exist
solutions that are stable with respect to the decay into the individual bosonic particles that make up the
star. Interestingly, globally regular solutions made solely out of a real scalar field can exist in our model
as was already shown in [17] in flat space-time. While this seems to be in disagreement with Derrick’s
theorem [23] which forbids localized, finite energy solutions made out of static, real scalar fields in three
spatial dimensions, one of the requirements, namely that the potential be positive definite, is not fulfilled
in our model for appropriate choices of the coupling constants. Hence these solutions can exist and do not
contradict the theorem.

Interestingly, we also have constructed static, spherically symmetric and asymptotically flat black holes
with scalar hair (real or real and complex). This is not in disagreement with the theorem given in [9] which
states that static, spherically symmetric, asymptotically flat black hole space-times with energy-momentum
content fulfilling the weak energy condition as well as T θ

θ ≥ T r
r are necessarily trivial. While the latter

condition is always fulfilled in our case, the former is not: E = −T t
t is not necessarily positive definite as the

scalar field potential becomes negative for specific choices of the self-couplings.
To our knowledge, such results have never obtained before. The Hénon-Heiles potential has been shown

to emerge as an effective potential for a test particle in a Schwarzschild geometry perturbed by quadrupolar
and octupolar terms [24, 25], but dynamical fields have never been associated to this potential in curved
spacetime.
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[21] Ángel Ballesteros, Alfonso Blasco, and Francisco J Herranz. A curved hénon—heiles system and its
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